
Convergence to Nash in the Potential
Linear Quadratic Games and

Accelerated Learning in Games
by

Alireza Alian Porzani

B.Sc., Sharif University of Technology, 2019

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2022

© Alireza Alian Porzani 2022

The following individuals certify that they have read, and recommend to
the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis
entitled:
Convergence to Nash in the Potential Linear Quadratic Games
and Accelerated Learning in Games

submitted by Alireza Alian Porzani in partial fulfillment of the require-
ments for the degree of Master of Applied Sciences in Electrical and
Computer Engineering

Examining Committee:
Dr. Maryam Kamgarpour, Assistant Professor, Sycamore lab, EPFL
Supervisor
Dr. Lele Wang, Assistant Professor, Electrical and Computer Engineering, UBC
Co-supervisor
Dr. Lutz Lampe, Professor, Electrical and Computer Engineering, UBC
Supervisory Committee Member

ii

Abstract

Game theory and online optimization have a close relationship with each
other. In some literature, online optimization has been employed for solving
game theory problems. Many accelerated algorithms are proposed for offline
optimization problems. However, to the best of our knowledge, there is not
enough work done to accelerate zero-order online optimization. The goal is
to propose a Nesterov accelerated online algorithm with the hope that it will
converge to the Nash, with a fast convergence rate in Cournot games and
Quadratic games. It is desired that this online algorithm also minimize the
regret of a sequence of functions for both zero-order and first-order feedback.

In potential Linear Quadratic (LQ) games, we also study the conver-
gence of the policy gradient algorithms, a class of conventional reinforcement
learning methods. LQ games have applications in engineering. It has been
shown that using policy gradient algorithms by agents does not guarantee
convergence to the Nash equilibrium. However, in the LQR problem, which
is essentially a one-player LQ game, the policy gradient converges to the
optimum. In this work, we show that using policy gradient algorithms leads
to convergence to Nash equilibrium in potential LQ games. Additionally, we
identify the characteristics of potential games in both open-loop and closed-
loop settings. We will demonstrate that the class of closed-loop potential
games is generally trivial, and if we put restrictions on players’ actions, we
can have non-trivial potential games too.

iii

Lay Summary

Optimization in a multi-agent and a single-agent environments have some
similarities and differences. In a multi-agent setting, due to the presence
of other agents, co-operations and competitions might help us or hold us
back from getting to the optimum point. This thesis works on studying
and developing methods to lead the agents to their desired stable point.
In this work, we specifically narrow our focus on convex games and Linear
Quadratic games.

iv

Preface

This thesis is an original, unpublished work by the author, Alireza Alian
Porzani. The basis of this thesis is unpublished work supervised by Maryam
Kamgarpour. The second chapter, Accelerated Algorithms in games, was
written with Mohammad Amin Roohi. The mathematical analyzes in part
2.3 and 2.4 is done by him. And the third chapter, LQ games, was written
with Sara Hosseinirad. To be more precise 3.3.1 is completely done by her.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Acknowledgements . x

1 Introduction . 1
1.1 Motivation . 2
1.2 Thesis Organization . 3
1.3 Problem Settings . 3

1.3.1 Game and Converging to the Nash 3
1.3.2 LQ Games . 5

2 Accelerated algorithms in games 8
2.1 Preliminaries for Online algorithms and games 8
2.2 Algorithm for noisy gradient feedback 10
2.3 3-stage online Nesterov method 14
2.4 2-stage online Nesterov method 20

2.4.1 Quadratic Games . 25
2.5 Conclusion and Summary . 29
2.6 Next steps . 30

3 LQ games . 32
3.1 Review of the definitions . 32

3.1.1 Dynamic System . 32

vi

Table of Contents

3.1.2 Quadratic Cost Function 33
3.1.3 Stochasticity in LQ games 36
3.1.4 Potential Games . 36

3.2 An examples of LQ game . 38
3.3 Potential games and their Conditions 39

3.3.1 Convergence of Potential LQ games 39
3.3.2 Open loop potential LQ games 40
3.3.3 Closed loop potential LQ games 42
3.3.4 Special cases of closed-loop 47

3.4 Simulations . 49
3.5 Discussion . 52

4 Conclusion and Future works 53

Bibliography . 54

Appendices

A Appendix . 57

vii

List of Tables

2.1 We present the regret order of different online algorithms in
this table. All these functions are differentiable and smooth.
The best regret rate can be achieved without strong convexity
O(

√
T). 30

viii

List of Figures

2.1 Gradient descent and accelerated solution 26
2.2 Gradient descent and accelerated solution 27
2.3 Gradient descent and accelerated solution 27
2.4 Convergence Trajectories . 28
2.5 Convergence Trajectories . 29

3.1 Closed loop and open loop flowchart 34
3.2 Convergence Trajectories . 50
3.3 Trivial Closed Loop Potential 51
3.4 Special Potential Case . 52

ix

Acknowledgements

First of all, to my parents and my sister, who warmly supported me through-
out my journey away from home. They were always available to me, even
from thousands of miles away. Without their help, I would not be here the
place I am.

To my supervisor, Dr. Maryam Kamgarpour, who supported me through-
out this long process. Even though we were working in different time zones,
and she had lots of personal and professional tasks in her life, she always
helped me with feedback that shed light along my research path.

To Dr. Lele Wang, who was responsible for being my formal supervisor
and her helpful reading group. She always lifted my spirit and helped me
when I had a meeting with her. To my dear friend and lab mate, Mohammad
Amin Roohi, who was an important part of my trip to Canada and doing
this research.

To my friend and group mate, Sara Hosseinirad, who always helped me
with her very helpful comments throughout this work. She has made this
work a lot better with her work and feedbacks that she provided to me.
To my friend and lab mate, Kai Ren, who kept following my progress and
provided feedbacks during our meetings.

x

Chapter 1

Introduction

Game theory studies mathematical models of rational agents when they
have strategic interactions [19]. It comes into use whenever we have several
agents in our environment, and we want to understand the behavior they
show to increase their utility or minimize their loss. We may see applica-
tions of game theory in economics where there are multiple rational agents
involved and strategical scenarios such as supply and demand markets and
auctions. Game theory also has many applications in engineering, where
the goal is to control a system in the presence of a disturbance, which is
seen as an adversary agent. Game theory can also come in handy when we
wish to optimize several scalar functions at the same time (multi-objective
optimization) [18].

On the other hand, online optimization is popular in computer science
and is the study of optimizing an unknown time-varying function. As the
target function is not constant over time, optimization might seem meaning-
less because we can’t do optimization for every single time step. Moreover,
optimization may seem unreasonable as the function is unknown, so that
we cannot know the optimal point in every time step and compute it. To
overcome this problem, regret is used as a means to see how well the on-
line algorithm is performing. Regret is a function that evaluates the overall
proximity of our selected points to the best single point one could choose in
hindsight. In chapter two, we introduce the definition of regret that is used
in our work.

Game theory and online optimization are strongly connected while hav-
ing their own differences. In a game, each player is optimizing a function
that is also a function of other players’ actions, so it changes when other
players decide to change what they are playing. Thus, we can see that each
player is solving an online optimization problem. Moreover, in online opti-
mization, we are interested in having a sublinear regret (which will be talked
about later on) because it is reasonable to expect that our overall payoff is
not much worse than the case we select the best-fixed point [16]. An online
algorithm that has a sublinear regret is called a no-regret algorithm. Con-
trary to many optimization problems, where it is allowed to assume that

1

1.1. Motivation

the first order or higher orders of feedback are provided to us, in games it is
usually assumed that zero-order feedback is given because we can only ask
for the value of the function for one extra point at each step, which is more
realistic.

1.1 Motivation

As opposed to the conventional optimization problems, in games, we are
interested in converging to the Nash equilibrium instead of finding a point
that optimizes one single function. The goal is to find algorithms that the
players that are participating in the game employ, and as an outcome, they
reach the Nash equilibrium. In games, it is not enough that each player plays
a no-regret algorithm because there are examples where if all the players
employ a no-regret algorithm, the player’s actions may cycle in perpetuity
[15, 28] and never converge to the Nash. It is also demonstrated that no-
regret algorithms lead to the min-max optimal solution for the class of zero-
sum games [6], demonstrating that if all players use a no-regret algorithm,
their actions will converge to the Nash equilibrium, and the convergence
rate depends on the regret of the algorithm that is used, i.e., the smaller the
regret is, the faster the convergence to the Nash.

Generally, to the best of our knowledge, there has been little work done to
improve the convergence rate of players’ actions to the Nash equilibrium [5].
Vaswani et al. [25] tried to use a Nesterov algorithm to accelerate stochastic
optimization, and they were able to obtain a convergence guarantee with a
proof of rate. Nesterov Algorithms were not used in games or online learning
in any of the works mentioned above. The motivation is to change Nesterov
Algorithms to online algorithms to have a better game convergence rate.

In addition, there is a further convergence issue that we will address
in this thesis. Here we are given a family of algorithms, Policy Gradient,
used mainly in reinforcement learning. In a single agent mode, [4] found
convergence guaranteed under some conditions. However, [13] showed that
in a multi-agent setting, there exist examples where using a policy gradient
leads to cycling around the Nash equilibrium. We also know that the class
of potential games behaves like a single-player system. Finding the class of
potential LQ games and determining whether or not they have a convergence
guarantee is motivating.

2

1.2. Thesis Organization

1.2 Thesis Organization

In the rest of this chapter, we bring the basic concepts, mathematical def-
initions, and the formulation of our problems into a simple mathematical
form. Furthermore, we go over some of the most relevant works on the topic
and their outcomes to see what has been done and what has been lacking
in this field.

In Chapter 2, we focus specifically on accelerated algorithms, go through
the concepts underlying them, extend them to online optimization, and see
how well they work there. We present our accelerated online algorithms and
analyze their performance when players of a game follow them to find their
optimal actions. We are particularly interested when they are used in games
because acceleration has not previously been employed in them.

Chapter 3 discusses the problems that may occur in a multi-agent LQ
system and studies a subset of such games where policy gradient methods
will safely ensure actions converge to Nash equilibrium. We demonstrate
how potential games can show single-player behavior and identify the simpler
LQ games that are potential. We also raise some conjectures about the
general form of the potential LQ games. The last chapter summarizes the
results and draws conclusions about what is contributed to this field, the
upcoming questions, and possible future work in this area.

1.3 Problem Settings

1.3.1 Game and Converging to the Nash

In a game, there are N players, each with a utility function. For example,
the utility function of player i is fi(x) = fi(xi;x−i) : X = X1 × · · · ×XN →
R, where x−i = (x1, . . . , xi−1, xi+1, . . . , xN), xj ∈ Xj where Xj is set of
available actions for player j. The trio of (N, f,X) defines a game. If the
players are rational, which we assume they are, they will aim to maximize
their utility function.

Example: Quadratic games are defined as the games with the following
cost function (Negative of the utility function) to the players:

fi(xi, x−i) =
1

2
xTi Γiixi + xTi giΓi,−ix−i + xTi + hi(x−i). (1.1)

with Γii ≻ 0 and xi ∈ Rdi .
As we mentioned in the example above, players may have cost functions

instead of utility functions; in other words, rational players wish to mini-

3

1.3. Problem Settings

mize the given function instead of maximizing it. These two problems are
equivalent because we can use the old trick of having a cost function with
the value of a negative utility function.

argmin
x

f(x) = argmax
x

−f(x) (1.2)

Example: In a matrix game, the utility function can be written in
matrix form. For example, consider a two-player game, where each player
can play one action 1 or 2. The associated utility function to the players is
shown in the following matrix:

F =

[
(1,−1) (3,−3)
(−2, 2) (−4, 4)

]
. (1.3)

Fi,j , where i, j ∈ {1, 2} is the corresponding utility pair for our players,
when the first player plays i and the second player plays j. For example
if first player plays 1 and the second player plays 2, the first player will be
rewarded by 3 and the second player will be rewarded by −3.

By paying attention to the utility function in 1.3, one can realize that
the sum of utilities in each scenario is zero. This family of games where the
sum of utilities is zero are called zero-sum games. Another notable note
in 1.3 is that if both players play action 1, they do not have any motivation
to change their actions. In other words, if only one of them single-handedly
attempts to change its action, it will get a lower reward. It implies that they
are in an equilibrium called Nash Equilibrium.

Definition 1.3.1. Nash equilibrium is called a choice of actions (x∗1, . . . , x
∗
N) ∈

ΠN
i=1Xi = X that satisfies the following inequalities. For every xi ∈ Xi and

for all i ∈ {1, 2, . . . , N}, we have:

fi(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
N) ≤ fi(x

∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
N). (1.4)

Definition 1.3.2. Concave (Convex) games are the games where each player’s
set of action are convex and also fi(xi, x−i) is concave (convex) with respect
to xi.

Examples of convex games are quadratic games are introduced earlier.
Example: Cournot game is defined as an N player game with payoff

function of player i as fi(x) = p(
∑N

j=1 xj)xi − Ci(xi), xi ≥ 0. In the afore-
mentioned formula, p(.) represents the product’s market price, which is a
function of the product’s global supply in the entire market, whereas Ci(.)
represents the product’s production cost for player i [24].

Under the following assumptions on p(.) and Ci(.), Cournot games are
concave and admit unique Nash equilibrium.

4

1.3. Problem Settings

1. p(.) is concave, twice differentiable, p(0) > 0, and strictly decreasing
when p(x) > 0.

2. Ci are convex, strictly increasing and twice differentiable with p(0) >
C ′
i(0)

f ′′
i (x) = p′′(

∑
xj)xi + 2p′(

∑
xj)− C ′′

i (xi) < 0.

As a result, as shown above, fi(x) is concave in xi for all i, implying that
the game is concave.

Definition 1.3.3. A game is monotone if it satisfies the following for x, x′ ∈
X:

⟨m(x)−m(x′), x− x′⟩ ≤ 0, (1.5)

where m(x) =

 ∇1f1(x)
...

∇NfN (x)

 is the game map, and the equality happens only

if x = x′.

There is a famous result that monotone concave games will go to their
unique Nash equilibrium when players use gradient methods to optimize
their actions. However, with the mentioned assumptions, we may not have
a monotone concave Cournot game, so the former result does not imply
anything.

