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Abstract 

Helicases are a highly conserved family of motor proteins responsible for interacting with and 

unwinding canonical and non-canonical DNA and RNA structures. The RecQ class of helicases, 

known to suppress illegitimate recombination, are implicated in aging and cancer with four of 

the five human RecQ helicases directly linked to genome instability syndromes characterized in 

some cases by strong cancer predisposition or premature aging. While no human disease has 

been associated with the RECQL5 helicase, loss of this gene in cells is known to result in 

elevated double strand breaks (DSBs) and sister chromatid exchange events (SCEs), a phenotype 

of genome instability similar to what is observed in RecQ helicase-linked diseases of strong 

cancer predisposition. Until recently, studying SCEs has been limited to cytogenetic assays that 

map at megabase resolution. I used single cell template strand sequencing (Strand-seq) to map 

SCEs as changes in template strand orientation before and after loss of RECQL5 at kilobase 

resolution. I generated over 20 single and double knockout models for RECQL5 as well as BLM, 

WRN and RECQL1 helicases using CRISPR-Cas9 in the human haploid cell line, KBM7, and 

mapped SCEs to the genome using custom bioinformatic approaches to improve resolution and 

accuracy of SCE detection. I performed enrichment analysis to show SCEs are frequently 

occurring near actively transcribed genes with guanine quadruplexes (G4s) and common fragile 

sites further supporting the role of these helicase genes in suppressing inappropriate 

recombination at specific genomic elements. I also developed novel bioinformatic approaches to 

generate genotype-specific call sets for copy number alterations (CNAs), inversions, and 

translocations. Uncovering the role of DNA helicases in DNA repair and replication pathways is 

critical for understanding their significance in cancer and aging. Stand-seq offers a unique 

method to study helicases by mapping the location of SCEs arising in their absence. 
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Lay Summary 

DNA helicases are essential genes for repairing DNA damage and preventing mutations from 

occurring in the genome of cells. The gene class, RecQ helicases, have been implicated in aging 

and cancer due to their association with rapid aging syndromes that are susceptible to cancer. 

RECQL5 is one gene in this class that has remained understudied for its role in DNA repair. 

Until recently, studying DNA repair has been limited to molecular methods which suffer from 

limited resolution and throughput. I used a novel single cell sequencing method, known as 

Strand-seq, to identify genomic regions prone to DNA repair. I developed novel wet-lab and 

bioinformatic methods to improve the overall quality of DNA repair studies in single cells using 

Strand-seq. I found that that specific regions in the genome are troublesome for replication and 

RecQ helicases have a protective role in the faithful replication of DNA in these areas. 
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Chapter 1: Introduction 

1.1 DNA, DNA damage and DNA repair in cancer 

Cancer is a disease of the genome [1]. The human genome is constantly challenged to 

repair mistakes caused by endogenous and exogenous stressors to avoid genetic alterations that 

may disrupt gene function and perturb normal cell growth [2]–[5]. Cells that have acquired the 

ability for unregulated cell division proliferate indefinitely and acquire additional genetic 

alterations in the process [5]. The accumulation of genetic alterations, or genome instability, is a 

driving force in oncogenesis and, in turn, can contribute to the progressive deterioration of 

normal cell function [2]. Although genome instability is a characteristic of almost all human 

cancers and considered a defining hallmark, the amount and type of genomic instability in 

tumour genomes differ substantially across tumour types and cell types [4], [6]. Furthermore, the 

precise source of genome instability can stem from nearly all DNA transactions: replication, 

transcription, the cell-cycle, repair, and recombination [3]. In this chapter I provide an overview 

of DNA damage and repair in Section 1.1, the contribution of DNA repair to genome instability 

in Section 1.2 and the role of RecQ helicases in genome stability in Section 1.3. 

 

1.1.1 Sources of DNA damage and associated DNA repair  

DNA repair is the process by which damage to DNA is repaired to prevent mutations 

from propagating after DNA replication and cell division. DNA is constantly subjected to 

damage from endogenous and exogenous sources which by some estimates are as high as one 

million genetic lesions per day in a single cell [7]. Therefore, constant repair is needed to correct 

these changes and avoid the accumulation of mutations that can otherwise lead to diseases [7]. 

Many DNA repair pathways have evolved to address the breadth and diversity of possible DNA 
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damage. There are exogenous mutagens such as alkylating agents, X-rays and UV radiation 

capable of cross-linking or chemically modifying base pairs as well as endogenous sources of 

DNA damage such as DNA secondary structures that can obstruct or stall DNA replication 

(Figure 1.1) [3], [7]. The repair pathways required to address these lesions can be broadly 

grouped into two functional classes depending on the size of the lesion (Figure 1.1) [3], [7], [8].  

Small lesions affecting one strand such as alkylated bases or deaminated bases often 

involve repair pathways that are minimally invasive and quick to repair the lesion (Figure 1.1) 

[3], [7], [8]. These lesions are typically repaired by excision repair which encompasses base 

excision repair, nucleotide excision repair and mismatch repair pathways, all of which involve 

the recognition, excision and replacement of mismatched or damaged nucleotides (Figure 1.1) 

[3], [7].  

Alternatively, large lesions affecting both strands such as a double stranded break (DSB) 

or one-ended break (OEB) require repair by non-homologous end joining (NHEJ) or homologous 

recombination (HR) (Figure 1.1) [3], [7], [8]. In NHEJ, ends across a break are fused back 

together whereas in HR, an identical template molecule is used to recombine or join different 

strands or even molecules of DNA, generating complex joint molecules to reconstruct the native 

configuration across the break [3], [7], [8].  
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Figure 1.1 Examples of DNA-damaging agents and the associated DNA lesions and repair pathways. 
Ionizing radiation (IR), ultraviolet radiation (UVR), base excision repair (BER), mismatch repair (MMR), 
nucleotide excision repair (NER). Created with BioRender. 
 

1.1.2 Repair of DNA double-strand breaks 
 

When cells encounter DNA damage or replication stress that leads to a DSB, HR and 

NHEJ are essential for faithful DNA repair. NHEJ predominates during G1 because cells have 

yet to replicate their DNA and cannot access the redundancy of genetic material required as a 

template for faithful DNA repair by homologous recombination (HR) [9]. HR is the preferred 

pathway during DNA replication and there are three main steps (Figure 1.2). Firstly, 3’ ssDNA 

overhangs are formed through end resection coordinated by the MRE11-RAD50-NBS1 complex 

at the DSB (Figure 1.2, step 2). Exposed ssDNA is bound by RPA, which is replaced by RAD51, 

to form RAD51-ssDNA nucleofilaments. These RAD51 nucleofilaments search for identical 

sequences present on nearby replicated sister chromatids or homologous chromosomes and 
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invade one or both complementary strands on the donor molecule to form a D-loop or double 

Holliday junction (dHJ), respectively (Figure 1.2, step 3 and 4a). Finally, strand extension of the 

invaded strand can occur either by synthesis-dependent strand annealing (SDSA) in the case of 

D-loop formation (step 3b) or through canonical DSB repair (DSBR) in the case of dHJ 

formation. Canonical DSBR occurs at the risk the forming hazardous crossover (CO) products 

where either sister chromatid or homologous chromosome donor molecules exchange strands of 

DNA between molecules (Figure 1.2). SDSA proceeds until the extended 5’ ssDNA strand can 

reanneal with the template DNA of the other resected end of the DSB and continue gap filling 

and polymerization (Figure 1.2, step 4b). In canonical DSBR, the risk of forming CO products in 

turn, are a marker of genome instability [10]. In the case where a homologous chromosome is 

used as the template molecule opposed to a sister chromatid, the heterozygosity of deleterious 

alleles on one homolog may be lost if that allele is used to repair the DSB containing the healthy 

allele, leading to a null phenotype [10]. When dHJs form, the BLM-TOPOIIIa-RMI1/2 complex 

can promote convergent migration of the two HJs to produce a hemicatenane structure (Figure 

1.2, step 5a) that can be processed by TOPOIIIa forming non CO (nCO) products [10]. 

Alternatively,  structure-selective resolvases such as the SLX1/4 and MUS81-EME1 

endonucleases can cleave both junctions either symmetrically or asymmetrically to form nCO 

and CO products, respectively [10]. Efforts to limit the risk of CO products aim to favor the DSB 

repair pathway that leads only to D-loop formation and SDSA. For example, disrupting D-loops 

before the other overhang of resected DNA anneals with the non-hybridized strand of donor 

DNA would bias DSBR pathways towards nCO products. 
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Figure 1.2 Homologous recombination schematic of different repair pathways.  
Three initial steps that are common to all pathways include end resection of 3′ overhangs, strand invasion of 
one or both overhangs with homologous donor DNA, and extension of annealed overhang (steps 1–3). When 
only one resected end of the DSB performs invasion, a D-loop is formed, and extension proceeds by synthesis-
dependent strand annealing where one overhang is extended until there is sufficient homology to hybridize 
with the other resected end, gaps are filled in, and nCOs are produced (steps 3b, 4b, 5c). When the second 
resected end also hybridizes to the available strand in a D-loop, a dHJ is formed (steps 3a, 4a). Processing of 
dHJs can proceed by promoting convergent migration of the structure until a small hemicatenane structure is 
formed (step 5a), which can be cleaved by topoisomerases into an nCO product (step 6a). Alternatively, 
asymmetric cleavage of the dHJ by non-specific resolvases can result in a CO product (step 5b). The 
information from this figure was extracted from the works of Smith et al. (2007); West et al. (2016), and 
Rickman and Smogorzewska (2019). 
 
 
1.2 Mechanisms of genomic instability 

After the discovery of the structure of DNA in 1953, the first clear connection between 

the processes of mutation and carcinogenesis was made shortly after [2]. The observation that 

polycyclic aromatic hydrocarbons in chimney soot could both alter the DNA molecule and 

initiate scrotal cancer led to the first association between mutagenesis and carcinogenesis [2]. 

Further evidence came from the discovery of two disorders of DNA repair and the associated 

extreme predisposition to cancer [2]. Xeroderma pigmentosum and Lynch syndrome reinforced 



 
 

6 

the role of genome instability in cancer initiation whereby deficiencies in DNA repair led to the 

accumulation of mutations that can disrupt the coding sequence of tumour suppressors or disrupt 

the regulatory apparatus of oncogenes, giving rise to unscheduled proliferation [2]. In 1999, it 

was shown that dysregulated oncogene expression could cause replication instability, suggesting 

that oncogene induced proliferation can perturb DNA replication and further contribute to the 

accumulation of DNA damage [11]. In 2005, DNA repair was introduced as an anticancer barrier 

in early-stage tumorigenesis and a target in late-stage tumours [2]. Genome stability has since 

been well defined as an essential cellular property needed for cells to faithfully preserve and 

transmit DNA between cell divisions [2], [5], [6], [12], [13]. Genome stability encompasses 

DNA repair using all the pathways discussed in Section 1.1.1 [2], [5], [6], [12], [13]. Conversely, 

genome instability describes the progressive deterioration of a cell’s capacity for DNA repair 

characterized by an increased mutation rate and the accumulation of somatic mutations [2], [5], 

[6], [12], [13]. Genome instability is a functional property and enabling hallmark in cancer and 

aging [2], [5], [6], [12], [13]. Here, I discuss the historical discovery of genome instability and its 

documented causes and consequences as they relate to the fundamental cellular processes 

discussed in Section 1.1. Efforts to characterize the causes and consequence of genome 

instability have continued to highlight DNA replication, transcription, and repair as major 

sources of genome instability.   

 
1.2.1 Replication-associated genomic instability 

DNA replication is the process by which double-stranded DNA is copied to produce two 

identical DNA molecules [7]. DNA replication is an essential DNA transaction in every cell that 

is necessary for allowing two daughter cells to inherit the same genetic information. DNA 

replication is semi-conservative, such that each strand of DNA in the original molecule act as a 
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template for replication [7]. In short, DNA replication begins when the MCM2-7 helicase 

complex is assembled onto DNA at origins of replication, followed by the recruitment of other 

replication factors, helicases and polymerases to form the replisome complex [14], [15]. Next, 

the MCM2-7 helicase complex slides along the chromosome on both sides of the replication 

origin to unwind the double-stranded DNA helix into two single strands of DNA (ssDNA) [7]. 

ssDNA is then used as a template for synthesis of a complementary, nascent strand by the 

replisome complex, consisting of DNA polymerase, at each replication fork [7]. The DNA 

polymerases can only synthesize DNA in a 5’ to 3’ direction, thus one polymerase on each fork 

synthesizes DNA continuously while the other synthesizes small, separate Okazaki fragments 

that are eventually processed and ligated together after synthesis, known as the leading and 

lagging strand, respectively [7]. Replication is a highly dynamic process that is strictly regulated 

to ensure billions of nucleotides are copied accurately [7]. 

 

Figure 1.3 Schematic of DNA replication. 
The replisome complex forms at replication origins and consists of the MCM2-7 helicase complex and DNA 
polymerases. Each replisome slides along the chromosome in opposite directions to form both replication 
forks. Each replication fork uses ssDNA as a template for synthesis of a complementary, nascent strand by 
DNA polymerase on the leading strand. The lagging strand synthesizes Okazaki fragments. Adapted from 
BioRender templates. 
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Faulty DNA replication can result in mutations either directly, in the form of mismatched 

base pairs, or indirectly, by stalled replication forks triggering breakage, rearrangement or the 

missegregation of chromosomes [3]. Frequent replication fork stalling can force cells into 

senescence or apoptosis by preventing entry into mitosis [3], [7], [8], [16]. Any condition that 

compromises the fidelity of DNA replication or replication fork speed is collectively referred to 

as replication stress and is the primary cause of genome instability [17]. DNA replication is thus 

inextricably linked with genome stability as DNA repair and recombination are needed to 

mediate any replication stress [13], [17]. There are both endogenous and exogenous sources of 

replication stress that are capable of stalling or even collapsing replication forks such as nicks, or 

breaks in one strand of the DNA molecule, can dismantle the replication fork as the fork 

proceeds over the break [18], [19]. Here, I discuss other sources of replication fork stalling and 

collapse. 

 

1.2.1.1 Replicating regions of DNA capable of forming guanine quadruplexes 

Some areas of the genome are more troublesome for replication. For example, guanine-

rich DNA in the genome can form alternatively folded secondary structures that may obstruct 

replication machinery and lead to replication fork stalling [3], [20]. For example, guanine 

quadruplexes (G4s) are DNA structures that form when certain guanine-rich sequences self-

anneal via Hoogsteen hydrogen bond base pairing of guanine bases to form guanine quartets (G-

quartets) which stack together to form G4s (Figure 1.4A-B) [21]. Each guanine in a G4 is thus 

stabilized by four hydrogen bonds opposed to the three bonds that typically form between 

guanine and cytosine nucleotides (Figure 1.4A) [21]. There are more than 700,000 guanine rich 
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sequences in the genome suggested to have G4-forming potential. Guanine rich sequences 

believed to have G4-forming potential are known as putative G-quadruplex sequences (PQSs) 

and are computationally defined using specific motifs [22]. Typically, a PQS contains at least 

four stretches of 2 or more consecutive guanine nucleotides separated by stretches of one to 

seven nucleotides in length known as loops [22]. This motif would be defined as, 

𝐺!"𝑁#$%𝐺!"𝑁#$%𝐺!"𝑁#$%𝐺!" [22]. Motifs can also vary in the size of individual loops or the 

number of guanine stretches [22]. For example, Marsico et al. 2019 identifies potential G4s that 

are used in Chapter 4 by defining PQSs with the following motif: 

𝐺!"𝑁#$#!𝐺!"𝑁#$#!𝐺!"	𝑁#$#!𝐺!"	[22]. 

These methods reveal sites of the genome that may form potential G4 structures however, 

studies using antibodies generated against G4s to identify G4 structures have revealed only ~1–

2% of these sequences form structures in vitro, suggesting an equilibrium exists between PGS 

and G4s [21]. Other approaches for detecting G4 structures rely on cations such as potassium or 

lithium, or G4 ligands to stabilize G4 structures in either an intact cell or cellular lysate [22], 

[23]. Therefore, methods for detecting G4s are dependent on either cation or G4 ligand 

concentration and thus the caveat of these approaches is that these factors may alter the 

equilibrium between PQSs and G4s from native in vivo conditions (Figure 1.4C). Considering 

this caveat in defining G4s, all mentions of G4s in Chapter 4 are considered potential G4s. 
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Figure 1.4 Guanine quadruplex (G4) structure and schematic depicting the impact of G4s on DNA 
replication.  
(A) A G-quartet is formed by Hoogsten hydrogen bonding between four guanines making up a square planar 
configuration. (B) A G4 is formed by 2 or more stacked G-quartets. (C) During DNA replication, G4s are 
unwound by DNA helicases to allow progression of the DNA polymerase. Insufficient helicase activity or 
stabilization of G4s by G4 ligands (e.g. pyridostatin) can result in replication fork stalling. Figure adapted 
from Kwok et al., 2017 and created using BioRender. 
 

These structures are implicated in DNA replication because they create barriers in the 

DNA template that require dismantling by DNA helicases for faithful replication progression 

(Figure 1.4C) [3], [24], [25]. During DNA replication, G4s are often unwound by DNA helicases 

to allow for progression of the DNA polymerase. Insufficient helicase activity or stabilization of 

G4s by G4 ligands, such as pyridostatin (PDS), can result in replication stress and replication 

fork stalling [3], [21], [25]. When the barrier cannot be resolved properly, replication fork 

stalling results in an increase in ssDNA and the subsequent recruitment of DNA repair factors 

such as RAD51 and ATR [3], [16]. These factors initiate the replication stress response that 

serves to reverse the replication fork by resecting and hybridizing nascent strands to form a four-

way molecule known as a “chicken foot” structure in an attempt to bypass the barrier and restart 
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replication [3], [26], [27]. At this point, if replication fork restart is not possible, the fork will be 

cleaved with endonucleases to trigger repair by HR using the sister chromatid as a template [3], 

[16], [26].  

G4s are also implicated in transcriptional regulation due to the abundance of potential 

G4s in human embryonic stem cells that are lost during lineage specification [21]. Zyner et al., 

2022 also found potential G4s not lost during differentiation but preserved in both embryonic 

and downstream lineages are associated with genes involved in essential cellular functions [21]. 

They also found that G4 stabilization could effectively delay stem cell differentiation, further 

supporting the notion that G4s may be important genomic structural features linked to cellular 

differentiation and transcriptional regulation [21]. 

 
 
1.2.1.2  Replicating regions of DNA capable of forming other secondary structures 

Other areas of the genome more troublesome for replication include highly repetitive 

DNA sequences capable of forming higher-order non-B DNA structures. For example, TA 

dinucleotide repeats form cruciform secondary structures that may stall replication forks in a 

length dependent manner. Such cruciform structures require unwinding by DNA helicases to 

avoid initiating the replication stress response via RAD51 and ATR [28]. There are nearly a 

dozen types of higher-order non-B DNA structures that have been described, including Z-DNA, 

R-loops (discussed in Section 1.2.2.2), three-way and four-way joint molecules, all with variable 

biological and pathogenic significance [3]. 
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1.2.1.3 Replicating common fragile sites 

Common fragile sites (CFSs) are regions of the genome that are prone to replication fork 

stalling and breakage [29], [30]. CFSs exist in all human genomes and are often found in large, 

transcriptionally active genes or oncogenes undergoing aberrant transcription [29], [30]. 

Replication fork stalling and subsequent breakage at these sites is thought to trigger genomic 

rearrangements as high frequencies of sister chromatid exchange events (SCEs), translocations, 

and insertions or deletions (INDELS) have been observed in these regions, especially in cancer 

genomes [29]–[31].  

 

1.2.2 Transcription-coupled genome instability  

Transcription is the process by which the sequence information of a gene that is stored in 

DNA is copied into a new molecule of messenger RNA (mRNA) that can then exit the nucleus 

and be translated into a protein [7]. Transcription is initiated as enzymes and proteins are 

recruited by transcription factors to unwind and open up the DNA double helix and allow for the 

RNA synthesizing complex, the RNA polymerase holoenzyme, to bind and form the 

transcription initiation complex inside a transcription bubble (Figure 1.5)[7]. This complex slides 

along the DNA template, pushing the transcription bubble along the length of the gene and 

synthesizing the entire mRNA molecule corresponding to the gene being transcribed (Figure 1.5) 

[7]. Splicing of mRNA to the mature messenger RNA occurs before the molecules exit the 

nucleus serve as the basis for the synthesis of protein by the process of translation in the 

cytoplasm of cells [7]. 
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f

 

Figure 1.5 Schematic of transcription by RNA polymerase II. 
Adapted from BioRender. 

 

Transcriptional activity has the potential to contribute to genome instability with the most 

notable evidence of this connection being the correlation between transcriptional activity and the 

accumulation of mutations in that gene [32]. Mutations that disrupt the coding or regulatory 

sequence of a gene can undoubtedly alter gene expression and have phenotypic consequences 

[32]. Transcription-coupled genome instability mainly stems from the collision of transcription 

and replication machineries or the formation of DNA:RNA hybrid molecules during 

transcription known as R-loops which are discussed in Section 1.2.2.2 [32]. Additionally, the 

presence of certain motifs in the ssDNA that is exposed during transcription can result in the 

formation of stable secondary structures, such as G-quadruplexes or hairpin loops, that can also 

pose a barrier to transcription and replication machinery (Figure 1.5). 
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1.2.2.1 Collision between transcription and replication machinery 

The same DNA substrate can simultaneously undergo replication and transcription. This 

opens up the possibility of colliding transcription and replication machineries on the same region 

of DNA, which can result in DSBs [33], [34]. Transcription-replication collisions can be head-

on, where the direction of the replication fork and the transcription bubble are opposite, or they 

can be co-directional, where the direction of the replication fork and the transcription bubble are 

the same [33], [34]. Although co-directional collisions are still troublesome for the accurate 

completion of both processes, head-on collisions are considered more deleterious because of 

their ability to dissociate transcription machinery and stall or collapse replication forks [33], 

[34].  

 
 
1.2.2.2 Co-transcriptional R-loops 

During DNA transcription, RNA-DNA hybrid molecules known as R-loops can form 

when the newly synthesized RNA molecule hybridizes to the coding DNA strand [3], [33], [35]. 

These RNA-DNA hybrids prevent displaced DNA strands from re-annealing and result in long 

stretches of ssDNA, both of which can cause issues for a cell [36]. ssDNA is prone to DNA 

damage and is also a major signal for DNA repair pathways as discussed in the Section 1.2.2.1 

[36]. R-loops also can pose as a barrier to replication, resulting in replication fork stalling and/or 

collapse [36]. Interestingly, the presence of certain motifs when the non-complementary strand 

of ssDNA is exposed can result in the formation of stable secondary structures, such as G-

quadruplexes, that can also pose a barrier to replication machinery [3].  
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1.2.3 Genome instability syndromes 

The discovery of Lynch syndrome and Xeroderma pigmentosum helped establish the role 

of mutations and DNA repair in cancer [2]. To date, many disorders of DNA repair have been 

discovered. Such disorders can be classified on the basis of the DNA repair pathway that is 

deficient and the associated type of genomic instability.  

