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Abstract

Full nodes in a blockchain network store and verify a copy of the whole blockchain.

Unlike full nodes, light clients are low-capacity devices that want to validate cer-

tain data on a blockchain. They query the data they want from a full node. If light

clients do not verify the data they receive, full nodes might deceive them. SPV,

introduced in the Bitcoin white paper, is a practical solution to this problem cur-

rently used in many PoW blockchains. In SPV, the resources needed to verify a full

node’s response grow linearly with the blockchain size, making it inefficient over

the long run. Another issue with SPV is that the full nodes do not get compensated

for the services they provide.

In this work, we introduce LIGHTSYNC, a simple and cost-effective solution for

light clients to verify the inclusion of certain data in a PoW blockchain. LIGHT-

SYNC enjoys a number of salient features. First, the resources needed for running

LIGHTSYNC remain constant no matter what the size of the blockchain is. Sec-

ond, LIGHTSYNC is provably secure under the variable difficulty settings. Third,

LIGHTSYNC can be implemented without the need for any excess built-in struc-

ture.
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Lay Summary

In a blockchain network, everyone needs access to the honest data of the blockchain.

Light nodes in a blockchain are nodes that have low storage and computation

power. They cannot become a full node to store and verify the whole data of the

blockchain because of their limited resources. They must query full nodes to get

the data they want. However, full nodes might provide the light node with mali-

cious data, therefore, light nodes should be able to verify the data they receive. In

this work, we propose a simple and cost-efficient protocol to enable Proof-of-Work

light nodes to access the data of the blockchain and make sure that this data is not

corrupted by a malicious full node. Our solution has a constant cost regardless of

the size of the blockchain.
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Chapter 1

Introduction

1.1 Blockchains
Blockchain is a digital ledger that is maintained by a network of nodes. These

nodes reach a consensus on the latest state of the ledger. The consensus mechanism

can differ in different blockchains. There are several consensus mechanisms like

Proof of Work, Proof of Stake, Proof of Storage, etc.

The digital ledger is a database that consists of blocks. Each block points

to its previous block so that all the blocks form a single chain. Blocks contain

transactions that change the state of the blockchain. Transactions are created and

signed by users, then, they get propagated in the network. Miners are nodes that

gather the transactions, seal them into a block and add that block to the blockchain.

Here, we focus on Proof of Work (POW) blockchains. In PoW blockchains,

miners must solve a puzzle1 to be able to seal the block they create, unless, other

nodes in the network will not accept that block. This is to make sure that the miner

has done enough work on the block. For each block, the first miner who solves

the puzzle wins the reward of that block. Every node in the system accepts valid

blocks that miners create to grow their local chain and stay up-to-date.

Solving the puzzle requires computation power. The more computation power

1Solving this puzzle means to find a proper nonce for which hash of the block header would be
less than its target difficulty. Where block header consists of nonce and some other information. We
will elaborate on this in Chapter 3.
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Figure 1.1: A peer-to-peer network of nodes maintaining the blockchain data

a node owns, the more blocks it can create and the more reward it can collect. Hon-

est miners use their computation power to create valid blocks and earn rewards.

However, there might be some malicious nodes creating invalid blocks that con-

tain malicious transactions with contradicting data to the history of the blockchain.

However, the system stays safe (i.e. malicious blocks get rejected by other nodes)

as long as the total honest computing power is more than %50 of the total comput-

ing power.2

Bitcoin[17], is the first blockchain in the world introduced by Satoshi Nakamoto

in 2007. It is a peer-to-peer payment system that aims to eliminate the need for a

centralized banking system. Bitcoin uses PoW for its consensus mechanism.

1.2 Light Client Problem
In a blockchain network, we have different participants such as full nodes, miners,

and light nodes. We have talked about miners. Full nodes are nodes that maintain a

copy of the whole blockchain and relay data in the network. They need to have high

storage, bandwidth, and computation power3 since they need to store all the blocks

and verify newly mined blocks to add them to their local chain. For example, as

2We emphasize that here the measure is on computing power rather than the number of the nodes.
This gives the advantage of not being vulnerable against Sybil attacks.

3This means at least a few hundreds of gigabytes of storage, and the ability to compute millions
of hashes for its verification.
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of this writing, Ethereum’s blockchain[9] size is more than 900 gigabytes [3]. Full

nodes validate each and every block and the consensus mechanism.

However, some clients have access to limited resources4. These clients might

still need instant access to certain data on a blockchain. Nowadays, there ex-

ist many such clients such as smartphones, IoT devices, and wearable devices

who want to get data from a blockchain without storing and verifying the whole

blockchain. They might need the data to calculate the balance of a user, make

sure a specific transaction has been finalized on the blockchain, etc. These low-

capacity clients are called light clients. In case a light client wants to verify data

from multiple chains, the need for a cost-effective solution becomes more crucial.

Another concern in today’s blockchain ecosystem is the interoperability of dif-

ferent blockchains [7, 10, 21]. Recently, the topic of cross-chain applications has

attracted wide attention [2, 6, 14]. In order to enable blockchains to embed a client

of another blockchain to facilitate cross-chain transactions and cross-chain data

transfer, there is a need for an efficient solution for light clients.

One solution for the light clients who need access to the blockchain data is to

send their queries to a trusted third party (who maintains the blockchain) and get

the required data. However, this approach contradicts the very concept of decen-

tralization in blockchains. Thus, a light client needs an efficient solution to obtain

information from any full node and some proof to confirm its validity, inclusion in

the blockchain, and finalization.

To better formulate the problem, we assume there exists some full nodes, and

the light client wants to prove the inclusion of a predicate in the blockchain by

interacting with these full clients. The light client cannot trust a full node to make

sure which one is providing honest data.

1.3 Related Work
Nakamoto in the original Bitcoin whitepaper proposed a more efficient way for a

light client to verify the inclusion of some data in the blockchain. Light clients can

only store and verify the block headers of a blockchain. Ethereum block size is 508

B, so, currently, for an Ethereum light client to store all the block headers using this

4They might have limited storage, computation power, or bandwidth.
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method, a storage size of nearly 7 gigabytes is needed. While this method reduces

the storage needed for the client dramatically, it is still not a scalable solution. In

fact, when the blockchain grows, the needed storage for the client grows linearly

with it.

Recently, two sub-linear solutions have been proposed to solve this problem.

NIPoPoWs and FlyClient introduce superlight blockchain clients that have a poly-

logarithmic cost with respect to the size of the blockchain. However, they both

need additional data structures to be included in the blocks of a PoW blockchain to

work. Moreover, NIPoPoWs only works properly when the target difficulty of the

blockchain remains constant. FlyClient uses another approach that takes variable

target difficulties into account. Later, it was discovered that FlyClient is exposed

to the chain-sewing attack. So, the need for a proper solution for superlight clients

still exists.

Two important problems need to be tackled here. First, the cost of the solution

should be minimized in terms of the required storage and the computation power

for the light client. Second, an incentive mechanism should be designed for the full

nodes to provide the data and the associated proof. This especially becomes more

important when a full node confronts massive inquiries from light clients.

1.4 Our Contribution
In this thesis we propose LIGHTSYNC, a new protocol for light clients in PoW

blockchains. The storage and computation power needed for the users in LIGHT-

SYNC do not grow with the length of the blockchain and remain constant. Thus,

LIGHTSYNC dramatically reduces the resources that light clients need for con-

firming a predicate from a PoW blockchain. Especially for the light clients who

want to confirm data from a large or a fast-growing blockchain, LIGHTSYNC is a

promising solution to reduce the cost. For example, as of this writing, the length

of the Ethereum blockchain is roughly 15 Million blocks. Assume the adversary

mining power to the honest mining power to be 1
2 and the adversary miners to use

the same target difficulty as honest miners. In case the blockchain includes MMR

root in the block header structure, to achieve the failure probability less than 2−50,

the expected number of block headers for LIGHTSYNC’s proof will be 405. In Ta-

4



Table 1.1: Proof size (in MB) of SPV and LightSync for Ethereum
blockchain

Blockchain length 1 M 10 M 100 M
SPV 508 5,080 50,800

LightSync 0.204 0.204 0.204

ble 1.1, we demonstrate the improvement in proof size in comparison to SPV. Our

simple solution is based on realistic assumptions, making it easily applicable to

current PoW blockchains. More importantly, we have analyzed the security of the

protocol thoroughly [19] and considered all possible deployment issues. To sum

up, LIGHTSYNC is the first protocol for light clients that has the minimum cost for

its users and is provably secure.

