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Abstract  
 

Breast cancer is the most common cancer diagnosed in women and remains the second 

leading cause of cancer related deaths. For decades, anti-estrogen therapy (AET) has been used 

to treat estrogen receptor positive (ER+) breast cancer. The development of novel targeted 

therapies, like cyclin dependent kinase 4/6 inhibitors (CDK4/6i), provide additional treatment 

options for women with late-stage disease. CDK4/6i in combination with AET has delayed 

cancer progression and is approved for use in metastatic ER+, human epidermal growth factor 

receptor 2 negative breast cancer. However, it is estimated that almost half of these patients don’t 

derive a meaningful benefit from this treatment combination, resulting in unnecessary drug 

toxicities. Furthermore, unnecessary cancer treatment is a burden to the healthcare system, 

particularly with expensive drugs like CDK4/6i which cost ~$8000 per month of treatment.  The 

identification of predictive biomarkers represents a top cancer research priority. Biomarker 

testing improves treatment selection so that patients and our health care system derive maximal 

benefit from these effective but expensive drugs. To date, ER positivity remains the only 

molecular biomarker for CDK4/6i treatment selection. 

 For this research, I performed a comprehensive literature review of CDK4/6i biomarkers 

and analyzed publicly available molecular/clinical databases to identify potential biomarkers. I 

then conducted in vitro tests of palbociclib (CDK4/6i) and tamoxifen (AET) on a comprehensive 

panel of breast cancer cell lines. From this, I optimized the in vitro experimental assays to ensure 

they measured the cytostatic activity of palbociclib to accurately rank drug efficacy amongst the 

cell lines. Next, using reverse phase protein array (RPPA), I performed a discovery-based 

proteomic analysis to identify biomarkers of resistance to palbociclib +/- tamoxifen. 
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 My analysis of public databases failed to identify any statistically significant biomarkers, 

further highlighting the need for biomarker research. Western blot analysis identified p16 

overexpression and Rb loss as markers of resistance to palbociclib. RPPA analyses identified an 

additional thirteen differentially expressed proteins associated with palbociclib resistance. I also 

identified twelve proteomic biomarkers of resistance to the combination therapy. This research 

identifies predictive biomarker candidates for validation and highlights the importance of 

experimental assay optimization for translatable in vitro testing.  
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Lay Summary    

Breast cancer is the most common cancer in Canadian women. New molecular drugs are 

now improving outcomes for these patients, but they are very expensive. The purpose of my 

research is to study the molecular make-up of breast cancer cell lines treated with a new drug 

called palbociclib. The goal is to identify proteins (biomarkers) that predict which patients will 

not benefit from palbociclib. Breast cancer cell lines were treated with palbociclib alone and in 

combination with tamoxifen, a commonly used breast cancer drug. Fifteen different proteins 

were identified that might predict resistance to this drug. Using biomarker testing, patients can be 

selected for treatment so that those taking the drug will benefit. Also, by predicting when the 

drug won’t work, patients can be spared unnecessary treatment, toxicity, and side effects. This 

research can help inform patient selection which can save health care dollars to spend on more 

effective treatments.  
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Chapter 1- Introduction 

1.1 Project Overview 

Breast cancer is the most commonly diagnosed cancer in women, with 1 in 8 Canadian 

women being diagnosed during their lifetime [1]. This cancer remains the second leading cause 

of cancer-related deaths in Canadian women, and approximately 5,500 women will succumb to 

the disease each year [1]. The stage of disease at time of diagnosis is a substantial prognostic 

factor. The average 5-year survival rate across all stages of breast cancer is 89%, decreasing to 

22% for patients with stage 4 disease (Figure 1.1.1) [1]. Treatment options for breast cancer 

include surgery, radiation, chemotherapy or targeted drug treatments depending on the molecular 

subtype of the tumor [1].  

 

 
 
 
 
 
 
 
 

Figure 1.1.1 Breast cancer 5-year survival by stage [1]. 

 
A unique feature characterizing breast cancer is the presence of hormone receptors. 

Estrogen and progesterone receptors (ER and PR) regulate malignant growth and progression in 

this cancer type. With the identification of human epidermal growth factor receptor 2 (HER2), 

breast cancers are now characterized using these biomarkers [2]. Breast cancer treatment 

represents a leading example of precision medicine with the design of therapeutics directed at 

these molecular targets (ER and HER2), [3]. More recently, it has been recognized that breast 
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cancer tumours show significant alterations in cell cycle regulation, specifically loss of the 

tumour suppressor p16, which has led to the development of cell cycle inhibitors including 

cyclin dependent kinase 4/6 inhibitors (CDK4/6i) [4]. CDK4/6i are now used routinely for the 

treatment of ER-positive (ER+) advanced/recurrent breast cancers that are also negative for 

HER2 expression. CDK4/6i are almost always used in combination with anti-estrogen therapies 

(AETs - fulvestrant and letrozole). 

Several pivotal clinical trials (PALOMA-1, -2 and -3) led to the approval of the CDK4/6i, 

palbociclib (PLB), for the treatment of advanced/recurrent breast cancer. These trials 

demonstrated a significant improvement in progression free survival (PFS) with the addition of 

PLB compared to AET alone. However, two of these randomized trials failed to show an overall 

survival benefit [5–7]. The only statistically significant overall survival benefit was seen in the 

PALOMA-3 trial where the addition of PLB to fulvestrant (AET) resulted in a 6 month 

improvement [8]. Based on the literature, it is estimated that up to 40% of patients who are 

treated with CDK4/6i + AET combinations do not obtain a substantial benefit from the CDK4/6i 

[9–13]. Rising drug costs relating to the use of novel targeted therapies represents a significant 

funding challenge facing our health care system today [14]. There is growing concern about the 

financial toxicity associated with using novel targeted therapies and the resulting impacts to both 

patients and the health care system [14].  

Advanced breast cancers have been routinely treated with CDK4/6i for the last 7 years 

and there has been considerable research on the efficacy of CDK4/6i. Yet, it is remarkable that 

there are still no clinically validated, specific biomarkers to guide patient treatment [15].  As 

mentioned, most patients diagnosed with ER+/HER2- advanced/recurrent breast cancer are 

considered appropriate for treatment. There is a pressing need to ensure patients are treated with 
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new drugs that work, ensuring they have access to the most effective treatment options and avoid 

toxicities from ineffective treatments. Our laboratory has focused on predictive biomarker 

discovery for targeted therapies as a research priority [16,17]. Therefore, the purpose of this 

study was to address this research gap by evaluating CDK4/6i (PLB) response in breast cancer 

cell lines to identify biomarkers that can help to predict drug efficacy with and without AET 

(tamoxifen- TMX) treatment.  

  

1.1.1 Project Aims and Hypothesis 

The main aim of this project was to identify proteomic biomarkers of drug efficacy in a 

panel of breast cancer cell lines treated with the novel CDK4/6i PLB. In addition to PLB 

treatment alone, I also sought to evaluate predictive biomarkers of combination AET treatment 

(TMX). Based on the existing knowledge of cell cycle pathway regulation and cyclin dependent 

kinase 4/6 (CDK4/6) as a drug target, I hypothesized that I would identify predictive biomarkers 

of CDK4/6i efficacy using a discovery based proteomic approach. My specific objectives for 

identifying predictive biomarkers were highlighted as follows: 

 

OBJECTIVE 1: To conduct an extensive literature review to search for predictive biomarkers 

of PLB efficacy and assess the current literature relating to the validity of these biomarkers 

(Chapter 2). 

OBJECTIVE 2: To identify biomarkers of CDK4/6i efficacy using publicly available 

molecular/clinical breast cancer databases. These databases will be analyzed to determine if there 

are any molecular alterations that may be predictive of CDK4/6i efficacy (Chapter 2) 



 4 

OBJECTIVE 3: To identify predictive proteomic biomarkers of PLB alone or in combination 

with TMX in breast cancer cell lines. To accomplish this, I established the following sub-

objectives for this work: 

3a) To comprehensively evaluate the experimental conditions and cell proliferation assays to 

accurately measure PLB drug efficacy (Chapter 3).  

3b) To utilize the optimized experimental conditions to evaluate PLB and TMX efficacy and 

synergy in the panel of breast cancer cell lines (Chapter 4). 

3c) To screen the categorized cell lines for differentially expressed proteins using reverse phase 

protein array to identify predictive biomarkers of resistance to PLB alone and in combination 

with TMX (Chapter 5).  

 

1.2 Background on Breast Cancer 

1.2.1 Breast cancer subtypes and contemporary treatment  

With the use of molecular subtyping, precision medicine approaches are now being used 

to guide breast cancer treatment [2]. These molecular subtypes have distinct gene expression 

profiles that determine prognosis and help guide treatment decisions for targeted therapies (Table 

1.2.1.1) [2]. Breast cancer is categorized into four main subtypes based on the expression level of 

three molecular markers: ER, PR, and HER2, which are summarized below. 

 

Luminal Subtypes 

Luminal breast cancer is characterized by the expression of ER. This subtype is further 

classified into two distinct groups, luminal A and luminal B. Luminal A breast cancer is 

characterized by high expression of ER and/or PR, and negative or low expression of HER2 
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(Table 1.2.1.1). High ER positivity is defined as >10% of tumour nuclei stained positive by 

immunohistochemistry (IHC) [18].  Thus, the range of ER positivity is wide and goes from >10 

to 100%. Within the luminal B subtype, most tumours (~85%) express low ER levels (low ER is 

defined as 1-10% of tumor nuclei stained by IHC) and no HER2 expression; the remaining ~15% 

of luminal B tumours express both ER and HER2 (Table 1.2.1.1) [18,19].  Luminal B breast 

cancer has an increased proliferation rate and worse prognosis as compared to the luminal A 

counterpart. These ER-dependent tumours exhibit activation of the estrogen signaling pathway 

that drives cancer growth through the transcription of genes involved in DNA replication, 

apoptosis, and the cell cycle [20]. Because of this estrogen dependency, the estrogen receptor has 

become an obvious target for cancer therapeutics. Multiple AETs have been developed since the 

1970s, and they remain the standard-of-care for treating pre- and post-menopausal hormone 

receptor positive (HR+) (ER+ and PR+/-) subtypes [21]. Three types of AETs have been 

approved for use: 1) selective estrogen receptor modulators (SERMs), 2) selective estrogen 

receptor degraders (SERDs), and 3) aromatase inhibitors (AIs) (Table 1.2.1.1). 
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Although AETs have increased luminal breast cancer patient survival outcomes in the last 

few decades, response rates for metastatic disease vary from 10%-50% depending on the type of 

AET received (Table 1.2.1.1). In patients who derive benefit from AET, the development of 

acquired resistance to these targeted therapies remains a clinical challenge [28]. Mechanisms of 

AET resistance have been extensively studied to better understand how to overcome, reverse or 

delay this resistance. Activation of both the PI3K/mTOR and CDK4/6/Rb pathways have been 

described as mechanisms of resistance [29]. Within the cell cycle pathway, upregulation of 

cyclin D1 has been linked to AET resistance in ER+ breast cancer [20,30]. Accordingly, co-

targeting activated pathways is currently under evaluation in both the pre-clinical and clinical 

setting as a way to delay or prevent AET resistance [31]. 

 

 

Table 1.2.1.1 Breast cancer subtype characteristics, treatment options and 5-year survival rate for metastatic disease. 

Subtype Receptor Status 
Incidence 

Rate 
[19,22] 

Characteristics [19] Treatment 
Options 

Response Rates For 
Metastatic Disease 

[9,10,23–27] 

5-year Survival 
Rate for Metastatic 

Disease [22] 

Luminal 
A HR+/HER2- ~50% 

-Low proliferation rate 
-Good outcome 

AET (SERD, 
SERM, AI) 

30-40% tamoxifen  
40-50% letrozole 
~10% fulvestrant  

32% 

Luminal 
B 

HR+/HER2-  
(low ER levels) 
Or HR+/HER2+ 

~20% 
-High proliferation rate 

-Aggressive subtype 
 

HER2 targeted 
agents, AET or 
chemotherapy  

~40% HER2+AI 
~30% AI 

46% 

HER2-
enriched HR-/HER2+ 10-15% 

-High proliferation rate 
-Poor outcome 

HER2 targeted 
agents 30-60% 39% 

Triple 
Negative HR-/HER2- 15-20% 

-High proliferation rate 
-Poor outcome 

-Aggressive subtype 
Chemotherapy 20-70% 12% 
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Human Epidermal Growth Factor Receptor 2-Enriched Subtype 

The HER2-enriched breast cancer subtype accounts for 10-15% of new cases [22].  These 

tumours are negative for ER and PR and have >10% of the tumour nuclei strongly staining for 

HER2 by IHC (Table 1.2.1.1) [32]. HER2 overexpression activates downstream signaling 

pathways, leading to tumorigenesis and increased cell proliferation [33]. Similar to exploiting ER 

for drug development, HER2 overexpression has become the target for novel therapies including 

Trastuzumab (monoclonal antibody) and lapatinib (tyrosine kinase inhibitor) [33]. Unfortunately, 

70% of HER2+ patients experience de novo or acquired resistance to single agent Trastuzumab 

[34]. Mechanisms of resistance to HER2-targeted therapies include activation of PI3K, mTOR 

and MEK pathways [33]. Pre-clinical work by Goel et al., found that targeting the cyclin 

D1/CDK4/CDK6 axis can re-sensitize tumours to HER2 targeted agents [35]. To overcome 

resistance, multiple combination therapies have been explored and have demonstrated increased 

efficacy for treating HER2+ patients [33]. The development of antibody drug conjugates  (T-

MD1, T-DXd) have greatly increased response rates for HER2+ metastatic breast cancers 

through targeted drug delivery of chemotherapy in combination with Trastuzumab HER2 

blockade [23]. 

 

Triple Negative Breast Cancer  

Triple negative breast cancer (TNBC) is an aggressive subtype with the worst clinical 

outcome, and accounts for ~15% of breast cancer diagnoses (Table 1.2.1.1) [36]. These tumours 

have low or absent expression of ER, PR, and HER2, and therefore are not responsive to ER or 

HER2-targeted therapies [36]. The majority of TNBCs (~75%) can be further classified into the 

basal-like subtype, with the remaining 25% of TNBCs being comprised of luminal androgen 
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receptor and mesenchymal subtypes [26]. Chemotherapy remains the standard-of-care for 

TNBC, even though ~50% of TNBCs develop resistance to this treatment [36,37]. There are 

currently no approved targeted therapies for TNBC, highlighting the need for novel therapeutics 

to provide these patients with better treatment options [38]. 

 

In summary, the development of targeted agents has increased overall patient survival in 

HR+ and HER2+ patients; however, resistance to these drugs remains a pressing clinical 

challenge [31,39]. Additionally, 5-year survival rates for metastatic disease remain low, with a 

12-46% survival rate across all breast cancer subtypes (Table 1.2.1.1) [22]. Novel treatment 

options are needed to increase patient response rates and to overcome inevitable treatment 

resistance. 

 

1.2.2 The cell cycle 
 

The cell cycle is regulated by the ER and HER2 pathways, making it a promising drug 

target following the development of resistance to ER and HER2-targeted therapies. In normal 

cells, progression of the cell cycle through its distinct phases is tightly regulated by a series of 

checkpoints. The cyclin D1/CDK4/6 complex is a key regulator of cell cycle progression through 

the G1/S phase. The tumor suppressor, p16 - a natural CDK4/6i - regulates the formation of this 

complex by binding to CDK4 and inhibiting kinase activity. As shown in Figure 1.2.2.1, in the 

absence of p16, the cyclin D1/CDK4/6 complex mono-phosphorylates the downstream 

retinoblastoma (Rb) tumour suppressor, leading to the release of initial E2F transcription factors. 

Initial E2F transcription factors induce the expression of cyclin E1, allowing for the formation of 

the cyclin E1/CDK2 complex that hyper-phosphorylates Rb. The Rb tumour suppressor becomes 
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inactive and fully releases E2F transcription factors, ultimately stimulating progression into the S 

phase of the cell cycle (Figure 1.2.2.1). [40,41] 

 

Alterations within the cell cycle pathway at the G1/S phase are common in all breast 

cancer subtypes, as highlighted in Table 1.2.2.1. Negative p16 expression occurs more frequently 

in luminal and HER2-enriched subtypes, and increased cyclin D1 expression is seen in 60-70% 

of luminal breast cancer subtypes, as determined by IHC [42]. The Rb tumour suppressor is often 

retained in HER2-enriched and luminal subtypes in comparison to 20% of TNBC, which lack 

Figure 1.2.2.1 Cyclin D1/CDK4/6 pathway in breast cancer, and interactions of common signaling pathways on 
cyclin D1 expression. Pathway schematic adapted from Sobhani et al. (2019) [40] and created using BioRender.com 
[41]. SERM: Selective estrogen receptor modulator, SERD: selective estrogen receptor degrader. 
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functional Rb [43]. Elevated cyclin D1 has also been described as a marker of AET resistance 

[20]. These alterations which perpetuate an unchecked cell cycle present a targetable 

vulnerability in breast cancer, and have led to the evaluation of cell cycle inhibitors has a novel 

therapeutic option for breast cancer patients [30,44].  