Deficiency in nucleotide or base excision repair pathways causes nucleotide instability 

(NIS) defined by frequent single nucleotide polymorphisms (SNPs) and small insertions or 

deletions. Xeroderma pigmentosum (XP) is an example of this whereby the inability to repair 

UV radiation-induced thymidine dimers results in NIS and extreme skin cancer predisposition.  

Deficiency in mismatch repair genes causes microsatellite instability (MSI) which is 

defined by the frequent expansion or contraction of short nucleotide repeats known as 

microsatellites. Lynch syndrome is an example of this whereby the inability to correct 

mismatched nucleotides introduced by DNA polymerase during replication results in MSI and 

the accumulation of SNPs. 3-4% of all colorectal cancers are characterized by MSI.  

Deficiency in the repair of large lesions such as DSBs or OEBs causes chromosomal 

instability (CIN) which is defined by frequent structural rearrangements and alterations in copy 

number. Bloom syndrome, Werner syndrome and Rothmund-Thompson syndrome are examples 

of three disorders of DSB repair characterized by elevated levels of somatic structural 

rearrangements, premature aging, and cancer predisposition due to deficiency in one of three 

RecQ helicases, although the types of cancer associated with these diseases vary. BRCA1/2 are 

also involved in DSB repair and mutations in these genes are responsible for 3% and 10% of 

breast and ovarian cancers, respectively [19], [37]. p53 has been shown to play a regulatory role 
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in HR and is known to be mutated in over 50% of all cancers [19], [37]. It is well accepted that 

deficiency in DSB repair is a major contributor to genome instability and cancer predisposition. 

 
 
1.2.4 Investigating genome instability 

The type and extent of genome instability in tumour genomes has significant implications 

for patient prognosis and therapeutic treatment [38]. Among the types of genomic instability, 

CIN is considered a driving force in oncogenesis. Currently, detection of CIN is done using a 

variety of technologies that vary in sensitivity and throughput. Here, I discuss the use of 

cytogenetic techniques for the detection of DSBs, autoradiography and differential staining for 

the detection of SCEs, sequencing studies for the genome-wide profiling of SVs and Strand-seq 

studies for the high-resolution mapping of structural variants (SVs) and SCEs. 

 

1.2.4.1 Cytogenetic studies for the detection of DSBs  

There are several methods that have been used to quantify the degree of genome 

instability in cells using DSBs as a surrogate measure. For example, in response to DSBs, cells 

rapidly phosphorylate H2AX, the minor histone H2A variant, to produce γH2AX [39]. γ-H2AX 

staining of DSBs has been used to infer levels of replication stress in cells [39]. However, γ-

H2AX staining remains an indirect monitor of DSB formation and thus positive staining does not 

always represent DSB formation nor does the timing of positive staining fully correlate with 

DSB repair [39], [40]. Fluorescence in situ hybridization (FISH) has also been used to identify 

and count translocations and aneuploidy and metaphase spreads can be used to count 

chromosome aberrations [41]. However, these methods may not be informative when used on 

cell lines that exhibit low levels of genomic instability.  
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1.2.4.2 Autoradiography studies for the detection of SCEs 

Alternative to DSBs, the number of SCEs in cells are a useful indicator of genomic instability as 

increased levels are a diagnostic phenotype for cancer-prone disorders such as Bloom Syndrome 

[42]. Most spontaneous SCE events in wild-type yeast cells were proposed to reflect repair of 

gaps in ssDNA or lesions in the DNA template that cause a template strand switch or a 

controlled DSB [12]. Therefore, they reflect the degree of replication stress that a cell has 

experienced and can be used as a precise measure of genomic instability [43]. SCEs are error-

free exchanges of genetic material between replicated sister chromatids and thus are not 

considered deleterious [43]. In rare cases, the template switching of SCEs can involve unequal 

crossing over between chromatids during DSB repair and result in the gain or loss of genetic 

material [25], [43]. The crossing over between homologs instead of sister chromatids during 

DSB repair can result in a loss of heterozygosity (LOH) however, this is also considered a rare 

outcome of DSB repair [25], [43]. Several methods for identifying and counting SCEs are 

discussed in this section. 

The first observation of SCEs in cells came from autoradiography studies [44]. Plant cells 

grown in the presence of tritium ( H	' ) labelled thymidine allow for the incorporation into newly 

synthesized (nascent) DNA strands during replication [44]. Autoradiography of metaphase 

spreads distinguishes the levels of radioactivity between each sister chromatid such that some, 

but not all, chromosomes would display a differential staining pattern between chromatids [44]. 

Some chromatids would display a switch from light to dark staining, while the sister chromatid 

would show the inverse pattern, indicating an SCE has occurred between sister chromatids [44].  
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1.2.4.3 Differential cytogenetic staining of sister chromatids for SCE detection 

The thymidine analogue bromodeoxyuridine (BrdU) was found to produce a similar 

chromosome labelling pattern to H	' -labelled thymidine that can then be detected using Hoechst 

and Giemsa dyes (Figure 1.6) [45]. Several studies found the presence of variable BrdU 

concentrations in the cell culture medium had no effect on SCE frequency suggesting BrdU 

incorporation does not induce SCEs [46].  

 

Figure 1.6 Schematic of sister chromatid staining assay. 
After 2 rounds of DNA replication in the presence of BrdU, staining with Hoechst 33258 and exposure to UV 
light reveal differential staining pattern between sister chromatids. Solid orange and teal lines represent 
normal DNA strand and faded orange and teal lines represent BrdU-substituted DNA strand. Circle 
highlights point of exchange between sister chromatids. (Left) Normally, one sister stains uniformly dark 
(top) and the other uniformly light (bottom). (Right) The effect of an SCE following the second round of DNA 
synthesis in the presence of BrdU. With exchange, light and dark staining regions switch at the point of 
exchange (circle). Created with Biorender.com 
 

Both autoradiography and differential staining of sister chromatids have several 

limitations. First, they suffer from poor resolution in their ability to map individual SCEs to the 
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genome at megabase scale [25]. SCEs can be localized to a region spanning several megabases 

making it difficult to investigate if SCEs are randomly occurring throughout the genome [25]. 

Second, there is no widely available software for the automation of SCE counting, thus these 

approaches are heavily reliant on manual curation for the counting of individual SCEs. This can 

be very time consuming for the analysis of hundreds of cells. Lastly, both DSBs and SCEs are 

merely a surrogate measure of genome instability and do not capture the full mutational 

landscape of cells. Sequencing-based studies to characterize somatic mutations in cells address 

these limitations. 

 
1.2.4.4 Sequencing studies for the profiling of somatic mutations 
 

Bulk whole-genome sequencing (WGS) can be used to characterize the genome 

instability of cells by identifying somatic mutations [47]–[49]. Identifying all somatic mutations 

in cancer genomes can reveal alterations present in the coding or regulatory sequences of genes 

and the mutational processes implicated in their formation [50]. Bioinformatic tools known as 

“callers” can be used to call somatic mutations such as single nucleotide polymorphisms (SNPs), 

small insertions or deletions (INDELs) less than 50 bp, and structural variants (SVs) referring to 

any structural rearrangement greater than 50 bp in WGS data and generate comprehensive 

mutation callsets that are cross-referenced against a germline callset to distinguish somatic 

mutations from germline mutations [51]. The technologies for WGS can be broadly classified 

into two categories: short-read sequencing and long-read sequencing [52].  

Short-read sequencing is dominated by Illumina and is considered the gold standard for 

any large-scale, clinical grade sequencing with highly accurate SNP and INDEL calling and 

base-calling accuracy exceeding 99.9% (Table 1.1) [52]. However, there are many challenges 

associated with detecting SVs when using short-read WGS data [52]. The main limitation with 
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short-read sequencing is reads less than 400 bases long are too short to detect more than 70% of 

the SVs in the human genome that lie within DNA that is inaccessible to assembly or variant 

discovery because of repeat-rich DNA or atypical GC content (Table 1.1) [52]. Few reads map in 

these regions and reads that do map to these regions may be incorrectly aligned if they fall within 

the span of a repetitive stretch of DNA [52]. In fact, repeat-rich DNA makes up 45% of the 

human genome and interestingly, these areas are among the most mutable consisting of many 

SVs such as inversions, duplications and translocations [3]. Therefore, SV callers can suffer from 

low accuracy due to errors in base-calls, alignment, or assembly resulting in either false negative 

or false positive SV calls [52].  

On the other hand, long-read sequencing is dominated by Oxford Nanopore Technologies 

(ONT) and Pacific Biosciences (PacBio), both of which can generate continuous sequencing 

reads ranging from 10 kilobases to several megabases in length (Table 1.1) [52]. Long-reads are 

capable of traversing highly repetitive regions of the genome to reveal complex SVs that would 

typically go undetected by short-read sequencing methods and have contributed to the most 

complete assemblies of the human genome [52], [53]. These technologies typically have lower 

base-calling accuracy than Illumina short-read sequencing which limits the accuracy of SNP and 

INDEL calling (Table 1.1) [52]. PacBio can generate either continuous long reads that are 

typically between 1 and 100 Kb in length with between 85-92% base calling accuracy or High 

Fidelity (HiFi) reads which can exceed 99% base calling accuracy (Table 1.1) [52]. ONT can 

generate ultra-long reads that can exceed several Mb in length with between 87-98% base calling 

accuracy (Table 1.1) [52]. The biggest limitation of both long read technologies is the amount of 

starting DNA required. PacBio HiFi sequencing typically requires several micrograms of DNA, 

or millions of cells, for input whereas ONT require 1 microgram of input material (Table 1.1) 
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[54]. Some low-input PacBio protocols can use as little as 5 nanograms of input DNA however, 

this still equates to thousands of cells for input without any preamplification (Table 1.1) [54]. 

Additionally, high sequencing costs limit their general use [52]. 

 Oxford Nanopore Pacific Biosciences Illumina WGS 
Starting material 
required 

~1 µg ~5 ng  1-500 ng 

Read length ~1 Kb - 2 Mb ~1-100 Kb ~100-400 bp 
Base calling 
accuracy 

87-98% 85-99%  99.9% 

Applications for 
SV discovery 

Intermediate to large SVs (>2 
Kb)   

Intermediate to large SVs 
(>2 Kb)   

SNPs, INDELS, and small 
SVs (< 300 bp) 

 
Table 1.1 Whole genome sequencing technologies and associated features. 
 

For short-read and to a lesser extent, long read sequencing methods, a major limitation of 

bulk WGS is the sensitivity for identifying rare mutations occurring in a small fraction of the 

bulk population of cells analyzed. Mutations present in a low fraction of cells, or with a low 

variant allelic frequency (VAF), will create computational challenges for distinguishing rare 

mutations from sequencing alignment errors or false positive calls [55]. This problem can partly 

be addressed by investigating single cells independent from the bulk population as I discuss in 

the next section. 

 

1.2.4.5 High resolution SCE and SV mapping using Strand-seq 

Our research group developed a single cell sequencing-based approach to address some 

of the issues of bulk WGS discussed above in Section 1.2.5.4 [56]. Single-cell DNA template 

strand sequencing (or Strand-seq) can be used to detect several complex types of SVs at the 

single-cell level [49], [56]–[58]. While other single-cell WGS (scWGS) techniques are also 

capable of detecting some of these SVs, the unique preservation of native template strand 

orientation in Strand-seq reads permits the improved detection of copy-neutral rearrangements 



 
 

22 

such as SCEs, inversions and translocations that typically evade detection otherwise [49], [56]–

[58]. In fact, Strand-seq is the only sequencing technology capable of detecting SCEs [49], [56], 

[57]. Additionally, a multi-platform comparison of inversion calling among Strand-seq and other 

short-read and long read WGS technologies revealed that Strand-seq was the only technology 

that provides data that can be used to make highly reliable inversion calls and inversion calls 

exceeding 50 Kb in size on its own [49].   

One of the limitations of Strand-seq is that it requires dividing cells and thus nondividing 

or apoptotic cells cannot be studied. Additionally, like most scWGS technologies, the resolution 

of how finely SVs can be mapped to the genome is proportional to the fraction of genomic DNA 

that is captured in a single cell Strand-seq library and the depth of the subsequent sequencing 

[59]. This resolution far exceeds the resolution of cytogenetic approaches but is generally lower 

than that of bulk WGS approaches [56], [57]. 

In short, Strand-seq exploits the semi-conservative nature of DNA replication to 

incorporate the thymidine analog, BrdU, into the newly synthesized strand to allow for the 

distinction between template and nascent DNA strands [56], [57]. DNA fragments with BrdU 

can be selectively degraded by treatment with Hoechst and UV irradiation before PCR 

amplification [56], [57]. PCR amplification after degradation of nascent strand DNA fragments 

allows for the selective amplification of template strand reads [56], [57]. Illumina WGS is used 

to generate directional libraries with reads mapping to the reference genome in the orientation of 

the native parental DNA template strands [56], [57]. Unlike other single cell sequencing 

techniques, Strand-seq libraries harbor unique signatures of intra-chromosomal template strand 

changes that represent orientation-dependent SVs or SCEs [56], [57]. With the latest library 

preparation protocols up to 25% of the genome in a single cell can be captured in a Strand-seq 
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library resulting in SCEs being mapped to the genome several orders of magnitude more precise 

than what has been shown using cytogenetics [60].  

Genomic signatures of SCEs in knockout models have been shown to elucidate the 

functions of helicases in DNA repair and genome stability. For example, deficiency in the BLM 

helicase has been shown to elevate SCE levels near G4s in actively transcribed genes, 

implicating BLM in unwinding G4s in specific genomic contexts [25]. Therefore, I wanted to 

investigate additional RecQ helicase functions using Strand-seq. 

 

1.3 RecQ helicases in genome stability 

1.3.1 Genome instability syndromes associated with RecQ helicases 
 

Of the five RecQ helicases, RECQL1, BLM, WRN and RECQL4 are associated with 

specific diseases of genome instability such as RECON syndrome, Bloom Syndrome (BS), 

Werner Syndrome (WS) and Rothmund-Thompson Syndrome (RTS), respectively (Table 1.2) 

[61]. Despite sharing functional roles, the genetic disorders associated with these helicases 

exhibit a unique set of clinical and cellular features, further supporting the non-redundant role of 

these genes (Table 1.2) [61]. The main clinical phenotype associated with RECON syndrome are 

short stature, progeroid facial features, skin photosensitivity and a moderately increased breast 

cancer risk (Table 1.2) [61]. Cells deficient in the RECQL1 helicase exhibit hypersensitivity to 

DSBs and genotoxic agents (Table 1.2) [61]. The main clinical phenotype associated with WS 

are features of premature aging such as osteoporosis, cataracts and loss of hair as well as early 

onset of sarcomas and mesenchymal tumours (Table 1.2) [61]. Cells deficient in the WRN 

helicase exhibit premature replicative senescence and are also hypersensitive to genotoxic agents 

that perturb DNA replication (Table 1.2) [61]. The main clinical features associated with BS are 
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dwarfism, mental retardation, microcephaly, immunodeficiency and predisposition for all cancer 

types (Table 1.2) [61]. Cells deficient in the BLM helicase are also hypersensitive to genotoxic 

agents that perturb DNA replication and exhibit elevated levels of DSBs and SCEs (Table 1.2) 

[61]. The main clinical features associated with RTS are growth retardation, skeletal dysplasia, 

sparse scalp hair, hypogonadism and early onset of osteosarcomas. Cells deficient in this helicase 

also exhibit a hypersensitivity to genotoxic agents (Table 1.2) [61]. 

Whereas RECQL5 remains to be associated with a specific disorder [12]. In a group of 50 

mice deficient in the murine homolog of RECQL5, Recql5, nearly 50% developed cancer within 

22 months compared to 6% in wildtype mice [62]. Additionally, cells deficient in RECQL5 

display a phenotype of chromosomal instability resulting in elevated SCEs and DSBs similar to 

cells deficient in most of the other RecQ helicases [62]. Unique to RECQL5 is a C-terminal 

domain consisting of multiple protein-protein interaction motifs that are believed to help 

RECQL5 regulate DNA repair intermediate structures resulting from the collision of DNA 

transcription and replication machinery [63]. 

Syndrome Main clinical features Main cellular features Cancer predisposition 
RECON syndrome 
(RECQL1) 

Short stature, progeroid 
facial features, skin 
photosensitivity 
 

Hypersensitivity to DSBs 
genotoxic agents 
 

Moderately increased 
breast cancer risk 
 

Bloom syndrome (BLM) Dwarfism, mental 
retardation, 
microcephaly, 
immunodeficiency 
 

Elevated DSBs and SCEs Early onset,  all types 
 

Werner syndrome (WRN) Premature aging, loss of 
hair, short stature, 
osteoporosis 
 

Premature replicative 
senescence, telomere 
erosion, hypersensitivity 
to DSBs genotoxic agents 
 

Early onset of sarcomas 
and mesenchymal tumors 
 

Rothmund-Thomson 
syndrome (RECQL4) 

Growth retardation, 
skeletal dysplasia, sparse 
scalp hair, hypogonadism 
 

Hypersensitive to DSBs 
genotoxic agents 
 

Early onset of 
osteosarcomas 
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Table 1.2 Comparison of RecQ helicase-associated genome instability disorders.  
Main clinical features, cellular features and cancer predisposition phenotype for each syndrome was 
retrieved from Abu-Libdeh et al. (2022). 
 

1.3.2 Biochemical characterization of RecQ helicases 
 

Helicases are a highly diverse class of motor proteins that use ATP to unwind or 

translocate strands of nucleic acids [12], [64]. Helicases can be classified as DNA or RNA 

helicases, depending on their substrate [65]. The RecQ helicases are one highly conserved class 

of DNA helicases from bacteria to complex eukaryotes known best for preventing inappropriate 

recombination [12]. Bacteria and lower eukaryotes have only one RecQ orthologue, RecQ, 

whereas humans have 5 RecQ genes, each with a unique gene structure, suggestive of functional 

divergence (Figure 1.7A).  

 

Figure 1.7 Structure of RecQ helicases 
(A) Domain architecture of all five RecQ helicases and isoforms of the RECQL5 helicase, aligned by core 
helicase and RQC domains. (B) Subdomains of the core helicase domain of RECQL5. Zn refers to the Zn-
binding domain and WH refers to the winged helix-like structure of RECQL5. (C) Cartoon structure 
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diagram of the core helicase domain, colored by subdomain. Gene structure diagrams were designed using 
Domain Graph (DOG), and the protein structure was designed using PyMol with the crystal structure used 
in Newman et al. (2017). Data on gene structure was also retrieved from Croteau et al. (2014). 
 

All of the most abundant isoforms of the RecQ helicases share two common domains: the 

core helicase domain and the RecQ C-terminal (RQC) domain which together make up the 

catalytic core of the enzyme (Figure 1.7 B-C). Some members additionally contain a helicase and 

RNaseD C-terminal (HRDC) domain with a function that remains unclear but appears not to be 

essential for helicase activity [66]. Within the core helicase domain there are three subdomains, 

N and C terminal RecA like core domains (D1 and D2) and a Zn!" binding domain, followed by 

a winged helix (WH) responsible for interacting with DNA (Figure 1.7 B-C). It is the catalytic 

core helicase domain that is responsible for unwinding dsDNA, translocating ssDNA and in 

some cases, remodeling of non B-DNA structures that may arise during transcription, repair and 

replication [65]. 

RECQL1 was the first RecQ helicase to be discovered in 1994 and was mapped to 

chromosome 12p12 [67]. RECQL1 encodes a 649 amino acid protein that has been found to have 

low tissue specificity and is detected in nearly all tissues, making it the most abundant of the five 

helicases, yet little is known about its molecular functions in mammalian cells [61], [68], [69]. In 

vitro, RECQL1 has been shown to perform a variety of functions including unwinding a DNA 

structures such as G4s, catalyze branch migration of Holliday junctions and D-loops and promote 

single-strand DNA annealing (SSA) [61]. To accomplish these biological functions, RECQL1 

has been shown to interact with PARP1, RPA, RAD51, TOP3α, EXO1, MSH2/6, MLH1-PMS2 

and Ku70/80, implicating this protein mainly in DSB repair pathways yet its exact role remains 

enigmatic. 

BLM was first cloned in 1995 and determined to be expressed in all tissues with notably 

strong expression in bone marrow and lymphoid tissues [69]. BLM was mapped to chromosome 
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15q26 and consists of multiple structural domains including a conserved catalytic helicase core 

domain, a N-terminal domain involved in regulation and oligomerization of BLM and a C-

terminal region consisting of multiple protein interaction domains [70]. BLM has been 

implicated in DSB repair by a variety of functions. Namely, BLM has been shown to play a role 

in replication fork restart, DNA end resection, displacement of RAD51 from nucleoprotein 

filaments, disassembly of D-loops, and dissolution of Holliday junctions and other HR 

intermediates [71]. 

WRN was first cloned in 1996, guided by prior linkage analyses, and was mapped to the 

p-arm of chromosome 8 [72]. WRN is a 162 kDa protein that contains a central helicase core and 

is the only RecQ helicase to consist of an exonuclease domain which has been shown to cleave 

the 3′ ends of DNA (Figure 1.7A) [73]. WRN has been implicated in DSB repair, BER and the 

replication stress response by promoting replication fork reversal and restart. It has also been 

speculated that WRN can unwind certain secondary DNA structures [73]. For example, WRN 

has been shown to unwind cruciform structures formed by TA dinucleotide repeats that in the 

absence of WRN, result in replication fork stalling, cleavage by the MUS81 nuclease and 

massive chromosome shattering [28].  

RECQL5 was first cloned by Kitao et al. and was identified as a RecQ helicase based on 

homology with other characterized RecQ helicases [74]. In humans the gene is ubiquitously 

expressed in all tissues tested with notably strong expression in the testis and pancreas [74]. 

RECQL5 was mapped to chromosome 17q25 and found to be alternatively spliced in 19 variant 

forms with three variant forms (a, b and g)  being the most predominant [62], [74]. The a and g 

forms are less common variants that are truncated at the C-terminus and have only D1 and D2 

helicase subdomains without the Zn!" binding domain that is essential for helicase activity [62]. 



 
 

28 

Therefore, these truncated forms are deficient in helicase activity and only have strand annealing 

function [62]. The more common variant across all tissues, RECQL5b (referred to hereinafter as 

RECQL5), is a 120 kDa protein with 991 amino acids containing all three core helicase 

subdomains and an extended C-terminal that is different from other RecQ helicases and contains 

several regions essential for specific protein-protein interactions (Figure 1.7) [62], [75]. It 

remains unclear to what degree different isoforms of RECQL5 play a role in different cell types. 

