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Abstract

The Ryu-Takayanagi formula [1], discovered in the context of the AdS/CFT
correspondence, revealed that entanglement entropy encodes the informa-
tion about geometry. In order to learn about non-locality structure of QFTs
on fuzzy spaces we calculate entanglement entropy and mutual information
for a massive free scalar field on a noncommutative (fuzzy) sphere, using
standard methods for finding entropy of coupled harmonic oscillators. When
computing these quantities we use two different methods of factorizing quan-
tum mechanical Hilbert spaces, i.e. two different constructions of projection
matrices. We find that our results are largely dependent on which projection
matrix we used.

We further use machine learning techniques to find variational wavefunc-
tion for scalar field theory with a quartic interaction on a fuzzy sphere. The
theory is realized by a matrix model, where the matrix size plays the role of
an ultraviolet cutoff. We use variational quantum Monte Carlo with deep
generative flows to search for ground state energy of this matrix model. We
find that, depending on the projection matrix used, entropy stays the same
or behaves differently as we vary the parameter of quartic interaction.

iii



Lay Summary

In string theory, which seeks to unify quantum and gravitational physics,
one can describe spacetime geometry in terms of microscopic degrees of
freedom. Rather than a fundamental concept, spacetime is then said to be
emergent from the collective behavior of quantum objects, not unlike gas
temperature and pressure in thermodynamics that are emergent from the
collective dynamics of particles.

We aim to understand how space emerges in matrix quantum mechan-
ics where the underlying microscopic objects are matrices. To obtain the
quantum-mechanical wave function that describes our model we use machine
learning.
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Preface

This thesis is composed of original, unpublished work by the author. The
project was proposed by Joanna Karczmarek and aims to examine disparity
in results for entanglement entropy on a fuzzy sphere between [2] and [3].

For section 4.1.1, Matlab code which calculates entanglement entropy in
the vacuum state for scalar free field theory on a fuzzy sphere and was used
to obtain the results in [3] was provided by Hong Zhe Chen. The author
built on the code to compute entanglement entropy using different projection
matrices to factorize Hilbert space. The author also added functions to find
Rényi-n entropy using the method described in [4].

Machine learning code used to obtain results in section 4.2 and 4.3 was
adapted from Xizhi Han’s code used in [2] 1 The author modified the code
that was applied to a gauged matrix model with 3 matrices to an ungauged
matrix model with a single matrix. Supplementary Mathematica code, that
was not made publicly available, used to compute projection matrices was
provided by Xizhi Han on author’s request. The thesis’s author optimized
it so it could be used for much larger sizes of matrices.

In addition to comparing ground state energies in section 4.2, Joanna
Karczmarek suggested another benchmark of neural network variatonal wave-
function i.e. comparing variatonal wavefunction to the expected Gaussian
wavefunction for a scalar free field theory. Joanna Karczmarek also pointed
out how to benchmark scalar interacting field theory using the method de-
veloped in [5] and described in 4.3. The author performed all the numerical
analysis.

1It’s publicly available at https://github.com/hanxzh94/matrix-model.
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4.14 Scaled Rényi entropy S2/N for a free field theory with quartic
interaction (eq. 4.16) as a function of angular size θA of polar
cap A for N = 10, µ = 1 and λ = {1, 10, 100, 1000} com-
puted from variational neural network wavefunctions. The
statistical error (eq. 3.14) is below the scale of the markers. . 35
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Chapter 1

Introduction

The main motivation for this work stems from trying to understand space-
time as an emergent concept. Rather than given a priori as a manifold in
general relativity or a quantum field as described by quantum mechanics,
spacetime can be understood as arising effectively from the underlying mi-
croscopic degrees of freedom. A quantity that gives us most insight into
the distribution of degrees of freedom and therefore emergent geometry is
entanglement entropy (see e.g. [6–9]).

We talk about entanglement entropy whenever we have an observer with
access only to a subset of the complete set of observables associated to a
quantum system. It is defined as the von Neumann entropy of the reduced
density matrix

S(A) = −TrA ρA log ρA, ρA = trAc ρ , (1.1)

where ρ is the density matrix with respect to the wavefunction of the whole
system and ρA is the density matrix reduced to a region A by tracing over
the degrees of freedom lying outside that region.

In practice, we often compute Rényi entropies which are given by

Sn(A) =
1

1− n
log tr ρnA , (1.2)

where n ≥ 0 denotes an order of Rényi entropy. In the limit where n → 1
we get entanglement entropy.

The reason why entanglement entropy is a useful quantity to study is
most clear in the context of the AdS/CFT correspondence, through the
Ryu-Takayanagi formula [1]:

S(A) =
Area (γA)

4GN
, (1.3)

where S(A) is the entanglement entropy of a region A in a CFT and γA is an
extremal surface in the bulk of the dual space-time that has the same bound-
ary as A. This formula connects a classical geometric quantity like an area
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of extremal surface in the gravity picture (AdS) to a quantum phenomenon,
namely the entanglement entropy of spatial subsystems in the dual CFT.

Here, we shall focus on the study of entanglement entropy on noncom-
mutative (fuzzy) spaces in the hope that it gives us insight into UV-IR
connection and the scrambling behaviour of black hole horizons [10] and
ultimately help in understanding the nature of spacetime at very short dis-
tances. The main advantage of working with noncommutative spaces is
that the field theory is UV-finite and there is a natural infra-red (IR) ul-
traviolet (UV) connection. Noncommutative geometry is also interesting in
the context of string theory as it is the natural description of the position
of D-branes [11, 12]. Furthermore, field theories in noncommutative spaces
[12, 13] are realized in the matrix quantum mechanics models [14–16], which
give nonperturbative definitions of string theory. One of the simplest fuzzy
spaces we can study is a fuzzy sphere S2

N [17], described by its radius R and
an integer “noncommutativity” parameter N . It approaches the classical
sphere in the limit N → ∞ for fixed R. A scalar field theory on the fuzzy
sphere is given by a matrix model, where the matrix size N plays the role
of a UV cutoff. In matrix models we have D + 1 dimensional emergent ge-
ometry from a 0 + 1 quantum mechanical system, with the geometry being
noncommutative at finite N . In other words, spacetime curvature emerges
from the collective dynamics of matrix degrees of freedom.

Generally, local field theories generally obey area law [18, 19], where the
leading divergence in the entanglement entropy of a spatial region is propor-
tional to the area of the boundary of that region. That is, S(A) ∼ |∂A|/ǫd+1,
where |∂A| is the area of the boundary of the region A, ǫ is a UV cutoff,
and d is the space dimension. Violations of area law are oberved in some
fermionic systems [20, 21] and in QFTs with nonlocal interactions (if the
region considered has size smaller than the length scale of the nonlocality)
[22, 23]. Entanglement entropy is therefore a good measure of non-locality
in QFTs and we expect it to violate area law on a fuzzy sphere. Indeed,
departure from the area law on noncommutative spaces was shown both
through holographic calculations [24, 25] and field theory calculation [26].
In [3, 27], it was observed that for entanglement entropy on a fuzzy sphere
there is a transition from extensive behaviour for small regions to area-law
behaviour for larger regions. In other words for small sizes of the polar cap,
S(A) ∼ |A|/ǫd+1 (∼ 1− cos θ); while for larger polar caps S(A) ∼ |∂A|/ǫd+1

(∼ sin θ). In this work we try to address why recent results of [2] do not
exhibit a similar departure from area-law despite a non-local nature of mini-
BMN matrix model. Possible reasons are: presence of interaction terms,
presence of a gauge and different factorization of Hilbert space.
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This thesis is organized as follows. In chapter 2 we define field theory on a
fuzzy sphere and discuss how to compute entanglement entropy. In chapter 3
we introduce the neural network approach of finding ground-state energy for
a field theory, and subsequently computing entanglement entropy. In chapter
4 we present our results and compare two different projection matrices that
we use to factorize Hilbert space when computing entanglement entropy.
The code used to generate the data and make the figures can be accessed at
https://github.com/TomaszAnd/msc-thesis
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Chapter 2

Methodology

In this chapter we discuss how to compute entanglement entropy for a scalar
field theory on a fuzzy sphere using so called real time approach [4] .