 

 

1.2.3 Development of CDK4/6 inhibitors as a targeted therapy for breast cancer 
 

The cell cycle is a promising target for cancer drugs to regulate unchecked proliferation. 

As a key cell cycle regulator, the frequent loss of p16 prompted the evaluation of CDK4/6i and 

showed that these inhibitors could reverse the effects of p16 loss on cell cycle progression at the 

G1/S phase (Figure 1.2.2.1) [4]. Currently, three CDK4/6i are approved for use in combination 

with AET to treat both pre- and post-menopausal advanced or metastatic ER+ breast cancer : 

PLB, ribociclib, and abemaciclib [46].  

PLB was the first CDK4/6i approved by the FDA in 2015 and is extensively used to treat 

metastatic breast cancer [5]. Thus, PLB was chosen as the CDK4/6i to evaluate for this project. 

PLB is a highly selective reversible cell cycle inhibitor with an half maximal inhibitory 

concentration (IC50) of 11nM and 15nM for CDK4 and CDK6, respectively [47]. This CDK4/6i 

Table 1.2.2.1 Common cell cycle alterations in breast cancer subtypes [42,43,45]. 

Subtype CDK4 gene 
amplification [43] 

Cyclin D1 
expression >50% 

(IHC) [42] 

Negative Rb (IHC) 
[45] 

Negative p16 
(IHC) 
[45] 

Luminal A 14% 60% 8% 23% 

Luminal B 25% 71% 15% 30% 

HER2+ 24% 31% 13% 26% 

TNBC - 11%  19% 6% 
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elicits cytostatic effects by preventing the progression of cells from the G1 phase into the S 

phase. Finn et al. (2009) evaluated PLB in the pre-clinical setting, where they found luminal 

breast cancer cell lines exhibited increased sensitivity to PLB. Furthermore, synergistic effects 

were seen when PLB was combined with TMX [44]. TMX is a SERM that competitively binds 

to ER, eliciting a cytostatic effect due to the downstream stalling of cell proliferation within the 

G0 and G1 phases of the cell cycle [48]. In this project, I treated breast cancer cell lines with 

PLB and TMX to identify predictive proteomic biomarkers of efficacy at the pre-clinical level. 

TMX was selected as it is one of the most commonly used AET for adjuvant treatment in both 

pre- and post-menopausal women and the drug has been used extensively for in vitro testing 

[49].   

 

1.2.4. Clinical trials evaluating palbociclib  

In the pre-clinical research reported by Finn et al. (2009), PLB efficacy was evident, 

particularly in luminal and HER2+ breast cancer subtypes [44]. Confirmatory results 

subsequently led to the development of multiple clinical trials to study PLB in breast cancer 

patients. Multiple clinical trials using PLB to treat breast cancer patients are currently ongoing in 

all breast cancer subtypes as highlighted below (Table 1.2.4.1 and Appendix B-B1). 

 

HR+/HER2- clinical trials 

PLB was evaluated both as a monotherapy and in combination with AET (AI or SERD) 

in the TREnd trial [50]. A clinical benefit was observed with single PLB treatment, though the 

duration of benefit favoured the combination arm when compared to PLB alone (PFS of 11.5 

versus 6 months, respectively) (Table 1.2.4.1) [50]. The combination of PLB plus AET was 
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further evaluated in the PALOMA trials [51]. The phase I/II PALOMA-1 trial evaluated PLB in 

combination with letrozole as a first-line treatment for post-menopausal recurrent ER+/HER2- 

breast cancer. This study showed a 10-month improvement in PFS compared to letrozole alone 

(Table 1.2.4.1), these results led to the accelerated approval of PLB by U.S. Food and Drug 

Administration (FDA) [5,51]. The PALOMA-1 findings were further validated in a larger phase 

3 trial, PALOMA-2, where the combination resulted in a 13.1 month increase in PFS compared 

to letrozole alone [52]. PLB was well tolerated, with the most common adverse reaction being 

neutropenia. From these results, PLB received regular approval by the FDA for use in 

combination with letrozole as a first line treatment for recurrent/metastatic breast cancer [5]. 

Despite the remarkable improvements in PFS, upon long term follow up no statistically 

significant overall survival benefit was seen with the addition of PLB to letrozole treatment in 

either the PALOMA-1 or PALOMA-2 trials [6,7].  

PLB was further evaluated in the PALOMA-3 trial, these results led to the expanded 

approval of PLB to include treating pre- and post-menopausal HR+/HER2- metastatic breast 

cancer in combination with fulvestrant following disease progression on AET [53]. The 

combination of PLB + fulvestrant resulted in a 6.6 month increase in PFS compared to 

fulvestrant alone [54]. The PALOMA-3 trial was the only PALOMA trial to demonstrate 

statistically significant improvement in overall survival (34.9 months with PLB + fulvestrant 

combination vs 28 months with fulvestrant alone) [54]. Additional trials are ongoing to further 

evaluate PLB efficacy in the ER+/HER2- subtype as outlined in a review by Chen et al. (2019) 

[55], including three trials evaluating PLB + TMX combination. Results from the single arm 

phase 2 trial, NCT0266866, found that PLB + TMX as a first line treatment for metastatic breast 

cancer elicited a 30% response rate in the 47 patients evaluated, and the combination was well 
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tolerated [56]. Results from the other PLB + TMX trials are pending (Table 1.2.4.1).                               

a 

HER2-enriched and TNBC subtype clinical trials 

In the HER2+ subtype, pre-clinical studies found that targeting the cell cycle may re-

sensitize cells to HER2-targeted agents after the development of resistance [23]. Multiple clinical 

studies are underway to further evaluate PLB efficacy in the HER2+ breast cancer subtype. 

Treatment with single PLB and PLB in combination with HER2-targeted agents, chemotherapy 

or AET (for luminal B HER2+ patients only) are being evaluated in HER2-enriched patients 

(Appendix B-B1). The NA-PHER2 trial evaluated neoadjuvant dual HER2 therapy + fulvestrant 

+ PLB, in non-metastatic ER+/HER2+ breast cancer patients. During an interim analysis, results 

on the primary outcome measure, a change in Ki67 levels, were reported [57]. The authors 

reported that the four drug combination decreased the expression of the Ki67 proliferation 

marker when compared to the pre-treatment baseline [57]. This treatment combination was well 

tolerated, neutropenia was the most common adverse effect (seen in 29% of patients), and 

warrants further evaluation [57]. The results from the other ongoing trials are pending (Appendix 

B-B1). 

Although TNBC patients are thought to be poor candidates for CDK4/6i, due to their 

increased frequency of RB1 mutations or loss of Rb, a subset of TNBCs that express the 

androgen receptor may derive benefit for CDK4/6i as they commonly retain Rb function [39]. A 

clinical trial (NCT02605486) is currently evaluating PLB in combination with androgen 

receptor-targeted agents for this subset of patients. Additional trials are exploring various 

combinations with PLB, including chemotherapy and MEK inhibitors in TNBC patients, these 

are ongoing and summarized in Appendix B-B1.  
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Table 1.2.4.1 Clinical trials evaluating palbociclib in combination with anti-estrogen therapy (fulvestrant, letrozole or tamoxifen) in HR+/HER2- breast 
cancer. AI: Aromatase Inhibitor; AET: Anti-estrogen therapy; CBR: Clinical benefit rate; ER+: Estrogen receptor positive; HER2-: Human epidermal growth factor receptor 2 negative; HR+: 
Hormone receptor positive; OS: Overall survival; PFS: Progression free survival; PLB: Palbociclib; pts: Patients. Clinical benefit rate is defined by the percentage sum of complete responses, 
partial responses, and stable disease for at least 24 weeks according to RECIST 1.1 criteria. 

Clinical Trial 
Name 

Trial 
phase 

Trial 
duration 

Drug 
combination 

Patient population 
Treatment line 

(prior 
treatment 
allowed) 

Sample 
size Primary 

outcome 
(combo vs 
control) 

Secondary 
outcome 

(combo vs 
control) 

Overall 
Survival 

Difference 

Objective 
Response 
Rate for 

measurable 
disease 

References 
Menopausal 

status 
Disease 

characteristics 

#pts in 
the 

analysis 
(#pts 

recruited) 

PALOMA-
1/TRIO 

(NCT00721409) 

Phase 
I/II 2008-2017 

Palbociclib + 
Letrozole vs 
Letrozole + 

Placebo 

Post-
menopausal 

Cohort 1: ER+/HER2- 
recurrent breast 

cancer. Cohort 2: 
ER+/HER2- with 

Cyclin D1 
amplification and/or 

p16 loss 

First Line (no 
prior therapy for 

advanced 
disease) 

165 (400) 

PFS 20.2 vs 
10.2 months 

(Hazard Ratio 
0.49, 

p<0.001) 

OS 37.5 vs 
34.5 months, 

not 
statistically 
significant 

3 months 55.4% vs 
39.4% [6,10,51] 

PALOMA-2 
(NCT01740427) 

Phase 
III 

2012-
present 

Palbociclib + 
Letrozole vs 
Letrozole + 

Placebo 

Post-
menopausal 

ER+/HER2- recurrent 
or metastatic breast 

cancer 

First Line (no 
prior therapy for 

advanced 
disease) 

666 (875) 

PFS 27.6 vs 
14.5 months 

(Hazard Ratio 
0.56, 

p<0.001) 

OS 53.9 vs 
51.2 (Hazard 
Ratio 0.956) 
months, not 
statistically 
significant 

2.7 months 60.7% vs 
49.1% [9,12,52] 

PALOMA-3 
(NCT01942135) 

Phase 
III 

2013-
present 

Palbociclib + 
Fulvestrant vs 
Fulvestrant + 

Placebo 

Pre- and post-
menopausal 

HR+/HER2- 
metastatic breast 

cancer with 
progression 

Second line (any 
line of AET 

treatment, ≤1 
chemotherapy 

allowed) 

521 (711) 

PFS 11.2 vs 
4.6 months 

(Hazard Ratio 
0.50, 

p<0.001) 

OS 34.9 vs 
28.0 months 

(Hazard Ratio 
0.814, 

p=0.09) 

6.9 months 24.6% vs 
10.9% [11,13,54,58] 

TREnd 
(NCT02549430) Phase II 2015-2017 

Palbociclib + 
AET (AI or 

Fulvestrant) vs 
Palbociclib 

Post-
menopausal 

ER+/HER2- metastatic 
breast cancer 

Second line (1-2 
lines previous 

AET, ≤1 
chemotherapy 
line allowed) 

110 (115) 

CBR 54% vs 
60% (p=0.52) 

(combo vs 
PLB) 

PFS 10.8 vs 
6.5 months 

(Hazard Ratio 
0.69, p=0.13); 

duration of 
benefit 11.5 
vs 6 months 

N/A 
11% vs 7% 
(combo vs 

PLB) 
[50,59] 

NCT02668666 Phase II 2016-2021 Palbociclib + 
Tamoxifen 

Pre- and post-
menopausal 

HR+/HER2+ de novo 
metastatic or recurrent 

breast cancer 

First Line (no 
prior therapy for 

advanced 
disease) 

47 (49) 

PFS 14.6 
months for 

de-novo 
MBC, 6 

months for 
recurrent 

Adverse 
effects 51% 

pts developed 
grade 3 

neutropenia 

N/A 30% [56] 

NCT03423199 
(PATHWAY) 

Phase 
III 

2018-
present 

Palbociclib + 
Tamoxifen vs 
TMX alone 

Pre- and post-
menopausal 

Asian HR+ HER2- 
advanced or MBC 

First or second 
line (progressed 

on AI)  
180 PFS OS N/A N/A [60] 

NCT02384239 Phase II 2015-
present 

Palbociclib + 
Fulvestrant or 
Palbociclib + 
Tamoxifen 

Pre- and post-
menopausal 

HR+ locally advanced 
or metastatic breast 

cancer 

Prior treatment 
with PI3Ki 70 

Percentage of 
patients with 

grade 3/4 
neutropenia 

PFS N/A N/A [25] 
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1.2.5 Precision medicine and achieving best outcomes using CDK4/6 inhibition 

  Novel targeted therapies provide substantial benefit to patients with metastatic breast 

cancer whose tumours develop de novo or acquired resistance to currently available drugs.    

CDK4/6i are now routinely used in combination with AET for the treatment of advanced or 

metastatic ER+ breast cancer. In the 7 years since its approval, PLB has been prescribed to over 

450,000 patients across 100 different countries [61]. Recently, real-world data from a large 

retrospective database analysis found the addition of PLB to AI treatment increased overall 

survival by 5.9 months and PFS by 5.4 months when compared to AI treatment alone [61]. It is 

important to note that the response rates from the PALOMA trials, which lead to the approval of 

PLB, were limited to 25-60% [9–11].  CDK4/6i are generally well tolerated and toxicities can be 

managed with dose reduction; however, some patients still experience neutropenia, leukopenia 

and fatigue [46].  

Novel targeted therapies are very expensive, the costs associated with these treatments 

have become a financial burden to the health care system and some question the sustainability of 

using targeted therapies without biomarkers to guide treatments [14,62]. Treatment with PLB for 

one month costs ~$8,000, resulting in an annual cost of ~$96,000 for one patient [63]. Thus, 

predictive biomarkers of PLB efficacy are of high importance to address the increasing financial 

burden of cancer care, specifically to ensure that drug expenditure is optimized.  There is also a 

pressing need for biomarker research that is designed in such a way where biomarkers can be 

validated for use in the clinical setting. This research aims to identify predictive biomarkers that 

will lead to better patient selection for treatment, reduce toxicities, and ensure efficient use of our 

health care resources.  
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Chapter 2 – Analysis of existing biomarkers from literature and online 
databases  
 

2.1 Background and Rationale 

In recent years, the knowledge of molecular mechanisms for drug efficacy has expanded 

exponentially, resulting in a multitude of predictive biomarker publications [64]. With advancing 

-omic technologies, biomarker research is expanding into all aspects of cancer cell regulation, 

including genomics, transcriptomics, proteomics and epigenetics [65]. Despite this, it has been 

challenging to translate biomarkers from preclinical discovery into clinical application. In fact, 

there are a limited number of clinically validated biomarkers currently used to predict drug 

response [64]. As part of my thesis, I undertook two strategies to obtain information on existing 

biomarkers for PLB efficacy in breast cancer.  Firstly, I performed a literature review on PLB 

predictive biomarkers to establish the background for this chapter (Objective 1). Second, I 

analyzed existing clinical databases with both outcomes for patients treated with CDK4/6i and 

molecular data from a translational component (Objective 2).  

 

Current state of knowledge relating to PLB biomarkers: Existing pre-clinical data  

For my literature review (Objective 1), I examined existing publications to identify PLB 

predictive biomarkers. Preclinical work by Finn et al. (2009) found three transcripts directly 

related to the CDK4/6 pathway to be predictive of increased PLB response in breast cancer cell 

lines [44]. Lower levels of CDKN2A and higher levels of CCND1 and RB1 mRNA were 

correlated with PLB sensitivity [44]. The predictive value of these cell cycle markers was further 

explored in the PALOMA trials. The PALOMA-1 trial included a cohort of patients with cyclin 

D1 (CCND1) gene amplification and p16 loss (CDKN2A), as determined by fluorescence in situ 
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hybridization (FISH); however, this cohort analysis was terminated early as no increased benefit 

to PLB + letrozole combination was observed [51]. The PALOMA-2 trial evaluated common cell 

cycle molecules at both protein (cyclin D1, Rb, and p16) and mRNA (CCND1, CCNE1/2, 

CDK2/4/6, RB1, and CDKN2A) levels in formalin-fixed paraffin-embedded (FFPE) breast cancer 

tissues; however, no correlation with response to PLB + letrozole was seen [66,67]. Instead, this 

trial found that lower mRNA levels of PD-1 and increased mRNA levels of FGFR2 and ERBB3 

were associated with PLB + letrozole sensitivity [67]. Biomarker evaluation from the PALOMA-

3 trial found lower levels of CCNE1 (mRNA from FFPE tissue) were associated with PLB + 

fulvestrant sensitivity [68]. The potential biomarkers (lower mRNA levels of PD-1 and CCNE1, 

and increased mRNA levels of FGFR2 and ERBB3) identified in these large-scale correlative 

trials have yet to be further validated [67,68]. Multiple clinical trials have evaluated the 

predictive value of several biomarkers with a lack of success [12,13,51]. Technical limitations, 

such as the use of analytical techniques based on measuring mRNA expression in FFPE tumor 

tissues, could be one explanation for failed efforts to discover useful biomarkers [69].  