Shi and Zhang [24] proved that employing no-regret algorithms by the
players leads to convergence in measure to Nash equilibrium. Convergence
in measure means that the sequence of actions will converge to optimal
actions with the probability of 1.

Definition 1.3.4. Let µ be a measure on N, convergence in measure of at
to a means that ∀ϵ > 0, limt→∞ µ(∥at − a∗∥ > ϵ) = 0 [24].

1.3.2 LQ Games

A Linear Quadratic (LQ) optimization problem is defined as minimizing a
loss function of

∑T
t=0 ctxt.ut = xTt Qxt + uTt Rut (quadratic cost), where xt

is the state of the system, and ut is the input to the system at the time t.

5

1.3. Problem Settings

And the dynamics of this system is linear with respect to states and inputs
(actions). xt+1 = Axt +But + wt, where wt represents the noise at time t.

min

tf∑
t=0

xTt Qxt + uTt Rut, (1.6)

such that xt+1 = Axt +But + wt.

This game can have different properties depending on the length of the
time horizon. Dynamic games are usually divided into these two classes:

• Finite Horizon LQ System: A LQ system is called a finite horizon
if tf < ∞.

• Infinite Horizon LQ System: A LQ system is called an infinite
horizon if tf = ∞. It is proven [2] that if A and B are such that the
minimum cost is finite, the optimal play for such closed-loop games are
in the form of ut = −Kxt. The coefficient K is derived from algebraic
Riccati Equation. In this class of problem we are also concerned of
stability, i.e. if we choose coefficients K in a careless way, as the cost
function is an infinite series, we may end up with an unbounded cost
function.

LQ systems can also be divided into the following categories:

• A system with known parameters: In this setting, we are given
with the all parameters such as Q, R, A, B, and to achieve the optimal
play, we can use Algebraic Riccati Equations written bellow [1]

P ∗
tf

= Qtf (1.7)

P ∗
t = Qt +AT

t (P
∗
t+1 − P ∗

t+1Bt(B
T
t Pt+ 1∗Bt +Rt)

1BT
t P

∗
t+1)At, (1.8)

K∗
t = (Rt +BT

t P
∗
t+1Bt+1)

−1BT
t P

∗
t+1At. (1.9)

• A system with unknown parameters: In this setting, we want to
optimize a system without knowing the parameters. This problem is
also known as the model-free LQ system. When we play the input K1

(or u1 in an open-loop setting), we get the feedback Ji(x,K1) (the loss
function). One common way to approach an optimal solution is to use
Policy Gradient (PG) methods.

6

1.3. Problem Settings

It is proven that under mild assumption, in the infinite horizon LQ systems
PG will give us the global optimum point [13].

The introduced LQ settings above can be extended to a multi-agent
setting and be seen as a game. A LQ game is defined as an N player
dynamic game, with the following cost functions:

Ji(x, u) =

tf∑
t=0

xTt Qixt + uTi,tRiui,t, (1.10)

and

xt+1 = Axt +
N∑
i=1

Biui,t + wt. (1.11)

The Nash can be calculated by the following coupled Algebraic Riccati Equa-
tion [7]:

P ∗
i,t = Qi,t + (K∗

i,t)
TRi,tK

∗
i,t + (At −

N∑
j=1

Bj,tK
∗
j,t)

TP ∗
i,t+1(At −

N∑
j=1

Bj,tK
∗
j,t),

(1.12)

K∗
i,t = (Ri,t +BT

i,tP
∗
i,t+1Bi,t+1)

−1BT
i,tP

∗
i,t+1(At −

N∑
j=1,j ̸=i

Bj,tKj,t).

(1.13)

Mazumdar [13] showed that, in a multi-agent LQ system, there is no
guarantee of convergence to Nash using PG. However, in zero-sum LQ games
[27] there is a convergence guarantee. There is a class of games called Po-
tential games, which can behave like a single-player game. As we have a
convergence guarantee in the single-player mode, it motivates us to identify
such a class of games and study if potential LQ games converge to their
Nash equilibrium.

7

Chapter 2

Accelerated algorithms in
games

We present three new accelerated online optimization algorithms, adapted
from the Nesterov Accelerated algorithms in offline optimization, by setting
the parameters, and determine their regret. The goal is to speed up conver-
gence in games that feature a convex set of actions. The online algorithms
that are introduced in this chapter are inspired by non-online Nesterov algo-
rithms that already exist but have never been used in an online algorithm.
Additionally, we demonstrate through simulations that applying these algo-
rithms speeds up convergence in quadratic and Cournot games

In games, from each individual’s perspective with utility function of
ui(xi,t;x−i,t), if we restrict its domain to his controllable actions, the pay-
off would be a time-varying function ft(xi) = ui(xi,t;x−i,t). It means that
each player is performing some online optimization. In order to accelerate
the convergence in the game, we try to use accelerated algorithms in online
setting and hope that when the players are using the new algorithms, the
convergence speed improves.

2.1 Preliminaries for Online algorithms and
games

A function f(x) : D → R is called L-Lipschitz continuous if:

|f(x)− f(y)| ≤ L∥x− y∥2 ∀x, y ∈ D, (2.1)

and it is calledM -smooth if the gradients∇f(x) areM -Lipschitz continuous,
i.e.,

∥∇f(x)−∇f(y)∥2 ≤ M∥x− y∥2. (2.2)

Similarly we call a convex function µ−strongly convex if:

µ∥x− y∥2 ≤ ∥∇f(x)−∇f(y)∥2, (2.3)

8

2.1. Preliminaries for Online algorithms and games

for every x, y ∈ D. In the above definitions L,M, µ > 0. Besides M -
smoothness and µ−strongly convex condition for convex functions, respec-
tively are equivalent to:

0 ≤ f(x)− f(y)−∇f(x)⊤(x− y) ≤ M

2
∥x− y∥22. (2.4)

f(x)− f(y) ≤ ∇f(x)⊤(x− y)− µ

2
∥x− y∥22. (2.5)

Definition 2.1.1. [8] Let A be a deterministic algorithm for online convex
optimization (OCO), which at each time step t, selects action xt ∈ X , where
X is the set of possible actions. After xt is selected, algorithm incurs a cost
of ft(xt). For all t, ft is unknown and chosen by an oblivious adversary. We
assume all the payoff functions f1, . . . , fT ∈ F , where F is the set of bounded
functions. So, after T iterations, the total cost collected by algorithm A
is
∑T

i=1 ft(xt). In addition, the total cost of a static feasible action x0 is∑T
i=1 ft(x0). We formally define the regret of A after T iterations as:

RegA(T) =
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (2.6)

Also, in case the algorithm is non-deterministic, we generalize the defi-
nition regret by taking an expectation over uncertainties:

RegA(T) = E

[
T∑
t=1

ft(xt)

]
−min

x∈X

T∑
t=1

ft(x).

Intuitively, an algorithm performs well if its regret is sublinear as a func-
tion of T , i.e., RegA(T) = o(T), since this implies that on the average the
algorithm performs as well as the best fixed strategy on the hindsight. In
this case, we say A is a no-regret algorithm.

In convex offline optimization, gradient descent is the most common
way to get the optimum point. xt+1 = xt − ηt∇f(xt) is the update rule.
The problem with this algorithm is that, the rate of convergence is slow,
i.e. O(1/t). That is, f(x(t) − f(x∗) is decreasing proportionally to 1/t.
To address this problem, there are accelerated algorithms such as Polyak
Heavy Ball [22] or Nesterov Methods [20]. The update rules for the Nesterov
method are as follows:{

xt+1 = yt − ηt∇f(yt)
yt+1 = xt+1 +

t
t+3(xt+1 − xt)

This algorithm and its variant to an online optimization algorithm are used
to accelerate game convergence.

9

2.2. Algorithm for noisy gradient feedback

2.2 Algorithm for noisy gradient feedback

Here we try to solve an online optimization problem with first-order feed-
back, with Nesterov’s accelerated method 1, under the assumption of bounded
variation of objective functions. In other words, we are trying to minimize
functions ft(x), with the property that ”they change slowly” at each step.
Formally we can write:
For each t here exist a ϵt such that for all x we have:

|ft+1(x)− ft(x)| ≤ ϵt, (2.7)

where ϵt is fairly small. Our motivation for this assumption comes from the
fact that we will use such an algorithm in games, and as cost functions that
we are considering in games are not changing and they are smooth, such an
assumption can be realistic.

We also assume that for all ft and all x (strong growth with additive
noise):

Ezt ∥∇ft(xt, zt)∥2 ≤ ρ∥∇ft(xt)∥2 + σ2
t . (2.8)

Our first proposed online algorithm is as follows:

Algorithm 1 Accelerated Online Nesterov

1: Starting from w0, ν0 and arbitrary point ζ0
2: for k = 1, 2, . . . , T do
3: Update wk+1 = ζk − η∇fk(ζk, zk)
4: Update ζk = αkνk + (1− αk)wk

5: Update νk+1 = βkνk + (1− βk)ζk − γkη∇fk(ζk, zk)
6: end for

This is fully motivated by [25], where they used such an algorithm to
improve stochastic gradient descent. We extended their algorithm for a
case where the function is not constant and is time-varying. In the following
section, we will see how we can reduce this algorithm to an online zero-order
algorithm.

In addition to the above assumptions, we assume the followings:

• Strong convexity and smoothness: Here, we assumed that our
functions µ−strongly convex and L−smooth.

• Decreasing variance: We also assume that the running sum of vari-

10

2.2. Algorithm for noisy gradient feedback

ances is sublinear as well, i.e,,

T∑
k=0

k∑
j=0

σ2
j = o(T). (2.9)

• We also assume that our functions are twice differentiable.

where σ2
j refers to the noise of gradient estimator at the jth step of the

algorithm. The decreasing variance assumption in games is not unrealis-
tic because, as we approach Nash, players have less motivation to deviate
from their current actions, and the gradient query would be less noisy. At
the end of this section, we will see that our gradient estimator’s noise can
be controlled by making the search area smaller, which implies that our
assumption can make sense.

Theorem 2.2.1. If the following conditions hold:

γk =
1

ρ
.

[
1 +

βk(1− αk)

αk

]
, (2.10)

αk =
γkβkb

2
k+1η

γkβkb
2
k+1η + a2k

, (2.11)

βk ≥ 1− γkµη, (2.12)

ak+1 = γk
√
ηρbk+1, (2.13)

bk+1 ≤
bk√
βk

, (2.14)

b2k+1γ
2
kηρ = a2k+1, (2.15)

b2k+1γkη − a2k+1 + a2k = 0, (2.16)

η ≤ 1

ρL
, (2.17)

the regret bound for algorithm 1 is:

Reg(T) ≤
T∑

j=1

[
1

2b2jγ
2
j−1ηρ

(
2a20C1 + b20C2

+

j−1∑
k=1

[
2b2k+1γ

2
k+1η

2σ2
k + 4b2k+1γ

2
k+1ηρϵk

])]
. (2.18)

where C1 = f0(x0) − f0(x
∗) and C2 = ∥x0 − x∗∥2 and x∗ is the best action

played on the hindsight. Proof in Appendix A.

11

2.2. Algorithm for noisy gradient feedback

Lemma 2.2.2. : If we run algorithm 1 with parameters bellow, if
∑T

k=0

∑k
j=0 ϵj =

o(T), then we get a sublinear regret.

η = 1/(ρL), γ = 1/
√
ηµρ,

γk =
1

√
µηρ

, βk = 1−
√

µη

ρ
, (2.19)

ak =
1

β
k/2
k

, bk =

√
µ

β
k/2
k

.

Proof.

Reg(T) ≤ o(

T∑
k=1

1

b2kγ
2
k−1

[
a20
ρη

C1 +
b20
2ρη

C2

]
+

T∑
k

1

b2k+1γ
2
k

k∑
i=0

[γ2i b
2
[i+1](σ

2
i + ϵi)])

= o(

T∑
k

βk+1
k+1µηρ

µ

[
a20
ρη

C1 +
b20
2ρη

C2

]
+

T∑
k

1

b2k+1γ
2
k

k∑
i=0

[γ2i b
2
[i+1](σ

2
i + ϵi)])

≤ o(

T∑
k

β
k/+1
k+1 µηρ

µ

[
a20
ρη

C1 +
b20
2ρη

C2

]
+

T∑
k

k∑
i=0

[σ2
i + ϵi])

= C3 + (o(T) + o(T)) = o(T) according to 2.9.

Where C3 =
∑T

k

β
k/+1
k+1 µηρ

µ

[
a20
ρηC1 +

b20
2ρηC2

]
because it is a geometric series

(βk was chosen to be constant).

Where C3 =
∑T

k

β
k/+1
k+1 µηρ

µ

[
a20
ρηC1 +

b20
2ρηC2

]
because it is a geometric series

(βk was chosen to be constant).

Now we discuss how our results from previous theorems are related to the
zero-order online optimization. Nesterov designed a two-point estimation of
gradient, which satisfies the strong growth with additive noise assumption
[21].
If f ∈ C0,0 (Lipschitz):

Eu(∥gµ∥2∗) ≤ L2(d+ 4)2, (2.20)

If f ∈ C1,1 (smoothness):

Eu(∥gµ∥2∗) ≤
µ2

2
M2(d+ 6)3 + 2(d+ 4)∥∇f(x)∥2∗, (2.21)

12

2.2. Algorithm for noisy gradient feedback

Eu(∥ĝµ∥2∗) ≤
µ2

8
M2(d+ 6)3 + 2(d+ 4)∥∇f(x)∥2∗, (2.22)

where in above expression gµ = f(x+µu)−f(x)
µ .Bu, ĝµ = f(x+µu)−f(x−µu)

2µ .Bu,
fµ = Eu(f(x + µu)), u is a random vector distributed uniformly over the
unit sphere in Rd, M is smoothness factor of f(x), and L is the Lipschitz
constant of f(x).

For example, is smooth case gµ, the gradient estimator gives us ρ =

2(d+ 4) and σ2 = µ2

2 L2
1(f)(d+ 6)3 in the equation 2.23. it implies that by

making µ smaller with the rate of o(2−n), then 2.9 will be o(1). However,
we should decrease µ moderately because numerical calculations could be
problematic if µ gets too small. In fact, at some point, we miss-estimate the
gradient as 0, and our algorithm stops.