2.1 Scalar field theory on a fuzzy sphere

In this work we shall study one of the simplest nontrivial noncommutative
field theories, i.e. the theory for a free scalar on a noncommutative (or
fuzzy) sphere. Let us start by considering a free field theory on a normal
commutative sphere S2. It has the following Hamiltonian:

H =
1

2

∫

dΩ
(

φ̇2 −R−2 (Liφ)2 + µ2φ2
)

, (2.1)

where the dot denotes the time derivative, R is the radius of the sphere
and Li, (i = 1, 2, 3) are the angular momentum operators:

L± ≡ L1 ± iL2 = e±iφ
(

± ∂

∂θ
+ i cot θ

∂

∂φ

)

,

L3 = −i ∂
∂φ

,

(2.2)

with θ, φ being the spherical coordinates with standard relation to Carte-
sian coordinates. The noncommutative sphere is obtained by replacing
Cartesian coordinates xi with operators Xi that are proportional to the
generators of the N -dimensional irreducible representation of SU(2) of spin
l = N−1

2 :

Xi = R
Li

√

l(l + 1)
, [Li, Lj ] = iǫijkLk . (2.3)

Notice that LiLi = l(l + 1)I =
(N2−1)

4 I, so that XiXi = R2I, just like
we have xixi = R2 for a commutative sphere. Since Li generate rotations,
the Laplacian ∇2φ for commuting sphere is replaced by the SU(2) Casimir
operator L2

i = L2
1 + L2

2 + L2
3 for a fuzzy sphere with action Li(φ) = [Li, φ],

L2
i (φ) = [Li, [Li, φ]]. Similarly, integration on the fuzzy sphere is a trace

4



4πR2

N
Tr (·) , (2.4)

with the prefactor ensuring that the identity function maps to the unit
matrix.

The Hamiltonian for a real scalar field theory on a fuzzy sphere is there-
fore given by

H =
4πR2

N

1

2
Tr

(

Φ̇2 −R−2 [Li,Φ]
2 + µ2Φ2

)

, (2.5)

where Φ is an N × N Hermitian matrix that represents the scalar field of
mass µ. The theory has one dimensionless parameter, i.e. mass measured
in units of radius m = Rµ. In the following we will take R = 1, yielding
the dimensionless parameter to simply be m = µ. We will work in a basis
where L3 is diagonal.

2.2 Entanglement Entropy in Free Scalar Field
Theory

In this section we discuss how to calculate entanglement entropy for quadratic
Hamiltonians, such as the one given by eq. 2.5, using an approach from [18].

2.2.1 Splitting Field Theory into Sectors

As shown in [28], we can treat the free field scalar theory as a collection of
coupled oscillators on a lattice of space points by splitting the Hamiltonian
2.5 into a sum of 2N +1 independent sectors. This simplifies the problem of
finding EE for a fuzzy sphere as it allows to use the method for computing
EE for quadratic Hamiltonians from [18, 29].

We start by splitting the fields into a symmetric part φ
(1)
ij = φ

(1)
ji and

an antisymmetric part φ
(2)
ij = −φ(2)ji by writing (φ̃)ij = φ

(1)
ij + iφ

(2)
ij . Then

recombine into the real field Φij = φ
(1)
ij + φ

(2)
ij and write

Q(m) = (Φ1,1+m,Φ2,2+m, . . . ,ΦN−m,N ) , Q
(−m) = (Φ1+m,1,Φ2+m,2, . . . ,ΦN,N−m) ,

(2.6)

so that the degrees of freedom are the fields Q
(m)
a and Q

(−m)
a (m ≥ 0). That

means that in our calculations we will split the matrix Φ into: the main
diagonal Q(0) of size N , diagonals Q(−1) and Q(1) of size N − 1, diagonals
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Q(−2) and Q(2) of size N − 2, · · · and diagonals Q−(N−1) and Q(N−1) of size
1. In summary, we have the following relations:

2Q(m)
a = 2Φa,a+m = (1− i)φa−1,a+m−1 + (1 + i)φ∗a−1,a+m−1 ,

2Q(−m)
a = 2Φa+m,a = (1− i)φa+m−1,a−1 + (1 + i)φ∗a+m−1,a−1 ,

(2.7)

Finally, define

c2 = l(l + 1) ,

Aa = −a+ N + 1

2
,

Ba =
√

a(N − a) ,

(2.8)

where c2 is the quadratic Casimir of the spin-l irreducible representation
of SU(2), Aa and Ba are the non-zero elements of L3 and L±, respectively,
and 1 ≤ a ≤ N . Then the original Hamiltonian (2.5) may be written as:

H =
N−1
∑

m=−(N−1)

Hm =
1

2

N−1
∑

m=−(N−1)

N−|m|
∑

a,b=1

(

π(m)
a δabπ

(m)
b +Q(m)

a V
(m)
ab Q

(m)
b

)

,

(2.9)
where

V
(m)
ab =

[

2

(

c2 +
µ2

2
−AaAa+|m|

)

δa,b −Ba−1Ba−1+|m|δa−1,b −BaBa+|m|δa+1,b

]

,

(2.10)

and π
(m)
a = Q̇

(m)
a . Since the Hamiltonian H decouples into Hm’s that do

not depend on the sign of m we may write:

H =

N−1
∑

m=−(N−1)

Hm . (2.11)

.
Now that we have mutually uncoupled diagonals Q(m), we can calculate

entanglement entropy for each diagonal separately [4, 18], giving

S =
N−1
∑

m=−(N−1)

S(m) = S(0) + 2
N−1
∑

m=1

S(m) , (2.12)

with S(m) being the entanglement entropy of the m−th sector 2. In the next
section we give a prescription for finding S(m) in the case of entanglement
entropy and Rényi entropy.

2We can write S(−m) = S(m) as we consider symmetric regions
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2.2.2 Entropy of Quadratic Hamiltonians

Entanglement entropy

We find S(m) by writing down the ground state of Hm explicitly in terms of
V (m) [4, 18]. Each sector Hm in eq. 3.18 has N − |m| degrees of freedom as
it represents N − |m| coupled harmonic oscillators. Its normalized ground
state is therefore:

ψ
(m)
0

(

Q(m)
)

= π−N/4(detW (m))1/4 exp

[

−1

2
Q(m)
a W

(m)
ab Q

(m)
b

]

, (2.13)

where W (m) is the square root of V (m): if V (m) = U⊺V
(m)
D U , where V

(m)
D is

diagonal and U is orthogonal, then W (m) = U⊺[V
(m)
D ]1/2U . The correspond-

ing density matrix is

ρ(m)
(

Q(m), Q(m)′
)

=

[

det
W (m)

π

]1/2

exp

[

−1

2
W

(m)
ab

(

Q(m)
a Q

(m)
b +Q′(m)

a Q
′(m)
b

)

]

,

(2.14)
and a reduced density matrix is obtained by integrating over the unavailable
degrees of freedom QAc :

ρ
(m)
A

(

Q
(m)
n+1, Q

(m)
n+1, . . . , Q

′(m)
n+1 , Q

′(m)
n+2 , . . .