Although low p16 levels were not predictive of PLB response in the PALOMA clinical 

trials, additional preclinical work has found overexpression of p16 to be correlated with CDK4/6i 

resistance. CDK4/6i resistance was seen in ER+ breast cancer cell lines and both ER+ and ER- 

patient derived xenografts that overexpressed p16 [70,71].  P16 overexpression is a rare 

occurrence in ER+/HER2- breast cancer but is more frequently seen in ER- breast cancer, 

therefore this biomarker may hold more predictive value in ER- breast cancer [15].  

Rb expression was not found to be predictive of PLB response in the PALOMA trials, 

however Rb loss has been described as a mechanism of intrinsic and acquired resistance to 

CDK4/6i [43,72]. In the absence of Rb, cell cycle regulation bypasses the CDK4/6 axis resulting 
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in constitutive activation of E2F transcription factors (Figure 1.2.2.1). The PALOMA-3 trial 

evaluated circulating tumor DNA from pre- and post- treatment plasma samples, it was found 

that 5% of patients acquired an RB1 mutation after PLB + fulvestrant treatment [73]. Recently, 

Palafox et al. (2022) identified heterozygous loss of RB1 as a marker of acquired resistance to 

CDK4/6i (ribociclib) in patient derived xenografts [71]. Another proposed mechanism of 

resistance is the activation of cyclin E1/CDK2 axis as this complex phosphorylates Rb leading to 

the release of E2F factors, which could bypass CDK4/6 inhibition (Figure 1.2.2.1). 

Amplification of CCNE1 has been described as a marker of resistance to PLB in multiple in vitro 

studies [74,75]. This finding was strengthened in the PALOMA-3 trial where they found that 

lower levels of CCNE1 were associated with PLB sensitivity [68]. 

Other pre-clinically identified biomarkers of PLB response include T172 phosphorylation 

of CDK4 [70] and low levels of Y88 phosphorylated p27 [76], each of which have been 

correlated with PLB sensitivity. Loss of function FAT1 mutations have been described as a 

marker of resistance [72]. A retrospective analysis by Lee et al. (2022) using next-generation 

sequencing data from patients who had previously received a CDK4/6i, identified several 

genomic alterations that were predictive of CDK4/6i resistance [77]. These alterations included 

PTEN and CDKN2A loss, FGFR1, CDK4, MDM2 and FRS2 amplification and BRCA1 and 

ERBB2 mutations [77].  

While multiple biomarkers have been identified in the pre-clinical setting, further 

evaluation and validation are required for them to be used in a clinical setting. As the literature 

review did not reveal any validated biomarkers for clinical use, I undertook an analysis of 

existing databases containing molecular and clinical data from PLB-treated breast cancer patients 

to search for predictive biomarkers of CDK4/6i efficacy (Objective 2). 
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2.2 Methods 

Three publicly available databases were identified containing treatment data on 

metastatic breast cancer patients: 

1) Count Me In: The Metastatic Breast Cancer Project; 

2) The Cancer Genome Atlas within the National Cancer Institute Genomic Data Commons 

Data Portal; 

3) American Association for Cancer Research Genomics Evidence Neoplasia Information 

Exchange (AACR GENIE).  

 

Each database was searched to identify clinical and molecular data on patient samples 

previously treated with a CDK4/6i. The Count Me In: The Metastatic Breast Cancer Project 

database did not contain information on CDK4/6 treatment, and the Cancer Genome Atlas within 

the National Cancer Institute Genomic Data Commons Data Portal was limited to radiation 

treatment only. The AACR Project GENIE AKT1 cohort was the only database that contained 

CDK4/6i data [78]. Accordingly, the AACR GENIE database alone was mined to 1) identify 

novel biomarkers and 2) interrogate previously evaluated biomarkers that were identified in the 

clinical trials highlighted above (PALOMA-1, -2, -3). 

In the AACR GENIE AKT1 cohort, samples from patients who underwent CDK4/6i 

treatment were collected as FFPE tissues from five different sites, including MD Anderson 

Cancer, Princess Margaret Cancer Centre, Memorial Sloan Kettering, Dana-Farber Cancer 

Institute, and Vanderbilt-Ingram Cancer Center. This database contained gene mutation and copy 

number alteration (CNA) data generated by each center using different gene sequencing panels. 

Therefore, the number of genes analyzed varied depending on the collection site of the sample. 
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The analysis of the AACR GENIE database was conducted using the cBioPortal platform with R 

for statistical analysis. Since data on PFS was not available, I used CDK4/6i treatment duration 

(long versus short) as a surrogate measure of PFS. Non-parametric Wilcoxon rank-sum tests 

were used to compare clinical attributes (including age, race, tumour stage, previous treatment) 

between long and short CDK4/6i treatment duration groups (p-value < 0.05). All figures and 

tables presented in this chapter were generated using cBioPortal, and raw data is available on that 

platform (cBioPortal.org) [79].  

 

2.3 Results 

The AACR GENIE AKT1 cohort contained clinical and molecular information on 428 

breast cancer patients, of which 126 patients were treated with a CDK4/6i. Multiple treatment 

types were reported, including chemotherapy, fulvestrant, and AIs. This database reported 

duration of CDK4/6i treatment (rather than PFS) and did not specify which CDK4/6i or AET the 

individual patients were treated with.  

To identify potential genomic biomarkers of CDK4/6i response or resistance, the 

CDK4/6i treatment duration data from 126 patients was divided into quartiles.  The lower 

quartile - shortest duration (0-2.3 months) - and upper quartiles - longest duration of CDK4/6i 

treatment (10.3-29.0 months) - were selected for further analysis and comparison. All patients 

included in the analysis were female and the patient characteristics were similar between the two 

groups (Table 2.3.1). The short CDK4/6i treatment duration group had an OS of 52.34 months 

and the long CDK4/6i treatment duration group had an OS of 95.72 months (Figure 2.3.1). When 

comparing the clinical characteristics of the two groups, the shorter CDK4/6i treatment group 
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had statistically significant shorter first and second line treatment durations and an increased 

number of chemotherapy lines when compared to the long treatment group (Table 2.3.2).  

 
Table 2.3.1 Baseline characteristics of breast cancer patients with short versus long CDK4/6i 
treatment duration.  

Short duration of 
CDK4/6i treatment  

(0-2.3 months)  
n=32 

Long duration of 
CDK4/6i treatment 
(10.3-29.0 months) 

n=31 

Age at primary diagnosis 52 (26-69) 50 (28-65) 

Metastatic 13 (41%) 17 (55%) 

Primary 15 (47%) 10 (32%) 

ER+/PR+ expression 24 (75%) 25 (81%) 

ER+/PR- expression 5 (16%) 3 (10%) 

ER- expression 2 (6%) 1 (3%) 

HER2- expression 28 (88%) 27 (87%) 

Previous endocrine sensitivity 23 (72%) 31 (100%) 

Average therapies in metastatic setting 4 (1-13) 2 (1-9) 

Received CDK4/6i in first line 14 (43%) 7 (23%) 

Received CDK4/6i in second line 8 (25%) 6 (19%) 

Received CDK4/6i in unknown line 10 (32%) 18 (58%) 
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Copy Number Alterations 

Some differences in CNA were observed between the shortest (<2.3 months) and the 

longest (>10.3 months) CDK4/6i treatment duration groups but were not statistically significant. 

Of interest, RIT1 amplification and RB1 homozygous deletion were more commonly seen in the 

Table 2.3.2 Statistically significant clinical attributes of breast cancer patients with short duration of 
CDK4/6i treatment (<2.3 months) compared to patients with a long duration of CDK4/6i treatment (>10.3 
months). The table generated from cBioPortal.org [79]. 

Clinical Attribute Statistical Test p-Value 
Duration of CDK4/6 treatment (any line) (Months) Wilcoxon Test ≤0.05 

Chemotherapy lines received in Metastatic Treatment Wilcoxon Test ≤0.05 
Duration of first-line treatment (Months) Wilcoxon Test ≤0.05 

Duration of second-line treatment (Months) Wilcoxon Test ≤0.05 
Total number of therapies received in metastatic disease treatment Wilcoxon Test ≤0.05 

Figure 2.3.1 Kaplan Meier survival curve for breast cancer patients with long (>10.3 
months) and short (<2.3 months) duration of CDK4/6i treatment. Overall survival was 
determined using the time from metastatic diagnosis to death or date of last follow-up. The 
graph was generated using cBioPortal.org [79]. 
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short treatment duration group, whereas MYC, NBN and RAD21 amplification were most 

common in the long treatment duration group (Table 2.3.3). Despite this, CNA frequency was 

not higher than 16.1%. Similar to the inconclusive results of the PALOMA trials, alterations 

within the cell cycle pathway were common in both short and long responders [51,67]. Although 

the long duration of treatment group had a higher percentage of alterations in CCND1 and 

CDKN2A, these findings were not statistically significant (Table 2.3.3).  

From the PALOMA-2 and -3 trials, increased FGFR2 mRNA and low levels of CCNE1 

mRNA were found to correlate with PLB + AET response [67,68]. Although this data base did 

not contain mRNA expression data, CNA of FGFR2 and CCNE1 were evaluated. Amplification 

of CCNE1 was observed in 3.2% and 0% of samples in the long and short CDK4/6i treatment 

duration groups, respectively. FGFR2 amplification was only seen in one sample in both the long 

and short CDK4/6i treatment groups. Due to the low frequency of these alterations seen in the 

explored database, further validation of CCNE1 and FGFR2 mRNA expression and CNA as 

predictive biomarkers of CDK4/6i response is needed. 

 
Table 2.3.3 Frequent copy number alterations in breast cancer patients grouped by short CDK4/6i 
treatment (<2.3 months) and long CDK4/6i treatment (>10.3 months). Results between the two groups were 
not statistically significant. AMP= Amplification, HOMDEL= Homozygous deletion. 

Short Duration of CDK4/6i Treatment Long Duration of CDK4/6i Treatment 
Gene N (%) CNA Gene N (%) CNA 

CCND1 5/27 (18.5%) AMP CCND1 9/31 (29.0%) AMP 
RIT1 2/27 (7.4%) AMP MYC 5/31 (16.1%) AMP 
RB1 2/27 (7.4%) HOMDEL NBN 3/31 (9.7%) AMP 

CDKN2A 2/27 (7.4%) HOMDEL CDKN2A 3/31 (9.7%) HOMDEL 
FGFR2 1/27 (3.7%) AMP RAD21 3/31 (9.7%) AMP 

   AKT1 2/31 (6.5%) AMP 
   GNAS 2/31 (6.5%) AMP 
   RECQL4 2/31 (6.5%) AMP 
   MCL1 2/31 (6.5%) AMP 
   FGFR2 1/31 (3.2%) AMP 
   CCNE1 1/31 (3.2%) AMP 
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Mutations 

Patients who received CDK4/6i treatment for a longer duration had a higher frequency of 

AKT1 (32.26%) mutations compared to the shorter CDK4/6i treatment duration group (18.75%) 

(Table 2.3.4). All the AKT1 mutations seen in this dataset were activating AKT1E17K mutations. 

AKT1 is a key regulator of the PI3K/AKT pathway which promotes cell growth and survival, and 

activation of AKT is associated with deregulated kinase activity. GATA3 was also more 

commonly mutated in the long treatment duration group (19.35% vs 7.41%) (Table 2.3.4). In the 

long treatment duration group, all the GATA3 mutations were driver mutations, with 5/6 

mutations being truncating mutations and one missense mutation. In contrast, the GATA3 

mutations present in the short treatment group were in-frame or missense mutations of unknown 

significance. These findings suggest that GATA3 driver mutations are correlated with longer 

CDK4/6i treatment, however due to the limited sample size, these findings should be interpreted 

with caution. GATA3 is an ER associated gene and frequently mutated in luminal A breast cancer 

[19]. Due to the limited sample size in each group, none of the mutations were statistically 

significant between the two groups. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 2.3.4 Frequent gene mutations in the short (<2.3 months) 
versus long (>10.3 months) duration of CDK4/6i treatment in breast 
cancer patients.  

Gene Short CDK4/6i 
Treatment n=32, N (%) 

Long CDK4/6i Treatment 
n=31, N (%) 

AKT1 6/32 (18.75%) 10/31 (32.26%) 

GATA3 2/27 (7.41%) 6/31 (19.35%) 

MAP3K1 2/27 (7.41%) 4/31 (12.90%) 

ARID1B 1/27 (3.70%) 3/30 (10.00%) 

NOTCH1 NA 3/31 (9.68%) 

MAP2K4 2/27 (7.41%) 3/31 (9.68%) 
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2.4 Discussion/Conclusions 
 

This chapter addressed Objective 1 - PLB biomarker literature search (background) - and 

Objective 2 - analysis of publicly available databases to identify predictive biomarkers of 

response to CDK4/6i + AET treatment in breast cancer. Although CDK4/6i have been approved 

for use since 2015 and prescribed to many breast cancer patients within and outside the context 

of clinical trials, the number of publicly available databases containing clinical and molecular 

information regarding CDK4/6i treatment information remains very limited. From the three 

breast cancer databases containing treatment data, the AACR GENIE AKT cohort database was 

the only identified dataset that included CDK4/6i treatment information. This database was 

generated to answer a different question relating to AKT1 mutations, and using it to identify 

potential CDK4/6i biomarkers comes with limitations [80]. I was unable to correlate the drug 

effect with regular reported outcomes as the data was limited to duration of CDK4/6i treatment 

rather than PFS.  Unfortunately, not having PFS data in the GENIE database, makes it hard to 

draw any firm conclusions from this analysis. 

 From the AACR GENIE database, I found that heavily pretreated patients who 

experienced shorter duration of response to first and second lines of treatment were more likely 

to derive shorter benefit to a CDK4/6i. This observation could suggest that patients 

demonstrating resistance at any time of their treatment may be more likely to be CDK4/6i 

resistant. RB1 homozygous deletion was seen in 7.4% of patients in the shorter CDK4/6i 

treatment duration group. This alteration is uncommon in HR+/HER2- breast cancer, but has 

previously been described as a mechanism of resistance to CDK4/6i [43]. CNAs within the cell 

cycle pathway, CCND1 and CDKN2A, were not significantly associated with a specific treatment 

duration group. AKT1 and GATA3 were the most common mutations in both treatment duration 
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groups but were more frequently mutated in the long CDK4/6i treatment duration group. Both of 

these mutations have been correlated with a decreased response to AET [29,81], however the 

addition of CDK4/6i to AET-resistant cells has been previously reported to re-sensitize cells to 

AET [44].  

 I was unable to directly evaluate the biomarkers identified in the PALOMA trials because 

the GENIE database did not contain mRNA expression data. Complete and comprehensive 

clinical databases using standardized molecular data and detailed clinical information are needed 

to obtain robust biomarker results. Clinical trial data can be very informative for these types of 

analysis if molecular data has been collected for translational research.  

In summary, no statistically significant CNA or mutation biomarkers were identified 

from the GENIE database. From the work outlined in this chapter, validation of the predictive 

biomarker candidates identified in the literature should include the following: p16, Rb loss, 

phosphorylated CDK4, MDM2, PTEN and FGFR1/2. As I will now outline in the subsequent 

chapters of my thesis, there is adequate justification to proceed with the aims and work outlined. 

Additional preclinical research is needed, and I chose to focus the identification of proteomic 

biomarkers in the panel of breast cancer cell lines.   
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Chapter 3- Defining optimal in vitro drug testing methods and analyses for 
CDK4/6i treatment evaluation 
 

3.1. Background and Rationale 

Various experimental assays have been used in the past to perform drug sensitivity 

testing in vitro. In general, cancer cell line models, both 2D and 3D, maintain genomic 

aberrations that are present in the tumours which they are derived from [82].  Immortalized cell 

line models proliferate indefinitely and provide a continuous supply of cells for experimental 

work. However, the reliance on in vitro testing using cancer cell line models has its limitations, 

including the inability to study the impact of tumour heterogeneity, the tumour 

microenvironment, and the impact of the immune system on drug response. Despite these 

limitations, cell line models are instrumental tools used in scientific research to evaluate drug 

sensitivity.  

Our lab has successfully identified predictive biomarkers using in vitro drug testing on 

patient-derived cell line models [16]. From this work, we determined that selecting appropriate 

experimental designs were necessary to ensure accurate drug response evaluation and reporting. 

We found 4-day proliferation assays with Incucyte live-cell imaging were superior at capturing 

MEK inhibitor drug effect when compared to conventional 3-day IC50 experiments in our low-

grade serous ovarian cancer cell lines [83].  

Previous work has outlined the specific limitations using IC50 as assays for drug 

sensitivity testing. These are as follows:  1) results can be affected by the intrinsic differences in 

doubling times or cell line growth rates, 2) the dose ranges used for in vitro experimentation are 

often very high, significantly outside of the pharmacologic in vivo dosing range, and 3) 

experiments are run for a short period of time, without considering the mechanism of drug 
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action. Hafner et al. (2016) reported on these confounders that exist with conventional drug 

assays (IC50 values and area under the curve) that rely on experimental endpoint data to report 

drug sensitivity [84]. 