In this chapter, we defined the problem, discussed some solutions, and intro-

duced our contribution to the problem. In the next chapter, we will go through the

basics of blockchains and some previous work to build a basis for protocol design

and analysis. In Chapter 3 we introduce our model and define the problem. In

Chapter 4, we propose the LIGHTSYNC protocol. Chapter 5 performs a thorough

analysis of the protocol. Chapter 6 evaluates the proposed solution in practice, and

at last, in Chapter 7, we discuss some applications and further improvements to the

protocol. Chapter 8 concludes it all.
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Chapter 2

Background

2.1 The Principles of a Blockchain
In this chapter, we aim to describe the fundamentals and previous works that will

be a basis for the rest of the chapters.

2.1.1 PoW Blockchains

Let’s first describe what a blockchain is and how it all started. Blockchain is a

distributed ledger that is maintained by a peer-to-peer network. Nodes of the net-

work reach consensus on the latest state of this ledger. The ledger consists of

blocks, which are data structures containing transactions that change the state of

the ledger.

The first blockchain in history is Bitcoin introduced by Satoshi Nakamoto in

2007. The goal of this system was to provide a peer-to-peer payment system that

does not need a centralized authority to control it. In other words, Bitcoin elimi-

nated the need for a trusted third party to solve the double-spending problem.

Bitcoin consensus mechanism is POW in which a node provides cryptographic

proof that shows it has expended a specific computational effort in order to create

a new block. This proof is easily verifiable by others and is provided with each

newly created block to update the state of the blockchain. In this system, the nodes

that create new blocks are called miners. It takes some time for a miner to do

the necessary work, create the proof, and release a new block. The difficulty of

6



creating such proof is variable in Bitcoin and depends on the total computing power

of the miners in the network. The difficulty adjusts so that on average the rate of

newly created blocks remains constant. This adjustment is called the re-targeting

algorithm of Bitcoin.

2.1.2 Block Structure

A blockchain consists of a chain of blocks, where blocks are data structures that

contain transactions. Transactions change the state of a blockchain. On Bitcoin

every user can have a pair of private and public keys, to be able to send and receive

transactions. The public key is the address of the user on a blockchain, and the

private key enables the user to sign transactions. Others can validate the signature

and make sure they belong to the same pair of private and public keys.

A block mainly consists of two parts: block header, and transactions. Block

header is what can be described as the metadata of the block. It contains the block

version, the previous block header hash, Merkle root of the transactions, difficulty

target, timestamp, and nonce. Nonce gets determined when the puzzle of the Proof

of Work gets solved. This puzzle satisfies the condition that the hash of the block

header is less than a specific threshold called target difficulty. The less the target

difficulty is, the harder creating a new block will be. Merkle root of the transactions

is a hash that acts as a commitment for the whole transactions that exist in that

block. Using the Merkle tree built based on the transactions, one can create Merkle

proofs that show the inclusion of a specific transaction in that block. Verifying a

Merkle proof is a straightforward and low computation process.

2.1.3 Full Nodes And Light Clients

There are some nodes in the blockchain network who maintain the whole blockchain

history and validate every new block to comply with it, then add that block to their

storage. These nodes are called full nodes. Full nodes also relay data (i.e. blocks

and transactions) in the peer-to-peer network. They need a huge storage and com-

putation power for what they do.

If anyone wants to get access to blockchain data, they have to connect to the

network of full nodes and query them for the data they want. However, they have to

7



verify the data they are receiving to make sure the provided data is not malicious.

But, how can a node verify that? A naive approach would be to get the whole

data of the blockchain from a full node and to validate each and every block from

the bottom (genesis block) to the top (latest block of the blockchain at that time).

This approach requires a lot of resources, as it requires the node to validate the

Proof of Work for every block as well as the other elements of the block header. If

such nodes want to become full nodes themselves, they inevitably have to do these

heavy computations and dedicate enough storage. But, let us consider the case in

which the node only wants to verify the inclusion of one transaction, or make sure

if some block has been finalized. In this case, the node might not be capable of

doing huge computations or dedicating lots of storage for the matter. We call these

nodes with limited resources light nodes. Light nodes should be able to efficiently

access the data they want from the blockchains.

In the section 2.2 we explain more about this issue and some better alternatives

to our naive solution for it.

2.1.4 Forks

Blockchain forks are essentially a split in the blockchain network. It happens when

the community makes a change to the basic rules of the blockchain and its protocol.

Some portion of nodes update to the new rules and some remain the same as before.

We have mainly two types of forks in blockchains: hard forks, and soft forks.

In hard forks, the new updates break the backward compatibility. However, in

soft forks changes are backward-compatible and old nodes will still recognize the

updated blocks as valid ones. On the other hand, the updated nodes see the old

miners’ blocks as invalid blocks.

In NIPoPoWs [22], Aggelos Kiayias et al. have introduced a new type of fork:

velvet forks. In the next section, we will talk about velvet forks and how they work

in more detail.

Velvet Forks

When a new update to the consensus layer is provided, the majority of miners are

required to agree on it; even in the case of soft forks. Velvet forks, however, do

8



Figure 2.1: Different layers of a blockchain system including the consensus
layer.

not modify the consensus layer of the network. They provide some modifications

in the block data and only mandate the upgraded miners to include them in their

blocks. While the rest of the network does not include the additional data into the

blocks and does not verify its inclusion, treating them merely as comments. The

changes here are backward-compatible, and both groups of miners (i.e. upgraded

and non-upgraded) accept blocks mined by the other group. Therefore, the set

of accepted blocks is not changed. This prevents chain splits and also allows the

protocol to upgrade even if only a minority of miners upgrade.

Moreover, we have to be careful, since even if the additional data in the upgrade

is invalid or malicious, upgraded nodes are forced to accept the blocks. Because

validating the extra data is not added to the rule of consensus for miners.

2.2 Simple Payment Verification
The original Bitcoin white paper [17] has introduced Simple Payment Verification

(SPV) clients, who are light clients performing a payment verification by storing

and verifying all the block headers of a blockchain. Blocks of Bitcoin consist

of two main parts: block header and transactions. The block header consists of

9



Figure 2.2: A Merkle tree constructed on top of the dataset {D1, D2, ..., D8}

some information about the block, in addition to a hash commitment of the whole

transactions included in that block. The inclusion of a transaction in a block can

efficiently be verified against the hash commitment provided in the block header.

This hash commitment is the Merkle root that we discussed in the previous section.

Instead of storing and verifying the whole blockchain, SPV clients only verify

and store the block headers of a blockchain. In this case, the SPV light client can

still verify the inclusion of any part of the data in the blockchain using Merkle

proofs; including transactions. This can be done by providing proof of inclusion

for a transaction in the Merkle root included in the block header.

Let us take a closer look at how Merkle trees work to better understand this

mechanism.

A Merkle tree is a hash-based binary-tree data structure. Suppose each leaf

node is a hash of a transaction, each non-leaf node is a hash of its children, and

each parent has a maximum number of 2 children. Each pair of nodes are recur-

sively hashed until we reach the root node. The root hash is included in the block

header of the block containing all those transactions. In Figure 2.2 you can see the

structure of the tree and how the root gets formed.

To create a proof for some data included in the tree, it suffices to provide the

hash of the data, as well as its path to the root. This way everyone who has the

proof can re-produce the whole path and verify that the data was actually included

in the Merkle tree with that specific Merkle root. The proof size is logarithmic with

respect to the data size, which makes proof verification an easy process.