)

=

∫ n
∏

α=1

dQ(m)
α ρ

(

Q(m), Q′(m)
)

.

(2.15)
The associated von Neumann entropy of ρA, defined by S = − Tr ρA log ρA,

is the entanglement entropy which can be shown to be [18, 29]:

S(m) =
∑

i



log

(

1

2

√

λ
(m)
i

)

+

√

1 + λ
(m)
i log





1
√

λ
(m)
i

+

√

1 +
1

λ
(m)
i







 ,

(2.16)

where λ
(m)
i are the eigenvalues of the matrix

Λ
(m)
i,j = −

n
∑

α=1

[

W
(m)
iα

]−1
W

(m)
αj , (2.17)

and W
(m)
αj and

[

W
(m)
iα

]−1
are elements of W (m) and

[

W (m)
]−1

respec-

tively with n+ 1 ≤ i, j ≤ N and 1 ≤ α ≤ n (Λ(m) is an (N − n)× (N − n)
matrix). And so we have outlined how to compute entanglement entropy of
a fuzzy sphere.

7



Rényi entropy

To compute Rényi entropy we follow the real time approach [4] to the vac-
uum state for N coupled harmonic oscillators with a quadratic Hamiltonian

H =
1

2

N
∑

i=1

π2i +
1

2

N
∑

i,j=1

xiVijxj . (2.18)

Using two point correlators [XA]ij and [PA]ij for the region A defined by
indices 1 ≤ i, j ≤ n:

[XA]ij = 〈xixj〉 =
1

2

(

V − 1
2

)

ij
,

[PA]ij = 〈πiπj〉 =
1

2

(

V
1
2

)

ij
,

(2.19)

let us define

[CA]ij =
[

√

XAPA

]

ij
=

1

2

√

√

√

√

n
∑

k=1

(

V −1/2
)

ik

(

V 1/2
)

kj
, (2.20)

Then we may show that the entanglement entropy and Rényi entropy in
region A are given in terms of the (positive) eigenvalues of CA =

√
XAPA:

S [ρA] = tr

[(

CA +
1

2
1

)

log

(

CA +
1

2
1

)

−
(

CA − 1

2
1

)

log

(

CA − 1

2
1

)]

,

(2.21)

Sn [ρA] =
1

n− 1
tr log

[(

CA +
1

2
1

)n

−
(

CA − 1

2
1

)n]

. (2.22)

The above equations are derived in [4] and we give a brief summary in
the appendix B.

Partition of Hilbert space using projection matrices

The problem of computing entropies reduces then to separating the square
root of the potential,W (m), into degrees of freedom inside and outside region
A. We do that by writing degrees of freedom Q(m) as column vectors inside
and outside region A in the eigenbasis of V ; we do change of basis from Q(m)

to diagonal Q̃(m).
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W (m) = [Q̃
(m)
1 ...Q̃(m)

n Q̃
(m)
n+1...Q̃

(m)
N ]⊺









ω
1
2
1

. . .

ω
1
2
N−m









[Q̃
(m)
1 ...Q̃(m)

n Q̃
(m)
n+1...Q̃

(m)
N ] ,

(2.23)
where ωi are eigenvalues of V . Similarly,

W−1 =
[

Q̃
(m)
1 ...Q̃(m)

n Q̃
(m)
n+1...Q̃

(m)
N−m

]

⊺









ω
− 1

2
1

. . .

ω
− 1

2
N−m









[

Q̃
(m)
1 ...Q̃(m)

n Q̃
(m)
n+1...Q̃

(m)
N−m

]

.

(2.24)

To split Q̃
(m)
a into degrees of freedom inside (Q̃

(m)
1 , · · · , Q̃(m)

n ) and outside

(Q̃
(m)
n+1, · · · , Q̃

(m)
N ) region A, we use projection matrices from [2]. We explain

how to find them in the next section. Note that we will have to put the
projections in the block-diagonal form with blocks of size N − m for 0 ≤
m ≤ N − 1.

2.2.3 Projections

To calculate entanglement for quantum states we need to be able to factorize
the Hilbert space into the region inside and outside the polar cap A, i.e.
H = HA ⊗ HAc . In this section we review how to do that for a Hilbert
space of states on a fuzzy sphere following [2]. Since a quantum state is a
function from the configuration space Q to complex numbers, the Hilbert
space of all quantum states is the square integrable functions H = L2(Q).
The Hilbert space L2(Q) = L2 (QA) ⊗ L2 (QAc) may be then factorized
via an orthogonal decomposition Q = QA ⊕QAc defined by the orthogonal
projection P : Q → Q, such that QA = imP and QAc = kerP .

Normally to project any function f on a sphere to a polar cap A we could
simply multiply by χA, f → fχA, where χA is the function on the sphere
that is 1 on A and 0 otherwise. However, this is a valid choice for a projection
only in the limit of jmax → ∞. With a finite cutoff jmax, multiplying by χA
generally takes the function out of the subspace of functions with j ≤ jmax.
We therefore need an orthogonal projection P jmax

A : Qjmax → Qjmax that
lives in the space of functions on the sphere spanned by spherical harmonics
Yjm(θ, φ) with j ≤ jmax, call it Qjmax . We define P jmax

A as a projection that

minimizes the distance ‖P jmax

A −P∞
A ‖ where P∞

A is the multiplication by χA
and ‖ · ‖ is chosen to be the Frobenius norm.
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Let us now briefly present how to minimize Frobenius distance, in par-
ticular how to find an orthogonal projection operator P such that ‖P −R‖
is minimal given another Hermitian operator R. If we let R = UR′U † where
U is a unitary matrix and R′ is diagonal, then the following P minimizes
‖P −R‖F among orthogonal projection operators:

P = UP ′U †, P ′ is diagonal with P ′
ii = 1 if R′

ii >
1

2
, and 0 otherwise.

(2.25)
This is the unique minimum if none of the eigenvalues of R is 1

2 .
So in summary, the projection operator P we will choose is the one that

is both within the subspace spanned by spherical harmonics Yjm(θ, φ) with

j ≤ jmax and closest to P∞
A . In other words we are looking for P = P jmax

A

that minimizes ‖P − P∞
A ‖, with the region A being a spherical cap with

polar angle θA
3. We compute P as follows:

1. Since for j1, j2 ≤ jmax, the projection [P ]j1m1,j2m2
should converge

to its value at jmax → ∞, we start by finding the matrix elements
[P∞
A ]j1m1,j2m2

. This is what we will take as R in eq. 2.25; its matrix
elements are that of multiplication by the unit function χA on a polar
cap A:

[P∞
A ]j1m1,j2m2

=
1

4π

∫ θA

0
dθ sin θ

∫ 2π

0
dφY ∗

j1m1
(θ, φ)Yj2m2(θ, φ) ,

(2.27)
where χA restricts the θ integral to [0, θA]. For example P∞

A for N =
jmax − 1 = 3 has the following matrix elements:

3Note that for mini-BMN model there is an additional constraint for choosing the
projection which is that it must preserve gauge directions P ′(G) ⊂ G with

G =
{

i
[

Y, L
i

]

: Y is Hermitian
}

(2.26)

.
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Figure 2.1: A ”pseudoprojection” P∞
A for N = 3 with matrix elements

given by eq. 2.27. From there a projection P jmax

A is obtained using eq. 2.25.