Crystal structures of RECQL5 have revealed D1 and D2 helicase subdomains that are 

highly similar to other RecQ helicases, whereas a helical hairpin motif in the Zn!" binding 

domain is significantly longer than that of any other RecQ helicase [66]. Additionally, the C-

terminal of RECQL5 lacks a winged helix immediately following the Zn!" binding domain and 

instead has a positively charged alpha helix [66]. Both unique structures in the core catalytic unit 

are believed to confer selectivity in the DNA-binding capacity of RECQL5 compared to other 

RecQ helicases. Newman et al. showed that this region contributes to a higher specificity in 

RECQL5 for non-duplex DNA such as ssDNA, hairpin loops in dsDNA and forked DNA 

structures, all of which could occur as transcription intermediates [66].     

Within the C-terminus of RECQL5 are two domains responsible for protein interactions 

[66]. The kinase-inducible domain interacting (KIX) domain and Set2-Rpb1 interacting (SRI) 

domain were isolated from full-length RECQL5 constructs and were shown to be required for the 

interaction between RECQL5 and RNA polymerase II (RNAPII) (Table 1.3). Using purified 

proteins, Hu et al. demonstrated that RECQL5 is capable of binding and inhibiting RAD51-

mediated D-loop formation, an interaction discovered to require a motif between residues 652 

and 725. Electron microscopy revealed RECQL5 can remove RAD51 from ssDNA in a reaction 
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dependent on ATP hydrolysis and the ssDNA-binding protein, RPA. Several other stimulatory 

interactions are summarized in Table 1.3 and are discussed in further detail below. 

 
Protein Region Function Reference 

FEN1 ND Stimulates FEN1 endonuclease activity [76] 
Mre11 ND Inhibits Mre11 activity [77] 
NBS1 ND ND [77] 
PCNA 541-991 Promotes conjugation of PCNA with 

SUMO2 
[78] 

TOPO IIa ND Stimulates TOPOIIa decatenation activity [79] 
TOPO IIIa ND ND [80] 
RAD50 ND ND [77] 
RAD51 652-725 Disrupts RAD51 nucleofilaments [62] 
RNAPI ND ND [81] 
RNAP II KIX, SRI Inhibits rate of RNAPII transcript elongation [35], [82] 
SWI/SNF 
complex 

ND ND [83] 

WRN ND Stimulates helicase activity of WRN [75] 
 
Table 1.3 Protein-protein interactions reported for RECQL5 
 
 
1.3.3 RECQL5 gene function 
 
1.3.3.1 Role of RECQL5 in double-stranded DNA break repair  
 

Cells deficient in RECQL5 display a phenotype of genome instability and elevated CO 

products in the form of SCEs. In 2007, Hu et al. discovered that RECQL5 interacts with and 

disrupts RAD51 nucleofilaments similar to BLM and Sgs1 in yeast, a landmark finding that 

supported a model of HR where RAD51-dependant pathways are susceptible to CO products and 

RECQL5 and BLM are regulators of this pathway in humans [62]. However, the synergistic 

phenotype of genome instability in RECQL5-/- BLM-/- double knockouts was the first evidence 

that these genes may have non-overlapping roles as well. It was later shown in vivo that 

RECQL5 is essential for this disruptive interaction with RAD51 and its ability to form D-loops 

[84].  
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Bringing these observations together, Olsen et al. proposed a model of HR in which  

increased levels of RECQL5 reduce repair efficiency in the presence of a dsDNA donor 

molecule, whereas repair efficiency is significantly increased in the presence of a ssDNA donor 

[18]. This supports the notion that RAD51 is essential for strand invasion and by disrupting these 

nucleofilaments, RECQL5 is limiting the formation of D-loops and subsequent dHJ formation 

[85]. Given that RECQL5 gene amplification and deficiency have both been associated with 

cancer predisposition, it is possible RECQL5 is required at a suitable level to permit sufficient 

RAD51-mediated strand invasion for HR repair without an excess of D-loop formation biasing 

outcomes towards dHJ and CO products [9], [18], [86].   

 

1.3.3.2 Role of RECQL5 in replication stress 
 

During replication, the replisome encounters many stressors that may hinder faithful 

chromosome duplication [87]. This replication stress may slow or even stall the replication fork 

and activate certain pleiotropic DNA repair genes to form intermediate molecules in an effort to 

prevent further damage from occurring [87]. These replication stress pathways serve to resolve 

these substructures of DNA that may arise during replication fork stalling [88]. As a typical by-

product of replication fork stalling, the accumulation of exposed ssDNA occurs as RPA is 

depleted across multiple stalled forks [16]. This accumulation and subsequent depletion of free 

RPA serves to activate ATR kinase and the replication stress response which serves to recruit 

DNA repair machinery and stabilize the stalled fork before too much ssDNA is exposed (Figure 

1.8)[88]. Most importantly, it serves to prevent new origins from firing and further RPA 

depletion and associated ssDNA exposure from leading to global replication fork stalling and 
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replication catastrophe  [16]. Forks that fail to restart may lead to replication fork collapse and 

DSBs, activating canonical DSBR pathways [16].  

 

Figure 1.8 Role of RECQL5 in replication stress response.  
Replisome can encounter a replication stress-inducing lesion on either a lagging or leading strand. (A) When 
the replisome encounters a lesion on a lagging strand, DNA polymerase is able to bypass the lesion by 
dissociating from the Okazaki fragment and reassociating to form a new fragment ahead of the lesion. (B) 
Replisome encountering a lesion on a leading strand may lead to replication fork uncoupling, whereby the 
polymerase is stalled and dissociated from the replication helicase, which continues unwinding DNA and 
exposing ssDNA. Exposed ssDNA and simultaneous depletion of free RPA serve to activate ATR signaling of 
the replication stress response and recruit BRCA1/2 and PALB2 to begin exchange of RPA for RAD51. 
RAD51 actively promotes reversal of the replication fork and formation of a regressed arm whereby newly 
synthesized DNA strands anneal to each other, allowing for non-specific cleavage by the MRE11 
endonuclease and subsequent canonical DSB repair. In the presence of RECQL5, RAD51 is removed from 
ssDNA, and the MUS81/EME1 endonuclease complex is recruited to allow controlled cleavage and replication 
fork restart. 
 

RECQL5 has been implicated in this stress response because of the finding that cells 

deficient in RECQL5 are hypersensitive to the Topoisomerase I inhibitor, camptothecin, which 

leads to impaired replication and experience an exaggerated phenotype of genome instability 
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[84]. Additionally, RECQL5 associates with the replisome factor, PCNA, and persists at sites of 

stalled replication forks [81]. This involvement of RECQL5 in resolving replication stress could 

in part be attributed to its ability to stimulate the endonuclease, FEN1, and coordinate the 

cleavage events needed for replication fork restart [76].  

The interaction of RECQL5 with RAD51 also serves an important role in processing 

stalled replication forks as RAD51 has a pleiotropic function in both HR and replication stress 

[30]. Upon replication stress, stalled replication forks accumulate ssDNA and RAD51 stabilizes 

this DNA with the support of BRCA2, similar to how RAD51 binds ssDNA on the resected ends 

of a DSB in DSBR (Figure 1.8)[87]. Electron microscopy studies were performed to study 

replication fork reversal in the presence and absence of the stabilizing filament, RAD51, its 

loading partner, BRCA2, and the processing endonuclease, MRE11 (Figure 1.8). These studies 

revealed that RAD51 independently promotes replication fork reversal and that RAD51 and 

BRCA2 together protect against reversed fork degradation by MRE11 (Figure 1.8)[27]. Despite 

the protective role of RAD51 against MRE11-mediated reversed fork cleavage, overexpression 

of RAD51 created a phenotype of excessive fork stabilization and impaired replication fork 

restart, suggesting an appropriate balance of RAD51 stabilized replication forks is sufficient for 

replication restart [27]. Considering RECQL5 removes RAD51 filaments in DSBR, Di Marco et 

al. examined the role of RECQL5 in replication stress and showed that in addition to removing 

RAD51 filaments from reversed replication forks, RECQL5 recruits and stimulates the MUS81-

EME1 endonuclease complex to promote cleavage and replication restart of difficult to replicate 

regions (Figure 1.8)[30]. Taken together, these findings support a model of RECQL5 in 

balancing the intermediate structures in DSBR and the replication stress response.  
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1.3.3.3 Role of RECQL5 in transcription and regulating transcription-replication stress 
 

A protein-protein interaction unique to RECQL5 and believed to be critical to its function 

is that between RECQL5 and the RNAPII complex [35], [82]. Cells deficient in RECQL5 

display elevated levels of transcription, increased RNAPII-bound chromatin and increased DSBs 

associated with transcribed loci, suggesting that RECQL5 has more of an inhibitory role in this 

interaction [89]–[91]. Furthermore, RECQL5 loss increased the ratio of RNAPII associated with 

promoter-proximal regions relative to the gene body of a subset of over 5000 genes examined, 

whereas overexpression reversed this ratio [31]. However, there was no change in overall mRNA 

produced, suggesting that transcription elongation rate was affected opposed to transcription 

initiation [31]. For 80% of the transcribed genes in a genome wide assay, Saponaro et al. created 

an in vivo model to synchronize transcript cycles and measure elongation rate of individual genes 

and showed that depletion of RECQL5 significantly increased this value whereas overexpression 

reduced it. In the absence of RECQL5, sites of elevated transcript elongation were enriched for 

DSB breaks [31]. Together, these findings suggest that RECQL5 is an inhibitory RNAPII 

elongation factor and that deficiencies in RECQL5 lead to increased rates of RNAPII-mediated 

transcript elongation, higher levels of RNAPII pausing or arrest and overall transcription-induced 

genome instability. This form of transcription-associated genome instability appears to also be 

associated with replication since Li et al. showed many of the DSBs in this model accumulate 

during S-phase and associate with RNAPII transcribed loci. This phenotype was relieved in the 

presence of a transcription inhibitor further supporting the association of replication and 

transcription machinery driving DSBs and genome instability [90]. Together these findings 

support a model of transcription-associated genome instability where RECQL5 is limiting the 
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collision of transcription and replication machinery by slowing the elongation rate of 

transcription.  

Another source of transcription-associated genome instability is the formation of R-loop 

structures at sites of active transcription during replication. The formation of ssDNA from 

negative supercoiling behind transcription allows RNA invasion forming a R-loop, making it 

difficult for replication machinery to continue [92]. RECQL5-bound RNAPII was shown to 

stimulate conjugation of SUMO2 to the replicative factor, PCNA, another one of its binding 

partners [92]. Conjugated SUMO2-PCNA is capable of interacting with the histone chaperone 

protein, CAF1, and depositing repressing histone marks in a CAF1-dependant manner therefore 

reducing chromatin accessibility and effectively dislodging RNAPII from DNA [92]. This was 

confirmed by showing that cells deficient in RECQL5 are TRC and DSB prone and that 

overexpressing SUMO2-PCNA or CAF1 rescued this phenotype [92]. Additionally, RECQL5 

was shown to mediate replication fork restart at sites of stalled replication forks near R-loops by 

limiting RAD51-mediated replication fork reversal and recruiting the MUS81-EME1 

endonuclease complex for appropriate processing of stalled replication [26]. These findings 

support a role for RECQL5 in limiting TRCs. There is evidence it does so both proactively by 

either inhibiting transcript elongation near sites of replication or remodeling chromatin to 

dislodge RNAPII from DNA and retroactively by limiting RAD51-mediated replication fork 

reversal and promoting MUS81-EME1 cleavage and replication fork restart [26], [30], [92].  

It is clear that RECQL5 serves as an important regulator of DNA repair intermediate 

structures that may arise during DNA damage, replication stress and transcriptional stress. This 

essential regulatory role of RECQL5 is further highlighted by the observed elevated RECQL5 

expression and gene amplification in urothelial carcinoma of the bladder and breast cancers [67], 
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[93], [94]. However, the nature of DNA lesions that are preferentially repaired using RECQL5, 

the choice of RECQL5 over alternative RecQ helicases for repair of various DNA lesions and the 

role of expression levels in such choices remain to be elucidated. The finding of significant 

cancer predisposition in mice models deficient in RECQL5, support that perturbation of 

RECQL5 levels in either direction can contribute to oncogenesis [62]. Yet it remains unclear to 

what degree RECQL5 is the only factor regulating these processes and how RECQL5 contributes 

to oncogenesis or provides a backup function to other essential DNA repair genes. There is 

evidence of some overlapping function, specifically with other RecQ helicases. For example, in 

comparison to BLM, RECQL5 shares a similar phenotype of genome instability, but there is 

sufficient evidence that RECQL5 suppresses SCEs and DSBs even in the presence of BLM [42]. 

Shared protein-protein interactions between RECQL5 and BLM, such as with RAD51, likely 

correspond to overlapping functions whereas interactions unique to RECQL5 such as that with 

RNAPII may provide useful insight into the unique functions of RECQL5 [85], [90]. 

It is well documented that helicases play essential roles in HR. However, the genetic 

pleiotropy that is prevalent among these helicases poses a challenge to the identification of their 

roles in genome stability. For example, the BLM helicase has been shown to a play a role in 

DNA end resection, RAD51 displacement, D-loop disassembly, and double Holliday junction 

dissolution. Yet these functions are both pro- and anti-recombinogenic functions, making it 

unclear to what extent BLM is acting redundantly with other helicases, or whether these 

functions are regulated for specific purposes. Answers to these questions will give us a better 

understanding of genome stability and possible ways to manipulate helicase activities and 

achieve useful therapeutic outcomes in cancer. 
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1.4 Research scope, hypothesis and objective 

The larger body of research on other RecQ helicases supports further study of RECQL5 

in parallel with other RecQ helicases given their anti-recombinogenic activity in SCE formation. 

Given that SCEs are a useful indicator of genome instability and genome instability is a driver of 

oncogenic transformation, it will be of interest to map the location of such events as it was 

shown that BLM preferentially prevents SCEs near transcribed genes and G-quadruplex motifs 

[25]. There may be specific motifs or substructures of DNA that RECQL5 preferentially 

localizes to and protects against genome instability. Therefore, our hypothesis is that different 

types of DNA lesions and structures may require different RecQ helicases to be resolved.  

The primary objective of my thesis is specifically to uncover unique roles of RECQL5 

and other RecQ helicases in SCE formation and the maintenance of genome stability using novel 

bioinformatic and wet-lab techniques. In Chapter 2, I discuss new ways to perform DNA repair 

studies using Strand-seq and improvements compared to previous methods. In Chapter 3, I 

discuss the design, implementation, and performance of SV bioinformatic callers using Strand-

seq data. In Chapter 4, I perform exhaustive enrichment analysis of the SCEs in RecQ helicase 

deficient cell lines and draw conclusions about the roles of different RecQ helicases in DSB 

repair. In Chapter 5, I discuss conclusions, limitations, and future directions of my work.  

A better understanding of the role of RecQ helicases in genome stability will yield novel 

information about molecules and pathways involved in recombination and SCE formation. Such 

information is essential to elucidate currently poorly understood medical conditions and inform 

therapeutic strategies in cancer. 
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Chapter 2: New OP-Strand-seq pipeline for studying DNA repair 

2.1 Introduction 

The main goal of this chapter is to introduce novel approaches for performing DNA 

repair studies using Strand-seq. Standardized methods to study DNA repair is a prerequisite to 

elucidate the role of DNA repair in cancer and aging. Three implementations discussed in this 

chapter are the generation of CRISPR-Cas9 haploid KO lines of RecQ helicases, the 

development and use of the “One-pot” Strand-seq protocol and the development and use of a 

Strand-seq library quality classification system. 

 

2.1.1 Original Strand-seq protocol 

Single-cell template strand sequencing (Strand-seq) is a sequencing technique developed 

in 2012 for the selective sequencing of a dividing daughter cell’s parental template strands used 

during DNA replication [56], [57]. As discussed in Section 1.2.5.5, this method relies on the 

directionality of DNA based on its 5’-3’ orientation to preserve read directionality and permit the 

detection of orientation-dependent structural variants such as inversions and translocations that 

would otherwise be very challenging to detect using other single cell sequencing approaches 

[56], [57]. This approach was first developed using diploid cells [56], [57].  
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Figure 2.1 Standardized definition of Watson and Crick strands. 
 

Strand-seq exploits the semi-conservative nature of DNA replication to identify parental 

DNA template strands in daughter cells following DNA replication and cell division [56], [57].  

In genetics, the two strands making up the DNA double helix are commonly referred to as the 

“Watson strand” and “Crick strand” [95]. However, labeling of these strands relative to the 

reference genome can be done in two ways according to the position of specific genomic 

landmarks such centromeres. To date, no universal nomenclature to define each strand exists and 

this has led to multiple definitions being used [95]. For example, Cartwright and Graur, 2011 

defined the Watson strand as the strand with its 5’-end at the short-arm telomere and the Crick 

strand as its complement [56], [95]. Alternatively, Falconer et al., 2010 defined the Crick strand 

as the strand with its 5’-end at the short-arm telomere and the Watson strand as its complement 

(Figure 2.1) [56], [95]. The Falconer et al., 2010 definition is the one used in this thesis (Figure 

2.1). The Crick strand has also been synonymously referred to as the plus strand or the 5’-3’ 

strand of the refence assembly whereas the Watson is also considered the minus strand or 3’-5’ 

strand of the reference assembly (Figure 2.1) [56], [95].  
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Figure 2.2 Strand inheritance patterns and associated Strand-seq ideograms. 
After one round of DNA replication in the presence of BrdU, each chromosome is hemi-substituted with 
BrdU. After cell division, each daughter cells can inherit either template strand for each sister chromatid 
upon random segregation of sister chromatids. Ideograms for one chromosome in a diploid cell (A) and a 
haploid cell are shown (B). Dotted lines represent strands of DNA with BrdU incorporation. 
 

In DNA replication, each parental template strand serves as a template for newly 

synthesized nascent DNA such that  dividing diploid cell replicates both Watson (W; minus or 

3’-5’ strand of reference assembly) and Crick (C, plus or 5’-3’ strand) strands of each 

homologous chromosome in a semi-conservative fashion (Figure 2.2A) [56], [57]. After a cell 

divides, the two daughter cells can inherit opposing template strands for each homolog (e.g. all 

W reads for one homolog and all C reads for the other homolog; W-C) or the same template 

strand for each homolog (e.g. all W reads for both homologs; W-W, or all C reads for both 

homologs; C-C), generating three possible patterns of template strand inheritance for the two 

homologous chromosomes in a given diploid daughter cell (W-W, C-C, W-C; Figure 2.2A).	In a 

haploid cell, strand inheritance of one homolog can only produce one of two possible DNA 
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template strand inheritance patterns for each chromosome in a daughter cell (W or C, Figure 

2.2B). 

Strand-seq begins with the incorporation of the thymidine analog, BrdU, into the newly 

synthesized strand to allow for the distinction between template and nascent DNA strands 

(Figure 2.2) [56], [57]. DNA fragments with BrdU can be selectively degraded by treatment with 

Hoechst and UV irradiation before PCR amplification (Figure 2.3 ) [56], [57]. PCR amplification 

after degradation of nascent strand DNA fragments allows for the selective amplification of 

template strand reads (Figure 2.3 ) [56], [57]. Pools of Strand-seq libraries can then be loaded 

onto any Illumina sequencing instrument for paired end Illumina whole-genome sequencing 

(WGS) [56], [57]. Illumina WGS of Strand-seq libraries generates directional libraries with reads 

mapping to the reference genome in the orientation of the native parental DNA template strands 

(Figure 2.3 ) [56], [57]. The original protocol can construct several dozen Strand-seq cells at a 

time using a liquid-handling platform for automation [56], [57].  
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Figure 2.3 Principle of single-cell DNA template strand sequencing.  
(i) Chromosomes with BrdU substituted DNA are fragmented. (ii) DNA fragments are A-tailed. (iii) A-tailed 
DNA fragments are ligated to universal forked adaptors. (iv) Hoechst and UV photolysis create nicks at BrdU 
sites (v) Nicks prevent PCR amplification of nascent strands but allow selective amplification of the original 
intact template strand. (vi) The resulting libraries are directional, containing the template strand in its 
original genomic orientation in all amplified fragments. The hexamer barcode (red) is introduced by the PE 
2.0 primer during PCR amplification. The directional library contains the A2 adaptor at the 5′-end and the 
A1 adaptor at the 3′-end of the template strand. Multiple single-cell libraries are pooled and sequenced on an 
Illumina platform. Figure adapted from Sanders et al. (2017). 
 
2.1.2 Applications of original Strand-seq method for studying DNA repair 

One of the unique applications of Strand-seq is the ability to putatively identify SCEs and 

complex SVs by pinpointing changes in template strand inheritance (herein referred to as strand 

state switches) [25], [49], [56]–[58], [96]. After Illumina sequencing is performed on Strand-seq 

libraries to generate short-read sequencing data for each cell, reads are assigned a Watson or 

Crick designation based on their mapping orientation during alignment to the reference genome 

(Figure 2.4) [56], [57]. Duplicate reads are removed and strand state switches are pinpointed as 

changes in strand state genotype within a chromosome [25], [49], [56]–[58], [96]. Approximate 

coordinates and strand state genotype information across the breakpoint are identified for 

downstream analysis (Figure 2.4). The resolution of how finely these events can be mapped to 

the genome is proportional to the fraction of genomic DNA that is captured in a single cell 

Strand-seq library and the depth of the subsequent sequencing.  
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Figure 2.4 Principle of identifying strand state switches in Strand-seq data. 
Illumina WGS is performed on Strand-seq libraries to generate short-read sequencing data for each cell. 
Reads from each cell are assigned a Watson (orange) or Crick (teal) designation based on their mapping 
orientation during alignment to the reference genome. Duplicate reads are removed, and intra-chromosomal 
strand state switches are pinpointed and coordinates for breakpoints are identified for downstream analysis. 

Strand state switches suggest a SCE or a SV has occurred [25], [59], [97]. Different 

classes of SVs can be identified by integrating read depth, strand state switch genotypes and 

haplotype information present in Strand-seq data [25], [59], [97]. However, such SVs need to be 

distinguished from error-free SCE events and this can be a challenge considering the common 

features among both SCEs and SVs (Figure 2.5) [59]. For example, an SCE can be identified by 

collecting breakpoints that are not recurring in multiple libraries, are not associated with changes 

in read count and only affect one homolog (e.g. WW-WC or WC-CC; Figure 2.5) [25], [59], 

[97]. An inversion can be identified by collecting two neighboring breakpoints that are recurring 

in multiple libraries, are not associated with read count changes and can affect one or both 

homologs depending on if its heterozygous or homozygous and haploid or diploid (e.g. diploid 

homozygous inversion; CC-WW-CC or diploid heterozygous inversion; WC-WW-WC or 
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haploid inversion; C-W-C; Figure 2.5) [25], [59], [97]. Custom bioinformatic approaches for 

identifying different classes of SVs in Strand-seq library is thoroughly discussed in Chapter 3. 

