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Abstract

Accuracy of flow simulations is a major concern in Computational Fluid

Dynamics (CFD) applications. A possible outcome of inaccuracy in CFD

results is missing a major feature in the flow field. Many methods have been

proposed to reduce numerical errors and increase overall accuracy, but these

are not always efficient or even feasible. In this study, a purely data-driven

approach is proposed to assess flow simulations both in a qualitative and a

quantitative manner. In this regard, Principal Component Analysis (PCA)

has been performed on compressible flow simulations around an airfoil to

map the high-dimensional CFD data to a lower-dimensional PCA subspace.

A machine learning classifier based on the extracted principal components

has been developed to detect the simulations that miss the separation bubble

behind the airfoil. The evaluative measures indicate that the model is able to

detect most of the simulations where the separation region is poorly resolved.

Besides the classifier, a machine learning regressor has been trained on the

same PCA subspace to predict the error in the output drag coefficient. The

predictions reveal that the regression model estimates accurate errors with

a tight uncertainty bound. Further, more efficient models built on top of

fewer PCA modes have been implemented that show similar performance. In

addition, the developed models were used to inspect simulations solved on a

different mesh configuration from the one the models were trained on. This

generalization framework gives rise to some challenges that are thoroughly

discussed. Overall, the results demonstrate that machine learning models

based on the principal components of the data set are promising tools to

detect possible missing flow features and predict numerical errors in CFD.
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Lay Summary

Computer simulations are an inseparable component of engineering designs

nowadays. Hence, the accuracy of the simulation plays an integral role in

assuring the quality and the safety of the end product. The common tools

used to check and increase this accuracy are rather expensive for real-world

applications. This thesis proposes a machine learning method to inspect

whether a fluid simulation correctly represents the actual phenomenon and

captures important patterns in the flow field. Similar to a facial recognition

system, the developed tool looks for certain patterns in the output of a

simulation and alerts the engineers when those are missing.
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Preface

The developed models presented in this thesis are the outcome of the re-

search conducted by the author, Amirpasha Kamalhedayt, under the direct

supervision of Dr. Carl Ollivier-Gooch, as part of the Master of Applied

Science program in Mechanical Engineering at the University of British

Columbia (UBC). Data set generation, machine learning, model evaluation,

and manuscript preparation were done by Amirpasha Kamalhedayat with

the insightful guidelines from Carl Ollivier-Gooch. Simulation data were

generated using the codes in GRUMMP and ANSLib packages that have

been developed by the members of the Advanced Numerical Simulation Lab-

oratory at UBC. The following papers related to the current thesis have been

or are in the preparation process to be submitted:

• Parts of Chapters 2 and 3 have been accepted to be presented in the

Machine Learning and AI session in the AIAA SciTech 2023 Forum,

titled: “Detecting Missing Flow Separation using Supervised Machine

Learning”.

• A comprehensive discussion on the machine learning classifier devel-

oped in this study (Chapters 2 and 3) is currently in preparation for

submission to the AIAA Journal.

• As a second part for the previous item, the results of the machine

learning regression (Chapters 2 and 4) are planned to be published in

the AIAA Journal.

Also, the machine learning data set generated and used in this work is made

available for public use on GitHub1.

1https://github.com/APHedayat/missing-flow-feature-dataset.git
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Chapter 1

Introduction and

Background

1.1 Motivation

Since ancient times, data have played an integral role in scientific research

and discovery. From ancient Egyptians, who recorded and stored data on

Papyrus, to the recent black hole exposition revealed by the Event Horizon

Telescope, researchers have always based their studies upon data. Nowadays,

with the unprecedented improvements in computational power of computers

following Moore’s law [1], our ability in collecting data has significantly in-

creased. As a result of this data abundance, there are growing appeals in the

scientific community for data-driven methods to explore and exploit data in

recent years. Evidence for this is the emerging machine learning algorithms

and deep neural networks to study huge amounts of data to draw meaning-

ful conclusions. Many people believe that we are in a transition phase from

the prior three modes of study, namely theoretical, experimental, and nu-

merical methods, to the fourth paradigm [2], which is the use of data-driven

models (Fig. 1.1). It should be emphasized that each mode of research

was not invented to replace the former ones, but rather to augment those.

The same thing is true for data-driven approaches; they are being used in

conjunction with other scientific methods to improve our understanding of

the surrounding world.

One of the most important means of research over the past half century

has been numerical simulation. This approach consists of performing math-

ematical modeling on a computer, which provides a powerful framework to
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~ 300 BC ~ 17th century ~ 20th century Now

Passive Experiments 

+ Observations

Data-Driven 

Methods

Active Experiments 

+ Theories

Numerical 

Simulation

Figure 1.1: History of scientific methods.

study physical phenomena and to design engineering systems. Many fields

of studies such as astronomy, chemistry, neuroscience, and economics have

been affected by computer simulations. This trend is expected to continue

with the increasing power of computers to simulate more complex phenom-

ena. Among all fields of science, fluid mechanics has been presumably af-

fected the most by the breakthroughs in computational power. Studying

fluids is of utmost importance for us as living beings on earth; we live in a

fluid, we breathe in a fluid, and almost all of our fabrications are exposed

to a fluid: the air. It makes it extremely crucial for us to study and un-

derstand fluid dynamics and use that knowledge in major industries, from

medicine to aerospace. Fluid movement is governed by a highly nonlinear

and chaotic dynamical system which cannot be solved analytically. In fact,

proving the existence of an analytical solution to this group of equations is

one of the seven Millennium Prize Problems, indicating the complex nature

of fluids. As a result, researchers in this area often employ computer simula-

tions to study complicated phenomena occurring in fluids, among which the

most mysterious one is the turbulence. Numerical simulation in fluid me-

chanics is known as Computational Fluid Dynamics (CFD), which is a key

component in industrial applications. CFD aims at discretizing fluid flow

equations, typically the Navier-Stokes equations, and solving the resulting

system by simple algebraic methods. This approach substantially reduces

the costs of design compared to experimental methods where a physical

prototype model is required. Also, the fact that all data in the domain of

simulation are available eliminates the need for sensors in certain locations,

which is one of the challenges in experimental setups, reducing the cost even

further and making the results more comprehensive. However, every light
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has its shadow ; although CFD might be exceptional in cost reduction, there

are grave challenges attached to its use in action. These stem from the step

where the governing differential equations are mapped from a continuous

space to a discrete one. Here, meticulous care must be taken to prevent

the simulation from divergence, and even worse, inaccurate results. The

former is identified instantly and the researchers will be alerted to solve

the problem to reach convergence. The latter, however, could stay hidden

without showing any obvious sign, which eventually leads to misleading re-

sults and disastrous engineering designs. This inaccuracy in CFD methods

can result in a simulation where one or more major flow features (such as

separation bubble, shock wave, etc.) are either missed, or poorly resolved.

These important flow patterns can significantly affect the main aerodynamic

parameters such as lift and drag forces, and capturing those is one of the

major goals of CFD applications.

Many methods have been proposed within CFD community to increase

the accuracy of numerical simulations and to make sure that important phe-

nomena and patterns in the flow field are represented correctly. Examples

of these well-known approaches are grid refinement, where the resolution of

the mesh is increased in certain areas of the domain to better compute gra-

dients and capture patterns, and error estimators, that introduce additional

equations to be solved alongside the flow equations as a correction. These

methods do additional computational work to improve the solution with no

a priori check to determine whether the solution is qualitatively correct. It

could be the case that the available simulation already resolves all impor-

tant flow features and computes parameters with an acceptable accuracy.

By engaging traditional improvement methods, we need at least one step of

validation by introducing additional computation into the simulation pro-

cess. Only then can the integrity of the simulation be authenticated. In

some cases involving flows around complex geometries, applying these tech-

niques could take weeks or even months of simulations without causing a

notable change in the output. In these scenarios, the mentioned approaches

only waste time and computational resources and considerably delay the

design phase in a project. In more complex situations, performing accuracy
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improvement methods could even become infeasible. These all suggest the

need for a method to examine the available simulation in hand, both qual-

itatively and quantitatively, to see whether it needs further improvement,

before applying costly methods such as grid refinement and error estimators.

In other words, CFD thirsts for an efficient way to find that sign that points

to an inaccurate simulation.

CFD is one of the fields where massive amounts of data are being pro-

duced constantly. Although it makes it an ideal domain of interest to in-

tegrate data-driven and machine learning methods, we do not see many of

such attempts in CFD and the aerospace industry compared to other fields

of research such as economics or robotics. This could be related to two

reasons:

• Data Generation: Gathering data in CFD is not as easy and straight-

forward as many other areas. There are many things that should be

taken care of beforehand, such as turbulence modeling, possible sta-

bility issues, order of accuracy, and time advance schemes, to generate

useful data for machine learning purposes.

• Safety Regulations: Due to stringent safety matters involved in the

aerospace industry, entering machine learning into the design loop for

decision making requires a minimum degree of confidence; something

that the new ambitious data-driven methods lack.

Even though the mentioned reasons still hold and machine learning is not

mature enough to be a reliable tool in the aerospace industry, researchers

and engineers have begun to explore the use of such methods in aerospace

applications (see e.g, [3]). In this thesis, we follow this movement and take

advantage of the high volumes of CFD data to develop a machine learning

classifier to accurately detect an under-resolved flow feature. Besides, we will

go a step further to design a complementary machine learning regressor to

estimate the error in the computed parameter of interest. The former could

be used as a priori tool to qualitatively examine a simulation with regard to

capturing major flow patterns, and the latter could be considered an efficient
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alternative to the costly traditional accuracy improvement methods with the

goal of quantifying uncertainties involved in a simulation. This work aims

at creating a connection between CFD and the emerging powerful data-

driven methods to tackle one of the most challenging aspects of numerical

simulations.

The rest of this chapter is structured as follows: Sections 1.2 and 1.3

describe the building blocks of any numerical simulation, the mesh generator

and the flow solver, respectively. Following these, Section 1.4 explains why

inaccuracies exist in a simulation, and introduces the main types of error

encountered in CFD. Also, a case study is presented in this section to show

a possible effect of these errors in a simulation. The current conventional

methods to deal with inaccuracies in CFD results and their drawbacks are

mentioned in Section 1.5. We introduce our proposed data-driven method

in Section 1.6, and finally, the test case and data set considered in this study

are presented in Section 1.7.