In preparation for my work on breast cancer cell lines I examined two papers that 

provided data on PLB sensitivity in breast cancer cell lines. Finn et al. (2009) evaluated drug 

efficacy in 47 breast cancer cell lines using 6-day cell counting experiments and Rapsé et al. 

(2017) evaluated 20 of the same breast cancer cell lines using a BrdU incorporation assay after 

24 hours of PLB treatment [44,70]. When comparing cell line sensitives between the two papers, 

discrepancies in drug responses were reported. Two resistant cell lines, with IC50 values of 

>1000nM, reported in the Finn paper were classified as sensitive lines in the Raspé paper, with 

reported IC50 values of ≤25nM [44,70]. By grouping the cell lines into highly sensitive, 

intermediate sensitivity and resistant, 20% of cell lines were found to have discordant findings 

between the two studies. Pre-clinical biomarker identification relies on the accurate ranking of 

cell line treatment efficacy based on in vitro drug testing. These studies highlight how 

challenging it can be to obtain reproducible in vitro results and reflect the challenges of 

translating preclinical findings into clinical application.  

Based on our laboratory’s previous experience with in vitro drug testing and the 

discrepancies in PLB drug reporting highlighted above, we sought to optimize our experimental 

design for this project to best discriminate between PLB sensitive and resistant breast cancer cell 

lines. This was completed by optimizing the drug concentrations for testing to ensure 

pharmacologic drug doses were used for both PLB and TMX. Next, I increased the duration of 

the experiments to assess whether there were specific considerations that relate to the 

proliferation rates of breast cancer cell lines and the known cytostatic effect of PLB. I also 
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evaluated different measures of cell proliferation using Incucyte confluence and cell counting to 

determine the optimal method for measuring drug effect.  Finally, I used a growth rate calculator 

to account for variability in growth rates and initial seeding densities. This chapter (Objective 3a) 

describes the methodologies and analytical considerations I used to classify responses to PLB +/- 

TMX in a large panel of breast cancer cell lines (Chapter 4), and later to search for proteomic 

biomarkers associated with differential drug response (Chapter 5).  

 

3.2 Experimental methodology and analytical considerations 
 
Breast Cancer Cell Lines 

A panel of twenty well-characterized commercial breast cancer cell lines were acquired 

through collaborators (Table 3.2.1). Once received, all cell lines were authenticated by short 

tandem repeat (STR) profiling and screened for mycoplasma infection (Appendix A – 

Experimental Methodology). The selected panel of lines included all molecular subtypes of 

breast cancer, including nine luminal A (9/20=45%; BT483, CAMA-1, HCC1428, MCF7, T47D, 

MDA-MB-134, MDA-MB-175, MDA-MB-415, ZR-75-1), three luminal B (3/20=15%; BT474, 

MDA-MB-361, ZR-75-30), four HER2-amplified (4/20=20%; AU565, HCC202, MDA-MB-

453, SKBR3) and four TNBC (4/20=20%; BT549, HCC38, MDA-MB-231, MDA-MB-468). 

The four TNBC cell lines are further classified into the basal-like subgroup. All cell lines were 

originally cultured in the ATCC recommended media, summarized in Table 3.2.1. Certain cell 

lines were grown in L-15 media that required incubation in an air-only incubator; however, it 

was not feasible to use these cell lines for Incucyte experiments, which were performed in a 5% 

CO2 incubator. Thus, to simplify the experimental design and reduce the potential variability due 

to differences in culturing conditions, all cell lines were cultured in RPMI + 10% FBS and grown 
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at 37°C in a 5% CO2 incubator for all drug treatment experiments. To ensure changing the media 

did not alter the expression levels of the known receptors (ER, PR and HER2), protein levels 

were confirmed by Western blot in all cell lines prior to any in vitro drug experiments (Figure 

3.2.1, Appendix A – Experimental Methodology). 

  

Figure 3.2.1 Western blot of estrogen and progesterone receptor and HER2 expression in 
twenty breast cancer cell lines. Two gels were run in parallel to evaluate all breast cancer cell 
lines, within each gel, cell lines were grouped by positive and negative estrogen receptor protein 
levels. *HCC1428 has PR expression with longer exposure. Cell lysates were prepared from sub 
confluent cells grown in RPMI +10% FBS. 
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Table 3.2.1 Twenty breast cancer cell line characteristics, cell culturing conditions and clinical features of tumors where the lines were derived. ER/PR/HER2 
status was evaluated by Western blot. ER: Estrogen receptor; FBS: fetal bovine serum; HER2: human epidermal growth factor receptor 2; PR: progesterone receptor; 
TNBC: triple negative breast cancer. 

Cell Line ER 
Status 

PR 
Status 

HER2 
status Diagnosis Age at Tumour 

Removal Source Ethnicity of 
Patient 

Year Cell Line 
Was Established Original Cell Culture Media Culturing Media 

AU565 - - + HER2+ 43 Pleural Effusion White 1970 RPMI + 10% FBS RPMI + 10% FBS 

BT474 + + + Luminal B 60 Primary Breast White 1978 RPMI + 10% FBS RPMI + 10% FBS 

BT483 + + - Luminal A 23 Primary Breast, 
Mammary gland White 1978 RPMI + 20% FBS + 10µg/ml insulin RPMI + 10% FBS 

BT549 - - - TNBC  
(Basal-like) 72 Primary Breast White 1978 RPMI + 10% FBS + 10µg/ml insulin RPMI + 10% FBS 

CAMA-1 + + - Luminal A 51 Pleural Effusion White 1975 EMEM + 10% FBS RPMI + 10% FBS 

HCC1428 + + - Luminal A 49 Pleural Effusion White 1995 RPMI + 10% FBS RPMI + 10% FBS 

HCC202 - - + HER2+ 82 Mammary gland White 1992 RPMI + 10% FBS RPMI + 10% FBS 

HCC38 - - - TNBC  
(Basal-like) 50 Primary Breast White 1992 RPMI + 10% FBS RPMI + 10% FBS 

MCF7 + + - Luminal A 69 Pleural Effusion White 1973 RPMI + 10% FBS RPMI + 10% FBS 

MDA-MB-134 + - - Luminal A 47 Pleural Effusion White 1973 L-15% 20% FBS RPMI + 10% FBS 

MDA-MB-175 + - - Luminal A 56 Pleural Effusion Black 1973 L-15 + 10% FBS RPMI + 10% FBS 

MDA-MB-231 - - - TNBC  
(Basal-like) 51 Pleural Effusion White 1973 RPMI + 10% FBS RPMI + 10% FBS 

MDA-MB-361 + - +/- Luminal B 40 Metastatic site, 
Mammary gland White 1975 L-15 + 20% FBS RPMI + 10% FBS 

MDA-MB-415 + + - Luminal A 38 Pleural Effusion NA 1975 L-15 + 15% FBS + 2mM GlutaMax + 
10µg/ml insulin + 10µg/ml glutathione RPMI + 10% FBS 

MDA-MB-468 - - - TNBC  
(Basal-like) 51 Pleural Effusion Black 1977 RPMI + 10% FBS RPMI + 10% FBS 

MDAMB453 - - + HER2+ 48 Mammary gland; 
Pericardial Effusion White 1976 L-15 + 10% FBS RPMI + 10% FBS 

SKBR3 - - + HER2+ 43 Pleural Effusion White 1970 McCoy 5a + 10% FBS RPMI + 10% FBS 

T47D + + - Luminal A 54 Pleural Effusion NA 1974 RPMI + 10% FBS RPMI + 10% FBS 

ZR-75-1 + + - Luminal A 63 Ascites White 1978 RPMI + 10% FBS RPMI + 10% FBS 

ZR-75-30 + - + Luminal B 47 Ascites Black 1978 RPMI + 10% FBS RPMI + 10% FBS 
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Four-day Cell Counting Experiments  

 Breast cancer cell lines were plated in a 48-well plate at experimentally determined 

seeding densities (6,000-47,000 cells/well) to achieve 20% initial cell confluence 18-24 hours 

after seeding. Initial cell confluence was measured by live cell-imaging using Incucyte™ ZOOM 

2016B and Incucyte® S3 instruments (Sartorius – Essen Biosciences, Ann Arbor, MI, USA). 

PLB and TMX concentrations were chosen based on the calculated steady-state patient serum 

levels described in the literature: 259nM and 108nM for PLB and TMX, respectively (Table 

3.2.2) [5,51,85]. Cells were treated with DMSO (control, 1µL/mL), PLB (31.25nM-250nM), 

TMX (25nM-200nM) and three different drug combinations, being equal or lower than the 

maximum drug doses detected in the serum levels of these patients (250nM PLB + 100nM TMX, 

62.5nM PLB + 50nM TMX, and 31.25nM PLB + 25nM TMX) to evaluate drug synergy. 

Experiments were run for 4-days, after the drug treatment was initiated, and re-scanned at the 

end of the experiment using Incucyte to determine the final cell confluence of all DMSO-control 

and drug-treated wells. Individual wells were trypsinized and counted using a BioRad TC-10 

automated cell counter. Cell counting data was analyzed and visualized using Graphpad Prism8 

software. Within each experiment, each drug condition had three technical replicates and three 

biological replicates for each cell line to confirm reproducibility of findings. 

Table 3.2.2 Palbociclib and tamoxifen drug pharmacokinetics and calculated serum levels [5,85]. 
Palbociclib bioavailability, Cmax and serum levels were determined in the PALOMA-1 trial [51] 

Drug Dose 
Administered Bioavailability Steady 

State 
Cmax 

(ng/ml) 

Molecular 
Weight 
(g/mol) 

Serum 
Levels 
(nM) 

Palbociclib 125mg 46% 8 days 116 447.533 259 
Tamoxifen 20mg >98% 3 months 40 371.5146 108 
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Cell Line Doubling Time 

The doubling time of the cell lines was calculated using the DMSO control initial and 

final cell counts from the 4-day experiments. These calculated values were then divided over 

time to determine doubling time per hour.  

 Twelve-day Cell Counting Experiments  

 Similar to the 4-day experiments, cells were seeded at 20% confluence, as determined by 

Incucyte ™ ZOOM 2016B 18-24 hours after plating. Cell lines were treated 24 hr after seeding 

with DMSO (control, 1µL/mL), PLB (31.25nM-250nM), TMX (25nM-200nM) or a combination 

of PLB (31.25nM-250nM) + TMX (25nM-100nM). In some cases, the drug doses were selected 

based on cell line doubling times. Cell lines with a faster growth rate (MCF7, T47D, MDA-MB-

415, MDA-MB-453, MDA-MB-468, BT549, HCC38, SKBR3, ZR-75-30, AU565, MDA-MB-

231) were treated with a limited protocol, DMSO (1µL/mL), PLB (250nM PLB) and two PLB + 

TMX combination doses (250nM PLB + 100nM TMX, 62.5nM PLB + 50nM TMX). Live-cell 

images were captured using Incucyte at 6-hour intervals to determine change in confluence for 

the duration of the 12 days after treatment. On day 4 and day 8 the media/drugs were 

replenished. Individual wells were visually inspected, trypsinized and counted using the BioRad 

TC-10 automated cell counter at the end of the 12-day experiment. Proliferation curves were 

generated using Incucyte confluence data, both proliferation curves and cell counting data were 

visualized using Graphpad Prism8 software. Of note, MDA-MB-468 and BT549 experiments 

were ended early, on day 6, as these lines demonstrated complete resistance to all treatment 

conditions and had reached 100% confluence by day 4. 
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Endpoint/Outcome Measures 

The outcome measures used for this work were 1) percent of control calculations and 2) 

growth rate calculations. The details of these outcomes are outlined below.  

1: Percent of Control 

 Drug response to PLB, TMX and the combination was initially reported as percent 

inhibition compared to the DMSO control. Simply, this is calculated by dividing the number of 

treated cells by the number of untreated cells, from the cell counting data.  

%	𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 	
#	𝑜𝑓	𝑡𝑟𝑒𝑎𝑡𝑒𝑑	𝑐𝑒𝑙𝑙𝑠
#	𝑜𝑓	𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑	𝑐𝑒𝑙𝑙𝑠 	𝑥	100	

 

Extrapolation of Cell Counting Based on Doubling Times 

For the cell lines with a faster doubling time, it was noted that certain treatment 

conditions and the DMSO control reached 100% confluence before the end of the 12-day 

experiments. To correct for the growth rates that were inhibited due to space constraints in the 

well, I used cell counting data from the exponential cell growth phase of the DMSO control in 

the 4-day experiments. For certain lines, cell counts for each individual treatment were also 

corrected for using the 4-day growth rates. The treatment conditions that were corrected for are 

highlighted in Table 3.2.3. Of note, for the faster growing cell lines, 100nM TMX was not 

evaluated in the 12-day experiments as drug effect was captured in the 4-day experiments, 

therefore 4-day cell counting data was used for further analysis in 55% (11/20) of cell lines. 
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2: Growth Rate (GR) Calculator 

The GR calculator evaluates individual cell line growth rates using initial and final cell 

count data from the DMSO control and comparing the growth rate to the treatment conditions, 

thereby correcting for variability in proliferation rates seen between cell lines [84]. GR values 

were calculated using the equation below, where x(c) = treated cell count, xctrl = control cell 

count and x0 = initial cell count: 

 

Table 3.2.3. Cell counting corrections for DMSO and treatment conditions that reached 100% confluence 
before the end of the 12-day experiments. Cell counts were corrected for using the growth rates from the 4-day 
cell counting data. The growth rate values for 100nM TMX in the fast-growing lines were calculated using 4-day 
cell counting data. 

Cell Line DMSO 250nM 
PLB 100nM TMX 

Combination  
(62.5nM PLB + 50nM TMX and 

250nM PLB + 100nM TMX) 
BT483         

MDA-MB-361         
T47D Corrected   4-day cell counting data used   

MDA-MB-134         
HCC202         

MDA-MB-175         
CAMA-1 Corrected       

MCF7 Corrected   4-day cell counting data used   
MDA-MB-453 Corrected Corrected 4-day cell counting data used   

ZR-75-30     4-day cell counting data used   
BT474         
AU565 Corrected   4-day cell counting data used   

MDA-MB-415 Corrected Corrected 4-day cell counting data used   
HCC38 Corrected Corrected 4-day cell counting data used Corrected 

HCC1428 Corrected   Corrected   
ZR-75-1 Corrected Corrected Corrected   
SKBR3 Corrected Corrected 4-day cell counting data used Corrected 

MDA-MB-231 Corrected Corrected 4-day cell counting data used Corrected 
BT549 Corrected Corrected 4-day cell counting data used Corrected 

MDA-MB-468 Corrected Corrected 4-day cell counting data used Corrected 
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Raw cell counting data and corrected cell counts were entered into grcalculator.org, and 

GR values were calculated for each drug concentration tested [84]. The interpretation of the GR 

values is as follows:  

- between 1 and 0, signifies a partially cytostatic response, 

- 0 indicates a complete cytostatic response,   

- less than 0 signifies a cytotoxic effect, 

-greater than 1 signifies that the drug treatment promotes cell growth. 

 

3.3 Results – Optimizing assays for CDK4/6i efficacy in breast cancer cell lines 

Cell Size and Cell Line Doubling Times  

After reviewing preliminary PLB proliferation assay results, it was noted that PLB 

caused the cells to increase in size compared to the DMSO control. This morphology change was 

seen in 9/20 breast cancer lines (Figure 3.3.1 and Appendix C-C1). The cell count data was then 

used to determine the doubling times of each cell line. Cell lines were classified into slow 

(doubling time >8 hours), medium (doubling time 4<8 hours) and fast (doubling time <4 hours). 

Cell line growth characteristics, growth rates and cell size are reported in Table 3.3.1. 
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Sensitivity Categorization Based on Experimental Duration: 4-day vs 12-day  

From the 4-day cell counting experiments, treatment with 250nM PLB demonstrated 

some efficacy in 90% (18/20) of the cell lines (Table 3.3.1). There were several cell lines in 

which PLB showed limited efficacy and these cell lines uniformly had a slow doubling time. 

Recognizing the cytostatic effect of PLB and the long treatment duration in patients, I chose to 

run 12-day experiments with repeated drug dosing in all cell lines. From these 12-day 

experiments, PLB efficacy was more effectively demonstrated in the cell lines with slower 

doubling times. For example, in the slow growing BT483 cell line, the 250nM PLB treatment 

elicited a 50% growth inhibition compared to the control in the 4-day experiment, whereas in the 

12-day experiment the cells were inhibited to 15% of the control (Figure 3.3.2). In contrast, in 

faster growing cell lines like ZR-75-1 the PLB and TMX drug effect showed minimal changes in 

drug efficacy with the longer experiments (Figure 3.3.2). Notably, when comparing PLB efficacy 

250nM PLB 

Figure 3.3.1 Morphology change seen with 250nM palbociclib treatment 
compared to the DMSO control in a representative cell line, MCF7, with and 
without Incucyte confluence mask.  