This matrix is obtained by writing all possible quantum numbers
{j,m} with j ≤ jmax, sorting the indices by m and then taking the
outer product of the vector of indices with itself to get a matrix. Note
that since the non-zero matrix elements are for m1 6= m2, we get
a block-diagonal matrix R = P∞

A with 2N − 1 blocks R(m) of size
N − |m| for each of the sectors. In practice, we only need to compute
matrix of first N blocks since R(−m) = R(m).

2. Using singular value decomposition, write R as R = UR′V where
R′ is diagonal and U, V are unitary. Then the projection matrix is
P = UP ′V † where

P ′ is diagonal with P ′
ii = 1 if R′

ii > 1/2, and 0 otherwise.

This is the projection P jmax

A within the subspace Qjmax for a polar cap
A.

From now on we shall refer to projections found using the method out-
lined above as PFrobenius

A as opposed to the projections used in [3] that

we shall refer to as PVeigenbasis
A . As demonstrated by fig. 2.2 and 2.3

the traces of these two projectors, which is a measure of modes in a re-
gion, have different dependence on the size of the region. Specifically, at
large jmax, for Tr PFrobenius

A : Tr P jmax

A ∝ j2max|A| whereas for PVeigenbasis
A :

Tr P jmax

A ∝ j2max|A|2. This could be due to some eigenvalues being close to
1/2 for PFrobenius before the final step in construcing the projection where
we replace eigenvalues greater than 1/2 with 1 and smaller than 1/2 with 0
(see fig. 2.4).

We claim that the difference in traces is reflected in entropy and is
the reason for disparity between the entanglement entropy observed in [2]
(PFrobenius) and [3] (PVeigenbasis), i.e. area law (Sθ ∝ sin θ) and square of
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area law (Sθ ∝ sin2 θ), respectively. (For the explanation why we have the
square of area law entanglement entropy in scalar free field theory on a fuzzy
sphere see [30]).

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.�

0.�

0.�

0.�

Figure 2.2: Trace of the projection PFrobenius
A and PVeigenbasis

A versus frac-
tional area of the region (a spherical cap with polar angle θA), with different
angular momentum cutoffs jmax = N − 1.

0.0 0.1 0.� 0.� 0.�
0.0

0.1

0.�

0.�

0.	

Figure 2.3: Trace of the projection PVeigenbasis
A versus square of fractional

area of the region (a spherical cap with polar angle θA), with different an-
gular momentum cutoffs jmax = N − 1.
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Figure 2.4: Histogram of eigenvalues for N = 20 of two pseudoprojections,
i.e. before the final step of replacing the eigenvalues larger than a half with
1 and with 0 otherwise.
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Chapter 3

Machine Learning
Methodology

In this section we give a brief overview of the deep learning approach that
was applied to the mini-BMN matrix model in [2]. To train our models
we use the variational Monte Carlo, where for a given problem Hamilto-
nian H, the optimization strategy involves minimizing the expectation value
Eθ = 〈ψθ|H|ψθ〉 ≥ E0 with respect to the variational parameters θ. Here,
E0 is the exact ground state energy of the Hamiltonian H. Starting from
some wavefunction ansatz ψθ (usually some mixture of normal distributions)
we update the variational parameters θ using variants of the gradient de-
scent algorithm with the objective of minimizing the energy expectation
value Eθ = 〈ψλ|H|ψθ〉 to find the best parameters θ∗ corresponding to ψθ∗

that most closely approximates the lowest energy eigenstate ψ0. For more
applications of variational Monte Carlo with parametrized neural network
ansatz see e.g. [31, 32].

3.1 BMN Matrix Model

Let us first introduce the Hamiltonian for which the deep learning approach
we will use in this work was developed [2]. The SU(2) (fuzzy) sphere that we
considered in a previous section is a saddle-point solution to BFSS matrix
model [14]. The BFSS theory is a 0 + 1 dimensional supersymmetric matrix
theory (the dimensional reduction of the 10d super Yang-Mills) describing
the dynamics of D0 branes. BFSS model is interesting to study as it gives a
nonperturbative formulation of superstring theory and is a good candidate
for testing the gauge/gravity correspondence [33, 34]. In this section we shall
focus on its mass deformed version, so-called BMN model [35]. By adding a
mass parameter to BFSS matrix model we go from a theory defined on a flat
Minkowski spacetime to one defined on a curved spacetime. The advantage
of studying BMN model is that it has a discrete energy spectrum and -
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unlike BFFS model - a well defined canonical ensemble.4

The simplest possible version of BMN model (called mini-BMN [2, 37])
has 3 bosonic matrices and has the following Hamiltonian:

H = HB + tr

(

λ†σk
[

Xk, λ
]

+
3

2
νλ†λ

)

− 3

2
ν
(

N2 − 1
)

, (3.1)

where HB is the bosonic part

HB = tr

(

1

2
ΠiΠi − 1

4

[

Xi, Xj
] [

Xi, Xj
]

+
1

2
ν2XiXi + iνǫijkXiXjXk

)

,

(3.2)
and ν is mass deformation parameter (different from µ in eq. 2.5), σk

are Pauli matrices, λ are fermionic degrees of freedom (matrices of two-
component SO(3) spinors).

3.2 Neural Network Ansatz

As outlined earlier, the basic idea is to use a neural network as the wave
function ansatz in the variational quantum Monte Carlo method to find a
ground state of a Hamiltonian. This is performed as follows:

1. Represent a quantum state |ψθ〉 in terms of variational parameters
θ. The quantum wavefunction ψθ(X) = 〈X | ψθ〉 = |ψ(X)|eiθ(X) is
a complex function of Hermitian matrices X with norm and phase
modeled separately.

2. Estimate the energy from Monte Carlo samples of the wave function

Eθ ≡
〈

ψθ|Ĥ|ψθ
〉

=

∫

dX |ψθ(X)|2 ·

〈

X|Ĥ|ψθ
〉

ψθ(X)
= E

X∼|ψθ|
2
[ǫθ(X)] ,

(3.3)
where EX∼|ψθ|

2 is the expectation value, with the random variable X

drawn from the probability distribution |ψθ|2, ǫθ(X) (so-called local

energy) is defined as
〈X|Ĥ|ψθ〉
ψθ(X) and Eθ is estimated as the mean of

ǫθ(X) from these samples.

4This is because there are flat directions [36] in BFFS model while in the BMN model
they are absent because of mass term.
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3. Compute the gradient of the energy with respect to model parameters
θ, noting that the sampling distribution depends on θ as well,

∇θEθ = EX∼|ψθ|
2 [∇θǫθ(X)] + EX∼|ψθ|

2

[

ǫθ(X)∇θ ln |ψθ|2
]

. (3.4)

4. Update parameters θ (if using gradient descent) according to the rule:

θt+1 = θt − α∇θEθ , (3.5)

where t = 1, 2, ... denotes the steps of training and the step size α >
0 is the learning rate. In practice, instead of this simple gradient
descent rule, we actually use the Adam optimizer [38] to implement
the gradient updates as it gives better results.

5. Repeat steps 2 to 4 until Eθ converges. The (local) minimum found
is then a variational upper bound for the ground state energy. Ob-
servables of physical interest are evaluated with respect to the optimal
parameters after training.