1.2 Mesh Generator

In numerical simulations, the spatial domain on which the physical process

will be solved must be decomposed, or tessellated, into smaller pieces called

control volumes, elements, or cells. This process is referred to as mesh

generation and is one of the initial steps in any numerical simulation. It

often requires direct human supervision, although CFD practitioners have

proposed techniques to automate this time consuming task [4]. There are

primarily two categories of meshes:

• Structured : This type of mesh is identified by the regular connectivity

between the cells in the domain. This means that each control volume

could be assigned with (i, j) or (i, j, k) indices in two-dimensional (2-D)

or three-dimensional (3-D) space, respectively. Because of the regular

arrangement of the cells in structured meshes, these are more favorable

in formulating discretized equations. However, generating this type

of mesh around geometries with complex configurations is a major
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challenge and setback. Figure 1.2a depicts a fragment of a typical 2-D

structured mesh.

• Unstructured : These meshes are more flexible in accepting arbitrary

element shapes and have irregular connectivity between the cells in

the domain. This irregularity makes it compulsory to store all con-

nectivity information in a matrix to keep track of the neighbors sur-

rounding each cell. While numerical discretization is more challenging

compared to structured grids, unstructured meshes are much easier

to generate in complex configurations, making them the most popular

type of meshes in CFD nowadays. An illustration of a segment of a

triangular unstructured mesh is presented in Fig. 1.2b.

(𝑖 − 1, 𝑗 + 1) (𝑖, 𝑗 + 1) (𝑖 + 1, 𝑗 + 1)

(𝑖 − 1, 𝑗) (𝑖, 𝑗) (𝑖 + 1, 𝑗)

(𝑖 − 1, 𝑗 − 1) (𝑖, 𝑗 − 1) (𝑖 + 1, 𝑗 − 1)

(a) 2-D structured

1
2 3

4

5

6

7

8

910

11

(b) 2-D unstructured

Figure 1.2: Main types of computational domain.

For the purpose of this work, our in-house mesh generating software

called GRUMMP2 [5] is used, which was originally developed to automate

unstructured mesh generation and reduce human interference.

After the mesh is generated, the flow equations can be solved for each

individual cell in the computational domain to form a large linear system of

equations. The cells have common interfaces through which flow variables

2Generation and Refinement of Unstructured Mixed-Element Meshes in Parallel
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and information are transferred by the means of convection and diffusion.

The following section will introduce how the governing equations of the flow

field are discretized on the computational mesh.

1.3 Finite Volume Flow Solver

Computers can only perform simple arithmetic operations. This means that

a Partial Differential Equation (PDE) governing a physical phenomenon is a

strange being to the computer that needs to be processed. This processing

step involves discretizing a PDE on the numerical mesh introduced in the

previous section. For a detailed description of this process in CFD, there

exist many great resources (see e.g., [6]). The conventional approaches to

perform discretization in science and engineering are finite-difference, finite-

element, and finite-volume methods:

• Finite-Difference Method (FDM)

FDM is the classical approach taken to discretize differential equations.

It results in a point-wise representation of the computational domain,

where derivatives are approximated using the Taylor series expansion

of the solution around a certain point. This makes FDM an easy-

to-derive discretization technique when applied on a structured mesh.

Figure 1.3a shows a simple representation of the data stencil used in

FDM where five neighboring nodes are engaged. Despite its simplicity,

it becomes difficult to implement FDM for unstructured meshes where

the cells are arranged irregularly. Moreover, conservation of mass,

momentum, and energy are not guaranteed when performing FDM,

making it an unsuitable choice in presence of discontinuities such as

shock waves. Nevertheless, FDM is still useful for educational purposes

and also for testing new methods on simple geometries.

• Finite-Element Method (FEM)

FEM has been one of the key tools in numerical simulation, mainly to

analyze solid structures. This method considers the weak formulation

of governing equations and tries to approximate a trial solution in the
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domain. This task is done by introducing local basis functions over the

discrete elements (cells). The equations are then multiplied by these

functions and integrated over the entire mesh. The goal is to mini-

mize the numerical errors, also known as the residuals. Higher-order

accurate solutions can be obtained simply by increasing the degree of

polynomial basis functions. Also, this method is well suited for both

structured and unstructured meshes with arbitrary element shapes.

Figure 1.3b depicts an example of the nodal locations where FEM

computes the solution, both for a 3rd-order accurate approximation

and a 4th-order one. The downside of using FEM is that the conserva-

tion laws are not easily achievable, which could be problematic when

facing flows with discontinuities.

• Finite-Volume Method (FVM)

FVM method takes a more intuitive and physical approach by dis-

cretizing the integral form of governing equations over the domain.

By doing so, conservation laws for each control volume are preserved,

making FVM well suited for flows with discontinuities. Furthermore,

FVM can handle both structured and unstructured meshes similar to

FEM. However, reaching higher-order accuracy is more challenging

compared to FEM, which will be addressed in the following subsec-

tions. An illustration of an FVM control volume is provided in Fig.

1.3c.

In this work, we take the finite-volume approach to discretize viscous

compressible flow equations. In particular, we used the higher-order un-

structured finite volume flow solver package (ANSLib), developed at the

Advanced Numerical Simulation Laboratory at the University of British

Columbia. FVM is widely used in commercial CFD software, making it the

best choice for the purpose of this study. Nevertheless, the proposed data-

driven approach in this thesis is expected to be applicable to any simulation,

regardless of the discretization technique.

8



1.3. Finite Volume Flow Solver

(𝑖, 𝑗)

(𝑖, 𝑗 + 1)

(𝑖 − 1, 𝑗)

(𝑖, 𝑗 − 1)

(𝑖 + 1, 𝑗)

(a) Finite-Difference

Reference points for

3𝑟𝑑-order accuracy
Reference points for

4𝑡ℎ-order accuracy

(b) Finite-Element

Control 

Surface (CS)

Control 

Volume (CV)

Flux In Flux Out

Flux Out

Flux In

(c) Finite-Volume

Figure 1.3: Common discretization approaches.

1.3.1 Spatial Discretization

The PDEs governing the dynamics of fluids are the Navier-Stokes equa-

tions that describe the conservation of mass, momentum, and energy in a

fluid domain. These equations should be first recast in a fully conservative

formulation represented by:

∂U⃗

∂t
+∇ · F⃗ = 0 (1.1)

to be discretized using FVM. In Eq. (1.1), U⃗ is the solution vector and F⃗

represents the total flux composed of convective flux, F⃗c, and diffusive flux,

F⃗d:

F⃗ = F⃗c − F⃗d (1.2)
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For the 2-D compressible viscous laminar Navier-Stokes, solution and flux

vectors are written as:

U⃗ =


ρ

ρu

ρv

Et

 , F⃗ x
c =


ρu

ρu2 + P

ρuv

u (Et + P )

 , F⃗ y
c =


ρv

ρuv

ρv2 + P

v (Et + P )



F⃗ x
v =


0

τxx

τxy

uτxx + vτxy + cp
( µ
Pr

)
∂T
∂x



F⃗ y
v =


0

τyx

τyy

uτyx + vτyy + cp
( µ
Pr

)
∂T
∂y



(1.3)

where ρ is the fluid density, u and v are the Cartesian velocity components, P

is the fluid pressure, Et is the total energy, cp is the specific heat at constant

pressure, µ is the fluid dynamic viscosity, T is the fluid temperature, Pr is

the Prandtl number, and τij is the viscous stress tensor. Following FVM

guidelines, if we pick an arbitrary control volume in the mesh and integrate

Eq. (1.1) over that volume, we get:

∫∫∫
CV

(
∂U⃗

∂t
+∇ · F⃗

)
dV = 0 (1.4)

As will be noted in Section 1.7, the test case in this study is a 2-D flow

simulation. Therefore, we turn our attention on the 2-D form of this formula,

where the control volume (CV) is represented by the 2-D cell area, and

cell edges constitute the surrounding control surface (CS). Applying these

changes and using divergence theorem, we get the following as a combination

10
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of volume and surface integrals:∫∫
CV

∂U⃗

∂t
dA+

∮
CS

F⃗ · n̂ds = 0 (1.5)

where n̂ is the outward unit normal vector on the control surface of the

cell, and ds is an infinitesimal segment on cell boundaries. If cell shapes are

independent of the time variable in the simulation (fixed grid), then U⃗ can

be brought out from the volume integral, resulting in:

dŪi

dt
= − 1

ACVi

∮
CSi

F⃗ · n̂ds (1.6)

where Ūi is the average solution of the control volume, and ACVi is the

area of the 2-D cell. The left hand side represents the change of average

solution in control volume when advancing in time. The right hand side is

the residual of the numerical simulation, which is more commonly known as

the flux integral in CFD. The relation could be represented more compactly

as:
dŪi

dt
= −Ri

(
Ūi

)
(1.7)

for the ith cell in the domain. Replacing the right hand side by proper alge-

braic approximations, we obtain an Ordinary Differential Equation (ODE)

for each control volume, which is much easier to solve compared to the

original PDE. We go deeper into this process in the following subsections.

1.3.2 k-Exact Reconstruction and High-Order Methods

After obtaining Eq. (1.7), the goal now is to approximate the residual in

simple terms. For structured grids, where cells are systematically arranged,

solution approximation in each cell is as easy as writing a Taylor expan-

sion and integrating the terms over each control volume. This process will

look similar to FDM, where guidelines on how to reach higher-order ac-

curate approximations are well documented. Unstructured meshes, on the

other hand, lack this property and a different approach must be taken. The

method introduced here is known as the k -Exact Reconstruction, and a de-
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tailed explanation is available in [7]. In this method, Taylor expansion is

considered around an arbitrary reference point (usually the centroid of the

cell, for simplicity) to reconstruct the following polynomial solution for each

cell:

UR
i (x− xi, y − yi) = U |i +

∂U

∂x

∣∣∣∣
i

(x− xi) +
∂U

∂y

∣∣∣∣
i

(y − yi)

+
∂2U

∂x2

∣∣∣∣
i

(x− xi)
2

2

+
∂2U

∂x∂y

∣∣∣∣
i

(x− xi) (y − yi)

+
∂2U

∂y2

∣∣∣∣
i

(y − yi)
2

2
+ . . .