DMSO Control 
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ranking amongst all the cell lines the results are considerably different using the 12-day 

experimental protocol (Table 3.3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2 Representative cell counting graphs showcasing the effects of experimental duration, A) 4-day and B) 
12-day, on palbociclib and tamoxifen drug response.  Cell lines were seeded for 20% confluence and treated with 
DMSO, TMX [25-200nM], PLB [31.25-250nM] and combination of TMX + PLB [31.25nM PLB 25nM TMX, 62.5nM 
PLB + 50nM TMX, 250nM PLB + 100nM TMX]. Individual wells were trypsinized and counted using an automated cell 
counter at the end of the experiment. Drug response was calculated as a percent of the DMSO control.  

A) 

B) 
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Sensitivity Categorization Based on Endpoint Measure: Percent Inhibition vs. GR Calculator  

Table 3.3.2 shows a comparison of PLB sensitivity rankings for the breast cancer cell 

lines using percent inhibition versus calculated GR values as an endpoint measure. As described 

in the methods, GR calculations account for variability in cell line doubling times, resulting in 

more accurate measures of drug efficacy. For simplicity, I highlight the ranking for PLB dosing 

of 250nM. Significant changes in rank order were seen when the 12-day GR values were 

compared to the 12-day percent of control ranking (Table 3.3.2). For example, using the GR 

calculations, BT483 (Luminal A) was ranked the most sensitive line to 250nM PLB treatment, 

Table 3.3.1 Effect of experimental duration on cell line sensitivity to 250nM palbociclib. Drug effect 
reported as precent of control, comparison of 4-day experimental duration and 12-day experiment. Cell lines 
were ranked by percent of control to 250nM PLB treatment from the 12-day experiments. 

Cell Line ER/PR/HER2 
Status Cell Size 

Cell Speed 
(doubling 

time- hours) 

% Control of 250nM PLB 

4-day 12-day 
T47D +/+/- Medium Medium (5.7) 19.2 3.2 

MDA-MB-361 +/-/+ Small Slow (13.1) 35.7 8.0 
MCF7 +/+/- Medium Fast (1.9) 22.1 12.8 
BT483 +/+/- Medium Slow (22.8) 47.1 15.1 

CAMA-1 +/+/- Medium Slow (9.5) 45.5 16.6 
HCC38 -/-/- Big Medium (5.4) 34.8 18.0 
HCC202 -/-/+ Small Slow (17.8) 50.4 18.2 

MDA-MB-134 +/-/- Small Slow (19.4) 60.0 18.6 
MDA-MB-175 +/-/- Small Slow (8.4) 28.3 19.1 

HCC1428 +/+/- Medium Medium (8.2) 49.6 24.1 
BT474 +/+/+ Small Slow (9.7) 71.0 27.2 
AU565 -/-/+ Medium Medium (6.6) 45.5 29.6 

MDA-MB-415 +/+/- Small Slow (10.7) 40.2 32.9 
ZR-75-30 +/-/+ Medium Slow (13.9) 51.4 36.2 

MDA-MB-453 -/-/+ Small Medium (4.3) 25.6 39.4 
SKBR3 -/-/+ Medium Medium (6.5) 50.6 45.3 
ZR-75-1 +/+/- Medium Medium (4.7) 42.7 49.7 

MDA-MB-231 -/-/- Medium Fast (2.8) 46.3 61.2 
MDA-MB-468 -/-/- Medium Medium (4.7) 100.0 91.7 

BT549 -/-/- Big Fast (2.1) 89.6 100.0 
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initially this cell line was reported as 4th most sensitive line to PLB using percent inhibition as 

the outcome measure (Table 3.3.2).  

The cell line ranking results were compared to PLB sensitivity ranking as reported in the 

preclinical data published by Finn et al. (2009). The three top resistant cell lines were ranked 

similarly between our laboratory and the Finn report; however, significant ranking discrepancies 

were seen with the more sensitive lines (Table 3.3.2). Specifically, the top two PLB sensitive 

lines reported by Finn (MDA-MB-175 and ZR-75-30) ranked 6th and 10th with my GR ranking. 

Whereas the 2nd and 3rd most sensitive lines (MDA-MB-361 and T47D) in my ranking were 

ranked as 6th and 11th according to Finn’s IC50 data.  

 

 

 

Cell Line 
ER/PR/ 
HER2 
Status 

Cell Size Cell Speed 12-day % of 
control 

12-day 
GR value 

Finn et al. 
PLB IC50 
Ranking 

[44] 
BT483 +/+/- Medium Slow 15.1 -0.02 NA 

MDA-MB-361 +/-/+ Small Slow 8.0 0.11 6 
T47D +/+/- Medium Medium 3.2 0.19 11 

MDA-MB-134 +/-/- Small Slow 18.6 0.21 4 
HCC202 -/-/+ Small Slow 18.2 0.29 5 

MDA-MB-175 +/-/- Small Slow 19.1 0.38 1 
CAMA-1 +/+/- Medium Slow 16.6 0.43 3 

MCF7 +/+/- Medium Fast 12.8 0.55 12 
MDA-MB-453 -/-/+ Small Medium 39.4 0.55 10 

ZR-75-30 +/-/+ Medium Slow 36.2 0.56 2 
BT474 +/+/+ Small Slow 27.2 0.58 13 
AU565 -/-/+ Medium Medium 29.6 0.59 NA 

MDA-MB-415 +/+/- Small Slow 32.9 0.62 7 
HCC38 -/-/- Big Medium 18.0 0.64 8 

HCC1428 +/+/- Medium Medium 24.1 0.70 NA 
ZR-75-1 +/+/- Medium Medium 49.7 0.71 9 
SKBR3 -/-/+ Medium Medium 45.3 0.75 14 

MDA-MB-231 -/-/- Medium Fast 61.2 0.77 15 
BT549 -/-/- Big Fast 100 0.96 16 

MDA-MB-468 -/-/- Medium Medium 91.7 1.00 17 

Table 3.3.2 Breast cancer cell line characteristics and effect of different endpoint reporting 
on cell line sensitivity to 250nM palbociclib. Percent of control drug reporting compared to 
calculated GR values, and cell line ranking determined by IC50 values reported by Finn et al. 
(2009) [44]. Cell lines were ranked by 12-day GR value to 250nM PLB treatment.  
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3.4 Discussion  

This work draws attention to the impact of different methodologies and analytical 

considerations on the classification of PLB sensitivity/resistance. I show that the design of the 

experiment will influence outcome measures which is of particular importance when trying to 

compare drug efficacy between different cell lines. It is also demonstrated that PLB drug effect is 

not well measured using 4-day experiments in cell lines with slower doubling times. The longer 

12-day experiments better discriminate PLB drug effect, as these experiments provided sufficient 

time for the cells to replicate, thus allowing the true drug effect of PLB to be captured. This is of 

particular importance for cytostatic drugs, such as PLB and TMX. Furthermore, most targeted 

agents are given to patients on a daily basis for many months, so it makes intuitive sense that 

experiments of longer duration are of value when assessing novel targeted agents. 

The experimental data can be confounded by variability in proliferation rates when the 

number of cells plated at the beginning of the experiment is not considered [84]. The GR 

calculator, which accounts for both initial and final cell counting data, corrects for variability in 

growth rates while calculating drug effect. This drug response reporting was found to be the most 

accurate in determining PLB efficacy in the panel of cell lines. Interestingly, of the top 7 

sensitive cell lines, 6 of them had slower doubling times (4 luminal A, 1 luminal B, 1 HER2+), 

and I was unable to capture the high degree of sensitivity without considering the growth rate of 

the cells. Therefore calculating drug response on a per division-basis reduces the intrinsic 

variability that exists between cell lines by controlling for proliferation rates [84].  

Using the 12-day cell counts with the GR calculator best captured PLB effects, however 

certain experimental factors should be considered. One limitation that exists with the current 

methodology is that all cell lines were grown in the same media, RPMI + 10% FBS. After 
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carefully evaluating growth rate and cell speed, growing cell lines in media that differs from their 

original composition may have impacted the intrinsic cell growth rate of individual cell lines. 

Another limitation is that by correcting the cell counts that reached 100% confluence in the long-

term experiments, specifically correcting the PLB, TMX or combination counts, this assumes 

that there were no additive drug effects seen after multiple drug treatments. 

Discrepant drug sensitivity rankings were seen when comparing my PLB ranking to 

previously published literature [44]. As previously discussed, the variability in experimental 

duration, 12-day for the reported drug sensitivities versus the 6-day experiment run by Finn et al. 

(2009) and differences in culturing media can confound reported drug sensitivity, resulting in 

inconsistent data [44]. Again, this highlights the need for accurate and consistent experimental 

methodologies to measure drug sensitivity. With the methodological considerations described in 

this chapter, I have identified a robust approach of evaluating drug sensitivity data in the breast 

cancer cell lines. This provides the basis for conducting the analysis of the reverse phase protein 

array (RPPA) data to identify proteomic biomarkers (Chapters 4 and 5).   
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Chapter 4- In vitro evaluation of palbociclib treatment alone and in 
combination with tamoxifen 
 

4.1 Background and Rationale 
 

CDK4/6i in combination with AET is now a standard treatment for HR+/HER2- 

advanced or recurrent breast cancer. Finn et al. (2009) observed notable synergistic activity 

when combining PLB with TMX to treat ER+ breast cancer cell lines [44]. As such, PLB was 

evaluated in combination with different AETs in the design of multiple clinical trials. These 

trials have shown that the addition of CDK4/6i to AET has resulted in improved patient 

outcomes [5]. PLB + AET treatment increased PFS times by 10, 13, and 6.6 months as compared 

to single AET alone as reported in the PALOMA-1, -2, and -3 trials, respectively. Because PLB 

and TMX are thought to act synergistically, in this aim (Objective 3b), I evaluated the effects of 

PLB treatment alone, TMX treatment alone, and PLB/TMX combinations on the panel of breast 

cancer cell lines. The precise nature of the synergism between PLB + TMX is poorly 

characterized and there is a need to better understand the interaction of these drugs in vitro. 

 
 
 

4.2 Methods 
 

A panel of 20 breast cancer cell lines, including all subtypes, were grown using the same 

cell culture media and conditions (RPMI + 10% FBS, 37°C, 5% CO2). STR and Western blot 

analysis were performed to confirm cell line authenticity (Appendix A-Experimental 

Methodology) and molecular subtyping (ER+, HER2+ or TNBC) (Figure 3.2.1). Next, all cell 

lines were evaluated for response to single TMX, single PLB, and a combination of PLB + TMX 

in 48-well plates seeded at 20% initial confluence (number of cells ranging from 6,000 cells/well 
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to 47,000 cells/well depending on predetermined cell size for each cell line). Combination assays 

were performed as outlined in Chapter 3.2 and the methods are summarized in Figure 4.2.1. 

Experiments were run for 4-days (1-time treatment) and 12-days (3-time treatments) and cells in 

each well were counted and compared to the DMSO control. The doses of both PLB and TMX 

were selected based on calculated steady-state patient serum levels (Table 3.2.2). Single PLB 

doses ranged from 31.25-250nM, while single TMX doses ranged from 25-200nM. Three PLB + 

TMX combination doses were evaluated to assess drug synergy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1 Flow chart of cell counting methodology for 4-day experiments for all 20 breast cancer cell lines and 12-day 
experiments for slower growing (n=9) and faster growing (n=11) cell lines.   
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Growth Rate Calculations 

The twenty breast cancer cell lines were ranked based on drug response to single PLB, 

single TMX, and the PLB + TMX combination using the online growth rate (GR) calculator tool 

as outlined in Chapter 3.2 [84]. Briefly, the initial cell count and the final raw or corrected cell 

counts were entered into the growth rate calculator and a GR value was computed for each drug 

dose.  

 

Drug Synergy Evaluation  

1- CompuSyn  

Drug synergy was calculated on the 4-day and 12-day experiments using CompuSyn 

software [86].  A minimum of two drug concentrations are needed for each single agent drug to 

accurately calculate synergy using CompuSyn [84]. As I treated the faster growing cell lines with 

a limited dosing protocol for the 12-day experiment, I could not calculate drug synergy for these 

lines. Using cell counting data, the fraction affected (% of control) was determined and entered 

into the CompuSyn software using a ‘non-constant ratio’. The software computed a Combination 

Index (CI) value for each PLB + TMX combination dose. The interpretation of the CI values is 

as follows: 

CI <1, synergistic drug combination effects, 

CI =1, additive drug effects, 

CI >1, antagonistic effects. 
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2- Comparing GR Values 

GR values were calculated as described above, and they may be used as a method of 

assessing drug synergy.  The GR values for the 62.5nM PLB + 50nM TMX and the 250nM PLB 

+ 100nM TMX combinations were directly compared to the GR values of 250nM PLB to  

evaluate the combination effects.   

 

4.3 Results 

PLB and TMX Drug Efficacy Evaluation Alone and in Combination  

 GR values were calculated for PLB, TMX and PLB + TMX combination doses in the 4-

day and 12-day experiments. The growth rate cell line ranking for 250nM PLB, 100nM TMX, 

62.5nM PLB + 50nM TMX and 250nM PLB + 100nM TMX combinations are highlighted in 

Table 4.3.1. Two TNBC cell lines (2/20, 10%) were highly resistant to both single drugs and the 

combination treatment (BT549 and MDA-MB-468). PLB treatment alone showed some activity 

in 90% (18/20) of cell lines (GR value <0.8) (Table 4.3.1). A quarter of all cell lines (5/20=25%; 

BT483, MDA-MB-361, T47D, MDA-MB-134, HCC202) showed a high degree of cytostatic 

response to PLB (GR value <0.3), including four luminal A/B and one HER2+ line. 

Interestingly, these five cell lines were also more likely to exhibit a high degree of response to 

the PLB + TMX combination (GR value <0.3). 
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For single agent TMX treatment, 40% (8/20) of the cell lines exhibited some degree of 

cytostatic effects (GR value <0.8) and only the BT483 cell line showed a high cytostatic 

response (GR value <0.5). The efficacy of TMX within the ER+ lines was surprising, almost half 

of the ER+ lines (5/12, 41.7%; MDA-MB-175, ZR-75-30, BT474, HCC1428, ZR-75-1) did not 

exhibit a clear response to treatment (GR value >0.8). Only one ER- cell line appeared to be 

somewhat sensitive to TMX alone (GR value <0.8; HCC202), noting also that this was 1 of the 4 

the HER2+ cell lines. In general, single agent PLB had a higher degree of efficacy than TMX as 

a single agent.  

Table 4.3.1 Growth rate ranking of breast cancer cell lines to 250nM palbociclib, 100nM tamoxifen, 
250nM palbociclib + 100nM tamoxifen and 62.5nM palbociclib + 50nM tamoxifen. Cell lines were 
ranked based on growth rate (GR) value when treated with 250nM palbociclib. 

