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Abstract

Coarse-grained (CG) models reduce the number of degrees of freedom in a sys-

tem, allowing the dynamics of large systems to be studied for longer times. Many

biological simulations today are performed using CG potentials. However, the use

of Newtonian equations of motion (EOM) for mesoscopic variables only yields

correct equilibrium properties but with the wrong dynamics. Conventional CG

mapping schemes such as the center-of-mass mapping are also not suitable for

coarse-graining nonbonded fluid systems.

The conservative terms in the CG EOM derived using Mori-Zwanzig theory

are studied. The fluid systems are divided into cubic subcells with equal vol-

umes. Atomistic particles associated with a subcell are mapped to a set of position-

dependent CG variables using either a Heaviside function or a fuzzy function. A

diffusion blob model is developed to qualitatively understand the correlation be-

tween two subcells. The distribution of CG mass is found to change from symmet-

ric and discrete to skewed and continuous. The form of the CG potential can be

approximated as a multivariate Gaussian.

Distribution function theory is used to derive the parameters of the CG poten-

tial analytically. The behaviour of the potential parameters as a function of differ-

ent geometric relationships, the size of the subcell or the fuzziness of the subcell

boundary, is discussed.

A density-based expansion method is developed to quantitatively understand

the behaviour of the one-dimensional distribution of CG variables. The origin of

the skewed mass distribution comes from the asymmetry in the variance of CG

mass distribution conditioned on a fixed number of atoms. The projected fluxes are

studied with distribution function theory and Gaussian process regression.
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This work provides a basis for correctly simulating complex fluid systems at a

mesoscopic scale without any ad-hoc assumptions. The Gaussian-like CG potential

is general for single-component, atomic fluids. Parameters of a CG potential are,

for the first time, computed from analytical theories. Understanding the source of

the skewed mass gives a complete solution to finding the correct fluctuation for

densities. This solves a long-standing problem in fluctuating hydrodynamics. The

density-based expansion formula gives a complete solution to the back-mapping

problem in performing multiscale simulations.
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Lay Summary

This research work aims to develop a framework that generalizes fluid dynamics.

The properties of the equations of motion derived from projecting atomistic in-

formation are analyzed. In this framework, a fluid system is divided into many

cubic subvolumes. Variables that represent the system are associated with atoms

moving within cubic subvolumes. It is found that the interaction between these

variables can be described by a simple quadratic function whose parameters can be

calculated analytically using rigorous theories from an atomistic level. A density-

based expansion equation is derived to compute the distributions of these variables.

Such an equation also explains why the mass variable is skewed. These theoretical

findings are verified by simulation and numerical tools.

This work significantly advances our understanding of mesoscopic dynamics.

Interactions between mesoscopic variables can now be described by analytical the-

ories. This discovery solves crucial, long-standing problems in multiscale simula-

tion and fluctuating hydrodynamics.
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Chapter 1

Introduction

1.1 Modeling of fluids overview
Understanding the behaviours of fluid systems plays a vital role in science and

engineering. From atomistic to continuum scales, as shown in Figure 1.1, many

models have been developed to study the dynamics of fluids. Recent rapid ad-

vances in nanoscience and biology stimulate the need of creating fluid models that

excel at a mesoscopic level. Therefore, it is necessary to review the strength and

weakness of some representative fluid models, paving the way for a better fluid

model. Such a model should not only work at the mesoscopic level but potentially

connect atomistic theories with continuum ones.

1.2 Atomistic model: molecular dynamics
At the atomistic level, the most often used method is Molecular Dynamics (MD)2,3.

In classical MD, Newton’s equations of motion are solved, and interactions be-

tween atoms are computed from Force Fields (FF). The evolution of the fluid

system is captured at an atomistic resolution. Equilibrium and dynamic proper-

ties of a fluid are calculated from statistical mechanics theories. For example, one

can compute the temperature from the fluctuation of the momentum, the diffusion

coefficient from the velocity autocorrelation function etc. The accuracy of the sim-

ulation largely depends on the quality of the FF and the length of simulation time.
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Figure 1.1: Schematic representation of the modeling of nanoparticle growth.
(This figure is taken from1 with permission)

One can use forces computed from a pairwise additive potential up to quantum

mechanics on-the-fly4. With the power of modern supercomputers, classic MD

can do an all-atom simulation of a complex fluid system such as a protein in water

for hundreds of nanoseconds5,6. However, many biological processes, like protein

folding take place on a time scale of seconds7, which is beyond the capacity of

MD. Moreover, when a system contains more than millions of atoms, there is no

point in calculating exactly the momentum and positions of all atoms at every time

step. Identifying the problem of interest and using reduced degrees of freedom to

describe unimportant details are much more feasible and efficient. This idea is the

key to the development of mesoscopic models.

1.3 Mesoscopic models
At the mesoscopic level, the focus is to describe the motion of a cluster of atomistic

particles. One approach is Coarse-Grained (CG) MD8–11 where CG FF are used to

propagate the Newtonian-type Equations Of Motion (EOM) for CG variables. Each

CG variable can contain many bonded or nonbonded atomistic particles. The devel-
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opment of the CG FF is generally based upon two different routes12–15. Bottom-up

approaches construct the CG FF from atomistic simulations, while top-down ap-

proaches use experimental data like thermodynamic properties to generate the CG

FF. In general, the process of constructing the FF is done iteratively to optimize the

FF parameters. The CG MD has been widely used in simulating polymers and bi-

ological systems and can reproduce correct equilibrium properties. However, one

often finds that the Newtonian EOM gives incorrect self-diffusion coefficients16.

This indicates that the dynamics of CG variables is not adequately described by

Newton’s equations.

Another approach is Dissipative Particle Dynamics (DPD)17 in which the CG

EOM is constructed in a physically intuitive way. The CG EOM has three pairwise

force terms, a linear repulsion term derived from a potential, a dissipative term,

and a stochastic term. The last two terms are called a “pair-wise Brownian dash-

pot”, which is momentum conserving and serves as a minimal model for showing

viscous forces and thermal fluctuations between dissipative particles18. The DPD-

related models have been applied to various fields for their simplicity. However,

simplicity also brings several limitations to DPD. For example, linear conservative

forces are not able to reproduce the correct thermodynamics behaviour. Moreover,

the parameters of the system are often calculated in an ad-hoc way, making DPD

less flexible when the number of dissipative particles changes.

1.4 Continuum models
Continuum fluid models are built under the “continuum hypothesis” where the size

of the fluid element is large enough that physical quantities change continuously

from one element to its neighbour. This allows the dynamics of the fluids to be

described by partial differential equations like Navier-Stokes equations. Finding

analytical solutions for these equations remains a challenge but powerful numeric

integration methods have been developed in the field of Computational Fluid Dy-

namics (CFD))19. There are in general two groups of methods in CFD, one is

the mesh-based method and the other particle-based method. In the mesh-based

method, an Eulerian perspective is taken where the fluid is divided into fixed vol-

ume elements, usually associated with an underlying lattice or mesh. Two general

3



ways of studying the evolution of the fluid system are to solve the Navier-Stokes

equations, using for example the Finite Volume Method (FVM)20, or to use the

Lattice Boltzmann Method (LBM)21.

In the FVM, conservation equations for mass, momentum and energy are dis-

cretized and integrated using the volume elements. The size of the volume element

is chosen to be large enough so that properties, like mass and velocity, are contin-

uous and can be approximated as continuous linear functions of the distance. The

evolution of a continuum variable is done by combining its fluxes on all surfaces

of the volume element. However, this continuum approximation will break down

as the size of the volume element shrinks and the discreteness of particle masses

amplifies. Quantifying these behaviours is still an open question. Also, setting

boundary conditions for the FVM requires input parameters like viscosity, which

encapsulate the atomistic behaviour in the fluid.

In the LBM, the fluid system is described by distribution functions generated

from Boltzmann equations22. By using the Bhatnagar, Gross and Krook (BGK)

model23, the collision term in the Boltzmann equation is replaced by a relaxation

term that only depends on the relaxation time and the equilibrium distribution func-

tion24,25. This approximation greatly simplifies the computational cost, but the

relaxation time in a dense fluid is hard to determine in theory. To propagate the

local velocity distribution in the lattice BGK model, the most common approach is

the N-Dimensional B-velocity (DNQB) model25 where the discretized equilibrium

velocity distribution of a small volume is represented by a sum of b directional

equilibrium distributions. Each directional distribution is computed using a func-

tion that contains a lattice vector that specifies the direction and a weight associated

with that direction. The more directional velocities are used, the more accurate the

lattice BGK model is. Overall, the question remains whether there exists a gen-

eral lattice-like theory that can accurately model the behaviour of fluids from the

atomistic scale up to the continuum limit.

Alternatively, The Lagrangian perspective decomposes a fluid into “fluid par-

ticles”, with an accompanying particle-like equation of motion. Smoothed par-

ticle hydrodynamics is a particle method26,27 that partitions a fluid system into

macroscopic particles. Physical quantities at any position are computed using in-

terpolation formulae where contributions from nearby particles are combined and
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weighted by a distance-dependent smoothing kernel. However, the construction

of the kernels is somewhat ad-hoc. For example, the golden rule is to assume the

kernel is a Gaussian27 without much physical interpretation associated with that

choice.

Finally, there are many attempts at using continuum models to study meso-

scopic flows. Researchers have found that continuum models can reproduce cor-

rect diffusion coefficients down to a nanoscale28,29. To account for the large de-

viation of density at small scales, fluctuating hydrodynamics are proposed30. Its

idea is to add a fluctuating term in the continuum equations to correctly model the

fluctuations at equilibrium. Correctly constructing the fluctuating term requires the

knowledge of density distributions at a mesoscopic scale, which can only be gained

from atomistic or mesoscopic simulations31.

1.5 Multiscale models
Another popular field of research is multiscale modelling32 where methods that

work at different scales are combined to simulate the dynamics of fluids, such as

the MD plus CG MD model33, MD plus CFD model34, CG MD plus CFD model35

and so on. The general idea of multiscale simulation is to understand the subsys-

tem of interest in detail while treating the rest of the system at a coarser resolution.

Usually, a buffer region is placed between these two resolutions to ensure cor-

rect boundary conditions and thermodynamic behaviour. In principle, to exchange

information consistently, one needs to know exactly how the low-resolution infor-

mation is mapped to the high-resolution model and vice versa. However, mapping

and back-mapping problems are non-trivial and often done in an ad-hoc way36.

1.6 Summary
In summary, various fluid models have proven their usefulness. Exploring the ways

to improve these models is still an active area of research. Nonetheless, the cen-

tral question for developing new fluid models is, “How can we correctly describe

the transition from atomistic behaviours to mesoscopic behaviours and even to

continuum behaviours?” Answering it will help us understand a series of issues

mentioned earlier like what is the correct EOM for CG systems, what are the phys-
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ical interpretations for many ad-hoc treatments, how to quantify the continuum

hypothesis and ultimately how do atomistic EOM become continuum ones in the

large number limit. We argue that such a problem must be studied within rigor-

ous statistical mechanics theories involving projection operators37 and distribution

functions38 in a bottom-up manner. From Mori-Zwanzig projection theory39,40,

the general EOM for CG variables have the form of Langevin equations. The elim-

inated degrees of freedom appear in the memory term and the noise term. In the

meantime, the mapping scheme that maps atomistic information to a CG space

should be general so both bonded and non-bonded systems can be studied. Com-

bining projection operator theories with general mapping schemes in studying the

dynamics of CG fluid systems will be elaborated in Chapter 2.

6



Chapter 2

Theoretical background

2.1 Mori-Zwanzig theory
What the CG mapping does is to package some degrees of freedom of the system

into quantitively lesser variables. Therefore, CG variables are defined as a function

of those degrees of freedom and are generally considered as dynamical variables.

In classical mechanics, the time evolution of dynamical variables is associated with

the Liouville operator L, which is defined by the system’s Hamiltonian H(p,r) as

L =
∂H
∂p

∂

∂r
− ∂H

∂r
∂

∂p
. 2.1

Then, the time dependence of a set of dynamical variables AAA(z(t)) is given as

∂AAA(z(t))
∂ t

= LAAA(z(t)) . 2.2

Consider a classical system with n particles, where microstate z is a point in the

phase space with a set of 3n momenta p and 3n positions r.

The solution of this operator equation is

AAA(z(t)) = etLAAA(z(0)), 2.3

where AAA(z(0)) and AAA(z(t)) are values of the dynamical variables at time 0 and t, re-
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spectively. To simplify the notation, we use to AAA(0) and AAA(t) represent AAA(z(0)) and

AAA(z(t)) below when we discuss the time dependence of AAA. This shows the effect of

etL is to propagate CG variables along the CG space trajectory. Another property

of etL is that it can be moved inside a function. Equation 2.3 and properties of etL

will be used later in the derivation of the CG EOM by Mori-Zwanzig projection.

The general idea of the Mori-Zwanzig formalism39,40 is to consider Equa-

tion 2.2 as a linear partial differential equation. In the matrix representation of

this equation, dynamical variables can be expanded by infinite orthogonal sets in

Hilbert space37. Suppose we are interested in the behavior of a chosen set of in-

dependent dynamical variables A (or sometimes called relevant variables A in the

literature). In Hilbert space, A is considered as a vector and hence independent dy-

namical variables form a subspace. The action of studying a set A is to partition the

Liouville matrix in Hilbert space. This can be done formally with the projection

operator P, whose action on any function B is defined as

PB = (B,A)(A,A)−1A, 2.4

where (B,A) represents the inner product of two vectors in the Hilbert space. This

operator projects the function B to the subspace spanned by the set of relevant vari-

ables A. If B does not contain any component of A, the projection result will be

a zero vector. By using the projection operator P and operator properties, Equa-

tion 2.2 can be rearranged as a general Langevin equation. This process is given as

follows. First, split the Liouville operator into a projected part and a left-over part,

L = PL+(1−P)L, 2.5

then use the operator identity

etL = et(1−P)L +
∫ t

0
dse(t−s)LPLes(1−P)L, 2.6

and multiply the quantity (1−P)LA(0) to the right of both sides of the equation.

After some derivation and rearrangement together with Equation 2.3 and Equa-
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tion 2.4, we obtain the general form of the CG EOM as

∂A(t)
∂ t

= iβA(t)−
∫ t

0
dsK(s)A(t− s)+F(t), 2.7

where

iβ = (LA,A)(A,A)−1,

K(t) =−(LF(t),A)(A,A)−1,

F(t) = et(1−P)L(1−P)LA(0). 2.8

The first term on the right-hand side of Equation 2.7 represents for projected

dynamics in the CG space. The second term represents a memory term that in-

tegrates the interaction between A and F(t). The third term partly represents the

influence of the bath (or irrelevant variables) on A. In theory, this term is deter-

mined by the initial state of irrelevant variables. However, one is often not inter-

ested in details of the irrelevant variables, so this term is treated as a noise term in

a Langevin equation. One can also show that the memory term and noise term are

related and give the fluctuation-dissipation relation

K(t) = (F(t),LA)(A,A)−1 = (F(t),F(0))(A,A)−1, 2.9

when the inner product is chosen as the equilibrium average. This relation confirms

that Equation 2.7 is a generalized Langevin equation. Therefore, those three terms

are often called conservative, memory, and noise terms following the convention

used with studies of the Langevin equation. The exact behavior of the noise is

unknown and assumed to be a zero-mean and non-Gaussian random process. In

general, the operation of eliminating irrelevant variables gives memory and noise

terms. The conservative term determines the equilibrium structure while the rest of

the terms produces the correct dynamics of the CG system.

2.2 General mapping scheme
Many CG mapping models have been developed to suit the need in different sit-

uations. For example, one bead is used to represent one water molecule with its
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position being the Center Of Mass (COM)9,41–44. Such a mapping is widely used

and can be written as

RK =
n

∑
i=1

dK
i

mi

MK
ri ,

PK =
n

∑
i=1

dK
i pi . 2.10

Here, n is the total number of particles, ri and pi are the atomistic momenta and

position of particle i, N is the total number of CG particles so that K is an integer

which cannot exceed N, MK is the total mass of CG particle K, and dK
i is usually

defined as

dK
i =

1, if atomistic particle i is included in CG particle K;

0,otherwise.
2.11

This means one atomistic particle belongs to one specific CG particle, and this as-

signment is fixed in time. Such a mapping effectively reduces the computational

cost since it packs 6n degrees of freedom into 6N few CG variables and does mimic

the dynamics of bonded systems with fixed dK
i . On the other hand, a static assign-

ment may be less accurate in the study of nonbonded particles. One can imagine

that atomistic particles that belong to one CG variable may move toward different

directions without the constraint of the chemical bond. As a result, the COM posi-

tion merely becomes a statistical average and is unable to tell the rough location of

the atomistic particles. This problem in dealing with unbonded particles motivated

a new CG mapping scheme where the membership function is a function of the

particle’s atomistic position.

Lynn and Thachuk45 used the following choice of A(z),

WK =
n

∑
i=1

dK
i mi(ri−RK

lab) ,

PK =
n

∑
i=1

dK
i pi , 2.12

MKL =
n

∑
i=1

dK
i dL

i mi ,
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where dK
i is a distance-dependent function, WK is a mass-weighted difference be-

tween the COM of CG particle K and its reference point, RK
lab, and PK is the mo-

mentum of CG particle K. The last relation defines a symmetric mass matrix M
since MKL = MLK . The mass of a CG particle K can be calculated by summing

over the columns or rows of matrix M; that is ∑
N
L=1 MKL = MK and by using the

fact arising from the conservation of mass and momentum that

N

∑
K=1

dK
i = 1. 2.13

This general CG mapping is motivated for several reasons. The coefficient dK
i

specifies the weighting of atomistic momenta, position or mass of particle i. The

reference point RK
lab can be set as a fixed point in space. When one coarse grains

unbonded particles, a CG particle K becomes a lattice-like CG variable. If one

wishes to coarse grain a protein in the system, then setting RK
lab to be zero will do

the job. Later we can see that the definition of a symmetric mass matrix M shows

up naturally from the derivation of CG probability density.

The general mapping scheme not only can be used to model both bonded

and unbonded systems, but also allows one to study a complex system. Several

distance-dependent mapping functions are discussed below with a focus on a hy-

brid mapping scheme. More specific examples of the mapping schemes are dis-

cussed in Chapter 3 and Chapter 4.

The simplest scheme is called a constant mapping in which all dK
i in Equa-

tion 2.12 remain constant in time. The constant mapping scheme can be thought of

as a generalization to the COM mapping mentioned in Equation 2.10. If one sets

dK
i to be a mass-based coefficient and lets the reference point be the origin, then

constant mapping is similar to the COM mapping. This choice of dK
i may be use-

ful in coarse graining molecules since the contribution from each atomistic particle

is fixed in time. In Figure 2.1, a complex molecule is represented by a chain of

triangles. These triangles may represent atoms or functional groups. With a con-

stant mapping scheme, segments of the molecule are bonded in a CG sense. Such

a mapping greatly simplifies the EOM since dK
i does not depend on the position of

particle i.
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Lattice mapping removes the restriction of constant mapping by allowing dK
i

to change in time. In this case, the value of dK
i is always one when the particle is

assigned to CG variable K and remains zero otherwise. One can expect this CG

strategy to be used in representing chunks of nonbonded particles. As shown in

Figure 2.1, a system is coarse-grained into four slabs, each of which also represents

the territory of a CG variable. A particle i represented by a blue circle in the

bottom- right slab will be in the top-right slab after moving across the border shared

between these two slabs. Numerically, this means right after the crossing, the value

of dK
i will be set to one if K is the top-right slab, and the value of dL

i will be set

to zero if L is the bottom-right slab. The fuzzy mapping scheme considers the

Figure 2.1: Illustration of a hybrid scheme. The left panel shows a system
coarse grained by a hybrid scheme. Circles represent nonbonded par-
ticles being assigned to a lattice mapping scheme. A constant map-
ping scheme is employed to bonded particles represented by triangles.
The assignment of atomistic particles to each CG particle is shown by
a unique color. The right panel shows the same system some time later.
When time goes by, nonbonded particles may belong to different lattice
CG site while bonded particles are fixed to one CG site forever.

position dependence in a more careful way, allowing dK
i to decrease when particle

i moves away from reference point RK
lab. The form of the fuzzy mapping function

can be one of the sigmoid functions. In this case, one CG variable does include all

atomistic particles. Compared with the lattice case, fuzzy dK
i should give a better

description about the mass flux between CG particles since the discrete jumping in

CG variables is replaced by continuous change.

Now, recall that Equation 2.7 is obtained with dK
i being a function of distance,

which enables us to study a rather complicated system by applying multiple map-
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ping schemes. For example, in Figure 2.1, if one wants to study protein folding by

CG MD, the solvent water molecules may be adequately coarse-grained by a lat-

tice mapping scheme to mimic bulk water. Protein structures and its solvation shell

should be modeled with a constant mapping scheme which is capable of coarse-

graining molecules. Then, one can obtain the CG EOM under a hybrid mapping

scheme. However, many questions concerning the basic properties, such as usage

and effectiveness of those primary mapping schemes need to be clarified before the

future application of the hybrid scheme.
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2.3 Derivation of equations of motion
We followed the work of Español et al.46 who used a projection operator Pφφφ based upon the equilibrium conditional expec-

tation. The action of Pφφφ on a set of dynamical variables B(z) is given by

Pφφφ B(z) = 〈F〉= 1
Ω(φφφ)

∫
B(z)ρeq(z)δ [A(z)−φφφ ]dz , 2.14

Here,〈...〉 stands for the average in the atomistic space, ρeq(z) is an equilibrium density and δ [x] is the Dirac delta function.

The probability density of a set of CG variables, φφφ , is Ω(φφφ) with

Ω(φφφ) =
∫

ρ
eq(z)δ [A(z)−φφφ ]dz , 2.15

in which Ω(φφφ) selects the number of microstates that satisfy the relation A(z) = φφφ . Operator Pφφφ projects a dynamical

variable B(z) onto the CG space spanned by φφφ through averaging B(z) with microstates z such that A(z) = φφφ . For example,

in Equation 2.12, φφφ represents possible values of CG variables on the left-hand side while A(z) are the expressions of CG

variables in terms of z on the right-hand side.

Lynn and Thachuk45 used Equation 2.12 and took ρeq(z) to be the canonical probability density function, ρeq(z) =
Z−1 exp(−βH(z)) with β = 1/kT , k the Boltzmann constant, T the temperature of the system, and Z an appropriate normal-

ization factor, and derived their general CG EOM. They showed the expression for CG probability is

Ω(W,P,M) = (2πkT )−3N/2|M|−3/2 exp

[
−β

2

N

∑
I,J=1

(
PI,xM−1

IJ PJ,x +PI,yM−1
IJ PJ,y +PI,zM−1

IJ PJ,z
)
−βV (W,M)

]
, 2.16
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where W = (W1,W2, ...,WN), P = (P1,P2, ...,PN), M−1
IJ denotes the IJ-th element of the inverse of the mass matrix and

the effective CG potential V (W,M) is given by

e−βV (W,M) =
1
Zr

∫
dr e−βU(r)

{
N

∏
I=1

δ

[(
n

∑
i=1

dI
i mi(ri−RI

lab)

)
−WI

]}

×

{
N

∏
I,J=1

δ

[(
n

∑
i=1

dI
i dJ

i mi

)
−MIJ

]}
, 2.17

in which Zr is the normalization factor of the conditional configuration integral. This probability indicates that after inte-

grating the momentum part to the CG space, CG momentum shows up together with the mass matrix elements MIJ . The

natural appearance of mass matrix elements motivates the choice of mass matrix elements as CG variables. Ω(W,P,M) is

the probability density function for CG variables. That is, for a given set of W, P, M, Ω(W,P,M) gives the probability

of having that state in CG space. CG averages can be calculated by integrating the CG space with this probability density

function. One then can define the entropy of the CG system (in the thermodynamic limit sense) as

S(W,P,M) = k lnΩ(W,P,M)

= S0−
3
2

k ln |M|− 1
2T

N

∑
I,J=1

[PIxM−1
IJ PJx +PIyM−1

IJ PJy +PI zM
−1
IJ PJz]−

1
T

V (W,M) 2.18

with S0 being a constant and x,y,z being component of CG variables . Finally, the CG EOM for WK , PK , MKL can be derived
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using a similar way shown in Section 2.1 resulting in

dWK

dt
= PK +

N

∑
I,J=1
〈G1

KI〉 ·M−1
IJ PJ

+
1
k

∫ t

0
ds

[
N

∑
I=1
〈δWQ

K(s)δWQ
I (0)〉 ·

∂S
∂WI

+
N

∑
I=1
〈δWQ

K(s)δPQ
I (0)〉 ·

∂S
∂PI

+
N

∑
I,J=1
〈δWQ

K(s)δMQ
IJ(0)〉 ·

∂S
∂MIJ

]

+
∫ t

0
ds

[
N

∑
I=1

∂

∂WI
〈δWQ

K(s)δWQ
I (0)〉+

N

∑
I=1

∂

∂PI
〈δWQ

K(s)δPQ
I (0)〉+

N

∑
I,J=1

∂

∂MIJ
〈δWQ

K(s)δMQ
IJ(0)〉

]
+ δWQ

K(t) ,
dPK

dt
= −

N

∑
I=1

MKI
∂V

∂WI
−

N

∑
I=1

∂V
∂WI

· 〈G1
IK〉−

N

∑
I,J=1

∂V
∂MIJ

〈G2
KJI +G2

KIJ〉

+ kT
N

∑
I,J=1

∂

∂MIJ
〈G2

KJI +G2
KIJ〉+ kT

N

∑
I=1

∂

∂WI
· 〈G1

IK〉− kT
N

∑
I,J=1
〈G2

IJKM−1
IJ 〉

+
N

∑
I,I′=1

N

∑
J,J′=1

[〈G2
IJK〉 ·M−1

II′ PI′ ]M−1
JJ′PJ′

+
1
k

∫ t

0
ds

[
N

∑
I=1
〈δPQ

K(s)δWQ
I (0)〉 ·

∂S
∂WI

+
N

∑
I=1
〈δPQ

K(s)δPQ
I (0)〉 ·

∂S
∂PI

+
N

∑
I,J=1
〈δPQ

K(s)δMQ
IJ(0)〉 ·

∂S
∂MIJ

]

+
∫ t

0
ds

[
N

∑
I=1

∂

∂WI
〈δPQ

K(s)δWQ
I (0)〉+

N

∑
I=1

∂

∂PI
〈δPQ

K(s)δPQ
I (0)〉+

N

∑
I,J=1

∂

∂MIJ
〈δPQ

K(s)δMQ
IJ(0)〉

]
+ δPQ

K(t) , 2.19

dMKL

dt
=

N

∑
I,J=1
〈G2

ILK +G2
IKL〉 ·M−1

IJ PJ
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+
1
k

∫ t

0
ds

[
N

∑
I=1
〈δMQ

KL(s)δWQ
I (0)〉 ·

∂S
∂WI

+
N

∑
I=1
〈δMQ

KL(s)δPQ
I (0)〉 ·

∂S
∂PI

+
N

∑
I,J=1
〈δMQ

KL(s)δMQ
IJ(0)〉 ·

∂S
∂MIJ

]

+
∫ t

0
ds

[
N

∑
I=1

∂

∂WI
〈δMQ

KL(s)δWQ
I (0)〉+

N

∑
I=1

∂

∂PI
〈δMQ

KL(s)δPQ
I (0)〉+

N

∑
I,J=1

∂

∂MIJ
〈δMQ

KL(s)δMQ
IJ(0)〉

]
+ δMQ

KL(t)

in which

δXQ
K(t) = exp(tQL)δXQ

K(0) = exp(tQL)QLXK , 2.20

G1
KI =

n

∑
i=1

mi(ri−RK
lab)d

I
i
∂dK

i

∂ri
, 2.21

G2
IJK =

n

∑
i=1

midI
i dJ

i
∂dK

i

∂ri
, 2.22

where X can be either of W, P or M, and Q = 1−P.

As we can expect, the introduction of distance-dependent CG variables results in this complicated EOM. In the conser-

vative terms, G1
KI , G2

IJK account for the change of atomistic particles’ contributions to CG particle K caused by their motion.

The memory part of the equation contains kernels like 〈δWQ
K(s)δWQ

I (0)〉 and their derivatives arising from the action of

projected Liouville operator on the noise. The evaluation of those time integrals thus requires a certain understanding of the

noise term.
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Equation 2.19 is currently not useful in practice for three reasons. First, mem-

ory terms in their EOM are non-Markovian and contain information about the evo-

lution of the dynamical variables in the subspace orthogonal to the projected space.

But the dynamics of that part is complicated due to the unclear definition of the op-

erator Q associated with this process. Second, provided the momentum part of the

EOM can be evaluated analytically, the positional part of the projection is difficult

to deal with, which makes the CG potential nontrivial to model. Third, weight-

ing functions and their positional derivatives appear in the EOM. Thus, different

choices of weighting function will give contrasting CG EOM with various charac-

teristics.