To sum up, the SPV approach is cheaper than storing all the blocks of the

blockchain and acting as a full node. However, it is still costly to store and verify

all the block headers. The cost of this solution grows linearly with the size of the

blockchain.
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2.3 Super Light Clients
More recently, two sublinear solutions have been proposed to reduce the cost of

light clients further. Non-Interactive Proof of Proof of Work (NIPOPOW) [15] and

FlyClient [11] use several randomly chosen blocks from the entire blockchain, to

verify the validity of a predicate based on that blockchain. Compared to SPV, they

have a lower cost for verification; the user is required to download a polylogarith-

mic fraction of blocks to store and verify. The user interacts with some full nodes

and compares the provided proofs by each full node together to find the best proof.

In both solutions, the primary assumption is that there exists at least one honest

full node among all of them. Both mechanisms detect and reject the fake chains

produced by an adversary corrupting at most 33% of the consensus participants

with an overwhelming probability.

2.3.1 NIPoPoWs

NIPoPoW chooses the high-difficulty blocks, as they happen less frequently than

other blocks, to be verified as a sub-chain of the underlying chain. Verifying the

validity of those blocks proves that enough PoW for the underlying chain has been

provided with a high probability. The blocks containing a higher difficulty than

their required target are called Superblocks. Superblocks are rare and happen ran-

domly. The protocol compresses a long blockchain by representing it only with

the high-difficulty blocks (superblocks). To do so, they need to link superblocks

together. This connectivity is called interlinking and is not included in Bitcoin or

many of the other PoW blockchains. NIPoPoW uses velvet fork [22] to include the

interlinking structure in the blockchain. Velvet forks require no rule modification

in the consensus layer of the blockchain, and do not force all the miners to follow

the new rules. They only upgrade part of the rules and miners are free to ignore it.

The number of superblocks is a logarithmic fraction of the whole blocks. For

proving the inclusion of a predicate in the blockchain, the full nodes only need to

provide a polylogarithmic fraction of blocks for the light client which makes the

protocol more efficient in comparison to SPV. However, their solution has a major

drawback, as the protocol only works well when the difficulty is constant, contrary

to most blockchains that adjust their block difficulty when the hash rate changes.
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2.3.2 FlyClient

Another solution is FlyClient which also proposes a polylogarithmic solution for

the light client problem. FlyClient has an optimized approach in which binary

search and random sampling are conducted to find the invalid blocks of an in-

valid chain. This way, the algorithm detects and discards invalid proofs. FlyClient

achieves a proof size smaller than NIPoPoW’s. In their solution, they use Merkle

Mountain Range (MMR) which is an efficiently-updatable commitment mechanism

that allows provers to commit to an entire blockchain with a small (constant-size)

commitment while offering logarithmic block inclusion proofs with position bind-

ing guarantees. They extend MMR to integrate the data about the difficulty and its

transition. This enables their protocol to work fine in the cases that the difficulty of

the blocks gets updated (unlike NIPoPoW’s solution).

FlyClient, like NIPoPoW, uses velvet fork to integrate their new structure in the

blockchains. It requires the block headers to include the root of MMR commitment

of all previous block headers. However, they have not conducted a comprehensive

analysis on the security of their protocol under velvet fork deployment. The proto-

col is exposed to chain-sewing attacks under such conditions. In fact, Nemoz and

Zamyatin have introduced this attack and proposed some solutions to fix it [18].

In this chapter, we covered the background needed to understand the light client

problem. Also, we went through the current best existing solutions.
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Chapter 3

Models and Problem Formulation

In this chapter, we explain the backbone model that we used for analysis, and the

underlying assumptions for the blockchain. Then, we introduce Merkle mountain

trees and briefly explain how we include them in the blockchain. After that, we

define the prover and verifier model that helps to better understand and formulate

the problem. At last, we introduce the notations that we have used throughout the

work.

3.1 Backbone Model
Our model is based on the standard backbone model for PoW blockchains [13].

This model consists of three main players: full nodes, miners and light clients.

Full nodes maintain a copy of the whole blockchain. They validate every data they

receive. Also, some full nodes relay data through the network. Miners create new

blocks extending the longest chain of the blockchain and commit new transactions

they receive from the clients. Miners compete to become the next block proposer

by solving a puzzle which is known as Proof-of-Work. For getting blocks and

transactions, miners rely on full nodes. Clients need up-to-date information from

the blockchain. For example, when they want to perform a transaction inclusion

verification, they need the block header of the desired block, in addition to a proof

for the transaction inclusion in that block header. Light clients are clients who

utilize fewer resources such as storage and computation. They send queries to some
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full nodes to obtain their desired data instead of paying for the cost of maintaining

the whole blockchain.

Block creation is captured in the random oracle model as in [13]. This model

has a security parameter σ . In each mining round, a miner sends q queries to the

random oracle function H(·). For each query, if the value has not been queried

before, the function returns a random value from {0,1}σ and stores the input and

output values in a table. If the value has been queried before, the function finds the

recorded output from the table and returns it.

For a block to be valid, it needs to have a proof to show enough work has been

done on that block. Each block B has a target difficulty T . If H(B)< T , we say the

block meets its difficulty requirement, therefore, it has a sufficient amount of work.

The target difficulty T is set in a way that the block intervals remain constant in

expectation. We call the expectation of block intervals Block Interval Time. In our

model, the target difficulty of the blocks can be constant or variable.

We abstract B to contain the block header information. A valid block that has

a valid PoW and extends the longest chain will be propagated by honest nodes and

with a high probability will get finalized in the blockchain. A block gets finalized

when it is buried under a chain of at least k other blocks, where k is the finality

parameter. The finality parameter k is tuned in a way that the probability of a

finalized block slipping out of the longest chain is made negligible. The finality

parameter differs from one blockchain to another. For example, for the Bitcoin

ledger, we know that k = 6.

Each block has a block header. Every block header contains a block number,

the hash of the previous block as a pointer to it, the target difficulty T , the Merkle

root of all transactions, and some other information related to the block. The size

of block headers is much smaller than the size of the blocks themselves. Mostly

because the block header does not contain the transactions themselves.

When a miner receives a new block, that block may extend some block other

than the last one and cause a fork in that miner’s local blockchain. Honest nodes

will follow the longest chain rule. They choose the longest valid chain and start

mining their new block on it. In a valid chain, all the blocks meet their difficulty

requirement. We assume more than half of the mining power in the network is

honest. Any blockchain that an honest node maintains is called an honest chain.
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3.2 Chain Commitment
We leverage the notion of Merkle Mountain Range (MMR) in our protocol to en-

able verifying data from any previous block header of the blockchain. MMR is a

more efficient variant of Merkle trees [16]. For the MMR root of each block, the

MMR leaves are the block headers of all previous blocks. Just like Merkle trees,

parent nodes in MMR are hash values of their two children. Using MMR, the en-

tire blockchain can be committed into a single hash value. Also, the proof of the

inclusion of a block in the MMR tree is of logarithmic size. MMR uses an efficient

updating process to append new leaves and update its root. Each block’s MMR root

can be constructed from the previous block’s MMR root with a low computation

overhead. It is also capable of efficiently removing the last leaf from the structure.

Moreover, the consistency of the MMR root of a past block with the MMR root of

a more recent block can be shown easily. The process of adding a leaf to an MMR

tree is shown in Figure 3.1. Since an MMR tree might have more than one peak,

the MMR root is constructed from bagged peaks.

For blockchains that do not have MMR root in their block header structure, an

upgrade to the consensus layer is required for the structure to include MMR root in

it. One possible way for upgrading is to do a hard fork or a soft fork [8]. If doing

such a fork is not possible, a velvet fork, introduced by Kiayias et al. in [15], can

be used to add MMR root to the block structure. The changes they propose in the

velvet fork need no rule modifications to the consensus layer. Honest miners will

be divided into two groups of upgraded and non-upgraded honest miners. The up-

graded miners are required to include the MMR root of the previous blocks in their

coinbase data, however, non-upgraded miners just ignore that data as comments.