The averages E[f(X)] are estimated as Monte Carlo sample averages
∑K

i=1
1
K f(Xi) in stochastic gradient descents; their uncertainties are there-

fore σ/
√
K where σ is standard deviation.

Training of the model is divided into three epochs, each of which consists
of 5000 iterations. The learning rate is set to be 10−3 for iterations from 1 to
5000, 2×10−4 from 5001 to 10000 and 4×10−5 from 10001 to 15000. In each
iteration the energy is evaluated from a batch of 103 random samples. The
final expectation value of energy for the trained variational wavefunction is
evaluated from 106 Monte Carlo samples.

3.3 Estimating Rényi entropy using Replica Trick

Having found the ground state quantum wavefunction using the neural net-
work ansatz as described in the previous section, we can sample from the
wavefunction at different points to estimate Rényi n entropy

Sn(ρ) =
1

1− n
lnTr ρnA . (3.6)

In the following section we describe how to do this at integer orders n ≥ 2
via the replica trick [39].
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Let x and y denote the coordinates of the subsystem A and its com-
plement Ac, determined by the projection matrix PA. The reduced density
matrix is then

ρA
(

x, x′
)

=

∫

dyψ(x+ y)ψ∗
(

x′ + y
)

, (3.7)

where x, x′ ∈ QA = imPA and the integral is over the subspace QAc =
kerPA. And so we have:

Tr ρnA =
n−1
∏

i=0

∫

dxidyiψ(xi, yi)ψ
∗(xi+1, yi) , (3.8)

where xn = x0. This can be estimated using replica trick [39], where we
consider the action of SwapA on two copies of the neural network wave
function:

SwapA ψ(x, y)ψ(x
′, y′) = ψ(x′, y)ψ(x, y′) . (3.9)

This operator swaps the degrees of freedom in the region A between the two
copies. Rényi-2 entropy

S2 (ρA) = − ln

∫

dxdx′dydy′ψ(x+ y)ψ∗
(

x′ + y
)

ψ
(

x′ + y′
)

ψ∗
(

x+ y′
)

,

(3.10)
is then simply:

S2 (ρA) = − ln 〈SwapA〉 , (3.11)

which we can estimate using Monte Carlo sampling:

〈SwapA〉 = Ex0,x1,y0,y1

ψ∗ (x1, y0)

ψ∗ (x0, y0)

ψ∗ (x0, y1)

ψ∗ (x1, y1)
≈ 1

Ns

Ns
∑

k=1

ψ∗
(

x
(k)
1 , y

(k)
0

)

ψ∗
(

x
(k)
0 , y

(k)
0

)

ψ∗
(

x
(k)
0 , y

(k)
1

)

ψ∗
(

x
(k)
1 , y

(k)
1

) ,

(3.12)
where Ns is the number of samples in Monte Carlo (taken to be 105). Hence,
to estimate Rényi-2 entropy with replica trick we only need to generate two

sets of samples {x(k)0 }Ns

k=1 and {x(k)1 }Ns

k=1 independently from |ψθ|2. If we
define

Swap
(k)
A =

ψ∗
(

x
(k)
1 , y

(k)
0

)

ψ∗
(

x
(k)
0 , y

(k)
0

)

ψ∗
(

x
(k)
0 , y

(k)
1

)

ψ∗
(

x
(k)
1 , y

(k)
1

) , (3.13)

the statistical error on such estimation is given by [32]:
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ǫ =
1

〈SwapA〉

√

√

√

√

var
({

Swap
(k)
A

})

Ns
. (3.14)

Similarly, for Rényi-n entropy we have

Tr ρnA = Exi,yi

[

n−1
∏

i=0

ψ∗ (xi+1, yi)

ψ∗ (xi, yi)

]

. (3.15)

To see how we separate degrees of freedom into x ∈ QA and y ∈ QAc in
3.10, let us write z = x+ y ∈ Q and z′ = x′ + y′ ∈ Q, so that

x = PAz, x′ = PAz
′, y = (I − PA)z, y′ = (I − PA)z

′ . (3.16)

Then the integral in eq. 3.10 can be performed over the full configuration
space Q instead of QAc :

S2 (ρA) = − ln

∫

dzdz′ψ(z)ψ∗
(

PAz
′ + (I − PA)z

)

ψ
(

z′
)

ψ∗
(

PAz + (I − PA)z
′
)

,

(3.17)
and then estimated using Monte Carlo sampling:

S2 (ρA) = − lnEz,z′∼|ψ|2

[

ψ∗ (PAz
′ + (I − PA)z)ψ

∗ (PAz + (I − PA)z
′)

ψ∗(z)ψ∗ (z′)

]

.

(3.18)
We use projection matrices described in section 2.2.3 to separate degrees of
freedom for a free field theory on a fuzzy sphere.
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Chapter 4

Results

4.1 Real-time Approach

In this section we present results of applying real-time approach to calculat-
ing entanglement entropy and Rényi entropies with the factorization of the
Hilbert space as defined by projections used in [2] and described in section
2.2.3.

4.1.1 Entanglement Entropy

Figure 4.1 shows entanglement entropy for a polar cap region A as a function
of the polar angle θA for different masses µ and size of matrix N in eq. 2.5.
Angles larger than π

2 are not shown since S(θ) = S(π − θ) for a pure state
such as the vacuum.

For µ ≤ 1, S(θA)/N is (roughly) independent of N for both projections

PFrobenius
θ and PVeigenbasis

θ but for PFrobenius
θ entropy follows the area law

whereas for PVeigenbasis
θ entropy is extensive for smaller angles and area law

for larger angles [26].
We further studied Rényi entropy which we computed using the method

outlined in section 2.2.2. As shown in figure 4.2, Rényi entropy has exactly
the same dependence on θA as entanglement entropy, with the only difference
being in the magnitude. We find that approximately S ∼ 2S2.
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Figure 4.1: Scaled entanglement entropy S/N as a function of angular size
θA of polar cap A for different µ’s and N ’s.

20



△

△

△

△

△
△

△
△

△
△
△
△
△
△ △△△△△△△△△△△

△

△

△

△

△
△
△
△
△
△
△
△
△
△
△△

△△
△△

△△
△△△

△△△
△△△△△△

△△△

△

△

△

△
△
△
△
△
△
△
△
△
△△

△△
△△
△△
△△
△△
△△
△△△

△△△
△△△△

△△△△△△
△△△△△△△△

▽

▽

▽
▽

▽
▽

▽
▽

▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽▽▽▽▽▽▽

▽
▽

▽
▽

▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽▽

▽▽
▽▽

▽▽
▽▽▽

▽▽▽▽

▽
▽

▽
▽

▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽
▽▽
▽▽
▽▽
▽▽
▽▽
▽▽
▽▽
▽▽
▽▽▽

▽▽▽▽
▽▽▽▽▽▽

0.0 0.5 1.0 1.5
0.00

0.02

0.0

0.06

0.08

△

△

△

▽

▽

▽

Figure 4.2: Scaled second Renyi entropy S2/N as a function of angular size
θA of polar cap A for µ = 1 and different N ’s.