 

Figure 2.5 Features of different structural variants in haploid and diploid Strand-seq libraries.   
Table providing an example of the Strand-seq chromosome ideograms, number of breakpoints, copy-number 
changes, allelic fraction and example genotype of breakpoints associated with an SCE and three classes of 
SVs in diploid and haploid cells.  
 

The genomic signatures of recombinatory events such as SCEs and SVs have been shown 

to elucidate specific helicase functions. For example, deficiency in the BLM helicase has been 

implicated in toxic unrestrained recombination resulting in up to 10 times more SCEs than a 

healthy cell [25]. Mapping SCEs from Bloom Syndrome patient cells to the genome revealed 

enrichment near G4 motifs in actively transcribed genes, suggesting the BLM helicase is 

responsible for resolving G4 motifs that likely arise during transcription replication conflicts 

[25]. Strand-seq data can be used to discover unique and essential roles of DNA helicases in 

DSB repair and reveal how faulty DSB repair gives rise to genomic instability.  
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2.1.3 Limitations of original Strand-seq method for studying DNA repair 

One of the primary limitations of the original Strand-seq method is the cost and 

throughput. Each single cell library cost ~US$13 with a throughput of 96 cells per experiment, 

each of which takes four days to complete [57], [60]. Additionally, there is high variability in the 

quality of Strand-seq libraries resulting in poor Strand-seq library characteristics [57], [60]. The 

characteristics of poor Strand-seq libraries include unevenness and sparsity in sequencing 

coverage as well as a high proportion of non-directional reads (herein referred to as background 

reads) that do not retain native directionality of the template strand they originated from [57], 

[59], [60]. All three of these characteristics worsen the resolution in which breakpoints for 

putative SVs can be mapped to the genome of a Strand-seq library [57], [59], [60]. Another 

limitation lies with the bioinformatic approaches for calling different SV classes in Strand-seq 

libraries. Mainly, there are few Strand-seq-specific bioinformatic tools for calling SVs and like 

most SV callers, they suffer from high false positivity rate due to the challenges associated with 

calling SVs, which will be discussed in Section 3.1.3 [59]. Strand-seq libraries may experience a 

higher proportion of background reads and this confuses SV callers resulting in either false 

positive calls, false negative calls or poor breakpoint resolution [59]. Therefore, I focus on 

addressing these limitations in our novel methods for performing DNA repair studies using 

Strand-seq.   
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2.2 Methods 

2.2.1 Knockout model generation in haploid cell line using CRISPR-Cas9 

To improve the resolution of breakpoint coordinates, I chose the haploid cell line, KBM7, 

for the generation of RecQ knockout lines. Haploid cells offer three advantages over diploid cells 

for the detection of SCEs and SVs using Strand-seq in Chapter 3. First, having one haplotype 

improves the resolution at which SVs can be mapped to the genome (Figure 2.6) [59]. In a 

haploid cell, strand inheritance of one homolog can only produce one of two possible DNA 

template strand inheritance patterns for each chromosome in a daughter cell (W or C; Figure 

2.6B). In contrast, diploid cells will show three strand inheritance patterns (WW, CC, and WC; 

Figure 2.6A). This makes intra-chromosomal changes in strand state less ambiguous in haploid 

cells because the breakpoint can theoretically be placed directly between a Crick and a Watson 

read to represent a W-C transition (Figure 2.6B). In a diploid cell there is uncertainty of whether 

a Watson read, for example, at the breakpoint is part of the WC segment or the WW segment for 

a WC-WW transition, resulting in a breakpoint confidence interval (CI) of at least one read plus 

gaps on either side of the W read (Figure 2.6A). Secondly, it is easier to generate knockout lines 

in a cell line with only one haplotype because only one allele must be altered. Finally, for the 

same genome coverage of a single cell Strand-seq library, sequencing costs are reduced two-fold. 
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Figure 2.6 Strand inheritance patterns and associated Strand-seq ideograms for a sister chromatid exchange 
(SCE). 
(A) Strand inheritance patterns and associated Strand-seq ideograms in a diploid cell and (B) a haploid cell. 
Solid orange and teal lines represent normal DNA strand and dotted orange, and teal lines represent BrdU-
substituted DNA strand. Circle highlights point of exchange between sister chromatids.  
 

Haploid cells such as the KBM7 haploid line also have one major limitation in that they 

are prone to endoreduplication in culture to become diploid, resulting in mixed populations of 

haploid and diploid cells [98]. Without intervention, haploid cell cultures often become fully 

diploid within 10-20 passages [98]. To counter this tendency, I used an approach described by 

Beigl et al. for assessing the ploidy of cell cultures [98]. For this purpose, the DNA content of 

nuclei from selected cell cultures was compared to the DNA content of parental haploid lines by 
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FACS (Figure 2.7). Once a cell culture was discovered to contain diploid cells, smaller cells 

were sorted by FACS to enrich for haploid cells (Figure 2.7B) [98]. 

 

Figure 2.7 Distinguishing haploid and diploid cells.  
(A) Haploid and diploid KBM7 nuclei can be distinguished using DNA staining with using Propidium Iodide 
(PI) using flow cytometry. (B) Haploid and diploid KBM7 cells can be distinguished and enriched by FACS 
sorting based on light scatter properties related to size. Reproduced from Beigl et al., 2020. 
 
2.2.1.1 Cell culture 

Cell lines were grown in Iscove's Modified Dulbecco's Medium (IMDM, StemCell, 

Vancouver, Canada) with 10 % Fetal Bovine Serum (FBS, Gibco, ThermoFisher, Canada) and 

1% penicillin-streptomycin (Gibco). The doubling time for KBM7 cells is 22 hours [99]. 

Cultures were passed every other day. Once a month, cell lines were sorted using the protocol 

described in Figure 2.7 to enrich for haploid cells. 
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2.2.1.2 CRISPR-Cas9 guide RNA design and electroporation 
 

I used the Alt-Râ CRISPR-Cas9 system (IDT, Coralville, Iowa 52241 USA) to generate 

knockout clones for RECQL1, WRN, BLM and RECQL5 helicase as well as double knockout 

lines for BLM/RECQL5 in the haploid KBM7 cell line. I designed multiple CRISPR RNAs 

(crRNA) to target either exon 1 or exon 2 for each gene using the built-in CRISPR RNA design 

tool from IDT to maximize predicted on-target efficiency and minimize predicted off-target 

efficiency and ordered these crRNAs from IDT (Table 2.1).  

Gene Chromosome Strand Sequence PAM 
On-Target 
Score 

Off-Target 
Score 

RECQL1 12 - TTTAGAGGATTCTGATGCCG GGG 55 44 

BLM 15 - GTTGGGTAGAGGTTCACTGA AGG 70 69 

BLM 15 + AATCGGAATAGGCAAGCTTC CGG 67 82 

BLM 15 - GTTGGGTAGAGGTTCACTGA AGG 70 69 

WRN 8 - CAAGCAACATTTTTAATCCC TGG 63 31 

RECQL4 8 - AAGAGTCCACAGTCTACGCC AGG 62 79 

RECQL5 17 + ATGGTCGCACTCTCCTGTAA AGG 70 72 

RECQL5 17 - CTCTTTTAAGACGCCTTTAC AGG 61 68 

 
Table 2.1 CRISPR-Cas9 gRNA sequences designed for RecQ helicases 
Guide sequences were designed using the built-in CRISPR-Cas9 gRNA design tool from IDT.  
 

Next, I followed the Alt-Râ CRISPR-Cas9 system RNP Electroporation and Neon 

Transfection protocol from IDT. Two crRNAs were hybridized with a fluorescently labelled 

tracrRNA-ATTO (IDT) and assembled into ribonucleoprotein complexes with the Cas9 protein 

(IDT; Figure 2.8). CRISPR-Cas9 ribonucleoprotein complexes were electroporated into cells 

using the recommended settings: 1600 V, 10ms pulse width, 3 pulses (Figure 2.8). After 24 

hours single cells, positive for tracrRNA fluorescence, were sorted by FACS into individual 
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wells of 96 well plates (Figure 2.8). After 5 days plates were inspected, and media was changed. 

Colonies were grown up to allow for KO screening by Sanger sequencing (Figure 2.8). 

 

Figure 2.8 Protocol for generating KBM7 CRISPR-Cas9 knockout cell lines. 
Generated using BioRender. 
 
 
 
2.2.1.3 Validation of CRISPR-Cas9 KOs 
 

DNA from growing colonies was isolated and segments flanking the gRNA sequences 

were amplified by PCR for Sanger sequencing to identify and characterize frameshifting 

mutations (Figure 2.8). Sequence information for PCR primers is shown in Appendix Table 1. I 

collected Sanger sequencing data from control cells and used the tool, ICE (Synthego, Redwood 

City, CA), to characterize frameshifting mutations. ICE uses Sanger sequencing chromatograms 

from an edited sample and a control sample to identify frameshifting insertions or deletions < 21 
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bp or large insertions or deletions greater than 21 bp. This procedure was used to isolate one 

clone for RECQL1 and three clones for BLM, WRN, RECQL5 and BLM/RECQL5 double KO 

cells (Figure 2.9). All WRN KO clones were found to consist of entirely diploid cell cultures due 

to the original ancestral KO cell after cloning being diploid. Therefore, WRN KO clones could 

not be enriched for haploid cells because there were none to begin with. BLM, RECQL5 and 

BLM/RECQL5 clones were functionally validated using the differential cytogenetic staining 

assay for the detection of SCEs in metaphase spreads discussed in Section 1.2.4.3. Ten to twenty 

metaphase spreads for each KO clone were analyzed for SCE staining (Figure A2.1). This assay 

revealed significant increases in SCE frequency upon knockout of BLM, RECQL5 and 

BLM/RECQL5 in comparison to our control WT cell line as would be expected for these KO 

phenotypes (Figure A2.1). 

 

Figure 2.9 Screening KBM7 CRISPR-Cas9 knockout cell lines. 
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(A) Each crRNA was designed to target exon 1 of each RecQ helicase gene. (B) Sanger sequence data from 
edited samples was compared against non-edited samples using the mutation characterising tool, ICE 
(Synthego, Redwood City, CA) (C) Examples of frameshifting mutations for each RecQ helicase. 
 
2.2.2 Construction of “one-pot” Strand-seq libraries  

As previously discussed in Section 2.1.2, Strand-seq libraries provide directional 

genomic information that is essential for assembling haplotype-resolved genomes and 

comprehensive SV calling. However, the library preparation protocol described in Sanders et al., 

2017 is costly, slow and suffers from low genomic coverage. The protocol typically requires up 

to 4 days to prepare 96 libraries at a cost of ~$1,300 USD (~$13 USD/cell) capturing at most, 

5% of the genome in a single cell [57]. I developed a modified version of the original version of 

the Strand-seq protocol, known as “one-pot” (OP)-Strand-seq, to improve the cost efficiency, 

quality and throughput of Strand-seq [60].  

 

2.2.2.1 Library preparation of OP-Strand-seq 

The new OP-Strand-seq protocol is summarized side-by-side with the original Strand-seq 

protocol in Figure 2.10. Several aspects of library preparation between the OP-Strand-seq 

protocol and the original Strand-seq protocol remain the same. In short, the thymidine analog, 

BrdU, is incorporated into nascent strand synthesis during DNA replication and single cells 

hemi-substituted with BrdU are sorted into individual wells by FACS (Figure 2.10) [57]. BrdU 

incorporated strands are selectively degraded by UV irradiation and Hoechst to allow for the 

selective amplification of template strands by PCR (Figure 2.10) [57]. 

The library preparation of OP-Strand-seq differ from that of the original Strand-seq 

method described in Sanders et al., 2017 in three main ways. Firstly, the reagent volume was 

reduced between 500- to 1,000-fold to improve the efficiency of the enzymatic steps involved in 
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library preparation such as digestion and ligation. The reduction in individual reaction volumes 

also permitted the increase in the relative concentration of DNA fragments which further 

supports enzymatic efficiency. For example, the ligation of adapter to each other to form adaptor 

dimers rather than to DNA fragments is a common limitation of enzymatic efficiency and by 

increasing the relative concentration of DNA fragments in smaller reaction volumes, adaptor 

dimers are less likely to form [57], [100]. Secondly, genomic DNA was fragmented in bulk using 

micrococcal nuclease (MNase) to reduce the overall variability and GC-bias in standard library 

digestion and unevenness of sequencing coverage and a higher proportion of background reads 

(Figure 2.13). Lastly bead clean-up steps are replaced with thermolabile protease treatments due 

to the loss of DNA reads associated with bead clean-up purification steps (Figure 2.10). 
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Figure 2.10 Comparison of the original Strand-seq protocol (left) with the OP-Strand-seq method (right). 
Adapted from Hanlon et al., 2021. 
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2.2.2.2 Illumina whole genome sequencing 

Sequencing libraries were pooled together to allow for size selection to remove primer 

and adapter dimer contamination. Specifically, 1 μL of pooled library sample was run on a 2% 

E-Gel EX Agarose Gel and DNA fragments >200 bp were selected and purified with the 

Zymoclean Gel DNA Recovery Kit. Purified samples were loaded onto a NextSeq 550 

instrument for paired end 75 bp sequencing following standard Illumina guidelines for 

denaturation and dilution [57], [60]. This approach allows the selective sequencing of the 

parental DNA template strands and the generation of directional libraries with reads mapping to 

the reference genome in the orientation of the native parental DNA template strands.  

 
2.2.2.3 Bioinformatic pre-processing 

The output of Illumina sequencing are Binary Base Call (BCL) files that require 

demultiplexing to generate separate FASTQ files for each library. Adaptor sequences are 

removed from FASTQ files using Cutadapt (cutadapt-v4.1) using default parameters and reads 

shorter than 30 bp are removed. Libraries were aligned to the GRCh38 human reference with 

Bowtie2 (bowtie2-v2.4.5) using default parameters and duplicate reads were removed with 

Picard (picard-v2.27.3) using default parameters to generate BAM files that are sorted using 

Samtools (samtools-v1.15.1) [60]. In total, 3873 Strand-seq libraries were sequenced across 21 

independent sequencing experiments. Indeed, the coverage and quality of sequencing libraries is 

variable therefore, a quality control (QC) step is needed to discard poor quality Strand-seq 

libraries, and this was originally done by manually characterising the quality of each library in an 

experiment. I would typically exclude sequencing libraries with low coverage (<50k reads, <25 

Reads Per Mb), high proportion of reads mapping to the wrong template strand (herein referred 

to as background), and uneven sequencing coverage (herein referred to as spikiness). 
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Background reads or increased bin-to-bin variation (spikiness) in read depth or sporadic gaps 

(spikiness) in read density can result from too many cycles of BrdU incorporation. For manual 

QC, there is no threshold for the level of background or spikiness that is considered acceptable, 

these metrics are assessed in unison by domain experts. 

 
2.2.3 Classifier for automated quality control of OP-Strand-seq libraries 

The reduced costs and increased throughput of the OP-Strand-seq method poses unique 

challenges to scalability. Currently, a quality control (QC) step is needed to discard poor quality 

Strand-seq libraries, and this is done only by domain experts capable of manually characterising 

the quality of each library in an experiment. There is one automated QC method that was 

recently developed for the Automatic Selection of High-quality Libraries for the Extensive 

analYsis of Strand-seq data (ASHLEYS). ASHLEYS uses pretrained models to categorize 

Strand-seq libraries using the original Strand-seq method with 92% accuracy. However, this 

method can only classify haploid OP-Strand-seq libraries with an accuracy of 83.4% according 

to our estimates (Figure 2.14). Therefore, I developed a novel classifier to automate the selection 

of good quality haploid OP-Strand-seq libraries. 

 

2.2.3.1 Training random forest model to classify Strand-seq library quality 
 
 First, I manually annotated the quality of 3873 OP-Strand-seq libraries and performed an 

80:20 split to generate a training and test set for developing a classifier. Then I collected the 

following metrics from aligned BAM files for each library to be used as features in our classifier: 

coverage, background, evenness, and spikiness. Coverage is simply a metric of depth of 

sequencing or the amount of the genome that has been captured during sequencing (Figure 2.11). 
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Coverage is calculated by multiplying the number of reads in a library, 𝑛()*+,, by the average 

read length, 𝑥()*+	-)./01, and dividing by 100 (Equation 2.1). 

 𝑪 =
(𝒏𝒓𝒆𝒂𝒅𝒔 ∗ 	𝒙𝒓𝒆𝒂𝒅	𝒍𝒆𝒏𝒈𝒕𝒉)

𝟏𝟎𝟎   
(2.1) 

 

Background, as previously mentioned, refers to a metric devised to calculate the proportion of 

non-directional reads (Figure 2.11). The relative proportion of Crick reads in WW segments is 

added to the relative proportion of Watson reads in CC segments and divided by 2 (Equation 

2.2).  

 

 
𝒃 =

(∑ 𝑾𝑾𝒄𝑻-𝟏
𝒕/𝟏

∑ 𝑾𝑾𝒘𝑻-𝟏
𝒕/𝟏

) + (∑ 𝑪𝑪𝒘𝑻-𝟏
𝒕/𝟏
∑ 𝑪𝑪𝒄𝑻-𝟏
𝒕/𝟏

)

𝟐  

 
(2.2) 

 

Spikiness is a metric that assesses the bin-to-bin variability in sequencing coverage (Figure 

2.11). Each bin read count, 𝑥0, is subtracted from the next adjacent bin read count and averaged 

across the genome (Equation 2.3). 

 

 𝒔 =
∑ |𝒙𝒕0𝟏 − 𝒙𝒕|𝑻-𝟏
𝒕/𝟏

∑ 𝒙𝒕𝑻
𝒕/𝟏

 

 

 
(2.3) 

 

Evenness is a metric that assesses the genome wide variability in sequencing coverage (Figure 

2.11). The genome is split into Mb-sized bins and the median value for binned read counts, 

𝜇()*+,	2)(	34, is calculated. The absolute difference between each binned read count,	𝑥, and the 

median value is used to calculate a Z score for each bin that is averaged across the genome 

(Equation 2.4).  
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𝑬 =

∑ 6𝒙 − 𝝁𝒓𝒆𝒂𝒅𝒔	𝒑𝒆𝒓	𝑴𝒃6
𝝈

𝑻-𝟏
𝒕/𝟏

∑ 𝒏𝒃𝒊𝒏𝒔𝑻
𝒕/𝟏

 

 

 
(2.4) 

 

Together, I used these four features to predict the quality classifications of good Strand-seq 

libraries using a random forest algorithm from the R package, Caret [101].  

 

Figure 2.11 Examples of Strand-seq chromosome ideograms showcasing differences in library quality 
features. 
 

2.3 Results 

2.3.1 Comparison of breakpoint resolution between haploid and diploid cells 
 

As previously mentioned, Strand-seq was first developed with the use of diploid cells. I 

explained at the beginning of Section 2.2.1 why haploid cells would pose several advantages 

over diploid cells for the downstream analysis of SCEs and SVs. One advantage I discussed is 

the theoretical improvement in strand state switch breakpoint resolution in haploid cells versus 

diploid cells given the same depth of sequencing (herein referred to as sequencing effort). I 

confirmed that for the same sequencing effort, the resolution of strand state switch breakpoints is 

higher in haploid cells than in diploid cells as indicated by a lower breakpoint confidence 

interval (Figure 2.12). Therefore, SCEs and SVs are mapped to the genome at higher resolution 

than in diploid cells for the same cost. 
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Figure 2.12 SCE breakpoint resolution relative to sequencing effort for haploid and diploid cells. 
 

2.3.2 Improved cost, throughput, and quality of the OP-Strand-seq protocol 

Next, I wanted to demonstrate the improved cost, quality, and throughput of the OP-

Strand-seq method. OP-Strand-seq can produce between 6 and 16-fold more libraries than the 

original Strand-seq protocol [57], [60]. The cost per library has also been reduced to 15% of the 

original cost per library using the original Strand-seq protocol, at $2 versus $13 per library [57], 

[60].  

To assess the quality of Strand-seq libraries, I primarily focused on assessing the average 

complexity of the sequencing library. Complexity refers to the number of unique sequencing 

reads captured in one library and, using single cells, directly reflects the percentage of the 

genome that was captured in the library [102]. Low complexity sequencing libraries have many 

of the same reads and deeper sequencing would only yield more duplicate reads that would be 

removed during pre-processing, resulting in wasted sequencing costs [102]. High complexity 
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sequencing libraries offer more unique reads and thus higher genomic coverage when sequenced 

deeper [102]. One bioinformatic tool, known as PreSeq, was developed for assessing complexity 

in individual sequencing libraries by devising a function to model the expected genomic 

coverage at increasing sequencing efforts [102]. I used PreSeq to show that the OP-Strand-seq 

libraries have ∼4-fold greater complexity on average than libraries made with the original 

protocol capturing up to 25% of the haploid genome per cell [57], [60].  

 

 

Figure 2.13 Complexity curves for libraries made with OP-Strand-seq and original Strand-seq. 
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Individual libraries are show as gray lines. Complexity mean and standard deviation of libraries are shown in 
yellow for those produced with OP-Strand-seq blue for those produced with original protocol. Sequencing 
effort mean and standard deviation shown with dashed vertical lines. Breadth of coverage is the fraction of 
the haploid reference genome covered by at least one read fragment. Complexity estimates were made using 
Preseq. Adapted from Hanlon et al, 2021. 
 
2.3.3 Testing random forest model in classifying Strand-seq library quality 
 

Our classifier was trained on 3,873 OP-Strand-seq haploid libraries to accurately predict 

good quality libraries using the methods described in Section 2.2.3. Model training included 

feature selection and training error estimation using 10 iterations of class-balanced 10-fold cross-

validation. I showed that the four selected features can distinguish the quality of Strand-seq 

libraries (Figure 2.14A). Then I assessed the performance of our classifier in comparison to the 

only existing Strand-seq library quality classifier [103]. Model performance was assessed on an 

independent test dataset (n = 893). The random forest model I trained showed an accuracy of 

96.6% versus 83.4% for ASHLEYs on the same set of OP-Strand-seq libraries (Figure 2.14B).  

 

 
Figure 2.14 Feature selection and model performance of Strand-seq library classifier. 
(A) Properties of OP-Strand-seq libraries. I calculated the coverage, spikiness, evenness, and background. 
High-quality libraries are shown in green, medium-quality libraries are shown in yellow and low-quality 
libraries are shown in red. (B) ROC curves assessing performance of random forest classifier and ASHLEYS 
on the same test dataset of OP-Strand-seq libraries. Accuracy is labelled beneath each curve. 
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Considering the accuracy of ASHLEYs on our test set was lower than what has been reported by 

Gros et al., I wanted to investigate the possibility of overfitting on a novel datatype. Our test 

dataset consisted of OP-Strand-seq libraries whereas ASHLEYs was trained and tested on 

libraries made using the original Strand-seq protocol [103]. I re-tested our model and ASHELYS 

on both OP-Strand-seq libraries and original Strand-seq libraries (Figure 2.15). As expected, I 

found ASHLEYs had an accuracy of 91% on original Strand-seq data compared to an accuracy 

of 74% using our random forest classifier (Figure 2.15) [103].  