Besides, the two-point gradient estimation is not a reasonable game as-
sumption. Because players are constantly changing their actions and when
we are sampling the function at different points, it is most likely that our
function is totally changed and our estimation is not valid anymore. By
looking into eqs. (A.10) and (A.12) the gradient is achieved at the point ζk,
and we assumed that we play the action wk. So if we try to use one of the
two points used in 2.21, then we need to only have one query.

As it’s mentioned earlier, in games, from each player’s perspective,
they are solving an online optimization problem, where the functions that
they are given are ft(xi) = ui(xi,t;x−i,t), which comes from a constant
function ui(.). Thus, with the assumption that ui(.) is smooth, if the players
begin to change their actions in very small amounts at some point, we have
|ft+1(x)−ft(x)| ≤ ϵt, where ϵt is fairly small (with continuity assumptions).
With this in mind, below we explain why we had the assumption of 2.7 and
we bring the intuition that we expect the gradient estimation to be less noisy
as we approach the Nash.

• We assumed that |ft+1(x)− ft(x)| ≤ ϵt. Although it is a valid condi-
tion for all continuous functions defined over a compact set (note that
functions ft(.) are coming from one universal continuous function), it
is important to express regret regarding such differences. Because,
as we argued, when we are getting close to the Nash, the continuity
of gradient implies that players tend to change their actions in small
amounts (as we assume that player’s are using gradient based algo-
rithms), which leads to having smaller ϵt’s. As a result, we see it
harmless to have this assumption, and more importantly, to introduce
this difference bound so we can have it in the regret.

13

2.3. 3-stage online Nesterov method

• We expect our gradient queries to be less noisy as we get close to
Nash. Because same as the previous case, as we have the assumption
of twice differentiability of the cost functions, when we get close to
Nash (where gradient w.r.t each player’s action is zero), gradient of
the cost function w.r.t players’ action is close to zero. It also means
that players will change their actions slowly. It also means that the
function ft(x) is close to ft+1(x), which is used to estimate the gradient
so that we would have smaller noise σ2

t .

Next we calculate the optimization error of algorithm 1 for the deter-
ministic and stochastic cases.

Theorem 3.2: The algorithm 1 enjoys deterministic and stochastic
optimization error of:

f(wT+1)− f∗ ≤ 1

2a2T+1

(
2a20ϕ0 + b20r

2
0

)
, (2.23)

E f(wT+1)− f∗ ≤ 1

2a2T+1

(
2a20ϕ0 + b20 E[r20] +

T∑
k=1

[
2a2k+1σ

2
kη

ρ

])
. (2.24)

respectively, were

ϕk = E fk(wK)− f∗
k (2.25)

rk+1 = ∥νk+1 − w∗∥ (2.26)

The terms above will converge to 0 and
∑T

k=1
σ2
kη
ρ respectively.

Proof: As we had in the proof

E fT+1(wT+1)− f∗
T+1 ≤

1

2a2T+1

(
2a20ϕ0 + b20 E[r20]− b2T+1 E[r2T+1]

+
T∑

k=1

[
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk

])
.

we assumed fk = f and therefore ϵk = 0. Replacing σ2 = 0 for stochastic
case we get the desired result.

2.3 3-stage online Nesterov method

This thesis presents a further three-stage online Nesterov algorithm with
sublinear regret. It differs from the algorithm in the preceding section as a

14

2.3. 3-stage online Nesterov method

result of the different hyperparameters. To show that an online accelerated
algorithm is a no-regret algorithm, we use the same idea as [11]. They use
a 3-stage accelerated method for non-differentiable functions. We tried to
show that a 3-stage Nesterov accelerated method in an online setting is a
no-regret for differentiable functions. After this step, we picked the simplest
version of the accelerated method in an online setting, called it the 2-stage
accelerated method, and showed it is also a no-regret algorithm for some
specific hyper-parameters.

This section assumes that for any t ≥ 1, ft, ft is a convex, differen-
tiable and L-smooth function. Also, we assume that each ft has a bounded
gradient, i.e., for all x, ∥∇ft(x)∥2 ≤ G, where G ≥ 0. Now we want to
prove that algorithm 2 is a no-regret algorithm. The idea is to bound the
ft(xt)− ft(x

∗), where x∗ is the optimum point that we can choose in hind-
sight. Based on the properties we assumed for ft we have, we can find an
upper bound for ft(xt+1)− ft(x). Then, we try to find an upper bound for
ft(xt)− ft(xt+1) based on the updated policy. We do this to find an appro-
priate upper bound for ft(xt)− ft(x). The following proofs are inspired by
[11]. Lemma 2.3.1 is a famous lemma and it presents in other references.
This algorithm is modified version of what is introduced in [11], and the
algorithm in the next section is completely novel. In [11], we do not have
any equivalent for Lemma 2.3.2 or Lemma 2.3.3, but we decomposed their
proof into these easier-to-follow lemmas to help the reader.

For the following algorithms, the idea of the proof is to bound ft(xt) −
ft(x). To make this upper bound, we introduced some lemmas to get an
upper bound for ft(xt) − ft(x). At some steps, we got an upper bound for
ft−1(xt)−ft−1(x), and we needed to make finite variation assumption to get
our desired upper bound. This helped us to get our bounds without finite
variation assumption.

Algorithm 2 3 stage-accelerated Online Optimization

1: Input: Sequences {0 < αt < 1} and {Lt} > L.
2: Initialize z1 = y1.
3: for t = 1, . . . , T do
4: xt = (1− αt)yt−1 + αtzt−1

5: yt = xt − 1
Lt
∇ft−1(xt).

6: zt = zt−1 − αt(xt − yt).
7: end for

15

2.3. 3-stage online Nesterov method

Lemma 2.3.1. For t > 1, ft(x) can quadratically bounded from below as

ft−1(x) ≥ ft−1(yt) + ⟨∇ft−1(xt), x− xt⟩+
2Lt − L

2L2
t

∥∇ft−1(xt)∥2. (2.27)

Proof. From smoothness of ft−1(x) we know:

ft−1(yt) ≤ ft−1(xt) + ⟨∇ft−1(xt), y − xt⟩+
L

2
∥yt − xt∥2, (2.28)

and from the updating rule, we know that yt − xt = − 1
Lt
∇ft−1(xt). As a

result, we have:

ft−1(yt) ≤ ft−1(xt) + ⟨∇ft−1(xt),−
1

Lt
∇ft−1(xt)⟩+

L

2L2
t

∥∇ft−1(xt)∥2

(2.29)

=⇒ ft−1(yt) ≤ ft−1(xt) +
L− 2Lt

2L2
t

∥∇ft−1(xt)∥2 (2.30)

=⇒ ft−1(yt)−
L− 2Lt

2L2
t

∥∇ft−1(xt)∥2 ≤ ft−1(xt). (2.31)

In addition, from convexity of ft−1(x) we know:

ft−1(x) ≥ ft−1(xt) + ⟨∇ft−1(xt), x− xt⟩, (2.32)

now, we substitute ft−1(xt) with the lower bound we found in equation (1.4),
then we have:

ft−1(x) ≥ ft−1(yt) + ⟨∇ft−1(xt), x− xt⟩+
2Lt − L

2L2
t

∥∇ft−1(xt)∥2. (2.33)

Lemma 2.3.2. From the update rule of zt, we can say:

zt =x Vt(x) ≡ ⟨∇ft−1(xt), x− xt⟩+
Lt

2αt
∥x− zt−1∥2.

Proof. By setting the gradient of Vt(x) equal to zero, we have:

∇ft−1(xt) +
Lt

αt
(x− zt−1) = 0 =⇒ x = zt−1 −

αt

Lt
∇ft−1(xt), (2.34)

and from the update rule of yt, we have ∇ft−1(xt) = Lt(xt − yt), and this
implies argminx Vt(x) = zt−1−αt(xt−yt) and this completes the proof.

16

2.3. 3-stage online Nesterov method

Lemma 2.3.3. For any x and t ≥ 1, we have:

ft−1(yt)− ft−1(x) ≤⟨∇ft−1(x), xt − zt⟩ −
2Lt − L

2L2
t

∥∇ft−1(xt)∥ (2.35)

− Lt

2αt
∥zt − zt−1∥2 +

Lt

2αt
∥x− zt−1∥2 −

Lt

2αt
∥x− zt∥2.

Proof. From the definition of Vt(x), we can say it is a µ−strongly con-
vex function where µ = Lt

αt
. Based on Lemma 2.3.3., we know zt in the

argminx Vt(x). So, we can say:

Vt(zt) ≤ Vt(x)− µ∥x− zt∥2 = Vt(x)−
Lt

αt
∥x− zt∥2 (2.36)

= ⟨∇ft−1(xt), x− xt⟩+
Lt

2αt
∥x− zt−1∥2 −

Lt

2αt
∥x− zt∥2, (2.37)

also, from Lemma 2.3.1 we know ⟨∇ft−1(xt), x− xt⟩ ≤ ft−1(x)− ft−1(yt)−
2Lt−L
2L2

t
∥∇ft−1(xt)∥2. So, using the later inequality and 2.37, we have:

Vt(zt) ≤ ft−1(x)− ft−1(yt)−
2Lt − L

2L2
t

∥∇ft−1(xt)∥2 (2.38)

+
Lt

2αt
∥x− zt−1∥2 −

Lt

2αt
∥x− zt∥2,

now if we put x = zt in the definition of the Vt(x), we have:

ft−1(yt)− ft(x) ≤⟨∇ft−1(xt), xt − zt⟩ −
Lt

2αt
∥zt − zt−1∥2 (2.39)

− 2Lt − L

2L2
t

∥∇ft−1(xt)∥2 +
Lt

2αt
∥x− zt−1∥2 −

Lt

2αt
∥x− zt∥2,

Proposition 2.3.4. Suppose ∥∇ft(x)∥∗ ≤ g for any t ≥ 1. Then for any
x, we have:

ft−1(yt−1)− ft−1(x) ≤
g2

2(1− αt)(Lt − L)
+

Lt

2αt
∥x− zt−1∥2 −

Lt

2αt
∥x− zt∥2

+
(1− αt)

2Lt − αt(1− αt)L

2
∥yt−1 − zt−1∥2 −

Lt

2
∥yt − zt∥2.

17

2.3. 3-stage online Nesterov method

Proof. At first note that we have:

⟨∇ft−1(xt), xt − zt⟩ −
∥∇ft−1(xt)∥2

2Lt
= ⟨Lt(xt − yt), xt − zt⟩ −

Lt∥xt − yt∥2

2

=
Lt

2
(xt − yt, 2(xt − zt)− ⟨xt − yt, xt − yt⟩) (2.40)

Lt

2
(⟨xt − yt, xt + yt − 2zt⟩) =

Lt

2
(∥zt − xt∥2 − ∥zt − yt∥2),

(2.41)

in addition, from the update rule of xt, we have xt = (1 − αt)yt + αtzt−1.
So, we can say:

∥zt − xt∥2 = ∥zt − (1− αt)yt − αtzt−1∥2 = ∥(1− αt)(zt − yt) + αt(zt − zt−1)∥2

≤ (1− αt)
2∥zt − yt∥2 + α2

t ∥zt − zt−1∥2

≤ (1− αt)∥zt − yt∥2 + αt∥zt − zt−1∥2

≤ (1− αt)∥zt − yt∥2 +
1

αt
∥zt − zt−1∥2, (2.42)

as a result, we have:

⟨∇ft−1(xt), xt − zt⟩ −
∥∇ft−1(xt)∥2

2Lt
≤ Lt

2αt
∥zt − zt−1∥2

+
Lt(1− αt)

2
∥zt−1 − yt−1∥2 −

Lt

2
∥zt − yt∥2. (2.43)

Now, if putting the later inequality in the Lemma 2.3.3, gives us:

ft−1(yt)− ft−1(x) ≤
Lt(1− αt)

2
∥zt−1 − yt−1∥2 −

Lt

2
∥zt − yt∥2 (2.44)

− Lt − L

2L2
t

∥∇ft−1(xt)∥2 +
Lt

2αt
∥x− zt−1∥2 −

Lt

2αt
∥x− zt∥2.

(2.45)

In addition, from the convexity of ft−1(x) we know:

ft−1(yt−1)− ft(yt) ≤ ⟨∇ft−1(xt), yt − yt−1⟩. (2.46)

From the Young’s inequality, for every a > 0 we know ⟨x, y⟩ ≤ ∥x∥2
2a + a∥y∥2

2 .
So, by using Young’s inequality and considering a = (1 − αt)(Lt − L), we

18

2.3. 3-stage online Nesterov method

can say:

ft−1(yt−1)− ft(yt) ≤
∥∇ft−1(xt)∥2

2(1− αt)(Lt − L)
+

(1− αt)(Lt − L)

2
∥yt−1 − yt∥2

(2.47)

≤ g2

2(1− αt)(Lt − L)
+

(1− αt)(Lt − L)

2
∥yt−1 − yt∥2.

(2.48)

Besides, from the update rule of yt, we can say:

∥yt−1 − yt∥2 = ∥(yt−1 − xt) + (xt − yt)∥2 = ∥αt(yt−1 − zt−1) + (xt − yt)∥2

(2.49)

≤ α2∥yt−1 − zt−1∥2 + (1− αt)
2∥xt − yt∥2 ≤ α∥yt−1 − zt−1∥2

(2.50)

+
1

1− αt
∥xt − yt∥2

= αt∥yt−1 − zt−1∥2 +
∥∇ft−1(xt)∥2

(1− αt)L2
t

. (2.51)

By using 2.51 in 2.48, we have:

ft−1(yt−1)− ft−1(yt) ≤
g2

2(1− αt)(Lt − L)
+

αt(1− αt)(Lt − L)

2
∥yt−1 − zt−1∥2

+
Lt − L

2L2
t

∥∇ft−1(xt)∥2. (2.52)

In the end, by adding the 2.52 to 2.47 we get the inequality of proposition.

Theorem 2.3.5. By setting αt = a where 0 < a < 1 and Lt = aL
√
t− 1+L,

we have:

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) = O(

√
T).

Proof. We can easily check the result by using proposition 2.4.5 and taking
a summation.