2.4 Simulation details
Our strategy is to study Ω(W,M,P) from CG distributions generated from MD

simulations, using Gromacs47, for a model atomic system. LJ reduced units rela-

tive to particle 1 were used throughout with σ1, ε1 and
√

m1σ2
1 /ε1 the units for dis-

tance, energy and time. All MD simulations used cubic cells with periodic bound-

ary conditions in the NVT ensemble with a reduced time step of 0.001 and the

velocity-rescale coupling method to maintain the temperature. The total number

of particles was varied from 125 to 6250 so that finite-size effects on CG variables

could be studied. In all cases, the energy of the systems was first minimized us-

ing the steepest descent method. Systems were then equilibrated for 100,000 time

steps before being used for production runs with up to 2,000,000,000 time steps.

To reduce atomistic correlation effects, for analysis of the liquid states, atomistic

trajectories were stored at time intervals longer than twice the time it took for the

atomistic velocity autocorrelation function to decay to zero. These times were typ-

ically 2 reduced time units. In principle, studying the effective CG potential only

requires microstate data from the configurational space. The cheapest way is to

perform an equilibrium Monte Carlo sampling. We chose to perform MD simu-

lations because we also want to check the theoretical expressions involving CG

momentum, the correlations concerning CG momentum, plus the time evolution of

the CG variables.

With in-house coded scripts, atomistic trajectories were converted to CG ones
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using Equations (2.12). Lennard-Jones (LJ) fluid systems were used for all sim-

ulations (with a cutoff radius of r = 2.5σ ) for several different systems and state

points as shown in Table 2.1, where the form of the LJ potential is given by

VLJ(r) = 4ε[(
σ

r
)

12
− (

σ

r
)

6
], 2.23

in which ε is the depth of the potential from zero energy, σ is the distance at which

the intermolecular potential between the two particles is zero.

Table 2.1: Lennard-Jones state points at which atomistic molecular dynamics
calculations were performed, reported in reduced units relative to particle
1. The first two cases are single-component systems while the last two
are mixtures at the stated mole fractions of particle 1, x1.

Case Phase σ2/σ1 ε2/ε1 m2/m1 ρ∗1 = σ3
1 ρ1 x1 T ∗ = kT/ε1

1 gas 1 1 1 0.029 1.0 2.500
2 liquid 1 1 1 0.8178 1.0 0.7867
3 liquid 1.176 0.625 1 0.5819 0.5 0.7000
4 liquid 1.176 0.625 2 0.5819 0.5 0.7000

The first two cases are single-component systems in the gaseous and liquid

states. The final two cases involve 50:50 liquid mixtures with differing ratios of σ

and ε . These are the same except the mass of particle 2 is doubled in one simu-

lation (to reveal mass effects). Consulting the phase diagrams for LJ mixtures48,

we chose state points giving a range of different physical behaviour to test the

robustness of the CG results.

Figure 2.2 shows the radial distribution functions, often denoted as g(r), for

Cases 1 and 2. For the binary mixtures of Cases 3 and 4, the like and unlike radial

distribution functions are plotted in Figure 2.3.

When converting atomistic trajectories to CG ones, the number of CG vari-

ables, N, is equal to the number of subcells created by slicing each edge of the

cubic simulation cell into `s slices. For example, with `s = 2, a cubic simulation

cell with edge length L is divided into eight identical subcells each with an edge

length of L∗ = L/2. From the mapping side, this means the atomistic positions and

momentum are mapped to 8 CG vectors W and 8 CG vectors P (each having x, y,

z components), along with an 8×8 diagonal mass matrix, M. The same atomistic
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Figure 2.2: Radial distribution functions for the single component systems,
Case 1 (left) and Case 2 (right).

trajectory can be used to generate many different CG ones by changing the value

of `s. In general, any particular choice will give N = `3
s by producing subcells with

edge lengths L/`s. Later, we will often use half the edge length, that is `= L/(2`s).

In-house codes were then used to analyze CG trajectories, including averaging,

constructing distributions, and calculating statistical correlation coefficients, rAB,

given by (here A and B represent any component of a CG variable)

rAB =
〈AB〉−〈A〉〈B〉

σAσB
, 2.24

in which the average and variance of a set of τ data points ai is given by 〈a〉 =
τ−1

∑
τ
i=1 ai and σ2

a = 〈a2〉− 〈a〉2, respectively. This correlation coefficient ranges

from −1 to 1 and is often used to estimate the linear correlation between two data

sets. The bigger the absolute value of the coefficient, the stronger the correlation.

If the coefficient is zero, then there is no linear correlation. However, higher order

correlation may still exist which requires other methods to uncover.
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Figure 2.3: Like and unlike radial distribution functions for LJ mixtures,
Cases 3 and 4, where g(rab) means the radial distribution function of
particle b using particle a as the reference.
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Chapter 3

Lattice mapping scheme

3.1 Introduction
1 The standard CG approach is suitable for bonded atoms because the particle posi-

tions remain localized, even when vibrating, ensuring a CG bead is always located

in a spatial region corresponding to its constituent atoms. This is not the case for

non-bonded systems in which particles are free to move relative to one another,

as illustrated in Figure 3.1 in which the circles and triangles represent two dif-

ferent kinds of particles, and the colour coding indicates particles assigned to the

same CG variable. Over time, the particles in a standard CG bead move far away

from one another and have no collective relationship, producing unphysical results.

Coarse-graining systems of independent particles requires a different approach.

In the present work, this is done by dynamically changing the CG assignments.

For example, imagine we assign the particles in Figure 3.1 to four CG “beads” rep-

resented by the four colours in the left hand panel. In time, all these colours would

become evenly mixed as particles move. To prevent this, the CG assignments are

continuously reset like, for example, assigning particles in the top left hand region

of Figure 3.1 always to green, regardless of their origin. This means as particles en-

ter and exit certain spatial regions, their CG association (that is, “colour”) changes

dynamically, ensuring CG “beads” stay localized in space, even though the under-

1Most of this chapter is reprinted with permission from [J. Phys. Chem. A 2021, 125, 6486-6497].
Copyright [2021] American Chemical Society.
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Figure 3.1: Illustration of a lattice mapping scheme. The left panel shows
a two-component system coarse grained by a lattice mapping scheme.
Circles and triangles represent atomistic particles of two kinds. The as-
signment of particles to each CG particle is shown by a unique colour.
The right panel shows the same system some time later when the parti-
cles have moved to different sites and their assignments (that is, colours)
have dynamically changed as a result.

lying particles are moving. Mathematically, this is accomplished with a function dI
i

that specifies to which CG variable I particle i is assigned. This function depends

upon position, and in principle can give fractional values (meaning a particle can

be assigned to more than one CG bead simultaneously). In the standard CG bead

approach, dI
i can only take on the value 0 or 1, and these values remain fixed in

time. Standard CG beads have static definitions with particles belonging only to

one bead, while the current approach is a generalization providing dynamic defini-

tions, including the ability to tailor the size and shape of the CG “beads”.

There have been some reports in the literature using similar schemes. Español

et al.49 and Flekkøy et al.50,51 used a distance-based CG mapping that defined CG

variables as cells in a Voronoi lattice. Han et al.52 group particles in a local region

into CG beads. These approaches take a Lagrangian perspective, seeking to define

“fluid particles” moving as a group. This has a particle-like flavour. In the current

approach, the alternative Eulerian perspective is taken, using fixed regions in space,
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through which particles flow. This is the usual perspective used in computational

fluid dynamics, for example. Furthermore, all these approaches are bottom-up,

constructing the CG interactions from the underlying atomistic ones. Top-down

approaches have also been used, defining CG solvent beads in the Lagrangian per-

spective.44 For example, MARTINI9 models four water molecules by a fixed CG

bead.

As detailed in Chapter 2, recently we used Mori-Zwanzig theory to derive equa-

tions of motion for CG variables with distance-dependent assignments for treating

non-bonded systems. This bottom-up theory is mathematically rigorous but the

resulting formal equations can be difficult to implement. The theory is also quite

general, allowing regions in space to be defined arbitrarily and the boundaries be-

tween those regions to be fuzzy (that is, particles can be part of more than one

region simultaneously). We hope though that basic physical understanding of this

CG scheme can be obtained by studying simpler systems, so for the present work

we consider only the CG potential for the mapping scheme in Figure 3.1, that is

where the system is divided into cubic regions arranged in a lattice. The effects of

fuzzy boundaries, dissipation, and other terms in the equations of motion will be

the subject of later chapters and future work.

Using lattices to represent physical systems has a long history, for example the

Ising model53 for interacting spins, the Hubbard model54 for particles interacting

on a lattice, lattice Boltzmann methods21 for fluid motion, Ewald summation55

for calculating electrostatic energies, and block spin analysis in renormalization

group theory,56 to name a few. Many of these treatments use simple models with

parameterized nearest neighbour interactions while the current work makes no a

priori assumptions about the form or extent of the interactions. The current work

is also closely tied with the definition of the chosen CG variables, and general lat-

tice models cannot be used to get this specific information. In other words, we are

interested in understanding how the particular choice of CG variables made here

relates to the interactions among the subcells in the system, and whether general

behaviour can be physically rationalized. In this sense, the current work is new

and should provide insights for producing CG models of fluids from first princi-

ples, using a bottom-up approach. Since the CG variables in this case resemble

fluid elements typically used in computational fluid dynamics, the results may also
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connect with fluctuating hydrodynamics theory.30

More specifically, we will employ Lennard-Jones fluids, both single-component

and binary mixtures, at several different state points, and examine the form of the

resulting CG potentials for the CG variables described in the Methods section. Ul-

timately, the changing of the CG labels as particles move among subcells is the

source of new physics, and because this is a generic effect (only weakly dependent

on the atomistic interaction potential) the resulting CG interactions may also be

more generic in nature. If so, the form of the CG potentials should be relatively

unaffected by different atomistic interactions and compositions. This would repre-

sent a significant simplification, especially for modelling complex fluids, and is a

particular focus of the present work.

3.2 Properties of lattice mapping scheme
The lattice mapping scheme uses a Heaviside function in the membership function

in Equation 2.12. To define dI
i , consider a switching function, h(r), with properties

h(r) =


0, r ≤−`

1/2, r = 0

1, r ≥ `

, and h(r)+h(−r) = 1 3.1

and construct a series of cubic boxes with centers located at RI
lab and edge lengths

2`. To simplify notation, let hI
+γ = h(ri,γ − (RI

lab,γ − `)) and hI
−γ = h((RI

lab,γ +

`)− ri,γ), for γ = {x,y,z}. For a particle travelling in the positive γ direction, hI
+γ

changes from 0 to 1 as it moves from outside to inside subcell I, passing through

the boundary at RI
lab,γ − `, and hI

−γ changes from 1 to 0 as it moves from inside to

outside subcell I, passing through the boundary at RI
lab,γ +`. Also hI

+γ = 1/2 when

ri,γ = RI
lab,γ − ` and hI

−γ = 1/2 when ri,γ = RI
lab,γ + `. These functions switch CG

assignments as particles enter or exit the region centered at RI
lab. The sharpness of

the boundaries of this region depends upon the steepness of the change from 0 to 1

in the function h(r) in the range −` < r < `.

Using the symmetry of h(r) and noting the distance between the centers of any
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two adjacent subcells is 2`, one can show that

hI+γ

+γ = 1−hI
−γ ,

hI−γ

−γ = 1−hI
+γ , 3.2

in which I±γ labels the subcells to the right and left of subcell I in the γ direction.

These functions permit dI
i to be written in a general way as

dI
i (ri) = hI

+xhI
−xhI

+yhI
−yhI

+zh
I
−z ,

= ∏
γ

h(ri,γ −RI
lab,γ + `)h(RI

lab,γ + `− ri,γ). 3.3

The properties of h(r) in Equation 3.1 guarantee this expression for dI
i is properly

normalized. We now show this condition shown in Equation 2.13 is automatically

satisfied by Equation 3.3 provided the properties of Equation 3.1 are obeyed by the

switching function h(r), that is

Norm =
N

∑
I=1

hI
+xhI
−xhI

+yhI
−yhI

+zh
I
−z =

N

∑
I=1

dI
i = 1 3.4

for every position ri.

Consider a particle located in one of the octants of subcell I. Because h(r)

changes sign over a domain of length 2`, the particle can be included, at most, in

8 CG variables corresponding to the subcells nearest the octant. Without loss of

generality, consider the octant where the neighbouring subcells are in the positive

x, y, and z directions, so that explicit counting gives
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Norm = hI
+xhI
−xhI

+yhI
−yhI

+zh
I
−z +hI+x

+x hI+x
−x hI

+yhI
−yhI

+zh
I
−z +hI

+xhI
−xhI+y

+y hI+y
−y hI

+zh
I
−z

+hI+x
+x hI+x

−x hI+y
+y hI+y

−y hI
+zh

I
−z +hI

+xhI
−xhI

+yhI
−yhI+z

+z hI+z
−z +hI+x

+x hI+x
−x hI

+yhI
−yhI+z

+z hI+z
−z

+hI
+xhI
−xhI+y

+y hI+y
−y hI+z

+z hI+z
−z +hI+x

+x hI+x
−x hI+y

+y hI+y
−y hI+z

+z hI+z
−z

= hI
−xhI
−yhI
−z +(1−hI

−x)h
I
−yhI
−z +hI

−xhI+y
+y hI

−z +(1−hI
−x)h

I+y
+y hI

−z

+hI
−xhI
−yhI+z

+z +(1−hI
−x)h

I
−yhI+z

+z +hI
−xhI+y

+y hI+z
+z +(1−hI

−x)h
I+y
+y hI+z

+z

= hI
−yhI
−z +(1−hI

−y)h
I
−z +hI

−y(1−hI
−z)+(1−hI

−y)(1−hI
−z)

= 1 , 3.5

in which the second line was obtained by setting the appropriate elements to unity (since the particle is far from the opposing

subcell boundaries) and using Equation 3.2 in the x-direction. Subsequent lines use Equation 3.2 in the other Cartesian

directions. Therefore, the properties of Equation 3.1 provide a range of switching functions for which the normalization is

easily dealt with. Choosing functions outside this range could result in a position-dependent normalization factor, which

significantly complicates the practical application of the CG mapping scheme.

The definition of h(r) and Equation 3.3 together provide a general framework for defining CG variables based upon

a grid of reference points RI
lab. The variables resemble cubes with fuzzy edges (in general) thus allowing particles to be

included in more than a single CG variable at one time, depending upon their positions in space. For the current work, we

will choose the conceptually simple case with h(r) as the Heaviside function (h(r) = 1 for r > 0 and zero otherwise), so that

in words we have

dI
i =

1, if i ∈ I;

0,otherwise.
3.6
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This scheme produces sharp subcell boundaries thus simplifying the calcula-

tion of CG variables, and making the mass matrix M diagonal, that is MIJ =MIIδIJ ,

where δIJ is the Kronecker delta. In Chapter 4, we will consider switching func-

tions producing fuzzy subcell boundaries.

3.3 Statistical behaviours of fluids
Computational methods mentioned in Section 2.4 are used to study the statistical

behaviours of fluids.

3.3.1 One-dimensional distributions of W, P, and M

First, we examine one-dimensional distributions obtained by integrating Ω over all

CG variables save one. From the form of Equations 2.12 and 3.6, W and P should

distribute evenly on both sides of zero since atomistic positions and momenta dis-

tribute uniformly along any direction, on average. The average mass in subcell I

is 〈MII〉 = m1〈nI
1〉+m2〈nI

2〉 with nI
1 and nI

2 being the number of particles of type

1 and 2 in cell I, respectively. Because the systems have uniform, average densi-

ties we expect 〈nI
i 〉= nxi/N for i = 1,2, and the distribution of MII to be symmetric

about the average. However, if the average number of particles in a subcell is small,

these distributions may skew towards larger values because by definition, the mass

must always be positive. For easier comparisons, we will sometimes use the scaled

mass M∗II = MII/〈MII〉. Finally, Equation 2.16 predicts the distribution of PI to be

normal with a variance depending upon mass and temperature.

Since the equilibrium system is isotropic, the one-dimensional distributions

should be independent of direction. For example, the x-component of W1 should

have the same one-dimensional probability distribution as the z-component of W2.

In our analysis, we calculated the distributions separately for each variable compo-

nent and compared them. As expected, they all gave the same results. Therefore,

all one-dimensional distributions presented below are obtained by combining all

these components together for better statistical sampling.

A sample of the one-dimensional probability distribution functions is shown

in Figure 3.2, together with their Gaussian fits. In this case, a MD simulation of

Case 2 with 1000 particles was converted into a CG trajectory with N = 8 (`s = 2).

28



30 20 10 0 10 20 30
WIx 

0.00

0.01

0.02

0.03

0.04

0.05
PD

F
(a)

15 10 5 0 5 10 15
PIx 

0.00

0.05

0.10

0.15

0.20

PD
F

(b)

0.8 0.9 1.0 1.1 1.2
MII 

0

2

4

6

8

10

12

PD
F

(c)

Figure 3.2: One dimensional probability distribution functions for compo-
nents of the CG variables (a) W, (b) P, and (c) M∗ for Case 2 (single-
component Lennard-Jones liquid) using `s = 2. The dashed lines show
the best Gaussian fits to the solid blue distribution data determined from
CG trajectories.

As seen in Figure 3.2, the distributions look very close to normal with zero mean

for the components of W, P, and mean one for M∗II . To test this, the fourth mo-

ments calculated from the simulation data were compared with the theoretical ones

expected from the fitted parameters. The ratios of these two fourth moments for W,

P and M were 0.99683, 0.99704 and 1.0000 respectively, showing the distributions

can be well-approximated as normal.

Note the distribution of M∗II is strictly discrete because at any one time, an

integral number of particles reside in a subcell. This discreteness is so fine as to

be invisible on the scale of the plot in Figure 3.2. The dashed line in this case

represents a fit to the values only at these discrete mass points and should not

be interpreted as a continuous distribution. Finally, such distributions calculated

for the other Cases were consistent with Figure 3.2, being well-approximated as
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normal, except for the mass distributions. In Figure 3.3 and Figure 3.4 are one-

dimensional probability distribution functions analogous to Figure 3.2 except for

the binary liquids of Cases 3 and 4, respectively. In all cases, the distributions of

W and P remain normal. The distributions of mass show more structure because

of the discreteness of the mass of the particles and the sharpness of the subcell

boundaries. The mass within a subcell can only change by integral amounts of the

particle masses. In this case, there are only 24 particles on average in a subcell, with

12 of each particle type. As seen in Table 2.1, for Case 3, the particles have similar

sizes and masses so the mass distribution looks normal because the discreteness of

the mass changes is too small to be seen on the scale of the graphs. For Case 4,

the two types of particles have the same size but particle 2 has twice the mass of

particle 1. So, the discrete aspect of the mass change is magnified and is now visible

in the distributions. Note the distributions are still symmetric with envelopes well-

approximated as normal.
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Figure 3.3: One dimensional probability distribution functions for compo-
nents of the CG variables (a) W, (b) P, and (c) M∗ for Case 3 using
`s = 5. The dashed lines show the best Gaussian fits to the solid blue
distribution data determined from CG trajectories.
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Figure 3.4: One dimensional probability distribution functions for compo-
nents of the CG variables (a) W, (b) P, and (c) M∗ for Case 4 using
`s = 5. The dashed lines show the best Gaussian fits to the solid blue
distribution data determined from CG trajectories.

In general, the discreteness of the mass distributions can be more pronounced,

especially in mixtures with particles of different sizes and masses having small

numbers of particles per subcell.

Fluctuations of CG momentum and position

To make quantitative comparisons of the variances determined from the normal fits

to the CG momentum distributions, it requires comparison with the theoretically

predicted values45, which for the switching function used here reduce to

〈PI ·PJ〉CG = 3kT 〈MII〉CGδIJ , and 〈
N

∑
I=1

P2
I

MII
〉CG = 3NkT , 3.7

where 〈...〉CG denotes an average in CG space, k is Boltzmann constant and T

the temperature. Note these theoretical expressions hold for a system free from
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constraints. However, in the MD simulations, the total momentum of the system is

held fixed, and since Equation 2.12 conserves momentum, the total CG momentum

is also conserved. This means the temperature calculated from Equation 3.7 must

be multiplied by the factor of N/(N− 1) to account for the loss of the degrees of

freedom due to this conservation.

Figure 3.5: Temperatures calculated from one-dimensional distributions of
CG momentum determined for Case 2 using different values of `s.
Open diamonds are temperatures calculated using Equation 3.7 directly.
Black squares are these values multiplied by N/(N− 1) with N = `3

s .
The dotted line shows the temperature used in the MD simulation.

In Figure 3.5 we compare the simulation temperature against that calculated

using Equation 3.7 and our one-dimensional CG momentum distributions to evalu-

ate 〈...〉CG with and without the correction factor. All the results in Figure 3.5 come

from the same atomistic MD trajectory run at the liquid state point (0.8178,0.7867)

with 1000 particles. We simply coarse-grain this trajectory at different levels by

varying the value of `s from 2 to 5. As seen, the CG trajectory yields the cor-

rect system temperature to within about 2% after applying the N/(N− 1) factor,
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indicating the CG procedure is predicting the expected results.

Figure 3.5 also shows a significant finite-size effect in the CG system that does

not exist in the atomistic one. The reason is that the MD simulation involves hun-

dreds of particles with independent momenta, so the loss of one degree of freedom

in each component as a result of total momentum conservation has a small effect.

The CG procedure converts hundreds of atomistic particles into only a few CG

variables (8 values of P for `s = 2 and 125 values for `s = 5). This is a dramatic

reduction in the number of degrees of freedom (which of course is precisely why

coarse-graining is used) but the result is that the loss of one degree of freedom

per component in the CG system now can represent a significant constraint. It is

akin to running an atomistic simulation with only 8 particles, for example, wherein

we expect significant finite-size effects. For this reason, a value of at least `s ≥ 5

should be used when gathering CG statistical results if finite-size effects are to be

minimized.

The calculated fluctuations of CG momentum agree with theoretical results,

once one accounts for the loss of degrees of freedom due to center-of-mass removal

in the MD simulations. The fluctuations in W reflect the spatial distribution of

particles in a subcell. Consider, for example, the x-component and define δi =

ri,x−RI
lab,x so that using Equation 2.12 gives

σ
2
WI

= 〈∑
i j

dI
i dI

jmim jδiδ j〉 . 3.8

Using Equation 3.6 and considering first a low-density system (that is, uncorrelated

particle positions), gives the approximate expression
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σ
2
W ideal

I
≈∑

i∈I
m2

i 〈δ 2
i 〉= (m2

1〈nI
1〉+m2

2〈nI
2〉)

L∗2

12
=

m1〈MII〉+m2(m2−m1)〈nI
2〉

12`2
s

(
n
ρ

)2/3

, 3.9

in which the average 〈δ 2
i 〉 was estimated by integrating δ 2

i from −L∗/2 to L∗/2 using the uniform probability distribution

p = 1/L∗ , and quantities were expressed in terms of n, ρ , and `s. We expect this relation to hold for an ideal gas, hence the

superscript label on the variance. It should also be the same for each Cartesian component of WI and independent of I.

Table 3.1 shows values of σ2
WI
/σ2

W ideal
I

for each Case with the variances calculated from the numerical distributions. The

gas values are very close to the ideal limit while those for the liquids are significantly smaller, and decrease relatively as the

subcell size increases. This latter trend is expected because particle positions are correlated in a liquid, and a rough estimate

of 〈δiδ j〉 shows the contribution will be negative when i 6= j, hence reducing the value from the ideal limit.

Table 3.1: Values of σ2
WI
/σ2

W ideal
I

averaged over all Cartesian components of W for LJ state points (Cases 1 and 2
correspond to a single-component gas and liquid, Cases 3 and 4 are binary mixtures) as a function of total number
of atomistic particles, n, and average atomistic particles per subcell, 〈nI

1〉, 〈nI
2〉. All results were obtained with

`s = 5 (N = 125).

Case
n [〈nI

1〉]
125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50]

1 0.9985 1.003 1.008 1.011 1.016 1.019
2 0.7452 0.4782 0.4322 0.3291 0.2636 0.2241

Case 3 Case 4
n [〈nI

1〉,〈nI
2〉]

3000[12,12]
0.3190 0.3759
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Fluctuations of CG mass

The value of MII changes when particles enter or exit subcell I. Thus, fluctuations

in CG mass are proportional to number fluctuations. However, each subcell has

constant volume Vs = L∗3, temperature T and chemical potential because it is in

equilibrium with its neighbours. Thus, each subcell should sample a grand canoni-

cal ensemble, for which we can derive needed expressions. For a single-component

system, fluctuations in nI , σnI , are related to κ
Vs
T , the isothermal compressibility of

a finite system with volume V 57, through(
σnI

〈nI〉

)2

=
kT κ

Vs
T

V
. 3.10

Heidari et al.58 showed for an canonical ensemble with number density ρ , the

relationship between the isothermal compressibility κ
Vs
T of a subcell within a finite

volume V0 and its value in the thermodynamic limit κ∞
T , is

ρkT κ
Vs
T = ρkT κ

∞
T (1−λ

3)+
ργ

V 1/3 , 3.11

with λ ≡ (Vs/V0)
1/3 and γ being a proportionality constant. The first term on the

right hand side arises from the difference between the canonical and grand canon-

ical ensembles, while the second captures the finite-size effect of a subcell. This

result provides a way of relating an isothermal compressibility in the thermody-

namic limit to one calculated from a subcell.

We would like to test the accuracy of Equation 3.11, noting λ = 1/`s. Start-

ing with the CG mass distributions for Cases 1 and 2, we calculated σMII and σnI .

These values were then used in Equation 3.10 to get finite-volume isothermal com-

pressibilities. For each state point, subcells with different `s were chosen and then

fit using Equation 3.11 to obtain estimates for the isothermal compressibility in the

TL. We found Equation 3.11 fits the data very well. The results are compared with

reference data in Table 3.2.

The gas phase point should behave like an ideal gas with κ∞
T = 1/P (P the ther-

modynamic pressure). For the liquid state point, we extrapolated from experimen-

tal measurements of isothermal compressibilities59 for argon to obtain a reference
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Table 3.2: Values of ρkT κ∞
T and γ calculated from CG mass distributions us-

ing Equation 3.11 and compared with reference values for Cases 1 and 2.

Case Phase ρkT κ∞
T (calculated) ρkT κ∞

T (reference) γ

1 dilute gas 0.992 1 0.0000
2 liquid 0.0622 0.0623 0.4497

value. As seen in Table 3.2, the calculated and reference values for the gas agree

very well.

Overall, gathering this information together shows the variance of the diago-

nal mass elements for single-component systems can be well-approximated by the

expression

σ
2
MII

= m2
σ

2
nI = m〈MII〉

[
ρkT κ

∞
T (1−

1
`3

s
)+

`sρ
4/3γ

n1/3

]
. 3.12

This expression involves just one adjustable parameter, γ , and relates the fluctu-

ations to experimentally determined quantities. For low-density systems, the last

term can be ignored if the system is large enough but for liquid-like densities, this

approximation will be poor unless n is quite large.

The situation is more complicated for the binary systems of Cases 3 and 4

where σ2
MII

= m2
1σ2

nI
1
+m2

2σ2
nI

2
+ 2m1m2σnI

1
σnI

2
rnI

1nI
2

and interactions between com-

ponents produces non-zero correlations in the number fluctuations. We have not

tried to model these Cases but expect an expression similar to Equation 3.12 to

hold, with some additional terms to account for these correlations. This can also

be determined in the ideal gas limit. From a statistical point of view, for an canon-

ical ensemble of non-interacting particles in a single component fluid, the proba-

bility for finding a particle in a subcell is p = V/V0. Assuming all subcells have

the same volume, after randomly placing n particles, the probability for finding

nI particles in subcell I is given by the binomial distribution with 〈nI〉 = np and

σ2
nI
= np(1− p). This is the behaviour expected for a low-density LJ fluid, that

is σ2
nI
/(〈nI〉(1− `3

s )) = 1. Using the values of the variance and average from the

numerical fit to the gas phase data of Case 1, we found this ratio to be unity with an

error of less than 0.2%. Furthermore, combining these binomial expressions with
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Equation 3.10 gives

ρkT κ
V
T = n

V
V0

(
σnI

〈nI〉

)2

= 1− p = 1−λ
3 , 3.13

which matches Equation 3.11 since ρkT κ∞
T = 1 for an ideal gas. Thus, we expect

γ ≈ 0 for a low density system. As well, when n is large, a binomial distribution

is very well approximated by a normal distribution. All these things are consistent

with our numerical results in Table 3.2.