4.1.2 Mutual Information

A useful UV-finite quantity we can study is mutual information (MI). As it
provides a bound on the range of correlations [40], we can think of it as a
measure of non-locality over long distances (IR), similarly to entangelement
entropy which was a measuere of non-locality over short distances (UV). MI
characterizes the total amount of correlation between the subsystems A and
B by measuring how the individual entropies of regions A and B differ from
their joint entropy:

I(A : B) = S(A) + S(B)− S(A ∪B). (4.1)

As shown in [27], mutual information is independent of the UV cutoff and it
is the same for noncommutative and commutative sphere. In the following
we will take two regions to be two polar caps A1 and A2 centered at opposite
poles of the sphere:

I = S (A1) + S (A2)− S (A1 ∪A2) . (4.2)

For convenience, we will choose A1 and A2 to have the same angular size
θA. To calculate each term in the above equation we follow the method
outlined in section 2.2. Note that to find projection operator PA1∪A2 for
A1 ∪ A2 we minimize ‖PA1∪A2 −R‖F just as described in 2.2.3, where the
pseudoprojection R is the sum of projections PA1 +PA2 found separately for
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each polar cap. A good check on our construction for PA1∪A2 is a trace, in
particular we should have Tr PA1∪A2 = Tr PA1 + Tr PA2 = 2 Tr PA1 . This

holds true for both projections, PVeigenbasis
θ and PFrobenius

θ , as verified in fig.
4.3 where we plotted 2 Tr PA1 and Tr PA1∪A2 .

0.0 0.5 1.0 1.5
0.0

0.2

0.�

0.�

0.�

1.0

Figure 4.3: Trace of projection for union of north and south caps and double
the trace of projection for north cap for both PVeigenbasis

θ and PFrobenius
θ (for

N = 25).

As shown in [3, 27] mutual information between two caps should be in-
dependent of matrix size N . Figure 4.4 show that this is indeed the case,
mutual information is independent of N for all masses µ and for both pro-
jections PVeigenbasis and PFrobenius. Moreover, for small masses (µ ≤ 0.5)
mutual information has almost the same value for all angles for both pro-
jections. This is further demonstrated by fig. 4.5 and 4.6.

At conformal point (µ = 0.5) we also expect the mutual information
for fuzzy sphere to be the same as for commutative sphere. In [27] it was
shown that on a commutative sphere, mutual information for two polar caps
separated by an annulus of angular width δ centered on the equator goes as:

I(δ) =

{

0.125 cot δ2 for δ ≈ 0 ,
1
12 cot

2 δ
2 for δ ≈ π ,

(4.3)
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Figure 4.4: Mutual information I (on a logarithmic scale) as a function of
common angular size θA1 = θA2 of two spherical caps A1 and A2 centered
at opposite poles of the sphere for different µ’s and N = 25, 37, 50.
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or in terms of common angular size of two polar caps θ = π−δ
2 :

I(θ) =

{

1
12 tan

2 θ for θ ≈ 0 ,

0.125 tan θ for θ ≈ π
2 .

(4.4)

As shown by fig. 4.7 the results computed with PVeigenbasis give a slightly
better match with the analytical prediction for a commutative sphere than
the ones computed with PFrobenius. Also, as illustrated by fig. 4.8 and 4.9,
both PFrobenius and PVeigenbasis results are proportional to tan2 θ but with
different proportionality constants.
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Figure 4.5: Mutual information I at θ ≈ π/4 for N = 50 as a function of µ.
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Figure 4.7: Mutual information I (on a logarithmic scale) as a function of
common angular size θA1 = θA2 of two spherical caps A1 and A2 centered
at opposite poles of the sphere for µ = 1 and N = 50. The solid and dashed
lines correspond to the analytical predictions (eq. 4.5) for a commutative
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angular size θA1 = θA2 of two spherical caps A1 and A2 centered at opposite
poles of the sphere for µ = 1 and N = 50 along with the best fit lines. Both
I computed with PVeigenbasis and PFrobenius are proportional to tan2(θ) for

θ < π
3 , i.e. I(P

Veigenbasis
θ ) ≈ 0.051 tan2(θ), I(PVeigenbasis

θ ) ≈ 0.012 tan2(θ).
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Figure 4.9: Logarithm of mutual information I computed with PVeigenbasis

vs one computed with PFrobenius for common angular size of two spherical
caps θ ∈ (0, π/2), µ = 1 and N = 50 along with the best fit line, found
numerically to be log I(PVeigenbasis) = 0.77 log I(PFrobenius) + 0.54.

27



4.2 Machine Learning

We apply neural network ansatz of [2] described in section 3.2 to a scalar
model given by Hamiltonian

H =
1

2
Tr



(φ̇)2 −
∑

i=1,2,3

[Li, φ]
2 + µ2φ2



 , (4.5)

where φ is an N × N Hermitian matrix representing a scalar field of mass
µ.

We benchmark our model by comparing variational energies with the
ground state energies of Hamiltonian 4.5. Recall from section 2.2.1 that we
can write it as a sum of 2N − 1 coupled harmonic oscillators

H =
N−1
∑

m=−(N−1)

Hm =
N−1
∑

m=−(N−1)

N−|m|
∑

a,b=1

[

1

2

(

π(m)
a

)2
+

1

2
V

(m)
ab Q(m)

a Q
(m)
b

]

.

(4.6)
The ground state of N −|m| coupled harmonic oscillators with Hamiltonian

Hm =

N−|m|
∑

a,b=1

[

1

2

(

π(m)
a

)2
+

1

2
V

(m)
ab Q(m)

a Q
(m)
b

]

, (4.7)

is found by solving the time-independent Schrodinger equation and is given

in terms of of eigenvalues ω
(m)
i of V

(m)
ab :

Em =
1

2

N−|m|
∑

i=1

[

ω
(m)
i

] 1
2
. (4.8)

Hence, ground state energy of a free field theory on a fuzzy sphere (eq. 4.5)
is:

E =
N−1
∑

m=−(N−1)

Em = E0 + 2
N−1
∑

m=0

Em . (4.9)

As shown by figure 4.10, we were able to match variational ground state
energies found with neural networks to the expected energies. We used a
normalizing flow (NF(1, 1)) with a single layer and a single normal distribu-
tion in base mixed distribution. Increasing the number of layers or number
of distributions did not significantly improve the results; nor did using an

28



  
















0.0 0.5 1.0 1.5 2.0
20

21

22

23

24

25

2.



 


















0.0 0.5 1.0 1.5 2.0

72

74

76

78

80



 


















0.0 0.5 1.0 1.5 2.0

170

17/

171

176

178

180

18:



 

















0.0 0.; 1.0 1.< 2.0
331

336

341

346

351



Figure 4.10: Variational ground state energies for free scalar field theory
on a fuzzy sphere (eq. 4.5) for different size of the matrix N . As in [2],
NF(1, 1) denotes a normalizing flow with 1 layer in the neural networks and 1
generalized normal distribution in each base mixed distribution. The dashed
line denotes energies computed using eq. 4.9. For N ≥ 6 uncertainties are
below the scale of the markers; in particular the variational energies slightly
below the dashed line are within numerical error of the line.
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autoregressive flow rather than a normalizing flow (see [2] for more details
regarding the neural network architecture).

Another benchmark of our model was to see if the neural network wave-
function is Gaussian. Recall from section 2.2.1 that the Hamiltonian 4.5 can
be written as a sum of harmonic oscillators

H =
∑

m

Hm , (4.10)

where each Hm has a ground state of

ψ
(m)
0

(

Q(m)
)

= π−N/4(detW (m))1/4 exp[−Q(m)
a W

(m)
ab Q

(m)
b /2] . (4.11)

Then the ground state of the field can be characterized by a wave func-
tional which is the product of the ground state wave functions of all modes

Ψ[ψ] =
∏

m

ψ
(m)
0

(

Q(m)
)

=
∏

m

π−N/4(detW (m))1/4 exp[−1

2
Q(m)
a W

(m)
ab Q

(m)
b ]

=

[

∏

m

π−N/4(detW (m))1/4

]

exp

[

−1

2

∑

m

Q(m)
a W

(m)
ab Q

(m)
b

]

.