Coinbase is the first transaction of a block, determined by the block’s miner. Both

Figure 3.1: Merkle Mountain Range
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types of miners accept previously valid blocks regardless of whether they have

upgraded structures or not.

In the velvet fork, the set of accepted blocks is not modified, therefore, there

may exist some upgraded blocks containing an invalid MMR root. We assume that

the majority of the upgraded miners are honest. We add a voting mechanism so that

valid MMR roots can be detected. To enable the voting, we require every upgraded

miner to include a buffer of length α in their coinbase data as well as the MMR

root. Later, we will define α in a way for the protocol to be secure and discuss it.

Every upgraded block has a flag in its coinbase data so that it can be recognized

from the non-upgraded blocks.

3.3 The Prover and Verifier Model
To verify some data being included in the blockchain without having to maintain

the whole blockchain, a client needs to send some queries to full nodes. We call

the light client a verifier and the full nodes provers. We assume that the verifier

doesn’t trust any of the provers and is attempting to find a prover to get some final-

ized blocks of the honest chain. This way, she can perform a state or transaction

inclusion verification test and verify a piece of data is included in the blockchain.

We assume that the verifier knows the genesis block, the block interval time and

the confirmation number of the blocks k.

The verifier sends the same request to several provers and they will respond to

her with a proof. The verifier needs to determine which of the proofs belongs to an

honest prover. The proof contains a chain of blocks. We assume that there exists at

least one honest full node among the selected provers, i.e., the client has not been

eclipsed from the network.

Without loss of generality, we can assume that the verifier sends requests to

two full nodes where one of them is honest and the other one is malicious. The

verifier’s goal is to determine which of them is the honest node. The honest node

maintains the honest chain which is a blockchain with a specific genesis block

that has maximum mining power working on it. In other words, it has the highest

cumulative difficulty. The verifier wants to confirm some data from this honest

chain. In real-world scenarios, the verifier can send requests to multiple provers to
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increase the probability of communicating with an honest node.

3.4 Notations
We denote a chain of length n of block headers by C[0 : n− 1]. In this chain, C[i]

(0≤ i≤ n−1) refers to the block header with height i, and C[i : j] refers to the set of

block headers from height i inclusive to height j inclusive. Specifically, C[i : end]

is the set of block headers starting from C[i] to the end of the chain.

In this chapter, we explained the models and notions that we use in our solution.

We also discussed our assumptions. Now, we are ready to understand how the

LIGHTSYNC protocol works.
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Chapter 4

LightSync Protocol

In this chapter, we present the protocol of LIGHTSYNC. The main properties of the

LIGHTSYNC protocol are twofold. First, the proposed protocol is very simple, and

it can easily be implemented for any PoW blockchain without the need to change

its consensus rule. Second, the computation power and the storage that a verifier

needs have been dramatically reduced. In particular, the number of the blocks that

a verifier needs to download from the full nodes does not depend on the length of

the chain and is a constant factor.

4.1 Protocol Overview
As we discussed in the prover and verifier model in the previous chapter, we assume

that we have one verifier and two provers where only one of the provers is honest.

The verifier starts the protocol by sending a query to the provers. She cre-

ates a transaction and sends it to both of the provers. We call this transaction the

query transaction. After sending requests to the provers, the verifier waits to get

responses. Every prover should respond with a proof before a predetermined dead-

line. The verifier compares the received proofs using LIGHTSYNC algorithm. The

winner proof belongs to the honest node with an overwhelming probability.

The proof consists of two parts. First, a proof to get the last finalized block.

Second, a proof to find the last valid MMR root of the blockchain. Using the

first part of the proof, the verifier gets the last finalized block of the honest chain.
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Furthermore, the second part of the proof provides information about the history

of the blockchain in case that the verifier needs to verify some data based on the

past blocks of the blockchain.

Next, we explain the details of each part of the proof.

4.2 Getting The Last Finalized Block Header
The verifier sends a query transaction to both provers. Provers will try to include

the query transaction in their local blockchains and provide the verifier with a valid

proof within the challenge period to prove the honesty of their local blockchains.

The challenge period is determined by the verifier and is sent to the provers along

with the query transaction. The longer the challenge period is, the higher certainty

it provides for the verifier about its final decision. The challenge period starts when

the verifier sends the query transaction to the provers. The steps of the protocol for

finding the last finalized block header are described in Algorithm 1.

To include the query transaction in its local blockchain, each prover broadcasts

it into his local blockchain network. The honest prover propagates the transaction

in the whole blockchain network so that the honest mining power working on the

last block of the blockchain includes this transaction in their block. After the query

transaction is included in their local blockchains, the provers will wait for some

block confirmations. The provers should send their proofs to the verifier before

the challenge period is passed. The proof consists of a sub-chain of block headers

from the blockchain, as well as a Merkle inclusion proof of the query transaction

in one of those block headers. The sub-chain contains block headers from the block

including the query transaction to the last mined block on top of it that gets mined

before the challenge period is passed. Provers should include at least k+ 1 block

headers in their proofs. If the number of blocks mined after the block containing

the query transaction is less than k, the provers should include the previous block

headers to contain at least k + 1 block headers in their proof. In Figure 4.1 and

Figure 4.2, the structure of the proof’s block headers is provided for both cases.

The honest prover can simply wait for the blockchain to grow and have some

block confirmations, and send the proof to the verifier a few moments before the

deadline. On the other hand, for the malicious prover, the honest mining power will
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Figure 4.1: Proof provided by the prover for finding the last finalized block
(m > k+1)

Figure 4.2: Proof provided by the prover for finding the last finalized block
(m < k+1)

not help him to grow his chain, as long as his local chain data contradicts the honest

chain data. The malicious prover, therefore, has no more power than the adversary

mining power to mine confirmation blocks on top of the block containing the query

transaction. We call the confirmation block headers along with the block header

including the query transaction, the challenge headers. Since the adversary mining

power is less than the total honest mining power due to the underlying blockchain’s

security, in chapter 5, we show that the overall difficulty of the challenge headers

provided by the malicious prover in the challenge period is less than the honest

prover’s with very high probability.

Definition 1. The overall difficulty of a group of blocks is the summation of the

inverse of the target difficulty of each block.

The greater a block’s target difficulty is, the easier it would be to build that

block. Therefore, overall difficulty is a measure of the actual difficulty of creating

a group of blocks. Also, we know that building more difficult blocks requires more

computing power. So, overall difficulty is a great measure to see which group of
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blocks had more computation power working on it during the same time period.

The verifier receives all the proofs provided within the challenge period. Note

that both the verifier and the provers should be online so that the verifier can ex-

amine whether the proof was provided within the challenge period or not. Each

proof consists of a chain of block headers. First, the verifier checks the inclusion

of her query transaction in one of the block headers of the proof using the Merkle

proof of inclusion. Then, she checks the validation of the rest of the block head-

ers. Each block header should refer to its previous block header correctly and have

valid PoW regarding its target difficulty. If a proof passes all the above checks,

we consider it as a valid proof. In the next step, the verifier decides which proof

to accept by calculating all valid proofs’ overall difficulties and comparing them

together. The valid proof with the highest overall difficulty gets accepted. We call

this proof the winner proof.

Algorithm 1 LightSync Protocol for Finding the Last Finalized Block Header
1: The verifier creates a query transaction and sends it to the selected provers

along with the challenge period.
2: The verifier starts a timer for the challenge period.
3: Each prover who receives the query transaction runs CRE-

ATEPROOF(queryTransaction) (Procedure 2) and sends the created proof to
the verifier.

4: For each received proof, the verifier runs VALIDATEPROOF(proo f ) (Procedure
3).