(1.8)

where UR
i is the reconstructed solution within the cell, and the derivatives

are considered at the reference point (xi, yi). The unknowns in this repre-

sentation are U |i and the derivatives. Once these coefficients are calculated,

any field variable at any location within the cell could be approximated by

inserting the coordinates in Eq. (1.8). To solve for the unknown coeffi-

cients, we use the fact that if we integrate the reconstructed solution over

the control volume, we should get back the average solution Ūi on that cell:

Ūi =
1

Ai

∫
Vi

UR
i dA (1.9)

Inserting moments of area defined by:

xpyqi =
1

Ai

∫
Vi

(x− xi)
p (y − yi)

q dA (1.10)

into the extended version of Eq. (1.9) when UR
i is substituted from Eq.

(1.8), we get the following:

Ūi = U |i +
∂U

∂x

∣∣∣∣
i

x̄i +
∂U

∂y

∣∣∣∣
i

ȳi +
∂2U

∂x2

∣∣∣∣
i

x2i
2

+
∂2U

∂x∂y

∣∣∣∣
i

xyi +
∂2U

∂y2

∣∣∣∣
i

y2i
2

+ . . .

(1.11)
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To compute the unknown coefficients, Eq. (1.11) is rewritten for each control

volume within the stencil (neighborhood) of the ith cell. The number of cells

in the stencil is chosen to be greater than the number of coefficients to be

approximated to yield a least-squares system of equations. To reach higher-

order of accuracy, defined as any order more than two, more terms in Taylor

expansion should be retained, and hence, more cells in the stencil should

be considered. The suggested number of cells in the stencil are three for

2nd-order, nine for 3rd-order, and fourteen for 4th-order accurate solution

reconstruction [7]. Figure 1.4 provides a representation of cells in the stencil

of an arbitrary control volume in an unstructured mesh. Each cell is labeled

with the desired order of accuracy for which that cell should be considered

to find the unknowns in Eq. (1.8).

𝐶𝑉𝑖

2𝑛𝑑-order 2𝑛𝑑-order

2𝑛𝑑-order

3𝑟𝑑-order 3𝑟𝑑-order

3𝑟𝑑-order 3𝑟𝑑-order

3𝑟𝑑-order3𝑟𝑑-order

Figure 1.4: Stencils for k-Exact Reconstruction.

1.3.3 Flux Integration

Having reconstructed solutions in each cell using Eq. (1.8), flux values can

be calculated and integrated on the edges of each control volume. The

integration is done by the Gauss quadrature integration rule, where the

integrand is evaluated at only a few points [8]. A 2nd-order accurate flux

integral can be obtained by a single quadrature point at the middle of the

corresponding edge, whereas for higher-order accuracy, more points must be

considered and weighted appropriately. It should be noted that the order of

accuracy by which fluxes are calculated should be at least equal to the order

13



1.3. Finite Volume Flow Solver

of solution reconstruction to retain the overall accuracy of the simulation.

Figures 1.5a and 1.5b illustrate Gauss quadrature points respectively for

2nd- and 3rd- or 4th-order approximation of the flux integral. Van Altena [9]

provides a comprehensive overview of the process of flux integration. Fluxes

are grouped as two major physical means of transportation, convection and

diffusion, which will be dealt with separately in the following.

Right Cell

Left Cell

𝑥𝑔

ො𝑛

𝑉

𝑈𝐿

𝑈𝑅

(a) Using one Gauss quadrature
point (2nd-order accurate integra-
tion)

Right Cell

Left Cell

𝑥𝑔1

ො𝑛

𝑉

𝑥𝑔2

ො𝑛

𝑉

(b) Using two Gauss quadrature
points (3rd- or 4th-order accurate
integration)

Figure 1.5: Flux integration on the common edge of two neighboring
cells.

Convective Flux

Convection, also known as advection, is the process in which field variables

are transported with the movement of fluid. Hence, fluid velocity plays in

important role in this process. To calculate convective flux, we consider the

general 2-D advection equation, which governs the transport of a conserved

variable ϕ in a constant velocity field V⃗ = (u, v):

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
= 0 (1.12)
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Here, following the fully conserved formulation represented by Eq. (1.1),

solution U and convective flux F⃗c are defined as:

U = ϕ , F⃗c =

[
uϕ

vϕ

]
(1.13)

For simplicity, we take only one quadrature point as shown in Fig. 1.5a on

the common edge of two neighboring cells. Using reconstructed solutions

obtained for the left and the right cells, we get different values for the so-

lution and its derivatives on the quadrature point, as no restrictions are set

to ensure a smooth solution on the common edge. This requires us to com-

bine the fluxes obtained from each reconstructed solution on the sides of the

edge, F⃗
(
UL
)
and F⃗

(
UR
)
, to get a single value. There are two approaches

to define the combined flux, as explained in the following.

One common way is to take the average of the two fluxes on each side

of the edge as the flux value:

F⃗c =
F⃗
(
UL
)
+ F⃗

(
UR
)

2
(1.14)

This representation of the convective flux is the central scheme, where both

fluxes are weighted equally.

Another approach comes from a physical observation, where we argue

that the values on the edge are affected solely by the information coming

from the upstream cell. This method is known as the upwind scheme, and

suggests that the direction of the flow should be calculated on the edge to

decide which cell to use as the reference:

F⃗c =

F⃗
(
UL
)

V⃗ · n̂ ≥ 0

F⃗
(
UR
)

V⃗ · n̂ < 0
(1.15)
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Diffusive Flux

Diffusion is the process of information spreading out at the molecular level.

This time, we take the general 2-D diffusion equation:

∂ϕ

∂t
−
(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
= 0 (1.16)

In this case, solution U and diffusive flux F⃗d contain:

U = ϕ, F⃗d =

[
−∂ϕ

∂x

−∂ϕ
∂y

]
(1.17)

We again consider the cell configuration in Fig. 1.5a. The common strategy

to formulate a single diffusive flux on the edge is by arithmetic averaging

the fluxes obtained from neighboring cells and adding an extra jump term

[10] for stability purposes:

F⃗d =
F⃗
(
UL
)
+ F⃗

(
UR
)

2
+

α

r⃗LR · n̂
(
UL − UR

)
n̂ (1.18)

The second term on the right hand side is the jump term, where r⃗LR denotes

the vector connecting the reference points of the neighboring cells, and α is

a constant.

1.3.4 Temporal Discretization

At this point, solution reconstructions are obtained for each cell and flux

integrals are approximated on cell edges. It means that the residual value

on the right hand side of Eq. (1.7) is calculated, and an ODE is obtained

for each control volume in the domain. To solve this equation, there exist

generally two techniques: the explicit and the implicit time advance.

In the explicit time advance, the residual terms are specified based on

the known solution values obtained in the previous time step. Applying a
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1.3. Finite Volume Flow Solver

backward time difference scheme to the left hand side of Eq. (1.7) gives:

Ūn+1
i − Ūn

i

∆t
= −R

(
Ūn
i

)
(1.19)

where superscripts denote the time level. In this formula, the only unknown

is the solution value at the next time step and can be easily calculated. Al-

though this approach provides a simple formulation and code implementa-

tion, it imposes severe restrictions on the choice of time step ∆t as a function

of the smallest length scale in the mesh, to prevent solution instabilities.

The implicit time advance scheme, on the other hand, writes the residual

terms as a function of unknown solution values of the next time step:

Ūn+1
i − Ūn

i

∆t
= −R

(
Ūn+1
i

)
(1.20)

This case requires more operations to solve for the unknown solution Ūn+1
i .

To simplify the right hand side, the residual is linearized around the known

solution state Ūn
i as:

Ūn+1
i − Ūn

i

∆t
= −R

(
Ūn+1
i

)
= −

[
R
(
Ūn
i

)
+
∂R

∂Ū

(
Ūn+1
i − Ūn

i

)
+O

(
Ūn+1
i − Ūn

i

)2] (1.21)

where
∂R

∂Ū
is the Jacobian matrix which can be obtained using the guidelines

provided in [11]. For simplicity, we can define a solution difference as:

δŪi = Ūn+1
i − Ūn

i (1.22)

which when inserted into Eq. (1.21) yields:(
I

∆t
+
∂R

∂Ū

)
δŪi = −R

(
Ūn
i

)
(1.23)

Despite the computation complexity of the implicit approach, this method

puts no limit on the time step, making it ideal for steady-state simulations
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where large ∆t can be used for faster convergence. As will be mentioned in

Section 1.7, our test case in this work is a steady simulation, and hence, the

implicit time advance was implemented in this study.

Performing spatial discretization, solution reconstruction, flux integra-

tion, temporal discretization, and gathering individual equations derived for

each cell together, we obtain a system of linear algebraic equations that can

be solved for the solution vector U⃗n+1 at each time step by employing matrix

operations.

1.4 Source of Inaccuracy in Simulations

From describing a physical phenomenon using mathematical tools, to read-

ing outputs on computer screen, there are many types of error introduced

into the simulation along the way. These errors can be categorized into two

main groups of modeling and numerical errors. Presence of different types

of errors deviates the simulation output from reality. We will elaborate on

the possible errors in the following.

1.4.1 Modeling Error

Modeling errors are defined as the mismatch between the exact solution

to a mathematical model and the actual physical phenomenon it represents.

These can be further subdivided into two groups: first, the physical modeling

errors that arise from the inadequacy of the governing equations to accu-

rately manifest the physical events; and second, the geometrical modeling

errors that are discrepancies introduced by the model to correctly capture

geometrical properties of the solution domain.

In CFD, if the full Navier-Stokes equations are discretized and solved on

a mesh, the approach is called Direct Numerical Simulation (DNS), where

every spatial and temporal length scales are resolved. This only works for

a few cases, and becomes impractical when facing flows with medium to

high Reynolds numbers. In these scenarios, chaotic terms in the Navier-

Stokes equations are simplified using turbulence modeling techniques such
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1.4. Source of Inaccuracy in Simulations

as Reynolds-Average Navier-Stokes (RANS) and Large-Eddy Simulation

(LES). Wilcox [12] provided an overview of different turbulence modeling

techniques. These methods introduce physical modeling errors into the sim-

ulation process, and are still one of the most challenging aspects of CFD.

Recent efforts [13–15] have tried to model turbulence effects by modern ma-

chine learning techniques with success, which indicates the tendency to take

advantage of high volumes of data generated in CFD simulations.

Although modeling errors are still an open problem in CFD applica-

tions, the focus of this thesis is on a different type of error, which is equally

important.