(4.12)
In fig. 4.11 we plot lnΨGaussian against lnΨNN. The best fit-line is:

ln |ΨGaussian| = a ln |ΨNN|+ b , (4.13)

where slope a is found to be 1 and y-intercept b depends on the size of
the matrix N with b = {−1

2 ,−2, ...} for N = {2, 4, ...}. Therefore, the
norms of neural network wavefunctions agree up to some irrelevant factor b:
|ΨGaussian| = eb|ΨNN|.

We can also quantify the accuracy of the neural network states using the
relative error on the ground-state energy:

ǫ ≡ |ENN − Eexact|
|Eexact|

, (4.14)

and the energy variance

σ2 ≡
〈

Ĥ2
〉

− 〈Ĥ〉2 . (4.15)

In appendix B we show how they depend on batch size and number of
samples in the neural network and how that correlates with | lnΨNN|.
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Figure 4.11: Scatter plot of logarithms of norms of wavefunctions:
ln |ΨGaussian| (eq. 4.12) vs. | lnΨNN| (variational wavefunction) for N =
{4, 6, 8, 10}. Solid line is the best fit line with slope of approximately 1 for
all N and irrelevant y-intercept that varies with N .
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4.3 Matrix model on a fuzzy sphere with a
quartic interaction

We also considered eq. 4.5 with an additional quartic interaction determined
by the parameter λ:

H = Tr





1

2
(φ̇)2 − 1

2

∑

i=1,2,3

[Li, φ]
2 +

1

2
µ2φ2 + λφ4



 . (4.16)

We can think of it as a matrix model which is in-between free field non-
interacting single matrix theory (eq. 2.5) and interacting gauged three ma-
trices theory (eq. 2.5). We will use the same neural network variational
ansatz that we used for a free field theory. Motivation for studying in-
teracting fields, because the discovered UV/IR anomaly [41, 42] that is a
counterpart of the UV/IR mixing in field theories on compact noncommu-
tative manifolds arises from the interactions To benchmark the variational
ground state wavefunction for eq. 4.16 we can compare it to the Hamilto-
nian with no Laplacian (−1

2

∑

i=1,2,3 [Li, φ]
2) term. As outlined in [5], an

ungauged one-matrix model with a Hamiltonian:

H(M) = Tr
1

2
Ṁ2 +TrV (M) , (4.17)

whereM is a hermitian N×N matrix and V (M) is any polynomial function
of M , in our case:

V (M) = Tr

(

1

2
M2 + λM4

)

, (4.18)

may be rewritten in terms of eigenvalues λi of M :

H =
N
∑

i=1

1

2
λ̇i

2
+ V (λi) . (4.19)

Then we can get the ground state energy eigenvalue and eigenstate by con-
sidering the the first N excited states of the analogue Hamiltonian:

H =
1

2
π2 +

1

2
x2 + λx4 . (4.20)

(For λ = 0, this would be a single harmonic oscillator.) The ground state
energy is therefore

E =
N
∑

n=1

En , (4.21)
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where En is the n-th excited eigenvalue of eq. 4.20. The ground state
wavefunction of 4.16 is given in terms of n-th excited eigenstates ψn(λσ(n))
of 4.20:

Ψ(M) = ∆(λ)(−1)
∑

σ∈SN

(−1)σ
N−1
∏

n=0

ψn(λσ(n)) , (4.22)

where Sn is symmetric group and

∆(λ) =
∏

1≤i<j≤n

(λj − λi) =
∏

i<ja

(λj − λi) , (4.23)

is called a Vandermonde determinant. Note that
∑

σ∈SN
(−1)σ

∏N−1
n=0 ψn(λσ(n))

is just the Leibniz formula for the determinant of matrix ψn(λn+1).
In fig. 4.12 and 4.13 we show that the variational neural network ground

state wavefunction for eq. 4.16 is in good agreement with the predicted
ground state energy and ground state eigenstate.
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Figure 4.12: Expectation value of ground state energy of scalar field inter-
acting theory on a fuzzy sphere (eq. 4.16) for N = 4 for optimized neural
network compared to the ground state energy of the same Hamiltonian but
with no laplacian term. The latter can be estimated by eq. 4.21. For small
λ the laplacian is not negligent so the energies differ.
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Figure 4.13: Scatter plot of log norms of ground state wavefunction of
scalar field interacting theory on a fuzzy sphere (eq. 4.16) for N = 4 for
optimized neural network vs log norms of the ground state eigenstate of the
same Hamiltonian but with no laplacian term. The latter can be estimated
by eq. 4.22. The slope is approximately 1.

Having found ground states for a Hamiltonian with a quartic interaction,
we computed second Rényi entropy by sampling from the variational wave-
function using Monte Carlo (see section 3.3) and both projections PVeigenbasis

and PFrobenius. As demonstrated by fig. 4.14, for small λ and for S2 is sub-
extensive for small angles and extensive for large angles in agreement with
the behaviour of entanglement entropy described in [26]. However, as we
increase λ, Rényi entropy as computed with PVeigenbasis transitions from the
square of area law to the area law. Interestingly, Rényi entropy as com-
puted with PFrobenius seems independent of λ. Unlike previous Monte Carlo
simulations of interacting theory on a fuzzy sphere [30, 43], we observed no
change in magnitude of entropy between interacting and free theories (see
fig. 4.2 and 4.14).
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Figure 4.14: Scaled Rényi entropy S2/N for a free field theory with quartic
interaction (eq. 4.16) as a function of angular size θA of polar cap A for
N = 10, µ = 1 and λ = {1, 10, 100} computed from variational neural
network wavefunctions. The statistical error (eq. 3.14) is below the scale of
the markers.

Additionally, we used PVeigenbasis to compute Rényi entropy for bosonic
mini-BMN model in the limit of ν = ∞ and compared it with the results
computed with PFrobenius in [2]. Again, we observe different behaviour for
two projections.
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Figure 4.15: The second Rényi entropy S2 for a spherical cap on the matrix
theory fuzzy sphere versus the polar angle as a function of angular size θA.
These are exact values at ν = ∞ for mini-BMN model with no fermions (eq.
3.2) computed with PFrobenius (solid) and PVeigenbasis (dashed).
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Chapter 5

Conclusion

In this thesis we explored the disparity of results for entropy in noncommu-
tative theories between [26] and [2]. Reference [2] computed Rényi entropy
for a mini-BMN model, which is a gauged model with interaction terms, us-
ing the projection matrices described in section 2.2.3 to separate the Hilbert
space. The computed entropy followed area law which did not agree with
the expected results for a non-local theory: extensive for small angles of a
polar cap and area-law for larger angles as followed by scalar free field the-
ory on a fuzzy sphere [26]. We examined why this is the case by applying
projection matrices used in [2] to separate degrees of freedom (rather than
using symbol map calculation from [26]) and compute EE of a scalar field
theory on a fuzzy sphere using standard methods for computing entropy of
quadratic Hamiltonians. We found that the results are largely dependent
on the projection used. This agrees with different dependence on θ showed
by the traces of projections PFrobenius

θ and PVeigenbasis
θ (see section 2.2.3 ).