 

 
 
 
Figure 2.15 ROC curves assessing performance of random forest classifier and ASHLEYS.  
Each classifier was tested on two datasets: OP-Strand-seq libraries and original Strand-seq libraries. 
Accuracy is labelled beneath each curve. 
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The classifiers shown here appear to be overfitted to the data used for training and limit 

their universal application. Increasing the size of the training sets will undoubtedly help mitigate 

overfitting. However, it should be noted that the quality of Strand-seq libraries may depend on 

the desired application. For example, accurate copy-number analysis in Strand-seq libraries 

requires uniform sequencing coverage, and thus library evenness could be weighted more 

heavily than other sequencing metrics when assessing library quality for this application. 

Alternatively, SCE analysis may be able to accommodate higher spikiness or lower sequencing 

coverage in comparison to SV analysis, especially when it comes to analyzing smaller SVs that 

require high sequencing coverage. Thus, a multi-variable definition of library quality that is 

dependent on the desired application may be necessary for the accurate classification of Strand-

seq library quality. 

 
2.4 Discussion 

Strand-seq can be used to facilitate DNA repair studies by revealing essential roles of 

DNA helicases in DSB repair. However, there are several limitations of this approach as 

discussed in Section 2.1. The variable quality of sequencing libraries can worsen the resolution 

of breakpoints for SCEs and SVs which poses a significant challenge for both detection and 

downstream enrichment analysis of breakpoint coordinates. Therefore, I introduced three novel 

implementations in Section 2.2 to address these and improve the overall quality of DNA repair 

studies that can be performed using Strand-seq. 

The first implementation intends to harness the unique qualities that haploid cells possess 

in order to cut sequencing costs and improve breakpoint resolution. Because haploid cells only 

possess one set of chromosomes, they have smaller breakpoint confidence intervals than diploid 

cells, given the same sequencing effort. The second implementation describes a revised library 
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preparation protocol for Strand-seq known as the OP-Strand-seq protocol. OP-Strand-seq can 

produce 6 to 16-fold more libraries than the original Strand-seq protocol at 15% of the original 

cost with ∼4-fold greater complexity, capturing up to 25% of the haploid genome per cell on 

average. These improvements in library quality and throughput create challenges for scalability 

and thus necessitate the automation of QC to discard poor quality Strand-seq libraries. Therefore, 

the third implementation is a random forest classifier that can accurately classify good quality 

OP-Strand-seq libraries with 96.6% accuracy and original Strand-seq libraries with 74%. This 

accuracy is higher than what has been reported by the ASHLEYs classifier for OP-Strand-seq 

libraries although lower for classifying original Strand-seq libraries.  

Together, these three implementations allowed us to generate thousands of good quality 

OP-Strand-seq libraries. These libraries possess improved breakpoint resolution for SCE and SV 

calling as discussed in Chapter 3. Improved resolution of the SCE callsets generated in Chapter 3 

will increase the power of our enrichment analysis in Chapter 4. Improved breakpoint resolution 

of SCEs is essential for performing enrichment analysis because SCE-triggering structures, such 

as G4s, can occur frequently throughout the genome (~ 8.6 Kb on average) and performing 

enrichment analysis with SCEs with poor resolution, or large confidence intervals, would result 

in increased noise because of the high likelihood of permutated SCE regions overlapping with 

G4s due to their large size. These implementations will undoubtedly help clarify the role of 

specific helicases in resolving different kinds of replication barriers by investigating the genomic 

context of finely mapped SCE coordinates. These studies will yield novel information about 

molecules and pathways involved in recombination and sister chromatid exchange mechanisms 

in mammalian cells.  
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Chapter 3: Structural variant callers 

 

3.1 Introduction 

The purpose of this chapter is to introduce the bioinformatic tools I developed for the 

comprehensive discovery of somatic structural variants (SVs) in individual cells. Specifically, I 

introduce novel approaches to screen Strand-seq libraries for SCEs, CNAs, and translocations. 

 

3.1.1 Structural variants 

As discussed in Chapter 1, SVs contribute greater diversity at the nucleotide level 

between two human genomes than any other form of genetic variation [49]. SVs are defined as 

genetic variants that rearrange, delete, or amplify a sequence of DNA greater than 50 bp in 

length and are grouped into classes based off the nature of their rearrangement [104]. SVs are 

considered separate from insertions and deletions less than 50 bp which are commonly referred 

to as INDELs. SVs include duplications, deletions, translocations and inversions and they can be 

broadly classified as either copy-neutral (inversions and translocations) and copy-number 

changes (deletions and duplications) [105]. They encompass key mutational processes in cancer 

that can drive oncogenesis and tumour development by, for example, altering oncogene copy 

number, disrupting tumour-suppressor genes or creating fusion genes that allow one gene to 

hijack the regulatory sequences of another gene [106]. In fact, a given SV is 53x more likely to 

have a phenotypic consequence on gene expression than a given SNP or small INDEL (< 50 bp) 

and at least 30% of cancers contain at least one pathogenic SV [107], [108]. Somatic SVs are 

abundant in cancer genomes and are considered a major source of genomic instability [108].  
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3.1.2 Structural variant discovery 

Bulk WGS technologies makes it possible to identify SVs above a minimum VAF [58]. 

However, scWGS technologies can characterize rare SVs below the minimum VAF and are 

capable of resolving subclonal SV heterogeneity in tumours [58]. There are three main 

approaches for detecting SVs using scWGS data: mapping-based, mapping-free, and assembly-

based approaches [109]. In mapping-based approaches, each class of SV experiences a unique 

pattern of read mapping that can be used to infer the underlying mutation [109]. Mapping based 

approaches encompass signatures of read depth, read pairs, and split read mapping [104]. 

Changes in read depth suggest a CNA has occurred [104]. Discordant read pairs arise when the 

distance or orientation of reads differs from what is expected and suggest an inter-chromosomal 

translocation or inversion has occurred [104]. Split reads span the breakpoints of SVs can be 

used to detect small SVs [104]. Long reads, as discussed in Section 1.2.5.4, are also capable of 

resolving large SVs using mapping-based approaches [54]. Mapping-free methods detect SVs by 

comparing WGS data between different genomes [109]. Lastly, assembly-based approaches 

involve the reference-free de novo genome assembly of sequenced reads into larger contig 

assemblies to allow for accurate SV detection [109]. Assembly-based methods have integrated 

multiple sequencing approaches including short read, long read, bulk and scWGS technologies 

and are considered the most accurate and comprehensive approach for SV discovery, albeit, at 

high costs due to computing resources and integrated WGS technologies [49], [109].  

 
 
3.1.3 Structural variant discovery challenges 
 

Despite their relevance, SVs have remained an understudied source of genetic variation 

due to the technological challenges associated with detection. As discussed above, SVs 
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experience unique patterns of read mapping however, different classes of SVs can still evade 

detection by confusing sequencing assembly and SV detection algorithms in different ways 

[109]. These patterns are difficult, and in some cases virtually impossible, to detect if the regions 

spanning the SV is associated with repetitive DNA, uneven and sparse sequencing coverage, or 

multiple SVs are overlapping or nested within one another [109].  

SV detection algorithms break down within repetitive DNA, which is heavily enriched 

for SVs and highly abundant in the genome [49], [104], [109]. In fact, tandem repeats, 

microsatellites, and inverted repeats, among other repeat-rich DNA elements, make up 

approximately 45% of the genome [3]. Repetitive DNA can be prone to false SV discovery due 

to read mapping errors [104], [109]. For example, tandem duplications create multiple possible 

alignments resulting in some repeats may going unmapped, or other types of mapping errors 

(Figure 3.1) [104], [109]. Additionally, copy-neutral SVs such as inversions are often flanked by 

highly repetitive sequences that evade read alignment all together resulting in unmapped regions 

flanking the inversion [104], [109]. These SVs evade detection all together because they preserve 

the same underlying DNA content and individual reads cannot span the full length of the 

rearrangement or the breakpoints of the rearrangement to indicate its presence [104], [109].  
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Figure 3.1 Multiple possible mapping patterns of reads within tandem duplications. 
A sequencing read (orange) can align to multiple positions within tandem repeats (blue) that exceed the 
length of short reads.  
 

Copy-number SV detection that relies on read depth changes also breaks down with 

uneven or sparse sequencing coverage [104]. Reads that are GC-rich may be preferentially 

amplified during the PCR step of library preparation and can thus create false positive calls that 

inappropriately appear as read depth changes [110], [111]. Copy-number SVs may also evade 

read depth changes when sequencing coverage is sparse resulting in false negative calls [110], 

[111].  

Lastly, multiple SVs that are overlapping or nested within each other, such as inversion-

duplications, account for many SVs and give rise to complex mapping patterns that are difficult 

to resolve [109].  

In Chapter 2, I described the unique advantages of Strand-seq over other WGS methods 

and how read directionality in a sequencing library can be used to pinpoint different classes of 

SVs and SCEs. This is strictly a Strand-seq-specific quality that has been exploited to facilitate 
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comprehensive SV discovery [49], [58]. As a new technology, the accessibility of Strand-seq is 

directly related to the availability of bioinformatic tools capable of exploiting the directionality 

of template reads for comprehensive SV discovery. To date, there are no standardized methods 

for comprehensive full-spectrum SV discovery in Strand-seq data. Here, I introduce the general 

framework for mapping SCEs, translocations, and CNAs to facilitate the development of 

standardized bioinformatic tools that can be used by the wider SV discovery community. 

 

3.2 Methods 

As discussed in Chapter 2, Strand-seq is a method in which parental DNA template 

strands are sequenced in single daughter cells to generate directional libraries. One of the unique 

applications of Strand-seq is the ability to identify SCEs as well as complex SVs in the genome 

of cells by pinpointing changes in template strand inheritance, haplotypes as well as copy 

numbers [25], [56], [58]. Here, I introduce a conceptual framework for the comprehensive 

discovery of SCEs, translocations, and CNAs in Strand-seq data. I used the R package, 

BreakpointR, to identify intra-chromosomal strand state switches, or breakpoints, that can be 

used for downstream SCE and translocation analysis. I also used the R package, AneuFinder, to 

identify intra-chromosomal changes in read count that can be used for downstream CNA 

analysis. The resolution of how finely these events can be mapped to the genome and the 

accuracy in which they can be called are among the most important indicators for assessing the 

performance of our bioinformatic tools and are discussed in Section 3.3.  
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3.2.1 Identifying strand-state change breakpoints 

I used the R package, BreakpointR, to analyze BAM files from good quality individual 

Strand-seq libraries that were selected during the manual QC step discussed in Section 2.2.2.3. 

From the 3873 KBM7 OP-Strand-seq libraries sequenced in Chapter 2 collected across 21 

independent sequencing experiments, we retained 1684 good quality Strand-seq libraries from all 

RecQ KO lines for SV analysis that passed our QC step. BreakpointR is a tool for identifying 

intra-chromosomal changes in strand-state genotype in individual cells (Figure 3.2A) [97]. It 

functions by forming a sliding window of a user-defined bin size (e.g. 20 mapped reads in a 

given library) at the beginning of each chromosome and calculating the percentage of Watson 

reads in the first half of the bin compared to the second half to determine the change in Watson 

reads, or DW value, for that location (Figure 3.2B) [97]. The bin on each chromosome then slides 

one read over at a time to calculate the DW at each point of that chromosome until it has shuffled 

across the whole chromosome and the highest DW values can be identified and the coordinates 

refined to call changes in intra-chromosomal strand state genotype with high confidence (Figure 

3.2C)[97]. Strand state change breakpoints are genotyped to identify the exact nature of the 

strand state transition and coordinates are refined using Fisher's exact test (Figure 3.2D) [97]. 

The coordinates for these breakpoints can be used for downstream analysis of different SVs [57], 

[59].  
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Figure 3.2 BreakpointR algorithm  
(A) Binned read counts for a chromosome where vertical bars denote number of 'Crick' (C; teal) reads and 
'Watson' (W; orange) reads in each bin. (B) User-defined bin of 20 reads is split in half and the number of W 
reads in the left portion of the bin are subtracted from the number of W reads in the right portion (ΔW). The 
bin advances one read at a time and is dynamically resized to accommodate changes in read density and 
sequencing coverage seen. (C) Peak calling is then applied to search for high-confidence peaks in the ΔW 
scores. Peak confidence is determined using z-score statistics to test for significance above a user-defined 
threshold. (D) Significant peaks are considered putative breakpoints that mark the location of template-
strand-state changes. Using these breakpoints to define segments for strand state assignment. The strand 
state is tested between all putative breakpoints by measuring the total number of W and C reads in the 
segment and assigning the most-probable template-strand-state using the Fisher’s exact test. A breakpoint is 
retained only if two neighboring segments show different template-strand-state; otherwise the breakpoint is 
removed and the two segments are merged. Figure adapted from Porubsky et al., 2020. 
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3.2.2 Bioinformatic approaches for SCE detection 

As discussed in Chapter 2, haploid and diploid cells have unique signatures for SCEs. 

Therefore, I developed a ploidy-based SCE caller to refine breakpoint calls generated by 

BreakpointR to those that most likely represent SCEs and omit breakpoints that represent other 

SVs or false positive calls. This caller has three main steps. 

First, I use the ploidy of a cell to identify impossible genotypes across a breakpoint for an 

SCE. For example, SCE breakpoints in a diploid cell can only affect one homolog because two 

SCEs occurring in the same position on two homologs in the same cell is very unlikely and more 

likely to represent a homozygous SV. Therefore, SCE breakpoints can only exhibit the transition 

of one homolog in a diploid cell, meaning the other homolog retains the same strand state 

genotype (i.e. WWàWC, CCàWC, WCàCC, WCàWW; Figure 3.3). By extension, 

breakpoints that affect both homologs are deemed homozygous breakpoints (i.e. WWàCC, 

CCàWW) and are omitted for a diploid cell (Figure 3.3). Conversely, SCE breakpoints in a 

haploid cell can only resemble a homozygous breakpoint (i.e. WWàCC, CCàWW) because 

they only have one homolog, so all other breakpoint genotypes are omitted (Figure 3.3). Often, 

mis-aligned reads can result in “diploid” appearing genotypes (i.e. WC) where both Watson and 

Crick reads are aligning to the genome in the same area of a haploid cell. The sources of mis-

aligned reads are addressed in the next step of our SCE caller. 
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Figure 3.3 Examples of possible and impossible SCE breakpoint genotypes for haploid and diploid cells. 
SCE breakpoints in a diploid cell can only affect one homolog and thus can only exhibit the transition of one 
homolog in a diploid cell, meaning the other homolog retains the same strand state genotype. Breakpoints 
that affect both homologs are deemed homozygous breakpoints and are considered unlikely to represent an 
SCE in a diploid cell. In a haploid cell, SCE breakpoints can only resemble a homozygous breakpoint because 
they only have one homolog, so all other breakpoint genotypes are considered unlikely to represent an SCE. 
 

Second, the co-occurrence of two neighboring events is also considered to stem from 

misaligned background reads and breakpoints occurring within 2 Mb of each other on the same 

chromosome in the same cell are omitted. These likely correspond to false positive calls 

stemming from background reads due to mapping errors. Mapping errors may occur due to 

highly repetitive DNA content such as centromeres and result in small segments of reads 

mapping to both strands in every cell, otherwise known as “Always-Watson-Crick” (AWC) 

regions (Figure 3.4). These regions were identified individually from observing small spikes (< 

2Mb) of AWC regions recuring in all libraries (Figure 3.4). These regions are blacklisted from 

the final call so that SCEs called in these regions are omitted. I devised a custom blacklist 

created for the KBM7 cell line however, it is strongly recommended that a new blacklist is 

generated if other cell lines are used. 
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Figure 3.4 Example of Always-Watson-Crick region on ideograms of binned read counts for chromosome 1. 
 

Lastly, recurring breakpoints in multiple single cell libraries that are not in close 

proximity to other breakpoints or centromeres likely correspond to non-SCE SVs. For example, 

translocations can result in one breakpoint recurring in the same position in multiple cells (Figure 

3.5).  
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Figure 3.5 Example of breakpoints recurring in multiple cells that correspond to translocation breakpoint 
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A a custom script derived from an auxiliary function of BreakpointR known as 

“hotspotting” was used to find regions of the genome where the density of breakpoints 

significantly exceeds a null gaussian distribution of events to identify recurring breakpoints in 

many libraries (Figure 3.6). Most often, these events correspond to SVs however, in some 

circumstances, these “hotspots” can correspond to many SCEs occurring in the same area of the 

genome in multiple cells. However, hotspots made up of SCE or SVs can only be distinguished 

by uploading bed-formatted read count files generated by BreakpointR to the UCSC Genome 

Browser [112] to identify whether the breakpoints for SCEs are clustering near each other in 

different cells or if SVs have produced identical breakpoints in multiple cells. 
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Figure 3.6 Density distribution of SCE hotspots. 
Red line shows density distribution of breakpoints across chromosome 1. Blue line shows simulated random 
distribution of breakpoints. Two peaks correspond to two breakpoint hotspots. 
 

3.2.3 Bioinformatic approaches for translocations detection 

Strand-seq libraries can reveal the presence of translocations. Translocations are relevant 

to genomic instability because they can disrupt gene function and regulation by rearranging 

genomic architecture with one of the more notable examples of this being the Philadelphia 

chromosome that is formed when the q-arms of chromosomes 9 and 22 fuse and form the BCR-
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ABL1 fusion gene that is known for initiating leukemogenesis [106], [113], [114]. Translocations 

arise when simultaneous DSBs occur on separate chromosomes and aberrant repair of both 

breaks results in the fusion of separate chromosome segments [114].  

In a Strand-seq library, a translocation can be visualized as two strand state switches in 

two chromosomes recurring in multiple libraries such that the fused segments from one 

chromosome would follow the same inheritance pattern of its translocation partner (Figure 3.7) 

[58]. This difference in inheritance pattern would only be present in 50% of independent 

assortment combinations [58].  
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Figure 3.7 Philadelphia chromosome translocation signature in Strand-seq libraries.  
Schematic of template strand inheritance patterns present in 7 KBM7 cells. Black arrows point to 
translocation breakpoint in chromosome 9 and 22. 
	

Here, I used a custom algorithm to quantify the frequency of recurring strand state switch 

breakpoints to identify probable translocations (Figure 3.8). I devised a matrix of size 𝑛 ∗ 𝑚, 

where 𝑛 refers to the number of cells and 𝑚 refers to the number of hotspots found in all Strand-
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seq libraries (Figure 3.8). For each hotspot, I quantify how similar it is to other hotspots in terms 

of the libraries involved in making up that hotspot. I calculate a Translocation Score, 𝑇𝑆, for 

each pair of hotspots by adding each column together and taking the sum of shared libraries 

divided by the sum of libraries involved (Figure 3.8). The TS from each comparison is placed 

into new matrix of 𝑚 ∗𝑚. When I plot this matrix as a heatmap, regions of the genome that 

resemble probable translocations are highlighted (Figure 3.9). Only one region is highlighted and 

that reveals the Philadelphia chromosome translocation which is a known translocation in the 

KBM7 cell line (Figure 3.9).  

 

Figure 3.8 Algorithm for calling translocations in Strand-seq libraries.  
A matrix of size 𝒏 ∗𝒎 is generated, where 𝒏 refers to the number of cells and 𝒎 refers to the number of 
hotspots found in all Strand-seq libraries. A Translocation Score, 𝑻𝑺, is calculated for each pair of hotspots 
by adding each column together and taking the sum of shared libraries divided by the sum of all libraries 
involved. The TS from each comparison is placed into new matrix of 𝒎 ∗𝒎. High scores in this matrix 
resemble probable translocations. 



 
 

81 

 
Figure 3.9 Heatmap of Translocation Score matrix. 
Columns and rows are organized from chromosome 1 to chromosome X. Low scores are shown in blue, high 
scores are highlighted in red. The position of hotspots on chromosome 9 and 22 is shown with red arrows. 
 

3.2.4 Bioinformatic approaches to CNAs detection 

I used the R package, AneuFinder, for the discovery of CNAs in haploid Strand-seq 

libraries [96]. Using AneuFinder on haploid Strand-seq libraries offers one main advantage over 

other CNA analysis tools that rely solely on changes in read count density to flag changes in 

copy-number in diploid cells [109]. As previously mentioned, haploid cells can only have reads 

mapping to one template strand (W or C) for a given chromosome so segments that have reads 
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mapping to both template strands must be duplicated regions (Figure 3.10). A duplication can 

present with or without associated changes in strand state genotype in a Strand-seq library 

(Figure 3.10). Non-tandem duplicated chromosome segments present this way in 50% of cases 

due to random segregation of sister chromatids and can be reliably detected as a WC region in a 

haploid cell (Figure 3.10). Two additional steps after running AneuFinder were taken to refine 

the output of this program to putative somatic CNAs.   

 

Figure 3.10 Strand-seq ideograms of CNAs with associated strand-state switches in haploid cells. 
 

First, I intended to eliminate “germline” events that were present in WT cells prior to the 

generation of KO lines. If events are present in WT and KO lines, they would not be considered 

somatic CNAs. I generated a composite BAM file of all WT KBM7 libraries to be used as a 

reference for AneuFinder to normalize binned read counts to a “germline” control using the 
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parameter ‘variable.width.reference = composite_wt_file.bam’. This step removes CNA calls 

present in WT cells. 

Second, I intended to eliminate false positive calls by focusing on CNAs exceeding 20 

Mb in size. This is because it is computationally challenging to distinguish whether changes in 

read-count are due to amplification biases or are in fact true CNAs [115]. Therefore, this step 

allows us to validate each event by visually inspecting changes in read count density on 

chromosome ideograms generated by BreakpointR that are large enough to verify as real CNAs. 

Breakpoints that were marked by a notable change in read count density in BreakpointR 

ideograms were added to the comprehensive CNA callset. Next, I re-ran AneuFinder on 

individual BAM files for WT cells without the use of a variable width reference to identify 

somatic CNAs that have occurred in WT cells and are not present in all WT cells. 

The following settings in AneuFinder were used: low-quality alignments (mapping 

quality score (MAPQ) < 10) and duplicate reads were excluded and read counts in 2 Mb variable-

width bins were determined with a 10-state Hidden Markov Model with copy-number states: 

null-, mono-, di-, tri-, tetra-, penta-, hexa-, septa-, and octasomy. I also set ‘strandseq = TRUE’ 

and ‘gc.correction = TRUE’. 