3.3.2 Two-dimensional distributions of W and M

In this section, we explore correlations among CG quantities involving W and M,

to learn about the form for V (W,M). To better present our results, we define

geometric relationships among subcells based upon the distance separating their

centers and their direction in space. “Closest” or “d = L∗” denotes two subcells

sharing a common face. “Second closest” or “d =
√

2L∗” denotes two subcells

touching only along an edge. Finally, “one subcell away” or “d = 2L∗” denotes

two subcells separated by one subcell in a Cartesian direction. Figure 3.6 illus-

trates these relationships. The terms “parallel” and “orthogonal” will indicate how

subcells are positioned relative to vector components. For example, “closest par-

allel” means correlations between WI,x and WJ,x with subcells I and J touching

faces in the x-direction. The same would apply if x were replaced everywhere by

y or z. However, “closest orthogonal” would mean correlations between WI,x and

WJ,x with subcells I and J touching faces in the y or z directions. All correlations

are calculated in a pair-wise manner, and no simplification methods, such as using

symmetry, is used in the data analysis.

Correlations between M elements

Mass correlations can arise when atomistic particles cross between neighbouring

subcells. As expected from the isotropic nature of the system, when we calculated

the correlation coefficients of MII among all possible neighbours, we found the

same values for all pairs with the same geometric relationships, regardless of the

direction of the neighbour in space. All calculations were done with `s = 5 to min-
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Figure 3.6: Illustration of several subcell pairs. Red arrows show the posi-
tional relationships between subcells. In scenario 1, subcells are closest
neighbours touching faces with centers separated by d = L∗. In sce-
nario 2, subcells are second closest neighbours touching along edges
with centers separated by d =

√
2L∗. In scenario 3, subcells are sepa-

rated by one subcell with centers separated by d = 2L∗.

imize finite-size effects and the unphysical coupling introduced by the boundary

condition. The average number of atomistic particles per subcell was also varied

for Cases 1 and 2 to investigate the subcell-size dependence of the correlations.

Table 3.3 shows correlation coefficients for the gas state, Case 1. These values

are very small and just within our ability to capture statistically. We believe these

values are small but might be non-zero. However, quantitative comparisons are not

likely meaningful. The values for the remaining Cases, all liquids, are summarized

in Table 3.4.
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Table 3.3: Correlation coefficients between pairs of MII for Case 1 organized by geometric relationship as a function of
total number of atomistic particles, n and average number of particles per subcell, 〈nI

1〉. All results were obtained
with `s = 5 (N = 125), and the numbers within round brackets estimate the deviation in the last reported digit.

neighbouring
distance(d)

n [〈nI
1〉]

125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50]
closest

(d = L∗)
-0.005(2) -0.006(2) -0.007(2) -0.007(1) -0.006(1) -0.009(2)

second closest
(d =
√

2L∗)
-0.008(1) -0.008(1) 0.008(1) -0.008(1) -0.008(2) -0.008(2)

one subcell away
(d = 2L∗)

-0.008(1) 0.008(1) 0.009(2) -0.006(1) -0.008(2) -0.008(1)
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Table 3.4: Correlation coefficients between pairs of MII for Cases 2-4 organized by geometric relationship as a function
of total number of atomistic particles, n and average number of particles per subcell, 〈nI

1〉, 〈nI
2〉. All results were

obtained with `s = 5 (N = 125), and the numbers within round brackets estimate the deviation in the last reported
digit.

neighbouring
distance(d)

Case 2 Case 3 Case 4
n [〈nI

1〉] n [〈nI
1〉, 〈nI

2〉]
125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50] 3000[12,12]

closest
(d = L∗)

-0.112(4) -0.160(1) -0.135(1) -0.136(1) -0.118(2) -0.108(1) -0.0406(2) -0.113(2)

second closest
(d =
√

2L∗)
0.005(3) 0.001(1) 0.004(1) -0.006(5) -0.004(1) -0.002(2) 0.000(2) -0.003(1)

one subcell away
(d = 2L∗)

-0.025(2) 0.015(1) 0.015(1) -0.008(1) -0.002(2) -0.004(1) -0.008(2) -0.004(2)
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For the single-component system, Case 2, a mass element shows a negative

correlation with all its closest neighbours, regardless the subcell size. There is a

statistically significant non-monotonic trend with subcell size, as seen by examin-

ing the values left to right in the first row of Table 3.4. The magnitude of these

correlations are due to the attractive part of the atomistic potential. To show this,

we performed atomistic MD simulations at the same density and temperature but

with the LJ potential replaced with a steep, purely repulsive potential located at a

short distance. The corresponding values in Table 3.4 all decreased to the same

order of magnitude seen in Table 3.3 for a gas. These same trends hold for the

binary liquids in Cases 3 and 4. A detailed rationalization of these behaviours will

be given in a later subsection.

Once particles travel through a subcell, their motions begin to be randomized

by collisions and this reduces the correlation two subcells away. This trend is seen

in Table 3.4 where the values in the last row are significantly smaller than the values

for the closest neighbour. They are effectively zero once there are approximately 10

particles per subcell. For very small subcells, particles can traverse to neighbouring

subcells quite easily, extending correlations there. Table 3.4 shows the correlation

coefficients between the second closest neighbours are statistically zero. This is not

surprising because very few particles cross the shared edge between these subcells.

Thus, the results in Table 3.4 are consistent with expectations based upon particle

motions.

Correlations between W components

Since we expect each Cartesian component of any WI to have the same behaviour,

knowing the correlation of one component with the rest is enough to understand

all the correlations. We computed all the pair correlations for Cases 1-4, and show

some representative two-dimensional probability distributions in Figure 3.7.

First, significant correlations are seen only in pairs with the same Cartesian

component. For example, the x-component of W in one subcell is correlated

with the x-component of some neighbouring subcells but not with the y- or z-

components of W for those subcells. Similarly, the correlation of the x-components

of two neighbouring subcells is the same as the y-components (or z-components)
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Figure 3.7: Representative plots of joint probability distribution functions for
WI pairs with non-zero correlations. This shows the correlation be-
tween WI,x and the x-component of its closest neighbours in the (a)
x direction, (b) y direction and (c) z direction. The state point is
(0.8178,0.7867) with `s = 5.

of two neighbouring subcells with the same geometrical relationship.

Second, a clear directional dependence is observed, as shown in Figure 3.7.

A strong positive correlation is found between the same components for closest

neighbours lying in that same direction, that is the x-component of one subcell is

positively correlated with the x-component of a closest neighbour lying in the x-

direction. Conversely, a weak negative correlation is found between the same com-

ponents for closest neighbours in orthogonal directions, that is the x-component of

one subcell is negatively correlated with the x-component of its closest neighbours

lying in the y or z directions.
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Table 3.5: Correlation coefficients between pairs of W for Case 1 organized by geometric relationship as a function of
total number of atomistic particles, n and average number of particles per subcell, 〈nI

1〉. All results were obtained
with `s = 5 (N = 125), and the numbers within round brackets estimate the deviation in the last reported digit.

neighbouring
distance(d)

geometric
relationship

n [〈nI
1〉]

125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50]
closest

(d = L∗)
parallel 0.001(1) -0.002(3) 0.002(1) -0.002(1) 0.002(1) 0.003(1)

orthogonal -0.000(3) -0.001(3) -0.001(2) -0.001(2) -0.001(2) -0.002(1)
second closest

(d =
√

2L∗)
45 degrees -0.001(4) 0.001(4) 0.000(2) 0.000(2) 0.000(2) 0.000(1)
orthogonal -0.001(2) -0.002(1) 0.001(1) -0.000(1) 0.000(2) 0.000(2)

one subcell away
(d = 2L∗)

parallel 0.005(3) 0.003(1) 0.000(2) 0.000(2) 0.001(1) 0.001(1)
orthogonal -0.001(3) 0.001(3) -0.000(1) 0.007(2) 0.000(1) -0.001(1)

To quantify the results, we computed linear correlation coefficients for W pairs with the same components for Cases 1-4.

For the gas state (Case 1), Table 3.5 shows all the values are statistically zero, meaning no correlation is found among W
pairs in the gas phase. The results for the liquid states (Cases 2-4) are summarized in Table 3.6. The results qualitatively

mirror those seen in Figure 3.7 with positive correlations with neighbours in the parallel direction but negative correlations

with those in the orthogonal direction. There is no discernible correlation with the second closest neighbours that share a

common edge. As seen in the last row of Table 3.6, some correlations do survive one subcell away for the smallest subcell

(with 125 particles) but this decays rather quickly to zero as the subcell size increases. Finally, by examining the quantitative

variations of the correlations with subcell size (that is, increasing number of atomistic particles) one sees those with the

closest neighbours show a non-monotonic dependence for small size but appear to be reaching a plateau as the subcell size

increases.

As a first step in trying to understand the correlations in the liquid state, we duplicated the Case 2 calculations using the
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Table 3.6: Correlation coefficients between pairs of W for Cases 2-4 organized by geometric relationship as a function
of total number of atomistic particles, n and average number of particles per subcell, 〈nI

1〉, 〈nI
2〉. All results were

obtained with `s = 5 (N = 125), and the numbers within round brackets estimate the deviation in the last reported
digit.

neighbouring
distance(d)

geometric
relationship

Case 2 Case 3 Case 4
n [〈nI

1〉] n [〈nI
1〉, 〈nI

2〉]
125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50] 3000[12,12]

closest
(d = L∗)

parallel 0.348(1) 0.162(1) 0.289(1) 0.206(1) 0.230(1) 0.232(2) 0.155(1) 0.222(3)
orthogonal -0.079(2) -0.098(1) -0.076(5) -0.094(1) -0.081(1) -0.072(1) -0.048(2) -0.074(1)

second closest
(d =
√

2L∗)
45 degrees 0.000(2) 0.004(9) 0.005(2) 0.000(3) 0.000(1) 0.000(2) -0.001(4) 0.001(2)
orthogonal -0.002(2) -0.014(1) 0.008(1) -0.003(2) -0.001(1) 0.000(2) -0.005(1) 0.001(2)

one subcell away
(d = 2L∗)

parallel 0.074(2) -0.014(9) 0.009(1) -0.005(5) -0.001(1) 0.002(3) -0.001(1) 0.003(1)
orthogonal -0.003(2) 0.009(3) -0.001(1) 0.004(2) -0.000(1) -0.001(1) 0.000(1) -0.001(1)

same density and temperature but with the LJ interaction potential replaced with a steep, repulsive potential located at a short

distance. The correlations for all the cases in Table 3.6 went to zero. This suggests it is not density but attractive interactions

at the molecular level that are responsible for non-zero correlations.
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Correlations between W and M elements

When an atomistic particle exits a subcell, the mass decreases there and the mass

asymmetry of the neighbouring subcell increases. Thus, one expects correlations

between CG mass elements and W components. We computed all these pair cor-

relations for Cases 1-4, and show some representative two-dimensional probability

distributions in Figure 3.8.
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Figure 3.8: Representative plots of joint probability distribution functions for
M and W pairs. This shows the correlation between MII and (a) WI,x,
(b) WI+1,x, and WI−1,x, where I − 1 and I + 1 represent cells in the x
direction to the left and right, respectively of the cell of interest. This is
for Case 2 with `s = 5.
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Figure 3.8 shows a positive correlation with neighbouring cells in positive x directions but a negative correlation with

those in negative x directions. There is no correlation between the mass element and W components of the same subcell.

Although not shown, these correlations are mirrored in the y and z directions. Correlation coefficients for Cases 2-4 are

summarized in Table 3.7. For the gas state (Case 1), Table 3.8 shows all the values are statistically zero, analogous to the W
pair correlations.

Table 3.7: Correlation coefficients between MII and WI+1,x (neighbouring in the positive x direction) for Cases 2-4
organized by geometric relationship as a function of total number of atomistic particles, n and average number of
particles per subcell, 〈nI

1〉, 〈nI
2〉. All results were obtained with `s = 5 (N = 125), and the numbers within round

brackets estimate the deviation in the last reported digit.

neighbouring
distance(d)

Case 2 Case 3 Case 4
n [〈nI

1〉] n [〈nI
1〉, 〈nI

2〉]
125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50] 3000[12,12]

closest
(d = L∗)

0.202(3) 0.175(1) 0.206(1) 0.165(2) 0.163(0) 0.158(0) 0.081(1) 0.157(1)

second closest
(d =
√

2L∗)
-0.001(3) -0.002(5) 0.001(3) -0.001(3) 0.000(1) 0.000(1) 0.001(3) 0.000(1)

one subcell away
(d = 2L∗)

-0.004(1) 0.032(1) -0.017(1) 0.012(1) 0.000(0) -0.004(1) 0.000(1) -0.003(0)

Overall, the trends observed in Table 3.7 are similar to those seen in Table 3.6, namely the strongest correlations are

seen with nearest neighbours. These show a non-monotonic trend as a function of subcell size with values approaching an

asymptotic value for the largest ones. There are no discernible correlations with second-closest neighbours, and those with

neighbours one subcell away are also negligible, except for the smallest subcells where the average number of particles is
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Table 3.8: Correlation coefficients between MII and WI+1,x (neighbouring in the positive x direction) for Case 1 or-
ganized by geometric relationship as a function of total number of atomistic particles, n and average number of
particles per subcell, 〈nI

1〉. All results were obtained with `s = 5 (N = 125), and the numbers within round brackets
estimate the deviation in the last reported digit.

neighbouring
distance(d)

n [〈nI
1〉]

125[1] 400[3.2] 625[5] 1350[10.8] 3200[25.6] 6250[50]
closest

(d = L∗)
0.001(0) 0.003(0) 0.003(0) 0.002(0) 0.006(1) 0.002(1)

second closest
(d =
√

2L∗)
0.000(1) 0.000(2) 0.000(1) 0.000(1) -0.001(2) 0.000(2)

one subcell away
(d = 2L∗)

0.000(2) 0.001(0) 0.000(1) 0.000(3) 0.001(1) 0.001(1)

quite small. The values for the single-component and binary mixtures are comparable.
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Correlation Model

We propose a simple model to qualitatively understand the behaviour of the correla-

tions shown above. This model enumerates different consequences when atomistic

particles cross the boundary between a pair of neighbouring subcells, as illustrated

in Figure 3.9. First, consider the structure of WI in Equation 2.12. The ri−RI
lab

term means particles to the left of the subcell center have negative contributions

to WI and those to the right have positive ones. So, a particle entering a subcell

from the left decreases WI , and one exiting to the left increases it (since a nega-

tive contribution will be removed). Similarly, a particle entering or exiting on the

right increases or decreases WI , respectively. Second, for the present CG scheme

Equation 2.12 shows MII is simply the total mass of all the particles in subcell I,

and increases or decreases as particles enter or leave the subcell, independent of di-

rection. Thus, if a particle exits a subcell and enters a neighbouring one, the mass

decreases in the subcell it left but increases in the neighbour. In other words, a neg-

ative correlation is expected regardless the Cartesian direction the particle crosses.

This explains the negative values seen in Table 3.4.

Consider a particle moving across a boundary from one subcell to another in

the positive x-direction. The value of Wx is reduced in the subcell it leaves but also

reduced in the subcell it enters. In other words, the changes are positively corre-

lated. This positive correlation exists whether the particle moves in the positive or

negative x direction, and is represented by the arrow in Figure 3.9 linking yellow

circle 2 with the green circle directly above it. The “+” label indicates the positive

correlation. If the particle moves quickly enough and enters the upper quadrant of

the next subcell (the arrow from yellow circle 1 to the green circle directly above

it) Wx would decrease in the subcell left behind and increase in the subcell being

entered, thus producing a negative correlation, hence the “-” next to this arrow in

Figure 3.9. This pattern continues as more quadrants are crossed, as shown by the

arrows linking yellow circles 3 and 4 with the green circles directly above them.

These arguments suggest the signs of the correlation coefficients should be positive

for closest neighbours in the parallel direction, as seen in Table 3.6.

Now, when a particle crosses a subcell boundary in the y direction, it also

changes the values of Wx because the particle is removed from one subcell and

48



x

y

1

2

3

4

-++-

-
-

-
-

Figure 3.9: Illustration of several boundary-crossing scenarios. The yellow
circles in the bottom-left subcell represent particles or blobs that can
diffuse to neighbouring subcells in the directions indicated by the ar-
rows. Green circles represent possible motions in the positive x direc-
tion, and blue circles in the positive y direction. The plus or minus signs
next to each path show the corresponding sign of the correlation be-
tween Wx for the two subcells. The reference point of each subcell is
its center, that is, the crossing point of the two dashed lines. Each path
describes situations where crossings occur across different numbers of
subcell quadrants.

added to another. Consider the arrow connecting yellow circle 1 to the blue circle

just to the right, in Figure 3.9, which gives an example of this motion. The value

of Wx still decreases in the subcell left behind, as before, but now the value of

Wx of the subcell being entered (i.e. the one to the right) increases, producing a

negative correlation. This occurs because the particle is always on the “same side”

of the subcell center when it crosses in the y direction. This negative correlation

happens regardless the value of x when the particle crosses in the y direction. That

is, the correlation associated with all the arrows connecting yellow and blue circles
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in Figure 3.9 is negative. The same negative correlation will occur between Wx

components if particles move in the z direction, as well. These arguments suggest

the signs of the correlation coefficients should be negative for closest neighbours

in the orthogonal direction, as seen in Table 3.6.

Combining these arguments with the CG mass shows that a particle leaving

a subcell in a positive Cartesian direction decreases the mass of the subcell left

behind and also decreases the W component in the neighbour (since it enters from

the left) thus producing a positive correlation. Analogously, a negative correlation

is produced if the particle moves in a negative Cartesian direction since the mass

of the subcell left behind decreases but the value of W increases in the neighbour

(since the particle enters from the right). These arguments rationalize the signs

seen in the correlation coefficients of Table 3.7.

However, all these arguments don’t tell the whole story because they involve

the motion of a single particle. A real system has many moving particles. If a

moving particle’s “hole” is quickly filled by another particle, little change in mass

or W will occur. Similarly, if the addition of a particle to a subcell is quickly

compensated by the movement of other particles away from the area, again mass

and W are little affected. If the motions of particles are uncorrelated and density

fluctuations quickly dissipate, one expects the correlations will disappear once the

effect of these motions is averaged. This explains why no correlations are seen in

the gas phase data of Tables 3.3, 3.5 and 3.8.

Thus, non-zero correlations require correlated particle motions producing den-

sity fluctuations with long enough lifetimes to survive the averaging process. From

the radial distribution function of an LJ liquid, we know every particle is sur-

rounded by several solvation shells. So when a particle crosses a subcell boundary

it is likely a blob, consisting of the particle and its solvation shells, crosses as well.

This produces a localized decrease in density in the subcell left behind and an in-

crease in the entering subcell. Furthermore, there is a reasonable lifetime for this

density fluctuation because it takes some time for the fluid to return the density

back to the average value. This then allows the correlations induced by the blob

movement to survive upon averaging. In other words, the circles in Figure 3.9

should represent moving blobs in the liquid case, not just single particles, once the

effect of averaging is included.
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The “diffusing blob” model also rationalizes the quantitative trends in the cor-

relations seen in Table 3.6. For example, we expect the negative correlations in the

orthogonal direction for the closest neighbour to be relatively insensitive to the size

of the subcell, because as seen in Figure 3.9, this correlation is preserved regard-

less of the particular displacement of the blob in the orthogonal direction. This is

supported by the corresponding values in Table 3.6 that are about −0.08± 0.01,

and show no discernible pattern. However, the predicted behaviour in the parallel

direction is different. A blob has a characteristic size of at least several particle di-

ameters. Thus, if a subcell is large relative to this size, then blobs can only diffuse

between adjacent quadrants, like the paths shown in Figure 3.9 connecting yellow

circle 2. So, we expect the correlations to become fairly independent of subcell size

once the subcells are noticeably larger than the size of a blob. However, as subcells

shrink in size, blobs will extend over multiple quadrants and start to access paths in

Figure 3.9 connecting to yellow circle 1. This won’t affect the correlations in the

orthogonal direction but will cause those in the parallel direction to decrease, since

one is now adding a negative correlation component to what was previously a pos-

itive value. As the subcell continues to shrink, a blob will diffuse even further, and

in fact could extend through a neighbouring subcell and into the next one. Once

it extends through another quadrant in the neighbouring subcell, the correlations

will start to increase due to the contributions of the next available paths (like those

in Figure 3.9 associated with yellow circle 3). So, because the sign of the parallel

correlations oscillates depending upon the number of quadrants crossed (that is the

paths taken in Figure 3.9), one expects the correlation coefficients associated with

a diffusing blob to oscillate as the subcell decreases in size. This is precisely the

trend seen in Table 3.6 and nicely rationalizes these values, including the appear-

ance of correlations one subcell away for the smallest subcell (which in this case

contains only a single particle - so clearly is much smaller than the size of a liquid

blob).

The arguments above apply in the same way to the correlations between mass

elements and components of W. When a blob exits a subcell, it will always de-

crease its mass element. If it exits in a positive Cartesian direction it will also

decrease the W component in the neighbour, provided it only enters the nearest

quadrant. If the blob extends to the next quadrant, the magnitude of the correla-
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tion will decrease because the contribution to W from that further quadrant will be

positive. Thus, we expect the correlation coefficients between the mass elements

and W to become fairly independent of size for large subcells but to oscillate as

the subcell size decreases. For the very smallest subcells, we also might expect

correlations to show up in subcells one farther away. These trends are precisely the

ones seen in Table 3.7, again showing the consistency of the “moving blob” model.

In summary, the trends in the correlation coefficients seen in Tables 3.4, 3.6

and 3.7 are consistent with the diffusion of liquid blobs across subcell boundaries.

Their magnitudes depend upon the relative sizes of these blobs compared with

the subcell size, as well as the lifetime of the density fluctuations produced by

their movements. Their values depend upon the presence of correlated particle

motions caused by these blobs, and this explains why the correlations disappear

when the attractive part of the LJ potential is removed. We thus predict the strength

of the correlations is proportional to the attractive part of the atomistic interaction

potential.

3.4 The form of V (W,M)

Examining all the results for the dependencies and correlations of M and W shows

that Ω(W,M) is well approximated by a multivariate Gaussian which, as implied

by Equation 2.17, means the potentials are generalized quadratic functions, that is

V (x) =
kT
2
(x−µµµx)

T
ΣΣΣ
−1(x−µµµx)− kT ln

[
(2π)−2N |ΣΣΣ|−

1
2

]
, 3.14

in which

ΣΣΣ =


ΣΣΣMM ΣΣΣMWx ΣΣΣMWy ΣΣΣMWz

ΣΣΣ
T
MWx

ΣΣΣWW,x 0 0

ΣΣΣ
T
MWy

0 ΣΣΣWW,y 0

ΣΣΣ
T
MWz

0 0 ΣΣΣWW,z

 , and x =


M
Wx

Wy

Wz

 3.15

with M the N×1 vector of values MII , Wγ the N×1 vector of the Cartesian com-

ponents γ of WI , ΣΣΣMM, ΣΣΣWWγ
, and ΣΣΣMWγ

, the N×N correlation matrices, respec-

tively with general elements, ΣΣΣIJ = rIJσIσJ , and µµµx the mean of x. The last term
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in Equation 3.14 arises from the normalization of Ω(W,M) and is independent of

CG variables. Since potential energies can be shifted to new reference points, this

last term can be ignored in practice.

The potential form already explicitly accounts for the lack of correlation among

components of W in different Cartesian directions. With Equation 3.14 the deriva-

tive of the potential with respect to CG variables can be written analytically, re-

sulting in linear terms. Thus, all the forces are essentially Hookean. Again, the

values M are discrete for the particular form of dI
i chosen in this work. So, the

meaning of a derivative with respect to these variables is not well-defined. How-

ever, for any smooth switching function, the elements of M will be continuous and

derivatives can be meaningfully taken using the expression from the multivariate

Gaussian written above.

As shown above, the correlation matrices are sparse, with known structure, in-

volving (in most cases) non-zero values only with neighbouring cells. This allows

for efficient matrix operations and numerical implementations. Note that nearest

neighbour coupling does not imply banded matrices because in general, nearest

neighbour subcells will not be associated with neighbouring indices. In this way,

localized interactions eventually propagate through the entire system. We give an

example that details a specific application of the general potential equation to a

simple system, and also demonstrates other tests of the form.

Let’s consider an example to see how Equation 3.14 is used in practice by

imagining a single component system in a simulation cell with L = 4 divided into

8 subcells (`s = 2, `= 1) whose centers are labelled with the following coordinates:

R1
lab = (1,1,1), R2

lab = (3,1,1), R3
lab = (3,3,1), R4

lab = (1,3,1), R5
lab = (1,1,3),

R6
lab = (3,1,3), R7

lab = (3,3,3), R8
lab = (1,3,3). We know µµµM = mρ(L/`s)

31 =

8mρ1 and µµµW = 0 with 1 being a vector with all components equal to unity. Fur-

thermore, the variances (denoted σ2
W ) are the same for all Cartesian components

of all the W values, and are parameters that must be determined from simulation

or modelling (such as those appearing in Table 3.1). The variances (denoted σ2
M)

for the elements of the mass matrix are also the same for all elements and given by

Equation 3.12 in terms of the isothermal compressibility. In practice, one needs to

determine the parameter γ in this equation unless approximations are being used

which treat it as small and negligible.
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If the density is low enough that correlation coefficients are negligible then

ΣΣΣ is diagonal and all CG variables uncorrelate from one another. However, the

more likely scenario is that coupling will exist. Let’s consider the case where only

closest neighbours are coupled (the usual case except for very small subcells). Let

rM be the correlation coefficient for the mass elements of neighbouring subcells

(this is the same in each Cartesian direction). This value needs to be calculated and

would be like the ones, for example, listed in Table 3.4. Let rW,‖ and rW,⊥ be the

correlation coefficients between components of W for neighbouring subcells in the

parallel and orthogonal directions, respectively. These values need to be calculated

and would be like the ones appearing in Table 3.6, for example. Let rMW be the

correlation coefficient between the mass element in one subcell and the component

of W in the neighbouring cell in the positive Cartesian direction. These values also

need to be calculated, and will be the same for all positive Cartesian directions. As

seen in Table 3.7, correlations for subcells in the negative Cartesian directions will

be −rMW .
Putting all this information together gives the correlation matrices in Equa-

tion 3.15 as

ΣΣΣMM = σ
2
M



1 rM 0 rM rM 0 0 0
rM 1 rM 0 0 rM 0 0
0 rM 1 rM 0 0 rM 0

rM 0 rM 1 0 0 0 rM

rM 0 0 0 1 rM 0 rM

0 rM 0 0 rM 1 rM 0
0 0 rM 0 0 rM 1 rM

0 0 0 rM rM 0 rM 1



ΣΣΣWW,x = σ
2
W



1 rW,‖ 0 rW,⊥ rW,⊥ 0 0 0
rW,‖ 1 rW,⊥ 0 0 rW,⊥ 0 0

0 rW,⊥ 1 rW,‖ 0 0 rW,⊥ 0
rW,⊥ 0 rW,‖ 1 0 0 0 rW,⊥

rW,⊥ 0 0 0 1 rW,‖ 0 rW,⊥

0 rW,⊥ 0 0 rW,‖ 1 rW,⊥ 0
0 0 rW,⊥ 0 0 rW,⊥ 1 rW,‖
0 0 0 rW,⊥ rW,⊥ 0 rW,‖ 1
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ΣΣΣWW,y = σ
2
W



1 rW,⊥ 0 rW,‖ rW,⊥ 0 0 0
rW,⊥ 1 rW,‖ 0 0 rW,⊥ 0 0

0 rW,‖ 1 rW,⊥ 0 0 rW,⊥ 0
rW,‖ 0 rW,⊥ 1 0 0 0 rW,⊥

rW,⊥ 0 0 0 1 rW,⊥ 0 rW,‖
0 rW,⊥ 0 0 rW,⊥ 1 rW,‖ 0
0 0 rW,⊥ 0 0 rW,‖ 1 rW,⊥

0 0 0 rW,⊥ rW,‖ 0 rW,⊥ 1



ΣΣΣWW,z = σ
2
W



1 rW,⊥ 0 rW,⊥ rW,‖ 0 0 0
rW,⊥ 1 rW,⊥ 0 0 rW,‖ 0 0

0 rW,⊥ 1 rW,⊥ 0 0 rW,‖ 0
rW,⊥ 0 rW,⊥ 1 0 0 0 rW,‖
rW,‖ 0 0 0 1 rW,⊥ 0 rW,⊥

0 rW,‖ 0 0 rW,⊥ 1 rW,⊥ 0
0 0 rW,‖ 0 0 rW,⊥ 1 rW,⊥

0 0 0 rW,‖ rW,⊥ 0 rW,⊥ 1



ΣΣΣMW,x = σMσW



0 rMW 0 0 0 0 0 0
−rMW 0 0 0 0 0 0 0

0 0 0 −rMW 0 0 0 0
0 0 rMW 0 0 0 0 0
0 0 0 0 0 rMW 0 0
0 0 0 0 −rMW 0 0 0
0 0 0 0 0 0 0 −rMW

0 0 0 0 0 0 rMW 0



ΣΣΣMW,y = σMσW



0 0 0 rMW 0 0 0 0
0 0 rMW 0 0 0 0 0
0 −rMW 0 0 0 0 0 0

−rMW 0 0 0 0 0 0 0
0 0 0 0 0 0 0 rMW

0 0 0 0 0 0 rMW 0
0 0 0 0 0 −rMW 0 0
0 0 0 0 −rMW 0 0 0
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ΣΣΣMW,z = σMσW



0 0 0 0 rMW 0 0 0
0 0 0 0 0 rMW 0 0
0 0 0 0 0 0 rMW 0
0 0 0 0 0 0 0 rMW

−rMW 0 0 0 0 0 0 0
0 −rMW 0 0 0 0 0 0
0 0 −rMW 0 0 0 0 0
0 0 0 −rMW 0 0 0 0


.