1.4.2 Numerical Error

A different type of error comes from the discretization process, where gov-

erning PDEs are discretized to form a linear system of algebraic equations,

which can be solved by a computer. These are known as numerical errors,

and in most aerodynamic simulations, are the dominant source of inaccuracy

[16]. Again, this type of error can be categorized in the following groups:

Discretization Error

Discretization error is usually the type of error we mean when we refer to the

simulation error, and is the focus of this study. Therefore, throughout this

thesis, the term error corresponds to discretization error. It is defined as the

difference between the exact and approximated solutions to the governing

equations. The approximated solution is the outcome of the steps mentioned

in Section 1.3, when model equations have gone through discretization oper-

ations. The exact solution is often unknown in real-world cases; otherwise a

simulation would not be of much help since we already know what we expect

to get. Hence, calculating discretization error in most CFD cases requires

implementing special tools, known as error estimators. A classic method to

get discretization error is Richards extrapolation [17, 18], which uses a series

of approximated solutions on a sequence of varying resolution meshes. In

addition, two modern methods will be covered in the next section.
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1.4. Source of Inaccuracy in Simulations

Truncation Error

When the exact operator in Eq. (1.1) is applied to the approximated discrete

solution obtained by solving Eq. (1.23), it will not result in zero. This

residual is known as the truncation error, which is one of the most important

sources of inaccuracy affecting discretization error directly. Similarly, if the

discrete operator is applied on the exact solution, it yields the same residual.

Iteration Error

The last two types of numerical errors we mention here are quite well un-

derstood. One of these comes from the common iterative techniques used to

solve system of linear equations. Iterative methods aim at solving equations

sequentially to reach a convergence point within a prespecified tolerance.

This exact point is not typically reached, and the offset is known as the

iteration error.

Round-Off Error

Another well-studied type of numerical errors is the round-off error, that

is a result of finite-precision operations conducted at computer level. This

error is generally quite small compared with discretization error.

1.4.3 Possible Effects

Now that different types of errors involved in a simulation are introduced, we

can present one of the main outcomes of these inaccuracies. As mentioned

before, capturing all major flow features is an essential part of any simu-

lation. These patterns have substantial effects on important aerodynamic

parameters. It is proved that even one percent error in the calculated drag

force on an airplane wing can have a significant impact on flight economics

[19]. This clearly demonstrates the importance of accurate representation

of all flow features in the flow field. In the following, we present a clear

example where a simulation fails to capture one of these patterns.
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1.4. Source of Inaccuracy in Simulations

Figure 1.6 represents the streamwise momentum solution around an

airfoil, simulated using a 2nd-order acccurate spatial discretization scheme

(Figs. 1.6a and 1.6c) and a 4th-order one (Figs. 1.6b and 1.6d). Detailed

information on the mesh properties and solution techniques will be provided

in Section 1.7. Here, the goal is to only observe the qualitative differences

between the two simulations performed on the same object in the same flow

conditions. By the first look at the overall flow field around the airfoil,

the two solutions appear to be quite similar. However, a closer look at

the trailing-edge area brings up a major concern in the lower-order simu-

lation. In Figs. 1.6c and 1.6d, the colormap is manipulated so that only

the negative velocity regions are illustrated. The pattern captured by the

4th-order simulation is known as the separation bubble, which is the major

flow feature in this case. It is revealed that the 2nd-order solution fails to

capture this important pattern. In this simple example, we have access to

the higher-order simulation to compare the lower-order one to see whether

it satisfies the goals of the simulation. In real-world applications, however,

we generally have one simulation in hand, such as the 2nd-order plot in Fig.

1.6a, and we need a way to evaluate it without having access to more ac-

curate results. In many cases, even for the experts in aerodynamics it is

impossible to make any decisive conclusions on the quality of the captured

flow patterns merely based on a single simulation.

(a) 2nd-order accurate field (b) 4th-order accurate field

(c) 2nd-order accurate separation
bubble

(d) 4th-order accurate separation
bubble

Figure 1.6: Flow simulation around a NACA 0012 airfoil. (Angle of
Attack = 0 deg, Mach number = 0.5, Reynolds number = 5000)
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In the following section, we present some common approaches to make

sure that the simulation gives acceptable results. We will also discuss ad-

vantages and disadvantages linked to the use of each method.

1.5 Accuracy Improvement Methods

There have been many attempts in the past decades to tackle problems arise

from inaccuracies in simulations, such as missing flow features presented in

the previous section. In the following, we briefly mention a few of these

efforts in minimizing numerical errors.

1.5.1 Uniform and Adaptive Grid Refinement

The classical approach to make sure that a simulation gives legit results is the

grid convergence study. Figure 1.7 depicts major steps taken in this analysis,

when performed on the flow field simulation around an airfoil. As shown

in the figure, a coarse mesh is generated as the computational domain, and

the specific parameter of interest, in this case the pressure drag coefficient,

is computed. Then the mesh is refined, resulting in more control volumes

and degrees of freedom, which gives a more accurate approximation to the

parameter. This process repeats until the parameter reaches a converged

value which does not change by mesh refinement anymore (such as point

P in Fig. 1.7). This process establishes a grid convergence study, which

has been one of the crucial steps in any CFD simulation. Mesh refinement

could be performed in a uniform [20–22] or an adaptive [23–25] manner.

The former refines spatial grid cells uniformly, usually by a factor of two,

while adaptive methods systematically improve grid resolution in certain

locations, resulting in a more efficient approach.

Although effective in simple two-dimensional (2-D) cases, this approach

comes with an enormous computational cost for some three-dimensional (3-

D) applications dealing with complex geometries (see, e.g., [26]). The chal-

lenges posed by grid refinement have been a topic of interest for many years.

In their comprehensive studies, Diskin et al. performed a grid convergence
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944 Cells

82659 Cells

297404 Cells

P

Figure 1.7: Grid convergence study for a 2-D flow simulation around a
NACA 0012 airfoil.

study for some 2-D [27] and 3-D [28] benchmark flows, using three widely

used CFD codes. They found that the convergence characteristics of flow

parameters differed significantly between the grid families they used, and an

asymptotic convergence order was not established. As a result, infinite-grid

extrapolation could not be performed precisely to get an estimate for the

exact value of flow parameters. Other studies (such as [29, 30]) draw the

same conclusion, demonstrating that grid convergence is not an efficient way

to improve the accuracy in CFD simulations.

1.5.2 Adjoint Error Estimation

Error estimators are an alternative approach to grid refinement, where the

goal is to estimate the error in simulation and use that as a correcting term

to compensate for the coarse-grid inaccuracy. A well-known error estima-

tor is based on defining an auxiliary problem, called the adjoint [31–34], to

compute the error in a solution functional such as lift or drag. Pierce and

Giles [35] described the adjoint correction process in detail and employed

a method to estimate functionals to an order that exceeded the discretiza-
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tion order of accuracy. Adjoint error estimators can be even combined with

grid refinement, like the work by Venditti and Darmofal where they im-

plemented an adjoint-based grid adaptation for 2nd-order 2-D finite volume

discretization for both inviscid [36] and viscous [37] flows.

A common approach in CFD to implement adjoint correction is by cal-

culating discrete adjoint. This variant is a simplified approximation to

the more general continuous adjoint problem, which is comprehensively ex-

plained in [38]. In the discrete adjoint method, the available outputs of

the simulation are directly used to solve for an adjoint solution, which then

can be employed for estimating the error in one solution functional. Let us

denote the Jacobian operator from Eq. (1.21) by A and the output solu-

tion vector from the simulation by ⃗̄U . This way, the adjoint vector ψ⃗ for a

specific output functional J can be computed by:

AT ψ⃗ =
∂J

∂ ⃗̄U

T

(1.24)

where superscript T denotes the matrix transpose. Having ψ⃗, the error δJ in

the computed value for J can be approximated by taking the inner product

of the adjoint and the truncation error τ⃗ :

δJ =
〈
ψ⃗, τ⃗

〉
= ψ⃗T τ⃗ (1.25)

Guidelines on estimating truncation error in a simulation are provided in

[39].

Although adjoint-based methods are more efficient compared to grid

refinement techniques, they still add computational burden when dealing

with multiple functionals. This is because for each functional of interest,

a separate adjoint equation as Eq. (1.24) should be derived. The follow-

ing subsection introduces an alternative error estimator that alleviates this

limitation.
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1.5.3 Error Transport Equation

Amodern error estimator based on deriving an additional transport equation

for discretization error has emerged in recent years [40–44]. This technique

is called the Error Transport Equation (ETE), which aims at estimating

the error in the field variables directly, instead of a single solution func-

tional. In one instance, Yan and Ollivier-Gooch [45] applied the error trans-

port method to unsteady compressible flows and they were able to obtain

a higher-order accurate error estimate from a low-order solution. The main

idea is to treat the discretization error as a physical property of the flow that

follows the convection and the diffusion rules of the flow field. From this

perspective, an additional transport equation for the discretization error can

be derived and solved alongside the main flow equations.

To derive ETE, let u be the exact continuous solution to the primal flow

equation presented in Eq. (1.1), and ũ be the discrete solution from the

simulation projected on the continuous space. We can define discretization

error ε, mathematically as:

ε = u− ũ (1.26)

If we substitute u = ε+ ũ back into Eq. (1.1), we get:

∂t(ε+ ũ) +∇ · F (ε+ ũ) = 0 (1.27)

Rearranging both sides of this equation, and substituting truncation error

as the resulting source term, ETE will be obtained as:

∂tε+∇ · (F (ε+ ũ)− F (ũ)) = −τ (1.28)

This PDE governs the discretization error and can be solved using lineariza-

tion techniques. A detailed description of this process is available in [46].

Both grid refinement and error estimation techniques are common in

modern CFD applications. These are proved to be helpful in relatively sim-

ple 2-D simulations where the cost of additional computations is justifiable.

However, for real-world applications, particularly complex 3-D cases, adding
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more control volumes or equations in the simulation process could make it

computationally inefficient or infeasible. In the next section, we will present

our proposed approach to overcome challenges imposed by the current accu-

racy improvement methods in CFD, based on the advancements in artificial

intelligence.