It is apparent from the Theorem 2.3.5 that algorithm 2 is no-regret.
Based on [24], in a game theoretic setting, if each player follows a no-regret
algorithm, we can guarantee they will converge (in measure) to the Nash
equilibrium.

19

2.4. 2-stage online Nesterov method

2.4 2-stage online Nesterov method

Again, we assume that for any t ≥ 1, ft is a convex, differentiable and
L-smooth function. Also, we assume that each ft has bounded gradient
i.e., for all x, ∥∇ft(x)∥2 ≤ G, where G ≥ 0.

The goal is to prove algorithm 2 is a no regret algorithm. The idea
is to bound the ft(xt) − ft(x

∗), where x∗ is the optimum point that we
can choose in hindsight. Based on properties we assumed for ft, we will
find an upper bound for ft(xt+1) − ft(x). Then, we try to find an upper
bound for ft(xt) − ft(xt+1) based on the update policy. These two gives
us an appropriate upper bound for ft(xt)− ft(x). The following proofs are
inspired by [11].

Algorithm 3 2-stage Nesterov method in online setting

1: Input: Parameters µt, ηt, x1
2: Pick y1 = x1.
3: for t = 1, . . . , T do
4: Observe the payoff function gradient ∇ft(yt).
5: Update xt+1 = yt − ηt∇ft(yt).
6: Update yt+1 = xt+1 + µt(xt+1 − xt).
7: end for

Lemma 2.4.1. For any t ≥ 1,

ft(xt+1)− ft(x) ≤ (
L

2
− 1

ηt
)∥yt − xt+1∥22 +

(yt − xt+1)
T (yt − x)

ηt
, (2.53)

where xt+1 and yt are corresponding variables in iteration t while we running
algorithm 3.

Proof. This lemma can be proved just by combining the convexity and
L−smoothness definitions. From the convexity definition, we can say:

ft(x) ≥ ft(yt) +∇ft(yt)
T (x− yt) =⇒ ft(yt)− ft(x) ≤ ∇ft(yt)

T (yt − x),
(2.54)

and since from the update rule, we have ∇ft(yt) =
yt−xt+1

ηt
, we can say:

ft(yt)− ft(x) ≤
(yt − xt+1)

T (yt − x)

ηt
. (2.55)

20

2.4. 2-stage online Nesterov method

Furthermore, from the L−smoothness definition, we have:

ft(yt − ηt∇ft(yt))− ft(yt) ≤ ⟨∇ft(yt),−ηt∇ft(yt)⟩

+
L

2
∥ηt∇ft(yt)∥22 = (

Lη2t
2

− ηt)∇ft(yt), (2.56)

moreover, again from the update rule we have ∇ft(yt) =
yt−xt+1

ηt
, so we can

say:

ft(yt − ηt∇ft(yt))− ft(yt) ≤ (
L

2
− 1

ηt
)∥yt − xt+1∥22. (2.57)

Since xt+1 = yt − ηt∇ft(yt), if we add 2.57 to 2.55, we get:

ft(xt+1)− f(x) ≤ (
L

2
− 1

ηt
)∥yt − xt+1∥22 +

(yt − xt+1)
T (yt − x)

ηt
. (2.58)

As we said earlier, we are aiming to bound ft(xt)−f(x). To that end, we
try to introduce an appropriate bound for ft(x)− ft+1(xt+1). To introduce
this bound, We’re inspired by [8].

Lemma 2.4.2. For any t ≥ 1 and α ≥ 0:

ft(xt)− ft(xt+1) ≤
G2

2α
+

αµt

2
∥xt−1 − xt∥22 +

α

2(1− µt)
∥yt − xt+1∥22. (2.59)

Proof. from the convexity definition, we have:

ft(xt)− ft(xt+1) ≤ ⟨∇ft(xt+1), xt − xt+1⟩. (2.60)

By Young’s inequality, for any α > 0, we have:

⟨∇ft(xt+1), xt − xt+1⟩ ≤
∥∇ft(xt+1)∥22

2α
+

α

2
∥xt − xt+1∥22. (2.61)

Now, since in 2.58 we have ∥yt−xt+1∥22, let us create a similar term here.
By adding and subtracting yt, we have:

∥xt − xt+1∥22 = ∥(xt − yt) + (yt − xt+1)∥22
= ∥µt(xt − xt+1) + (yt − xt+1)∥22

≤ µt∥xt − xt+1∥22 +
1

1− µt
∥yt − xt+1∥22. (2.62)

21

2.4. 2-stage online Nesterov method

Now, since ∥∇ft(x)∥ ≤ G for all t ≥ 1, if we substitute 2.62 in 2.61, we get:

ft(xt)− ft(xt+1) ≤
G2

2α
+

aµt

2
∥xt−1 − xt∥22 +

a

2(1− µt)
∥yt − xt+1∥22. (2.63)

The next step, is to find an upper bound for (yt−xt+1)
ηt

(yt − x). To do
this, we use use an idea from [8]. Note that in [8], they talk about a 3-stage
algorithm and basically, we have different analysis here. But the ideas are
similar.

Lemma 2.4.3. For any t ≥ 1,

ft(xt+1)− ft(x) ≤ (
L

2
− 1

2ηt
)∥yt − xt+1∥22 +

1

2ηt
∥x− yt∥22 −

1

2ηt
∥x− xt+1∥22.

(2.64)

Proof. Define:

Vt(x) = ⟨yt − xt+1

ηt
, x− yt⟩+

1

2ηt
∥x− yt∥22. (2.65)

Actually, Vt(x) is a
1
ηt
-strongly convex function. Also, by setting its gradient

equal to zero, we see that it’s minima is x = yt − ηt∇ft(yt). In fact, xt+1 is
the minima of Vt(x). From the definition of strong convexity, we can say:

V (xt+1) ≤ Vt(x)−
1

2ηt
∥x− xt+1∥22 (2.66)

⟨yt − xt+1

ηt
, x− yt⟩+

1

2ηt
∥x− yt∥22 −

1

2ηt
∥x− xt+1∥22 (2.67)

. (2.68)

Now by using Lemma 5.1., we can say:

V (xt+1) ≤ ft(x)− ft(xt+1) + (
L

2
− 1

ηt
)∥yt − xt+1∥22

+
1

2ηt
∥x− yt∥22 −

1

2ηt
∥x− xt+1∥22, (2.69)

Besides, from the definition we have Vt(x) = ⟨yt−xt+1

ηt
, x− yt⟩+ 1

2ηt
∥x− yt∥22.

So, we can say:

ft(xt+1)− ft(x) ≤ (
L

2
− 1

2ηt
)∥yt − xt+1∥22 +

1

2ηt
∥x− yt∥22 −

1

2ηt
∥x− xt+1∥22.

(2.70)

22

2.4. 2-stage online Nesterov method

Lemma 2.4.4. For any t ∈ N, we have:

1√
1
+ · · ·+ 1√

t
≤ 2

√
t− 1. (2.71)

By induction we can prove this lemma.

Proposition 2.4.5. For any t ≥ 1,

ft(xt)− ft(x) ≤
G2

2(1− µt)(
1
ηt

− L
2)

+
µt(1− µt)(

1
2ηt

− L
2)

2
∥xt−1 − xt∥22

+
1

2ηt
∥x− yt∥22 −

1

2ηt
∥x− xt+1∥22. (2.72)

Proof. In Lemma 2.4.2, put α = (1− µt)(
1
ηt

− L). Then we have:

ft(xt)− ft(xt+1) ≤
G2

2(1− µt)(
1
ηt

− L)
+

µt(1− µt)(
1
ηt

− L)

2
∥xt−1

− xt∥22 +
(1− µt)(

1
ηt

− L)

2(1− µt)
∥yt − xt+1∥22 (2.73)

=
G2

2(1− µt)(
1
ηt

− L)
+

µt(1− µt)(
1
ηt

− L)

2
∥xt−1 − xt∥22

+ (
1

2ηt
− L

2
)∥yt − xt+1∥22. (2.74)

Now if we add 2.74 to 2.70, we get:

ft(xt)− ft(x) ≤
G2

2(1− µt)(
1
ηt

− L
2)

+
µt(1− µt)(

1
2ηt

− L
2)

2
∥xt−1 − xt∥22

+
1

2ηt
∥x− yt∥22 −

1

2ηt
∥x− xt+1∥22.

(2.75)

Theorem 2.4.6. If we assume that the diameter of the cost function’s do-
main is at most D, by setting ηt =

1√
t+L

2

and µt =
1
2t in algorithm 3, we get

a no-regret algorithm.

23

2.4. 2-stage online Nesterov method

Proof. From the proposition 2.4.5, we have:

ft(xt)− ft(x) ≤
G2

2(1− 1
2t)(

√
t)

+
1
2t(1−

1
2t)(

√
t+L

2
2 − L

2)

2
∥xt−1 − xt∥22

+

√
t+ L

2

2
∥x− yt∥22 −

√
t+ L

2

2
∥x− xt+1∥22.

(2.76)

Note that for any t ≥ 1, we have:

G2

2(1− 1
2t)(

√
t)

≤ G2

√
t
, (2.77)

1
2t(1−

1
2t)(

√
t+L

2
2 − L

2)

2
∥xt−1 − xt∥22 ≤

1

8
√
t
∥xt−1 − xt∥22. (2.78)

Also, from the update rule, we have yt = xt+µt(xt−xt−1). So, we can say:

∥x− yt∥22 = ∥x− (xt + µt−1(xt−1 − xt))∥22 (2.79)

= ∥(x− xt) + µt−1(xt − xt−1)∥22 ≤ µt−1∥xt−1 − xt∥22

+
1

1− µt−1
∥x− xt∥22 (2.80)

≤ µt−1(∥xt−1 − xt∥22 +
1

1− µt−1
∥x− xt∥22) + ∥x− xt∥22 (2.81)

≤ µt−1(∥xt−1 − xt∥22 +
1

1− µ0
∥x− xt∥22) + ∥x− xt∥22. (2.82)

Putting all these together, we can say (the assumption the diameter of cost
function’s domain is at most D, means that ∥xt−1 − xt∥22 ≤ D2 and ∥x −
xt∥22 ≤ D2, and we consider µt−1ηt ≤ 1√

t
, note that based on value of L,

there is k > 0 such that µt−1ηt ≤ k√
t
, and the value of k is not important

for the rate regret that we are looking for):

ft(xt)− ft(x) ≤
G2

√
t
+

1

8
√
t
D2 +

1√
t
(D2 +

1

1− µ0
D2) + (

1

2ηt+1
− 1

2ηt
)D.

(2.83)

24

2.4. 2-stage online Nesterov method

Finally, we can say:

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗) ≤ G2(2

√
T − 1) +

D2

8
(2
√
T − 1)

+ (D2 +
1

1− µ0
D2)(2

√
T − 1) + (

1

2ηT+1
− 1

2η0
)D

= O(
√
T). (2.84)

And this means we have a no-regret algorithm. Moreover, the regret it in
the order of O(

√
T).

2.4.1 Quadratic Games

The goal is to study the behavior of gradient-based algorithms, includ-
ing gradient descent and our accelerated algorithm, on different games like
Quadratic games, which were introduced in [12]. We want to simplify it to
a deterministic game and study its equilibrium.

With the following cost function to the players:

πi(ai, a−i) =
1

2
aTi Γiiai + aTi Γi,−ia−i + aTi gi + hi(a−i), (2.85)

with Γii ≻ 0 which gives:

∇iπi(ai, a−i) = Γiiai + Γi,−ia−i + gi.

We can re-write Γi,−ia−i =
∑

j ̸=i Γijaj and define ϕi =
∑

j Γijaj . Then the
first order equilibrium condition gives:

∇iπi(a
∗
i , a

∗
−i) = Γiia

∗
i +

∑
j ̸=i

Γija
∗
j + gi = 0, (2.86)

= Γiia
∗
i + (ϕi − Γiia

∗
i) + gi = 0. (2.87)

Consecutively:

ϕi = −gi∑
j

Γija
∗
j = −gi, ∀i. (2.88)

Solving this set of linear equations will gives the solutions of Nash equilibria.Γ11 . . . Γ1N
...

. . .
...

ΓN1 . . . ΓNN

 a∗ = −g,

25

2.4. 2-stage online Nesterov method

where a∗ is the stacked vector of player’s Nash actions and g is a stacked
vector of gi’s. From this, we conclude that the condition for having a unique

Nash is to have matrix

Γ11 . . . Γ1N
...

. . .
...

ΓN1 . . . ΓNN

 full rank.

To study the case where each player uses the gradient descent algorithm
to optimize their cost functions, we have

ai,t+1 = ai,t − ηt∇iπi(ai,t, a−i,t), (2.89)

= ai,t − ηt(Γiiai,t +
∑
j ̸=i

Γija−i,t + gi) (2.90)

= ai,t − ηt(
∑
j

Γijaj,t + gi), (2.91)

at+1 = (I − ηt

Γ11 . . . Γ1N ,
...

. . .
...,

ΓN1 . . . ΓNN

)at − ηtg. (2.92)

which implies that the necessary condition for this dynamic system’s stabil-

ity is eig(I − ηt

Γ11 . . . Γ1N
...

. . .
...

ΓN1 . . . ΓNN

) is located inside the unit circle.

Simulations:
In this part, we perform simulations to evaluate the speed of convergence

of our algorithm when it is used on a quadratic game. Also, in this part, we
repeat this simulation on 3 different randomly generated quadratic games.
Here we randomly select matrices Γii’s and Γij with i > j and then set Γji =
ΓT
ij to make the big matrix Γ symmetric. As we see in the following graphs,

the momentum method converges faster than gradient descent.

(a) without momentum (b) with momentum

Figure 2.1: Gradient descent and accelerated solution

26

2.4. 2-stage online Nesterov method

(a) without momentum (b) with momentum

Figure 2.2: Gradient descent and accelerated solution

(a) without momentum (b) with momentum

Figure 2.3: Gradient descent and accelerated solution

Through the simulations, we observed that accelerated algorithms enjoy
better convergence in games. Let us take a look at an example of Cournot
game.
Setup: We consider a four-player Cournot games with different market
price and individual cost functions. Consider a Cournot game where p(x) =
1− (

∑
i xi), and a linear production cost function is Ci(xi) = 0.05xi.