3.16

One then uses these matrices, along with the mean values in Equation 3.14 to con-

struct the potential. One can see explicitly from the forms above that the matrices

are sparse but not banded. The coupling of nearest neighbours in space does not

translate to coupling between adjacent matrix elements. Also, in practice, peri-

odic boundary conditions would be used with the simulation cell replicated in all

Cartesian directions. In this case, one would use a much larger grid of subcells so

that periodic images of subcells would not be neighbours. In the simple example

above, subcells 1 and 2 are neighbours in the main simulation cell but would also be

neighbours with their periodic images. This would lead to large finite-size effects

but it serves to illustrate how the matrix elements are determined. In the example

here, the elements of the matrices wouldn’t change if periodic boundary conditions

were used because so few subcells are present. However, in the more usual case,

one would have to include terms due to periodic images for those subcells along

the edge of the main simulation cell. In general, each row of the ΣΣΣMM and ΣΣΣWW

matrices would have a maximum of 6 non-zero elements off the diagonal, and each

row of the ΣΣΣMW matrices would have a maximum of 2.

As an additional check of the proposed form for V , we calculated fourth-order

moments from the numerical W and M distributions and compared them with the

analytical values predicted from the bivariate Gaussian forms, and they compared

very well. For example, for Case 2, the calculated value of 〈W 2
1xW

2
2x〉 was 0.100

while the predicted one was 0.102. The calculated value of 〈M2
11M2

22〉 was 0.011

while the predicted one was 0.012. Thus, the agreement between calculated and

predicted fourth-order moments suggests the multivariate approximation for V is
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quite reasonable.

We also made some tests to check for non-linear correlation among the CG

variables by performing a substitution in those distributions and checking to see

whether the result matches what we expect. For example, if W1x and W2x to-

gether distribute according to a bivariate Gaussian then the distribution of W1x +W2x

should be Gaussian with variance σ2
1+2 = σ2

1 +σ2
2 + 2r12σ1σ2, where σ2

1 and σ2
2

are the variances of W1x and W2x and r12 is the correlation coefficient of this pair.

Figure 3.10 plots the logarithm of two representative distributions for the sum of

two CG variables along with quadratic fits to them, from which variances are ex-

tracted. Notice in both cases the curves are well fit by a quadratic function so the

distributions are very close to Gaussian. In the left panel of Figure 3.10, values

of σ2
1+2 calculated from the fit equation and the theory are 1804 and 1764, re-

spectively. In the right panel of Figure 3.10, the corresponding values are 0.080

and 0.084, respectively. These values differ by less than 5%, meaning the bivari-

ate Gaussian is a good approximation to the joint distribution of W pairs and M
element pairs.
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Figure 3.10: Plots of the natural log of the probability distribution function
for the sum of two CG W components (left panel) and two M ele-
ments (right panel). Red dots are the raw data points obtained from the
numerically determined distributions while the blue lines are quadratic
fits to the raw data.
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3.5 Conclusions
Virtually all CG schemes used today have a particle-like nature in which atoms in

bonded molecules are grouped into CG beads. The CG interaction potentials in

such systems inherit the same flavour, having two-body representations depending

upon the distance separating CG beads. In this work, a CG scheme for non-bonded

atoms is examined with a lattice-like nature in which atoms positioned in a subcell

are assigned to CG variables defined there. As a result, the interaction potential

among these CG variables does not resemble particle potentials. Rather it has a

strong directional dependence in space, and is strongest for closest neighbours. It

does not couple mass with W in the same subcell, nor different Cartesian compo-

nents of W. In other words, this potential has a lattice-like flavour.

We have examined the CG probability distributions at different orders and with

correlations between different pairs of CG variables, and in every case, the result

was well described with a multivariate Gaussian. This means the CG potential is

a general quadratic function whose derivative can be determined analytically. We

believe this is linked with the nature of the CG mapping. The values of WI are

strongly peaked near zero, and those of MII around the average number of particles

per subcell. Significant density fluctuations are needed to produce values away

from these averages, and in practice such fluctuations are rare. Instead, most den-

sity fluctuations simply cause the values to oscillate somewhat about the average,

to the extent this behaviour is well captured with a quadratic dependence.

For this reason, we expect the form for the potential will be robust to changes

in the switching function and the atomistic interaction potential, whose effects are

embedded in the values of variances and correlation coefficients. This was tested

in the current work by studying both single-component fluids and binary mixtures,

covering a range of densities, mass ratios and potential interactions. While not

exhaustive, this study suggests the general quadratic form could be more univer-

sal, thus simplifying greatly the description for different kinds of fluids, especially

since the procedure for obtaining the parameters in the potential involves straight-

forward statistical averaging of microscopic information. As well, because of this

form, one can transform the CG space to a set of variables that diagonalizes the

corresponding covariance matrix. The result, akin to normal modes, would be a set
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of statistically-independent CG variables for which the equations of motion might

be considerably simplified.

Finally, we introduced a “diffusing blob” model to rationalize the signs and

relative magnitudes of the correlations among the CG variables. The key idea of

this model is built upon analyzing the way particles cross subcell boundaries. In

other words, it is intimately linked with the changing of the CG assignments of

particles, which is the core of the CG mapping scheme. This implies the correla-

tions have a statistical, counting origin modified by the physical parameters of the

underlying atomistic system. We believe this is another manifestation of the CG

mapping scheme, namely that atomistic properties are subsumed in potential pa-

rameters while the basic physics deals with particle fluxes - a view consistent with

continuum fluid dynamics. The model also shows the most complex behaviour is

expected when subcells become small relative to the size of the blobs. In this case,

blobs can extend over multiple subcells at the same time, producing more complex

correlation patterns. Thus, one can expect more complex behaviour in systems

with particles that differ greatly in size, if small subcells are used. However, the

main strength of the present CG scheme is to treat larger numbers of particles so

that solvents, for example, can be effectively modelled. Thus, in practice, one is

likely to use larger subcells, containing many particles, in which the correlation

behaviour is simpler and converged.

In the next chapter, we will test the robustness of the potential form by consid-

ering switching functions that change value over a finite width, so that the “edges”

of subcells are not sharp but rather fuzzy, with particles being shared between

neighbouring subcells. Such switching functions are more appealing because they

produce continuous mass matrix elements, and also allow for a smoothing from the

discreteness of atomistic particles to the continuum nature of fluid elements.
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Chapter 4

Fuzzy mapping schemes

4.1 Introduction
1 We studied the behaviour of the conservative terms in this CG EOM using a Heav-

iside switching function in Chapter 3. We found the CG potential has a quadratic

form while the effect of particles crossing subcell boundaries shows up as linear

correlations between CG variables. The CG diagonal mass elements are discrete

but their distributions can be described by a multivariate Gaussian. The evolution

equation of the CG mass elements is thus problematic due to the discrete nature

of the Heaviside function at the subcell boundary. Using a fuzzy switching func-

tion, that is, continuously switching a particle’s membership in a given lattice sub-

cell, can turn the discrete variables to continuous60. In other words, the system is

divided into interpenetrating “subcells” such that atomistic particles continuously

change their memberships as they move through space. This is done by using fuzzy

switching functions to define overlapping regions between subcells with fractional

particle occupations. In this case, a full mass matrix is required to describe the sys-

tem, and its off-diagonal elements are nonzero and contribute to the CG potential.

There is a long history of studying the use of a fuzzy switching function.

Zadeh61 and Klaua62 independently introduced fuzzy set theory where an element

can partly belong to multiple sets. The relation of an element and a set is defined by

1Most of this chapter is reprinted with permission from [J. Phys. Chem. A 2022, 126, 4517-4527].
Copyright [2022] American Chemical Society.
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a membership function that ranges from zero to one. Fuzzy logic plays an impor-

tant role in engineering and other fields63,64 since many problems are so complex

that their data usually comes with imprecision65. Our approach of studying fluids

with fuzzy switching functions is a way of performing a quantitative fuzzy simu-

lation. The inputs are the atomistic trajectories, the outputs are CG variables, and

the membership functions are fuzzy switching functions at the boundaries of finite

volumes. We are interested in how fuzzy switch functions will affect the behaviour

of the CG potential. In other words, we aim to study the behaviour of the outputs

obtained from a fuzzy simulation.

Our ultimate goal is to develop mixed-resolution schemes with some parts of

the system treated atomistically, and others with CG. Fuzzy boundaries allow atom-

istic contributions to smoothly mesh with CG variables so offer the possibility of

interfacing regions where particles and CG variables meet. This work examines

the CG part of that interface.

In this chapter, we explore the form of the CG potential using two fuzzy switch-

ing functions. Subcells of two sizes are used to study the size dependence of the

potential parameters on the finite volume. The distributions and correlations of

CG variables are computed as a function of the fuzziness of the switching func-

tion. This allows one to determine the conditions where the CG potential is easy

to model. This work is important because we not only obtain the form of CG

potential for the dynamically correct EOM but the optimal way of defining CG

variables. Moreover, the discrete nature of the local density of the fluids are exam-

ined carefully, which may give some insights to the quantitative understanding of

the continuum hypothesis.
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4.2 Properties of fuzzy mapping schemes
This time, the choices of the switching functions are

htanh(s) =
1+ tanh( 2s

α`)

2
, or 4.1

hlinear(s) =


0, s <−α`;
s+α`
2α` , −α`≤ s≤ α`;

1, s > α`,

4.2

for the tanh and linear mappings, respectively. The parameter α controls the over-

lap or “fuzziness” of h(s) at the boundary of a subcell and must be bounded as

0 ≤ α ≤ 1. When α = 0, htanh(s) and hlinear(s) (and any h(s)) become hlattice(s)

giving subcells with sharp, non-overlapping boundaries. As α increases, the over-

lap region increases until α = 1 where it extends to the center of each neighbouring

subcell.

For an arbitrary switching function, α can be defined from the variance, σ of

dh/ds by

α =

√
3
`

σ =

√
3
`

(∫
ds s2 dh(s)

ds

)1/2

. 4.3

Ideally, h(−α`) = 0 and h(α`) = 1, as satisfied by hlinear(s). However, for htanh(s)

and other more general switching functions, long tails may prevent this from being

strictly satisfied if Equation 4.3 is used. In these cases, the parameters of h(s)

should be adjusted so the values are within about 0.02 of the ideal ones. This is

why in Equation 4.1 the factor of 2 appears in the argument of tanh instead of the

factor 1.57 which would have been required by Equation 4.3.

Unlike the lattice mapping scheme, every atomistic particle now is shared by

multiple subcells. As shown in Figure 4.1, imagine a system with two subcells, a

“white” subcell on the left and a “black” subcell on the right. Atomistic particle

i near Rwhite
lab has a large dwhite

i and a relatively small dblack
i , as shown pictorially

in the bottom panel of Figure 4.1. As the atomistic particle moves towards the

“black” subcell, dblack
i increases and dwhite

i decreases. When the particle is midway

between the two subcells, it will contribute 50:50 to each. This type of mapping
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scheme allows us to study a system where CG variables vary smoothly compared

to the lattice mapping function.

0.0

0.2

0.4

0.6

0.8

1.0

Rwhite
lab Boundary Rblack

lab

tanh, = 0.2
tanh, = 0.8
linear, = 0.2
linear, = 0.8

Figure 4.1: Plots of htanh(s) and hlinear(s) for two different values of α (top
panel) The bottom panel shows the impact of the hyperbolic switch-
ing function on the atomistic particle contributions with α = 0.8. The
boundary separates a “white” subcell on the left from a “black” subcell
on the right. Atomistic particles are represented by circles. Their dblack

i
and dwhite

i values are associated with the portion of the corresponding
wedges.

The time evolution of CG variables with htanh(s) and hlattice(s) using two α val-

ues are compared in Figure 4.2. Overall the three trajectories are similar, with the

one from the lattice mapping being the only trajectory that is not continuous. For

α = 0.01, even though the overlap of the boundary is small, the sharp jumps in the

trajectory are smoothed out completely using htanh(s). As α increases, the curve
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gets smoother, reflecting the averaging effect of the increase in overlap between

subcells. That is, fuzzier boundaries produce smoother behaviour, which presum-

ably is easier to describe with the resulting CG equations of motion. For the time

evolution of the CG mass, the sudden change of the CG mass in the blue curve is

replaced by a gradual change in the orange or green curve. This means the dis-

crete CG mass distributions observed in the lattice limit66 do become continuous

distributions.
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Figure 4.2: Time evolution trajectories of CG variables using htanh(s) and
various α for Case 2 with 50 particles per subcell and `s = 5. The α

values for the blue, orange and green curves are 0, 0.01, 0.2, respec-
tively. Note the mass values are scaled by the average mass per subcell.

4.3 One-dimensional distributions
Here we compare one-dimensional distributions of CG variables using the linear

and the hyperbolic tangent mappings for two systems, a gas and liquid phase point.
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4.3.1 CG mass matrix

In general, diagonal elements MKK will have nonzero mean, and off-diagonal el-

ements MKL(K 6= L) will have both zero and nonzero mean values. Some off-

diagonal elements will always be zero if two subcells K and L are far away, since

the product of dK
i dL

i in Equation 2.12 will be zero. Also as α increases and the

overlap between subcells extends, more particles will contribute to two subcells,

meaning the off-diagonal elements increase and the diagonal ones decrease, When

α = 0, all off-diagonal elements are strictly zero. Therefore, we split these off-

diagonal elements into four classes according to the distance ∆RKL
lab = |RK

lab−RL
lab|

between subcells K and L, and call them M∆RKL
lab=L∗

KL , M∆RKL
lab=
√

2L∗

KL , M∆RKL
lab=
√

3L∗

KL and

M∆RKL
lab>
√

3L∗

KL . The trend of the mean values should be µ
M

∆RKL
lab=L∗

KL

> µ
M

∆RKL
lab=

√
2L∗

KL

>

µ
M

∆RKL
lab=

√
3L∗

KL

> µ
M

∆RKL
lab>

√
3L∗

KL

= 0. So, the goal of understanding the mass matrix is to

understand the behaviour of the nonzero elements. The total mass of subcell K is

given by

MK =
N

∑
i=1

dK
i mi , 4.4

and we expect this mass to behave similarly for different values of α even if the

mass matrix elements change significantly. Last but not least, the accuracy of the

shape of the mass distributions highly depends on how they are numerically con-

structed, setting the size of each bin too large can result in incorrect distributions.

Figure 4.3 compares representative one-dimensional distributions of diagonal

mass elements for a series of α values. When α = 0.44, the discreteness of the di-

agonal mass is completely smoothed by the fuzzy-boundary mapping, giving a dis-

tribution that is also nicely fit by a Gaussian. As shown in Chapter 3, where α = 0,

the distribution of the diagonal mass elements is discrete and can be modelled by a

Gaussian. Between these two limits, the distribution displays an intermediate state

when a continuous Gaussian transits to a discrete one. So, if we move slightly

away from the discrete scenario and set α = 0.01, the distribution starts turning

to a continuous one as some particles are now being shared by multiple subcells.

This mixed distribution has several narrow peaks at the same location of the peaks

as those for α = 0, but also a non-zero baseline between peaks. It is worth noting

that in this mixed distribution both the discrete part and the continuous part can
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be modelled by an unnormalized Gaussian using the lattice mean and variance, as

shown in the first column of Figure 4.3. However, understanding the exact mathe-

matical form of the CG potential for the mixed distribution may be rather difficult.

Generally, the mean and variance of the diagonal mass distribution decrease as α

increases. Comparing distributions generated with 5 and 50 particles per subcell

shows the minimum α value needed to produce a continuous Gaussian distribution

will decrease as the average number of atomistic particles in a subcell increases,

that is as the subcells get larger.

Because the distributions of the nonzero off-diagonal mass elements vanish as

α goes from 1 to 0, plotting them is not easy since they can have very small mag-

nitudes. We show the distributions of representative off-diagonal masses for Case

2 with α = 1 in Figure 4.4. When we tried to fit these distributions to a Gaussian, a

tiny skewness was detected and became more significant as ∆RKL
lab increased or the

number of particles per subcell decreased. Such a result is also true for the diagonal

mass distribution with α = 1. We found that a Weibull function can better describe

the behaviour of these distributions while a Gaussian remains a good approxima-

tion when having 50 particles per subcell. Because the variance of the off-diagonal

masses vanishes as α → 0, when α is small, it is reasonable to approximate these

off-diagonal masses as constants or zero.

Using Equation 4.4 we can combine the diagonal and off-diagonal masses and

consider the behaviour of the total subcell mass alone. Figure 4.5 shows represen-

tative one-dimensional distributions of MK for a series of α values. Overall, the

behaviour of the total subcell mass is similar to that of the diagonal mass. There

is a transition from a discrete distribution to a continuous one as α increases from

0 to 1. The mean value of MK is always 1 since the average particle density in a

subcell is constant and the mass values are scaled by the average mass per subcell.

The variance of MK decreases as α increases since particles that used to contribute

to a single subcell become more shared by multiple subcells. Like the behaviour

of the diagonal mass, having more particles per subcell (that is, a larger subcell)

allows the total subcell mass to be modelled as a Gaussian with a smaller α . We

also found that when α is large the skewness of the total subcell mass starts to show

up since both diagonal and off-diagonal elements display a skewed distribution.

In all, we found that in terms of modelling the CG mass part of the potential,
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Figure 4.3: One-dimensional distributions of diagonal CG mass elements us-
ing htanh(s) and various α . Although not shown, the trends are the same
using hlinear(s). The mass values are scaled by the average mass per
subcell. The α values, from the left to right, are 0.01, 0.05 and 0.44,
respectively. All distributions are obtained using Case 2 and `s = 5,
with the first row having 5 particles per subcell (smaller subcell) and
the second row 50 particles per subcell (larger subcell). Dashed curves
are Gaussian fits to the raw blue distributions. Orange curves in the first
column are unnormalized Gaussians plotted using the mean and vari-
ance from the corresponding lattice mapping results.

the best way to define a CG variable is to have a decent amount of particles per

subcell and a small α value. The diagonal mass distribution can be modelled by a

Gaussian and off-diagonal mass a constant. The total subcell mass behaves like a

Gaussian as well.

Since our interest is to use a Gaussian to model the distributions of CG mass,

we computed the mean µ and standard deviation σ of some mass elements as a

function of α , with a representative set shown in Figure 4.6. First, the mean value
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Figure 4.4: One-dimensional distributions of off-diagonal mass elements
with hlinear(s) and α = 1. Although not shown, the trends are the same
using htanh(s). The mass values are scaled by the average mass per sub-
cell. All distributions are obtained using Case 2 and `s = 5, with the
first row having 5 particles per subcell (smaller subcell) and the second
row 50 particles per subcell (larger subcell). Dashed and orange curves
are Gaussian and Weibull fits to the raw blue distributions, respectively.

of the total subcell mass is always 1 and is not shown in the figure. The curves

for the mean values of diagonal mass for 5 and 50 particles per subcell lie on top

of each other. This is expected since scaled masses are used here, and this scal-

ing removes the linear dependence of the average number of particles per subcell.

The standard deviations of the diagonal and total subcell masses increase as α de-

creases, which is consistent with results obtained from previous mass distributions.

Also, for a given α , the standard deviation increases as the number of particles per

subcell decreases. In Case 1, the dilute gas state, µ and σ vary linearly with α , and

the separation between σ for the diagonal and total subcell masses happens as soon

as α is nonzero. In the liquid state, Case 2, the separations of these two standard
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Figure 4.5: One-dimensional distributions of total subcell mass using htanh(s)
and various α . Although not shown, the trends are the same using
hlinear(s). The α values, from left to right, are 0.01, 0.05 and 0.44, re-
spectively and all mass values have been scaled by the average mass per
subcell. All distributions are obtained using Case 2 and `s = 5, with the
first row having 5 particles per subcell (smaller subcell) and the second
row 50 particles per subcell (larger subcell). Dashed curves are Gaus-
sian fits to the raw blue distributions. Orange curves in the first column
are unnormalized Gaussians plotted using the mean and variance from
the corresponding lattice mapping results.

deviations happens after α increases to 0.5 and the trend of the standard deviation

is not linear. These qualitative trends are the same for the two different switching

functions plotted. These results have been for one-component systems. However,

we also calculated means and variances for binary systems, Cases 3 and 4, and

these results are shown in Figure 4.7. The qualitative trend for these Cases is the

same as that seen in Figure 4.6, indicating the behaviour is less dependent on the

nature of the system but instead on the partitioning induced by the coarse-graining
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Figure 4.6: Statistical parameters of diagonal mass (MKK) and total subcell
mass (MK) distributions plotted as a function of α using htanh(s) and
hlinear(s), `s = 5. Mass values are scaled by the average mass per sub-
cell. The parameters for 5 and 50 particles per subcell (smaller and
larger subcell) are shown in red and blue, respectively. Solid lines show
the mean value of the diagonal mass. Dotted and dashed lines show the
standard deviation of total subcell and diagonal masses, respectively.
The first row is obtained from Case 2 while the second is from Case 1.

scheme.

4.3.2 CG momentum and positions

We examined one-dimensional distributions of CG P and W as a function of α and

found they can be modelled by Gaussians with zero means. The Gaussian form

of the momentum has already been discussed, and the variance can be computed

by the ratio between the averages of the diagonal mass and total subcell mass45.

As for the CG W components, they showed Gaussian behaviour at the lattice limit

in Chapter 3, and making the boundary fuzzy does not change the form of the
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Figure 4.7: Statistical parameters from the diagonal and total mass distribu-
tions plotted as a function of α using htanh(s) and hlinear(s), `s = 5. The
results for Case 3 and Case 4 are shown in red and blue with `s = 5, re-
spectively. Solid lines show the mean value of the diagonal mass. Dot-
ted and dashed lines show the standard deviation of total and diagonal
masses, respectively.

distribution. We plot some representative standard deviations as a function of α

in Figure 4.8 with htanh(s) and hlinear(s). The standard deviations converge to the

same values both at the lattice limit (α = 0) and at α = 1. In the gas phase, standard

deviations decrease almost linearly with α , and do not show a dependence on the

number of particles per subcell. For the liquid phase Case 2, the standard deviation

with 50 particles per subcell decays faster than with 5 particles but consistent with

Figure 4.6 has values that are smaller for each α . For both 5 and 50 particles per

subcell the decay speed of the standard deviation becomes slower as α increases.

The two different switching functions give the same qualitative dependence.
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Figure 4.8: Standard deviations of a CG position component plotted as a
function of α using htanh(s) and hlinear(s) with `s = 5. The variances
for 5 and 50 particles per subcell (smaller and larger subcell) are shown
in red and blue, respectively. The first row is obtained from Case 2 while
the second is from Case 1.

4.4 Correlations
In this section, the correlations between all possible pairs of CG variables W and M
are studied. We will use the lattice results (α = 0) as a reference. Our understanding

of these correlations is gained by analyzing the new effects arising from the fuzzy

boundaries. In addition to the correlations shown below, additional calculations

were performed to check for non-linear correlations, especially as a function of α .

Essentially, predictions for sums of CG variables are well-predicted assuming the

variables themselves have Gaussian distributions, as seen in Figures 4.9 and 4.10.

Coupling between mass elements and W are more complex, as seen in Figure 4.11,

where the correlations between M2
JJ and WI,x are compared. If the distributions of

mass and W are Gaussian, it is possible to analytically predict the correlation using

the means, variances, and correlation coefficients of the CG variables alone. When
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these predicted values are plotted and compared as a function of α against ones

calculated from simulation data, the curves are indistinguishable. This is true for

both 5 and 50 particles per subcell, suggesting the underlying distributions are well

represented as Gaussians, and that there is no correlation unaccounted for beyond

the linear regime. The good agreement seen in Figure 4.11 is interesting because,

as seen in Figure 4.3, the mass distribution undergoes a transition from a discrete

to a continuous Gaussian as α varies, yet this transition does not seem to affect the

accuracy of the analytical formula used to predict the correlation values.
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Figure 4.9: Comparisons of the logarithm of the probability density function
for the sum of two diagonal mass elements. Dots are values calculated
from the simulation data while lines are predictions calculated from the
linear correlation coefficients, assuming the distributions are Gaussian.
Deviations between the dots and lines are expected if the CG variable
distributions are not Gaussian. These results are for Case 2 with 5 par-
ticles per subcell using htanh(s) with `s = 5 and α = 0.05
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Figure 4.10: Comparisons of the logarithm of the probability density function
for the sum of two vector components of W. Dots are values calculated
from the simulation data while lines are predictions calculated from the
linear correlation coefficients, assuming the distributions are Gaussian.
Deviations between the dots and lines are expected if the CG variable
distributions are not Gaussian. These results are for Case 2 with 5
particles per subcell using htanh(s) with `s = 5 and α = 0.05

We also calculated correlations between W 2
I,x and MIJ , which can be evalu-

ated analytically if the underlying distributions are Gaussian, giving rW 2
I,x,MIJ

=

µWI,xrWI,x,MIJ σWI,xσMIJ/
√
(4µ2

WI,x
σ2

WI,x
+2σ4

WI,x
)σ2

MIJ
. Since µWI,x = 0 we expect rW 2

I,x,MIJ
=

0 as well. When these correlations are calculated from the simulation data, we

generally observe the values to be quite small. For example, for the off-diagonal

mass elements ∆RIJ
lab = ∆RIJ

lab,x = L∗, we find rW 2
I,x,MIJ

= −0.001 when α = 0.05

but −0.035 when α = 1. This latter result is non-zero, and is attributed to the

skewness in the off-diagonal mass distribution when α is close to 1. Thus, some

non-linear correlation between WI,x and MIJ can appear in the off-diagonal mass

elements when α is close to 1 and there are a small number of particles per subcell.

Overall, apart from the presence of some non-linear correlation in the case

mentioned above, upon checking both the distributions and higher-order correla-

tions for a variety of CG variable combinations, we found that knowing the linear
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Figure 4.11: Correlations between WI,x and M2
JJ plotted as a function of α

using htanh(s). I and J are nearest neighbours with ∆RIJ
lab = ∆RIJ

lab,x =
L∗. The correlations for 5 and 50 particles per subcell are shown in
red and blue, respectively. Solid lines and dashed lines are correlations
computed from the formula rWI,x,M2

JJ
= 2µMJJ rWI,x,MJJ/

√
4µ2

MJJ
+2σ2

MJJ

and from CG trajectories, respectively. All correlations are computed
for Case 2 and `s = 5.

correlation coefficients was enough to determine all other correlated values, as-

suming the corresponding distributions were Gaussian.

4.4.1 Correlations between W components

First, we show the correlation between W pairs of the same vector component in

Figure 4.12 for nearest neighbours (∆RIJ
lab = L∗) in the parallel (|∆RIJ

lab,x|= L∗ ) and

orthogonal (∆RIJ
lab,x = 0) directions. When α = 0, we observe a strong positive cor-

relation in the parallel direction and a weak negative correlation in the orthogonal

direction. This is consistent with the hlattice(s) result in Chapter 3. As α increases

from zero, the correlations in the parallel direction decrease and in the orthogonal
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Figure 4.12: Correlations between CG position components WI,x and WJ,x

plotted as a function of α using htanh(s) and hlinear(s). I and J are
nearest neighbours with ∆RIJ

lab = L∗. The correlations for 5 and 50 par-
ticles per subcell (smaller and larger subcell) are shown in red and blue,
respectively. Solid and dashed lines are correlations for |∆RIJ

lab,x|= L∗

(parallel) and ∆RIJ
lab,x = 0 (orthogonal), respectively. All correlations

are computed for Case 2 and `s = 5.

direction increase until they meet each other at zero, before changing sign. Further-

more, this crossing point moves to smaller α as the number of particles per subcell

increases, that is as the size of the subcell grows. This balance point might not

occur if the subcell changes shape and loses its symmetry in both directions. For

any α , the correlations with 50 particles per subcell (larger subcell) are always less

than those with 5 particles (smaller subcell), and the general behaviour is the same

for both switching functions. As shown in Figure 4.13, this general behaviour also

describes the results for binary mixtures (Cases 3 and 4) so is quite generic.