 

3.3 Results 

3.3.1 Genome-wide screening for SCEs 
 

I mapped 14,879 SCEs from 1684 KBM7 cells across all RecQ KO lines. I show a 

genome-wide distribution of SCEs and found strong correlations (R = 0.93, p < 0.001) between 

the number of SCEs on each chromosome and chromosome length, suggesting that on a global 



 
 

84 

scale, these events are randomly distributed across the genome in accordance with previous 

findings of SCEs from Bloom Syndrome patient cells (Figure 3.11) [25] 

 

Figure 3.11 Mapping of SCEs in single cells. 
(A) Mapping of SCEs in three haploid KBM7 cells using Strand-seq. Directional chromosome ideograms 
show reads mapping to the Crick (positive) strand of the reference genome in green and reads mapping to the 
Watson (negative) strand in orange. SCEs are identified as a change in template strand state within a 
chromosome (arrowheads). (B) Genome-wide summary of SCE density. (C) Correlations between average 
numbers of SCEs/chromosome/library and chromosome size. 
 

I found a median resolution for all SCEs of 19.2 Kb (Figure 3.12A). Next, I assessed the 

accuracy of our bioinformatic approach to detect SCEs using a manually curated benchmark set 

of SCEs that were generated as a golden standard to compare the performance of different 

methods. I ran BreakpointR with and without any processing steps used the benchmark set to 

calculate precision and recall at multiple measures of overlap between the SCE calls made by 

each method and our benchmark set (Figure 3.12B). 
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Figure 3.12 SCE mapping resolution and accuracy. 
(A) Resolution of SCE mapping in KBM7 cells. Lines represent cumulative density of the total number of 
SCEs mapped at resolution values indicated below. (B) Precision and recall comparing performance of 
BreakpointR alone and with additional processing steps mentioned above to remove false positive calls. This 
plot assesses how many SCEs are appropriately called with direct overlap or within a maximum gap of 10 
Kb, 100 Kb, 500 Kb, 1 Mb and on a chromosome-ideogram level. 
 
 

Next, we investigated differences in SCE frequency between RecQ KO KBM7 cell lines 

using good quality Strand-seq libraries. As stated in Section 2.2.2.3, 1684 good quality Strand-

seq libraries collected over 21 independent sequencing experiments were pooled for this 

analysis. There were several genotype-specific differences in SCE levels. Upon knockout of 

BLM or WRN helicase, the number of SCEs per haploid genome rose by 2.34 and 1.5-fold, 

respectively (Table 3.1, Figure 3.13). Upon knockout of BLM/RECQL5, there was also an 

increase in SCE levels by 2.3-fold that was not significantly different than for BLM knockout 

cells alone (Table 3.1, Figure 3.13). There was no significant change in SCE levels upon 

knockout of RECQL1 and RECQL5 (Table 3.1, Figure 3.13).  
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Figure 3.13 Number of SCEs detected per haploid genome in a single cell division for RecQ helicase single 
and double knockouts in the KBM7 cell line. 
Number of cells analyzed (n) is shown above. Statistical significance was evaluated using a two-sample t-test 
where WT cells are the control group. **** p < 0.001, ** p < 0.01, not significant (ns) p > 0.05. 
 
 
 

Knockout 
line 

Number 
of cells 

% Haploid 
cells 

Total 
SCEs 

Mean 
SCEs/haploid 

genome 

Standard 
deviation 

SCEs/haploid 
genome 

Standard 
error of 

the mean 

 
Fold change 

in 
SCEs/haploid 

genome 
BLM 489 70% 5841 7.76 5.38 0.24 2.34 

BLM/ 
RECQL5 
 

320 98% 2456 7.62 7.01 0.39 2.30 

RECQL1 172 43% 909 3.39 2.25 0.17 1.02 

RECQL5 245 93% 967 3.66 1.99 0.13 1.10 

WRN 144 0% 1434 4.98 2.21 0.18 1.50 

WT 314 99% 1049 3.32 1.78 0.10 1.00 

 
Table 3.1 Comparison of SCE frequency by genotype 
 

To investigate the large variation in SCE levels in individual BLM and BLM/RECQL5 

KO cells (Table 3.1), SCE levels in relation to ploidy were analyzed (Figure 3.14). WRN KO 

cells were omitted from this analysis since all WRN KO cells were found to be diploid (Table 1). 
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After correction for genome content, a significant increase in SCEs in diploid compared to 

haploid cells with the same targeted disruption of the BLM gene was found (Figure 3.14, Table 

3.2). Haploid BLM/RECQL5 KO cells had significantly higher SCE levels than diploid 

BLM/RECQL5 KO cells with the caveat that there were only 6 diploid cells (Figure 3.14, Table 

3.2). There were no changes in SCE levels between haploid and diploid cells for RECQL5, 

RECQL1 and WT cells (Figure 3.14, Table 3.2). 

 
Figure 3.14 Number of SCEs detected per haploid genome in a single cell division for RecQ helicase single 
and double knockouts in the KBM7 cell line grouped by ploidy of cells.  
Statistical significance was evaluated using a two-sample t-test between haploid and diploid cells of the same 
gene knockout. **** p < 0.001, ** p < 0.01, not significant (ns) p > 0.05 
 
 

Knockout 
line Ploidy 

# Of 
cells 

# Of 
SCEs 

Mean 
SCEs/haploid 

genome 

Standard 
deviation 

SCEs/haploid 
genome 

Standard 
error of 

the mean 

Fold change 
in 

SCEs/haploid 
genome 

Adjusted 
p-value for 

dip/hap 
comparison 

BLM 1 341 1748 5.13 2.87 0.16 1.55 

2.28E-48 BLM 2 148 4093 13.83 4.92 0.40 4.61 

BLM/ 
RECQL5 

1 314 2421 7.71 7.04 0.40 2.33 2.25E-07 
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BLM/ 
RECQL5 

2 6 35 2.92 0.97 0.40 0.97 

RECQL1 1 74 257 3.47 2.92 0.34 1.05 

1.00E+00 RECQL1 2 98 652 3.33 1.58 0.16 1.11 

RECQL5 1 229 825 3.60 2.00 0.13 1.09 

3.14E-01 RECQL5 2 16 142 4.44 1.60 0.40 1.48 

WRN 1 0 0 0.00 0.00 0.00 0.00 

N/A WRN 2 144 1434 9.96 2.21 0.18 3.32 

WT 1 314 1037 3.30 1.78 0.10 1.00 

1.00E+00 WT 2 2 12 3.00 1.41 1.00 1.00 

 
Table 3.2 Comparison of SCE frequency by genotype grouped by ploidy of cells 
 

After using BreakpointR’s auxiliary hotspotting function to identify recurring breakpoints 

and remove non-SCE SVs by examining read distributions on the UCSC Genome Browser, I 

confirmed the presence of regions with significantly clustered SCEs. One was near the FRA20A 

CFS (Figure 3.15). This site had 22.3 SCEs/Mb relative to only 0.89 SCEs/Mb on average across 

the whole genome (Figure 3.15). 

 

Figure 3.15 UCSC Genome Browser example of SCE hotspot within FRA20A common fragile site  
CFS shown in orange box. Confidence intervals for detected SCEs from individual cells are depicted as black 
bars. Coordinates for CFS were collected from Kumar et al., 2019 [116]. 
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3.3.2 Genome-wide screening for translocation 
 

As mentioned in Section 3.2.3, the Philadelphia chromosome translocation was found in 

our dataset using our custom algorithm. The breakpoint confidence interval for this translocation 

is 18.7 Kb and 13.7 Kb for chromosome 9 and 22, respectively (Figure 3.16). Conventional 

methods for genome wide screening for translocations such as karyotyping and Interphase FISH 

have  a resolution of 5 Mb and 50 to 100 kb, respectively [117]. Although some methods such as 

ChromPET do have base-pair resolution, they require prior knowledge for targeted sequencing 

whereas our method is a naïve approach for searching genome-wide for unknown translocations 

[117]. 

 

Figure 3.16 Translocation resolution for Philadelphia chromosome breakpoints. 
(A) UCSC Genome Browser image of translocation breakpoints for chromosome 9 shown with confidence 
intervals for 13 breakpoints from individual cells sorted by start position (black bars) (top). Density of all 
breakpoint intervals for chromosome 9 with 99% confidence interval shown in dashed red line (bottom). B) 
UCSC Genome Browser image of translocation breakpoints for chromosome 22 shown with 12 example 
confidence intervals for breakpoints from individual cells sorted by start position (black bars) (top). Density 
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of all breakpoint intervals for chromosome 22 with 99% confidence interval shown in dashed red line 
(bottom).  
 
3.3.3 Genome-wide screening for CNAs  
 

I first searched for germline CNAs present in all our WT cells that were not removed by 

AneuFinder. Two “germline” duplications in WT cells were detected using a composite BAM 

file of WT cells. Next, I looked for somatic CNAs that were present in single WT cells only and 

verified each one independently by inspecting read depth and strand state switches on binned 

read count ideograms (Figure 3.17A). 30 somatic CNAs in WT cells were found. All together I 

found 178 somatic duplications (blue) and 451 somatic deletions (red) in single and double RecQ 

helicase knockout KBM7 lines (Figure 3.17B).  

 

Figure 3.17 Mapping of CNAs in single cells. 
(A) Genome-wide summary of CNAs in a composite BAM file of all WT cells. (B) Examples of somatic 
duplications and deletions from seven cells on chromosome 3. (C) Genome-wide summary of CNAs from 
separate RecQ knockout lines. Duplications shown in blue. Deletions shown in red.  

 

CNA frequency was calculated by the number of CNAs per cell and showed a significant 

increase in deletions upon knockout of BLM or WRN and only a slightly significant increase 

upon knockout of BLM/RECQL5 compared to WT cells (Figure 3.18A). There was also a 
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significant increase in the frequency of duplications upon knockout of WRN and a slightly 

significant increase upon knockout of BLM and WRN/RECQL5 (Figure 3.18A). No changes in 

CNA frequency were observed upon knockout of RECQL1 and WRN (Figure 3.18A). 

Interestingly, the resolution at which we can observe CNA breakpoints allows us to discern 

clonally derived events from events that have occurred independently in the same region in two 

different cells. A representative example of this is shown where two CNA breakpoints on 

chromosome X ideograms appear to have derived from the same parent cell but the UCSC 

Genome Browser plotting of each cell’s reads highlights two distinct breakpoints in and around 

the PCDH11X gene suggesting these events are not clonally derived but arose independently 

(Figure 3.18B). 
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Figure 3.18 Analysis of somatic CNAs in single cells. 
(A) Frequency of CNAs in single RecQ-deficient cells with the number of cells analyzed listed above. (B) 
Example duplication on chromosome X reveals distinct duplication breakpoints within PCDH11X gene when 
examined on UCSC Genome Browser. Number of CNAs analyzed (n) is shown above. Statistical significance 
was evaluated using a two-sample t-test where WT CNAs are the control group. **** p < 0.001, ** p < 0.01, 
not significant (ns) p > 0.05 
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3.4 Discussion 

Strand-seq offers a novel approach for interrogating the genome of single cells for 

chromosomal instability by mapping SCEs, translocations, and CNAs to the genome at kilobase 

resolution.  

In our datasets of high confidence SCE calls, I show there are notable genotype-specific 

differences in SCE frequency that I was able to quantify. There was a significant increase in SCE 

frequency upon knockout of BLM and BLM/RECQL5 but there was no significant increase in 

RECQL5 KO cells or between BLM and BLM/RECQL5 KO cells suggesting BLM and RECQL5 

may have redundant functional roles in preventing SCE formation. This contradicts previous 

findings that these enzymes have non-redundant roles in suppressing sister chromatid 

recombination [62]. Changes in SCE levels in BLM KO cells were lower than what has 

previously reported with cells from patients with Bloom Syndrome or murine cells lacking BLM 

[25]. There was also a large standard deviation of SCE frequency in BLM/RECQL5 KO cells 

[25]. The number of SCEs in diploid cells was increased more than the expected two-fold 

relative to haploid BLM KO cells. These differences were significant suggesting that the haploid 

nature may alter the sensitivity to BLM helicase deficiency. Possible explanations for this remain 

unclear but it seems possible that doubling the DNA content in a cell may lead to more than 

double the replication conflicts due to saturation of the DNA repair machinery needed to prevent 

SCE formation. This trend was likely not observed in in BLM/RECQL5 KO cells because there 

were only 6 diploid cells in our analysis leading to underpowered statistical tests.  

I initially show that on a global scale, these events appear to be randomly distributed 

across the genome. However, I also found regions of the genome harboring a significant number 

of SCEs relative to neighboring regions known as SCE hotspots, suggesting that on a local scale 
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these events are perhaps not randomly distributed. This is consistent with previous findings that 

SCEs can occur more frequently in CFSs due to replication stress and replication fork stalling 

[25]. However, it remains unclear what factors in our cells may predispose cells to having these 

SCE hotspots and thus further studies are needed to identify if specific genetic elements that may 

be contributing to the occurrence of these events. It should be noted to improve the resolution of 

SCE breakpoints, we can increase the depth of sequencing albeit at increased sequencing costs. 

This approach will allow SCEs to be mapped more finely to genetic regions that are problematic 

for replication and transcription machinery. 

 Furthermore, I did find some genotype-specific differences in CNA frequency. From the 

significant increase in somatic deletions and duplications from BLM and WRN KO lines, these 

genes likely play a role in preventing somatic CNAs. Interestingly, two well defined CNA 

breakpoints from two different cells were found to occur within the same gene, PCDH11X. The 

resolution of these breakpoints revealed these CNAs were far enough apart within this gene to be 

considered two separate events arose in two cells independently rather than in one original 

ancestral cell. This may suggest this gene is problematic for replication and prone to aberrant 

repair outcomes in the form of CNAs however, I did not observe any other instances of this. 

Together, these findings support the role of WRN and BLM helicases in preventing SCEs and 

CNAs.  
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Chapter 4: Role of BLM and RECQL5 in DNA repair  

 

4.1 Introduction 

Since their discovery in the mid 1970s, many DNA helicases have emerged as important 

DNA repair proteins [118]. Their critical role in DNA repair pathways is highlighted by their 

association with aging and cancer-prone disorders [118]. Many helicases assist in normal DNA 

repair by unwinding and resolving alternatively folded DNA structures that can arise during 

transcription, recombination or repair of DSBs [3]. Repair of DSBs is a highly dynamic process 

that involves a balance between multiple, distinct pathways. During HR, a wide variety of DNA 

structures can be formed between broken DNA ends and homologous donor template molecules 

that need to be resolved by specific nucleases and helicases. Mutations in such enzymes can 

result in failure to properly resolve intermediate joint molecules and aberrant repair outcomes 

such as gene conversion and loss of heterozygosity may contribute to genomic instability, cancer 

predisposition and the progressive deterioration of normal cell function  [8], [19], [119]. The 

RecQ class is of particular interest because mutations in four of five genes in this class are linked 

to disorders of genome instability, characterized in some cases by aging or cancer predisposition. 

Cells deficient in these helicases exhibit genome instability evidenced by high spontaneous 

somatic mutation rates, loss of heterozygosity and an elevated frequency of SCEs. Although 

RECQL5 has not yet been associated with a specific disorder, recent studies support the 

hypothesis that RECQL5 can resolve intermediate DNA repair structures such as stalled 

replication resulting from the collision of replication machinery with lesions or secondary 

structures that would otherwise result in template switching and SCEs. Researchers have also 

shown an additive phenotype when RECQL5 is knocked out with another helicase in the class, 
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BLM, further supporting the non-redundant role of these genes in DNA repair. Therefore, I 

wanted to investigate the unique role of RECQL5 relative to other genes in the RecQ class. 

 As discussed in Chapter 1, there are many challenges studying the precise role of DNA 

repair and associated enzymes. This in part stems from genetic pleiotropy of the many enzymes 

involved in DNA repair [3]. Helicases with overlapping functions may have redundant roles or 

they may be regulated for specific use. For example, Srs2 is a yeast helicase responsible for 

regulating RAD51 displacement from ssDNA and promoting crossover-avoidance [118]. In 

humans, all 5 members of the RecQ class are homologs of Srs2, each of which have been shown 

to have both unique and overlapping roles in DNA repair, G4 unwinding, end resection and 

RAD51 displacement activity [118]. Secondly, the outcome of faulty DNA repair in the form of 

complex somatic SVs remain elusive to conventional short-read sequencing technologies 

As discussed in Chapter 2, new sequencing approaches such as Strand-seq can help 

uncover helicase function by mapping the location of complex genome alterations in cells in 

which helicase function is lost [120]. Strand-seq was developed in 2012 and has been used to 

map sister chromatid exchange events (SCEs) to the genome at kilobase resolution in cells 

deficient in the BLM helicase from a Bloom Syndrome patient [25], [56]. This study confirmed 

that murine cells lacking the BLM helicase have up to 10-fold more SCEs compared to healthy 

controls [25]. SCEs in BLM cells were enriched in known fragile sites and near G4 forming 

motifs in the genome, providing further support for the notion that the BLM helicase is required 

to prevent exchanges of DNA strands during recombination and repair at specific genomic 

locations [25]. SCEs are a useful indicator of genomic instability and indicate replication fork 

stalling and template switching have occurred due to gaps in single stranded DNA or DNA 

lesions [43]. It is well documented that the genomic context plays a role in biasing repair 
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outcomes because of replication impeding structures, such as G-quadruplexes, and non-allelic 

recombination susceptible areas, such as LCRs, that arise in repetitive areas of the genome [3], 

[8]. Therefore, we hypothesize that SCEs are not randomly distributed across the genome upon 

KO of each RecQ helicase. In this chapter, I test this hypothesis and clarify the role of specific 

helicases in resolving different kinds of replication barriers by investigating the genomic context 

of SCEs.  

I used Strand-seq to map SCEs in KBM7 cell lines deficient in RECQL1, BLM, WRN, 

RECQL5 and BLM/RECQL5 together. I collected 14,879 SCEs from 1684 cells across all cell 

lines in order to identify regions in the genome where SCEs are more likely to occur. These 

studies yielded novel information about molecules and pathways involved in recombination and 

sister chromatid exchange mechanisms in mammalian cells. Such information is essential to 

elucidate currently poorly understood medical conditions and inform therapeutic strategies in 

cancer. 

 

4.2 Methods 

4.2.1 Generation of comprehensive SCE and SV call sets  

It was previously shown that SCEs can be detected using Strand-seq and that elevated 

rates of spontaneous SCEs can be induced by knocking out RecQ helicases (Chapter 3). Several 

hundred single-cell Strand-seq libraries were generated for each of the RecQ KO cell lines across 

21 independent sequencing experiments and pooled together for this analysis. I introduced 

accurate and scalable bioinformatic approaches to identify and map SCEs to their exact locations 

in the genome (Chapter 3). I showed that SCE rate per haploid genome for cells deficient in 

BLM, WRN and BLM/RECQL5 were ~2x higher SCE rates than in WT cells. Here, my 
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comprehensive SCE call sets was used to investigate if SCEs are not randomly distributed across 

the genome. As an additional control, I collected SCEs using the methods discussed in Chapter 3 

from Strand-seq libraries generated from the EBV-transformed lymphocyte cell line, NA12878, 

using the same library preparation methods discussed in Chapter 2. 

 

4.2.2 Bioinformatic tools for assessing the enrichment of SCEs with genetic elements 

I wanted to investigate the possibility that SCEs may occur preferentially at certain 

genomic features of interest (FOI). However, statistically assessing the relation between a set of 

genomic regions and other genetic FOIs poses a few challenges. For one, the position of each 

SCE is unique to the cell it occurred in, and it is extremely rare for two SCEs to occur in the 

exact same position in two cells, thus the location of SCEs cannot be directly compared across 

cells. Secondly, it is difficult to assign a significance level to the degree of association between 

two sets of genetic regions [121]. For example, if nearly all SCEs overlap with one FOI it might 

be reasonable to assume that SCEs are associated with this FOI however, this could in fact be 

coincidental or owing to the abundance or the size of the FOI in the genome [121]. For this, an 

expected (random) distribution is needed for comparison to say for certain if SCEs are in fact 

associated with a given FOI. Lastly, when using a randomization-based approach for devising a 

random distribution, we need to account for the complexity of the human genome [121]. For 

example, the human genome is made up of 46 separate molecules in diploid cells and 23 

molecules in haploid cell and each of which consists of unmapped gaps in the human reference 

genome that need to be accounted for when assessing the overlap of any genetic elements [121].  

Here, I introduce a robust approach to statistically assess the association between SCEs 

and a FOI using a permutation model to simulate an expected background frequency of 
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association. I have used several permutation models to generate random distributions of SCEs; 

however, I found, RegioneR, to be a highly reliable bioinformatic tool for implementing a 

permutation tests involving genomic regions [121]. Briefly, with each permutation test the 

number of overlaps between SCEs from a particular cell line and a FOI were counted as the 

experimentally reported value (Figure 4.1). Next, all SCE coordinates were randomly shuffled 

along the same chromosome and overlaps are recounted (Figure 4.1). Annotated assembly gaps 

are excluded from possible shuffled SCE coordinates to prevent shuffling into regions where few 

to zero reads map. This permutation is repeated 1000 times to generate a distribution of 

randomly simulated overlaps, or permuted values (Figure 4.1). The significance levels for each 

enrichment analysis were calculated as follows. Both the experimentally reported or observed 

value and permuted values were normalized to the median permutated value to determine the 

relative enrichment of experimentally reported SCEs over an expected, randomized distribution 

(Figure 4.1). Any experimental overlap that lies outside of the 95% confidence interval of the 

randomized distribution was given a p-value below 0.05 and was deemed significant (Figure 

4.1). Experimental overlaps lying outside of the entire permuted range were given a p-value 

below 0.001 (Figure 4.1). 

For each RecQ KO line, a permutation analysis was performed to calculate the frequency 

of SCE regions overlapping with an FOI and compared it against the expected background 

frequency. Next, the significance of enrichment or depletion from one KO line to that of WT 

cells was compared in order to draw conclusions based on trends that were present in a KO line 

but not in our WT line.  
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Figure 4.1 Enrichment analysis workflow using permutation tests. 
Experimental overlaps of SCEs with a FOI are counted and compared to a randomized distribution of 
overlap between permuted SCEs and the same FOI. Both the experimentally reported value and permuted 
values were normalized to the median permutated value to determine the relative enrichment of 
experimentally reported SCEs (red dot) over an expected, randomized distribution (blue violin plot). 
Experimental overlaps lying outside of the entire permuted range were given a p-value below 0.001. 
 

4.2.3 Genetic element datasets  

Here, the association between SCEs and genes with potential G4s was investigated. 

Transcriptional activity is a well-known cause of genome instability due to transcription-

replication conflicts and R-loop formation. Multiple RecQ helicases are also known to bind and 

unwind G4 structures in vitro. Additionally, G4s have been shown to frequently associate with 

gene promoters and gene bodies [24]. Below I discuss how I obtained datasets for each of these 

FOI. 