This game proceeds as follows. Every player simultaneously picks a pro-
duction level at each time step, and then the market price is determined by
their joint production and broadcast back to all players. Then, each player
calculates his payoff, πi(xi) = Ptxi−Ci(xi), where Pt is the market price at
iteration t. The Nash equilibrium of this games is x∗1 = x∗2 = x∗3 = x∗4 = 0.19.
Also, since the payoff function is differentiable, one can confirm this by set-
ting the derivative of payoff equal to zero and validating this value for NE.
Below, we referrer the reader an accelerated method’s convergence trajec-
tory compared to Online gradient descent. (step size in both algorithms was
set to the same value)

27

2.4. 2-stage online Nesterov method

(a) Algorithm 1 (b) Algotithm 3

(c) Online Gradient Descent algo-
rithm

Figure 2.4: Convergence Trajectories

Also, we repeat the same example for the case we do not have access
to the gradient. We used the finite difference method for estimating the
gradient. Mathematically, we considered:

∂f

∂xi
=

f(x+ δei)− f(x)

δ
, (2.93)

where ei denotes the vector with a 1 in the i−th coordinate, 0’s elsewhere,
and δ is a positive number. We chose different values for δ, and below, you
can see the convergence trajectories:

28

2.5. Conclusion and Summary

(a) Algotithm 3, delta = 0.1 (b) Algotithm 3, delta = 1

(c) Online Gradient Descent algo-
rithm, delta = 0.1

(d) Online Gradient Descent algo-
rithm, delta = 1

Figure 2.5: Convergence Trajectories

2.5 Conclusion and Summary

Nesterov methods are well known accelerated methods. Nesterov showed
in an offline setting they enjoy a fast convergence rate [20]. We can get
O(1

t2
) rate of convergence, which is much faster than gradient descent. We

developed these algorithms in an online setting and proved that for some
special hyper-parameters, they become no-regret algorithms. To the best of
our knowledge, it has not been shown that the 2-stage Nesterov algorithm
in an online setting is a no-regret algorithm. As for the 3-stage algorithm
in the online setting, in [8], a proof presented for cases that cost functions
are made of a differentiable and a non-differentiable function showed that by
using sub-gradient, we can get a no-regret algorithm for some especial hyper-
parameters. By employing our algorithm in Cournot games and Quadratic
games, we observed faster convergence compared to Online Gradient De-
scent. We also extended the Nesterov accelerated algorithm for stochastic
settings to online settings, in which we use zero-order estimation for the gra-
dient. Under certain assumptions, in a game theoretic setting, if all players

29

2.6. Next steps

Algorithm Oracle
type

Strong
con-
vexity

Finite
varia-
tion

Bounded
Gradi-
ent

Regret order Optimization
error

Algorithm
1

Noisy
first
order
or zero-
order

Yes Yes No O(
∑T

k

∑k
i=0[σ

2
i+

ϵi])
O(βT)

Algorithm
2

First or-
der

No No Yes O(
√
T) O(1t)

Algorithm
3

First or-
der

No No Yes O(
√
T) O(1t)

Online
Gradient
Descent
[8]

First or-
der

No No Yes O(
√
T) O(1t)

Online
Gradient
Descent
[8]

First or-
der

Yes No Yes O(log(T)) O(exp(−t))

Table 2.1: We present the regret order of different online algorithms in this
table. All these functions are differentiable and smooth. The best regret
rate can be achieved without strong convexity O(

√
T).

follow no-regret algorithms, they converge to the Nash equilibrium [24]. In
simulations, we saw that if the player follows these accelerated methods,
they converge faster to the Nash equilibrium in comparison to the case that
they follow the Online mirror descent algorithm suggested by Shi [24].

2.6 Next steps

In the first section, we derived regret in terms of o(
∑T

k

∑k
i=0[σ

2
i + ϵi]). As

for the next, one can find the corresponding regret in terms of T , when
the algorithm is used on Cournot games defined in [24]. It is also remains
to extend algorithm 2 or 3 to a zero-order algorithm and then compare it
to algorithm 1 performance in practice. Moreover, a theoretical proof for

30

2.6. Next steps

what we’ve seen in the simulation is needed. It can be done by finding the
convergence rate of these algorithms. Furthermore, as we said earlier, one
difference between algorithm one and algorithms 2 and 3 is that we did not
have any assumption on the finite variation in the latter. So it is motivating
to use the same ideas and relax the assumption we had in the first algorithm.

31

Chapter 3

LQ games

When the parameters of the Linear Quadratic (LQ) system are unknown to
us, we use PG to calculate the optimum action to play. It has been proven
that using Policy Gradient (PG) will get us to the optimum global feedback
in LQR systems [4]. While it looks promising that it works well in the games,
some counter examples indicate that PG does not have any guarantee of
convergence for LQ games in a general setting [13, 14]. However, Hambly
and Roudneshin [7, 23] proved that in other non-general settings, PG has
a convergence guarantee. It motivates us to study other non-general LQ
games, recognize them, and see if they have any PG convergence guarantee.

In potential games, the cost functions of players are connected to each
other via one global potential function. This property of theirs makes them
show one-player system characteristic when the players are using PG. In
this thesis, we chose the class of potential LQ games to study. In the rest
of this chapter, we go through the definitions, properties, and theorems
associated with potential games. We identify the class of potential LQ games
under certain assumptions and prove that using PG will converge to a Nash
solution.

3.1 Review of the definitions

3.1.1 Dynamic System

A discrete dynamic system is defined as a set of states X ⊆ Rm and a set
of actions U ⊆ Rn a set of evaluation functions ft : X × U → X, where
xt+1 = ft(xt, ut) for t ∈ {0, 1, 2, . . . }. For example the following can be a
dynamic function:

xt+1 =
1

∥ut∥+ 1
xt. (3.1)

If functions ft are linear with respect to xt’s and ut’s for all t, we call it
a linear dynamic system, i.e., ft(xt, ut) = Atxt + Btut. The below function

32

3.1. Review of the definitions

is an example of a linear dynamic for m = n = 2:

ft(xt, ut) = xt/2 + ut. (3.2)

with At =
1
2I2×2 and Bt = I2×2.

A time-invariant linear dynamic system is asymptotically stable if matrix
A has a spectral radius of smaller than one [10]. In other words, if all the
eigenvalues of A lie inside the unit circle, then the dynamic 3.2 is a time-
invariant, stable linear dynamic. The system’s stability is important to us
when dealing with an infinite horizon system, especially in the closed loop
setting, because, if we have an unstable system, it can easily give us an
unbounded cost functions which is not desirable.

3.1.2 Quadratic Cost Function

A Linear Quadratic Regulator (LQR) is a linear dynamic system with a
quadratic cost function on states and actions. In other words, each time
episode has a cost function as ct = xTt Qtxt + uTt Rtut where Qt ⪰ 0 and
Rt ≻ 0 for all t. Here we with to minimize the sum of J(x, u) =

∑T
t=1 ct,

where u and x are vectors over time horizon T , and T can be infinity.
The optimal action at time t is proven to be a linear function of the

state at time t, i.e., u∗t = −Ktxt, and if the horizon is infinity, u∗t = −Kxt.
This encourages us to search for the optimal coefficient K∗

t rather than the
optimal action u∗t .

Whether the agent gets feedback on each time step or not, there are two
settings: open-loop and closed-loop. In an open-loop LQR, the agent will be
provided with no feedback. In a closed-loop LQR, however, the agent will
be given with xt at each time step, and based on that, it plays its action.

33

3.1. Review of the definitions

(a) Open Loop

(b) Closed Loop

Figure 3.1: Closed loop and open loop flowchart

Known and Unknown Parameters: There are two major settings in
which the game is dealt with; one is where all the parameters of At, Bt, Qt,
and Rt are given. As opposed to this setting, in real-world problems, there
is no access to any of them. All that is permitted is to query the value of
the cost function J(x, u) and receive a noisy or accurate value as feedback.

The optimum solution to this problem in a closed-loop setting, when
there is access to all the parameters, is achieved by solving the following
Algebraic Riccati equations [4]:

P = ATPA+Q−ATPB(BTPB +R)−1BTPA (3.3)

K∗ = −(BTPB +R)−1BTPA (3.4)

for infinite horizon setting and

Pt = ATPt+1A−ATPt+1B(R+BTPt+1B)−1BTPt+1A+Q, (3.5)

K∗
t = −(BTPt+1B +R)−1BTPt+1A0 (3.6)

for finite horizon setting. These equations can be solved by Lyapunov itera-
tion. However, if the parameters are unknown to us, none of the mentioned
equations can be used to derive the value of Kt.

As a generalization of LQR systems with only one-player to play its
inputs, we have LQ games where N players interact with the environment,
penalizing their actions and the states they are in with a quadratic cost
function. Also, all players’ actions impact the state of the next time step in
a linear fashion.

34

3.1. Review of the definitions

ci,t = xTt Qixt + uTi,tRiui,t ∀i, t, (3.7)

xt+1 = Axt +
N∑
j=1

Bjuj,t ∀t. (3.8)

Like in LQR systems, the Nash in LQ games has the Nash in the form of
u∗i,t = −K∗

i,txt. When the parameters are known, the Nash will be calculated
by the following equations:

P ∗
i,t = Qi,t + (K∗

i,t)
TRi,tK

∗
i,t + (At −

N∑
j=1

Bj,tK
∗
j,t)

TP ∗
i,t+1(At −

N∑
j=1

Bj,tK
∗
j,t),

(3.9)

K∗
i,t = (Ri,t +BT

i,tP
∗
i,t+1Bi,t+1)

−1BT
i,tP

∗
i,t+1(At −

N∑
j=1,j ̸=i

Bj,tKj,t).

(3.10)

for finite horizon and

P ∗
i = Qi + (K∗

i)TRiK
∗
i + (A−

N∑
j=1

BjK
∗
j)

TP ∗
i (A−

N∑
j=1

BjK
∗
j), (3.11)

K∗
i = (Ri +BT

i P
∗
i Bi)

−1BT
i P

∗
i (A−

N∑
j=1,j ̸=i

BjKj)0 (3.12)

for infinite horizon.
As shown in the previous part, if all the parameters are known, we can

analytically calculate the optimum input for the LQR system or Nash for
LQ games. However, as mentioned, it is not a reasonable assumption to
have access to any of the parameters of the game, as the game/system is
unknown to us in real-world problems. Thus, we need to have a different
approach, the policy gradient. Policy Gradient (PG) is a popular method
used in many Reinforcement Learning problems to optimize policies using
estimated or actual cost functions. Here we use all the feedback we got to
calculate or estimate the gradient of the cost function concerning our policy
and change our policy accordingly:

Km+1
i,t = Km

i,t − η∇Km
i,t
Ji. (3.13)

35

3.1. Review of the definitions

The gradient of the cost function is calculated by the following equation [7]:

∇Km
i,t
Ji = 2(Ri,tK

m
i,t −BT

i,tP
m
i,t+1(At −

N∑
j=1

Bj,tK
m
j,t))Σt. (3.14)

where

Pm
i,t = Qi,t + (K∗

i,t)TRi,tK
∗
i,t + (At −

N∑
j=1

Bj,tK
∗
j,t)

TPm
i,t+1(At −

N∑
j=1

Bj,tK
∗
j,t),

(3.15)

Σt = E[xtxTt]. (3.16)

Because we do not have access to the parameters of the game, the exact
gradient is unknown. However, we need to use the gradient’s exact value
for simulations to see how the policy gradient method is doing in different
settings. One simple way to estimate gradients is to use zero-order methods,
such as examples in the last chapter.

3.1.3 Stochasticity in LQ games

Like in many other games and systems around us, randomness plays an
important role due to our lack of knowledge. This stochasticity can come
into play when we have an LQR system or an LQ game. This randomness
can be attributed to the state’s random initialization, where the initial state
is drawn from a distribution D, i.e., x0 ∼ D. Alternatively, it could be due
to the presence of noise in our environment, which can affect the game’s
dynamics, i.e., xt+1 = Axt +

∑N
i=1Biui,t + wt, where the noise wt at time

t can be a Gaussian random variable. It is observed that this randomness
can have a meaningful impact on the convergence of the PG algorithm [7].
In this work, we mainly focus on deterministic LQ games and stochastic LQ
games with random initialization.

3.1.4 Potential Games

As we said earlier, our focus is on the convergence of the policy gradient in
potential LQ games because we expect them to have a convergence guar-
antee. So let us review the definition and properties of a static potential
game.

36

3.1. Review of the definitions

Definition 3.1.1. The game Ji(ui, u−i) is exact potential if there exists a
potential function Π such that for every u and i we have:

Ji(ui, u−i)− Ji(vi, u−i) = Π(ui, u−i)−Π(vi, u−i). (3.17)

With assumptions on differentiability, we have a necessary and sufficient
condition for a game to be potential. Because this potential function is not
easily visible to us, the following condition assists us in determining whether
a game is potential or not [9]:

∂2Ji
∂ui∂uj

= [
∂2Jj

∂ui∂uj
]T . (3.18)

We might come across different definitions for Dynamic Potential Games
(DPG). We mention a few of them:

Definition 3.1.2. The game Ji(x0, ui, u−i) is dynamic potential if there is
a potential function Π such that for every x0, u and i we have:

Ji(x0, ui, u−i)− Ji(x0, vi, u−i) = Π(x0, ui, u−i)−Π(x0, vi, u−i). (3.19)

Definition 3.1.3. The game Ji(x0, ui, u−i) is DPG if there is a family of
potential functions Πt such that for every x0, u, t and i [26]:

∞∑
t=0

βt(ci,t(xt, ui, u−i)− ci,t(xt, vi, u−i)) =

∞∑
t=0

βt(Πt(xt, ui, u−i)−Πt(xt, vi, u−i)). (3.20)

Definitions 3.17 and 3.22 are equivalent to condition 3.18 and they are
easily used for the case when the game is deterministic. However for 3.20,
condition 3.18 it has a sufficient condition in the form of:

∂2ci,t
∂ui,t∂uj,t

=
∂2cj,t

∂uj,t∂ui,t
. (3.21)

There are also different, but similar definitions like what is used in [17],
but we do not work with them. It’s worth mentioning that when we have
random initialization, we can change 3.22 to:

ED[Ji(x0, ui, u−i)− Ji(x0, vi, u−i)] = ED[Π(x0, ui, u−i)−Π(x0, vi, u−i)],
(3.22)

37

3.2. An examples of LQ game

remember that D was the distribution that we draw the initial state x0 from.
Or we can take the expectation w.r.t. any randomness we have in the game
and call it the condition for potentialness of that game.