For the correlation between W pairs with different vector components, we ex-

pect the behaviours of the xy, yz or xz pairs to be similar. We thus show the nonzero
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Figure 4.13: Correlations between CG position components WI,x and WJ,x

plotted as a function of α using htanh(s) and hlinear(s). I and J are
nearest neighbours with ∆RIJ

lab = L∗. The results for Case 3 and Case 4
are shown in red and blue with `s = 5, respectively. Solid and dashed
lines are correlations for ∆RIJ

lab,x = L∗ (parallel) and in ∆RIJ
lab,x = 0 (or-

thogonal), respectively.

correlations between WI,x and WJ,y in Figure 4.14 where we observe a strong cor-

relation for subcells in the
√

2 direction (∆RIJ
lab =

√
2L∗), and a relatively weak

correlation in the
√

3 direction (∆RIJ
lab =

√
3L∗). This is expected because the over-

lapping region between subcells shrinks on going from the
√

2 to
√

3 direction.

Note that the sign of these correlation switches for the +L∗ versus −L∗ direction

hence each curve is reflected about zero. These correlations are zero when α = 0

and remain negligible until about α = 0.4 where they start to grow in magnitude. It

is only for larger α that the overlapping region between these diagonally oriented

subcells become large enough to produce non-negligible correlations.The rest of

the WI,x and WJ,y pairs have zero correlations due to the symmetry of the system.
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Figure 4.14: Correlations between CG position components WI,x and WJ,y

plotted as a function of α using htanh(s) and hlinear(s) where I and J
are diagonally oriented, ∆RIJ

lab =
√

2L∗ (solid lines) and ∆RIJ
lab =

√
3L∗

(dashed lines) with |∆RIJ
lab,x| = L∗. These correlations appear in pairs

with opposite signs, corresponding to mass elements to the left or right
of subcell I. All correlations are computed for Case 2 and `s = 5.

4.4.2 Correlations between M elements

The correlations between nearest neighbour total subcell mass pairs and diagonal

mass element pairs (∆RKL
lab = L∗) are shown in Figure 4.15. There is no difference

between the parallel and the orthogonal directions since mass elements are scalars

and the system is isotropic. The behaviour of the diagonal mass and total subcell

mass is similar. As we move away from the lattice mapping limit α = 0, the sign of

the correlation goes from negative to positive and passes through zero at a particular

value of α , which in turn decreases as the subcell size increases.

The next part considers the correlation between mass elements MIJ and MKL

when I 6= L and K 6= L. This covariance matrix has in principle N4(N2− 1)2 el-

ements but many are zero when subcells I,J and K,L are too far away. Like the
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Figure 4.15: Correlations between closest neighbours of total subcell mass
and diagonal mass elements plotted as a function of α using htanh(s)
and hlinear(s). The correlations for 5 and 50 particles per subcell
(smaller and larger subcell) are shown in red and blue, respectively.
Correlations of MKK , MLL pairs and MK , ML pairs are plotted with solid
lines and dashed lines, respectively (K and L are nearest neighbours,
∆RKL

lab = L∗). All correlations are computed for Case 2 and `s = 5.

correlations in diagonal mass element pairs, there are many equivalent off-diagonal

mass element pairs having the same correlation, simply due to the isotropic nature

of the system. Finally, we expect these correlations to vanish as α approaches zero

since all off-diagonal mass elements go to zero in this limit.

For simplicity, we present the correlation between M∆RIJ
lab=L∗

IJ (nearest neigh-

bours) and MKL to give an idea of their behaviour. The strongest correlations,

shown in Figure 4.16, are for the closest neighbours of MIJ including a diagonal

element. Both correlations start at large positive values for α near 1 and then de-

creases towards zero as α decreases from one to zero. However, the correlation

between M∆RIJ
lab=L∗

IJ and MIK with ∆RIK
lab =

√
2L∗ first dives to weak negative values
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Figure 4.16: A collection of the strongest correlations between off-diagonal

mass M∆RIJ
lab=L∗

IJ and M as a function of α using htanh(s) and hlinear(s).

The solid lines show the correlation between M∆RIJ
lab=L∗

IJ and MII . The

dashed lines curve show the correlation between M∆RIJ
lab=L∗

IJ and MIK

with ∆RIK
lab =

√
2L∗ and ∆RJK

lab = L∗ The correlations for 5 and 50 par-
ticles per subcell (smaller and larger subcell) are shown in red and blue,
respectively. All correlations are computed for Case 2 and `s = 5.

before returning to zero, showing a rather complex behaviour. It is hard to give a

simple qualitative argument for this behaviour because now the correlation arises

mainly from the “interaction” of two overlapping regions, IJ and KL, in general.

Other weak correlations are summarized in Figure 4.17.

4.4.3 Correlations between W components and M elements

Finally, we consider the correlation between the vector components of W and all

mass elements. To simplify our discussion, we chose the vector component WI,x,

and show the major correlations in Fig 4.18. The largest correlation comes from

the WI,x, MIK pair, where ∆RIK
lab = |∆RIK

lab,x| = L∗. The second-largest is the cor-
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Figure 4.17: Correlations between off-diagonal mass M∆RIJ
lab=L∗

IJ and M as a
function of α using htanh(s) and hlinear(s). The solid lines show cor-
relations with MIK when ∆RIK

lab = L∗. The dashed lines show corre-
lations with MIK when ∆RIK

lab =
√

2L∗ or with MKL when ∆RIK
lab = L∗,

∆RIL
lab = ∆RKL

lab =
√

2L∗. The correlations for 5 and 50 particles per
subcell are shown in red and blue, respectively. All correlations are
computed for Case 2 and `s = 5.

relation between WI,x and groups of MKK where ∆RIK
lab = |∆RIK

lab,x| = L∗ which is

consistent with the lattice limit result in Chapter 3. All mass elements mentioned

above are close and share a large overlapping region with WI . Similar to the cor-

relation between position components, the sign of the correlations switches when

the same mass element changes it location from one side of I,x to another. As the

overlapping region increases, contributions opposite to the original correlation in

the lattice mapping scheme are enhanced and turn the correlation to positive. Other

weak correlations are summarized in Figure 4.19.

In general, the correlations observed in the lattice case66 continue to exist in the

fuzzy-boundary cases. These correlations first decrease to zero, and then change
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Figure 4.18: A collection of the strongest correlations between CG posi-
tion components WI,x and MKL as a function of α using htanh(s) and
hlinear(s). The solid lines show the correlation for WI,x and MIK where
∆RIK

lab = |∆RIK
lab,x|= L∗. The dashed lines show the correlation for WI,x

and MKK where ∆RIK
lab = |∆RIK

lab,x| = L∗. These correlations appear in
pairs with opposite signs, corresponding to mass elements to the left
or right of subcell I. The correlations for 5 and 50 particles per subcell
(smaller and larger subcell) are shown in red and blue, respectively.
All correlations are computed for Case 2 and `s = 5.

their signs as α increases. This means that having an overlapping region weakens

the effect of a particle crossing the subcell boundaries. The rest of the correlations

are zero at the lattice limit and mostly become more significant as α increases.

4.4.4 The form of V (W, M)

Gathering all we have discovered thus far, it is clear the CG probability distribu-

tions have a multivariate Gaussian form with a covariance matrix consisting of co-

variances of W components pairs, M element pairs and W component-M element
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Figure 4.19: Correlations between CG position components WI,x and MKL as
a function of α using htanh(s) and hlinear(s). The solid lines show
the correlations when K = I, ∆RIK

lab =
√

2L∗, ∆RIK
lab,x = L∗ or when

∆RIK
lab = L∗,∆RIK

lab,x = 0 , ∆RIL
lab = ∆RIL

lab,x = L∗ and ∆RKL
lab =

√
2L∗.

The dashed lines show the correlations when ∆RIK
lab = ∆RIK

lab,x = L∗,
∆RKL

lab = L∗,∆RKL
lab,x = 0. The correlations for 5 and 50 particles per

subcell are shown in red and blue, respectively. All correlations are
computed for Case 2 and `s = 5.

pairs. So the form of the CG potential (being the negative logarithm of the CG

probability distribution), can be written in the same way shown in Equation 3.14

where

ΣΣΣ =

(
ΣΣΣMM ΣΣΣMW

ΣΣΣ
T
MW ΣΣΣWW

)
, and x =

(
M
W

)
=



M1

...

MN

Wx

Wy

Wz


4.5
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where MI is the N×1 vector of values MIJ , J = 1, ...,N while MI in the lattice case

is only a 1×1 vector with one element MII , Wγ is the N×1 vector of the Cartesian

components γ of WJ , and µµµx is the mean of x.

In theory, this covariance matrix has a dimension of (N+3)N by (N+3)N with
1
2 [(N + 3)2N2 +(N + 3)N] elements. In ΣΣΣMM, M∆RKL

lab=0
KL ,M∆RKL

lab=L∗

KL , M∆RKL
lab=
√

2L∗

KL ,

M∆RKL
lab=
√

3L∗

KL are nonzero so there are around 2N2 elements. In ΣΣΣMW, WI,γM con-

tributes N2/2 elements. In ΣΣΣWW, WI,γWγ ′ contributes 2N elements. Therefore,

around 2.5N2 + 2N elements in the covariance matrix are needed to specify the

potential. Such a requirement can be further reduced since the strength of the cor-

relation is usually negligible when pairs are more than 2L∗ away. Also, only a few

elements are unique and the rest can be found by using equivalence and symme-

try. For a homogeneous system with hundreds of particles per subcell and a small

α value, in the covariance matrix, only close neighbour correlations need to be

considered and all off-diagonal masses can be treated as constant zeros. So, the

number of unique parameters of this CG potential can be less than 10.

4.5 Conclusions
With fuzzy boundaries, dI

i changes gradually when particle i is in the effective vol-

ume of subcell I. Compared to the lattice mapping, there are two major changes.

One is that effective volumes of neighbouring subcells overlap giving regions in

which all particle motions produce correlated changes in CG variables. This be-

comes stronger as α increases. The other is that the motion of atomistic particles

can simultaneously affect the CG variables of many subcells and induce correla-

tions among them. For example, inducing correlations between different vector

components of W, such as WK,x and WL,y if subcells K and L are close. Such cor-

relations don’t exist for the lattice mapping. The “moving blob” model introduced

in Chapter 3 explained the signs and relative magnitudes of correlations in terms

of the regions in space where particles crossed the sharp subcell boundaries of a

lattice. In principle, the same general model applies with fuzzy boundaries ex-

cept the “crossing” points are distributed in space, leading to the superposition of

many possible paths, sometimes with opposing trends. In the end, the situation is

complex enough that simple explanations for trends as a function of α are unlikely.
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The results above are qualitatively the same for different switching functions,

and for single-component and binary systems. Only changing α produces signifi-

cant differences. This suggests the form of the CG potential is fairly insensitive to

the particular choice of switching function or the detailed molecular composition

of the system. Rather, it is the size of the overlapping region between subcells

that is important. That is, the fractional counting nature of dI
i in the overlapping

regions predominantly dictates the structure and parameter values in the CG po-

tential, suggesting the form of the potential is generally applicable to a wide class

of real fluids. It should be possible to describe the physical properties of many

single-phase fluids with the proper determination of the potential parameters.

The choice of α is probably the most important decision that needs to be made.

When α is small, off-diagonal mass elements are very small so might be reasonably

ignored. Coupling between different Cartesian components of W is also effectively

zero in this limit, as are all couplings with off-diagonal mass matrix elements. This

greatly reduces the number of non-zero correlations needed in the CG potential.

However, the mass distribution is effectively discrete when α is small, and this

introduces complex behaviour in the CG equations of motion from any terms in-

volving derivatives with respect to mass. When α is close to one, this complexity

is removed because the mass distribution adopts a near Gaussian-like form. How-

ever, this limit also produces large off-diagonal matrix elements, including cou-

pling with them, and also couples different components of W. All these effects

produce a more complex CG potential.

The optimal value of α appears to be one which is small enough to reduce as

much as possible the magnitudes of the off-diagonal mass matrix elements, and

component coupling of W but large enough to give a Gaussian-like mass distribu-

tion. In fact, there are particular α values where the coupling between the same

W components, the diagonal mass elements, and the coupling between W and M
can all be simultaneously minimized. For example, consider the hlinear(s) results

with 50 particles per subcell and α ≈ 0.17 in Figures 4.12, 4.15, and 4.18. In each

case, the corresponding correlation coefficients are very close to zero, suggesting

a completely uncoupled CG potential. Thus, there appears to be optimized values

of α giving particularly simple CG potentials with little variable coupling. This

optimized value depends upon the number of particles per subcell, going towards

85



smaller α as this number increases (that is, as the subcell size increases). The

existence of an optimal α value that minimizes correlations is perhaps the most

surprising observation from this study, and provides the best argument for wanting

to have fuzzy boundaries between subcells rather than sharp ones.

The transition from discrete to smooth mass distributions seen in Figures 4.3

and 4.5, we feel, signals the change in the nature of the system from particle-like to

continuum-like. In other words, once α is large enough, the discrete nature of the

particles in the system is completely averaged out, giving a continuous Gaussian

distribution. As seen in the figures, even 50 particles per subcell will produce this

result with α = 0.05, a value quite close to the lattice limit. Any continuum theory

will produce a continuous density distribution for a finite volume and thus cannot

be fully correct if the mass distribution still has a discrete nature. The Navier-

Stokes equations have been used to accurately describe nanoflows in fluids28,29

but this length scale is about an order of magnitude larger than the scales in the

present work. Now, even when the mass distribution is continuous, the variance

is still substantial so fluctuations are significant in the system. Thus, fluctuations

must be incorporated into a continuum theory, such as is done with fluctuating

hydrodynamics, in order to produce the correct distributions. Work to bridge this

theory and molecular dynamics has been reported31, where it is shown some level

of coarse-graining has to be employed to produce matching distributions. In our

case, the fuzzy switching functions effectively model the fractional change in mass

as particles cross subcell boundaries, and are one way to transition the mass dis-

tribution from discrete to continuous. We suggest that finding the value of α that

transitions the total subcell mass distribution is the correct way to bridge the CG

theory to fluctuating hydrodynamics.

The CG potential incorporates correlations from neighbouring subcells, with

different values in the parallel, orthogonal,
√

2 and
√

3 directions. This has the

same flavour as the directional distributions used in the DNQB models in the LBM

description of fluids in Chapter 1. While the constructions of these directional dis-

tributions is formulated in a separate way, we suggest that if significant correlations

are found in these directions in the CG potential, the corresponding LBM descrip-

tion likely needs to consider these directions in the DNQB models, as well. This

could then signal when a simpler (and computationally less expensive) model will
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produce acceptable accuracies.

Finally, when α is large enough, a mass matrix is required to fully describe the

dynamics in the system, where the contribution of off-diagonal elements is non-

zero. However, in practice, the mass matrix introduces many more variables into

the CG potential, along with a corresponding increase in the number of unique

correlation values. One would prefer to use the total subcell mass. As seen by

comparing Figures 4.3 and 4.5, the total subcell mass and diagonal mass have the

same qualitative behaviour. Thus, one can sum the off-diagonal terms in the equa-

tions of motion, and by neglecting a few terms with residual off-diagonal character,

produce an approximate equation of motion for the total subcell mass alone. This

is a much simpler description but one that contains the same basic behaviour as the

original mass matrix. By using correlations with the total subcell mass, the desired

CG potential can be constructed. In practice, this will likely be preferred to using

the full mass matrix.

Overall, the simple and general quadratic potential form found in the lattice

case is preserved in the fuzzy boundary case, except with more non-zero terms. In

practice, many more non-zero correlation coefficients are needed for the CG poten-

tial. In this work, these are calculated using atomistic MD trajectories but clearly

this is not ideal. Analytical expressions for these correlations using microscopic

fluid information, such as the density and radial distribution function, are shown in

the next chapter. There is an optimal value of α that reduces as much as possible the

coupling in the system while at the same time producing a smooth, Gaussian mass

distribution. This approach is particularly suited for a mixed description where

part of the system is treated atomistically and part with the CG variables used here.

In that case, an atomistic particle has to be subsumed into a subcell so its corre-

sponding value of dI
i must continuously change during that transition. The overlap

regions between subcells can then be naturally used to transition atomistic particles

into subcells and vice versa.
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Chapter 5

Theoretical formulation of
potential parameters

5.1 Introduction
In Chap. 4 we showed that, for single-phase and single-component fluids, the CG

total distribution function can be approximated as a multivariate Gaussian. This

result can also be extended to homogeneous, multi-component fluid systems. This

finding greatly simplifies the numerical procedure needed to reconstruct the CG po-

tential since only a few Gaussian parameters are unique while the duplicates can be

generated in a generic way using periodic boundary conditions. However, generat-

ing potential parameters from analyzing MD trajectories is often time-consuming

and not transferable. Moreover, it fails to answer questions such as when can we

make some approximations to simplify the potential without losing too much ac-

curacy in the simulation. Indeed, it is necessary to consider using rigorous theories

to formulate the potential parameters.

The quantities we wish to compute are ensemble averages of CG variables. In

particular, we want to develop theoretical tools to compute the first and second

moments among CG positions and masses. From the definition of CG variables,

it is noted that CG positions and masses are also functions of atomistic positions.

One can compute the averages of these CG variables as the averages of some dy-

namical variables in phase space38. Therefore, what we need in the formulation
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is expressions for atomistic particle distribution functions. For a homogeneous

fluid system, the single-particle distribution function is a uniform distribution while

the two-particle distribution function is quite complex due to the interaction be-

tween atomistic particles. Kirkwood and Buff have shown that the two-particle

distribution function is related to the radial distribution function g(r), and the in-

tegral involving g(r)−1 is associated with the particle number fluctuation67. This

Kirkwood-Buff integral allows us to express the variance of some CG variables in

terms of isothermal compressibility.

This chapter is organized as follows: first, we show the general formulation

for computing the first and second moments of position-dependent dynamical vari-

ables, then, we derive the expressions for all parameters of the CG potential and

analyze their behaviour. The comparison between the results calculated from the

theory and those from the computer experiment is also shown for the CG positions.

5.2 General formulation for calculating ensemble
averages

Consider a cubic system with edgelength L and volume V and uniform density

ρ = n/V . Now divide each edge into Ns equal segments of length 2`, so the system

is divided into N = N3
s cubic subcells each with edge length 2` and volume Vs =

(2`)3, giving L = 2Ns` and V = L3 = NVs = 8N`3. The average number of particles

per subcell is ns = n/N = ρVs. The number of particles associated with a particle

CG variable fluctuates in time as particles move, and can also be fractional. Thus,

ns is just an expectation for the average number of particles arising from dividing

a uniform density among N objects. With this division of the system, dI
i (ri) can be

constructed as Equation 3.3. This form locates the origin of a switching function

h(s) in each Cartesian direction at distances ±` from the corresponding reference

point RI
lab. The switching function changes from 0 to 1 and this defines the spatial

region in which particle i contributes to the CG variable labelled I.

Substituting any of these switching functions mentioned in Equation 4.1 and

Equation 4.2 gives a product of six functions, two for each Cartesian direction. To

simplify notation, the condensed notation h(r+a) = h(rx+ax)h(ry+ay)h(rz+az)

will be used so that Equation 3.3 becomes dI
i (ri) = h(ri−RI

lab+ `̀̀)h(RI
lab+ `̀̀−ri)
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with `̀̀ = `(x̂+ ŷ+ ẑ).
Expressions for the components of WI or MIJ in Equation 2.12 take the general

form

BI =
n

∑
i=1

mibI(ri) 5.1

in which I can represent a collection of indices and/or components, and the function

bI(r) incorporates all factors except mass. For example, WI = ∑
n
i=1 mibI(ri−RI

lab)

where bI(ri)= ridI
i (ri) while MIJ =∑

n
i=1 mibI(ri)bJ(ri) where bI(ri)= dI

i (ri)dJ
i (ri)

For a fluid mixture of η species, each with nc particles (so that ∑
η

c=1 nc = n) the

equilibrium ensemble average of the product BIBJ can be expressed as a sum of

one- and two-particle contributions, that is

〈BIBJ〉=
η

∑
c=1

(〈BIBJ〉c1 + 〈BIBJ〉cc
2 )+

η

∑
c,c′=1
c6=c′

η

∑
c=1

η

∑
c′=c+1

〈BIBJ〉cc′
2 5.2

in which
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〈BIBJ〉c1 = m2
c

nc

∑
i=1

∫ L/2

−L/2
dri Pc

1 (ri +RI
lab)bI(ri)bJ(ri−∆RIJ) 5.3

〈BIBJ〉cc
2 = m2

c

nc

∑
i, j=1
i 6= j

∫ L/2

−L/2
dri

∫ L/2

−L/2
dr jPcc

2 (ri +RI
lab,r j +RJ

lab)bI(ri)bJ(r j) 5.4

〈BIBJ〉cc′
2 = mcmc′

nc

∑
i=1

nc′

∑
j=1

∫ L/2

−L/2
dri

∫ L/2

−L/2
dr jPcc′

2 (ri +RI
lab,r j +RJ

lab)bI(ri)bJ(r j) 5.5

in which ∆RIJ = RJ
lab−RI

lab, and the origins for ri and r j have been placed at RI
lab and RJ

lab, respectively. Here Pc
1 (r) is

the probability for finding a particle of species c at position r, Pcc
2 (r1,r2) is the probability for finding two particles each of

species c, one at position r1 and the other at r2, and Pcc′
2 (r1,r2) is the probability for finding two particles, the first of species

c at position r1 and the second of species c′ at r2. These probabilities are normalized to unity for the whole system, that is

∫ L/2

−L/2
drPc

1 (r) =
∫ L/2

−L/2
dr1

∫ L/2

−L/2
dr2Pcc

2 (r1,r2) =
∫ L/2

−L/2
dr1

∫ L/2

−L/2
dr2Pcc′

2 (r1,r2) = 1 . 5.6

For a homogeneous system at equilibrium, this gives

Pc
1 (r) =

1
V

, 5.7

Pcc
2 (r1,r2) =

(
nc

nc−1

)
1

V 2 gcc(|r1− r2|) , 5.8

Pcc′
2 (r1,r2) =

1
V 2 gcc′(|r1− r2|), 5.9
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in which gcc(r) and gcc′(r) are radial distribution functions for like and unlike species, respectively. The integrals in Equa-

tions (5.3) are the same for each i and j. As well, since d ≤ `, the maximum domain over which dI
i (ri) has non-zero values

is −2` to 2`, relative to RI
lab. Thus, the limits of integration in Equations (5.3) can be reduced to these limits, giving

〈BIBJ〉c1 = xcρm2
c

∫ 2`

−2`
dr bI(r)bJ(r−∆RIJ)

〈BIBJ〉cc
2 = x2

cρ
2m2

c

∫ 2`

−2`
dr1

∫ 2`

−2`
dr2 gcc(|r1− r2−∆RIJ|)bI(r1)bJ(r2)

〈BIBJ〉cc′
2 = xcxc′ρ

2mcmc′

∫ 2`

−2`
dr1

∫ 2`

−2`
dr2 gcc′(|r1− r2−∆RIJ|)bI(r1)bJ(r2) , 5.10

with xc = nc/n the mole fraction of species c. The two-particle contributions can be further simplified by transforming to

r12 = r1− r2, and noting∫ a

−a
dr1,γ

∫ a

−a
dr2,γ I(r12,γ ,r2,γ)

=
∫ 0

−2a
dr12,γ

∫ a

−a−r12,γ

dr2,γ I(r12,γ ,r2,γ)+
∫ 2a

0
dr12,γ

∫ a−r12,γ

−a
dr2,γ I(r12,γ ,r2,γ)

=
∫ 2a

0
dr12,γ

∫ a−r12,γ

−a
dr2,γ

{
I(r12,γ ,r2,γ)+ I(−r12,γ ,−r2,γ)

}
. 5.11

which when extended to three Cartesian components gives
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∫ a

−a
dr1

∫ a

−a
dr2 I(r12,x,r12,y,r12,z,r2,x,r2,y,r2,z) =

∫ 2a

0
dr12

∫ a−r12,x

−a
dr2,x

∫ a−r12,y

−a
dr2,y

∫ a−r12,z

−a
dr2,z

×{I(r12,x,r12,y,r12,z,r2,x,r2,y,r2,z)+ I(r12,x,r12,y,−r12,z,r2,x,r2,y,−r2,z)

+I(r12,x,−r12,y,r12,z,r2,x,−r2,y,r2,z)+ I(r12,x,−r12,y,−r12,z,r2,x−,r2,y,−r2,z)

+I(−r12,x,r12,y,r12,z,−r2,x,r2,y,r2,z)+ I(−r12,x,r12,y,−r12,z,−r2,x,r2,y,−r2,z)

+I(−r12,x,−r12,y,r12,z,−r2,x,−r2,y,r2,z)+ I(−r12,x,−r12,y,−r12,z,−r2,x,−r2,y,−r2,z)} . 5.12

When applying these expressions, the components of ∆RIJ determine the geometrical relationship between subcells I and

J. Recall that because of the way the system is divided into subcells, ∆RIJ must be a multiple of 2`. For example, ∆RIJ
x =

∆RIJ
y = ∆RIJ

z = 0 implies I = J so gives contributions of the given subcell, that is variances of the CG quantities. The eight

possible neighbouring subcells at the corners of subcell I (which we label
√

3) are specified with ∆RIJ
x =±2`, ∆RIJ

y =±2`,

and ∆RIJ
z = ±2`. The closest neighbours J in the parallel direction to I (say the correlation of WI,xWJ,x with subcell J

situated in the x-direction) are specified with ∆RIJ
x = ±2`, ∆RIJ

y = ∆RIJ
z = 0. The same correlation but with subcells J in

the orthogonal direction would have ∆RIJ
x = ∆RIJ

z = 0 and ∆RIJ
y = ±2`, or ∆RIJ

x = ∆RIJ
y = 0 and ∆RIJ

z = ±2`. The twelve

subcells J along the edges (which we label
√

2) would be specified using ∆RIJ
x =±2`, ∆RIJ

y =±2`, ∆RIJ
z = 0, or ∆RIJ

x =±2`,

∆RIJ
y = 0, ∆RIJ

z = ±2`, or ∆RIJ
x = 0, ∆RIJ

y = ±2`, ∆RIJ
z = ±2`. Neighbours two subcells away would use the next multiple

of 2`, so that ∆RIJ
x = ±4`, ∆RIJ

y = ∆RIJ
z = 0 would label J two subcells away from I in the parallel direction. Taking all

possible combinations of the components of ∆RIJ gives the contributions of subcells J in all possible geometric positions.

The expressions above will now be applied to specific combinations of CG variables. Substituting Equation 5.10 in

Equation 5.2 shows only the prefactors are modified in the presence of mixtures. Thus, for simplicity, only expressions for
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one-component expressions will be given explicitly but these are easily generalized to mixtures using the formalism given

above.

5.3 Correlations of WI

5.3.1 Theory of calculating correlations of WI

For correlations of WI we have bI(r) = h(r+ `̀̀)h(`̀̀− r)r which when substituted into Equations (5.10) give

〈WIWJ〉1 = ρm2
∫ 2`

−2`
dr h(r+ `̀̀)h(`̀̀− r)h(r+ `̀̀−∆RIJ)h(∆RIJ + `̀̀− r) r(r−∆RIJ)T

〈WIWJ〉2 = ρ
2m2

∫ 2`

−2`
dr1

∫ 2`

−2`
dr2 g(|r1− r2−∆RIJ|)h(r1 + `̀̀)h(`− r1)h(r2 + `̀̀)h(`− r2) r1rT

2 . 5.13

Some general conclusions follow from these equations. First, because h(rγ + `)h(`− rγ)rγ is an odd function of rγ , the

integral over rγ will give zero when the other terms in the integrand don’t depend upon rγ . Thus, 〈WI,γWJ,γ ′〉1 = 0 for γ 6= γ ′.

Second, this same symmetry shows 〈WI,γWJ,γ ′〉2 = 0 if g = 1 for all distances (that is for ideal gases). Third, because the

components of ∆RIJ are multiples of 2`, and the switching function is zero for arguments less than −`, 〈WI,γWJ,γ ′〉1 will be

zero when |∆RIJ
γ | > 2`. This means the one-particle contribution will only contribute to the average for subcells that touch

subcell I (when all possible directions are considered). Finally, by changing the signs of the position vectors, the integrals

remain the same if ∆RIJ is replaced by ∆RJI . This symmetry implies 〈WIWJ〉= 〈WJWI〉, as expected.