 

4.2.3.1 Collection and clustering of genes from KBM7 cell line 

To investigate the association of genes with SCEs, gene body annotations were obtained 

from Ensembl (GRCh38.p13) and genes were divided by both transcriptional activity and gene 

essentiality (Figure 4.3). First, transcriptional activity was assessed using KBM7 RNA-seq data 

obtained from Rodríguez-Castañeda et al [122]. Genes with the number of fragments per 
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kilobase of processed transcript per million fragments mapped (FPKM) values of 0 were 

designated as non-transcribed genes (n = 21,244) (Figure 4.3A). The remaining 19,320 genes 

with an FPKM > 0 were sorted by FPKM and split into three even groups: lowly expressed genes 

(n = 6,440), moderately expressed genes (n = 6,440) and highly expressed genes (n = 6,440) 

(Figure 4.2, Figure 4.3A).  

 

Figure 4.2 Density distribution of FPKM values across three transcriptional activity levels. 
Dotted red lines mark boundaries of FPKM values for each level of transcriptional activity. 
 

Next, genes were also clustered by essentiality for proliferation and survival in the human 

cancer cell line, KBM7 [123]. Gene essentiality was determined using data from a genome-wide 

sgRNA library screen that assesses the fitness cost associated with inactivation of each gene 

[123]. A CRISPR scores (CS) is assigned to each gene as the log2 fold change in the abundance 

of sgRNAs targeting that gene and significance values were assigned. Using a cut-off of p < 0.05 
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identified 2,165 genes as essential with the remaining 20,840 genes deemed non-essential 

(Figure 4.3B). 

The overlap of genes clustered by transcriptional activity with genes clustered by 

essentiality was investigated. I found 81% of essential genes are considered highly expressed 

versus 45% of non-essential genes (Figure 4.3 C-D). I also found 7% of essential genes were 

lowly expressed versus 20% of non-essential genes (Figure 4.3 C-D). 

 

 

Figure 4.3 Venn diagrams of genes clustered by transcriptional activity and gene essentiality.  
A Transcriptional activity of genes in KBM7 cell line. B Essentiality of genes for proliferation in KBM7 cell 
line. C Overlap of essential genes with highly and lowly expressed genes. Percentage of essential genes that 
are shared with each group of transcriptional activity is shown. D Overlap of non-essential genes with highly 
and lowly expressed genes. Percentage of non-essential genes that are shared with each group of 
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transcriptional activity is shown. RNA-seq data was obtained from Rodríguez-Castañeda et al. (2018) and 
gene essentiality was determined from CS values obtained from Wang et al. (2015). 
 

4.2.3.2 Collection of experimentally reported potential G4s  

To investigate the association of G4s with SCEs, datasets of putative G4 structures in the 

genome were obtained from a G4 sequencing method that identified structures forming under 

physiological K+ conditions at PQSs in the genome [22]. Marsico et al., 2019 defined PQSs 

using the following sequence motif: 𝐺!"𝑁#$#!𝐺!"𝑁#$#!𝐺!"𝑁#$#!𝐺!"	[22]. As discussed in 

Chapter 1, an equilibrium exists between PGS and G4s and methods for detecting G4s may alter 

the equilibrium between PQSs and G4s from native in vivo conditions. Therefore, all mentions of 

G4s herein Chapter 4 are considered potential G4s. 

4.3 Results 

Collisions between replication machinery and transcription machinery or secondary 

structures such as G4s are potential sources of SCEs. Therefore, I investigated how frequently 

SCEs occur at G4 quadruplexes and protein coding genes in RecQ KO cells and WT KBM7 cells 

by performing permutation analyses. I also incorporated a large dataset of SCEs from the diploid 

EBV-transformed B-lymphocyte cell line, NA12878, to serve as an additional control for ploidy. 

Enrichment analysis performed using gene datasets was performed using a 100 Kb SCE size cut-

off. However, G4s can occur more frequently than genes throughout the genome (~ 8.6 Kb on 

average) and performing enrichment analysis with SCEs with large confidence intervals would 

result in increased noise because of the high likelihood of permutated SCE regions overlapping 

with G4s due to their large size. Therefore, enrichment analysis performed using G4 datasets was 

performed using a 10 Kb SCE size cut-off. 
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4.3.1 Association between SCEs and genes containing potential G4 structures 

There were non-significant SCE enrichment with protein coding genes in all cell lines 

(Figure 4.4A). Interestingly, SCE enrichments for G4s in RECQL1 and BLM cell lines were 

detected but no such trend were found in WT cell lines, suggesting some sort of relationship 

exists between RECQL1, BLM and G4s (Figure 4.4).  

 

 
 
Figure 4.4 SCE enrichment at protein coding genes and G4 quadruplexes.  
SCE enrichment patterns for (A) protein coding genes (B) G4s (C) protein coding genes with at least one G4 
(D) protein coding genes without a G4. Normal cell lines are indicated in blue, RecQ KO cell lines in red. 
Violin plots represent the expected range for random overlap. Red dots represent overlap of SCE with FOI 
described above each plot. P-values calculated from permutation test described in Section 4.2.2. **** p < 
0.001, ** p < 0.01, not significant (ns) p > 0.05. 
 

It should be noted the violin plots for permutated data show more narrow distributions in 

the BLM, BLM/RECQL5 and NA12878 cell lines than in other cell lines. This is because of the 

higher numbers of SCEs that were collected from these cell lines. To exclude the possibility that 

SCE enrichment values in the cell lines are caused by the higher numbers of SCEs, I repeated the 

analysis for the same number of SCEs across all cell lines. A constant number of randomly 
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sampled SCEs were selected from each cell line and the enrichment analysis was repeated 

(Figure A3.2). The permutated ranges appeared more similar across cell lines when constant 

numbers of SCEs across cell lines are used however, the enrichment patterns across the different 

cell lines were conserved (Figure A3.2). Therefore, I conclude that the higher number of SCEs 

analysed does not confound enrichment analysis. 

 

4.3.2 Association between SCEs and gene essentiality  

Next, I wanted to focus on unique subsets of genes and the possible synergistic role of 

potential G4s in SCE formation. Therefore, my dataset of genes ranked by essentiality was used 

to divide genes into six categories: essential genes, non-essential genes, essential genes 

containing at least one potential G4, essential genes not containing any potential G4s, non-

essential genes containing at least one potential G4 and non-essential genes not containing any 

potential G4s. I detected SCE enrichments for essential genes only in the RECQL1 cell line, but 

no such trend in other cell lines, including the WT and NA12878 lines (Figure A3.3A). I also 

found no significant SCE enrichments in non-essential genes across all cell lines, except for a 

minor depletion in the NA12878 cell line (Figure A3.3B). Next, I found that significant SCE 

enrichment for essential genes in the RECQL1 cell line was conserved regardless of potential G4 

presence, suggesting potential G4 structures may not impact SCE formation in the absence of 

RECQL1 (Figure A3.3 C-D). Strikingly, for both essential and non-essential genes without at 

least one potential G4 structure I found significant SCE enrichments in BLM cell lines (Figure 

A3.3 D-F). These results indicate that SCEs in RECQL1 deficient cells may be due to the active 

transcription of essential genes and that SCEs in BLM deficient cells may preferentially occur in 

genes without potential G4 structures. 
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Although, SCE enrichment in the RECQL1 cell line seemed to be independent of 

potential G4 presence, I wanted to investigate if potential G4 “strandedness” has any effect on 

SCE formation by separating genes into those with potential G4s on the template strand and 

those with potential G4s on the coding strand and repeating SCE enrichment analyses for both. I 

found significant SCE enrichment for essential genes with potential G4s on the template strand 

in the RECQL1 cell line but not for essential genes with coding strand potential G4s (Figure 

A3.4 C-D). This trend was not observed in WT cells or in the RECQL1 cells line with respect to 

non-essential genes with potential G4s on the transcribed or coding strands (Figure A3.4 C-F). 

Together, these results suggest that the SCE enrichments for essential genes with potential G4s 

in RECQL1 deficient cells is mainly caused by potential G4 structures on actively transcribed 

template strands. 
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Figure 4.5 SCE enrichment at essential and non-essential genes with and without G4 quadruplexes. 
SCE enrichment patterns for (A) essential genes (B) non-essential genes (C) essential genes with a G4 (D) 
essential genes without at least one G4 (E) non-essential genes with a G4 (F) non-essential genes without at 
least one G4. Normal cell lines are indicated in blue, RecQ KO cell lines in red. Violin plots represent the 
expected range for random overlap. Red dots represent overlap of SCE with FOI described above each plot. 
P-values calculated from permutation test described in Section 4.2.2. **** p < 0.001, ** p < 0.01, not 
significant (ns) p > 0.05. 
 

 

4.3.3 Association between SCEs and gene transcriptional activity  

After establishing an association between RECQL1 and SCE formation in essential genes 

with potential G4s on the transcribed strand, I wanted to investigate the effect of transcriptional 

activity on SCE formation. As discussed in Section 4.2.3.1, I used RNA-seq data from KBM7 

cells to group genes into four categories by transcriptional activity: highly expressed genes, 
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moderately expressed genes, lowly expressed genes, and non-expressed genes (Figure 4.3). I 

found a modest relationship between SCE enrichment and transcriptional activity for certain KO 

lines. Mainly, I detected significant SCE enrichments for highly transcribed genes in WT, WRN 

and BLM/RECQL5 lines that were not present at any other transcriptional level. Strikingly, this 

trend was the most pronounced for BLM/RECQL5 cell lines and the least pronounced with the 

WT cell line (Figure A3.4). I also found a significant SCE enrichment for moderately and lowly 

expressed genes in BLM cell lines that was not present in WT cells (Figure A3.4). Taken 

together, these results indicate there is a modest association between transcriptional activity and 

SCE formation in BLM and BLM/RECQL5 cell lines. 

To further elucidate the association between transcriptional activity and SCE abundance 

for BLM and BLM/RECQL5 cell lines, I wanted to investigate the possible synergistic role of 

potential G4s and transcriptional activity on SCE abundance. Interestingly, I found extremely 

significant SCE enrichment with highly transcribed genes containing at least one potential G4 in 

the BLM/RECQL5 cell lines but not for highly transcribed genes not containing any potential 

G4s (Figure A3.5 A-B). This trend was less pronounced in WT cells (Figure A3.5 A-B) 

suggesting that SCE formation in cells deficient in BLM and RECQL5 may preferentially occur 

at highly transcribed genes containing at least one potential G4. Interestingly, this trend was 

reversed in the BLM cell lines, such that SCE enrichment was only present with highly 

transcribed genes not containing any potential G4s but not with highly transcribed genes 

containing at least one potential G4, suggesting that SCE formation in cells deficient in BLM 

may preferentially occur at highly transcribed genes without any potential G4s (Figure A3.5 A-

B). There was also significant SCE enrichment in lowly transcribed genes containing at least one 

potential G4 in the BLM cell lines that was not present in lowly transcribed genes not containing 
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any potential G4s (Figure A3.5 E-F). This trend was not observed in WT cells (Figure A3.5 E-F). 

Taken together, these results indicate that BLM may play multiple roles in preventing SCE 

formation. 

The results described above suggest multiple roles for BLM and BLM/RECQL5 in 

suppressing SCE formation at highly and lowly transcribed genes, with a possible synergistic 

effect of potential G4 presence in some cases. Therefore, I wanted to further investigate the role 

of potential G4 “strandedness” on SCE formation by separating transcriptionally grouped genes 

into those containing potential G4s on the template strand and those containing potential G4s on 

the coding strand and repeating SCE enrichment analyses. Enrichment patterns looked 

remarkably similar regardless of the strand of potential G4s, suggesting potential G4 

“strandedness” does not impact the enrichment of SCE formation for BLM and BLM/RECQL5 

cell lines 

I wanted to continue identifying specific features of genes that may predispose areas of 

the genome to replication stress. Large, transcriptionally active genes are often prone to 

replication stress and are frequently described as common fragile sites. Therefore, I grouped 

genes into those in top and bottom 50th percentiles for gene size and repeated SCE enrichment 

analyses. Our enrichment analysis considers gene size by using an expected (random) 

distribution for the comparison of SCE overlap with genes. For example, if larger genes were 

more likely to overlap with SCEs due to their larger size, this trend would be present in our 

random distribution and thus would be reflected in the enrichment score. I detected SCE 

enrichments for large, highly transcribed genes among BLM/RECQL5 cell lines, a trend that was 

also present in WT cells (Figure A3.7). I also detected significant SCE enrichments for small, 

highly transcribed genes in BLM and BLM/RECQL5 cell lines, a trend that was not present in 



 
 

110 

WT cells (Figure A3.7). Interestingly, SCE enrichments were also observed in large, lowly 

transcribed genes in BLM and to a lesser extent, RECQL1, cell lines and SCE depletions were 

observed in large, non-expressed genes in RECQL1 cell lines (Figure A3.7). Both trends were 

not present in WT cells (Figure A3.7). Together, these results suggest large, highly transcribed 

genes are normally prone to SCE formation regardless of RecQ helicase deficiency, however, 

cells may require BLM and to a lesser extent, RECQL1, to prevent SCE formation in small, 

highly transcribed genes.  

 
 
4.3.4 Association between SCEs and transcriptional activity and gene size 

The results described above suggest BLM and RECQL1 may have unique roles in 

suppressing SCE formation at small, highly transcribed genes and large, lowly transcribed genes. 

Next, I wanted to investigate if there was a synergistic effect of potential G4 presence with gene 

size and transcriptional activity. Therefore, I first separated large genes grouped by four 

transcription levels into two categories: large genes containing at least one potential G4 and large 

genes not containing any potential G4s. Enrichment patterns looked remarkably similar 

regardless of the presence of potential G4s, suggesting potential G4 presence in large genes does 

not impact the enrichment of SCE formation for BLM and RECQL1 cell lines (Figure A3.8). 

Then, I separated small genes grouped by four transcription levels into two categories: small 

genes containing at least one potential G4 and small genes not containing any potential G4s. 

Enrichment patterns also looked similar regardless of the presence of potential G4s, suggesting 

potential G4 presence in small genes also does not impact the enrichment of SCE formation for 

BLM and RECQL1 cell lines (Figure A3.9). 
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4.3.5 Association between SCEs and gene function and size 

Based on the results in Figure 4.5, I found an association between RECQL1 and essential 

genes containing at least one potential G4 on the transcribed strand. Therefore, I wanted to 

investigate any potential synergistic effects of gene size and gene function, so I grouped essential 

genes into six categories: essential genes containing at least one potential G4, essential genes not 

containing any potential G4s, large essential genes containing at least one potential G4, large 

essential genes not containing any potential G4s, small essential genes containing at least one 

potential G4 and small essential genes not containing any potential G4s. Strikingly, I detected 

significant SCE enrichments in large essential genes containing at least one potential G4 and 

small essential genes not containing any potential G4s in the RECQL1 cell lines, suggesting 

RECQL1 has multiple functions in suppressing SCE formation (Figure 4.6 C-F). SCE 

enrichments were also detected in small essential genes regardless of potential G4 presence in 

BLM cell lines (Figure 4.6 E-F). Both trends were less pronounced in WT cells (Figure 4.6 C-F). 
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Figure 4.6 SCE enrichment at large and small essential genes with potential G4 quadruplexes. 
SCE enrichment patterns in (A) large essential genes (B) small essential genes (C) small essential genes 
containing at least one potential G4 and (D) small essential genes not containing any potential G4s. Normal 
cell lines are indicated in blue, RecQ KO cell lines are indicated in red. Violin plots represent the expected 
range for random overlap. Red dots represent overlap of SCEs with FOI described above each plot. P-values 
calculated from permutation test described in Section 4.2.2. **** p < 0.001, ** p < 0.01, not significant (ns) p 
> 0.05. 
 
 
4.4 Discussion 

SCEs are a useful indicator of genome instability, but their exact mechanism remains 

incompletely understood [25]. Several RecQ helicases have been shown to play a role in 

suppressing SCE formation however, mapping SCEs to fine coordinates in the genome has been 

a major limitation of using cytogenetic detection methods to uncover the role of RecQ helicases 
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in SCE formation [25]. I used Strand-seq and custom bioinformatic methods discussed in 

Chapters 2 and 3 to map SCEs to the genome at kilobase resolution and here, I investigated the 

non-random distribution of SCEs in the genome. This approach allowed us to identify areas of 

the genome that are more troublesome for replication and prone to SCE formation and reveal 

protective functions of several RecQ helicase in preserving genome integrity in these areas. 

Using our customized SCE enrichment analysis pipeline, I show that SCEs in several RecQ 

helicase deficient cell lines are frequently occurring in subsets of genes with a possible 

synergistic role of potential G4 presence. I found strong SCE enrichments for large, essential 

genes containing a potential G4 on the transcribed strand in RECQL1 deficient cells. This is 

consistent with previous findings that RECQL1 can bind to and unwind potential G4s in the 

promoter regions of genes [124]. Additionally, RECQL1 has been shown to unwind other DNA 

structures such as replication fork joint molecules and promote ssDNA annealing and branch 

migration of dHJs and D-loops [61]. Considering I found strong SCE enrichments for small, 

essential genes not containing any potential G4s, its possible RECQL1 may suppress SCEs in 

these regions through one of the above-mentioned functions. These results are of interest 

considering the recently discovered genome instability syndrome, RECON syndrome, associated 

with RECQL1 [61]. RECON is characterized by progeroid facial features, small facial features, 

skin photosensitivity, xeroderma, and slender, elongated thumbs [61]. The fact that so many 

SCEs occur in specific subsets of actively transcribed genes in RECQL1 deficient cells, suggests 

that elevated SCE rates in RECON syndrome patient cells may be increasing somatic mutation 

rates within these gene to produce the associated clinical phenotype of RECON syndrome.  
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I also found unique SCE enrichments for highly transcribed genes in BLM/RECQL5 

deficient cell lines that was dependent on potential G4 presence. Further investigation revealed 

that these SCEs occurred preferentially in highly transcribed genes with potential G4s on the 

transcribed strand. This trend was reversed for the BLM deficient cell lines, such that SCE were 

uniquely and preferentially occurring in highly transcribed genes not containing potential G4s. 

Neither trend was observed for RECQL5. Additionally, lowly transcribed genes containing at 

least one potential G4 require BLM to prevent SCE formation. Together, these findings support 

the notion that BLM is responsible for unwinding potential G4 structures in actively and non-

transcribed genes and preventing SCEs in actively transcribed genes without potential G4s, 

whereas RECQL5 is exclusively responsible for preventing SCEs in actively transcribed genes 

with potential G4s. This suggests in the absence of RECQL5, BLM may compensate by 

unwinding potential G4s at actively transcribed genes and preventing SCEs at other actively 

transcribed genes, but in the absence of BLM, RECQL5 is unable to compensate for both roles of 

BLM in suppressing SCEs. This is consistent with the fact that there is a high frequency of G4 

motifs in genes, their ability to form potential G4 structures during the formation of transcription 

bubbles and that both helicases have been shown to unwind potential G4 structures in vitro [3], 

[25], [125]. However, this is inconsistent with previous findings from van Wietmarschen et al. 

2018 that found the BLM helicase unwinds potential G4s near actively transcribed genes 

containing potential G4s. One possible explanation for this is these previous findings relied on 

the use of G4 motifs that were identified as having G4-forming potential whereas my SCE 

enrichment analysis uses whole genome experimental maps of potential G4 structures collected 

from Marsico et al., 2019. These differences between G4 motifs and G4 structures could explain 

the difference in SCE enrichment observed in activeley transcribed genes containing potential 
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G4s from Bloom Syndrome patient cells from van Wietmarschen et al. 2018 and my BLM 

deficient cells because not all G4 motifs form G4 structures. 

Based on these results, I propose that the BLM helicase has multiple roles in preventing 

SCEs near actively transcribed genes, one of which is unwinding potential G4 structures that 

could possibly be shared by RECQL5. Indeed, potential G4 structures at sites of transcription can 

act as barriers to replication forks, resulting in persistent fork stalling and collision with 

replication machinery [3]. These collisions are a known source of genome instability, yet the 

exact mechanism has remained incompletely understood. Cells that experience increased SCE 

formation at these sites are at higher risk for the formation of deleterious by-products such as 

LOH or aberrant structural rearrangements, both of which can disrupt the coding sequence of 

genes and perturb gene function, giving rise to the clinical phenotypes associated with the 

absence of the BLM helicase. I believe the shared and unique roles of RECQL1, BLM and 

RECQL5 in preventing SCEs at these sites is essential to preserve genome stability and act as an 

anti-cancer barrier.  
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Chapter 5: Conclusion 

 

5.1 Summary of results 

The goal of my thesis was to develop new methods to investigate the role of RecQ 

helicases in genome stability. To this end, I have developed and implemented several methods 

for performing DNA repair studies in single cells using Strand-seq and identified several 

functions for RECQL1, RECQL5, BLM and WRN in genome stability. 

In Chapter 1, I summarized the role of genome instability in cancer. Because there are 

many ways the human genome can repair itself against endogenous and exogenous stressors, 

there are also many ways in which DNA repair can break down [3], [4], [126]. Faulty DNA 

repair machinery can contribute to the accumulation of mutations in the genome and the 

progressive deterioration of normal cell function [3], [4], [126]. Genome instability is a 

characteristic of almost all human cancers yet the amount, type, and source of genomic 

instability in tumour genomes differ substantially across tumour types and cell types [3], [4], [6], 

[126]. The association between deficiencies in several RecQ helicases and premature aging 

syndromes characterized by extreme cancer predisposition provide some insight into the 

relationship between DNA repair and cancer [12]. RecQ helicases are essential DNA repair 

genes that are believed to be responsible for suppressing inappropriate recombination during 

DSB repair however, their exact functions remain incompletely understood [12].  

In Chapter 2, I introduced novel methods for performing DNA repair studies in single 

cells using Strand-seq. I discuss the advantages and limitations of Strand-seq in comparison to 

other bulk WGS and scWGS techniques. Specifically, how the unique component of read 

directionality in Strand-seq libraries provides accurate detection of copy-neutral rearrangements 
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such as SCEs, inversions and translocations that typically evade detection otherwise [49], [56]–

[58]. I highlighted the limitations associated with using diploid cells, the original Strand-seq 

protocol and a manual QC step for filtering Strand-seq libraries. I introduced three 

implementations to address these limitations and improve the overall quality of DNA repair 

studies performed using Strand-seq. First, I used haploid cells to cut sequencing costs and 

improve breakpoint resolution for SCE and SV calling. Next, I revised the original Strand-seq 

protocol to improve cost, scalability, and quality of sequencing libraries. To that end, OP-Strand-

seq can produce 6 to 16-fold more libraries than the original Strand-seq protocol at 15% of the 

original cost with ∼4-fold greater complexity per cell on average, capturing up to 25% of the 

haploid genome in a single cell. Lastly, to address variable sequencing library quality and 

facilitate high-throughput QC, I developed an automated method for sorting the quality of OP-

Strand-seq libraries that exceeds the performance of existing methods. All together, these 

implementations allowed us to generate low-cost, good quality Strand-seq libraries for 

downstream SCE and SV calling and analysis in Chapter 3 and 4. 