Cell Line 
ER/PR/ 
HER2 
status 

Subtype 
250nM 

PLB GR 
Value 

100nM 
TMX GR 

Value 

250nM PLB + 
100nM TMX 
Combo GR 

Value 

62.5nM PLB 
+ 50nM 

TMX Combo 
GR Value 

BT483 +/+/- Luminal A -0.02 0.24 -0.11 -0.11 
MDA-MB-361 +/-/+ Luminal B 0.11 0.65 0.03 0.26 

T47D +/+/- Luminal A 0.19 0.75 0.22 0.25 
MDA-MB-134 +/-/- Luminal A 0.21 0.67 0.14 0.30 

HCC202 -/-/+ HER2+ 0.29 0.78 0.25 0.66 
MDA-MB-175 +/-/- Luminal A 0.38 0.82 0.30 0.69 

CAMA-1 +/+/- Luminal A 0.43 0.77 0.19 0.40 
MCF7 +/+/- Luminal A  0.55 0.75 0.45 0.49 

MDA-MB-453 -/-/+ HER2+ 0.55 0.93 0.63 0.79 
ZR-75-30 +/-/+ Luminal B 0.56 0.90 0.47 0.68 

BT474 +/+/+ Luminal B 0.58 0.91 0.30 0.70 
AU565 -/-/+ HER2+ 0.59 0.98 0.58 0.76 

MDA-MB-415 +/+/- Luminal A 0.62 0.71 0.34 0.57 
HCC38 -/-/- TNBC (Basal-like) 0.64 0.96 0.72 0.75 

HCC1428 +/+/- Luminal A 0.70 0.86 0.43 0.70 
ZR-75-1 +/+/- Luminal A  0.71 0.90 0.55 0.87 
SKBR3 -/-/+ HER2+ 0.75 1.05 0.74 0.88 

MDA-MB-231 -/-/- TNBC (Basal-like) 0.77 1.01 0.80 0.88 
BT549 -/-/- TNBC (Basal-like) 0.96 0.99 0.96 1.01 

MDA-MB-468 -/-/- TNBC (Basal-like) 1.00 1.37 0.98 0.97 
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Synergistic Effects of PLB and TMX in Combination  

CompuSyn combination indexes (CI) for the 4-day and 12-day experimental data are 

shown in Figure 4.3.3. As previously mentioned, the 12-day experiments were run on the ER+ 

cell lines with slower doubling times. In the 4-day experiments, 20% (4/20) of the cell lines 

showed marked synergy (HCC1428, MDA-MB-361, ZR-75-1, CAMA-1) (Figure 4.3.1A), with a 

CI value of <1 for all three tested PLB + TMX combination doses. All these lines demonstrated 

some degree of PLB sensitivity, while ZR-75-1 and HCC1428 demonstrated limited TMX 

sensitivity. In the 12-day experiments, a high degree of synergy was seen across all the tested 

combinations in the nine evaluated cell lines, with the exception of HCC202 (HER2+) where 

only the high combination dose resulted in a CI value of <1 (Figure 4.3.1B). When comparing 

the results of the 12-day experiments versus the 4-day experiments, synergy was seen in twice 

the number of cell lines (8 versus 4, 40% of all lines).  
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A) 

B) 

Figure 4.3.1 Drug synergism analysis of three tested combination doses of palbociclib + tamoxifen in breast 
cancer cell lines. A) Drug synergism of 4-day cell counting experiments, and B) drug synergism of 12-day cell 
counting experiments for the slower growing cell lines. Combination indexes (CI) were calculated using CompuSyn 
software, a CI value of <1.0 indicates synergism, while CI >1.0 indicates drug antagonism [86].  
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Synergy Evaluation Using GR Calculations 

The high dose PLB + TMX drug combination (250nM PLB + 100nM TMX) was found 

to outperform the effects of the single 250nM PLB drug treatment, reducing the GR value over 

0.15 points, in a total of five cell lines (5/20, 25%) (Table 4.3.1). Of these, only four lines 

exhibited a high degree of PLB growth inhibition (4/20 = 20%; BT474, MDA-MB-415, 

HCC1428, CAMA-1). These four cell lines belong to the ER+ or luminal A/B molecular 

subtype, accounting for a third (4/12, 33%) of all ER+ cell lines. The remaining synergistic line, 

ZR-75-1, demonstrated limited response to single treatment with PLB or TMX alone (GR value 

>0.7). The cell lines with a high degree of synergy determined by GR scores were also found to 

be synergistic using CompuSyn CI calculation (BT474, HCC1428, CAMA-1 and ZR-75-1). 

 

 

4.4 Discussion  

For the work described in this chapter, my aim was to accurately determine breast cancer 

cell line sensitivity to PLB and TMX as this is crucial for identifying proteomic biomarkers in 

Chapter 5. From the growth rate ranking, a cytostatic response was seen in 90% of the tested 

breast cancer cell lines when treated with a pharmacological dose of PLB (250nM). Similar 

results were seen in a study which reported GR values of PLB treated breast cancer cell lines 

[87]. These authors reported concordant cytostatic GR values (0-0.76) using 100nM PLB [87]. 

A degree of PLB efficacy was observed across all breast cancer subtypes. Luminal A and 

B subtypes were found to exhibit increased PLB cytostatic effects, compared to other subtypes. 

This finding was also reported by Finn et al. (2009) [44]. Interestingly, PLB efficacy was 

observed in 3/4 HER2+ cell lines but had limited or no effect in the TNBC subtype.  
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Response to TMX alone was limited to ER+ cell lines, with only one luminal A cell line 

exhibiting a highly cytostatic response to TMX. Within the ER+ cell lines, 41.7% of lines did not 

derive substantial benefit from 100nM TMX treatment. While the TMX dosing used may be 

somewhat lower than in vitro doses reported in literature, these results do reflect observed 

clinical response rates of 30-40% for metastatic breast cancer [24]. Nonetheless, considerable 

synergy using PLB and AET in combination was observed. A high combination index 

(CompuSyn CI) was observed in most of the ER+ lines tested in the 12-day experiments. This 

data supports substantial synergistic activity between PLB and TMX. Furthermore, I compared 

the efficacy of using PLB and TMX in combination using the CompuSyn index (CI) and changes 

in GR calculations. There was a substantial concordance between the GR values (differences in 

GR scores) and CompuSyn combination index in 4 of the 5 cell lines that demonstrated marked 

synergy. While using GR values to evaluate synergy is a novel approach, further exploration into 

this method is warranted. Previous in vitro combination testing performed by Finn et al. (2009) 

demonstrated high synergistic effects in both MCF7 and T47D cell lines when treated with 

varying doses of PLB (3.125 – 50nM) and TMX (312 – 5000nM) [44]. From the drug treatment 

data, PLB alone elicited a high degree of response in T47D, and the combination treatment did 

not increase efficacy. In the MCF7 line, the combination treatment elicited a similar drug 

response when compared to PLB alone. 

Marked resistance to PLB, TMX and the PLB + TMX combination was observed in 10% 

of the tested cell lines, accounting for 50% of the TNBC subtype. These cell lines, MDA-MB-

468 and BT549, have been previously classified as PLB resistant in multiple studies [44,70,87]. 

Within the cell line population, 40% of lines, representing all subtypes did not derive benefit 
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from PLB and TMX combination. This suggests that predictive biomarkers of PLB + TMX drug 

synergy and biomarkers of resistance to single PLB treatment would aid in patient selection. 

Using stringent assay criteria, breast cancer cell line response to PLB alone and in 

combination with TMX has been evaluated. From these findings, I’ve ranked drug efficacy for 

PLB alone and combination therapy with PLB + TMX. Using the GR values in Table 4.3.1 I 

have defined GR cut-off values to discriminate PLB resistant cell lines from PLB sensitivity cell 

lines and similarly, cell lines that are resistant to the combination treatment. This is further 

described in the methods of Chapter 5. 

In conclusion, I have established stringent efficacy comparisons in the cell lines using 

PLB and TMX alone and in combination. This work now enables stratification and grouping of 

the cell lines to perform the analyses for proteomic biomarker discovery as outlined in the next 

chapter.   
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Chapter 5- Discovery of novel predictive biomarkers for palbociclib treatment 
 

5.1 Background and Rationale 

Due to tumour heterogeneity, drug efficacy may differ for each individual cancer. In the 

absence of using predictive biomarkers, patients are given a drug and then observed 

prospectively to determine if the drug works over time. Predictive biomarkers help assess the 

potential benefit that a drug may have before the patient receives treatment. Using biomarkers to 

select patients who are likely to benefit from a specific drug therapy improves patient outcomes, 

reduces toxicity in turn improving a patient’s quality of life, and reduces financial toxicity to the 

health care system. In breast cancer, the expression levels of ER (as measured by IHC) and 

HER2 amplification (as measured by FISH or IHC as a protein-based surrogate of amplification 

status), are examples of biomarkers used clinically to guide breast cancer treatment by 

identifying subsets of patients who are more likely to benefit from AET and HER2-targeted 

therapies, respectively [88]. As described in Chapter 1, there are no predictive biomarkers for 

PLB treatment in clinical use, and the extensive biomarker research done thus far has not 

resulted in clinically validated biomarkers (highlighted in Chapter 2). Currently, any patient with 

advanced/metastatic ER+/HER2- breast cancer is a candidate to receive PLB. As described 

previously, clinical evidence indicates that a substantial proportion of patients being treated with 

PLB do not achieve a meaningful benefit from this treatment [9–11]. Additionally, as reviewed 

in Matutino et al. (2018), preclinical studies and ongoing clinical trials have observed PLB 

efficacy in ER- and HER2+ breast cancers [39].  This suggests that there may be additional 

patient populations who could benefit from PLB, however are currently not candidates for 

treatment.  Thus, the identification of PLB predictive biomarkers in breast cancer represents a 

substantial unmet need.  
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PLB + fulvestrant and PLB + letrozole combination biomarkers have been evaluated in 

the PALOMA trials (highlighted in Chapter 2); but was generally limited to genomic and 

transcriptomic data [67,68]. Our laboratory has previously had success with identifying 

predictive biomarkers in low-grade serous ovarian cancer cell lines using proteogenomic 

approaches [16,17].  Furthermore, our lab has previously shown that proteomic profiling can be 

used to identify predictive biomarkers and may discriminate better than transcriptomic profiling  

[17]. In terms of defining the scope of this project appropriate for my thesis, I decided to focus 

my efforts on identifying proteomic predictive biomarkers of PLB alone and in combination with 

TMX in breast cancer cell lines. I had access to multiple RPPA datasets for screening and 

comparative purposes making this objective feasible.  

Utilizing the drug sensitivity rankings determined from the assay refinement (Objective 

3a – Chapter 3) and drug evaluation/synergism studies (Objective 3b – Chapter 4) (Table 4.3.1), 

I aim to identify markers of resistance of PLB and PLB + TMX in the panel of breast cancer cell 

lines. My aim for this work (Objective 3c) is to specifically identify biomarkers of resistance - or 

of limited response - to PLB or PLB + TMX. I used two approaches for this: 1) To evaluate the 

proteins regulating the CDK4/6 pathway and correlate expression of these cell cycle proteins 

with drug resistance, and 2) Analyze protein expression in the RPPA datasets to identify proteins 

associated with drug resistance.   
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5.2 Methods 

Western Blot 

Protein levels of common cell cycle proteins (Rb, CDK2, CDK4, CDK6, cyclin D1, 

cyclin E1, p16, p27) were evaluated by Western blot in the twenty breast cancer cell lines 

(Figure 5.3.1) as described in Appendix A- Experimental Methodology. Western blot band 

intensities were quantified using Image J (Appendix E-E1). 

 

Cell Line Sensitivity Ranking  

To compare cell lines with distinct responses to single PLB and PLB + TMX 

combination treatments, cell lines were grouped as sensitive and resistant based on the GR 

values determined in Chapter 4. The cut off for the PLB sensitivity/resistant grouping was 

relative based on the range of response seen within the 20 cell lines from Chapter 4 (Table 

5.2.1A). A GR value of 0.58 was used to group PLB sensitive and resistant lines. BT549 and 

MDA-MB-468 cell lines were excluded for the RPPA analysis as these lines were completely 

resistant to all drug treatments, confounding comparison.  

For the PLB + TMX combination sensitivity grouping, all ER-negative cell lines were 

excluded from the RPPA analysis as patients with ER- breast cancer would not be offered TMX 

as a treatment option. After removing the ER- cell lines from the analysis it was noted all the 

resistant lines were excluded, and the GR values for the remaining 12 ER+ cell lines were <0.55. 

As an alternative way to classify response to the combination, cell lines were grouped based on 

the efficacy of the 250nM PLB + 100nM TMX combination compared to 250nM PLB, as 

determined in Chapter 4. Cell lines that exhibited high synergistic effects (>0.15 difference 

between 250nM + 100nM TMX combination GR value and PLB GR value) were grouped 
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together and compared to the cell lines where the combination elicited limited synergistic 

activity or similar effects to 250nM PLB alone (<0.15 GR difference) (Table 5.2.1B).  

 

 

 

 

 

 

Table 5.2.1 Breast cancer cell line grouping for RPPA analysis. A) Sensitive and 
resistant cell line grouping based 250nM palbociclib growth rate values and B) cell 
line grouping based on synergy to PLB + TMX combination. Combination effects were 
determined by direct comparison of GR values for combination and single PLB treatment. 
Sensitive lines are highlighted in orange and resistant lines are highlighted in blue. 

A) Cell Line PLB GR 
Ranking B) Cell Line 

Difference in GR 
Values (Combo 
vs 250nM PLB)  

 BT483 -0.0223  BT474 -0.28 
 MDA-MB-361 0.111  MDAMB415 -0.28 
 T47D 0.189  HCC1428 -0.27 
 MDA-MB-134 0.209  CAMA-1 -0.24 
 HCC202 0.292  ZR-75-1 -0.16 
 MDA-MB-175 0.381  MCF7 -0.10 
 CAMA-1 0.429  BT483 -0.09 
 MCF7 0.545  ZR-75-30 -0.09 
 MDA-MB-453 0.546  MDAMB361 -0.08 
 ZR-75-30 0.562  MDAMB175 -0.08 
 BT474 0.575  MDAMB134 -0.07 
 AU565 0.589  T47D 0.03 
 MDA-MB-415 0.62  

 HCC38 0.639  

 HCC1428 0.7  

 ZR-75-1 0.714  

 SKBR3 0.746       
 MDA-MB-231 0.768       
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Reverse Phase Protein Array 

RPPA is an antibody based high-throughput proteomic assay to quantitate protein 

expression in a selected panel of samples [16]. Three RPPA datasets were obtained. The first 

database was received personally from Dr. Gordon Mills which included 14 of the cell lines 

within my panel and contained protein expression data on 440 proteins. Cell lysates were 

prepared by the MD Anderson Functional Proteomics RPPA Core Facility and the antibodies 

used are listed on their website [89]. RPPA data was normalized and converted to log1.25.  

The second and third RPPA datasets are publicly available datasets from the Cancer Cell 

Line Encyclopedia (CCLE) and MD Anderson Cell Line project (MCLP). Both datasets were 

downloaded from https://tcpaportal.org/mclp/#/download. The CCLE database contained 19/20 

breast cancer lines in my analysis, data on BT549 was missing from this dataset. The CCLE 

dataset analyzed 214 proteins, 182 of these were also analyzed in the Mills dataset [90]. The 

MCLP dataset included all 20 breast cancer cell lines and analyzed 94 proteins for all lines, with 

up to 234 proteins quantified for some of the cell lines. The data in both datasets were 

normalized and converted to log2. 

The SPSS statistics tool was used to analyze differential protein expression between 

breast cancer cell lines with distinct responses to single PLB and the PLB + TMX combination 

[91]. Protein expression between sensitive and resistant groups were compared using a non-

parametric Mann-Whitney U test and a p-value of <0.05 was considered statistically significant. 

Proteins that were evaluated in multiple databases but not identified as a statistically significant 

hit in more than one database were excluded. Hierarchical clustering of the differentially 

expressed proteins was performed using Euclidean distance and average linkage of median 

centered data. Heat maps of clustered proteins were visualized in Java TreeView [92].  
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5.3. Results  

Cell Cycle Protein Levels by Western Blotting 

As highlighted in Chapter 1, aberrations within the cell cycle pathway, specifically at the 

G1/S phase are common in breast cancer. Western blot was performed to evaluate if the 

expression profiles of cell cycle proteins that are directly involved within this portion of the cell 

cycle correlate with sensitivity/resistance to PLB +/- TMX (Figure 5.3.1). The two lines 

completely resistant to PLB (MDA-MB-468 and BT549) identified in Chapter 4, displayed a 

distinct cell cycle expression profile, with high expression of p16 and Rb loss. Interestingly, 

MDA-MB-468 and BT549 had low levels or loss of cyclin D1, respectively, whereas the 

remaining lines had moderate-high expression (with the exception of HCC202) (Figure 5.3.1). 

Uniquely, ZR-75-1, expressed low Rb levels but had moderate levels of cyclin D1, and this line 

exhibited limited response to PLB (Appendix E-E2). Expression of p16 was seen in 12/20 cell 

lines, however neither basal p16 expression nor p16 loss were correlated with PLB response 

according to GR scores.  P27 was expressed in 6 lines: 4 ER+ and 2 ER-. The protein levels of 

other cell cycle markers were not linked to PLB sensitivity as determined by GR values.  
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Reverse Phase Protein Array Database Analysis 

Breast cancer cell lines were categorized into sensitive and resistant groups to single 

PLB, and PLB + TMX combination treatment. The top 11 PLB sensitive (GR value <0.58) and 

bottom 7 PLB resistant (GR value >0.58) lines were compared at the protein level using the three 

available RPPA datasets (Table 5.2.1A). From the RPPA analysis, ten, five, and five statistically 

significant protein hits were seen in the Mills, CCLE, and MCLP datasets, respectively. Heat 

maps of these differentially expressed proteins in PLB-sensitive versus resistant cell lines are 

shown in Figure 5.3.2. Of these hits, BRAF, PKCɑ, Caveolin-1, GAB2, and GATA3 were seen 

across 2 of the datasets and PTEN was a significant hit in all 3 datasets. From the RPPA analysis, 

Figure 5.3.1 Western blot of common cell cycle proteins in twenty breast cancer cell lines. Two 
gels were run in parallel to evaluate all breast cancer cell lines, within each gel, cell lines were grouped 
by positive and negative estrogen receptor expression. All cell lines were grown in RPMI media and 
lysates were prepared from sub confluent cells. 
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decreased PTEN, GATA3, BRAF and GAB2 expression were correlated with PLB resistance. In 

contrast, increased levels of PKC⍺ and Caveolin-1 were correlated with PLB resistance. These 

differentially expressed proteins suggest the PI3K and RAS pathways play a role in PLB 

response.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

Using the combination grouping highlighted in Table 5.2.1B, protein expression was 

analyzed in the three RPPA datasets. From the RPPA analysis, 12 statistically significant hits 

were identified in the Mills dataset (Figure 5.3.3). GAB2 was the only differentially expressed 

protein seen in the MCLP dataset, and AR was the only candidate from the CCLE dataset, these 

two candidates were also identified in the Mills dataset, shown in Figure 5.3.3. High GAB2 

Figure 5.3.2 Statistically significant RPPA candidates in palbociclib sensitive versus resistant breast cancer cell 
lines. Heat maps for each dataset A) Mills, B) CCLE, C) MCLP were generated using JavaTree [92]. Statistically 
significant proteins identified in multiple databases and unique proteins from individual databases were included. RPPA 
data was normalized and converted to log1.25 for the Mills dataset and log2 for the CCLE and MCLP datasets. 
Hierarchical clustering was performed using Euclidean distance and average linkage of median centered data. Red and 
green indicate increased and decreased protein expression, respectively, grey squares indicate missing data. Cell lines 
highlighted in orange were grouped as palbociclib sensitive and blue lines were grouped as palbociclib resistant. 
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expression and low AR expression were correlated with the cell lines that did not benefit from 

the combination treatment. Interestingly, p16 was identified as a protein candidate, suggesting 

lower expression may be predictive in identifying cell lines that derive limited response to the 

combination treatment. 