We refer to CG position pairs whose components are the same as diagonal elements while those whose components are
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different as off-diagonal elements. Applying Equation 5.12 to the diagonal elements of the two-particle term gives

〈WI,γ WJ,γ〉2 = ρ
2m2

∫ 4`

0
dr12 4+g(r12,∆RIJ)

×
∫ 2`−r12,x

−2`
dr2,x h(r12,x + r2,x + `)h(`− r12,x− r2,x)h(r2,x + `)h(`− r2,x)

×
∫ 2`−r12,y

−2`
dr2,y h(r12,y + r2,y + `)h(`− r12,y− r2,y)h(r2,y + `)h(`− r2,y)

×
∫ 2`−r12,z

−2`
dr2,z h(r12,z + r2,z + `)h(`− r12,z− r2,z)h(r2,z + `)h(`− r2,z)(r12,γ + r2,γ)r2,γ 5.14

and for the off-diagonal elements (with γ 6= γ ′ and β the Cartesian coordinate different from γ and γ ′)

〈WI,γ WJ,γ ′〉2 = ρ
2m2

∫ 4`

0
dr12 4−g(r12,∆RIJ)

×
∫ 2`−r12,β

−2`
dr2,β h(r12,β + r2,β + `)h(`− r12,β − r2,β )h(r2,β + `)h(`− r2,β )

×
∫ 2`−r12,γ

−2`
dr2,γ h(r12,γ + r2,γ + `)h(`− r12,γ − r2,γ)h(r2,γ + `)h(`− r2,γ)(r12,γ + r2,γ)

×
∫ 2`−r12,γ ′

−2`
dr2,γ ′ h(r12,γ ′+ r2,γ ′+ `)h(`− r12,γ ′− r2,γ ′)h(r2,γ ′+ `)h(`− r2,γ ′)r2,γ ′ 5.15

where
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4+g(r,∆R) = g
([

(rx−∆Rx)
2 +(ry−∆Ry)

2 +(rz−∆Rz)
2]1/2

)
+ g

([
(rx +∆Rx)

2 +(ry−∆Ry)
2 +(rz−∆Rz)

2]1/2
)

+ g
([

(rx−∆Rx)
2 +(ry +∆Ry)

2 +(rz−∆Rz)
2]1/2

)
+ g

([
(rx +∆Rx)

2 +(ry +∆Ry)
2 +(rz−∆Rz)

2]1/2
)

+ g
([

(rx−∆Rx)
2 +(ry−∆Ry)

2 +(rz +∆Rz)
2]1/2

)
+ g

([
(rx +∆Rx)

2 +(ry−∆Ry)
2 +(rz +∆Rz)

2]1/2
)

+ g
([

(rx−∆Rx)
2 +(ry +∆Ry)

2 +(rz +∆Rz)
2]1/2

)
+ g

([
(rx +∆Rx)

2 +(ry +∆Ry)
2 +(rz +∆Rz)

2]1/2
)
, 5.16

4−g(r,∆R) = g
([

(rβ −∆Rβ )
2 +(rγ −∆Rγ)

2 +(rγ ′−∆Rγ ′)
2]1/2

)
+ g

([
(rβ +∆Rβ )

2 +(rγ −∆Rγ)
2 +(rγ ′−∆Rγ ′)

2]1/2
)

− g
([

(rβ −∆Rβ )
2 +(rγ +∆Rγ)

2 +(rγ ′−∆Rγ ′)
2]1/2

)
− g

([
(rβ +∆Rβ )

2 +(rγ +∆Rγ)
2 +(rγ ′−∆Rγ ′)

2]1/2
)

− g
([

(rβ −∆Rβ )
2 +(rγ −∆Rγ)

2 +(rγ ′+∆Rγ ′)
2]1/2

)
− g

([
(rβ +∆Rβ )

2 +(rγ −∆Rγ)
2 +(rγ ′+∆Rγ ′)

2]1/2
)

+ g
([

(rβ −∆Rβ )
2 +(rγ +∆Rγ)

2 +(rγ ′+∆Rγ ′)
2]1/2

)
+ g

([
(rβ +∆Rβ )

2 +(rγ +∆Rγ)
2 +(rγ ′+∆Rγ ′)

2]1/2
)
. 5.17

A number of general properties follow directly from Equation 5.14. First, if

g = 1 for all distances then 4−g = 0 and 〈WI,γWJ,γ ′〉2 = 0 so coupling between

different Cartesian components of WI is only possible for non-ideal systems, and

only in regions where the radial distribution function is not unity. Second, if ∆RIJ
γ =

0 or ∆RIJ
γ ′ = 0 then4−g= 0, again making 〈WI,γWJ,γ ′〉2 = 0. This means in general,

no coupling between different Cartesian components will occur if I = J or if J is
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in the same Cartesian direction as γ or γ ′, that is closest neighbours. However,

this coupling could occur for subcells lying in diagonal directions, for example

those labelled
√

2 or
√

3. For the latter case, consider ∆RIJ
γ = ∆RIJ

γ ′ = ∆RIJ
β
= 2`

(∆RIJ = 2
√

3`). If the subcells are large enough that g(r)≈ 1 for r > 2` then

4−g≈ g[(r12,β −2`)2 +(r12,γ −2`)2 +(r12,γ ′−2`)2]−1 5.18

because most of the terms in 4−g are unity (having arguments that produce dis-

tances greater than 2`). This factor is significant only when all components of r12

are close to 2`, that is for particles lying close to the corners of the subcell. This

restricted domain will make the contribution small, even more so if the switch-

ing function defines a narrow boundary region among subcells. In practice, it will

probably be a reasonable approximation to ignore all coupling between different

Cartesian components of WI unless α , the fuzziness of the switching function

used in CG mapping schemes, is close to unity. This analysis agrees with the sim-

ulation results calculated for Case 2, ns = 50 where the magnitude of 〈WI,γWJ,γ ′〉
(∆RIJ = 2

√
3`) is 1.21−3 when α = 0 and 4.81−2 when α = 1.

The integrals of Equations (5.13) can be performed numerically to obtain the

variances and cross-correlation coefficients but it is possible to obtain analytical ex-

pressions for the linear switching function. Using Equation 4.2 in the one-particle

contribution of Equations (5.13) gives
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〈WI,γWJ,γ ′〉linear
1 = δγγ ′

8
3

ρm2`5×



(
1− 1

3 α
)2 [

(1−α)(1+α2)+ 4
5 α3

]
, J = I

−1
2 α
(
1− 1

3 α
)2 (1− 1

5 α2
)
, parallel J

1
6 α
(
1− 1

3 α
)[
(1−α)(1+α2)+ 4

5 α3
]
, orthogonal J

− 1
12 α2

(
1− 1

3 α
)(

1− 1
5 α2

)
, J in

√
2 direction

− 3
224 α3

(
1− 1

5 α2
)
, J in

√
3 direction

0 , otherwise

5.19

The two-particle terms in Equation 5.14 and Equation 5.15, with the help of symbolic language software, can be simplified

analytically to give for the diagonal elements

〈WI,γWJ,γ〉linear
2 =

8
3

ρm2`5
ρVs

∫ 1+α

0
dr f WW

0 (rβ ) f WW
0 (rβ ′) f WW

1 (rγ)4+g(2`r,∆RIJ) 5.20

and for the off-diagonal elements

〈WI,γWJ,γ ′〉linear
2 =−8ρm2`5

ρVs

∫ 1+α

0
dr f WW

0 (rβ ) f WW
0 (rγ) f WW

0 (rγ ′)rγrγ ′4−g(2`r,∆RIJ) 5.21

in which r = r12/(2`) and β and β ′ are the Cartesian components different from γ or γ ′. The f functions have different
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expressions depending upon the value of α . For α ≤ 1/2 they are

f WW
0 (r) =



(3α2(1− r)− (ω−1)3)/(3α2) , 0≤ r ≤ α

1− r , α ≤ r ≤ 1−α

(ω3−2(1− r)3)/(6α2) , 1−α ≤ r ≤ 1

ω3/(6α2) , 1≤ r ≤ 1+α

0 , otherwise

f WW
1 (r) =



(5α
2(1−α)2 +5αr2(2r−α)(r+α)

− r3(4r2−5)−α
5 +5α

3−15αr2)]/(5α
2) ,

0≤ r ≤ α

(1− r)(ω2−3r2−2α(1− r)) , α ≤ r ≤ 1−α

−[ω3(ω2−5r2)−10αω
2(ω2−3r2)

+30α
2
ω(ω2− r2)−10α

3(5ω
2− r2)

+4α
4(10ω−3α)]/(10α

2) ,

1−α ≤ r ≤ 1

ω3(ω2−5r2)/(10α2) , 1≤ r ≤ 1+α

0 , otherwise

5.22
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while for α ≥ 1/2 they are

f WW
0 (r) =



(3α2(1− r)− (ω−1)3)/(3α2) , 0≤ r ≤ 1−α

(r3− (1− r)3 +3α(ω− r)− (ω−1)3)/(6α2) , 1−α ≤ r ≤ α

(ω3−2(1− r)3)/(6α2) , α ≤ r ≤ 1

ω3/(6α2) , 1≤ r ≤ 1+α

0 , otherwise

f WW
1 (r) =



(5α
2(1−α)2 +5αr2(2r−α)(r+α)

− r3(4r2−5)−α
5 +5α

3−15αr2)]/(5α
2) ,

0≤ r ≤ 1−α

(10α(1+α
2)(ω−3r)−8r5

+10r3(1+α)2−ω
3(ω2−5r2))/(10α

2) ,
1−α ≤ r ≤ α

−[ω3(ω2−5r2)−10αω
2(ω2−3r2)

+30α
2
ω(ω2− r2)−10α

3(5ω
2− r2)

+4α
4(10ω−3α)]/(10α

2) ,

α ≤ r ≤ 1

ω3(ω2−5r2)/(10α2) , 1≤ r ≤ 1+α

0 , otherwise

5.23

with ω = 1+α− r. Setting α = 0 in these expressions gives the results for the lattice switching function, that is

〈WI,γWJ,γ ′〉lattice
1 = δγγ ′δIJ

8
3

ρm2`5 , 5.24
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so that compared with the result in Eq. 5.19, this one-particle term contributes only to the variance of WI , and

〈WI,γWJ,γ〉lattice
2 =

8
3

ρm2`5
ρVs

∫ 1

0
dr4+g(2`r,∆RIJ)(1− rx)(1− ry)(1− rz)(1−2rγ −2r2

γ )

≈ 8
3

ρm2`5
ρVs

∫ 1

0
r2dr f WW

lat,d(r)(g(2`r)−1) 5.25

for the diagonal element, and

〈WI,γWJ,γ ′〉lattice
2 = −8ρm2`5

ρVs

∫ 1

0
dr4−g(2`r,∆RIJ)(1− rx)(1− ry)(1− rz)rγrγ ′

≈ −8ρm2`5
ρVs

∫ 1

0
r2dr f WW

lat,od(r)(g(2`r)−1) 5.26

for the off-diagonal elements. If the subcells are large enough that g(r) ≈ 1 for r ≥ 2` then the integrals over the unit

cubes can be replaced by integrals over unit spheres, and the angular integrations performed analytically. This is how the

approximate expressions above were obtained, which after some algebra and noting
∫ 1

0 drγ(1− rγ)(1−2rγ −2r2
γ ) = 0 gives

f WW
lat,d(r) =



(10r5−64r4 +15(2π−3)r3 +280r2−150πr+60π)/15 , J = I

r(−10r4 +112r3−15(3+8π)r2 +120(2+π)r−90π)/30 , parallel J

r(−10r4 +32r3 +45r2−160r+30π)/30 , orthogonal J

r2(r(2r2−9)+8)/12 , J in
√

2 direction

r3(−10r2 +48r−45)/120 , J in
√

3 direction

0 , otherwise

5.27
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and

f WW
lat,od(r) =

r2

240
sgn(∆RIJ

γ )sgn(∆RIJ
γ ′ )×


−5πr3 +16(4+π)r2−60(1+π)r+160 , J in

√
2 direction, ∆RIJ

β
= 0

r(5πr2−64r+60)/2 , J in
√

3 direction

0 , otherwise

5.28

where sgn(x) is 1 for positive x, -1 for negative x and zero when x = 0. As expected, these expressions show that correlations

become weaker as neighbouring subcells become further separated. In the limit of very large subcells, the factor of g(2`r)−1

is zero except for increasingly smaller values of r. In this limit, using Equation 5.24, Equation 5.25, Kirkwood-Buff theory

and the fact that the vairance of CG position in the ideal gas case is given by Equation 5.24 due to zero many-body correlation,

the variance can be expressed as

σ
2
WW,lattice = 〈WI,γWI,γ〉lattice

∞ = lim
`→∞

(〈WI,γWJ,γ ′〉lattice
1 + 〈WI,γWJ,γ ′〉lattice

2 )

= lim
`→∞

8
3

ρm2`5
[

1+4πρ

∫ 2`

0
drr2(g(r)−1)

]
= lim

`→∞

〈WI,γWI,γ〉lattice
1 ρkT κ

Vs
T

= ρkT κ
∞
T 〈WI,γWI,γ〉lattice,ideal , 5.29

with κ
Vs
T the isothermal compressibility of the subcell.
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We expect the correlation to go to zero as the subcell size increases. This is

because all the two-particle terms contain an integral of g(r)− 1, which will be

a constant in the large subcell limit. Therefore, two-particle terms will converge

to a finite value as ` increases. On the other hand, one particle terms increase as

` increases. if we combine Eq. 5.25 and Eq. 5.29, the correlation coefficient for

diagonal elements when I is in the parallel direction of J is given in the large `

limit as

r∞
WI,γWJ,γ

= lim
`→∞

〈WI,γWJ,γ〉lattice
2

〈WI,γWI,γ〉lattice
∞

= lim
`→∞

8
3 ρm2`5ρ

∫ 2`
0 r2dr f WW

lat,d(
r

2`)(g(r)−1)
8
3 ρm2`5ρkT κ

Vs
T

= lim
`→∞

−3π

2kT κ
Vs
T `

∫ 2`

0
r3dr (g(r)−1) = 0, 5.30

where the last line is obtained by taking the dominant contribution to f WW
lat,d from

Equation 5.27 for large `.

As expected, the correlation coefficient will go to zero as ` increases. However,

complex behaviour for the correlations is expected for systems with ` comparable

to its g(r). Even in the large ` limit, the contribution from the two-particle term to

the variance will be negligible, but not zero. The correlation goes to zero because

the covariance term grows relatively slower compared to the variance term. We be-

lieve this is a general behaviour and any correlation coefficient in the large subcell

limit can be derived using the same procedure presented here.

5.3.2 Examination of the WI correlations with experiments

Calculations are performed on the variance and covariances of WI using the equa-

tions shown in the previous subsection. It was very easy to check the correctness of

the one-particle terms so we focused the calculation on computing the values of the

two-particle terms. These values are compared against the experimental (This re-

ally means computer experiments and the same meaning applies below) variance or

covariance values subtracted by the one-particle contribution predicted by the the-

ory. In this way, both terms are checked against experiments performed in Chap. 4.
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We choose Case 2, ns = 5 as the testing case since it is quicker to integrate over a

small subcell volume. From then on, we use Expt. as the notation for simulations.

0.0 0.2 0.4 0.6 0.8 1.0

0.80
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0.50

0.45
W

I,x
W

I,x
2

Theory
Expt.

Figure 5.1: Comparison between the theoretical and the experimental values
of the two-particle term in the variance of WI,x as a function of α using
hlinear(s). The two-particle terms computed from the experiment and the
theory are shown in red and blue, respectively. All values are computed
for Case 2, ns = 5 and `s = 5.

The comparison between the theoretical and experimental values of the two-

particle term for the variance of WI,x is shown in Fig. 5.1, and a similar comparison

for the two-particle term in the covariance of WI,xWJ,x is shown in Fig. 5.2. Over-

all, a decent match between the theoretical results and the experimental ones is

observed in these two figures. Sometimes significant fluctuation in the theoretical

calculation shows up because of numerical problems in computing the integral of

the complex g(r) of a liquid. A high-order extrapolation scheme for integration

was used in this calculation and the spikes in the numerical result were found to

appear at different locations in identical trials with different values of iuput points,

showing that the integration converges very slowly for some of the α values. Such

a slow convergence was observed to be persistent as the extrapolation order in-

creased from 15 to 19!

Finally, we computed the correlation between WI,xWJ,x as a function of ` and
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Figure 5.2: Comparison between the theoretical and the experimental values
of the two-particle term in the covariance of WI,xWJ,x as a function of
α using hlinear(s), ∆RIJ

lab = L∗ and ∆RIJ
lab,x = L∗. The two-particle terms

computed from the experiment and the theory are shown in red and blue,
respectively. All values are computed for Case 2, ns = 5 and `s = 5.

compared it with the experimental values given in Table. 3.6. This result is shown

in Fig. 5.3. Again, the theoretical results match the experiment very well. As we

expect, the behaviour of the correlation between CG positions is quite complex due

to the structure of the liquid g(r) when the subcell size is small.
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Figure 5.3: Comparison between the theoretical and the experimental values
of the correlation of WI,xWJ,x as a function of ` using hlattice(s), ∆RIJ

lab =
L∗ and ∆RIJ

lab,x = L∗. The correlations computed from the experiment
and the theory are shown in red and blue, respectively. All values are
computed for Case 2, and `s = 5.

106



5.4 Correlations of WI and MJK

For elements of the mass matrix, MJJ′ , we have bI(r) ≡ h(r+ `̀̀−∆RIJ)h(∆RIJ + `̀̀− r)h(r+ `̀̀−∆RIJ′)h(∆RIJ′ + `̀̀− r)
which when substituted into Equations (5.10) gives correlations with WI in the general form as

〈WIMJJ′〉1 = ρm2
∫ 2`

−2`
dr r h(r+ `̀̀)h(`̀̀− r)h(r+ `̀̀−∆RIJ)h(∆RIJ + `̀̀− r)

×h(r+ `̀̀−∆RIJ′)h(∆RIJ′+ `̀̀− r)

〈WIMJJ′〉2 = ρ
2m2

∫ 2`

−2`
dr1

∫ 2`

−2`
dr2 g(|r1− r2−∆RIJ|) r1h(r1 + `̀̀)h(`̀̀− r1)h(r2 + `̀̀)h(`̀̀− r2)

×h(r2 + `̀̀−∆RJJ′)h(∆RJJ′+ `̀̀− r2) , 5.31

Following the same procedure used in the previous section, the two-particle contribution is more efficiently evaluated by

transforming to r12 and using Equation 5.12 to give

〈WI,γMJJ′〉2 = ρ
2m2

∫ 4`

0
dr12

×
∫ 2`−r12,β

−2`
dr2,β h(r12,β + r2,β + `)h(`− r12,β − r2,β )h(r2,β + `)h(`− r2,β )

×
∫ 2`−r12,β ′

−2`
dr2,β ′ h(r12,β ′+ r2,β ′+ `)h(`− r12,β ′− r2,β ′)h(r2,β ′+ `)h(`− r2,β ′)

×
∫ 2`−r12,γ

−2`
dr2,γ (r12,γ + r2,γ)h(r12,γ + r2,γ + `)h(`− r12,γ − r2,γ)

×h(r2,γ + `)h(`− r2,γ)4−1 I 5.32
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where

4−1 I = I(r12,β ,r12,β ′ ,r12,γ ,r2,β ,r2,β ′ ,r2,γ)+ I(−r12,β ,r12,β ′ ,r12,γ ,−r2,β ,r2,β ′ ,r2,γ)

+ I(r12,β ,−r12,β ′ ,r12,γ ,r2,β ,−r2,β ′ ,r2,γ)+ I(−r12,β ,−r12,β ′ ,r12,γ ,−r2,β−,r2,β ′ ,r2,γ)

− I(r12,β ,r12,β ′ ,−r12,γ ,r2,β ,r2,β ′ ,−r2,γ)− I(−r12,β ,r12,β ′ ,−r12,γ ,−r2,β ,r2,β ′ ,−r2,γ)

− I(r12,β ,−r12,β ′ ,−r12,γ ,r2,β ,−r2,β ′ ,−r2,γ)− I(−r12,β ,−r12,β ′ ,−r12,γ ,−r2,β ,−r2,β ′ ,−r2,γ) 5.33

with

I(r12,β ,r12,β ′ ,r12,γ ,r2,β ,r2,β ′ ,r2,γ) =

h(r2,β + `−∆RJJ′
β
)h(∆RJJ′

β
+ `− r2,β )h(r2,β ′+ `−∆RJJ′

β ′ )h(∆RJJ′
β ′ + `− r2,β ′)

× h(r2,γ + `−∆RJJ′
γ )h(∆RJJ′

γ + `− r2,γ)g
([

(r12,β −∆RIJ
β
)2 +(r12,β ′−∆RIJ

β ′)
2 +(r12,γ −∆RIJ

γ )2
]1/2

)
5.34

in which β and β ′ are the Cartesian components different from γ . Again, some general properties follow from Equa-

tions (5.31) and (5.32). From the symmetry of the integrands and 4−1 I, it follows that 〈WIMII〉1 = 〈WIMII〉2 = 0 so there

is no coupling between W and mass elements when all indices refer to the same subcell. Analyzing the domains of the

switching functions also shows that 〈WIMJJ′〉1 = 0 unless J = J′, that is the one-particle term only couples W with diagonal

mass elements in neighbouring cells. Also, 〈WIMJJ′〉2 = 0 when g = 1 at all distances and ∆RJJ′
γ = 0. The coupling is the

same if J and J′ are exchanged. This follows from the symmetry of the mass matrix and can be seen explicitly by referencing

r2 from RJ′
lab instead of RJ

lab. As well, 〈WI,γMJJ′〉2 = 0 when ∆RIJ
γ = 0 and ∆RJJ′

γ = 0, that is for subcells in the orthogonal

direction. Furthermore, the one- and two-particles terms each change sign if the signs of ∆RIJ and ∆RJJ′ reversed. This
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means the correlations 〈WIMJJ′〉 will have the same magnitude but opposite sign for subcells in the left and right Cartesian

directions.

The one-particle contribution can be found analytically for the linear switching function as

〈WI,γMJJ′〉linear
1 = δJJ′

1
120

ρm2`4
α(α +5)sgn(∆RIJ

γ )×



(
1− α

2

)2
, parallel J

α

12

(
1− α

2

)
, J in

√
2 direction(

α

12

)2
, J in

√
3 direction

0 , otherwise

5.35

This coupling is quite small and vanishes completely when α = 0, that is for sharp subcell boundaries.
The two-particle contribution can be evaluated analytically for the linear switching function using the same procedure

employed with the components of W giving

〈WI,γ MJJ′〉linear
2 =

1
27

ρm2`4
ρVs

∫ 1+α

0
drβ

∫ 1+α

0
drβ ′

∫ 1+α

0
drγ

{
f WM
1

(
rγ ,

∆RJJ′
γ

2`

)

×

(
f WM
0

(
rβ ,

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,

∆RJJ′
β ′

2`

)
g
([

(2`rβ −∆RIJ
β
)2 +(2`rβ ′ −∆RIJ

β ′)
2 +(2`rγ −∆RIJ

γ )2
]1/2

)
+

f WM
0

(
rβ ,−

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,

∆RJJ′
β ′

2`

)
g
([

(2`rβ +∆RIJ
β
)2 +(2`rβ ′ −∆RIJ

β ′)
2 +(2`rγ −∆RIJ

γ )2
]1/2

)
+

f WM
0

(
rβ ,

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,−

∆RJJ′
β ′

2`

)
g
([

(2`rβ −∆RIJ
β
)2 +(2`rβ ′ +∆RIJ

β ′)
2 +(2`rγ −∆RIJ

γ )2
]1/2

)
+

f WM
0

(
rβ ,−

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,−

∆RJJ′
β ′

2`

)
g
([

(2`rβ +∆RIJ
β
)2 +(2`rβ ′ +∆RIJ

β ′)
2 +(2`rγ −∆RIJ

γ )2
]1/2

))
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− f WM
1

(
rγ ,−

∆RJJ′
γ

2`

)

×

(
f WM
0

(
rβ ,

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,

∆RJJ′
β ′

2`

)
g
([

(2`rβ −∆RIJ
β
)2 +(2`rβ ′ −∆RIJ

β ′)
2 +(2`rγ +∆RIJ

γ )2
]1/2

)
+

f WM
0

(
rβ ,−

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,

∆RJJ′
β ′

2`

)
g
([

(2`rβ +∆RIJ
β
)2 +(2`rβ ′ −∆RIJ

β ′)
2 +(2`rγ +∆RIJ

γ )2
]1/2

)
+

f WM
0

(
rβ ,

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,−

∆RJJ′
β ′

2`

)
g
([

(2`rβ −∆RIJ
β
)2 +(2`rβ ′ +∆RIJ

β ′)
2 +(2`rγ +∆RIJ

γ )2
]1/2

)
+

f WM
0

(
rβ ,−

∆RJJ′
β

2`

)
f WM
0

(
rβ ′ ,−

∆RJJ′
β ′

2`

)
g
([

(2`rβ +∆RIJ
β
)2 +(2`rβ ′ +∆RIJ

β ′)
2 +(2`rγ +∆RIJ

γ )2
]1/2

))}
5.36

in which r = r12/(2`). From our previous discussion we know
∆RJJ′

β

2` or −
∆RJJ′

β ′

2` can only be −1, 0 or 1. Otherwise, the
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correlations will be zero. Therefore, we use ∆ to represent
∆RJJ′

β

2` to simplify the notation. For α ≤ 1/2 the f functions are

f WM
0 (r,∆ =−1) =



(α4 +2αr(α2− r2)+ r4)/(2α3) , 0≤ r ≤ α

α , α ≤ r ≤ 1−α

(2(ω−α)4 +ω3(2α−ω))/(2α3) , 1−α ≤ r ≤ 1

ω3(2α−ω)/(2α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
0 (r,∆ = 0) =



(2r2(r−3α)+3α2(2−α))/α2 , 0≤ r ≤ α

6(1− r)−α , α ≤ r ≤ 1−α

(−ω4 +2α4 +4ωα(ω2−α2))/(2α3) , 1−α ≤ r ≤ 1

ω4/(2α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
0 (r,∆ = 1) =

{
(α− r)3(α + r)/(2α3) , 0≤ r ≤ α

0 , otherwise
5.37
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f WM
1 (r,∆ =−1) =



(α5 +4r5 +5αr(2α
3 +4α

2r−2αr2− r3)

−5(α4 + r4 +2α
3r−2αr3))/(10α

3) ,
0≤ r ≤ α

α(2r−1) , α ≤ r ≤ 1−α

((ω−2α)5 +10r(α−ω)4 +5rω
3(2α−ω)

+10α
4(α−ω))/(10α

3) ,
1−α ≤ r ≤ 1

ω3(10αr−5ωr−ω2)/(10α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
1 (r,∆ = 0) =



r((8α3 + r3)(2−α)+αr2(5r−12α−4))/(2α3) , 0≤ r ≤ α

6r(1− r)+α(1−2r) , α ≤ r ≤ 1−α

(−ω
5 +22α

5 +20ωαr(ω2−α
2)+5r(2α

4−ω
4)

+10ωα(ω3−4ω
2
α +8ωα

2−7α
3))/(10α

3) ,
1−α ≤ r ≤ 1

ω4(ω +5r)/(10α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
1 (r,∆ = 1) =

{
(α− r)3(4r2−α2 +7αr+5(α + r))/(10α3) , 0≤ r ≤ α

0 , otherwise
5.38
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while for α ≥ 1/2 they are

f WM
0 (r,∆ =−1) =



(α4 +2αr(α2− r2)+ r4)/(2α3) , 0≤ r ≤ 1−α

((r−1)4 + r2(r2−6α)+2α3 +2α(3r−1))/(2α3) , 1−α ≤ r ≤ α

(2(ω−α)4 +ω3(2α−ω))/(2α3) , α ≤ r ≤ 1

ω3(2α−ω)/(2α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
0 (r,∆ = 0) =



(2r2(r−3α)+3α2(2−α))/α2 , 0≤ r ≤ 1−α

(−ω
4−2α

4 +4ωα(ω2−α
2)

+4αr(3α
2−3αr+ r2))/(2α

3) ,
1−α ≤ r ≤ α

(−ω4 +2α4 +4ωα(ω2−α2))/(2α3) , α ≤ r ≤ 1

ω4/(2α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
0 (r,∆ = 1) =

{
(α− r)3(α + r)/(2α3) , 0≤ r ≤ α

0 , otherwise
5.39

113



f WM
1 (r,∆ =−1) =



(α5 +4r5 +5αr(2α
3 +4α

2r−2αr2− r3)

−5(α4 + r4 +2α
3r−2αr3))/(10α

3) ,
0≤ r ≤ 1−α

(8r5 +5α(2α−1)(α−1)(2r−1)−5α
2(4r3−6r2 +1)+1

−10r2(2r2−2r+1))/(10α
3) ,

1−α ≤ r ≤ α

((ω−2α)5 +10r(α−ω)4 +5rω
3(2α−ω)