There are also two terms that we will use further down at the end of this
chapter.

• Dummy player: A dummy player is whose utility function is inde-
pendent of his/her actions, i.e., fi(xi, x−i) = fi(x−i).

• Dummy game: A dummy game is a game that all of it’s player are
dummy, i.e., for every i, fi(xi, x−i) = fi(x−i).

Theorem 3.1.4. A dummy game is potential with the potential function
Π = 0.

Proof. Using differentiation rules.

3.2 An examples of LQ game

Now we bring an example of linear quadratic game mentioned in [26]. Con-
sider a dynamic in the form xt+1 = Axt +

∑
i∈N Biu

i
t and utility functions

ci,t = (xt−xt−1)
TQ(xt−xt−1)+ (Dixt−uit)

TRi(D
ixt−uit), where matrices

Ri and Q are negative semi-definite and definite respectively.
By defining augmented state and action vectors:

x̃t
T := [xTt , x

T
t−1]

T , ũt
T := Dixt − uit.

we can rewrite the problem as follows:

max
{ui

t}∈
∏∞

t=0 Ui

∞∑
t=0

βt(x̃t
T R̃x̃t + ũit

TRiũt
i),

s.t. x̃t+1 = Ax̃t −
N∑
i=1

B̃iũt
i,

∀i ∈ N .

where

Ã :=

[
A+

∑
i∈N BiDi 0S×S

IS 0S×S

]
, B̃i :=

[
Bi

0S×Ai

]
,

Q̃ :=

[
Q −Q
−Q Q

]
.

38

3.3. Potential games and their Conditions

where S and Ai are the appropriate dimensions. Now we can rewrite utilities
as follows:

ci,t(x̃t, ũt) = x̃Tt R̃x̃t + ũit
TRiũ

i
t.

which is a LQ game.

3.3 Potential games and their Conditions

This part aims to introduce the tools we have to identify the sub-class of
potential LQ games and find a theoretical motivation for working with them.
We use theorems to drive the sufficient and necessary conditions for a game
to be potential. In addition, there will be a brief analysis that shows using
PG in a potential game is the equivalent of using PG in a one-player system.

3.3.1 Convergence of Potential LQ games

Let us take a look at 3.17. One by dividing the sides by ∥ui−vi∥ and taking
the limit when vi → ui can get

∇iJi(x0, ui, u−i) = ∇iΠ(x0, ui, u−i), (3.23)

this means that the game map’s gradient equals the gradient of the potential
function. Now, if all the players use a policy gradient with an equal learning
rate η, we will have:

u+1 = u+1 − η∇1J1(x0, u), (3.24)

...

u+N = u+N − η∇NJN (x0, u). (3.25)

by replacing ∇iJi(x0, u) with ∇iΠ(x0, u) stacking the above equations:

u+ = u+ − η∇Π(x0, u), (3.26)

which is the policy gradient for a single-player game with the cost function
of Π(.). The dynamic for this single player game is

xt+1 = Axt + B̃ut, (3.27)

B̃ =
[
B1 . . . Bn

]
. (3.28)

Connecting this observation to [4] motivates us to have a potential LQ game
with the quadratic potential function. Such a game should converge to
the Nash because the optimum point for the potential function is a Nash
equilibrium for the original game.

39

3.3. Potential games and their Conditions

3.3.2 Open loop potential LQ games

In this part the objective is to derive the conditions for a finite-horizon
deterministic LQ game to be potential for horizon of tf . Here we try to
write cost function and then use 3.18 to see what should be relation between
parameters of the game to make that happen. The cost function for such
game looks like:

Ji(u1, . . . ,uN , x0) =

tf−1∑
t=0

(
xTt Qixt + uTi,tRiui,t

)
+ xTtfQixtf , (3.29)

where xt = Axt1 +
∑N

i=1Biui,t−1. So we want to replace xt’s such that 3.29
will be only a function of x0 and ui,t’s. We define ui = [uTi,0, . . . , ui,tf−1]

T

the stacked vector of all actions played by the i’th player, then we can easily
use 3.18 to see what are the conditions. Let

X =

x1
...

xtf

 , Sx =

 A
...

Atf

 , Sui =


Bi . . . 0
AB . . . 0
...

. . .
...

Atf−1Bi . . . Bi

 . (3.30)

We can re-write X as [3]:

X = Sxx0 +
N∑
i=1

Suiui, (3.31)

and

Ji(x,u) = xT0 Qix0 + X T Q̃iX + uT
i R̃iui, (3.32)

where u and x are respectively stacked vectors of ui’s and xt’s, and Q̃
(mtf×mtf)
i =

blockdiag{Qi, . . . , Qi}, and R̃
(ditf×ditf)
i = blockdiag{Ri, . . . , Ri}. To make

xt for t > 0 disappear, we re-write is as follow:

Ji(u, x0) = xT0 (Y
i +Qi)x0 + 2xT0

N∑
j=1

F i
juj +

N∑
j=1

N∑
l=1

uT
j H

i
j,lul + uT

i R̃iui,

(3.33)

Y i = SxT Q̃iSx, F i
j = SxT Q̃iSuj , H i

j,l = SujT Q̃iSul . (3.34)

Theorem 3.3.1. The LQ game is potential if and only if H i
j,i = Hj

j,i for all
players.

40

3.3. Potential games and their Conditions

Proof. Let us apply Lemma 4. Recall ∇uiJi as a linear function of actions

∇uiJi = 2F i
i
T
x0 + 2

N∑
j=1

H i
i,juj + 2R̃iui. (3.35)

The second derivative with respect to actions of other players is ∂2Ji
∂ujui

= H i
j,i.

According to 3.18, ∂2Ji
∂ujui

=
(∂2Jj
∂uiuj

)T
. Thus, H i

j,i = Hj
j,i.

If we open this condition up, we will get:

tf∑
f=t

βf
[
2B⊤

i (A
⊤)f−tQiA

f−tBj

]
=

tf∑
f=t

βf
[
2B⊤

j (A
⊤)f−tQjA

f−tBi

]T
,

for all t. Where 0 < β < 1 is the discount factor of the game.
One simple case to satisfy such condition is to have Qi = Q for all i. To

add more detail, let’s re-write the cost function as:

Ji(u1, . . . ,uN , x0) =

tf−1∑
t=0

(
xTt Qixt +

N∑
j=1

uTj,tRjuj,t
)
+ xTtfQixtf

−
tf−1∑
t=0

∑
j ̸=i

uTj,tRjuj,t. (3.36)

So the cost function of player i is sum of two terms
∑tf−1

t=0

(
xTt Qixt +∑N

j=1 u
T
j,tRjuj,t

)
+ xTtfQixtf and −

∑tf−1
t=0

∑
j ̸=i u

T
j,tRjuj,t. The first term

is the same for all the players. A game with such a cost function is called
an identical interest game. Identical interest games are potential, with the
potential function the same as each player’s cost function. Now look to the
second term. This term does not depend on ith player’s action. This game
is called a dummy game, which is also a potential game with a potential
function of 0. It is known that a game whose players’ cost functions are the
sum of two other potential game cost functions is a potential game [Bring
the proof/ reference]. So as a sanity check, it implies that an open-loop LQ
game with Qi = Q for all i is a potential game.

However, this is not a necessary condition for a game being potential.
Below, there is a game that Q1 ̸= Q2 and it is open-loop potential:

41

3.3. Potential games and their Conditions

A =

[
1 0
0 1

]
, B1 =

[
1
0

]
, B2 =

[
1
1

]
, Q1 =

[
5 −2
−2 1

]
, Q2 =

[
1 2
2 5

]
.

It is easily checkable that the following identities always hold:

BT
1 (A

T)t
′−tQ1A

t′−tB2 = BT
2 (A

T)t
′−tQ2A

t′−tB1, t′ > t.

which is the same as Su2H1
2,1Su1T = Su2H2

2,1Su1T .

3.3.3 Closed loop potential LQ games

Simple scalar case:

We consider a case where all actions and states are scalar. Here we as-
sume that we play the same feedback coefficient at all time steps. The cost
function for such a game is as follows.

Ji(K,x0) =
T∑
t=0

(A+
∑
r

BrKr)
2t(Qi +K2

i Ri)x
2
0, (3.37)

∂2Ji
∂Ki∂Kj

=
∑
t

(
(2t)(2t− 1)BiBj(A+

∑
r

BrKr)
2t−2(Qi +K2

i Ri) (3.38)

+Bj(2t)(A+
∑
r

BrKr)
2t−1(2KiRi)

)
x20 i ̸= j,

∂2Ji
∂Ki∂Kj

=
∑
t

(
(2t)(2t− 1)B2

i (A+
∑
r

BrKr)
2t−2(Qi +K2

i Ri) (3.39)

+2(2t)Bi(A+
∑
r

BrKr)
2t−1(2KiRi)

+(A+
∑
r

BrKr)
2t(2Ri)

)
x20 i = j.

so the necessary and sufficient condition for it to be potential is:

BiBj(Qi +K2
i Ri) +Bj(A+

∑
r

BrKr)(2KiRi) (3.40)

= BiBj(Qj +K2
jRj) +Bi(A+

∑
r

BrKr)(2KjRj).

for every i, j, and for all K. Which implies that in the two following cases
the game is potential:

For every pair of i, j we have at least one of the followings cases:

42

3.3. Potential games and their Conditions

• Bi = Bj = 0.

• Ri = Rj = 0, and Qi = Qj .

The first case implies that players i and j are decoupled from the game
(their actions will not affect other players’ actions because they are not
affecting the dynamic). In contrast, the second case implies that players i
and j are playing the same game of sending the state to zero.

Lemma 3.3.2. For the first case, i.e, when Bi = Bj = 0 the Nash is to
select Ki = Kj = 0.

Proof. when our player’s action ui,t is not affecting xt+1, it means that we
have no control over the term xTt Qixt. However for the other term in our
cost function, which is uTi,tRiui,t, all we can do is to minimize it by selecting
ui,t = 0, so Ki = 0. More precisely, according to the equation (7a) in [1]:

u∗i (x) = −R−1
i BT

i MiΛ
−1Āx.

which is zero if Bi = 0. The solution K = 0 also satisfies in equation 16 in
[1].

We performed the simulation for two cases of scalar actions, scalar states
and scalar actions, 2d states, and the policy gradient method converged to
the Nash equilibrium. For the second case, as we have in equation 7a in [1],
we cannot compute the Nash equilibrium, because of the existence of R−1

i in
the equation. However, intuitively, as the only term, they have in their cost
function is xTt Qxt, they are interested in directing the states to the point
that the mentioned term is close to zero.

As a conclusion, using the sufficient conditions we derived for the closed
loop case to be potential, our players are partitioned into equivalency classes
of decoupled players and players that are clones of one single player. For
the first set of players, we will have a trivial solution of Ki = 0, and for the
second set of players, we have to calculate the optimum with the method
we were using in a single-player LQR system.

Scalar case with time horizon of 2:

In the next step, we study the case that the horizon is finite, and we play
different K’s at each time step. If we assume that time horizon is T = 1,

43

3.3. Potential games and their Conditions

the cost functions will be:

J1(K,x0) =xT0 Q1x0 + xT0 K
T
1 R1K1x0

xT0 Ā
TQ1Āx0 + xT0 Ā

TKT
1 R1K1Āx0,

J2(K,x0) =xT0 Q2x0 + xT0 K
T
2 R2K2x0

xT0 Ā
TQ1Āx0 + xT0 Ā

TKT
2 R2K2Āx0.

where Ā = A+B1K1 +B2K2.

∂J1
∂K1

= 2K1R1x
2
0 + 2ĀQ1B1x

2
0 + 2B1ĀR1K

2
1x0 + 2Ā2K1R1x

2
0,

∂J1
∂K2

= 2ĀQ1B2x
2
0 + 2ĀR1K

2
1B2x

2
0,

∂2J1
∂K2∂K1

= 2B1B2Q1x
2
0 + 2R1K

2
1B1B2x

2
0 + 4ĀR1K1B2x

2
0.

similarly:

∂J2
∂K2

= 2K2R2x
2
0 + 2ĀQ2B2x

2
0 + 2B2ĀR2K

2
2x0 + 2Ā2K2R2x

2
0,

∂J2
∂K1

= 2ĀQ2B1x
2
0 + 2ĀR2K

2
2B1x

2
0,

∂2J2
∂K2∂K1

= 2B1B2Q2x
2
0 + 2R2K

2
2B1B2x

2
0 + 4ĀR2K2B1x

2
0.

Again if we put these to 3.18, we’ll get same results as above. Which is that
at least one of the followings holds:

• B1 = B2 = 0.

• R1 = R2 = 0 and Q1 = Q2.

The first condition indicates that the game is uncoupled, and players have
no control over the state xt. The second condition means that both players
enjoy the same cost function and it’s an identical interest game. As it is
apparent, the necessary and sufficient conditions for the game to be potential
remained the same.

2 dimensional case with time horizon 2:

For the next step, we relax our assumption to find conditions for the game,
that its dimension is higher than 1. We check the case that the states are in
R2 and our actions are in R. To simplify our calculations keep the followings
in mind:

44

3.3. Potential games and their Conditions

1. In the closed-loop finite-horizon LQ game, at each step, we play ui,t =
−Ki,txt, which is a linear feedback of our current state.

2. The necessary and sufficient condition for our game be potential is that
∂2Ji

∂uj∂ui
=

∂2Jj
∂ui∂uj

, where ui and uj are the stacked vectors of the actions

that are played by player i. As here the actions we are playing are the

coefficients k, so the mentioned condition turns to: ∂2Ji
∂kj∂ki

=
∂2Jj

∂ki∂kj
,

where ki is the stacked matrix of coefficients of player i.

3. The calculation of the above condition is extremely hard to achieve,
but we can break the condition down to the following equivalent con-

ditions, ∂2Ji
∂kj,τ∂ki,τ ′

=
∂2Jj

∂ki,τ ′∂kj,τ
, for all τ, τ ′ ≤ T , where T is the horizon

of the game.