In Chapter 3, I discussed how to harness the unique capability of Strand-seq to call 

different classes of SVs. SVs are a major source of genomic instability and contribute to 

significant intra-tumour heterogeneity. I summarized the approaches that have historically been 

used for SV detection and the challenges associated with SV discovery. As a new technology, 

Strand-seq has very few bioinformatic tools for SV discovery and of the tools that do exist, they 

often require domain experts to process the data. The accessibility of Strand-seq to field is 

therefore directly related to the collection of bioinformatic tools capable of exploiting the 

directionality of template reads for comprehensive SV discovery. To this end, I introduced the 

general framework for tools to map SCEs, translocations, and CNAs in Strand-seq libraries. The 
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SCE caller I developed has improved precision over alternative methods, owing to the removal 

of nearly all false positive SCE calls, and is capable of generating highly accurate SCE callsets. 

To date, no translocation caller using Strand-seq data exists. The method I developed describes a 

novel approach for the genome-wide screening of germline translocations in cells. This method 

was capable of finely mapping the coordinates of the Philadelphia chromosome translocation to 

the genome. Lastly, I demonstrated the unique advantage of using haploid cells to call CNAs in 

Strand-seq data. I demonstrate how approximately half of all CNAs in haploid cells have read 

depth changes associated with unambiguous strand-state switches than with diploid cells 

resulting in more accurate CNA calling in haploid cells than diploid cells. I believe these 

methods will undoubtedly facilitate the development of bioinformatic tools that can be used by 

the wider SV discovery community. 

In chapter 4, I investigated whether SCEs from different RecQ helicase deficient cell 

lines were non-randomly distributed across the genome. This approach allowed us to identify 

areas of the genome that are more troublesome for replication and prone to SCE formation as 

well as reveal specific functions of several RecQ helicase in preserving genome integrity in these 

areas. Using our customized SCE enrichment analysis pipeline, I identified a strong association 

between SCE formation and genes, with a possible synergistic role of potential G4 presence 

within genes. RECQL1 deficient cells exhibited strong SCE enrichments in large, essential genes 

containing a potential G4 on the transcribed strand and small, essential genes not containing any 

potential G4s, suggesting RECQL1 is capable of binding and unwinding potential G4s in large 

actively transcribed genes and suppressing replication fork stress in small, actively transcribed 

genes through an independent mechanism [124]. BLM/RECQL5 deficient cell lines exhibited 

SCE enrichments in actively transcribed genes containing at least one potential G4 on the 
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transcribed strand whereas BLM deficient cell lines exhibited SCE enrichments in actively 

transcribed genes not containing potential G4s. With neither trend observed in RECQL5 

deficient cell lines, these findings suggest that BLM may be responsible for suppressing SCE 

formation in actively transcribed genes by unwinding potential G4s and another independent 

mechanism, whereas RECQL5 is, to a lesser extent, capable of suppressing SCEs by unwinding 

potential G4s in actively transcribed genes. In other words, this evidence supports a redundant 

role between BLM and RECQL5. I propose that the BLM helicase has multiple roles in 

preventing SCEs near actively transcribed genes, one of which is unwinding potential G4 

structures that is shared by RECQL5. These findings are consistent with the fact that there is a 

high frequency of potential G4 motifs in genes that can form potential G4 structures during 

transcription and act as barriers to replication forks, resulting in persistent fork stalling and 

collision with replication machinery and SCE formation [3], [25], [125]. These collisions are a 

known source of genome instability and both helicases have been shown to unwind potential G4 

structures in vitro, however, the exact mechanism has remained incompletely understood [3], 

[25]. It should be noted that SCEs are considered error-free and do not result in any genetic 

alterations however, SCEs are considered a marker of genome instability due to increased 

recombinogenic activity and the possibility of LOH if homologous chromosomes are used for 

DSB repair or structural rearrangements if crossing over is unbalanced [25], [43]. I believe the 

shared and unique roles of RECQL1, BLM and RECQL5 in preventing SCEs at these sites are 

essential to preserve genome stability and acting as an anti-cancer barrier.  
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5.2 Limitations and weaknesses 

The importance of reproducibility, accuracy and scalability cannot be understated when 

evaluating different SV callers. The SCE and SV callers introduced in this thesis have unique 

advantages and specific improvements over alternative methods however, they still have 

limitations.  

A major challenge with SV calling, as discussed in Section 3.1.3, is calling SVs when 

multiple SVs are overlapping or nested within one another [104], [109]. The same challenge is 

also true for SCE calling, as discussed in Section 3.2.2, and comes with distinguishing “hotspots” 

that correspond to many SCEs occurring in the same area of the genome in multiple cells from 

SV breakpoints. To date, this can only be done on an individual basis by uploading bed-

formatted read count files generated by BreakpointR to the UCSC Genome Browser to identify 

whether the breakpoints for SCEs are clustering near each other in different cells or if SVs have 

produced identical breakpoints in multiple cells [112]. These regions are of particular interest 

because it is unclear whether regions susceptible to frequent SCE formation may also experience 

SV formation or if SVs such as translocations or inversions may be troublesome for replication 

and susceptible to frequent SCE formation.  

The major limitation of our translocation calling approach is the accuracy of detection for 

non-germline translocations present in a fraction of cells analyzed remains unclear. I have neither 

observed any somatic translocations nor tested our algorithm on data containing a somatic 

translocation. Therefore, the applicability of our translocation for somatic translocations in 

Strand-seq data is limited. 
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A major limitation of our CNA caller is the minimum size threshold placed on CNA 

calls. As discussed in Section 3.1.3, CNAs calling in regions of the genome associated with 

uneven or sparse sequencing coverage disrupts expected read depth changes and can lead to false 

negative and false positive calls [104], [109]. Therefore, I used a minimum size threshold for 

CNAs of 20 Mb to avoid false discovery associated with small CNAs at the expense of missing 

all CNAs less than 20 Mb all together. These challenges can of course be overcome with 

improved sequencing that has higher and more even sequencing coverage. 

 

5.3 Future applications  

5.3.1 Uncovering precise mechanistic role of RecQ helicases in DSB repair 

While my results show that certain subsets of genes containing secondary structure forming 

motifs are a cause of replication stress in absence of certain RecQ helicases, I was not able to identify 

the precise mechanistic function of these helicases in preventing replication fork stalling. I believe 

exposing our knockout lines to genotoxic compounds could inform our mechanistic 

understanding of RecQ helicase function. Using genotoxic compounds with known modes of 

action could inform the functional role of BLM and RECQL5 as compounds with different 

mechanistic action would likely yield different degrees of genome instability depending on gene 

function. However, this experiment poses several logistical challenges. Compounds that disrupt 

cell division, progression through the cell cycle or DNA replication may interfere with BrdU 

incorporation during Strand-seq library preparation. This type of experiment would need to 

ensure that cells have successfully divided once and incorporated BrdU into nascent strands after 

genotoxic compound exposure. This may involve testing multiple doses and incubation steps of 
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varying length during and after compound exposure followed by cell cycle analysis to assess 

progression through the cell cycle.  

As more accurate, novel datasets of sequences capable of forming secondary structures 

are discovered, SCE enrichment analysis will reveal more genetic elements that are troublesome 

for replication and prone to replication fork stalling and collapse. Increasing the power of SCE 

datasets will also strengthen the evidence for the molecular insights of how these helicases 

function in distinct genomic contexts.   

 

5.3.2 Improved resolution of strand state switches could reveal novel strand switches 

In Chapter 2, I highlighted the importance of improving strand state switch breakpoint 

resolution for the comprehensive discovery of SCEs and SVs. Considering the breadth of 

possible DSB repair outcomes, it seems possible that improving breakpoint resolution may 

reveal unique Strand-seq signatures depending on when a DSB occurs and how it is cleaved and 

repaired by HR (Figure 5.1). Figure 5.1 describes several theoretical DSB outcomes depending 

on when the DSB occurs and whether it is repaired by SDSA, dHJ formation or break induced 

replication (BIR). Each repair pathway could likely produce district signatures of small deletions, 

duplications, and strand state switches in one or both daughter cells (Figure 5.1). These Strand-

seq signatures could provide unique insight into small, novel repair events that have never been 

observed in vivo before. 
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Figure 5.1 Possible DSB repair outcomes using dHJ formation and associated Strand-seq signatures.  
Schematic shows DSB occurring after DNA replication and RAD51-mediated donor search forms double 
Holliday junction (dHJ) and depending on cleavage and ligation sites may result in paired deletion and 
duplication events in respective daughter cells. Below table summarizes Strand-seq-specific signature 
associated with each dHJ outcome. 
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5.3.3 Combinatorial approaches of DSB and SCE detection 

In this thesis, I used SCE frequency and location as a surrogate marker for the frequency 

and location of stalled or collapsed replication forks and DSBs occurring within a cell. However, 

for the majority of DSBs, the location of SCE does not always indicate the exact location of the 

DSB [39], [40]. As discussed in Chapter 1, there are several techniques that been used to detect 

the frequency and location of DSBs in cells, including γH2AX staining or the mapping of 

γH2AX markers using ChIP-seq [39], [40]. However, the resolution of γH2AX staining and 

mapping is still limited by the fact that γH2AX spreads over a region of several megabases 

around a DSB [39], [40]. Alternatively, there are several sequencing-based techniques for the 

direct detection of DSBs. For example, END-seq and DSBCapture are two methods capable of 

capturing DSBs before they are repaired [127], [128]. However, there is only a small window for 

capturing unrepaired DSBs, resulting in many repaired DSBs going undetected [39], [40]. Thus, 

a combinational approach involving the detecting of SCEs and DSBs using multiple techniques 

may be very useful for the accurate detection and analysis of DSB formation and repair.  

 

5.3.4 Resolving intra-tumour heterogeneity using combinatorial sequencing approaches 

Chapter 3 highlights the importance of having a comprehensive survey of the mutational 

landscape in single cells of a tumour to reconstruct the clonal evolution and devise therapeutic 

strategies in cancer. I believe the methods for SV discovery introduced in this thesis have 

improved the baseline for detecting SVs and SCEs in single cells. However, as discussed in 

Section 5.2, these methods suffer from unique limitations that prevent them from being able to 

reliably identify all SV types. Therefore, it seems reasonable that a combinatorial approach 

involving multiple sequencing technologies and SV callers may fill this gap by combining 
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unique strengths while overcoming individual weaknesses of multiple methods. A single 

bioinformatic tool for the automated and accurate full-spectrum detection of all SV types will 

undoubtedly advance our understanding of cancer, aging and poorly understood medical 

conditions. 

 

5.4 Conclusions 
 

Genome instability is a characteristic of almost all human cancers and considered a 

defining hallmark that drives oncogenesis and uncontrollable proliferation. In this thesis I 

hypothesized that different RecQ helicases have unique functions in preserving genome stability. 

Therefore, I developed novel methods to investigate the role of RecQ helicases in genome 

stability and identified several functions for RECQL1 and BLM in preventing replication stress, 

replication fork stalling and ultimately the formation of SCEs in subsets of actively transcribed 

genes. I believe the shared and unique roles of these helicases in preventing SCEs at these sites 

are essential to preserve genome stability and act as an anti-cancer barrier. Such information will 

help elucidate currently poorly understood DNA repair processes and will inform novel 

therapeutic strategies in cancer.
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Appendix A    

A.1 Primers for CRISPR-Cas9 KO screening 
 

Gene Chromosome Forward PCR primer Reverse PCR primer 

RECQL1 12 CCTTTGGCAAGGAGTTTGAA GCAGGTAAAAGGAGGACCTG 

BLM 15 TGGATTCTTTGCTCAGTTGGGA TCTCTGTGTTTCCTGTCCTGC 

BLM 15 CCGGACTCTGATTGGGCTTT GCTAGATCAATGCGGACCGA 

BLM 15 TGGGAATGACCTCTCAAAGC AAGTGACTTTGGGGTGGTGT 

WRN 8 CCTGTGAGGCATTGACATTTT ATGCACATGTACCCCGATCT 

RECQL4 8 GGGTGGATGCCTTAGATGAG CTCCTCCCACTTCCCTGTTT 

RECQL5 17 GGGTGGTTCTGCCACTAAAA TACCGTGGCCTGGAATAGTT 

RECQL5 17 TGAGGCAGTTCACCTTCAGC TGCCGCAGCGTTATGGTAT 

 
Table A1.1 PCR primer sequences flanking CRISPR-Cas9 gRNA sequences designed for RecQ helicases 
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A.2 Functional validation of RecQ helicase KO cell lines 
 

 
 
Figure A2.1 Functional characterization of RecQ helicase KO clones using sister chromatid staining assay. 
(A) After 2 rounds of cell division in the presence of BrdU, staining with Hoechst 33258 and exposure to UV 
light reveal differential staining pattern between sister chromatids. White arrows highlights point of 
exchange between sister chromatids. (B) Number of SCEs detected per haploid genome in a single cell 
division for RecQ helicase single and double knockouts in the KBM7 cell line. Number of cells analyzed is 
listed above. Statistical significance was evaluated using a two-sample t-test where WT cells are the control 
group. **** p < 0.001, ** p < 0.01, not significant (ns) p > 0.05. 
 



 
 

143 

A.3 SCE enrichment analysis using the same number of SCEs across cell lines 
 

 
  
Figure A3.2 SCE enrichment at protein coding genes and potential G4 quadruplexes using the same number 
of SCEs across cell lines. 
SCE enrichment patterns for (A) protein coding genes (B) potential G4s (C) protein coding genes with at least 
one potential G4 (D) protein coding genes without a potential G4. Normal cell lines are indicated in blue, 
RecQ KO cell lines in red. Violin plots represent the expected range for random overlap. Red dots represent 
overlap of SCE with feature of interest. SCEs were randomly down sampled to a constant number for each 
cell line. P-values calculated from permutation test described in Section 4.2.2. **** p < 0.001, ** p < 0.01, not 
significant (ns) p > 0.05. 
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Figure A3.3 SCE enrichment at essential and non-essential genes with and without potential G4 
quadruplexes. 
SCE enrichment patterns for (A) essential genes (B) non-essential genes (C) essential genes with a potential 
G4 (D) essential genes without at least one potential G4 (E) non-essential genes with a potential G4 (F) non-
essential genes without at least one potential G4. Normal cell lines are indicated in blue, RecQ KO cell lines in 
red. Violin plots represent the expected range for random overlap. Red dots represent overlap of SCE with 
FOI described above each plot. P-values calculated from permutation test described in Section 4.2.2. **** p < 
0.001, ** p < 0.01, not significant (ns) p > 0.05. 
 
 



 
 

145 

 

 Figure A3.4 SCE enrichment at genes grouped by transcriptional activity.  
SCE enrichment patterns for (A) highly expressed genes (B) moderately expressed genes (C) lowly expressed 
genes (D) non-expressed genes. Normal cell lines are indicated in blue, RecQ KO cell lines in red. Violin plots 
represent the expected range for random overlap. Red dots represent overlap of SCE with FOI described 
next to each plot. Genes are grouped by transcriptional activity indicated on the left. Highly transcribed 
genes have FPKM values in the range of 8.61x𝟏𝟎𝟎 and 4.37x𝟏𝟎𝟒. Moderately expressed genes have FPKM 
values between the range of 4.02x𝟏𝟎-𝟏 and 8.61x𝟏𝟎𝟎. Lowly expressed genes have FPKM values between the 
range of 6.56x𝟏𝟎-𝟔 and 4.02x𝟏𝟎-𝟏. P-values calculated from permutation test described in Section 4.2.2. **** 
p < 0.001, ** p < 0.01, not significant (ns) p > 0.05. 
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Figure A3.5 SCE enrichment at transcriptionally grouped genes with potential G4 quadruplexes. 
SCE enrichment patterns in (A) highly transcribed genes containing at least one potential G4 (B) highly 
transcribed genes not containing any potential G4s (C) moderately transcribed genes containing at least one 
potential G4 (D) moderately transcribed genes not containing any potential G4s (E) lowly transcribed genes 
containing at least one potential G4 (F) lowly transcribed genes not containing any potential G4s (G) non-
transcribed genes containing at least one potential G4 and (H) non-transcribed genes not containing any 
potential G4s. Normal cell lines are indicated in blue, RecQ KO cell lines are indicated in red. Violin plots 
represent the expected range for random overlap. Red dots represent overlap of SCEs with FOI described 
next to each plot. Genes are grouped by transcriptional activity indicated on the left. Highly transcribed 
genes have FPKM values in the range of 8.61x𝟏𝟎𝟎 and 4.37x𝟏𝟎𝟒. Moderately expressed genes have FPKM 
values between the range of 4.02x𝟏𝟎-𝟏 and 8.61x𝟏𝟎𝟎. Lowly expressed genes have FPKM values between the 
range of 6.56x𝟏𝟎-𝟔 and 4.02x𝟏𝟎-𝟏. P-values calculated from permutation test described in Section 4.2.2. **** 
p < 0.001, ** p < 0.01, not significant (ns) p > 0.05. 
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Figure A3.6 SCE enrichment at transcriptionally grouped genes with potential G4s on coding and template 
strands . 
SCE enrichment patterns in (A) highly transcribed genes containing at least one potential G4 on transcribed 
strand (B) highly transcribed genes containing at least one potential G4 on non-transcribed strand (C) 
moderately transcribed genes containing at least one potential G4 on transcribed strand (D) moderately 
transcribed genes containing at least one potential G4 on non-transcribed strand (E) lowly transcribed genes 
containing at least one potential G4 on transcribed strand (F) lowly transcribed genes containing at least one 
potential G4 on non-transcribed strand (G) non-transcribed genes containing at least one potential G4 on 
transcribed strand and (H) non-transcribed genes containing at least one potential G4 on non-transcribed 
strand. Normal cell lines are indicated in blue, RecQ KO cell lines are indicated in red. Violin plots represent 
the expected range for random overlap. Red dots represent overlap of SCEs with FOI described next to each 
plot. Genes are grouped by transcriptional activity indicated on the left. Highly transcribed genes have 
FPKM values in the range of 8.61x𝟏𝟎𝟎 and 4.37x𝟏𝟎𝟒. Moderately expressed genes have FPKM values 
between the range of 4.02x𝟏𝟎-𝟏 and 8.61x𝟏𝟎𝟎. Lowly expressed genes have FPKM values between the range 
of 6.56x𝟏𝟎-𝟔 and 4.02x𝟏𝟎-𝟏. P-values calculated from permutation test described in Section 4.2.2. **** p < 
0.001, ** p < 0.01, not significant (ns) p > 0.05. 
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Figure A3.7 SCE enrichment at transcriptionally grouped large and small genes. 
SCE enrichment patterns in (A) highly transcribed large genes (B) highly transcribed small genes (C) 
moderately transcribed large genes (D) moderately transcribed small genes (E) lowly transcribed large genes 
(F) lowly transcribed small genes (G) non-transcribed large genes (H) non-transcribed small genes. Normal 
cell lines are indicated in blue; RecQ KO cell lines are indicated in red. Violin plots represent the expected 
range for random overlap. Red dots represent overlap of SCEs with FOI described next to each plot. Genes 
are grouped by transcriptional activity indicated on the left. Highly transcribed genes have FPKM values in 
the range of 8.61x𝟏𝟎𝟎 and 4.37x𝟏𝟎𝟒. Moderately expressed genes have FPKM values between the range of 
4.02x𝟏𝟎-𝟏 and 8.61x𝟏𝟎𝟎. Lowly expressed genes have FPKM values between the range of 6.56x𝟏𝟎-𝟔 and 
4.02x𝟏𝟎-𝟏. P-values calculated from permutation test described in Section 4.2.2. **** p < 0.001, ** p < 0.01, 
not significant (ns) p > 0.05. 
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Figure A3.8 SCE enrichment at transcriptionally grouped large genes with potential G4 quadruplexes. 
SCE enrichment patterns in (A) highly transcribed large genes containing at least one potential G4 (B) highly 
transcribed large genes not containing any potential G4s (C) moderately transcribed large genes containing 
at least one potential G4 (D) moderately transcribed large genes not containing any potential G4s (E) lowly 
transcribed large genes containing at least one potential G4 (F) lowly transcribed large genes not containing 
any potential G4s (G) non-transcribed large genes containing at least one potential G4 and (H) non-
transcribed large genes not containing any potential G4s. Normal cell lines are indicated in blue, RecQ KO 
cell lines are indicated in red. Violin plots represent the expected range for random overlap. Red dots 
represent overlap of SCEs with FOI described next to each plot. Genes are grouped by transcriptional 
activity indicated on the left. Highly transcribed genes have FPKM values in the range of 8.61x𝟏𝟎𝟎 and 
4.37x𝟏𝟎𝟒. Moderately expressed genes have FPKM values between the range of 4.02x𝟏𝟎-𝟏 and 8.61x𝟏𝟎𝟎. 
Lowly expressed genes have FPKM values between the range of 6.56x𝟏𝟎-𝟔 and 4.02x𝟏𝟎-𝟏. P-values 
calculated from permutation test described in Section 4.2.2. **** p < 0.001, ** p < 0.01, not significant (ns) p 
> 0.05. 
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Figure A3.9 SCE enrichment at transcriptionally grouped small genes with potential G4 quadruplexes. 
SCE enrichment patterns in (A) highly transcribed small genes containing at least one potential G4 (B) highly 
transcribed small genes not containing any potential G4s (C) moderately transcribed small genes containing 
at least one potential G4 (D) moderately transcribed small genes not containing any potential G4s (E) lowly 
transcribed small genes containing at least one potential G4 (F) lowly transcribed small genes not containing 
any potential G4s (G) non-transcribed small genes containing at least one potential G4 and (H) non-
transcribed small genes not containing any potential G4s. Normal cell lines are indicated in blue, RecQ KO 
cell lines are indicated in red. Violin plots represent the expected range for random overlap. Red dots 
represent overlap of SCEs with FOI described next to each plot. Genes are grouped by transcriptional 
activity indicated on the left. Highly transcribed genes have FPKM values in the range of 8.61x𝟏𝟎𝟎 and 
4.37x𝟏𝟎𝟒. Moderately expressed genes have FPKM values between the range of 4.02x𝟏𝟎-𝟏 and 8.61x𝟏𝟎𝟎. 
Lowly expressed genes have FPKM values between the range of 6.56x𝟏𝟎-𝟔 and 4.02x𝟏𝟎-𝟏. P-values 
calculated from permutation test described in Section 4.2.2. **** p < 0.001, ** p < 0.01, not significant (ns) p 
> 0.05. 
 
 