5: The verifier runs OVERALLDIFFICULTY(proo f ,queryTransaction) (Proce-
dure 4) for the valid proofs.

6: The verifier chooses the valid proof with the highest overall difficulty as the
winner proof.

Since the malicious prover wants the verifier to accept his local chain, he tries

to maximize the overall difficulty of his proof. It means that he tries to mine as

many blocks with high difficulties as possible, on top of the block containing the

query transaction. As long as the query transaction gets determined by the verifier,

the provers cannot start constructing the proof before they get the query transaction

from the verifier. Therefore, they only have a limited time (challenge period) to

construct the proof. During this limited time, there is a negligible chance that the
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Procedure 2 CREATEPROOF(queryTransaction)
1: Start a timer for the challenge period.
2: δ ← the communication delay between the verifier and the prover
3: Checks the validity of queryTransaction
4: Broadcast queryTransaction in the local blockchain
5: repeat
6: On the local longest chain B[0 : end], find the block B[q] which includes

queryTransaction
7: MerkleProo f ← proof of inclusion of queryTransaction in the B[q]
8: m← len(B[q : end])
9: if m≥ k+1 then

10: C[0 : m−1]← B[q : end]
11: else
12: C[0 : k]← B[q− k+m : end]
13: end if
14: until 2δ seconds remaining from the challenge period
15: proo f ←C ∪MerkleProo f
16: return proo f

Procedure 3 VALIDATEPROOF(proof )
1: Check the length of the chain in the proo f to be at least k+1.
2: Verify the correctness of Merkle inclusion proof for the query transaction.
3: Check that each block header of the chain refers correctly to its previous block

header.
4: Calculate the PoW for each block header of the chain and validate it against

the target difficulty.
5: return true if all the above checks pass

Procedure 4 OVERALLDIFFICULTY(proof, queryTransaction)

1: Find the block header C[q] containing queryTransaction
2: T [i] := target difficulty of block header C[i] (q≤ i≤ end)
3: overallDi f f iculty← ∑

end
i=q T [i]−1

4: return overallDi f f iculty
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malicious prover could achieve a higher overall difficulty than the honest prover,

because, the honest mining power is more than the adversary mining power in the

network.

The detailed analysis of the protocol is described in chapter 5. After running

the above protocol, the verifier has the last finalized block header of the blockchain

and can decide on a predicate based on the recent history of the blockchain. In

the following, we explain how the verifier confirms data from the history of the

blockchain.

4.3 Finding The Last Valid MMR Root
After executing the first part of the LIGHTSYNC protocol, a verifier has got a copy

of at least k+ 1 block headers of the blockchain. If the construction of the block

headers of the blockchain includes the MMR root of all previous block headers of

the blockchain, then knowing the last k + 1 block headers, the client has access

to the MMR root in a finalized block header of the blockchain. The client can

perform a transaction inclusion test for transactions related to the past blocks of

the blockchain using that MMR root. This is the case for some blockchains like

Beam [1] and Grin [4] that include MMR root in their block header structure.

However, if a blockchain does not support MMR, there exist three possible ap-

proaches for including MMR roots in the structure and using them: Hard fork, Soft

fork, or Velvet fork. In the case of a hard fork, miners are required to include an

MMR root in the block headers of the blockchain. Alternatively, in a soft fork, the

MMR root is added to the new blocks in a way to stay backward compatible with

the old blocks. For example, the MMR root can be included in a predetermined

transaction like the coinbase transaction. This way the non-upgraded miners will

accept the new blocks whether these blocks are created following the new rule or

not. Nonetheless, the upgraded miners will follow the new rule and only accept

blocks including a valid MMR root. A soft fork needs the majority of the miners

to upgrade to the new rule. After including the MMR root in the structure of the

block headers of a blockchain using either of the above two approaches, it can be

used immediately to verify data from the history of the blockchain by the verifier.

For example, Zcash [20] has added MMR root to its block header structure using a
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hard fork named Heartwood.

The last approach is to use a velvet fork to add MMR roots to the block head-

ers. In velvet forks, there is no need for a specific number of miners to upgrade.

The upgraded miners will add the MMR root to the block headers in a backward-

compatible way (like soft forks it can be included in the coinbase transaction data),

but, they continue to accept blocks created by non-upgraded miners. This way the

set of accepted blocks stays unchanged, meaning that every non-upgraded or up-

graded miner will accept a valid block, whether it includes an MMR root or not.

In this case, since no one is checking the validity of the MMR field, some of the

blocks may contain invalid MMR roots. If the verifier accepts an invalid MMR

root, the malicious prover has deceived the verifier to accept a predicate that con-

tradicts the honest chain. To avoid invalid MMR roots getting accepted by the light

clients, we append a small buffer of data to the MMR root that enables a voting

mechanism for them. Applying this change, the upgrade remains backward com-

patible. Using this mechanism, we make sure that the verifier can detect a valid

MMR root.

The buffer’s length is α . Each bit of the buffer points to a preceding block

and votes for its MMR root validity. In a block header, the last bit of its voting

buffer refers to the last upgraded block, the bit before that refers to the second last

upgraded block, and so on. The miner sets a bit to 1 (accept vote) if he believes

that the corresponding block includes a valid MMR root and sets it to 0 (reject vote)

otherwise. We assume that the majority of the upgraded miners are honest. This

way if the majority of miners in a long enough sub-chain have voted 1 for an MMR

root, the verifier can make sure that MMR root is valid and by adding new block

headers to it, she can easily construct the MMR root of the last finalized block by

herself.

The second part of the proof is sent by the prover to the verifier in the case of

a velvet fork, to provide her with the latest valid MMR root. The verifier starts

the second part of the protocol by sending the last finalized block header and a

parameter called β to the prover. In response to the verifier’s request, the prover

sends a sub-chain of block headers that includes α +β upgraded block headers, as

well as each block’s coinbase data with proof of its inclusion in the block. We call

the first β block headers of the sub-chain candidates. In chapter 5, we discuss how
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Figure 4.3: Proof provided by the prover for obtaining the last valid MMR,
in case of using a velvet fork

β effects the protocol security. Algorithm 5 shows the steps of the second part of

the protocol. In Figure 4.3, the structure of the proof’s block headers is provided.

First, the verifier validates the received proof. She checks the previous hashes

of the block headers to be correct and the coinbase data inclusions to be valid.

She also checks the extended proof to include the last finalized block header from

the previous part. After checking the validity of the proof, the verifier extracts

candidates’ block headers. Each of the candidates has α voters vote for them, as

long as every upgraded block header votes for previous α upgraded block headers.

An MMR root among the candidates that has been accepted by more than half of

its voters is a valid MMR root. The verifier will accept that MMR root and use it to

obtain the last valid MMR root of the blockchain by appending the block headers

that exist on top of it to its tree. By choosing the right β , there exists a valid

MMR root among the candidates with an overwhelming probability. A detailed

analysis of this voting mechanism and how to determine the parameters α and β is

discussed in chapter 5. At last, the verifier can check the inclusion of the genesis

block against the valid MMR, by asking the prover to send her a proof of inclusion,

to make sure she has received the correct chain.

In this chapter, we introduced LIGHTSYNC protocol and explained its algo-

rithm in detail. LIGHTSYNC is a low-cost and simple solution to the light client

problem. Next, we will prove that it is fully secure.
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Algorithm 5 LightSync Protocol for Finding the Last Valid MMR Root
1: The verifier sends an MMR request along with the last finalized block header

B[ f ] to a prover.
2: The prover creates a proof containing two parts:

1. The last s+1 block headers up to B[ f ], which is B[ f −s : f ], that contains
α +β upgraded block headers from his local chain B[0 : f ].

2. The coinbase data for each block header along with its proof of inclusion
in that block header PROOF(CoinbaseData).

3: The prover sends the proof to the verifier.
4: The verifier runs FINDLASTMMR(B[ f − s : f ], CoinbaseData[0 : s],

PROOF(CoinbaseData[0 : s])) to find the last valid MMR root.