Let us take a look at structure of cost functions for a two player game.

J1(k1, k2) =xT0 [Q1 + kT1,0R1k1,0]x0

+ xT0 (A−B1k1,0 −B2k2,0)
T [Q1 + kT1,0R1k1,0](A−B1k1,0 −B2k2,0)x0

...

+ xT0 Ā
T
0 . . . ĀT

t−1[Q1 + kT1,tR1k1,t]Āt−1 . . . Ā0x0

...

+ xT0 Ā
T
0 . . . ĀT

T−1[Q1 + kT1,TR1k1,T]ĀT−1 . . . Ā0x0.

where Āt = A−B1k1,t −B2k2,t.
To simplifying the explanation let’s call the term xT0 Ā

T
0 . . . ĀT

t−1[Q1 +

kT1,tR1k1,t]Āt−1 . . . Ā0x0 as c1,t. Now note that for calculation of ∂2Ji
∂kj,τ∂ki,τ ′

=

∂2Jj
∂ki,τ ′∂kj,τ

all the c1,t with t < τ or t < τ ′ has no say in the final expression,

because their differentiation with respect to one of the kj,τ and ki,τ ′ will be
zero. So we can re-write our condition as follows:∑

t′≥max{τ,τ ′}

∂2ci,t′

∂kj,τ∂ki,τ ′
=

∑
t′≥max{τ,τ ′}

∂2cj,t′

∂ki,τ ′∂kj,τ
(3.41)

Now we only focus on
∂2ci,t′

∂kj,τ∂ki,τ ′
with t′ ≥ max{τ, τ ′}.

c1,t′ = xT0 Ā
T
0 . . . ĀT

t′−1[Q1 + kT1,t′R1k1,t′]Āt′−1 . . . Ā0x0.

45

3.3. Potential games and their Conditions

As our functions are smooth, we can change the order of differentiation if
we want. Due to symmetry without loss of generality, we assume τ ≤ τ ′.

We calculate
∂2c1,t′

∂ki,τ ′∂kj,τ
:

∂c1,t′

∂kj,τ
=

2(Āτ−1 . . . Ā0x0)(Āτ−1 . . . Ā0x0)
T (

[
ĀT

τ+1 . . . Ā
T
t′−1

[Q1 + kT1,t′R1k1,t′]Āt′−1 . . . Āτ+1

]
)ĀτBj .

So

∂2c1,t′

∂ki,τ ′∂kj,τ
=

2BT
i (Āτ−1 . . . Ā0x0)(Āτ−1 . . . Ā0x0)

T (

[
ĀT

τ ′+1 . . . Ā
T
t′−1

[Q1 + kT1,t′R1k1,t′]Āt′−1 . . . Āτ ′+1

]
)Āτ . . . Āτ ′Bj .

Putting all together gives us: ∑
t′≥max{τ,τ ′}

∂2c1,t′

∂kj,τ∂ki,τ ′
=

∑
t′≥max{τ,τ ′}

2BT
i (Āτ−1 . . . Ā0x0)(Āτ−1 . . . Ā0x0)

T (

[
ĀT

τ ′+1 . . . Ā
T
t′−1

[Q1 + kT1,t′R1k1,t′]Āt′−1 . . . Āτ ′+1

]
)Āτ . . . Āτ ′Bj =∑

t′≥max{τ,τ ′}

2BT
j (Āτ−1 . . . Ā0x0)(Āτ−1 . . . Ā0x0)

T (

[
ĀT

τ ′+1 . . . Ā
T
t′−1

[Q2 + kT2,t′R2k2,t′]Āt′−1 . . . Āτ ′+1

]
)Āτ . . . Āτ ′Bi =∑

t′≥max{τ,τ ′}

∂2c2,t′

∂ki,τ ′∂kj,τ
.

The above condition should be correct for all τ, τ ′ < T .
In the first part of this section, we studied the case of scalar games

where the actions played by each player are constant over time. Here our

46

3.3. Potential games and their Conditions

goal is to compare these conditions to the case that actions and states are
all scalars. If we do the same analysis for the finite horizon case, we will
have the following conditions for this game’s potential.∑

t′≥max{τ,τ ′}

x20(Q1 + k21,t′R1)
Ā2

0 . . . Ā
2
t′−1

Āτ Āτ ′
B1B2 =

∑
t′≥max{τ,τ ′}

x20(Q2 + k22,t′R2)
Ā2

0 . . . Ā
2
t′−1

Āτ Āτ ′
B1B2.

Note that the division by Āτ Āτ ′ is informal and we don’t have problem with
dividing anything by zero.

The conditions above for a game with time horizon of T = 1 will be:

(Q1 + k21,1R1)B1B2 = (Q2 + k22,1R2)B1B20

which leads the same conclusion as we had before. Now we do the same
with the conditions of a 2d game we have had.

BT
1 (Q1 + kT1,1R1k1,1)B2 = BT

2 (Q2 + kT2,1R2k2,1)B1.

Both the right-hand and left-hand sides are symmetric (They are either
scalar or the second derivative matrix of one smooth cost function.) So we
can summarize it as follows:

BT
2 (Q2 −Q1 + kT2,1R2k2,1 − kT1,1R1k1,1)B1 = 0. (3.42)

For every k1,1 and k2,1. Similarly if any of B1 or B2 are zero then the game
is uncoupled and potential. Also if Q1 = Q2 and R1 = R2 = 0 we have the
same thing.

Note that as it is a finite horizon case we don’t care about stability. So
ki,1 can be anything. So if B1 and B2 are not zero then we can make the
expression non-zero. Which means that at least one of the Ri’s should be
zero to make the game potential, which is in contrary to our assumption Ri

being non-zero.
For higher time horizons, the condition will have the same structure as

3.42, so again when we have to unite the expression to zero, we come to the
same conclusion.

3.3.4 Special cases of closed-loop

As seen above, because K1 and K2 could be arbitrary, we had to make
the coefficient zero to eliminate them. With the hope of overcoming this

47

3.3. Potential games and their Conditions

problem, let us consider a case in which one of the players follows the other,
so it does not have the freedom to make potential games trivial. We define
trivial as matrices Bi or Ri having to be zero. We are now interested in
games that are less trivial. Except for one agent, whose utility depends
solely on its own action, i.e., f1(x1, x−1) = f1(x1), every other agent in the

game is a dummy. These games are potential too, because ∂2fi
∂xi∂xj

= 0.

What happens if the game is not trivial? i.e., Qi’s are different Ri’s and
Bi’s are non-zero, but Ki,t = λiK1,t (One Leader and others are Follower),
λi can be a matrix. In this game, if λi’s are parameters (not variables)
player’s one loss function is only a function of its actions because we can re-
place all other players’ feedback with λiK1. All other players’ cost functions
are only a function of player one’s action. So it means the game is potential,
and also, the game is not trivial.

Furthermore, this game corresponds to an LQ system with B′
1 = B1 +∑

i ̸=1 λiBi. Thus, the policy gradient guarantees the convergence of player
one to its optimum action for the leader. However, going to the optimum
action is meaningless for the followers because their optimum action is not
in the form of Ki,t = λiK1,t. Generally, if all other players follow the first
player’s action by a function, i.e., ai = hi(a1), we conjecture that the same
argument can be repeated and the game has non-trivial potential.

In all these cases we discussed above, other players were all supposed to
play a single function of the first player’s action. Now, the question is, what
happens if they had some freedom to choose that function? For example,
they could choose λi,t = αi,tλi at each time sequence to scale K1 differently
at each step. Here are, players are not dummies anymore. Because they
have a say in their cost function by choosing the αi,t, also the potential
conditions will be:

∂2fi
∂K2

1

=
∂2fj
∂K2

1

. (3.43)

The above-mentioned law is derived from the chain rule when i’s are scalar.
It also implies that the potential condition for such a game is that the game
is trivial (Qi = Q, Ri = 0).

Another way of looking at this game can be to model it as an LQ system
with a time-varying matrix B = Bt = B1 +

∑
i ̸=1 αi,tλiBi.This system is an

online optimization for the first player because parameters Bt are determined
by other players and change over time. Here we should note that every game
is a kind of online optimization, but when we restrict the actions of other
players to λiK1xt, the time-varying function is changing limited compared

48

3.4. Simulations

to the general case. In other words, the only parameter changing is Bt, only
with linear combinations of Bi’s i ̸= 1.

3.4 Simulations

Here in this section, we perform simulations on the number of games to see
if open-loop LQ games have any convergence guarantee when played in a
closed-loop setting. The parameters of these two games are the followings.
The first one:

Q1 = Q2 =

[
0.01 0
0 1

]
, B1 =

[
1
1

]
, B2 =

[
0
1

]
,

A =

[
0.6491 0.6477
0.7317 0.4509

]
,Keq =

[
0.7239 0.4483
−0.0390 0.1025

]
.

And for the second one:

Q1 =

[
0.01 0
0 1

]
, Q2 =

[
1 0
0 0.001

]
, B1 =

[
1
1

]
, B2 =

[
0
1

]
,

A =

[
0.4253 0.1615
0.3127 0.1788

]
,Keq =

[
0.3096 0.1770
0.1145 −0.0154

]
.

For both of them x0 selected randomly from the same distribution.
As you see, the first game is open-loop potential because Q1 = Q2.

However, as it is apparent in the figure bellow, K2 and Keq2 have different
values while the iterations are going forward. However, the second game is
not potential and converges to the Nash equilibrium.

The takeaway from this experiment is that, although we know that po-
tential open-loop LQ games must converge to Nash while PG is used as
the learning tool, there is no guarantee when the same game is used in a
closed-loop setting.

49

3.4. Simulations

(a) PG for first game

(b) PG for the second game

Figure 3.2: Convergence Trajectories

Moreover, to sanity check, we have done another experiment for trivial
potential closed-loop games and observed the convergence to the Nash. Here

50

3.4. Simulations

are the specifications of the game:

Q1 =

[
0.01 0
0 1

]
, Q2 =

[
1 0
0 0.001

]
, B1 =

[
1
1

]
, B2 =

[
0
0

]
,

A =

[
0.0542 0.6628
0.1771 0.3308

]
,Keq =

[
0.1741 0.3310

0 0

]
.

You can see the results in the figure bellow:

Figure 3.3: Trivial Closed Loop Potential

Note that as the optimal action by the second player is Keq = 0, we depict
the difference between the action played and the optimal action in the figure
above.

As a verification for the special cases that discusses in the previous part,
a simulation on the following leader-follower setting is performed.

Q1 =

[
0.01 0
0 1

]
, Q2 =

[
1 0
0 0.001

]
, B1 =

[
1
1

]
, B2 =

[
1
0

]
,

A =

[
0.0542 0.6628
0.1771 0.3308

]
,Keq =

[
0.1753 0.3276
−0.1200 0.3319

]
,

K2 = 0.5K1.

51

3.5. Discussion

As expected, the leader converged to the optimum action, but the follower
did not.

Figure 3.4: Special Potential Case

3.5 Discussion

We identified the class of deterministic potential LQ games, both for open-
loop and closed-loop settings. In the last section, we tried to use an open-
loop potential game in a closed-loop setting, and we observed that it didn’t
converge to Nash equilibrium, given by the Riccati equations. It suggests
that, although potential games have the property of one-player games, they
might not do so when they are used in a different setting. For the closed-loop
case, there are no non-trivial potential games.

We also analyzed some imaginary leader-follow settings and proved that
they are equivalent to a single-player LQ game, so potential. This result,
along with the conclusion for the trivial closed-loop and potential open-loop
games (when used in an open-loop setting), is our convergence guarantee in
LQ games.

52

Chapter 4

Conclusion and Future works

To address the slow convergence to Nash in games, this work provides novel
accelerated online algorithms with proofs of their regret bounds. As it is
shown that their regret is sub-linear, they have a convergence guarantee
when they are employed in Cournot games. These algorithms have been
put into the simulations with zero-order feedback, and we observed that
they are doing better in terms of speed of convergence compared to old
algorithms that had the same regret bound, both in Cournot games and
Quadratic games, but without providing a mathematical proof.

As for the next step, we would work on providing a convergence rate
with a mathematical proof. Moreover, one could extend the derived regret
bound for the algorithms 2 and 3 to the zero-order setting. Also, it would
be helpful to calculate the regret bound of algorithm 1 in terms of T .

The unknown parameters of LQ games need PG to find the Nash so-
lution. In general, however, PG may not converge to the Nash. To find
a category of LQ games where PG has a convergence guarantee, we recog-
nized the class of potential LQ games in open-loop. We did the same for
the closed-loop settings, but under some assumptions on the dimensions of
the actions and states. By performing experiments, the results are verified.

The next step for this work is to do the same for infinite horizon stochas-
tic LQ games to identify more potential LQ games. Besides, in this work, we
considered the conventional cost function of xTt Qixt + uTi,tRiui,t. However,

they could be extended with new cross terms of xTt Sut and similar terms, as
in [7]. As such, if the cost function is more general, other classes of potential
games might exist that we don’t know about.

53

Bibliography

[1] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game
theory. SIAM, 1998.

[2] Dimitri P Bertsekas et al. Dynamic programming and optimal control
3rd edition, volume ii. Belmont, MA: Athena Scientific, 2011.

[3] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive
control for linear and hybrid systems. Cambridge University Press,
2017.

[4] Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global
convergence of policy gradient methods for the linear quadratic regu-
lator. In International Conference on Machine Learning, pages 1467–
1476. PMLR, 2018.

[5] Simon Fischer, Harald Räcke, and Berthold Vöcking. Fast convergence
to wardrop equilibria by adaptive sampling methods. SIAM Journal on
Computing, 39(8):3700–3735, 2010.

[6] Yoav Freund and Robert E Schapire. Adaptive game playing using
multiplicative weights. Games and Economic Behavior, 29(1-2):79–103,
1999.

[7] Ben Hambly, Renyuan Xu, and Huining Yang. Policy gradient meth-
ods find the nash equilibrium in n-player general-sum linear-quadratic
games. arXiv preprint arXiv:2107.13090, 2021.

[8] Elad Hazan. Introduction to online convex optimization. arXiv preprint
arXiv:1909.05207, 2019.