+10α
4(α−ω))/(10α

3) ,
α ≤ r ≤ 1

ω3(10αr−5ωr−ω2)/(10α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
1 (r,∆ = 0) =



r((8α3 + r3)(2−α)+αr2(5r−12α−4))/(2α3) , 0≤ r ≤ 1−α

(−ω
5 +32α

5 +20ωαr(ω2− r2)−5r(8α
4 +ω

4)

+10ωα(ω3−4ω
2
α +8ωα

2−8α
3)+10r4

+40α
2r2(2α− r))/(10α

3) ,

1−α ≤ r ≤ α

(−ω
5 +22α

5 +20ωαr(ω2−α
2)+5r(2α

4−ω
4)

+10ωα(ω3−4ω
2
α +8ωα

2−7α
3))/(10α

3) ,
α ≤ r ≤ 1

ω4(ω +5r)/(10α3) , 1≤ r ≤ 1+α

0 , otherwise

f WM
1 (r,∆ = 1) =

{
(α− r)3(4r2−α2 +7αr+5(α + r))/(10α3) , 0≤ r ≤ α

0 , otherwise
5.40

These functions for ∆= 0 are almost an order of magnitude larger than those with ∆ 6= 0, so the largest couplings are expected
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when J = J′, that is for the diagonal mass elements. This trend agrees with simulation results. The results for the lattice

switching function are obtained by setting α = 0, giving

〈WI,γMJJ′〉lattice = δJJ′8ρm2`4
ρVs

∫ 1

0
dr4−1 g(2`r,∆RIJ)(1− rx)(1− ry)(1− rz)rγ

≈ δJJ′8ρm2`4
ρVs

∫ 1

0
r2dr f WM

lat (r)(g(2`r)−1) , 5.41

in which the expression for4−1 g(2`r,∆RIJ) can be inferred from Eq.(5.36), and where the last line is an approximation valid

if g(r)≈ 1 when r ≥ 2` with

f WM
lat (r) =

r
30

sgn(∆RIJ
γ )×


−8r3 +15(1+π)r2−20(4+π)r+30π , parallel J

r(16r2−15(2+π)r+68)/4 , J in
√

2 direction

r2(−8r+15)/4 , J in
√

3 direction

0 , otherwise

5.42

5.5 Correlations of mass matrix elements
The analysis of correlations among the mass matrix elements involves many terms and in principle, one may take several

different approaches. To begin, the average of the mass matrix elements themselves are needed when calculating correlation

coefficients. These are much simpler to obtain in practice because they involve only one-particle contributions, namely

〈MII′〉 = ρm
∫ 2`

−2`
dr h(r+ `̀̀)h(`̀̀− r)h(r+ `̀̀−∆RII′)h(∆RII′+ `̀̀− r) . 5.43
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It is possible to obtain analytical expressions for this average for the linear switching function, giving

〈MII′〉linear = nsm×



(
1− 1

3 α
)3

, I′ = I
α

6

(
1− 1

3 α
)2

, parallel/orthogonal I′(
α

6

)2 (1− 1
3 α
)
, I′ in

√
2 direction(

α

6

)3
, I′ in

√
3 direction

0 , otherwise

5.44

so the lattice result (when α = 0) is 〈MII′〉lattice = δII′nsm, as expected. The fuzzy boundary conditions thus spread the mass

contributions among the different off-diagonal mass elements, according to the degree of overlap, α . However, the total

subcell mass, given by

MI =
N

∑
I′=1

MII′ =
n

∑
i=1

dI
i mi 5.45

has an average that is preserved, as can be verified by recalling there are 6 neighbouring subcells in the parallel/orthogonal

directions, 12 in the
√

2 direction, and 8 in the
√

3 direction, so using the expressions in Equation 5.44 gives

〈MI〉= nsm

{(
1− 1

3
α

)3

+6× α

6

(
1− 1

3
α

)2

+12×
(

α

6

)2
(

1− 1
3

α

)
+8×

(
α

6

)3
}

= nsm . 5.46

One can consider correlations at the level of individual matrix elements MII′ or among the masses per subcell, MI . We

will consider each in turn beginning with the latter since it is simpler. Following the same approach as used for the other
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correlations, those between different MI for the one- and two-particle contributions are

〈MIMJ〉1 = ρm2
∫ 2`

−2`
dr h(r+ `̀̀)h(`̀̀− r)h(r+ `̀̀−∆RIJ)h(∆RIJ + `̀̀− r) = m〈MIJ〉

〈MIMJ〉2 = ρ
2m2

∫ 2`

−2`
dr1

∫ 2`

−2`
dr2 g(|r1− r2−∆RIJ|) h(r1 + `̀̀)h(`̀̀− r1)h(r2 + `̀̀)h(`̀̀− r2) , 5.47

in which Eq, (5.43) was used to give an exact relation for the one-particle contribution in terms of the averages of the mass

matrix elements. Transforming the last expression to r12 gives

〈MIMJ〉2 = ρ
2m2

∫ 4`

0
dr12 4+g(r12,∆RIJ)

×
∫ 2`−r12,x

−2`
dr2,x h(r12,x + r2,x + `)h(`− r12,x− r2,x)h(r2,x + `)h(`− r2,x)

×
∫ 2`−r12,y

−2`
dr2,y h(r12,y + r2,y + `)h(`− r12,y− r2,y)h(r2,y + `)h(`− r2,y)

×
∫ 2`−r12,z

−2`
dr2,z h(r12,z + r2,z + `)h(`− r12,z− r2,z)h(r2,z + `)h(`− r2,z) . 5.48

As expected, due to the isotropic nature of the system and the scalar nature of mass, each of the components is treated in the

same way. Equation (5.47) shows non-zero values are expected for the correlations among all possible pairs of MI but the

values are the same whenever |RIJ| is the same. For example, all subcells in the
√

2 direction give the same value.

For the linear switching function, the two-particle expression can be evaluated analytically by noting the similarity with
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Equation 5.14 to give

〈MIMJ〉linear
2 = nsm2

ρVs

∫ 1+α

0
dr f WW

0 (rx) f WW
0 (ry) f WW

0 (rz)4+g(2`r,∆RIJ)

= n2
s m2 +nsm2

ρVs

∫ 1+α

0
dr f WW

0 (rx) f WW
0 (ry) f WW

0 (rz)(4+g(2`r,∆RIJ)−8) 5.49

in which r = r12/(2`), and in the last line we have used
∫ 1+α

0 dr f WW
0 (r) = 1/2 for all α . This result can be used to determine

the variance of the mass per subcell for the linear switching function, using Equations (5.44), (5.47) and (5.49) to give

σ
2
MM,linear = 〈M2

I 〉linear−〈MI〉2

= m〈MI〉
[(

1− α

3

)3
+8ρVs

∫ 1+α

0
dr f WW

0 (rx) f WW
0 (ry) f WW

0 (rz)(g(2`r)−1)
]
. 5.50

We can obtain the corresponding expressions for the lattice switching function by setting α = 0 in Equations (5.47) and

(5.49), since in that limit MII = MI , and using Equation 5.22 to give

〈MIMJ〉lattice = nsm2
δIJ +n2

s m2 +nsm2
ρVs

∫ 1

0
dr (1− rx)(1− ry)(1− rz)(4+g(2`r,∆RIJ)−8)

≈ nsm2
[

δIJ +ns +ρVs

∫ 1

0
dr f MM

lat (r)(g(2`r)−1)
]

5.51

in which the last line is an approximation that holds when the subcells are large enough so that g(r) ≈ 1 for r ≥ 2`. In that

case, the integration over the unit cube and can be replaced by integration over a quadrant of a sphere, and the angular parts
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of the integral evaluated analytically, giving

f MM
lat (r) =



4π−6πr+8r2− r3 , J = I

r(6π−16r+3r2)/6 , parallel/orthogonal J

r2(8−3r)/12 , J in
√

2 direction

r3/8 , J in
√

3 direction

0 , otherwise

5.52

The relative sizes of these expressions show that correlations are expected to weaken systematically as neighbouring cells

are further separated. These results can also be used to evaluate the variance for the lattice switching function, giving

σ2
MM,lattice

m〈MI〉lattice = 1+8ρVs

∫ 1

0
dr (1− rx)(1− ry)(1− rz)(g(2`r)−1)

≈ 1+4πρVs

∫ 1

0
r2dr

(
1− 3

2
r+

2
π

r2− 1
4π

r3
)
(g(2`r)−1) .

5.53

Applying the same arguments used for Equation 5.26 shows that in the limit of very large subcells the integral is dominated

by the first term giving
σ2

MM,lattice,∞

m〈MI〉lattice = 1+4πρ

∫ 2`

0
dr r2(g(r)−1) = ρkT κ

Vs
T , 5.54

an equation identical in structure to Equation 5.29 for the variance of the W components. This is reasonable since particles

crossing subcell boundaries change both the subcell mass and the values of W. This only applies though to the sharp
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boundaries in the lattice case. For fuzzy boundaries, the CG variables can sense the positions of the particles as they move

from one cell to another, and in this case, the variances of the mass and W obey different relations.

The correlations among MI are fairly straightforward to determine while those among different elements of the full mass

matrix are more involved. However, the general procedures used above apply just as well, giving the one- and two-particle

contributions as

〈MII′MJJ′〉1 = ρm2
∫ 2`

−2`
dr h(r+ `̀̀)h(`̀̀− r)h(r+ `̀̀−∆RII′)h(∆RII′+ `̀̀− r)

×h(r+ `̀̀−∆RIJ)h(∆RIJ + `̀̀− r)h(r+ `̀̀−∆RIJ′)h(∆RIJ′+ `̀̀− r)

〈MII′MJJ′〉2 = ρ
2m2

∫ 2`

−2`
dr1

∫ 2`

−2`
dr2 g(|r1− r2−∆RIJ|) h(r1 + `̀̀)h(`̀̀− r1)h(r2 + `̀̀)h(`̀̀− r2)

×h(r1 + `̀̀−∆RII′)h(∆RII′+ `̀̀− r1)h(r2 + `̀̀−∆RJJ′)h(∆RJJ′+ `̀̀− r2) . 5.55

Transforming the last expression to r12 gives

〈MII′MJJ′〉2 = ρ
2m2

∫ 4`

0
dr12

×
∫ 2`−r12,x

−2`
dr2,x h(r12,x + r2,x + `)h(`− r12,x− r2,x)h(r2,x + `)h(`− r2,x)

×
∫ 2`−r12,y

−2`
dr2,y h(r12,y + r2,y + `)h(`− r12,y− r2,y)h(r2,y + `)h(`− r2,y)

×
∫ 2`−r12,z

−2`
dr2,z h(r12,z + r2,z + `)h(`− r12,z− r2,z)h(r2,z + `)h(`− r2,z)4+

1 I 5.56
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where

4+
1 I = I(r12,x,r12,y,r12,z,r2,x,r2,y,r2,z)+ I(−r12,x,r12,y,r12,z,−r2,x,r2,y,r2,z)

+ I(r12,x,−r12,y,r12,z,r2,x,−r2,y,r2,z)+ I(−r12,x,−r12,y,r12,z,−r2,x−,r2,y,r2,z)

+ I(r12,x,r12,y,−r12,z,r2,x,r2,y,−r2,z)+ I(−r12,x,r12,y,−r12,z,−r2,x,r2,y,−r2,z)

+ I(r12,x,−r12,y,−r12,z,r2,x,−r2,y,−r2,z)+ I(−r12,x,−r12,y,−r12,z,−r2,x,−r2,y,−r2,z)

5.57

with

I(r12,x,r12,y,r12,z,r2,x,r2,y,r2,z) =

h(r12,x + r2,x + `−∆RII′
x )h(∆RII′

x + `− r12,x− r2,x)h(r2,x + `−∆RJJ′
x )h(∆RJJ′

x + `− r2,x)

× h(r12,y + r2,y− `−∆RII′
y )h(∆RII′

y + `− r12,y− r2,y)h(r2,y + `−∆RJJ′
y )h(∆RJJ′

y + `− r2,y)

× h(r12,z + r2,z + `−∆RII′
z )h(∆RII′

z + `− r12,z− r2,z)h(r2,z + `−∆RJJ′
z )h(∆RJJ′

z + `− r2,z)

× g
([

(r12,x−∆RIJ
x )2 +(r12,y−∆RIJ

y )2 +(r12,z−∆RIJ
z )2]1/2

)
. 5.58

For the linear switching functions these expressions can be evaluated analytically giving

〈MII′MJJ′〉linear
1 = nsm2 f MM

0,1 (∆RII′
x ,∆RIJ

x ,∆RIJ′
x ) f MM

0,1 (∆RII′
y ,∆RIJ

y ,∆RIJ′
y )

× f MM
0,1 (∆RII′

z ,∆RIJ
z ,∆RIJ′

z ) 5.59
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and

〈MII′MJJ′〉linear
2 = nsm2

ρVs

∫ 1+α

0
drx

∫ 1+α

0
dry

∫ 1+α

0
drz

{
f MM
0,2

(
rz,

∆RII′
z

2`
,

∆RJJ′
z

2`

)

×

(
f MM
0,2

(
rx,

∆RII′
x

2`
,

∆RJJ′
x

2`

)
f MM
0,2

(
ry,

∆RII′
y

2`
,

∆RJJ′
x

2`

)
×g
([

(2`rx−∆RIJ
x )2 +(2`ry−∆RIJ

y )2 +(2`rz−∆RIJ
z )2]1/2

)
+ f MM

0,2

(
rx,−

∆RII′
x

2`
,−∆RJJ′

x

2`

)
f MM
0,2

(
ry,

∆RII′
y

2`
,

∆RJJ′
y

2`

)
×g
([

(2`rx +∆RIJ
x )2 +(2`ry−∆RIJ

y )2 +(2`rz−∆RIJ
z )2]1/2

)
+ f MM

0,2

(
rx,

∆RII′
x

2`
,

∆RJJ′
x

2`

)
f MM
0,2

(
ry,−

∆RII′
y

2`
,−

∆RJJ′
y

2`

)
×g
([

(2`rx−∆RIJ
x )2 +(2`ry +∆RIJ

y )2 +(2`rz−∆RIJ
z )2]1/2

)
+ f MM

0,2

(
rx,−

∆RII′
x

2`
,−∆RJJ′

x

2`

)
f MM
0,2

(
ry,−

∆RII′
y

2`
,−

∆RJJ′
y

2`

)
× g

([
(2`rx +∆RIJ

x )2 +(2`ry +∆RIJ
y )2 +(2`rz−∆RIJ

z )2]1/2
))

+ f MM
0,2

(
rz,−

∆RII′
z

2`
,−

∆RJJ′
z

2`

)

×

(
f MM
0,2

(
rx,

∆RII′
x

2`
,

∆RJJ′
x

2`

)
f MM
0,2

(
ry,

∆RII′
y

2`
,

∆RJJ′
x

2`

)
×g
([

(2`rx−∆RIJ
x )2 +(2`ry−∆RIJ

y )2 +(2`rz +∆RIJ
z )2]1/2

)
+ f MM

0,2

(
rx,−

∆RII′
x

2`
,−∆RJJ′

x

2`

)
f MM
0,2

(
ry,

∆RII′
y

2`
,

∆RJJ′
y

2`

)
×g
([

(2`rx +∆RIJ
x )2 +(2`ry−∆RIJ

y )2 +(2`rz +∆RIJ
z )2]1/2

)
+ f MM

0,2

(
rx,

∆RII′
x

2`
,

∆RJJ′
x

2`

)
f MM
0,2

(
ry,−

∆RII′
y

2`
,−

∆RJJ′
y

2`

)
×g
([

(2`rx−∆RIJ
x )2 +(2`ry +∆RIJ

y )2 +(2`rz +∆RIJ
z )2]1/2

)
+ f MM

0,2

(
rx,−

∆RII′
x

2`
,−∆RJJ′

x

2`

)
f MM
0,2

(
ry,−

∆RII′
y

2`
,−

∆RJJ′
y

2`

)
× g

([
(2`rx +∆RIJ

x )2 +(2`ry +∆RIJ
y )2 +(2`rz +∆RIJ

z )2]1/2
))}

5.60

122



in which r = r12/(2`). The functions f MM
0,1 (∆1,∆2,∆3) are symmetric with respect to exchange,

f MM
0,1 (∆1,∆2,∆3) = f MM

0,1 (∆1,∆3,∆2) = f MM
0,1 (∆2,∆1,∆3) = f MM

0,1 (∆3,∆2,∆1) 5.61

and with respect to negation,

f MM
0,1 (∆1,∆2,∆3) = f MM

0,1 (−∆1,−∆2,−∆3) 5.62

and are zero if any two non-zero arguments have the opposite signs (since in this case the integrand is identically zero

because there are always two switching functions that don’t overlap at any distance). In fact, these properties are general and

don’t apply just to the linear switching function. In any case, many different combinations of I, I′,J,J′ will give the same

one-particle contribution. There are only 4 distinct combinations giving non-zero values, namely

f MM
0,1 (∆1,∆2,∆3) =



(
1− 3

5 α
)
, ∆1 = ∆2 = ∆3 = 0

α/20 , precisely one ∆ =±2`

α/30 , precisely two ∆ =±2`

α/20 , ∆1 = ∆2 = ∆3 =±2`

0 , otherwise

5.63

Using Equation 5.63 in Equation 5.59 for I = I′ and J = J′ and comparing with Equations (5.44) and (5.47) shows that for

any α , 〈MIIMJJ〉linear
1 ≤ 〈MIMJ〉linear

1 with the equality applying only for the lattice case, α = 0. In other words, the one-

particle correlations for the diagonal elements are always smaller than those for the total mass per subcell. Turning now to

the two-particle contributions, the f MM
0,2 functions satisfy

f MM
0,2 (r,−∆2,−∆1) = f MM

0,2 (r,∆1,∆2) 5.64
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for any switching function so there only a couple of unique ones. The non-zero expressions that are valid for any α are

f MM
0,2 (r,∆1 = 0,∆2 = 1) =

{
(α− r)4(2r+3α)/(60α4) , 0≤ r ≤ α

0 , otherwise

f MM
0,2 (r,∆1 = 1,∆2 = 1) =

{
α/30− r2(5−5r/α +(r/α)3)/(30α) , 0≤ r ≤ α

0 , otherwise

f MM
0,2 (r,∆1 = 1,∆2 =−1) =


2(5ωα(ω2−4ωα +5α2)− (ω−α)5−9α5)/(15α2) , 1−α ≤ r ≤ 1

2ω3(ω2−5ωα +5α2)/(15α2) , 1≤ r ≤ 1+α

0 , otherwise

5.65

while those that depend upon the domain of α can be divided into two cases. For α < 1/2 they are

f MM
0,2 (r,∆1 = 0,∆2 = 0) =



1−3α/5− r2(20α3−10α2r+ r3)/(15α4) , 0≤ r ≤ α

1− r−α/3 , α ≤ r ≤ 1−α

ω−4α/15−ω2(ω3−20ωα2 +40α3)/(30α4) , 1−α ≤ r ≤ 1

ω5/(30α4) , 1≤ r ≤ 1+α

0 , otherwise

f MM
0,2 (r,∆1 = 1,∆2 = 0) =



α/20+ r(10+10r/α−20(r/α)2 +5(r/α)3 +2(r/α)4)/10 , 0≤ r ≤ α

α/6 , α ≤ r ≤ 1−α

(3ω5−6α5− (ω−2α)5 +5ω3α(4α−3ω))/(60α4) , 1−α ≤ r ≤ 1

ω4(5α−2ω)/(60α4) , 1≤ r ≤ 1+α

0 , otherwise

5.66
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while for α > 1/2 they are

f MM
0,2 (r,∆1 = 0,∆2 = 0) =



1−3α/5− r2(20α3−10α2r+ r3)/(15α4) , 0≤ r ≤ 1−α

1+7α/15+(ω2(−ω
3 +20ωα

2−40α
3)

+ r2(−2r3 +20rα
2−40α

3))/(30α
4) ,

1−α ≤ r ≤ α

ω−4α/15−ω2(ω3−20ωα2 +40α3)/(30α4) , α ≤ r ≤ 1

ω5/(30α4) , 1≤ r ≤ 1+α

0 , otherwise

f MM
0,2 (r,∆1 = 1,∆2 = 0) =



α/20+ r(10+10r/α−20(r/α)2 +5(r/α)3 +2(r/α)4)/10 , 0≤ r ≤ 1−α

(3ω
5−14α

5 + r5− (ω−2α)5 +(r+α)5

+5ω
3
α(4α−3ω)+5α

2r(α2−6r2))/(60α
4) ,

1−α ≤ r ≤ α

(3ω5−6α5− (ω−2α)5 +5ω3α(4α−3ω))/(60α4) , α ≤ r ≤ 1

ω4(5α−2ω)/(60α4) , 1≤ r ≤ 1+α

0 , otherwise

5.67

Using these expressions, along with Equations (5.63) and (5.64), allows some special cases to be identified. For example,

setting I = J and I′ = J′ gives

〈MII′MII′〉linear
2 = 8nsm2

ρVs

∫ 1+α

0
dr g(2`r)

× f MM
0,2

(
rx,

∆RII′
x

2`
,
∆RII′

x

2`

)
f MM
0,2

(
ry,

∆RII′
y

2`
,
∆RII′

x

2`

)
f MM
0,2

(
rz,

∆RII′
z

2`
,
∆RII′

z

2`

)
, 5.68
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in which r = r12/(2`), and along with Equations (5.59) and (5.44) can be used to evaluate the variances of the mass matrix

elements. Setting I = I′ and J = J′ and using Equation 5.59 gives

〈MIIMJJ〉linear = nsm2 f MM
0,1 (0,∆RIJ

x ,0) f MM
0,1 (0,∆RIJ

y ,0) f MM
0,1 (0,∆RIJ

z ,0)

+ nsm2
ρVs

∫ 1+α

0
dr f MM

0,2 (rx,0,0) f MM
0,2 (ry,0,0) f MM

0,2 (rz,0,0)∆+g(2`r,∆RIJ)

= nsm2 f MM
0,1 (0,∆RIJ

x ,0) f MM
0,1 (0,∆RIJ

y ,0) f MM
0,1 (0,∆RIJ

z ,0)+n2
s m2

(
1− α

3

)6

+ nsm2
ρVs

∫ 1+α

0
dr f MM

0,2 (rx,0,0) f MM
0,2 (ry,0,0) f MM

0,2 (rz,0,0)(∆+g(2`r,∆RIJ)−8) , 5.69

where in the last line we have used
∫ 1+α

0 dr f MM
0,2 (r,0,0) = (1−α/3)2/2 for all α . When α = 0 this expression reduces to

the lattice result given by Equation 5.51, as it should. However, the equation above can also be compared with Equation 5.49

which is the analogous equation but for the total subcell mass. The two results differ because with fuzzy boundary conditions,

the magnitude of the diagonal mass elements decrease as the mass distributes itself among the off-diagonal pieces. The total

subcell mass sums these off-diagonal contributions so is not subject to this decrease, even in the presence of fuzzy boundaries.

More specifically, setting I = J in Equation 5.69 and using Equation 5.44 gives the variance of the diagonal matrix elements

as

σ
2
MM,linear = 〈MIIMII〉linear− (〈MII〉linear)2

= nsm2

[(
1− 3

5
α

)3

+8ns

∫ 1+α

0
dr f MM

0,2 (rx,0,0) f MM
0,2 (ry,0,0) f MM

0,2 (rz,0,0)(g(2`r)−1)

]
5.70
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which can be contrasted with Equation 5.50 for the total subcell mass variance.

5.6 Conclusions
We have shown that the parameters of the CG potential can be derived using atom-

istic distribution functions. From there, the behaviour of potential parameters is

explored as a function of α or `. A decent match between theoretical results and

experimental values is found for correlations of CG positions. The numerical inte-

gration remains a challenge due to the complexity of the g(r).

In this theoretical formulation, a connection between finite-size isothermal

compressibility and the variance of the CG position or mass element is found.

Such a connection shows that thermodynamical properties can be extracted from

the equilibrium distributions of CG positions or masses. Using these derived equa-

tions, one not only knows many potential parameters are always zero from ana-

lyzing the symmetry of the integrand, but when to drop weak correlations before

carrying out CG simulations.

Our analysis suggests that all correlations will become zero in the large subcell

size limit. This result is consistent with the hydrostatic equation in fluid dynam-

ics where there is no correlation between subcells and the density of each subcell

remains constant. However, it is not clear whether the large subcell size limit is

the same as the length scale mentioned in the continuum hypothesis. Examining

the behaviour of the mass correlation at large ` may provide some insights into

answering this question.

Finally, it is worth noting that the theoretical formulation for potential param-

eters also gives the effect of atomistic particle numbers on the magnitude of the

mass variances. Therefore, we have the tool to compute the variance of the CG

mass for a fixed number of particles within the subcell. This finding is vital in

understanding the skewed mass distribution in the next chapter.
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Chapter 6

Understanding skewed mass
distributions

6.1 Introduction
In Section 4.3.1, it is observed that the distributions of CG mass elements undergo

a transition from a discrete symmetric distribution to a skewed distribution as α

goes from 0 to 1. From previous discussions, we are forced to reject the lattice

mapping scheme in practice since the trajectory of CG variables, in that case, is

discrete. However, moving into the fuzzy region gives rise to skewed mass dis-

tributions, which makes the behaviour of CG variables more difficult to model.

Understanding the origin of the skewness in the mass distributions could help us

know when it is appropriate to make the Gaussian approximation to the mass dis-

tributions. The goal is to find the microscopic relation that links the behaviour of

atomistic particles with that of CG masses. Such a relation could also give fun-

damental insights into the general framework of CG theories since the mass of

a particle or the density of a subcell is a common quantity used widely in many

effective models discussed in Chapter 1.

In this chapter, we first revisit the skewed mass problem in fuzzy mapping

schemes. Next, we propose a microscopic way to evaluate the CG variable distri-

butions. Then, a case study of the LJ fluid is performed to verify the correctness

of the relation we discovered. Several remarks and the impact of this relation are
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given at the end.

6.2 A revisit to the skewed mass problem
To quantify the skewness of a distribution, we used Fisher’s moment coefficient of

skewness whose expression is

Skew(A) =
〈δA3〉

〈δA2〉
3
2
, 6.1

where δA = A−〈A〉. The magnitude of skewness gives a quantitative measure of

the symmetry of a distribution. If the skewness is negative, a distribution has a

longer left tail while it has a longer right tail with a positive skewness coefficient.

A symmetric distribution with a finite third moment has a skewness of 0.

For an ideal gas like Case 1, the distribution of diagonal mass element at α = 0

is a binomial distribution since the probability of putting any atomistic particle into

a subcell is the same and is proportional to the inverse of the number of the sub-

cells. Note that the mass is always positive, and the truncated binomial distribution

is highly asymmetric for a small ns with `s = 5. As the ns increases, the skewness

will go to zero since a binomial distribution will go to a discrete Gaussian in the

large number limit. For an LJ liquid like Case 2, experimental data in Section 4.3.1

shows that the distribution of the atomistic particles in a subcell is a discrete Gaus-

sian even for small ns. Therefore, it is expected that for small ns, a liquid density

has a higher symmetry compared to a gas density providing that liquid systems

have more complex interactions and correlations between atomistic particles!

In Figure 6.1, we show the skewness of the diagonal mass element as a func-

tion of α for both Case 1 and 2 with the linear mapping scheme. As expected, the

skewness in the gas has a higher magnitude than that in the liquid when α = 0. For

Case 1, the skewness in the scenario where ns = 5 is more significant than that of

ns = 50, which agrees with our analysis. For Case 2, the behaviour of the ns = 5

scenario is quite complex. The skewness increases from 0, then decreases and

changes its sign as α goes to 1. This could be due to the complex fluid structure. In

theory, calculating skewness requires expressions for two- and three-particle dis-

tribution functions. For larger ns, it is observed that the magnitude of the skewness
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Figure 6.1: Skewness of MKK plotted as a function of α using hlinear(s). The
correlations for 5 and 50 particles per subcell are shown in red and blue,
respectively. Solid lines and dashed lines are skewness computed from
CG trajectories of Case 2 and 1 with `s = 5, respectively.

of MKK distribution increases as α increases. In the following sections, we shall

explain why this is the case.

6.3 Density-based expansion for CG variables
The standard way of computing the one-dimensional distributions of CG variables

is to integrate the total CG distribution function with all the degrees of freedom

saving one. This is extremely difficult to do because one has to know the analytical

form of the total distribution function and then perform a high-dimensional inte-

gration. Now, recall the physical picture of sampling the CG trajectory with the

fuzzy mapping at the atomistic scale: at each snapshot, there is a fixed number of

atomistic particles i inside a subcell, and the values of CG variables are computed

from their definitions. For each number density ρi, there will be a distribution of

CG variables since the values of CG variables still change when a fixed density of

atomistic particles moves inside that subcell. So, a sum over these number densi-

ties is needed to produce the distributions of the CG variables. The weight of the
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density is given by the equilibrium number density spectral P(i) discussed in the

last section.