Procedure 6 FINDLASTMMR(C[0 : s], CoinbaseData[0 : s],
PROOF(CoinbaseData[0 : s]))

1: Check that C[s] is equal to B[l].
2: Check that the number of upgraded block headers is equal to α +β .
3: Check that each block header refers correctly to its previous block header.
4: Check the correctness of each coinbase data inclusion proof.
5: candidates[0 : β −1]← first β upgraded block headers of C[0 : s]
6: V [0 : β − 1] := the number of accept votes for each block header of

candidates[0 : β −1]
7: validSet← the candidates’s block headers with more than ⌊α/2⌋ accept votes

8: validRoot ← the MMR root of the last block header of validSet
9: v← the index of the block containing validRoot

10: lastValidRoot ← update the validRoot by adding the block headers C[v : s] to
its tree

11: return lastValidRoot
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Chapter 5

Protocol Analysis

In this chapter, we perform a thorough analysis of the security of the LIGHTSYNC

protocol. We also show that it is secure under the variable difficulty settings.

As we described in the prover and verifier model, the verifier sends queries

to two provers where one of them is honest and the other one is malicious. Each

prover sends a proof to the verifier. After executing the protocol, the verifier de-

cides on one of the proofs as the winner proof. The LIGHTSYNC protocol is secure

if the verifier decides on the honest prover’s proof with an overwhelming probabil-

ity. In what follows, we explain the security conditions of the protocol and prove

them.

The delay of the peer-to-peer network is so small in comparison to the block

interval time that it can be approximated and assumed to be zero. However, the

whole analysis can be performed again with the assumption of the network delay

being greater than zero. In that case, the effective computation power of the honest

nodes will decrease. Because some of the honest miners will get the latest data

with a delay, their computation power will get wasted during that time. So, more

honest computing power will be needed in the network to reach the same security

we had without considering the network delay.

We assume that the majority of the underlying blockchain miners are honest

which is a necessary condition for Proof-of-Work blockchains. In the case where

MMR structure has been added to the blockchain using velvet fork (the approach

described in section 4.3), we assume that the majority of the upgraded miners are
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honest.

Regarding the difficulty of the blocks, we assume that in the blocks that are

sent as the first part of the proof, the difficulty of the blocks would change at most

one time. This is a realistic assumption as long as the difficulty adjustment in

a blockchain gets done in longer time intervals than the challenge period. For

example, difficulty adjustment period is 2 weeks for Bitcoin.

The malicious prover wants to deceive the verifier and make her confirm some

predicate that contradicts the honest chain data. The verifier validates her predicate

using the last valid MMR root. So, the malicious prover should be able to convince

the verifier to accept an invalid MMR root to succeed in deceiving the verifier. In

the following, we analyze both cases where all the blocks include an MMR root

(case I) and where the MMR root is added to some of the blocks using a velvet

fork (case II). The former is the case where the blockchain includes the MMR root

in its structure (and so there is no need to do a fork), also, it is the case of using a

hard fork or soft fork to add MMR to the structure.

Case I. In this case where all blocks include an MMR root, the malicious prover

should send an invalid block as a finalized block to be able to mislead the verifier,

because, the last valid MMR root is included in the last finalized block header. If

the malicious prover wants his invalid block to be the winner proof for the verifier,

he has to include some confirmation blocks containing higher overall difficulty than

the other prover. Based on Theorem 1, the probability of this scenario is negligible

under our model assumptions.

The probability of the query transaction being included in the first block mined

after the challenge period starts is determined by its transaction fee. The higher

the transaction fee is, the higher will be the chance for it to be included in the

blockchain sooner. We assume the transaction fee to be high enough so that the

query transaction gets included in the first mined block after the challenge period

starts. If the transaction fee is not high enough, the transaction will be included in

later block headers of the honest chain, however, the adversary mining power will

include it in the first block of its local chain anyways. Hence, there will be a higher

chance for the malicious proof to have more overall difficulty and win.

The proof includes m≥ k+1 (m′ ≥ k+1) block headers, for the honest (mali-

cious) prover. We denote this sub-chain by C[0 : m−1] (C′[0 : m′−1]). The query
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transaction is included in one of the block headers of the proof, suppose the block

header to be C[q] (C′[q′]). The verifier calculates the overall difficulty of C[q : end]

and C′[q′ : end]. The proof with the higher overall difficulty will be chosen as the

winner proof.

The target difficulty for each of these two sub-chains can change at most one

time. We denote the number of block headers using the same target difficulty

T1 (T ′1) which are constructed in time t1 (t ′1) starting from the beginning of the

challenge period by random variable N1 (N′1). In the remaining time t2 (t ′2), blocks

are constructed with target difficulty T2 (T ′2). We denote the number of blocks

constructed during this time with random variable N2 (N′2). Real numbers t1, t2, t ′1,

and t ′2 are non-negative where t1 + t2 and t ′1 + t ′2 are equal to the challenge period

(t).

Denote the honest and the adversary mining powers with h and a respectively.

We can see that the total number of hashes taken to create N1 blocks is t1h. The

probability of each hash leading to a valid Proof of Work is T1/2κ (where κ is the

security parameter used in [13]). This means that the discrete random variable N1

has a binomial distribution with parameters (n = t1h, p = T1/2κ) for any given t1.

The same conclusion can be made for N2, N′1, and N′2. So, the discrete random

variables N2, N′1, and N′2 have binomial distributions with parameters (n = t2h, p =

T2/2κ), (n = t ′1a, p = T ′1/2κ), and (n = t ′2a, p = T ′2/2κ), for any given t2, t ′1, and t ′2,

respectively.

Since the challenge period is much less than the difficulty adjustment time

interval, we can assume that the whole mining power of the network is constant

during this time. All the blocks of the adversary chain should meet their target

difficulties, otherwise, the verifier would not accept their proof as a valid proof.

However, the adversary mining power will not necessarily use the target difficulties

of the honest chain. They may use other target difficulties in order to maximize

their chance of being selected as the winner proof.

To prove the security of the algorithm, let’s first prove two lemmas, then we

will get to Theorem 1 and its proof.

Lemma 1. Suppose that N′1 has a binomial distribution with parameters n = t ′1a,

and p = p′1 = T ′1/2κ . We show that
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Pr{N′1 > n1
T ′1
T1

+n2
T ′1
T2
−n′2

T ′1
T ′2
}

≤ (1+ p′1(e
m−1))t ′1ap′1

(emn1
T ′1
T1 )(emn2

T ′1
T2 )(e

−mn′2
T ′1
T ′2 )

(5.1)

where m,T1,T2,T ′1,T
′

2 > 0 and n1,n′1,n2,n′2 ≥ 0.

Proof. For some m > 0, using the Chernoff bound we have:

Pr{N′1 > n1
T ′1
T1

+n2
T ′1
T2
−n′2

T ′1
T ′2
}

≤ E[emN′1 ]

e
mn1

T ′1
T1
+mn2

T ′1
T2
−mn′2

T ′1
T ′2

(5.2)

Now, notice

E[emN′1 ] =
∞

∑
n′1=0

emn′1Pr{N′1 = n′1}= (1+ p′1(e
m−1))t ′1ap′1 (5.3)

and the result follows.

Lemma 2. Suppose that h,a > 0 and h > a. Function f (m,T,T ′) is defined as:

f (m,T,T ′) = (1+T/2κ(e−m/T −1))h/a

×(1+T ′/2κ(em/T ′−1)).
(5.4)

Then, for every T,T ′ > 0, there exists some m > 0 such that f (m,T,T ′)< 1.

Proof. Calculating derivative of f (m,T,T ′) with respect to m, we get

d f (m,T,T ′)
dm

=
1

2κ

(
1− h

a

)
< 0 (5.5)

for m = 0. Knowing f (0,T,T ′) = 1, we can conclude that for small enough m > 0,

we have f (m,T,T ′)< 1.
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We know the verifier sends a query transaction (denoted by tx) to two provers

where exactly one of them is honest. Denote the proof that the honest prover

provides by proof(t), and the proof that the malicious prover provides by proof’(t)

(proofs are functions of the challenge period denoted by t). The verifier and the

honest prover are running the LIGHTSYNC protocol, however, the malicious prover

acts as he wants.