1.6 Proposed Data-Driven Approach

As mentioned in the previous section, although the current accuracy im-

provement methods are proved to be effective in some applications, they

become extremely cumbersome in many cases involving complex 3-D ge-

ometries. These methods approach the problem purely from the numerical

point of view, trying to improve calculated flow variables (grid refinement

and ETE) or a functional (Adjoint), without directly analyzing resolved flow

patterns in the flow field. The goal of this study is to provide an error anal-

ysis framework for CFD applications, where the focus is primarily devoted

to the quality of major flow patterns captured in the flow field. With the

advancements in data-driven methods and machine learning models, and

also the ability of CFD techniques in producing huge amounts of insightful

data, this task seems to be achievable more than ever. We will scratch the

surface by explaining main ideas behind our proposed approach, and then

we will delve into the details in the next chapters.

1.6.1 Pattern Recognition Perspective

Figure 1.8 provides some common patterns seen in the flow field around

an object. Figure 1.8a depicts von Kármán vortex street, where swirling

vortices are spotted behind a blunt body facing incoming flow due to the

viscosity and pressure differences. Figure 1.8b shows shock waves that are

discontinuities in the flow created near an object when traveling transonic

or supersonic in a fluid domain. Capturing coherent flow structures, such

as vortices and shock waves, is of utmost importance in CFD. The presence

of numerical errors in simulations makes these important features prone
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to be missed or poorly resolved, which will ultimately lead to inaccurate

estimation of aerodynamic parameters. This could in turn result in a bad

aerodynamic design, and sometimes, in disastrous events.

(a) Kármán vortex street caused
by wind flowing around the Juan
Fernández Islands. (Retrieved from
public domain; captured by NASA in
1999.)

(b) Shock wave interaction between
two aircraft. (Retrieved from pub-
lic domain; captured by NASA in
2019.)

Figure 1.8: Common coherent structures seen in fluid flows.

In this thesis, we look at CFD simulations from the lens of pattern

recognition, to try to predict whether major flow features are being missed,

or insufficiently resolved for that matter. One of the main applications of

machine learning and artificial intelligence has been face recognition [47–50].

Just like a face detector that recognizes different features on a face, we can

develop a flow feature detector to scan for flow features in a fluid simulation.

By doing that, we can set up an examination tool that expects to see certain

features when analyzing specific flow fields, similar to a facial recognition

system that looks for particular shapes on a human face. This way, this

intelligent system can alert simulation engineers when a major pattern it

anticipated to see is missing.

For image recognition (computer vision) applications, widely-used ma-

chine learning models are based on Convolutional Neural Networks (CNN)

[51–53]. These algorithms work based on pixel analysis, where a filter moves

across the image and detects features of interest. In CFD, however, we of-

ten deal with patterns ranging from very large to tiny cell-size length scales.

Although it is possible to provide a CNN model with screenshots of the

27



1.6. Proposed Data-Driven Approach

flow field, it will not be effective for a detailed flow feature examination.

Nonetheless, there exist studies conducted in recent years to incorporate

CNN algorithms with CFD data to detect flow patterns [54, 55]. Such ef-

forts have been successful in cases where the flow feature is large enough to

be inspected by a human expert, and the goal was to speed-up and automate

the workflow by removing the human-in-the-loop component of the postpro-

cessing stage. CNN can detect most of the large patterns in the flow field,

but it is likely to ignore smaller cell-size features that in fact have significant

value in aerodynamics. To perform a thorough assessment of CFD results,

we need a more quantitative tool able to analyze cell data, rather than a

visual model such as CNN. This requires us to implement a more detailed

detector to cover all length scales in the flow field.

In this study, Principal Component Analysis (PCA) is applied to the

CFD data to decompose a flow field into a set of dominant modes. This

step is the counterpart of the convolution operation in CNN where the filter

is applied to the pixels to extract features. PCA, however, extracts the sta-

tistically dominant modes of the data set based on the variance it observes

in cell data. It makes it an ideal tool since all important numerical infor-

mation, even in the tiniest cells, is considered in the analysis. Since major

patterns in the flow field make substantial contributions to the numerical

data in each cell of the domain, it is expected that they show themselves

in single or combinations of PCA modes. A formal introduction to PCA

will be provided in Chapter 2. Here, we only point out that PCA creates a

modal subspace from the high-dimensional space of CFD solutions, where

all the information for a simulation can be presented concisely and much

more efficiently in terms of extracted modes. These insightful modes can

then be passed to a machine learning model for many purposes. The follow-

ing subsection briefly explains how we have exploited the PCA modes for

the purpose of this study, by the means of machine learning classification

and regression.
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1.6.2 Machine Learning Framework

As mentioned in the previous subsection, useful information about major

patterns in a flow field is likely to be embedded in its PCA modes. Therefore,

by using these modes as the input information to a machine learning model,

we expect the learning algorithm to be able to find correlations in the PCA

subspace to decide whether the simulation captures a particular flow feature.

Even further, since these flow patterns have significant effect on aerodynamic

parameters, using the same modes can be useful in predicting the error by

which these parameters are calculated. The former model, where only a

label is assigned to a simulation showing whether it misses a flow feature,

is known as machine learning classification. The latter, where a continuous

numerical value is predicted, is referred to as machine learning regression.

These two types of machine learning models are introduced and explained

in Chapters 3 and 4, respectively.

For now, we consider a machine learning model as a black box, which

takes some input information and produces useful output. In later chapters,

a comprehensive discussion of what happens inside this box will be provided.

We can exhibit the overall workflow of our proposed learning system in Fig.

1.9. Looking at the figure, the first step in constructing such a feature de-

tecting system is to gather simulations together as a big data set. This part

of the workflow and the data set we used in this thesis will be covered in

the next section. Then, PCA is applied on the data set of CFD simulations

to extract dominant modes. These modes can be considered a compressed

representation of the simulations, where each mode contains useful informa-

tion about the flow field in a concise manner. The PCA modes are then

passed into two machine learning models: a classifier, and a regressor. The

classifier will predict, based on the PCA modes, whether a simulation misses

a particular flow feature. The regressor, on the other hand, operates in the

same information space to estimate the error in the calculated aerodynamic

parameters to be used as a correction afterward.
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Data Matrix

(CFD Simulations)
PCA Modes

Transform

Machine Learning

Classifier

Machine Learning

Regressor

Captured / Missed ?

Error in one of the 

calculated parameters

Figure 1.9: Black box representation of the proposed machine learning
system.

1.7 Test Case and Data Set

1.7.1 Test Case: Missing Flow Separation on NACA 0012

Flow past an airfoil is a canonical example in aerodynamics; thus, the test

case in this study was chosen to be a simulated steady-state, compressible,

subsonic, 2-D viscous flow, governed by the Navier-Stokes equations, around

a NACA 0012 airfoil. When this particular body shape is placed in a flow

with an Angle of Attack (AoA) of 0 deg, a Mach number (M) of 0.5, and a

Reynolds number (Re) of 5000, a separation bubble is expected to be formed

at the trailing-edge of the airfoil.

For this study, an unstructured coarse grid containing 4142 cells was gen-

erated using GRUMMP. As illustrated in Fig. 1.10, the grid was relatively

coarse near the trailing-edge and inside the viscous boundary layer. The

reason was to force the 2nd-order accurate solution to miss the separation

bubble in the specified flow conditions, whereas the 4th-order one fully cap-

tured the separation region. The task was done by trial and error, testing

multiple meshes to end up with a mesh that satisfied the goals of this study.

To solve the flow field, our in-house library (ANSLib) was used, and

to handle the linear algebra operations, an external package called PETSC

[56] was utilized. To obtain higher-order spatial accuracy for unstructured

meshes, our solver uses the k-exact least-squares reconstruction method.

For the advective fluxes, Roe’s scheme [57] is implemented, whereas for the

diffusive fluxes, the average of the reconstructed gradients with an additional

jump term is used. The test case was solved two times; first, using a 2nd-
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x/c
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(a) Farfield O-type grid
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(b) Close-up view of the airfoil
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(d) Trailing-edge (5% of the chord)

Figure 1.10: Unstructured mixed-element mesh around NACA 0012,
containing a total of 4142 triangular and quadratic cells.

order accurate discretization scheme, and then, by a 4th-order accurate one.

The results are presented in Fig. 1.6 from Section 1.4, where the effect of

inaccuracies in the simulation was discussed. As explained before, the lower-

order simulation misses the main flow feature in this canonical case, which

is the separation bubble, while the higher-order simulation captures it.

The purpose of this thesis is to develop two machine learning models
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to detect the missing flow feature in the low-order simulation and predict

the error in the drag coefficient, without having access to the higher-order

solution for comparison. It should be noted that applying conventional ac-

curacy improvement methods in this simple 2-D case is relatively simple and

common. Our goal is to present a proof of concept, which could hopefully be

generalized to more complex 3-D cases in the future. Therefore, although

we train and test our intelligent model on a simple 2-D case, the target

of this project is intended to be more challenging cases where the current

improvement methods fail to perform well.

1.7.2 Raw Data Set

Any learning system, whether it is a human, an animal, or a computer,

needs lots of data to be trained and understand patterns and correlations

from the input space of information. To produce a full data set suitable for

the purpose of this study, the following combinations of flow conditions were

used:

• the angles of attack from −7 to +7deg, with steps of 1 deg,

• the Mach numbers from 0.1 to 0.5, with steps of 0.1,

• and the Reynolds numbers from 3000 to 9000, with steps of 1000

that resulted in 525 unique flow conditions. Then, the governing flow equa-

tions were solved using 2nd- and 4th-order accurate discretization schemes,

giving a total of 1050 solution vectors. For each unique case, the higher-

order solution was assumed to be the exact solution (the ground truth),

and the lower-order one was considered as the simulated flow. Among all

the 2nd-order simulations, 236 cases were either missing the separation or

partially capturing it, compared to their 4th-order counterparts.

To construct the data set, all the solution vectors are put together as

columns of a large data matrix, as shown in Fig. 1.11. This gives a 16568

by 1050 matrix, where the dimensions represent the dimensionality of the

solution vectors and the number of data samples, respectively. The large
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number of values in each solution vector comes from the fact that each of

the 4142 control volumes in the flow field contains 4 field variables that

are solutions to the conservation of mass, momentum (we have two values

coming out from this law, since it is a 2-D simulation), and energy, resulting

in 16568 degrees of freedom for each vector. This data matrix is tagged

raw, as it still needs some preprocessing operations before being prepared

for PCA. These operations will be discussed in detail in the next chapter.

Xraw = x1
….. xk xm…..