We then studied mutual information (MI) of scalar massive free field
theory on a fuzzy sphere and found that it is independent of N for both
projections which is a good check for each method of separating degrees
of freedom. We found that MI exhibits different dependence on the mass
parameter µ for the two projections. For masses below the conformal point
(µ = 0.5) MI agrees for the two projections while for large masses they differ
by orders of magnitude.

Lastly, we applied neural network ansatz from [2] to find the ground
state of a scalar field theory with a quartic interaction on a fuzzy sphere
and compute Rényi entropy. When using projection from [2] PFrobenius to
separate degrees of freedom on a fuzzy sphere, Rényi entropy followed area
law and was the same regardless of the value of the parameter of quartic
interaction λ. When using projection from [3] PVeigenbasis, we recovered the
expected square of area law UV divergence in Rényi entropy for scalar free
field theory and for small values quartic parameter λ; however for larger λ
we obtained area law.

Some possible areas of research, that were beyond the scope of this work,
remain to be explored. For example using the variational neural network
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ansatz one can compute mutual information of interacting theory on a fuzzy
sphere between two polar caps. As suggested in [30], we should find that
once interaction is introduced, MI on a noncommutative sphere differs from
the one on a commutative sphere [30]. One can also use variational Monte
Carlo to approximate entanglement entropy using the best polynomial ap-
proximation (BPA) [31] (see appendix C for details). However, we do not
expect that entanglement entropy behaves any differently than Renyi-2 en-
tropy. Another interesting problem is to use the variational neural network
wavefunction to compute entropy, via both PFrobenius and PVeigenbasis, for
BMN matrix model and its ungauged version [44]. We should get the same
results for gauged and ungauged models.
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Appendix A

Scaling of resources in neural
network wavefunction
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Figure A.1: Scatter plot of logarithms of norms of wavefunctions:
lnΨGaussian (eq. 4.12) vs. lnΨNN (variational wavefunction) for N =
{4, 6, 8, 10}. Solid line is the best fit line with slope of approximately 1 for
all N and irrelevant y-intercept that varies with N . Relative errors (4.14)
and Monte Carlo uncertainties are respectively: {0.12, 0.051, 0.013, 0.0048}
and {0.37, 0.20, 0.12, 0.063} (from top-left to bottom-right).
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Appendix B

Entropies of Gaussian states
in terms of correlation
functions

We use the real time approach to compute the entanglement entropy and
Rényi entropy of a compact region V for Gaussian bosonic states. The
idea is to express the reduced density matrix ρV in terms of the two point
correlators restricted to the region V .

The local Hermitian variables φi and πj (coordinate and conjugate mo-
mentum) obey the canonical commutation relations

[φi, πj ] = iδij , [φi, φj ] = [πi, πj ] = 0 (B.1)

Let the two ponit correlators inside the region V to be:

〈φiφj〉 = Xij , 〈πiπj〉 = Pij

〈φiπj〉 = 〈πjφi〉∗ =
i

2
δij

(B.2)

The reduced density matrix is defined as the unique matrix that satisfies

〈OV 〉 = tr (ρVOV ) (B.3)

for any operator O.
A Gaussian state is a state such that all non-zero correlators are obtained

from the two point correlators by the prescription

〈Ofi1fi2 . . . fi2k〉 =
1

2kk!

∑

σ

〈

Ofiσ(1)
fiσ(2)

〉

. . .
〈

Ofiσ(2k−1)
fiσ(2k)

〉

(B.4)

Hence, the reduced density matrix must be such that expectation values
give the right two point functions and Wick’s theorem for the canonical
variables.
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To get the Wick property for correlators, we propose the following ansatz
for the reduced density matrix

ρV = Ke−H = Ke−Σǫla
†
l
al (B.5)

in terms of independent creation and annihilation operators

[

ai, a
†
j

]

= δij (B.6)

which are linear combinations of φi and πj ,

φi = α∗
ija

†
j + αijaj

πi = −iβ∗ija†j + iβijaj
(B.7)

where the normalization constantK = Πl (1− e−ǫl) , leads automatically
to the Wick property. Here H is called modular Hamiltonian.

Hence, the reduced density matrix is a product of independent density
matrices for oscillators with mode al and the state on each of these indepen-
dent modes is a thermal state for a harmonic oscillator. The Hilbert space
of this mode has a basis on occupation number |n >. The density matrix
is diagonal on this basis with eigenvalues e−ǫln. Then the normalization
constant is (

∑∞
n=0 e

−ǫln)
−1

= 1 − e−ǫl , Hence, the normalization constant
for ρ is K = Πl (1− e−ǫl). The entropy is the sum of the entropies of each
oscillators. These have density matrices with eigenvalues

Sl = −
∑

n

(

1− e−ǫl
)

e−ǫln log
((

1− e−ǫl
)

e−ǫln
)

=

(

− log
(

1− e−ǫl
)

+
ǫle

−ǫl

1− e−ǫl

) (B.8)

Plugging the above to eq. B.3 we may compute the two point correlation
functions tr (ρφiφj) = Xij , tr (ρπiπj) = Pij

α(2n+ 1)αT = X
β(2n+ 1)βT = P

(B.9)

where n is the diagonal matrix of the expectation value of the occupation
number

nl =
〈

a†l al

〉

= (eǫl − 1)−1 (B.10)

Thus, we have

α
1

4
(2n+ 1)2α−1 = XP (B.11)
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which gives the spectrum ǫl of the independent oscillators (spectra of
the density matrix) in terms of the spectrum of XP . If νl are the (positive)
eigenvalues of C =

√
XP then

1

4
(2nl + 1)2 = ν2l =⇒ νl =

1

2

(

2 (eǫl − 1)−1 + 1
)

=
1

2
coth (ǫl/2) (B.12)

Then, it’s easy to see that entropy of the mode l is:

Sl =

(

− log
(

1− e−ǫl
)

+
ǫle

−ǫl

1− e−ǫl

)

= (νl+
1

2
) log(νl+

1

2
)−(νl−

1

2
) log(νl−

1

2
)

(B.13)
Summing over all the modes l we get the entropy:

S = tr((C + 1/2) log(C + 1/2)− (C − 1/2) log(C − 1/2)) (B.14)

Similarly, for Rényi entropies we have for each mode

tr ρn =
(

1− e−ǫl
)n

∞
∑

m=0

e−ǫlnm =
(1− e−ǫl)

n

(1− e−ǫln)
(B.15)

Snl =
1

n− 1

(

n log
(

1− e−ǫl
)

− log
(

1− e−ǫln
))

(B.16)

which, after converting to the variable νl and summing over the modes
l, leads to:

log (tr ρn) = − tr [log ((C + 1/2)n − (C − 1/2)n)] (B.17)

Sn [ρV ] =
1

n− 1
tr [log ((C + 1/2)n − (C − 1/2)n)] (B.18)
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Appendix C

Best polynomial
approximation (BPA)

Best polynomial approximation (BPA) [31] starts with writing the von Neu-
mann entropy S1 = Tr[ρA ln ρA] as a sum −∑

λi lnλi where λi ∈ (0, 1] are
the eigenvalues of ρA. If we find a polynomial approximation for f(x) =
x lnx over the range (0, 1] such that f(x) ≈

∑

n αnx
n, then we can approx-

imate entanglement entropy as:

S1 = −Tr [ρA log ρA] ≈
nc
∑

n=1

αnTr [ρ
n
A] , (C.1)

where nc is the cutoff polynomial degree. For 1D systems nc ≈ 7 is found to
be enough [31] however in higher dimensions the required polynomial degree
could be very large as it scales with the square root of rank of ρA.
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