[9] João P Hespanha. Noncooperative game theory: An introduction for
engineers and computer scientists. Princeton University Press, 2017.

[10] Joao P Hespanha. Linear systems theory. Princeton university press,
2018.

54

Bibliography

[11] Chonghai Hu, Weike Pan, and James Kwok. Accelerated gradient meth-
ods for stochastic optimization and online learning. Advances in Neural
Information Processing Systems, 22:781–789, 2009.

[12] Nicolas S Lambert, Giorgio Martini, and Michael Ostrovsky. Quadratic
games. Technical report, National Bureau of Economic Research, 2018.

[13] Eric Mazumdar, Lillian J Ratliff, Michael I Jordan, and S Shankar
Sastry. Policy-gradient algorithms have no guarantees of convergence
in linear quadratic games. arXiv preprint arXiv:1907.03712, 2019.

[14] Eric Mazumdar, Lillian J Ratliff, and S Shankar Sastry. On gradient-
based learning in continuous games. SIAM Journal on Mathematics of
Data Science, 2(1):103–131, 2020.

[15] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Pil-
iouras. Cycles in adversarial regularized learning. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2703–2717. SIAM, 2018.

[16] Panayotis Mertikopoulos and Mathias Staudigl. Convergence to nash
equilibrium in continuous games with noisy first-order feedback. In
2017 IEEE 56th Annual Conference on Decision and Control (CDC),
pages 5609–5614. IEEE, 2017.

[17] David HMguni, YutongWu, Yali Du, Yaodong Yang, Ziyi Wang, Minne
Li, Ying Wen, Joel Jennings, and Jun Wang. Learning in nonzero-
sum stochastic games with potentials. In International Conference on
Machine Learning, pages 7688–7699. PMLR, 2021.

[18] Faisal A Mohamed and Heikki N Koivo. Multiobjective optimization
using modified game theory for online management of microgrid. Eu-
ropean Transactions on Electrical Power, 21(1):839–854, 2011.

[19] Roger B Myerson. Game theory: analysis of conflict. Harvard university
press, 1997.

[20] Yu E Nesterov. A method for solving the convex programming problem
with convergence rate o(1

k2
). In Dokl. Akad. Nauk SSSR,, volume 269,

pages 543–547, 1983.

[21] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimiza-
tion of convex functions. Foundations of Computational Mathematics,
17(2):527–566, 2017.

55

[22] Boris T Polyak. Some methods of speeding up the convergence of iter-
ation methods. USSR Computational Mathematics and Mathematical
Physics, 4(5):1–17, 1964.

[23] Masoud Roudneshin, Jalal Arabneydi, and Amir G Aghdam. Reinforce-
ment learning in nonzero-sum linear quadratic deep structured games:
Global convergence of policy optimization. In 2020 59th IEEE Confer-
ence on Decision and Control (CDC), pages 512–517. IEEE, 2020.

[24] Yuanyuan Shi and Baosen Zhang. No-regret learning in cournot games.
arXiv preprint arXiv:1906.06612, 2019.

[25] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster
convergence of sgd for over-parameterized models and an accelerated
perceptron. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pages 1195–1204. PMLR, 2019.

[26] Santiago Zazo, Sergio Valcarcel Macua, Matilde Sánchez-Fernández,
and Javier Zazo. Dynamic potential games with constraints: Funda-
mentals and applications in communications. IEEE Transactions on
Signal Processing, 64(14):3806–3821, 2016.

[27] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Policy optimiza-
tion provably converges to nash equilibria in zero-sum linear quadratic
games. Advances in Neural Information Processing Systems, 32, 2019.

[28] Martin Zinkevich. Theoretical guarantees for algorithms in multi-agent
settings. Carnegie Mellon University, 2004.

56

Appendix A

Appendix

Theorem:2.2.1 If the following conditions are hold:

γk =
1

ρ
.

[
1 +

βk(1− αk)

αk

]
, (A.1)

αk =
γkβkb

2
k+1η

γkβkb
2
k+1η + a2k

, (A.2)

βk ≥ 1− γkµη, (A.3)

ak+1 = γk
√
ηρbk+1, (A.4)

bk+1 ≤
bk√
βk

, (A.5)

b2k+1γ
2
kηρ = a2k+1, (A.6)

b2k+1γkη − a2k+1 + a2k = 0, (A.7)

η ≤ 1

ρL
. (A.8)

the regret bound for algorithm 1 is:

Reg(T) ≤
T∑

j=1

[
1

2b2jγ
2
j−1ηρ

(
2a20C1 + b20C2

+

j−1∑
k=1

[
2b2k+1γ

2
k+1η

2σ2
k + 4b2k+1γ

2
k+1ηρϵk

])]
. (A.9)

where C1 = f0(x0)− f0(x
∗) and C2 = ∥x0 − x∗∥2 and x∗ is the best action

played on the hindsight.

Proof. This proof is fully inspired from [25]. Essentially all the main steps
are same with [25] except in eqs. (A.13) and (A.16), where we upgraded the
algorithm to online optimization.

57

Appendix A. Appendix

Let wk, ζk and νk be updated as below:

wk+1 = ζk − η∇fk(ζk, zk), (A.10)

ζk = αkνk + (1− αk)wk, (A.11)

νk+1 = βkνk + (1− βk)ζk − γkη∇fk(ζk, zk). (A.12)

And let rk+1 = ∥νk+1 − w∗∥, so we have:

r2k+1 = ∥βkνk + (1− βk)ζk − w∗ − γkη∇fk(ζk, zk)∥2,

r2k+1 =∥βkνk + (1− βk)ζk − w∗∥2

+ γ2kη
2∥fk(ζk, zk)∥2 + 2γkη⟨w∗ − βkνk − (1− βk)ζk,∇fk(ζk, zk)⟩.

Taking expectation w.r.t zk,

E[r2k+1] = E[∥βkνk + (1− βk)ζk − w∗∥2] + γ2kη
2 E[∥fk(ζk, zk)∥2]

+ 2γkη[E⟨w∗ − βkνk − (1− βk)ζk,∇fk(ζk, zk)⟩]
≤ ∥βkνk + (1− βk)ζk − w∗∥2 + γ2kη

2ρ∥fk(ζk)∥2

+ 2γkη⟨w∗ − βkνk − (1− βk)ζk,∇fk(ζk)⟩+ γ2kη
2σ2

k

= ∥βk(νk − w∗) + (1− βk)(ζk − w∗)∥2 + γ2kη
2ρ∥fk(ζk)∥2

+ 2γkη⟨w∗ − βkνk − (1− βk)ζk,∇fk(ζk)⟩+ γ2kη
2σ2

k

≤ βk∥νk − w∗∥2 + (1− βk)∥ζk − w∗∥2

+ γ2kη
2ρ∥fk(ζk)∥2 + 2γkη⟨w∗ − βkνk − (1− βk)ζk,∇fk(ζk)⟩

+ γ2kη
2σ2

k (By convexity of norm)

= βkr
2
k + (1− βk)∥ζk − w∗∥2 + γ2kη

2ρ∥fk(ζk)∥2

+ 2γkη⟨w∗ − βkνk − (1− βk)ζk,∇fk(ζk)⟩+ γ2kη
2σ2

k

= βkr
2
k + (1− βk)∥ζk − w∗∥2 + γ2kη

2ρ∥fk(ζk)∥2

+ 2γkη[⟨
βk(1− αk)

αk
(wk − ζk) + w∗ − ζk,∇fk(ζk)⟩] + γ2kη

2σ2
k

= βkr
2
k + (1− βk)∥ζk − w∗∥2 + γ2kη

2ρ∥fk(ζk)∥2

+ 2γkη

[
βk(1− αk)

αk
⟨(wk − ζk),∇fk(ζk)⟩+ ⟨w∗ − ζk,∇fk(ζk)⟩

]
+ γ2kη

2σ2
k

≤ βkr
2
k + (1− βk)∥ζk − w∗∥2 + γ2kη

2ρ∥fk(ζk)∥2

+ 2γkη

[
βk(1− αk)

αk
(fk(wk)− fk(ζk)) + ⟨w∗ − ζk,∇fk(ζk)⟩

]
+ γ2kη

2σ2
k. (By convexity)

58

Appendix A. Appendix

By strong convexity:

E[r2k+1] ≤ βkr
2
K + (1− βk)∥ζk − w∗∥2 + γkη

2ρ∥∇fk(ζk)∥2

+ 2γkη

[
βk(1− αk)

αk
(fk(wk)− fk(ζk)) + f∗

k − fk(ζk)−
µ

2
∥ζk − w∗∥2

]
+ γ2kη

2σ2
k.

Also we have:

fk(wk+1)− fk(ζk) ≤ ⟨∇fk(ζk), wk+1 − ζk⟩+
L

2
∥wk+1 − ζk∥2

− η⟨∇fk(ζk),∇fk(ζk, zk)⟩+
Lη2

2
∥∇fk(ζk, zk)∥2.

Taking expectation of both sides w.r.t zk (if η ≤ 1
ρL):

E[fk+1(wk+1)− fk(ζk)] ≤ −η∥∇fk(ζk)∥2 +
Lρη2

2
∥∇fk(ζk)∥2 +

Lη2σ2
k

2
+ ϵk

(A.13)

∥∇fk(ζk)∥2 ≤ (
2

η
)E[fk(ζk)− fk+1(wk+1)] + Lησ2

k +
2

η
ϵk.

Combining it with the previous inequality we conclude that:

E[r2k+1] ≤ βkr
2
k + (1− βk)∥ζk − w∗∥2 + 2γ2kρη E[fk(ζk)− fk(wk+1)]

+ 2γkη

[
βk(1− αk)

αk
(fk(wk)− fk(ζk)) + f∗

k − fk(ζk)−
µ

2
∥ζk − w∗∥2

]
+ γ2kη

2σ2
k + Lγ2kη

3ρσ2
k + 2γ2kρηϵk

≤ βkr
2
k + ∥ζk − w∗∥2[(1− βk)− γµη] + fk(ζk)

[
2γ2kηρ− 2γkη.

βk(1− αk)

αk
− 2γkη

]
− 2γ2kηρE fk+1(wk+1) + 2γkηf

∗ +

[
2γkη.

βk(1− αk)

αk

]
fk(wk) + 2γ2kη

2σ2
k + 2γ2kρηϵk.

59

Appendix A. Appendix

Now multiplying both sides by b2k+1 and because of A.1 and A.3,

b2k+1 E[r2k+1] ≤ b2k+1βkr
2
k + ∥ζk − w∗∥2[(1− βk)− γµη]

+ b2k+1fk(ζk)

[
2γ2kηρ− 2γkη.

βk(1− αk)

αk
− 2γkη

]
− 2b2k+1γ

2
kηρE fk+1(wk+1)

+ 2b2k+1γkηf
∗ + b2k+1

[
2γkη.

βk(1− αk)

αk

]
fk(wk) + 2b2k+1γ

2
kη

2σ2
k

+ 2b2k+1γ
2
kρηϵk

= b2k+1βkr
2
k − 2b2k+1γ

2
kηρE(fk+1(wk+1)) + 2b2k+1γkηf

∗

+

[
2b2k+1γkη.

βk(1− αk)

αk

]
fk+1(wk) + 2b2k+1γ

2
kη

2σ2
k + 2b2k+1γ

2
kρηϵk.

Since b2k+1βk ≤ b2k, b
2
k+1γ

2
kηρ = a2k+1,

γkηβk(1−αk)
αk

=
a2k

b2k+1

b2k+1 E[r2k+1] ≤ b2kr
2
k − 2a2k+1 E fk+1(wk+1) + 2b2k+1γkηf

∗
k + 2a2kfk(wk)

(A.14)

+
2a2k+1σ

2
kη

ρ
+ 2a2k+1ϵk

≤ b2kr
2
k − 2a2k+1[E fk+1(wk+1)− f∗

k+1] + 2a2k[fk(wk)− f∗
k]

(A.15)

+
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk (A.16)

+ 2[b2k+1γkη − a2k+1 + a2k]f
∗
k .

Since [b2k+1γkη − a2k+1 + a2k] = 0,

b2k+1 E[r2k+1] ≤ b2kr
2
k − 2a2k+1[E fk+1(wk+1)− f∗

k+1] + 2a2k[fk(wk)− f∗
k]

+
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk

Denoting E fk(wK)− f∗
k as ϕk,

2a2k+1ϕk+1 + b2k+1 E[r2k+1] ≤ 2a2kϕk + b2k E[r2k] +
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk.

60

Appendix A. Appendix

By recursion,

2a2T+1ϕT+1 + b2T+1 E[r2T+1] ≤2a20ϕ0 + b20 E[r20]

+
T∑

k=1

[
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk

]
, (A.17)

ϕT+1 ≤
1

2a2T+1

(
2a20ϕ0 + b20 E[r20]− b2T+1 E[r2T+1]

+

T∑
k=1

[
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk

])
, (A.18)

Reg(T) =
T∑

j=1

ϕj ≤
T∑

j=1

[
1

2a2j

(
2a20ϕ0 + b20 E[r20]− b2j E[r2j]

+

j−1∑
k=1

[
2a2k+1σ

2
kη

ρ
+ 4a2k+1ϵk

])]
, (A.19)

Reg(T) =
T∑

j=1

ϕj ≤
T∑

j=1

[
1

2b2jγ
2
j−1ηρ

(
2a20C1 + b20C2

+

j−1∑
k=1

[
2b2k+1γ

2
k+1η

2σ2
k + 4b2k+1γ

2
k+1ηρϵk

])]
. (A.20)

61

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Motivation
	Thesis Organization
	Problem Settings
	Game and Converging to the Nash
	LQ Games

	Accelerated algorithms in games
	Preliminaries for Online algorithms and games
	Algorithm for noisy gradient feedback
	3-stage online Nesterov method
	2-stage online Nesterov method
	Quadratic Games

	Conclusion and Summary
	Next steps

	LQ games
	Review of the definitions
	Dynamic System
	Quadratic Cost Function
	Stochasticity in LQ games
	Potential Games

	An examples of LQ game
	Potential games and their Conditions
	Convergence of Potential LQ games
	Open loop potential LQ games
	Closed loop potential LQ games
	Special cases of closed-loop

	Simulations
	Discussion

	Conclusion and Future works
	Bibliography
	Appendix