AoA = -7 deg, M = 0.1, Re = 3000
(2nd-order)

AoA = 0 deg, M = 0.5, Re = 5000
(4th-order)

AoA = 7 deg, M = 0.5, Re = 9000
(4th-order)

Figure 1.11: CFD solutions in different flow conditions around NACA
0012 gathered to create the raw 16568 by 1050 data set.

We have created a free open-source GitHub repository containing our

data set, which can be accessed through: https://github.com/APHedayat/

missing-flow-feature-dataset.git.

1.8 Outline

Figure 1.9 provides a convenient road-map for the rest of this thesis. Re-

ferring to this figure, the learning system we intend to develop consists of

three main parts, namely PCA, classification, and regression. Chapter 2 in-

troduces our modal decomposition method, where we create the basis space

to train machine learning models for CFD data sets. Based on the extracted

modes, we develop two intelligent models to identify missing flow separation

and estimate the error in the drag coefficient in CFD simulations in Chapters

3 and 4, respectively. Finally, key outcomes of this study are discussed in

Chapter 5, and guidelines for the future are provided. Moreover, additional

information and results are presented in Appendices A to F.
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Chapter 2

Principal Component

Analysis of Aerodynamic

Data

In this chapter, we introduce PCA and investigate its use in detecting CFD

simulations with a missing separation bubble. PCA is a ubiquitous modal

decomposition technique, based on Singular Value Decomposition (SVD),

which is one of the most important tools in data analysis. PCA is labeled

with a variety of terms in literature. In fluid mechanics, it is often known as

Proper Orthogonal Decomposition (POD), while other terminologies such

as Karhunen–Loève procedure and Hotelling analysis are common in other

fields. This technique decomposes a data matrix, such as the one in Fig.

1.11, into linearly-independent basis functions, also called modes. The main

objective of PCA is to find the most efficient set of modes, tailored to the

specific data set, to obtain a low-rank approximation to the high-dimensional

data. In other words, PCA extracts dominant patterns in a data set that

capture most of the energy in the data. The extracted mode shapes can

be used in a variety of applications, from dimensionality reduction methods

[58–60], to pattern recognition techniques [61].

PCA methods were first, to the best of our knowledge, introduced by

Pearson [62] and Hotelling [63], and then were presented as a tool for pat-

tern recognition by Watanabe [64]. In the field of fluid mechanics, PCA

was proposed by Lumley [65], where he was able to extract the coherent

structures in a turbulent flow field. PCA has since been frequently used in

a variety of applications to study fluid flows [66–69]. In their recent review
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2.1. Dimensionality Reduction

papers, Taira et al. [70, 71] provided a detailed overview of the applications

of modal decomposition techniques, including PCA, in the field of fluid dy-

namics. The power of PCA in extracting dominant flow patterns makes it

an attractive candidate to detect missing flow features, which is the goal of

the present study.

Section 2.1 of this chapter presents a profound insight into what PCA

actually does in practice, and why it is one of the key tools in data science.

Then, Section 2.2 provides a brief overview of its mathematical foundation,

and a very important preprocessing operation that should be performed

on the data matrix is discussed. Following that, we apply PCA on our

prepared data set in Section 2.3 to uncover the dominant modes of the CFD

data. These modes are further studied to explore the underlying details and

physics of the flow. Finally, Sections 2.4 and 2.5 describe our approach to

isolating the mode responsible for the missing separation bubble.

2.1 Dimensionality Reduction

In all branches of science and engineering, data is being generated con-

stantly. These data are typically high-dimensional as they have many de-

grees of freedom, which makes it impossible to gain insight solely based

on the raw data. This problem is referred to as the curse of dimension-

ality, and there are multiple dimensionality reduction techniques such as

Dynamic Mode Decomposition (DMD) for time-varying data sets, Linear

Discriminant Analysis (LDA), and Autoencoders to handle it. The basic

idea behind all these methods is to create a lower-dimensional subspace

from the high-dimensional input data without significant information loss.

The resulting subspace represents original data in a compact form, where

all meaningful information is retained. Hence, operating in this subspace

is much more efficient compared to analyzing the high-dimensional data

directly.

In general, dimensionality reduction techniques can be divided into two

major groups: feature selection, and feature extraction. Feature selection is

the simplest approach one could take to decrease the complexity of the data.
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2.1. Dimensionality Reduction

In this approach, all individual components in the data vector are analyzed,

either by a human expert or a computer, to discard less important entities.

This way, only the most meaningful input information is kept, yielding a

lower-dimensional data vector. When the number of entities in the original

high-dimensional data vector is relatively low, this method can be utilized.

We will show in later chapters how we used feature selection in our machine

learning models, under the sections where we perform feature analysis.

For substantially higher-dimensional data sets with many degrees of free-

dom, feature selection becomes impractical as the number of components is

beyond our capability to examine each individually. For these cases, which

constitute almost all engineering data sets, another method called feature

extraction, also known as feature projection, should be employed. This

type of dimensionality reduction takes a statistical approach to map the

high-dimensional data onto a lower-dimensional subspace. PCA falls into

this category of dimensionality reduction techniques, where the directions

along which the data samples show highest variance are extracted as a set

of linearly-independent modes. These modes create an orthonormal basis,

onto which data vectors in the data set can be projected. This action sig-

nificantly reduces the dimensionality of the main data without losing much

information. The process is comprehensively explained in the next section.

An illustrative example of using PCA on a simple test case is provided in

Fig. 2.1. This famous example is know as the swiss roll, where the data

points are represented in the 3-D space of independent variables (x, y, z),

and are colored by the dependent variable w (Fig. 2.1a). A close inspection

reveals that the dependent variable can be represented by a single curved

direction along the roll. Figure 2.1b demonstrates that PCA precisely de-

tects this direction and unrolls the 3-D structure to represent the data set

much more efficiently using a single principal axis.

In practice, both feature selection and feature extraction are applied

to a high-dimensional data set to produce a much more efficient subspace

for further analysis. First, a feature extraction technique such as PCA is

implemented to give a lower-dimensional subspace from high-dimensional

data with many degrees of freedom. Then, feature selection analysis can be
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(b) Reduced-order representation
after applying PCA

Figure 2.1: Swiss roll data set, demonstrating the power of PCA in
dimensionality reduction.

applied on this low-dimensional subspace to create an even more efficient

one.

CFD results are among the highest-dimensional data in science and en-

gineering, which makes the use of dimensionality reduction techniques com-

pulsory in these cases for data analysis. Accordingly, we apply PCA on

the CFD data set presented in Fig. 1.11, to extract dominant modes and

therefore substantially reduce the dimensionality and complexity of the data

for our machine learning purposes. A detailed overview of PCA method is

presented in the following section.

2.2 Methodology

Here, we present the mathematical foundation of PCA. Excellent overviews

of this subject are available in the literature (refer to, e.g., [72]). Suppose

that the data samples are stacked together as columns of a large data matrix,

Xraw ∈ Rn×m, as previously presented in Fig. 2.1:
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2.2. Methodology

Xraw =

 | |
x(1) . . . x(m)

| |

 (2.1)

where m represents the number of samples and n defines the dimensional-

ity of the data. Before it is ready for PCA, the raw data matrix needs a

preprocessing step called centering, where the mean of the data vectors is

subtracted from each column. This makes the results more interpretable

since they are expressed as deviations from the mean solution. In fact, we

often care only about off-mean fluctuations when studying fluid dynamics;

turbulence models are good examples to show this tendency. The process of

centering can be written mathematically as follows:

X = Xraw − x̄
[
1 1 . . . 1

]
1×m

(2.2)

where x̄ is a column-vector representing the mean, and the second operation

simply copies the mean data as columns of an n by m matrix.

Using economy SVD, which is the more efficient version of the classic

SVD, the mean-subtracted data matrix can be decomposed into three ma-

trices as follows:

X = UΣVT =


| |

u1 . . . um

| |


σ1 . . .

σm


 | |
v1 . . . vm

| |


T

(2.3)

where the columns of U ∈ Rn×m and V ∈ Rm×m are the left and the right

singular vectors of X, respectively, and the superscript T denotes the matrix

transpose. Moreover, Σ ∈ Rm×m is a non-negative diagonal matrix where

the entries are the singular values, ordered hierarchically from the largest

to the smallest. The columns of U and V follow the same rule and are

arranged based on their energy content as defined by their corresponding

38



2.2. Methodology

singular value. The left singular vectors are also called the modes or Prin-

cipal Components (PCs) of the data set and span an orthonormal basis on

which the data samples can be projected. In other words, these vectors

capture the directions in the information space of X where data samples

x(i) show the highest variance. By putting decomposed data in the order

described before, the most important directions are piled up as the first few

columns of U.

To obtain the left singular vectors, the eigensystem of the correlation

matrix XXT can be solved:

[
XXT

]
U = ΛU (2.4)

In Eq. (2.4), the eigenvectors of XXT are the left singular vectors of the

data matrix, and hence, are denoted by U. Also, the singular values of X

are related to the eigenvalues of XXT by:

σi =
√
λi

The same analogy can be made for the right singular vectors of the data

matrix by solving the eigensystem of XTX. This analysis points out the

nature of SVD, and also demonstrates why the first few PCA modes are the

most statistically important factors in describing the data set.

The strength of each mean-subtracted data sample, x(i), in the direction

of each PCA mode, uk, is computed by taking the inner product of the two

vectors,

αik =
〈
x(i),uk

〉
= x(i)Tuk (2.5)

where αik is called the expansion coefficient that indicates the amount of

energy in the ith data sample captured by the kth mode. This action gives

the projected solution vector, x(i), on the direction defined by the kth PCA

mode. Orthonormality of the PCA modes (i.e., ⟨ui,uj⟩ = δij) enables us to

reconstruct any data sample as a weighted summation over all the modes:
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2.2. Methodology

x(i) =
m∑
j=1

(αijuj) (2.6)

In most cases, using all the modes to represent a data sample is not efficient.

Furthermore, the purpose of PCA is to provide an optimal low-dimensional

basis for the high-dimensional data. In that regard, Eckart and Young [73]

shared that the best rank-r approximation to any mean-subtracted sample,

x(i), in a least-square sense, can be written as the weighted summation over

the first r modes:

x(i) ≈
r∑

j=1

(αijuj) (2.7)

where r ≪ m. The choice of r is usually based on the amount of energy

captured by using the first r modes, which will be discussed in detail in the

results section. In simple terms, Eq. (2.7) picks the leading directions from

U to create a remarkably efficient subspace to analyze the high-dimensional

data in X. The Eckart-Young theorem is the basis for all dimensionality

reduction techniques based on PCA, where the level of complexity of an

n-dimensional problem significantly reduces to r-dimensions, where r ≪ n.