 

 

 

 

 

 

 

 

 
 
 
 

5.4. Discussion  

 The identification of robust predictive biomarkers of PLB or PLB + TMX resistance will 

help identify patients who are unlikely to derive a meaningful benefit from this treatment and 

could be offered alternative treatment options. As highlighted in Chapter 2, no predictive 

biomarkers were identified using available online databases containing clinical and molecular 

data on CDK4/6i treated patients. To further investigate potential biomarkers of response to PLB 
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Figure 5.3.3 Statistically significant RPPA candidates of PLB + TMX synergy.  
Proteins identified in multiple databases and unique proteins from the Mills dataset were included. RPPA data was 
normalized and converted to log1.25. Hierarchical clustering was performed using Euclidean distance and average 
linkage of median centered data, and heat map was generated using JavaTree [92]. Red and green indicate increased and 
decreased protein expression, respectively. Cell lines highlighted in orange were grouped as highly synergistic to PLB + 
TMX combination and blue lines were grouped as having limited or no synergistic response to the combination. 
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and PLB + TMX combination, a proteomic approach was used to evaluate distinct expression 

between the sensitive and resistant cell lines.   

A distinct cell cycle profile was observed in the two TNBC resistant cell lines: loss of Rb 

and p16 overexpression. While this signature was only seen in the TNBC subtype within the 

breast cancer cell line panel, Palafox et al. (2022) found p16 overexpression and heterozygous 

RB1 loss to be predictive of CDK4/6i (ribociclib) resistance in ER+ breast cancer cell lines, 

xenografts and patient samples [71]. Upon further validation, using Rb loss and p16 

overexpression as biomarkers of PLB resistance may help identify patients who are unlikely to 

derive benefit from PLB or other CDK4/6i.  

The RPPA analysis identified thirteen distinct proteins that were differentially expressed 

in the PLB sensitive versus resistant cell lines. Of these candidates, five (PTEN, BRAF, PKCα, 

Caveolin-1, GAB2, GATA3) were identified in 2 or more of the RPPA datasets, further 

validating these proteins. The expression of GAB2, PTEN, and PKCα have been previously 

described to alter the cell cycle. PKCα has been reported to downregulate cyclin D1, specifically 

eliciting anti-proliferative effects at the G1/S phase of the cell cycle, thereby decreasing the 

reliance of cell proliferation at this point of the cell cycle [93]. Additionally, loss of GAB2 

reduces cell-cycle progression resulting in a decrease of proliferation, and loss of PTEN has 

previously been described as a mechanism of acquired resistance to CDK4/6i in ER+ breast 

cancer [94,95]. Association of the RAS and AKT pathways with PLB resistance warrants further 

evaluation, and the predictive value of the individual protein candidates identified in the RPPA 

analysis will be further explored as part of the future directions of this project.  

The RPPA analysis identified twelve differentially expressed proteins when comparing 

cell lines with high combination synergy with cell lines resistant to the combination. Negative 
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p16 expression was correlated with the cell lines that did not derive synergistic benefit from the 

combination. Four of the cell lines in this group (T47D, MCF7, MDA-MB-134, MDA-MB-175) 

had negative p16 expression by Western blot analysis whereas all lines in the synergy group 

showcased a degree of p16 expression (with the exception of HCC1428, which was not included 

in the RPPA analysis using the Mill’s dataset) (Figure 5.3.1 – Appendix E-E1). Differential 

expression of the androgen receptor (AR) was identified between the PLB + TMX combination 

groupings. The predictive value of AR and response to CDK4/6i is currently being evaluated in 

the TNBC subtype, however these findings suggest AR expression may also hold predictive 

value in ER+ subtypes [39].  

 While the overarching goal of this project was to identify biomarkers of resistance, I did 

evaluate other potential biomarkers that may be predictive of PLB sensitivity using my PLB GR 

ranking. Interestingly, I found that cell lines that proliferated slower were more likely to be 

sensitive to PLB, suggesting a population with a lower proliferation rate (determined by Ki67 

score) may benefit from CDK4/6i (Appendix E-E1). Recently, abemaciclib, a CDK4/6i, was 

approved for use in early stage breast cancer for patients at a high risk of recurrence and 

selection criteria included using a Ki67 score of ≥20% [96]. While the predictive value of Ki67 

in metastatic breast cancer remains inconclusive, using a Ki67 of ≥20% cut-off could potentially 

exclude patients who would respond to a CDK4/6i. Additional evaluation of Ki67 as a biomarker 

for CDK4/6i (abemaciclib and PLB) response is warranted.  

The p16 (CDKN2A) gene which encodes the p16 protein, a natural CDK4/6i, is 

frequently inactivated in breast cancers. Inactivation of p16 commonly occurs through DNA 

methylation and copy number deletion [97]. The predictive value of p16 promoter methylation as 

a biomarker of PLB response has been evaluated in multiple cancer types by Li et al. (2019), 
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where they found that methylated p16 cells were more likely to be sensitive to PLB [97]. Within 

the cell line panel, only two lines (T47D and MDA-MB-134) had known p16 methylation, and 

both ranked within the top 5 PLB sensitive lines (Appendix E-E2). These findings suggest that 

p16 methylation may hold predictive value in selecting a subset of patients who are more likely 

to respond to PLB.  

Other genetic alterations were considered to identify potential biomarkers. Increased p53 

expression was more common in the PLB resistant grouping, seen in 6 of the 9 top resistant lines 

(Appendix E-E2). After reviewing the Wellcome Sanger Institute database for previously 

published drug sensitivities within the breast cancer cell line panel (summarized in Appendix E- 

E2) a trend was seen where cell lines with high PLB sensitivity were more likely to also be 

sensitive to PI3K and AKT inhibitors [98]. Of the top 8 PLB sensitive lines, 6 of them were 

sensitive to PI3K and AKT inhibitors, whereas the 7 most resistant lines had no previously 

documented sensitivity to these inhibitors. As PI3K and AKT inhibitors are associated with high 

toxicity profiles in the clinic, these findings suggest that tumours with a reliance on the PI3K 

pathway may benefit from PLB treatment which has a more tolerable toxicity profile [99].  

In the clinical setting, all ER+/HER2- metastatic patients are candidates to receive 

CDK4/6i + AET treatment. Using these criteria in the breast cancer panel, 56% (5/9) of the 

ER+/HER2- cell lines would derive benefit from the combination treatment. Using the potential 

biomarker findings from this chapter, I have developed specific screening criteria to be 

considered when selecting patients for single PLB treatment (Figure 5.4.1). All breast cancer 

patients would be screened to determine p16 and Rb expression, which could be done by 

immunohistochemistry staining. Patients with overexpression of p16 and/or loss of Rb would 

likely be resistant to PLB, therefore should be offered an alternative treatment option. For the 
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Figure 5.4.1 Proposed screening criteria for selecting patients to receive palbociclib treatment. 

remaining patients who express low or normal levels of p16 and have functional Rb, they would 

potentially benefit from PLB treatment, however further patient selection is needed. From the 

RPPA data, evaluating for increased expression levels of PKCɑ, Caveolin-1, or decreased 

expression PTEN, GATA3, BRAF or GAB2 could identify patients who are unlikely to respond 

to PLB. Additionally, patients with methylated p16 and prior sensitivity to PI3K and AKT 

inhibitors would be selected to receive PLB treatment. Low Ki67 levels and p53 expression may 

also help select for patients to receive PLB. Any remaining patients who had not been selected 

out based on the criteria above should still receive PLB treatment. As this biomarker research 

was discovery based, all the identified biomarkers require further evaluation in a validation 

cohort. 
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A limitation of this work is that the previously mentioned biomarkers were identified 

using breast cancer cell lines. While these are robust models for drug sensitivity and allow for 

biomarker identification, they only represent a subpopulation of the patients. Due to the 

challenges of developing 2D models, the lines that get established resemble only a selection of 

cells present within a patient’s tumour. Additionally, the tumours from which these cell lines 

were derived came from different sources (i.e., pleural effusion, primary breast, ascites) and the 

age of the patients at tumour removal ranged from 23-82 (Summarized in Table 3.2.1). 

Additionally, the RPPA datasets are reliant on data generated from different laboratories that 

may have cultured the cell lines in different conditions. Ideally, additional RRPA analysis and 

multi-omics will be performed using samples prepared by our laboratory to confirm these 

findings. The highlighted biomarkers from this project require further validation using 3D cell 

line models, mouse models or patient samples. 
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Chapter 6 – Conclusion and future directions  
 
 
Conclusions  

This project provides a foundation of PLB +/- TMX drug sensitivity data on a panel of 

twenty breast cancer cell lines. The overarching goal of this project was to identify biomarkers 

that are predictive of resistance to PLB and PLB + TMX combination. In recent years, PLB in 

combination with AET has become the standard of care for treating ER+/HER2- metastatic 

breast cancer. While previous CDK4/6i biomarker research has been conducted, no predictive 

biomarkers beyond ER positivity have been clinically validated [15,67,68]. With the increasing 

costs of targeted therapies such as PLB, the financial burden on the healthcare system is not 

sustainable. To ensure breast cancer patients receive effective treatments, biomarker research is 

of great importance.  

Using a carefully validated experimental design, which accounted for the variable growth 

rate observed within the panel of breast cancer cell lines, I found that PLB elicited cytostatic 

activity in all breast cancer subtypes. Luminal A cell lines were found to be the most sensitive to 

both PLB alone and the PLB + TMX combination, whereas the TNBC subtype was resistant or 

derived limited response to the tested drugs. Cell lines with distinct response to PLB were 

compared using RPPA datasets and from this I identified thirteen differentially expressed 

proteins between PLB sensitive and resistant cell lines. These proteins included PKCα, PTEN, 

BRAF, GATA3, and GAB2 as potential predictive biomarkers of PLB resistance. Additionally, 

tumour characteristics such as proliferation rate of the tumour, methylation status of the p16 

promoter, and prior sensitivity to AKT/PI3K inhibitors may also help select patients who are 

most likely to response to PLB. Twelve protein biomarkers of PLB + TMX resistance were 

identified, including p16, GAB2 and AR.		
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Table 6.1 Biomarkers of palbociclib and palbociclib + tamoxifen response 
identified from literature and RPPA analyses to be considered for further 
validation. 

Literature PLB Proteomics Synergy 
Proteomics 

CDK4 pT172 ACLY pS455 AKT1 pS473 

CCNE1 B7H4 AR 

ERBB3 B-Raf pS445 B7H4 

FGFR1/2 BRD4 CD29 

p16 Cavelolin-1 p16 

Rb CSK CREB pS133 

PTEN GAB2 GAB2 

 GATA3 PAK1 

 GLI3 RSK 

 MDMX SHP2 

 PKC⍺ SOD1 

 PTEN TRAP1 

 ULK1 pS757  
 

From this project I have identified notable potential biomarkers that should be considered 

for further validation highlighted in Table 6.1. The literature review in Chapter 2 highlighted 

multiple biomarkers that have been previously explored, from these seven have been selected 

that warrant further validation. The RPPA analysis in Chapter 5 identified thirteen and twelve 

potential biomarkers of PLB and PLB + TMX resistance, respectively. Additional evaluation of 

these discovery-based biomarkers using a validation cohort to determine their predictive value is 

warranted. 

	

Future Directions 
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Further validation of the identified RPPA hits by Western blot and functional shRNA 

knock-down experiments will be performed to determine if a change in drug response is seen 

when compared to the PLB response seen in the unmodified cell line. The development of a 

stable PCK⍺ knock-down in a PLB resistant cell line is currently ongoing to evaluate the 

predictive value of this protein. Additional proteomic biomarker work will be completed using 

mass spectrometry to further validate the identified RPPA protein candidates in this project. 

Potential biomarkers will also be analyzed in patient samples to elucidate the predictive value of 

these markers.  

Future projects will include the evaluation of the other two approved CDK4/6i, ribociclib 

and abemaciclib, in the panel of breast cancer cell lines using cell counting experiments and 

growth rate calculations. Additionally, PLB will be evaluated in combination with other AETs 

(letrozole and fulvestrant), to determine which combination elicits the highest degree of synergy. 

I hope that translational research will continue to inform treatment decisions using a personalized 

medicine approach to improve treatment outcomes for breast cancer patients, ultimately ensuring 

the right drug is being given to the right patient.  
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Appendix 

Appendix A- Experimental Methodology 
 

Cell Line Authentication 

Short tandem repeat (STR) analysis was performed on all breast cancer cell lines to 

authenticate each line, with the exception of HCC1428 which was purchased directly from 

ATCC. Genewiz Inc analyzed 16 markers/loci (D3S1358, D21S11, D18S51, Penta E, Penta D, 

D8S1179, FGA, D5S818, D13S17, D7S820, D16S539, vWA, TH01, AMEL, TPOX, CSF1PO). 

The STR results were compared to the ATCC STR database to confirm the identity of each cell 

line.  

Western Blot Analysis 

Breast cancer cell lines were plated in 100mm dishes and grown to 60-85% confluent. 

Plates were scraped using in-house lysis buffer made up of 20mM Bicine (pH 7.5) 0.6% CHAPS, 

Aqueous Inhibitor mix (40mM sodium fluoride, 17mM beta glycerophosphate, 1mM sodium 

orthovanadate, 2mM EDTA, 10mM EGTA), Phos-Stop phosphatase inhibitor (Roche, Cat. No. 

4906845001), and Protease inhibitor cocktail (Sigma Aldrich, Cat. No. P8340). Cells were snap 

frozen at -80 degrees for 20 minutes, thawed and pelleted at 10,000 rpm for 15 minutes at 4 

degrees. Supernatant was collected and used for Western blot analysis. Protein extracts were 

separated by SDS-PAGE on 6-15% polyacrylamide gels and transferred to nitrocellulose 

membranes (BioRad: 0.2µM membrane pores, Cat. No. 1620112) at 100V for 2 hours and 

probed with primary antibodies.   



 80 

Primary antibodies against PR (CS-8757), Rb (CS-9309), pRb (s780) (CS-9307), pRb 

(s807/811) (CS-8516), Cyclin E1 (CS-4129), Cyclin D1 (CS-2922), CDK4 (CS-12790), CDK6 

(CS-3136) were obtained from Cell Signaling; p27 (SC-528), CDK2 (SC-748) were obtained 

from Santa Cruz Biotechnology; ERα (MA5-14501), HER2 (MA5-14509) were obtained from 

Thermo Fisher Scientific and p16 (ab108349) was obtained from Abcam. Vinculin (V9131, 

Sigma) and α-tubulin (T5168, Sigma) were used as protein loading controls. Secondary 

antibodies, goat-anti-mouse (A9917) and goat-anti-rabbit (A0545) were purchased from Sigma 

and were used accordingly. Western blots were imaged using Immobilon HRP reagent (Cat. No. 

WBKLS0500, Millipore, Etobicoke, ON, Canada) and developed by autoradiograph.   
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Appendix B- Chapter 1 Appendices 
B.1. Clinical trials evaluating palbociclib in A) HER2-enriched and B) triple-negative breast cancer patients. 

Clinical Trial Name Trial Phase Trial Duration Trial status Disease Characteristics Drug Combination Estimated 
Completion Date 

NCT03530696 Phase 2 2018-ongoing Active HER2+ MBC T-DM1 +/- PLB Dec-24 

NCT02530424  
(NA-PHER2) 

Phase 2 2015-ongoing Active ER+, HER2+ Palbociclib + trastuzumab + pertuzumab +/- 
fulvestrant. 

Preliminary results 
collected 2019. 