Theorem 1. Assume the OVERALLDIFFICULTY function from Definition 1. Then,

lim
t→∞

Pr{OVERALLDIFFICULTY(proo f ′(t), tx)>

OVERALLDIFFICULTY(proof(t), tx)}=0 (5.6)

Proof. Using the notations we defined in this chapter, we know that:

OVERALLDIFFICULTY(proo f (t), tx) =
N1

T1
+

N2

T2
(5.7)

and
OVERALLDIFFICULTY(proo f ′(t), tx) =

N′1
T ′1

+
N′2
T ′2

. (5.8)

So, the probability (1) is equal to

Pr
{

N′1 > N1
T ′1
T1

+N2
T ′1
T2
−N′2

T ′1
T ′2

}
=

∞

∑
n1=0

∞

∑
n2=0

∞

∑
n′2=0

Pr
{

N′1 > n1
T ′1
T1

+n2
T ′1
T2
−n′2

T ′1
T ′2

}
×Pr{N1 = n1}Pr{N2 = n2}Pr{N′2 = n′2}.

(5.9)

Now using Lemma 1 and the fact that N1,N2, and N′2 have binomial distribu-

tions, we see that (5.9) is upper bounded by

≤
∞

∑
n1=0

(t1h
n1

)
pn1

1 (1− p1)
t1h−n1

emn1
T ′1
T1
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×
∞

∑
n2=0

(t2h
n2

)
pn2

2 (1− p2)
t2h−n2

emn2
T ′1
T2



×
∞

∑
n′2=0

(t ′2a
n′2

)
p′n
′
2

2 (1− p′2)
t ′2a−n′2

e
−mn′2

T ′1
T ′2

× (
1+ p′1(e

m−1)
)t ′1ap′1 (5.10)

which is equal to

(1+ p1(e−mT ′1/T1−1))t1hp1× (1+ p′1(e
m−1))t ′1ap′1

×(1+ p2(e−mT ′1/T2−1))t2hp2× (1+ p′2(e
mT ′1/T ′2 −1))t ′2ap′2

(5.11)

for any m > 0. Here, p1 = T1/2κ , p2 = T2/2κ , p′1 = T ′1/2κ , and p′2 = T ′2/2κ .

Since t1 + t2 = t ′1 + t ′2, and due to symmetry, we have two possibilities for the

order of these parameters: t1 < t ′1 < t ′2 < t2 or t ′1 < t1 < t2 < t ′2. Without loss of

generality we can assume the former to be true (in the other case, the proof is

exactly the same). Define t0 = t ′1− t1 = t2− t ′2. Using the definition of f (m,T,T ′)

in Lemma 2, we can re-write (5.10) as

f (mT ′1,T1,T ′1)
at1 f (mT ′1,T2,T ′2)

at ′2 f (mT ′1,T2,T ′1)
at0 . (5.12)

Using Lemma 2, we see that for a large enough t (which is the challenge pe-

riod), the above expression can be arbitrarily small.

Case II. In this case, the probability of the verifier getting an invalid finalized

block in the first part of the protocol is similar to the previous case which we proved

is negligible. In the second part of the protocol, where the verifier aims to find the

last valid MMR root, for the protocol to be secure, we need to prove two important

statements:

• The candidates contain a block header including a valid MMR root with an

overwhelming probability.

• After running the second part of the protocol, the verifier will decide on a

block header among the candidates including a valid MMR root with an

overwhelming probability.
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Given that a block mined by an upgraded honest node includes a valid MMR

root, Theorem 2 results in the first statement. Based on Theorem 3, the probability

of an MMR root that is inconsistent with the honest chain to be chosen as valid

MMR root by the verifier is negligible when α is chosen properly. Parameter α

is the size of the voting buffer introduced in the LIGHTSYNC algorithm. It can be

deduced that the probability of a valid MMR root getting rejected by the majority

of the voters is the same and is negligible. Therefore, the second statement is

concluded. To give an example for a proper α , let’s assume a blockchain’s network

where a/(a+h)= 1
3 and let α = 80. Now, based on Equation (5.13), the probability

of a wrong MMR root being chosen by the verifier is less than 0.01.

Suppose the proportion of the upgraded honest mining power to be Mh and the

portion of adversary mining power to be Ma. We have Mh +Ma = 1. We assume

that Mh > Ma. Also, suppose the number of the block headers of candidates to be

β .

Theorem 2. The probability of none of the candidates’ block headers having been

mined by an honest node goes to zero when β goes to infinity.

Proof. It suffices to only consider the private double-spend attack in which the

adversary races with the honest nodes to grow a longer chain [12]. The candidates

are β block headers where each of them could have been mined by the honest

or the adversary mining power. The probability of a block being mined by an

honest miner is Mh. We know that the probability of blocks being mined by honest

nodes is independent of each other. Therefore, the probability of the candidates not

including any honest block headers is Ma
β which is negligible for a large enough

β .

To illustrate this probability, let us consider an example here for a blockchain

network where Ma = 1
3 . Letting β = 7, the above probability will be less than

0.0005.

Theorem 3. The probability of an inconsistent MMR root (Ric) getting more than

⌈α

2 ⌉ accept votes goes to zero, when α goes to infinity.

Proof. As Ric is not consistent with the honest chain, the honest miners cast reject

votes for it. At most, all the malicious miners cast accept vote for Ric. The number
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of malicious miners in the next α upgraded blocks is the binomial random variable

X with parameters p = Ma and n = α . The probability of X being greater than or

equal to ⌈α

2 ⌉ is:

Pr
(

X ≥ ⌈α
2
⌉
)
=

α

∑
i=⌈ α

2 ⌉

(
α

i

)
(Mi

a)(M
α−i
h )

= M⌈
α

2 ⌉
a

α

∑
i=⌈ α

2 ⌉

(
α

i

)
(Mi−⌈ α

2 ⌉
a )(Mα−i

h )

< M⌈
α

2 ⌉
a

α

∑
i=⌈ α

2 ⌉

(
α

i

)
(M⌊

α

2 ⌋
h )≤ (MaMh)

α−1
2 ×2α−1

(5.13)

We know that Ma+Mh = 1∧Ma <Mh⇒MaMh <
1
4⇒MaMh = 2−(2+s), where

s > 0. Therefore, Pr(X ≥ ⌈α

2 ⌉) < 2−s (α−1)
2 , where s = − log2(MaMh)−2 > 0. So,

limα→∞ Pr(X ≥ ⌈α

2 ⌉) = 0.

In this chapter, we performed a thorough analysis of the security of the LIGHT-

SYNC protocol. We proved that with a constant proof size, a verifier can securely

check the inclusion of some data in a Proof-of-Work blockchain using the LIGHT-

SYNC protocol tuned with correct parameters.
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Chapter 6

Evaluation

In this chapter, we perform a thorough analysis of the complexity of the LIGHT-

SYNC protocol. We compare LIGHTSYNC to the existing solutions in terms of

needed resources. We also show the practicality of our solution by presenting the

results of LIGHTSYNC implementation for Ethereum.

6.1 Comparison With NIPoPoW and FlyClient
The main goal of a light client protocol is to enable light clients to verify the inclu-

sion of some data in the blockchain using the least possible storage and computa-

tion resources.

In the first part of the protocol (4.2), each prover has a limited time (challenge

period) to provide the verifier with a proof. In LIGHTSYNC, the challenge period

is determined by the desired level of security and is independent of the blockchain’s

length. The number of blocks mined in the honest chain during this period is on

average the challenge period divided by the block interval time of the blockchain,

which stays constant. If MMR root is included in the block structure using a hard

fork or a soft fork, after running the first part of the protocol, no more data is

required from the prover. So, the verifier validates her predicate on the honest

chain using constant resources.