In this study, the data samples are the solution vectors of multiple CFD

cases, defined in the previous chapter. CFD simulations are perfect ex-

amples of high-dimensional problems with many degrees of freedom, where

multiple flow variables are assigned to numerous control volumes. In such

cases, using PCA could substantially decrease the level of complexity from

thousands or even millions of degrees of freedom, to only a few modes. This

dimensionality reduction, as well as the power of PCA in extracting the sta-

tistically dominant modes of the solution, were the motives of the current

study to develop an intelligent flow feature detector.
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2.3. Results: Modal Decomposition

2.3 Results: Modal Decomposition

In this section, we present the results of applying PCA on our CFD data

set presented in Fig. 1.11 after going through preprocessing step in Eq.

(2.2), and thoroughly investigate the output mode shapes to uncover hid-

den information embedded in each mode. It is worth noting that our ini-

tial attempt for modal decomposition involved a different technique, called

eigendecomposition, where we faced conditioning issues. A full discussion

on this method and its associated limitations is provided in Appendix A.

2.3.1 Energy Plot and Cut-Off Mode

The singular values, σk, stored in the diagonal matrix Σ, defined in Eq.

(2.3), can be interpreted as the amount of energy each mode contains. Figure

2.2a shows the evolution of the singular values associated with each mode of

the solutions in our data set. The results clearly show that the first modes

contain most of the energy in the whole data set, and the singular values

(energy contents) drop significantly as the mode number is increased, as

the theory of SVD suggests. The main usage of this plot is to decide how

many modes should be preserved to capture as much energy as possible to

describe the data set with acceptable accuracy (Eckart-Young theorem, Eq.

(2.7)). In that regard, one popular method is to look at the elbow in Fig.

2.2a, after which the energy contents become nearly negligible. Applying

this methodology in our case, it suggests that any number around 4 to 10

modes would be an appropriate choice. However, as the main purpose of this

section is to identify the mode responsible for the missing separation bubble,

and not merely dimensionality reduction, we should be more cautious when

performing rank-r approximation, defined by Eq. (2.7). A better option, as

mentioned by Taira et al. in their review paper [70], is to retain r modes of

the solution such that: ∑r
j=1 σj∑m
j=1 σj

≈ 0.99 (2.8)

In other words, we keep as many modes as to capture approximately 99% of

the information in the data, and discard remaining less informative modes.
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2.3. Results: Modal Decomposition

For this purpose, a more illustrative plot is the cumulative energy, presented

in Fig. 2.2b. This plot accounts for the quality of the data reconstruction,

as the number of PCA modes increases. As shown in the figure, using only

5 modes, we capture around 83% of the information embedded in the data.

Although it might sound impressive to describe high-dimensional CFD data

using only a few modes by such a good accuracy, this could also increase the

chance of missing important details of the flow, particularly the separation

region, in the remaining truncated modes. Using the first 40 modes of the

solution, on the other hand, we capture almost 99% of the energy in the data

set, which satisfies the criterion stated by Eq. (2.8). Therefore, in this study

we kept and analyzed only the first 40 modes obtained by applying PCA on

our data set. This clearly demonstrates the ability of PCA to significantly

reduce the complexity of the data set; In our case, using PCA we represent

each 16568-dimensional CFD simulation as a data point in a 40-dimensional

PCA subspace, which is nearly 400 times more compressed. It provides a

considerably more efficient framework to explore different aspects of such a

complicated nonlinear dynamical system.
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Figure 2.2: The evolution of the singular values of the data set and the
energy level of rank-r approximation given by Eq. (2.7).
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2.3. Results: Modal Decomposition

2.3.2 Physical Interpretation

Now, we narrow down our investigation to understand the physical signifi-

cance of the dominant PCA modes. All the first 40 solution modes obtained

by applying PCA (Eq. (2.3)) on the data matrix (shown in Fig. 1.11) are

presented in Fig. B.1 as part of Appendix B. The plots represent the modes

associated with the streamwise momentum solution, since this flow variable

better depicts the separation region. Scanning through the mode shapes,

each mode represents a certain shape in the flow field, and there is a lot

of information embedded in these patterns. It is helpful to think of each

mode as a source of velocity and see which regions of the overall velocity

field they affect when added together to reconstruct the simulation. This

yields a physical insight behind each mode, which can be beneficial for many

applications. Using this examination, we observe the following:

• The first mode appears to represent the general structure of the ve-

locity field. Since it is primarily concerned with the overall velocity,

it probably represents the effect of the Mach number. This mode is

illustrated in Fig. 2.3.

Figure 2.3: First PCA mode of the CFD data set in Fig. 1.11, repre-
senting the effects of the Mach number.

• The second PCA mode shows a huge difference between the upper

and the lower regions of the airfoil, suggesting that it is the main

source of the pressure difference between the surfaces of the airfoil,

which ultimately produces lift. The major source of these effects for

a symmetric airfoil is the angle of attack, and therefore we can easily

link the second mode to this flow condition. The plot of the second

PCA mode is represented by Fig. 2.4.
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2.4. Results: Solution Projection

Figure 2.4: Second PCA mode of the CFD data set in Fig. 1.11, repre-
senting the effects of the angle of attack.

• Other interesting mode shapes are the fourth and the sixth ones, where

the boundary layer is mostly affected. This demonstrates that these

two modes contain information about the effects of viscosity and the

Reynolds number. These mode shapes are pictured in Fig. 2.5.

Figure 2.5: Fourth (left) and sixth (right) PCA modes of the CFD data
set in Fig. 1.11, representing the effects of the Reynolds number.

• Other conclusions can be drawn using the same inspection method,

although as the mode shapes become more complicated, physical in-

terpretation becomes more difficult.

More complex flow features, such as separation bubble, are likely to be

stored in more complicated modes, as mentioned in the last point above.

Their effects can even be represented by a mixture of multiple modes. It

suggests that visual investigation is not very effective for our purposes, and

a different examination approach must be taken.

2.4 Results: Solution Projection

The goal of the PCA decomposition in this study is to identify the mode

responsible for the missing separation bubbles observed in some of the 2nd-
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2.4. Results: Solution Projection

order solution vectors. Therefore, we look for a mode where the 2nd- and the

4th-order solution vectors behave in a completely different manner. Hence,

we develop our alternative modal examination tool based on this discrepancy

between the low- and the high-order simulation vector fields. As a starting

point, all solution vectors can be projected onto the retained PCA modes of

the data set, by taking the inner product mentioned in Eq. (2.5). The best

way to picture the behavior of the 2nd- and the 4th-order simulations when

going through this mapping transformation is by plotting those and look for

major differences. For this purpose, the plots in Fig. C.1 in Appendix C are

provided, where the y-axis shows the expansion coefficient, resulting from

the projection of each solution vector on each mode, and the x-axis repre-

sents the index associated to each combination of flow conditions, ranging

from 1 to 525. These indices are of least importance, and the sole purpose

of defining such a numbering system is to help visualize the expansion co-

efficients for each mode in a 2-D plane. As shown in Fig. C.1, both curves

of the 2nd- and the 4th-order solutions have been plotted for each mode. By

doing so, the difference between the low- and the high-order solutions can

be easily identified for each mode. It is helpful to keep in mind that the

Reynolds number varies faster than the other flow conditions in these plots,

then comes the Mach number, and finally the angle of attack. Looking at

the plots, we mention the following notes:

• Leading PCA modes show exactly identical behaviors for the 2nd- and

the 4th-order solutions, suggesting that these modes account for the

general flow conditions, such as the angle of attack, the Mach num-

ber, and the Reynolds number. This is consistent with our previous

inspection of the mode shapes. Figure 2.6 shows a few examples of

such modes where the expansion coefficients for the lower- and the

higher-order simulations coincide.

• Analyzing the remaining modes, although some of them demonstrate

slight discrepancies between the curves, their overall behavior seems

to be qualitatively identical. It appears that the 16th mode is the bold

one in representing most of the difference between the 2nd- and the
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Figure 2.6: Expansion coefficients for the 2nd- and the 4th-order simu-
lations, plotted for the four leading modes in the PCA subspace.

4th-order solutions. It shows a huge gap between the low- and the

higher-order curves, indicating that the 16th mode contains much of

the information about the order of accuracy of the solution. Since

missing major flow features is a direct result of the order of accuracy,

the 16th mode is possibly the main source of the missing separation

bubble observed in some of our cases.

• Some of the subsequent modes also show major differences between the

curves; however, they contain less energy than the 16th mode because

of the hierarchical structure of SVD.

Consequently, the 16th PCA mode of the data set is the foremost candi-

date to represent the missing separation bubble. Figure 2.7 depicts both the

mode shape and the expansion coefficients of the solution vectors associated

with the 16th PCA mode side-by-side. It can be seen that the 16th mode

indeed recognizes the separation region (the dark red area near the trailing-
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2.5. Results: Separation Bubble Reconstruction

edge of the airfoil, which suggests positive streamwise velocity). Also, the

fact that the 4th-order expansion coefficients for this mode are mostly neg-

ative suggests that this mode tries to create a negative velocity bubble near

the trailing-edge, which is one of the characteristics of the separation bub-

ble; whereas, the 2nd-order expansion coefficients for this mode are mainly

positive, which indicates that the 16th PCA mode prevents the separation

bubble to be formed in some 2nd-order solutions by injecting positive velocity

into the trailing-edge region.

(a) Mode shape

0 100 200 300 400 500
Case Index

−0.20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15

M
od

e 
C

oe
ff

ic
ie

nt

Mode 16: 0.3629%

4th
2nd

(b) Expansion coefficients

Figure 2.7: x-momentum component of the 16th PCA mode alongside
the expansion coefficients for the 2nd- and the 4th-order solution vectors
in this mode, calculated from Eq. (2.5).