NCT02448420 
(PATRICIA, PATRICIA 

II) 

Phase 2 2015-ongoing Active HER2+ MBC Trastuzumab + palbociclib +/- letrozole Aug-23 

2019-ongoing Recruiting HER2+ MBC Trastuzumab + palbociclib + AET 
vs Physicians Choice 

Aug-23 

NCT02947685  
(PATINA) 

Phase 3 2017-ongoing Active HR+, HER2+ MBC Chemotherapy + anti-HER2 for 4-8 cycles then 
randomized to anti-HER2 + AET vs anti-HER2 + 

AET + palbociclib 

May-23 

NCT03054363 Phase 1/2 2017-ongoing Active HR+ HER2+ MBC Tucatinib + palbociclib + letrozole Mar-23 

NCT02774681 phase 2 2016-2020 Terminated ER- HER2+ MBC with brain metastases Palbociclib N/A 

NCT03304080 Phase 1/2 2017-ongoing Active HR+ HER2+ MBC Anastrozole + palbociclib + trastuzumab + 
pertuzumab 

Jul-23 

NCT04858516 
(neoPEHP) 

Phase 2 2021-ongoing Not yet recruiting Neo adjuvant treatment ER+ HER2+ Palbociclib + exemestane + trastuzumab + pyrotinib Apr-25 

NCT03709082 Phase 1/2 2018-ongoing Active Refractory ER+ HER2+ Palbociclib + letrozole + T-DM1 Oct-25 

NCT05076695 
(NeoTPPF) 

Phase 2 2021-ongoing Recruiting Neoadjuvant treatment ER+ HER2+ Trastuzumab + pyrotinib + palbociclib + fulvestrant Oct-24 

NCT03644186 
(TOUCH) 

Phase 2 2018-ongoing Active HR+ HER2+ early BC Palbociclib + letrozole + HER2 blockade 
(trastuzumab or pertuzumab) vs paclitaxel + HER2 

blockade. 

Nov-22 

NCT04334330 Phase 2 2020-ongoing Recruiting ER/PR+ HER2+, with brain metastasis Palbociclib, trastuzumab, pyrotinib and Fulvestrant Dec-24 

NCT04778982 Phase 2 2022-ongoing Recruiting Male or female HER2+ KN026 + palbociclib + fulvestrant Dec-24 

NCT04360941 
(Pavement) 

Phase 1 2020-ongoing Recruiting Locally advanced or metastatic AR+ or 
HER2+ breast cancer 

Palbociclib + avelumab Jan-24 

       
Clinical Trial Name Trial Phase Trial Duration Trial status Disease Characteristics Drug Combination Estimated 

Completion Date 
NCT05067530 
(CAREGIVER) 

Phase 2 2021-ongoing Not yet recruiting Untreated metastatic TNBC Chemotherapy (paclitaxel or carboplatin) + 
palbociclib vs palbociclib alone vs chemotherapy 

alone 

Dec-26 

NCT04494958 
(PALBOBIN) 

Phase 1/2 2020-ongoing Recruiting Advanced TNBC with hyperactivation of 
ERK and or CDK4/6 

Palbociclib + binimetinib Aug-23 

NCT02605486 Phase 1/2 2015-ongoing Active AR+ Metastatic TNBC Palbociclib + bicalutamide 23-Nov 

NCT04360941 
(Pavement) 

Phase 1 2020-ongoing Recruiting Locally advanced or metastatic AR+ or 
HER2+ breast cancer 

Palbociclib + avelumab Jan-24 

Abbreviations: AET, anti-estrogen therapy; AR, androgen receptor; ER, estrogen receptor; HER2, human epidermal growth factor 2; MBC, metastatic breast cancer; TNBC, triple negative breast 
cancer. 
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Appendix C- Chapter 3 Appendices 
 
C.1. Live cell images of A) DMSO control and B) 250nM palbociclib treatment for 20 breast cancer lines. 
Cells were seeded in 48-well plate and images were obtained at 10X magnification after 90 hours. A morphology change with 250nM 
palbociclib treatment was seen in 9/20 cell lines. 

Cell Line A) DMSO Control B) 250nM palbociclib 

T47D 

  

ZR-75-1 

  

MCF7 

  

BT474 

    

HCC1428 

  

CAMA-1 

  

MDA-MB-
134 
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Cell Line A) DMSO Control B) 250nM palbociclib 

MDA-MB-
175 

  

BT483  

  

MDA-MB-
415  

  

ZR-75-30 

  

MDA-MB-
361  

  

MDA-MB-
231 

  

AU565 

  

MDA-MB-
468 

  



 84 

Cell Line A) DMSO Control B) 250nM palbociclib 

HCC38 

  

BT549 

  

HCC202 

  

MDA-MB-
453 

  

SKBR3 
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Appendix D- Chapter 4 appendices 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 D.1. Breast cancer cell counting graphs from 4-day palbociclib + tamoxifen experiments. Graphs were organized top left to bottom right by 

response to 250nM palbociclib reported as percent inhibition of control. Cell lines were seeded for 20% confluence and treated with DMSO, TMX [25-200nM], PLB 
[31.25-250nM] and combination of TMX + PLB [31.25nM PLB 25nM TMX, 62.5nM PLB + 50nM TMX, 250nM PLB + 100nM TMX], individual wells were 
trypsinized and counted using an automated cell counter after 4 days. Drug response was calculated as a percent of the DMSO control. Breast cancer subtype 
highlighted by title color, luminal A: purple, luminal B: red, HER2+: green, TNBC: blue. 
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D.2.1 Breast cancer cell counting graphs from 12-day palbociclib + tamoxifen proliferation assays. 
Graphs were organized top left to bottom right by response to 250nM palbociclib based on final growth rate calculations. Cell 
lines were seeded for 20% confluence and treated on day 0, 4 and 8 with DMSO, TMX [25-200nM], PLB [31.25-250nM] and 
combination of TMX + PLB [31.25nM PLB 25nM TMX, 62.5nM PLB + 50nM TMX, 250nM PLB + 100nM TMX], 
individual wells counted, and drug response was calculated as a percent of the DMSO control.  
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D.2.2 Breast cancer cell counting graphs from 12-day 250nM palbociclib and palbociclib + tamoxifen 
combination proliferation assays. Graphs were organized top left to bottom right by response to 250nM palbociclib 
based on final growth rate calculations. Cell lines were seeded for 20% confluence and treated on day 9, 4 and 8 with DMSO, 
PLB [250nM] and combination of TMX + PLB [62.5nM PLB + 50nM TMX, 250nM PLB + 100nM TMX], individual wells 
counted, and drug response was calculated as a percent of the DMSO control.  
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Appendix E- Chapter 5 appendices 
Appendix E1. Western Blot quantification of cell cycle proteins.          
 Quantification of protein band intensity produced by ImageJ across all breast cancer cell lines. Each value was standardized to 
vinculin or α-tubulin housekeeping control. Cell lines were ranked by PLB sensitivity determined by 250nM PLB GR value. Heat map 
was generated using conditional formatting in excel. 

Cell Line 
ER/PR/ 
HER2 
Status 

PLB GR 
Ranking 

Quantified Band Intensity 

Rb pRb 
(s807/s811) 

pRb 
(s780) CDK2 CDK4 CDK6 Cyclin 

E1 
Cyclin 

D1 p16  p27  

BT483 +/+/- 1 0.21 0.12 0.17 0.96 0.97 0.49 0.27 0.68 0.73 0.31 
MDA-MB-361 +/-/+ 2 0.08 0.24 0.19 0.72 0.72 0.09 0.26 0.78 0.60 0.02 

T47D  +/+/- 3 0.67 0.72 0.29 0.82 1.05 1.34 0.22 0.30 0.00 0.17 
MDA-MB-134 +/-/- 4 1.00 1.91 1.60 0.82 1.75 1.76 1.01 2.02 -0.01 2.84 

HCC202 -/-/+ 5 0.57 0.54 0.40 0.70 1.02 0.36 0.34 0.18 -0.01 1.29 
MDA-MB-175 +/-/- 6 0.35 0.87 0.38 0.25 0.87 0.88 0.74 0.35 0.00 0.03 

CAMA-1 +/+/- 7 0.91 0.78 0.72 0.41 1.21 0.61 1.33 0.37 0.28 0.63 
MCF7 +/+/- 8 0.63 0.80 0.92 0.71 1.15 0.84 0.56 0.58 0.00 0.70 

MDA-MB-453 -/-/+ 9 1.20 0.88 0.62 0.85 1.43 0.48 0.37 0.55 0.79 1.30 
ZR-75-30 +/-/+ 10 0.19 0.11 0.14 0.53 0.70 0.24 0.35 1.03 0.45 0.11 

BT474 +/+/+ 11 0.22 0.35 0.60 0.81 0.88 0.71 0.35 0.36 0.42 0.02 
AU565 -/-/+ 12 0.38 0.37 0.21 0.57 0.27 0.14 0.61 0.28 0.08 0.01 

MDA-MB-415 +/+/- 13 0.47 0.49 0.21 0.72 0.88 0.22 0.54 1.39 0.70 0.06 
HCC38 -/-/- 14 1.16 1.06 1.07 0.73 0.41 0.47 0.46 0.57 0.00 0.00 

HCC1428 +/+/- 15 0.37 0.72 0.31 1.26 0.93 0.52 0.45 0.66 0.00 0.84 
ZR-75-1 +/+/- 16 0.05 0.04 0.03 0.62 1.18 0.17 0.41 0.95 0.20 0.02 
SKBR3 -/-/+ 17 0.49 0.54 0.22 0.51 0.48 0.12 0.66 0.27 0.53 0.03 

MDA-MB-231 -/-/- 18 0.88 0.60 0.86 0.46 0.83 0.40 0.04 0.25 0.00 0.01 
BT549 -/-/- 19 0.05 0.01 0.05 0.49 1.11 0.23 0.20 0.02 1.89 0.02 

MDA-MB-468 -/-/- 20 0.04 0.01 0.09 0.56 0.65 0.45 0.40 0.10 1.17 0.00 
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E.2 Basic expression profile and molecular features of a panel of breast cancer cell lines, including drug sensitivity data. 
 

 

Cell Line 

250nM 
PLB 
GR 

Value 

100nM 
TMX 
GR 

Value 

250nM 
PLB + 
100nM 
TMX 
GR 

Value 

Subgroup 

Protein expression (Western blot) 
BRCA1 

mutation 
[100] 

BRCA2 
mutation 

[100] 

p16 
methylation 

[70,97,101,102] 
Cell size Cell 

speed 

Doubling 
Time 

(hours)  

Top 5 sensitive 
drugs  (IC50) 

[98] 

Top 5 resistant 
drugs (IC50) [98] 

ER PR HER2 EGFR 
[103] 

p53 
[103] 

BT483 -0.02 0.24 -0.11 Luminal 
A + + - - + - - Unmethylated  Small Slow 22.8 

BIRC5, 
p38/JNK2, 

mTORC1-2, BRD 
2-4, PI3K 

EGFR, RNA pol, 
Kinase i, RNA heli 

A, IGFR1  

MDA-
MB-361 0.11 0.65 0.03 Luminal 

B + - +/- - - - N1657S Unmethylated  Small Slow 13.1 

Acetalax, PI3K, 
AKT1-3, 

CHEK1-2/CDK2, 
HDACi 

BIRC5, ERK1-2, 
Anthracycline, 
Mitoxantrone, 

IKK1-2 

T47D 0.19 0.75 0.22 Luminal 
A + + - - + - - Methylated  Medium Fast 5.7 TGFB1, PIM1-3, 

ER, IGFR1 

BIRC5, RNA pol, 
BCL2/XL, broad 

spectrum KI, 
proteosome 

MDA-
MB-134 0.21 0.67 0.14 Luminal 

A + - - - - - - Methylated Small Slow 19.4 NA NA 

HCC202 0.29 0.78 0.25 HER2+ - - + - - - - Wildtype  Small Slow 17.8 AKT1-2, PI3K, 
VEGFR, HDACi 

Docetaxel, 
CDK4/6i, 5-
Fluorouracil, 

FGFR1-3, Kinase i 

MDA-
MB-175 0.38 0.82 0.30 Luminal 

A + - - - - - - Unmethylated  Small Slow 8.4 EGFR, AKT1-3, 
MCL1, PI3K 

IGFR1, ER, DNA 
PK, MET/ALK 

CAMA-1 0.43 0.77 0.19 Luminal 
A + + + - + - - Unmethylated  Small Slow 9.5 ER, AKT1-3, 

PI3K, PORCN 

IGFR1, Topotecan, 
JAK2-3, CHEK1-2, 

MRCKB 

MCF7 0.55 0.75 0.45 Luminal 
A  + + - - - - - Deletion  Medium Fast 1.9 ER, IAP, TAF1, 

MTORC1, PI3K 

WEE1/PLK1, MET, 
JAK2-3, mTORC1-

2 

MDA-
MB-453 0.55 0.93 0.63 HER2+ - - + - - - - Unmethylated  Small Fast 4.3 

Dihydrorotenone, 
Acetalax, BRD2-

4, BRPF1-2, 
ERK1-2 

TNSK1-2, 
BCL2/BCL-XL, 

SYK, IGFR1, EGFR 
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Cell Line 

250nM 
PLB 
GR 

Value 

100nM 
TMX 
GR 

Value 

250nM 
PLB + 
100nM 
TMX 
GR 

Value 

Subgroup 

Protein expression (Western blot) 
BRCA1 

mutation 
[100] 

BRCA2 
mutation 

[100] 

p16 
methylation 

[70,97,101,102] 
Cell size Cell 

speed 

Doubling 
Time 

(hours)  

Top 5 sensitive 
drugs  (IC50) 

[98] 

Top 5 resistant 
drugs (IC50) [98] 

ER PR HER2 EGFR 
[103] 

p53 
[103] 

ZR-75-30 0.56 0.90 0.47 Luminal 
B + - + - - - M2322I N/A Medium Slow 13.9 

EGFR, BTK, 
ABL, TP53 

activation, S6K1 

CHEK1-2, 
WEE1/PLK1, 

MRCKB, ERK1-2, 
TNKS1-2 

BT474 0.58 0.91 0.30 Luminal 
B + + + - + - S3094 Wildtype Small Slow 9.7 

BTK, EGFR, 
PIK3, TP53 

activation, MCL1 

MRCKB, CHEK1-2, 
topotecan, 

proteosome, TOP1 

AU565 0.59 0.98 0.58 HER2+ - - + +/- - - - N/A Medium Fast 6.6 
BTK, TNKS1-2, 
PMRT5, EGFR, 

MCL1 

IGFR1, BRD2-4, 
MEK1-2, 

Dihydrorotenone 

MDA-
MB-415 0.62 0.71 0.34 Luminal 

A + + - - + - - N/A Medium Slow 10.7 PI3K, AKT1-3, 
TERT, MTORC1 

WEE1/PLK1, 
IGFR1, CHEK1-2, 

TOP1, IKK1-2 

HCC38 0.64 0.96 0.72 
TNBC 
(Basal-

like) 
- - - + + - - Deletion Big Fast 5.4 

Proteosome, 
BCL-XL, 

gemcitabine, 
CHEK1-2/CDK2, 

IAP 

ERK1-2, 
USP1/UAF1, 
Leflunomide, 

VEGFR, CDK2 

HCC1428 0.70 0.86 0.43 Luminal 
A + + - - - - - N/A Medium Slow 8.2 

MCL1, HDACi, 
ABL, BRD2-4, 

CDK1 

PI3K, CDK9, 
CDK2, AKT1-3, 

ROCK2 

ZR-75-1 0.71 0.90 0.55 Luminal 
A  + + - - - - - Partially 

methylated  Medium Fast 4.7 NA NA 

SKBR3 0.75 1.05 0.74 HER2+ - - + - + - - Unmethylated  Medium Fast 6.5 NA NA 

MDA-
MB-231 0.77 1.01 0.80 

TNBC 
(Basal-

like) 
- - - + + - - Deletion Medium Fast 2.8 

Fludarabine, 
APK1-2, ATR, 
Kinase i, CDK9 

BCL2/BCL-XL, 
Docetaxel, S6K1, 

USP1/UAF1, 
AKT1-3/ROCK2 

BT549 0.96 0.99 0.96 
TNBC 
(Basal-

like) 
- - - +/- + - - Unmethylated  Big Fast 2.1 

ROCK1-2, 
DNAPK, 
MRCKB, 

TNKS1-2, CDK1 

HDACi, TAC1, 
ERK1-2, DNA 

alkylating agent, 
PORCN 

MDA-
MB-468 1.00 1.37 0.98 

TNBC 
(Basal-

like) 
- - - +++ + - - Unmethylated  Medium Fast 4.7 

Sinularin, TAF1, 
ERK1-2, VEGFR, 

BRPF1B 

JAK1, MRCKB, 
Cytarabine, IGFR1, 

FGFR1-3 

 