If MMR structure has been added to the blockchain using velvet fork, after

running the first part of the protocol, more data is required to validate the predicate.
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Table 6.1: Comparison of different light client protocols

Protocol Protocol Complexity for Verifier Added Structure
SPV O(n) -

NIPoPoW O(polylog(n)) Interlink
FlyClient O(polylog(n)) MMR
LightSync O(1) MMR

The winner prover sends a sub-chain that includes α +β upgraded block headers

to the verifier. Assuming that the ratio of the total mining power to the upgraded

mining power is l, in a long run, 1/l of total mined blocks of the honest chain

are upgraded. So, on average, the winner prover needs to send (α +β )× l block

headers to the verifier to provide α +β upgraded block headers. Since α , β , and l

do not depend on the length of the blockchain, the needed resources to perform the

second part of the protocol (4.3) stays constant.

In conclusion, no matter what the size of the blockchain is, the verifier can per-

form data inclusion verification using constant storage and computation resources.

In Table 6.1, we make a comparison between existing solutions and LIGHTSYNC.

The verifier’s complexity in the table refers to the needed storage and computation

resources for the verifier. Although we have included FlyClient in the table, we

should mention that an attack named ”chain-sewing” attack [18] can be performed

against this protocol, when it is under velvet fork deployment. Some countermea-

sures have been proposed to ensure the security of its deployment under velvet

fork condition. Each of them suffer from some drawbacks, including making the

protocol interactive, and increasing the cost of the protocol drastically. So, by Fly-

Client we don’t mean the naive implementation of it which is insecure. Instead, we

consider a secure modified version of it, like the interactive method.

6.2 Implementation
We implement and evaluate LIGHTSYNC using data from Ethereum blockchain

which is a popular PoW blockchain. Ethereum’s block header size is much larger

than Bitcoin’s. Also, Ethereum’s blockchain is growing much faster. Currently,

Ethereum has more than 15 million blocks. So, an efficient protocol for light clients
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Figure 6.1: LightSync proof size in comparison with SPV

of this blockchain seem to be crucial. As we discussed before, the LIGHTSYNC

proof size doesn’t change with the length of the blockchain. We demonstrate the

efficiency of LIGHTSYNC in Figure 6.1.

In this figure, we show the proof size in case of different adversary mining

power portions. We assume the security parameter to be σ = 50, which assures the

probability of failure to be less than 2−50. Parameter c is the ratio of the adversary

mining power to the honest mining power in the network. We can see that even

for a very large c (c = 0.8 means that the total mining power that the adversary

controls is 44.4% of the whole mining power), LIGHTSYNC extremely improves

the proof size. Here, we have assumed that all the miners are upgraded. Now, in

the case where velvet fork is implemented and some portion of miners have been

upgraded, we can see the relation between the proof size and the ratio of upgraded

miners in Figure 6.2. We have assumed c = 0.5 for this case.

In this chapter, we discussed the results of implementing LIGHTSYNC and

evaluated its performance. The results validate the efficiency of our approach, and

its functionality under velvet fork deployment.
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Figure 6.2: LightSync proof size vs. the ratio of upgraded miners in velvet
fork for c=0.5
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Chapter 7

Discussion

7.1 Staying Up-to-Date
In some applications, after running the LIGHTSYNC protocol and getting the last

finalized block header and the last valid MMR root of the blockchain, the verifier

may want to receive the future block headers as soon as they are mined. In this

case, the verifier can continue requesting block headers from the honest full node

and check their validity and compliance with her current chain of block headers and

add them to her local chain if the received data is valid. When a new block header

gets finalized, the verifier can add it to the MMR root she maintains to achieve the

last stable MMR root of the blockchain. Then, she can drop all the finalized block

headers prior to it. In this way, she will always maintain a limited number of block

headers; a sub-chain with length k+1 with some possible forks. However, she can

perform any transaction inclusion or state verification by using the MMR root she

maintains.

In other cases where the verifier doesn’t need to learn about new block headers

immediately as they are mined, she can repeat the LIGHTSYNC protocol in long

time intervals. In this way, instead of getting each block header in real-time, the

client can update herself periodically. So, she will use fewer resources, but, will

experience some delays.
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7.2 Incentive Design
Full nodes maintain a copy of the whole blockchain and relay data in the network.

In addition, they provide the verifiers with light client services which have some

extra costs for them. The growing number of light clients makes the services’ cost

considerable for full nodes. Without a proper incentive mechanism, there is a lack

of motivation for users to participate in the network as full nodes. In this section,

we discuss an incentive mechanism, which proposes a way to cover the costs of

being a full node and prevents the light clients from free-riding. The previous

light client solutions suffer from the lack of incentive in their protocols. With the

increase of demand for light clients, there is a need to properly incentivize full

nodes, so that they continue providing the verifiers with light client services.

Incentive Mechanism for LIGHTSYNC. To start the protocol, the verifier

sends a query transaction to provers. This transaction is a Pay-To-Script-Hash

(P2SH)[5]: a special type of transaction that transfers money from the sender of

the transaction to the hash of a script which is determined by the sender. The script

may require some conditions to be satisfied. Anyone who provides the script and

satisfies the dictated conditions can spend the P2SH transaction. The verifier uses

this kind of transaction to pay the prover for the service she gets. We call this fee

the Service Fee that compensates for the costs of the full nodes. The verifier also

has to pay the transaction fee of the P2SH transaction.

After executing the LIGHTSYNC protocol, the verifier sends the script to the

prover who has provided the final chosen proof. Using the script, the prover can

spend the query transaction and receive his fee. The service fee makes an in-

centive for honest provers to participate in LIGHTSYNC and broadcast the query

transaction in the fastest time. If more honest nodes are incentivized to participate

in LIGHTSYNC, the chance of the user connecting to at least one honest prover

gets higher. Also, the faster the honest prover propagates the query transaction in

the network, the sooner an honest miner includes it in a block. A summary of all

the needed communication between the verifier and the provers is shown in Figure

7.1. After receiving the proofs, the verifier detects the honest prover and continues

communicating with him to obtain the MMR and provides him with the solution

for conditions of P2SH transaction. We call it the puzzle of P2SH transaction.
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Figure 7.1: Communication between the verifier and the provers

The described mechanism has a challenge: the verifier might refuse to provide

the prover with the script. In this case, although the prover has provided a service

for the verifier, it hasn’t received the service fee and the verifier has only paid

a transaction fee. We assume that after executing the LIGHTSYNC protocol, the

communication between the verifier and the prover needs to be continued. Since

the verifier is a light client, she wants to receive every new block header from the

prover. If the verifier refuses to reveal the script, the prover will not provide her

with new block headers anymore. In this case, the verifier needs to restart the

LIGHTSYNC protocol with another prover. This means that she needs to send a

new query transaction to the other provers. This costs an extra transaction fee for

her. By setting the transaction fee greater than the service fee, it will demotivate the

verifier to abandon the first honest prover, so, the proposed challenge gets solved.
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Chapter 8

Conclusion

In this thesis, we present LIGHTSYNC, a low-cost light client protocol that is suit-

able for PoW blockchains. Leveraging LIGHTSYNC, a light client can verify the in-

clusion of data in the blockchain using constant computation and storage resources

no matter what the length of the blockchain is. We describe the details of applying

LIGHTSYNC and perform a thorough security analysis of it. LIGHTSYNC can be

used for lightweight devices (e.g., mobile phones and IoT devices) that intend to

connect to blockchains and verify data against them. Another important applica-

tion of such a protocol is in cross-chain communication, in which one blockchain

wants to verify the correctness of data against the other one. For future work, we

are going to extend the LIGHTSYNC protocol to support blockchains using other

consensus mechanisms (e.g. Proof of Stake). Also, we will design a cross-chain

bridge using the LIGHTSYNC.
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