Therefore, an alternative way of generating one-dimensional distributions of

CG variables is to expand the CG variables in terms of atomistic number densities,

that is

P(A) =
n

∑
i=1

P(i)P(A(i)) , 6.2

where A can be any CG variable, P(A(i)) is the distribution of A at ρi. One should

also note that the distribution of CG variables depends only on the number density

of the atomistic system and the effective size of the CG variables when α is fixed.

To use this equation, one first needs to compute P(i) from MD simulations.

Calculating P(A(i)) is not trivial since, in theory, one has to know the i-particle

distribution function. For CG positions and masses, only particle distribution func-

tions are needed, while for CG momentum, P(A(i)) requires information about

distributions of atomistic positions and momenta.

From the definition of CG variables in Equation 2.12, P(WI,x(i)) and P(PI,x(i))

are symmetric because at the atomistic level, particles distribute symmetrically

with respect to RI
lab and the distribution of momentum is symmetrical, respectively.

So, the Gaussian approximation to CG positions and momenta is always good.

6.4 Origin of the skewed diagonal mass
To examine the skewness in mass, we choose Case 1 whose behaviour is close to

that of the ideal gas so that a uniform distribution is a good approximation to the

many-particle distribution function. The binomial distribution is given by

P(k;n, p) =
n!

k!(n− k)!
pk(1− p)n−k, 6.3

where k is the number of successes out of n trials, and p is the probability of success

in one trial. For the binomial distribution of particle number i, one replaces k with

i, n with total number of atomistic particles, n, and p with one over the number of
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subcells, 1
`s

3 . This yields

Pideal(i) =
n!

i!(n− i)!
1
`3i

s
(1− 1

`3
s
)n−i . 6.4

The number of particles in the atomistic system is set to be 625, `s = 5 and α =

0.2 to simplify the summation process. A Monte Carlo code is written to sample

P(MKK(i)). Note that in this fuzzy case, the effective size the subcell extends more

than one physical volume of the subcell. So, the actual p in the calculation is

set to be 9
`s

3 to include the contribution of all possible atomistic particles to the

subcell. Some representative P(MKK(i)) are shown in Figure 6.2. As the number

of atomistic particles in a subcell increases, P(MKK(i)) becomes more symmetric

and less discrete.
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Figure 6.2: P(MKK(i)) plotted as a function of i using hlinear(s). All distribu-
tions are computed from a Monte Carlo code with `s = 5 and α = 0.2
for Case 1.

Combining all the P(MKK(i)) with Equations 6.2 and 6.4, we can generate

the one-dimensional distribution of MKK in theory. The comparison between the
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theoretical distribution and the experiment is shown in Figure 6.3. Overall, a decent

agreement is found between the theory and the experiment when we include 120

conditional distributions in Equations 6.2 starting from i = 1. This indicates that

when using Equations 6.2 in practice, a better way to cut off the full summation

is to only consider P(MKK(i)) near the average number of particles in subcell K.

These P(MKK(i)) will have a more significant contribution to P(MKK compared

with those conditioned on the number of particles that is away from the average

number.
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Figure 6.3: Comparison of theoretical P(MKK) with experimental P(MKK)
using hlinear(s). The theoretical distributions, generated from summing
70 and 120 conditional distributions, are shown in green and blue solid
lines, respectively. The experimental distribution shown in red dashed
line is computed from a CG trajectory with `s = 5 and α = 0.2 from
Case 1.

According to Equation 6.2, the skewed mass can be considered as a weighted

sum over many distributions at fixed number densities. Since in most scenarios

P(i) is almost symmetric, the statistical behaviour of P(MKK(i)) determines the

final symmetry of the mass distributions. From Equation 5.70 we see that the

variance of P(MKK(i)) is a quadratic function of atomistic particle numbers. In

particular, in the ideal gas limit, the factor of the quadratic term should be non-
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negative. This means the width of P(MKK(i)) increases with i. Combine this result

with a symmetric P(i), Pideal(MKK) will always have a longer tail on the right, that

is, positive skewness, which is consistent with Case 1 results in Figure 6.1. As for

Case 2 results in Figure 6.1, the behaviour is quite complex since the behaviour of

the variance is determined by the complex integral over g(r) in Equation 5.70.

In general, it is observed that the necessary condition for having a symmetrical

diagonal mass distribution is that the variance of P(MKK(i)) is symmetric around

ns, the mean of the symmetric P(i). Of course, such a condition is very difficult

to satisfy. However, as for the application of the CG theory, especially for large i,

we would expect the differences in the variance of P(MKK(i)) to be small since the

ratio between the standard deviation and the mean of MKK(i) goes with 1√
i

for very

small α using Equation 5.43 and Equation 5.70.

6.5 Conculsions
The density-based expansion method solves the skewed mass problem. In short,

the skewness of the mass distribution originates from the difference in the vari-

ances of the CG mass distributions at different numbers of atomistic particles. We

quantitatively show that the symmetry of the variance of P(A(i)) is crucial to the

symmetry of P(A). One can convert Equation 6.2 into an integral and find the an-

alytical expression for one-dimensional distributions of CG variables. In this case,

for large i, P(A(i)) can be approximated as a Gaussian with its mean and variance

depending on i.

One can expect Equation 6.2 will be very useful in the context of multiscale

simulation. Since it shows how the value of CG variables corresponds to the distri-

bution of atomistic densities, it tells us how to exchange information between two

resolutions to maintain correct equilibrium at both scales.

Symmetry and symmetry breaking play an important role in particle physics.

It is tempting to think the symmetry to asymmetry transition we have seen for CG

mass may indicate something that is even more fundamental. For example, mi-

croscopic expressions for pressure tensors and other physical quantities are also

computed by combining the contributions of all particles in a subcell. Therefore,

similar asymmetric distribution of physical quantities of fluids in a confined space
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may be explained in a similar vein. In the large number limit, we expect the con-

tinuous CG mass distribution will become symmetric using the central limiting

theorem. This means, as the size of the subcell increases, there is a transition from

an asymmetric CG mass distribution to a symmetric one. In general, developing

a theory concerning the symmetry of CG systems could also be useful in under-

standing why theories in continuum dynamics are so successful.
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Chapter 7

Understanding projected flux

7.1 Introduction
In the past three chapters, we discussed the form and the behaviour of CG poten-

tial. What remains in the conservative part of the CG EOM are G terms in Equa-

tions 2.21 and 2.22, which come from projecting onto the time derivative of CG

variables45. The projected flux, Pφ LA, is a high-dimensional integral conditioned

on all CG variables from Equation 2.14. The result of the integral is a function

that depends on all CG variables. Such a function can only be studied by finding

the relationship between CG variables and LA from sampling the atomistic phase

space conditioned on CG variables, since evaluating this integral is not feasible.

We propose two ways to understand the behaviour of the G terms. On the one

hand, we hope to understand how the values of G change from the microscopic dy-

namics of the atomistic motion. This can be answered by computing the moments

of G using atomistic particle distribution functions. From the symmetry and theo-

retical analysis, we can find which G terms are small or have small fluctuations as

well as how ns and α affect G. Proper approximations can be made after acquiring

this knowledge.

On the other hand, one can compute G integrals in a brute-force way. This

means, for any values of CG variable φ = φk, one generates the conditional dis-

tribution of LA as LA(φ = φk,z) by sampling the atomistic phase space, and then

taking the conditional average using ρeq(z) to get LA(φ = φk). Alternatively, one
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can replace the ensemble average with the time average over time t. By sampling

trajectories, such a method produces the distribution P(LA|φ = φk) that describes

the frequencies of LA(φ = φk, t) and computes LA(φ = φk) from the mean of the

distribution. However, sampling the phase space requires an enormous amount of

data if the number of CG variables in the projected flux problem is large, which

is beyond the capability of current simulation methods. Therefore, we turned to

machine learning methods for our rescue.

In this chapter, our goal is to establish a general framework to study the pro-

jected flux. We perform a theoretical analysis to the moments of G. Then, an

experimental examination is carried out to verify the correctness of the theoret-

ical expressions. Next, we test machine learning methods for studying the low-

dimensional behaviour of G. In the end, some comments and future work are

presented.

7.2 Theoretical analysis for G terms
The CG equations of motion also contain two terms - the G terms - accounting

for changes induced when particles move between subcells. These quantities, in

general, depend upon all the CG variables. What is calculated below are the full

CG averages of those quantities. The full CG averages involve only one-particle

integrals, and considering the homogeneous case with the origin of the coordinate

systems shifted to RK
lab gives
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〈G1
KI〉 = ρm

∫ 2`

−2`
dr rh(r+ `̀̀−∆RKI)h(∆RKI + `̀̀− r)

∂

∂r
(h(r+ `̀̀)h(`̀̀− r)) 7.1

〈G2
IJK〉 = ρm

∫ 2`

−2`
dr h(r+ `̀̀−∆RKI)h(∆RKI + `̀̀− r)h(r+ `̀̀−∆RKJ)h(∆RKJ + `̀̀− r)

× ∂

∂r
(h(r+ `̀̀)h(`̀̀− r)) 7.2

The elements of G1
KI depend upon two Cartesian components, γ and γ ′, the components of r and ∂/∂r, respectively. For the

linear switching function, the integrals in Equation 7.1 can be performed analytically giving

〈G1
KI,γγ〉= nsm f G1

0 (∆RKI
β
) f G1

0 (∆RKI
β ′ ) f G1

2 (∆RKI
γ ) 7.3

when the components are the same, and

〈G1
KI,γγ ′〉= nsm f G1

0 (∆RKI
β
) f G1

1 (∆RKI
γ ) f G1

3 (∆RKI
γ ′ ) 7.4

138



when they differ, where β and β ′ are the components different from γ and γ ′, and

the f G1 functions are given by

f G1
0 (∆) =


1−α/3 , ∆ = 0

α/6 , ∆ =±2`

0 , otherwise

7.5

f G1
1 (∆) =

{
±α/12 , ∆ =±2`

0 , otherwise
7.6

f G1
2 (∆) =


(α−3)/6 , ∆ = 0

−(3+α)/12 , ∆ =±2`

0 , otherwise

7.7

f G1
3 (∆) =

{
∓1/2 , ∆ =±2`

0 , otherwise
7.8

Notice the lattice switching function expressions, with α = 0, are all zero except

for the diagonal terms with K = I or K and I being neighbours in the direction along

the component γ . In contrast, for fuzzy boundaries, the off-diagonal components

become non-zero but only when K and I are in the orthogonal,
√

2 or
√

3 directions.

That is, 〈G1
KI,γγ ′〉= 0 when K = I.

For each set of indices {I,J,K}, G2
IJK is a vector whose components are la-

belled by γ . For the linear switching function, the integrals in Equation 7.2 can be

performed analytically giving

〈G2
IJK,γ〉=

nsm
`

f G2
0 (∆RKI

β
,∆RKJ

β
) f G2

0 (∆RKI
β ′ ,∆RKJ

β ′ ) f G2
1 (∆RKI

γ ,∆RKJ
γ ) , 7.9

in which β and β ′ are the Cartesian components different from γ and the functions

satisfy the symmetry relations

f G2
0 (∆1,∆2) = f G2

0 (∆2,∆1) and f G2
1 (∆1,∆2) = f G2

1 (∆2,∆1) 7.10
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with the unique values

f G2
0 (∆1,∆2) =


1−α/2 , ∆1 = 0,∆2 = 0

α/12 , ∆1 = 0,∆2 =±2`

α/12 , ∆1 =±2l,∆2 =±2`

0 , otherwise

7.11

f G2
1 (∆1,∆2) =


∓1/12 , ∆1 = 0,∆2 =±2`

∓1/6 , ∆1 =±2l,∆2 =±2`

0 , otherwise

7.12

The corresponding results for the lattice switching function are obtained by setting

α = 0. In almost every case, this will yield zero. In fact, the only non-zero values

occur when I, J, and K label two cells are coincident with the third being a nearest

neighbour lying in the same Cartesian direction as the vector component.

To check the theoretical formulation, we sampled the diagonal elements of

〈G1
KI〉 from MD simulation and compute their time averages with their theoretical

values computed from Equation 7.3 as a function of α . This result is shown in

Figure 7.1. The experimental values agree well with the theory. As expected,

〈G1
KI,xx〉 equals 〈G1

KI,yy〉 while they do not equal to 〈G1
KI,zz〉. Some deviation from

the theory is observed for 〈G1
KI,zz〉 at a very small α . This could be due to the

insufficient sampling from the experiment. When α is small, there is a tiny slit

where the derivative of the membership function is nonzero, making the effective

sampling of those events a challenge when ns is small. Note that these averages

are not the same averages in the CG EOM, which are functions of CG variables

generated by the projection. In the next section, we will show an alternative way

to study these projected fluxes using a statistical learning method.
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Figure 7.1: Comparison between the theoretical and the experimental val-
ues of averages of 〈G1

KI,γγ
〉 as a function of α using hlinear(s), ∆RKI

lab =

L∗ = ∆RIJ
lab,z = L∗. The diagonal terms computed from the experiment,

〈G1
KI,xx〉Expt., 〈G1

KI,yy〉Expt. and 〈G1
KI,zz〉Expt. are shown in red squares,

green circles and blue stars, respectively. The diagonal terms computed
from the theoretical expressions, 〈G1

KI,xx〉T heory and 〈G1
KI,zz〉T heory are

plotted as orange and blue lines respectively. All values are computed
for Case 2, ns = 5 and `s = 5.
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7.3 Gaussian process regression for G terms

7.3.1 Input data preparation

We attack this data-driven problem by considering it as a high-dimensional regression problem with a small and noisy data

set. Several machine learning models concerning the memory term have been discussed in the past68 but a machine learning

model for understanding the projected flux has not been developed. We note that in the time-average approach, LA(φ = φk, t)

produced from dynamics simulations can be treated as a LA(φ = φk) with noise. The distribution of the noise is described

exactly by P(LA|φ = φk). We present a machine-learning method that learns the noisy data and predicts the projected flux

in the CG space.

To simplify the complexity of the problem, we focus on the projected flux of G1 first. The conditional expectation of

G1
KI following Equation 2.14, Equation 2.12 and Equation 2.21, for example, is

〈G1
KI〉 =

∫
dr e−β [U(r)−V (W,M)]

(
n

∑
i=1

midI
i (ri−RK

lab)
∂dK

i

∂ri

)
×

{
N

∏
I=1

δ

[(
n

∑
i=1

dI
i mi(ri−RI

lab)

)
−WI

]}

×

{
N

∏
I,J=1

δ

[(
n

∑
i=1

dI
i dJ

i mi

)
−MIJ

]}
, 7.13

in which V (W,M) is the CG potential, β is the thermodynamic beta and U(r) is the interacting potential among n atomistic

particles. Any G term is a function of CG variables and can be further written as 〈G〉= G(W,M)

e−βV (W,M) , where W=(W1,W2, ...,WN),

M=(M11,M12, ...,MNN), N is the number of the CG variables.
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As mentioned earlier, it is not practical to compute G(W,M) with a small set

of data. However, we can learn the functional form of G(W,M) using a machine

learning model. It is clear that one also needs to know the CG potential to compute

the projected flux of G. We argue that the CG potential is the projected atomistic

potential, so the model we develop for studying G(W,M) should also work for the

CG potential.

The atomistic trajectory is converted to a CG trajectory where dynamical vari-

ables G(z) are evaluated at each frame using Equation 2.21. The accuracy of

computing dynamical variables is high and the trajectory of these dynamical vari-

ables can be considered as noiseless. However, when we feed the input data to

the machine learning model, we let the model consider G(z) as the projected flux

G(W,M) with noise. In this sense, the input label ”G(W,M)” does contain noise

whose distribution is given by P(G|W,M). The distribution of the noise depends

on the atomisc system and the specific CG mapping one chooses. In our case,

Case 2 with a linear mapping scheme, `s = 5 and ns = 50 with α = 0.2 produces a

Gaussian-like noise. Other forms of the noise will be tested in the future.

7.3.2 Gaussian process regression

The problem we want to answer is a high-dimensional regression problem. Among

current regression models, Gaussian process regression Gaussian Process Regres-

sion (GPR) provides a non-parametric way of learning arbitrary functions using

kernels. It not only provides a predicted output but also the Bayesian uncertainty

associated with the prediction. The noise of the output can also be modelled in

GPR. With a proper choice of the kernel, GPR can be used to extrapolate unseen

values of a high-dimensional function69. All these properties make GPR a good

candidate for the machine learning models for studying projected flux. In the GPR

model, a Gaussian process is trained to find the parameters for the kernel that max-

imizes the marginal likelihood

lnP(y|X) =−1
2

yT (K +σ
2I)−1y− 1

2
ln |K +σ

2I|− nt

2
ln2π, 7.14

where y = (y1, ...,ynt ) is a set of noisy G(W,M), X = (x1, ...,xnt ) is a set of (W,M)

that produces y, K is a matrix of kernel functions k(xi,x j), i, j = (1, ...,nt), nt is the
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number of training points, σ is the standard deviation of the noise of the G(W,M)

and I is identity matrix. For any x∗ = (W∗,M∗), the predicted output is equal to

the mean of the Gaussian posterior as

µ̂ = kT (x∗)(K +σ
2I)−1. 7.15

The uncertainty of the prediction is given by the variance of the posterior as

σ̂
2 = k(x∗,x∗)− kT (x∗)(K +σ

2I)−1k(x∗). 7.16

The performance can be measured by the root mean squared error between predic-

tions and true outputs. However, when the data set is very noisy, computing the

root mean squared error is not very useful since the test data is also very noisy.

So, we will only compare the trained function with G(W,M) obtained from MD

simulations. Kernel selection is performed by computing the Bayesian information

criterion Bayesian Information Criterion (BIC)

BIC = lnP(y|X)− 1
2

nk lnnt . 7.17

where nk is the number of parameters in the kernel. This criterion penalizes the use

of complicated kernels and reduces overfitting.

7.3.3 Result and discussion

We start by studying G(W,M) in low dimensions with a data set of 1000 points.

First, we consider a one-dimensional regression problem and check whether a GPR

model can optimize the posterior and the noise by comparing with MD data. Then,

we increase the dimensionality of the problem to three and explore the better kernel

using BIC. A 95% confidence interval is used in all uncertainty calculations. The

experimental inputs are called observations in this section.

We use a simple squared exponential (SE) kernel to perform regression. The

results are shown in Figure 7.2. In Figure 7.2(a), we show the noisy nature of

the G1
11,xx(W1,x) given by P(G1

11,xx|W1,x). The optimized posterior and uncertainty

along with experimental G1
11,xx(W1,x) are plotted in Figure 7.2(b). The posterior
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Figure 7.2: Results of using one-dimensional GPR model to study
G1

11,xx(W1,x). (a) Input data along W1,x and G1
11,xx(W1,x) learned by the

model (b) Posterior with uncertainty is compared with experimental
G1

11,xx(W1,x) (c) Modelled noise compared with experimental noises for
each conditional distribution P(G1

11,xx|W1,x).

gives a better prediction of the function near W1,x = 0 because the distribution of

W1,x is centered at zero and thus has better statistics. The same issue happens to

those error bars of the experimental values. The standard deviation noise of the

model is optimized to around 3 and is plotted with experimental noises in Fig-

ure 7.2(c). This shows that, again, in the region where the statistics of the label are

good, the optimized noise matches well with the experimental noise with less than

5% deviation. Overall, a simple GPR model produces a good posterior and noise

in the one-dimensional cases. Our study indicates that to improve the prediction

result, we need to add more labels that are near the edge of the W1,x distribution.

The result found in one-dimension suggests that a GPR model can produce a

decent result for one W variable. According to Equation 2.12, W and M have

different properties and distributions. So, we increase the complexity of the prob-
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Figure 7.3: Results of using a three-dimensional GPR model to study
G1

11,xx(W1,x,M11,M22). (a) Input data along W1,x and G1
11,xx(W1,x,M11 =

0.81,M22 = 0.81) learned by a SE kernel, values of other variables
are fixed when plotting. (b) Input label along M11 and G1

11,xx(W1,x =
0,M11,M22 = 0.81) learned by the same SE kernel.(c) BIC of differ-
ent kernels, their posteriors at W1,x = 0,M11 = 0.81,M22 = 0.81 with
experimental values. The names of the kernels are, from left to right,
Squared exponential kernel (SE), Matérn kernel (ME) and Periodic ker-
nel (PER). Experimental G1

11,xx and its uncertainty are shown as a red
line and a red, shaded area, respectively.

lem by studying G1
11,xx(W1,x,M11,M22). In Figure 7.3(a)(b), we show the noisy

G1
11,xx(W1,x,M11,M22) obtained from input data. The learned function is flatter

compared with the one-dimensional case. Due to the poor sampling statistics from

the experimental side, we only compute G1
11,xx(W1,x,M11,M22) at (W1,x = 0,M11 =

0.81,M22 = 0.81) in Figure 7.3(c). This value is compared with the predicted re-

sult obtained from four models. It is hard to tell which model performs better from

experiments because the uncertainty of the experimental calculation plotted as the
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filled red region is too high. We also computed BIC of these models and found

Matérn 3/2 kernel wins slightly. Overall, more data from the experiments need to

be computed to further understand G1
11,xx(W1,x,M11,M22).

7.4 Conclusions
Once again, we show that atomistic particle distribution functions are great tools

for understanding the behaviour of projected flux. It is found that many G terms

have a significant contribution to the conservative terms of the EOM even when

α is very small. In the future, it would be useful to study the fluctuation of G. If

we can show that for large `, the fluctuation is very small compared to its mean,

then G can be treated as constants. Such knowledge would simplify the EOM

tremendously.

GPR can be used to study the projected flux problem because the noise of

the conditional distribution of G and G(W,M) can be accurately modelled by a

simple GPR model at low dimensions. This is exciting because studying projected

flux using MD at low dimensions takes weeks and the best we can do might be

to understand a five-dimensional problem. On the other hand, for 1000 inputs,

training a GPR model usually takes minutes and can provide decent results.

As the dimensionality rises, sampling G from experiments will be a diffi-

cult task. It is necessary to consider, for example, using machine-learned low-

dimensional functions as a tool to study a high-dimensional problem. In the mean-

time, our understanding of the CG potential shows that the interaction between

subcells is localized. So, it is often a good approximation to write G as a function

of its local CG variables. A general GPR model should be able to learn from an

arbitrary noise distribution since the noise is, sometimes, non-Gaussian.
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Chapter 8

Conclusions and future work

8.1 Conclusions
A theoretical framework for understanding the theory of coarse-graining is estab-

lished. In this framework, an Eulerian perspective is used and the dynamics of

fluids is described by the time evolution of the CG variables associated with each

subcell. In Chapter 2, a set of dynamically correct EOM for the CG variables is

derived from the evolution equations of dynamical variables using Mori-Zwanzig

theory. This thesis, in particular, focuses on understanding the conservative part of

the CG EOM using theoretical and numerical tools.

A position-dependent mapping scheme is proposed to convert atomistic infor-

mation to mesoscopic variables. In Chapter 3, it was found that our definition of the

membership function dI
i conserves total mass and momentum. When the switch-

ing function in dI
i is set to a Heaviside function, the total distribution function of

the CG variables exhibits a multivariate Gaussian behaviour while the CG mass

distribution is discrete. The source of the linear correlation between neighbouring

subcells is qualitatively explained by a diffusing blob model for the dense liquid

phase. When the switching function in dI
i is set to be fuzzy in Chapter 4, the CG

mass becomes continuous and integrable. A transition from discrete mass to con-

tinuous mass is observed as the fuzziness of the system increases. The CG potential

can still be approximated by a Gaussian. However, complex correlations show up

as the mass matrix becomes non-diagonal. Interestingly, the mass distributions are
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found to be more skewed as the fuzziness increases.

In Chapter 5, a comprehensive analysis of the analytical behaviour of the mo-

ments of CG variables is carried out using the atomistic distribution function the-

ory. If the CG potential can be approximated by a Gaussian, then computing up to

second moments of CG variables is enough to reconstruct the potential from the-

ory. Such an analysis shows the dependence of these moments on the number of

atomistic particles and the fuzziness of the system. In the large number limit, all

correlations between the subcells are gone, which is consistent with fluid dynamics.

The skewed mass issue is examined in detail in Chapter 6. A density expansion

method is proposed to reconstruct the one-dimensional distribution of CG vari-

ables. Combining this idea with the finding in Chapter 5, the origin of the skewed

mass comes from the asymmetric distribution of the variance of the CG mass distri-

bution conditioned on a fixed number of atomistic particles using a fuzzy mapping

scheme. This means fuzzy mapping schemes produce continuous mass, and con-

tinuous mass is always skewed. Luckily, in the large number limit, the skewness

of the mass distribution is marginal since the width of the mass distribution over

its mean scales as one over the square root of the number of atomistic particles

associated with it.

In Chapter 7, the remaining terms in the conservative EOM, the projected flux

G, are studied. Two approaches are taken in this study. First, the CG average of the

projected flux is analyzed through atomistic distribution functions, showing that

many components of G are zero or negligible from the symmetry of the integral.

Second, Gaussian process regression is found to be a potential method to study the

data-driven problem of calculating the numerical form of G(W,M). The trick is to

consider the conditional distribution of G(W,M) as a posterior with noise.

In summary, a systematic approach is created to study the conservative terms

in the CG EOM. In the meantime, an understanding of the fluid’s behaviour at a

mesoscopic scale is gained. The highlights of this study are that, i) in most cases,

the CG potential for a homogeneous, single-component fluid can be modelled by

a Gaussian, ii) analytical formulas are derived to describe the behaviour of the po-

tential parameters from statistical mechanics, iii) a density expansion formula is

discovered and it successfully explained the skewed mass issue and iv) the pro-

jected dynamics can be studied by combining particle distribution function theory
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and Gaussian process regression.

Several generalizations can be made from these findings. Any CG mapping

scheme using local density will yield a discrete distribution of CG mass. Adding a

fuzzy switching function at the boundary of the CG mass solves the discrete issue

but also introduces a skewed distribution. The density expansion formula is gen-

eral and deepens our understanding of the distributions of CG variables. Any CG

variables, including density-related variables in continuum science, can be studied

in this approach. This formula also serves as an analytical tool to connect two reso-

lutions, which is very useful in the field of multiscale simulations. From analyzing

the moments of CG variables and the asymptotic behaviour of these potential pa-

rameters, questions such as how to quantify the continuum hypothesis, and how to

know the validation of the fluid dynamics models at small scales, are understood

from a microscopic theory. Such knowledge makes it possible to correctly simulate

fluid systems at a nanoscale.

The impact of this work is, i) The Gaussian form of the CG potential is quite

general and should work for any kind of atom-like fluid particles. This form can

be used to describe the classical, mesoscopic, dynamic behaviour of dense gas and

liquid such as water or methane, which no mesoscopic or continuum method can

correctly describe. ii) The dynamical correct EOM gives a basis for simulating

complex biological systems with correct solvent behaviours. Implementing this

method in a mix-resolution model or with a hybrid mapping scheme will produce

the correct dynamics for complex systems. iii) Our understanding of the skewed

mass distribution solves a long-standing problem in fluctuating hydrodynamics the-

ory, that is, what is the correct behaviour of the fluctuating density term.

8.2 Future work
In the future, it would be interesting to explore the behaviour of the CG potential in

multi-component or multi-phase systems. One expects that the differences in the

interaction between different species play an important role in the form of the CG

mass. As for a two-phase system, a double well may be necessary to describe the

dynamical equilibrium.

For a single-phase and single-component fluid, we are currently working on
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implementing the conservative part of the CG EOM and exploring the effect of

each conservative term. Since the form of the potential for a single-phase fluid is

known, one can write a Monte Carlo program to sample the CG ensemble. It is

still an open question whether the equilibrium sampling will produce the correct

distribution since at this time CG mass is coupled with CG momentum, meaning

that changing the value of the mass will affect the corresponding momentum term

in the total distribution function expression in Equation 2.16.

For the projected dynamics, more analysis on the fluctuation of G is needed

to know when the fluctuation is negligible and G can be treated as a constant.

In the meantime, building a universal Gaussian process regression model for the

high-dimensional, noisy dataset is still a challenge.

Another unknown part of the EOM is the memory term which contains the ef-

fect of the unprojected dynamics. A possible treatment is to consider the memory

effect as Markovian46 if the timescale of the unprojected dynamics can be sepa-

rated from the projected one. If the Markovian approximation fails, one may turn

to machine learning models68.

Finally, it is still a vital question: how can we develop EOM that excel at all

resolutions from atomistic to continuum. Developing analytical theories of coarse-

graining plays a central role because it aims to understand the dynamics of dy-

namical variables from atomistic to continuum scales. Understanding the full CG

EOM not only allows us to study the correct dynamics of CG systems but provides

a solid starting point in generalizing continuum dynamics.
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