2.5 Results: Separation Bubble Reconstruction

To assess our findings in the previous section, we present the solution buildups

for a test case that we already know misses the flow separation when solved

to 2nd-order accuracy. This is done by adding the modes weighted by appro-

priate expansion coefficients incrementally (using Eq. (2.7)), starting from

the first mode, all the way to the 40th one. The goal is to see how the solu-

tions evolve as the PCA modes are added bit by bit. Based on the results of

the previous section, we expect to see different behaviors between the 2nd-

and the 4th-order accurate solution buildups regarding the creation of the

separation bubble when adding the 16th mode. A side-by-side comparison of

the solution buildups for the low- and the high-order streamwise momentum

fields are shown in Fig. 2.8, where the flow field is scaled and the colormap
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is manipulated so that only the negative velocities are shown. By definition,

these negative velocity regions illustrate the separation bubble, and we aim

to only analyze the creation of these patterns. The results show that:

• Although minor differences exist between the modes as they recon-

struct the solution, they all behave qualitatively the same before adding

the 16th mode. In other words, when a particular mode generates sep-

aration region at the trailing-edge for the higher-order simulation, it

acts the same way on its low-order counterpart, although its effects

can quantitatively differ.

• When the 16th mode is taken into account, the separation region is

reinforced on the 4th-order plot, whereas it has no effect on the 2nd-

order one. By very close inspection, we notice that this mode even tries

to reduce the intensity of the weak separation region in the low-order

simulation. This is consistent with our observations in Fig. 2.7.

• The subsequent modes have minor influence on the separation, and no

major change in the pattern of the separation bubble is seen after the

16th mode. It confirms our previous observation that the 16th PCA

mode is the source of the missing separation bubble.

2.6 Summary

This chapter presented the results of PCA when performed on our CFD

data set. We discussed the dimensionality reduction aspect of this modal

decomposition technique, and how it facilitates our investigations. We also

observed that the PCA modes are physically meaningful, providing a great

framework to study CFD simulations from different perspectives. We were

also able to mark a single mode that may be primarily responsible for the

missing flow separation for the deficient cases in the data set. We can

take advantage of PCA and all the useful information it provides in the

development of our flow feature detector, which is the topic of the next

chapter.
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Modes: 1 Modes: 1 and 2

Modes: 1 to 3 Modes: 1 to 4

Modes: 1 to 5 Modes: 1 to 6

Modes: 1 to 7 Modes: 1 to 8

Modes: 1 to 9 Modes: 1 to 10

Modes: 1 to 11 Modes: 1 to 12

Modes: 1 to 13 Modes: 1 to 14

Modes: 1 to 15 Modes: 1 to 16

Figure 2.8: Solution buildup based on the PCA modes for the simulated
flow around NACA 0012 at AoA = 0 deg, M = 0.5, and Re = 5000.
Each portrait is a close-up view of the trailing-edge area (10% of total
chord). The 2nd- and the 4th-order buildups are shown on the left and
the right side of each portrait, respectively.
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Modes: 1 to 17 Modes: 1 and 18

Modes: 1 to 19 Modes: 1 to 20

Modes: 1 to 21 Modes: 1 to 22

Modes: 1 to 23 Modes: 1 to 24

Modes: 1 to 25 Modes: 1 to 26

Modes: 1 to 27 Modes: 1 to 28

Modes: 1 to 29 Modes: 1 to 30

Modes: 1 to 31 Modes: 1 to 32

Figure 2.8: Solution buildup based on the PCA modes for the simulated
flow around NACA 0012 at AoA = 0 deg, M = 0.5, and Re = 5000.
Each portrait is a close-up view of the trailing-edge area (10% of total
chord). The 2nd- and the 4th-order buildups are shown on the left and
the right side of each portrait, respectively. (cont.)
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Modes: 1 to 33 Modes: 1 and 34

Modes: 1 to 35 Modes: 1 to 36

Modes: 1 to 37 Modes: 1 to 38

Modes: 1 to 39 Modes: 1 to 40

Figure 2.8: Solution buildup based on the PCA modes for the simulated
flow around NACA 0012 at AoA = 0 deg, M = 0.5, and Re = 5000.
Each portrait is a close-up view of the trailing-edge area (10% of total
chord). The 2nd- and the 4th-order buildups are shown on the left and
the right side of each portrait, respectively. (cont.)
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Chapter 3

Separation Identification

In this chapter, we present our approach to developing an intelligent model

to detect an under-resolved flow feature in CFD simulations. One of the

primary applications of PCA is to preprocess the data to create an opti-

mal subspace suitable for machine learning purposes. This is because PCA

extracts the principal axes along which the data samples show the highest

variance. In turn, it is much easier for machine learning algorithms to oper-

ate in such spaces where different data points are statistically more distinct,

whereas the similar ones are clustered together. In addition, the power of

PCA in extracting the mode responsible for the missing separation, which

was proved to be the 16th one in the previous chapter, suggests that the de-

ficient cases could be identified by studying their 16th expansion coefficient.

These two points encourage the development of a machine learning classifier,

which takes the expansion coefficients as input and detects the cases where

the separation bubble is either missed, or partially captured.

The following sections provide a brief overview of how machine learning

classifiers work, and how we implemented a supervised binary classifier for

the purpose of this study. In Section 3.1, we highlight important aspects of

machine learning classification in general, and introduce well known algo-

rithms in this area. Sections 3.2 and 3.3 explain our logic in selecting input

and output data for our machine learning classifier. Also, challenges related

to imbalanced data sets are discussed in Section 3.3. Guidelines on evaluat-

ing classification systems are provided in Section 3.4, and parameter tuning

is covered in Section 3.5. Overall steps taken to develop our classifier are

described in Section 3.6, and the results of entering our CFD data matrix of

Fig. 1.11 into the developed pipeline are presented in Sections 3.7 to 3.13.
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3.1 Machine Learning Classification

A general definition for machine learning is provided by Samuel [74] as fol-

lows:

“Machine Learning is the field of study that gives computers the ability

to learn without being explicitly programmed.”

and a more engineering description is given by Mitchel [75]:

“A computer program is said to learn from experience E with respect

to some task T and some performance measure P, if its performance

on T, as measured by P, improves with experience E.”

These definitions indicate that a machine learning model learns from pre-

vious observations to accurately act when applied to new instances. This

process is not controlled by a human expert, in the sense that no direct

command is given to the model, and the algorithm intelligently weighs re-

lated input information to make an accurate output prediction. In general,

machine learning tasks are divided into two major groups: classification and

regression. The current chapter explains the development of a classifier,

while the next chapter will deal with a regression problem.

A machine learning classifier is a powerful algorithm that detects pat-

terns and correlations in a collection of information, called features, to pre-

dict the class to which each data sample belongs. If the learning process

is guided, meaning that the classes, also know as the labels, are already

provided to the algorithm as a benchmark, it will be called a supervised

classifier. In this study, we deal with a supervised binary classifier with two

label outputs: captured (false, or 0), or missed (true, or 1). In a machine

learning process, the full data set (such as the one we presented in Fig. 1.11)

is divided into the training and the test sets, usually containing 80% and

20% of the data, respectively. The model is trained on the training set, to

find all relative patterns and correlations between the features and labels,

and is evaluated on the test set.

So far, a machine learning model was treated as a black box. Now, we

turn our attention to the operations inside this box to correctly assign a label
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to each data sample in the data set. In the following, we briefly introduce

some common algorithms used for classification systems. For a detailed

overview of different aspects of machine learning and deep learning, readers

can refer to [76, 77].

3.1.1 Logistic Regression

Logistic Regression is a probability-based classification model, which essen-

tially measures the probability that a data sample belongs to a class, and

assigns labels accordingly. Let x(i) be the vector of input features for the ith

data sample; the Logistic Regression algorithm operates based on a weighted

summation over all elements of this vector as follows:

h
(i)
θ (x(i)) = θ0 +

∑
j=1

θjx
(i)
j = θ · x(i) (3.1)

In the vector representation, we have added 1 at the beginning of x(i) to

properly take θ0 into account. Probabilities are computed by applying a

sigmoid function, defined by:

σ(t) =
1

1 + exp(−t)
(3.2)

on Eq. (3.1), giving:

p̂(i)(x(i)) = σ
(
θ · x(i)

)
(3.3)

Equation (3.3) yields a value between 0 and 1, based on which the following

labels are assigned:

ŷ(i) =

{
0 if p̂(i) < 0.5

1 if p̂(i) ≥ 0.5
(3.4)

The objective of Logistic Regression is to set θ in Eq. (3.3) through a

supervised learning on the training set to minimize prediction errors. It is
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3.1. Machine Learning Classification

achieved by defining a cost function J(θ):

J(θ) = − 1

m

m∑
i=1

[
y(i) log

(
p̂(i)
)
+
(
1− y(i)

)
log
(
1− p̂(i)

)]
(3.5)

and minimizing it using an optimization method, such as Gradient Descent

(GD). In Eq. (3.5), y(i) is the actual label of the ith data sample, and p̂(i) is

its predicted probability. Also, m represents the total number of the training

instances. This function is convex, and therefore GD is guaranteed to find

the global minimum.

3.1.2 Decision Trees

Decision Trees can be pictured as nested conditioning statements we use to

program computers; the only difference is that the conditions are set by the

algorithm itself, rather than being hard-coded as direct commands. Even

so, developers have control over hyperparameters, and by changing these

values the overall performance can be improved. These tunable parameters

define the main structure of the Decision Tree, such as the maximum depth

of the nested conditions. Individual conditions are intelligently calibrated

by the machine learning model to accurately predict labels. The skeleton of

a Decision Tree is depicted in Fig. 3.1, starting from the parent condition

to its child nodes.

Decision Trees learn based on an impurity measure known as Gini, which

is computed for each conditioning node. Let ni be the number of total data

samples entering the ith conditioning node. Then, the following metric can

be defined:

Gi = 1−
∑
k

(
mi,k

ni

)2

(3.6)

wheremi,k is the number of instances belonging to the kth label. The smaller

Gi is, the purer data samples are in that specific conditioning node. We can

use this metric to successively split the training set into two subsets as

follows:

• Having (x, tx) as a pair of one of the input features and a splitting
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Condition 0

(𝑛 samples)

Condition 1

(𝑛1 samples)

Condition 2

(𝑛2 samples)

True False

⋮ ⋮ ⋮ ⋮

True True FalseFalse

Condition 𝑖
(𝑛𝑖 samples)

Condition 𝑁
(𝑛𝑁 samples)

⋯

Parent Node

Child Nodes

True TrueFalse False

Label A Label B Label ALabel B

Figure 3.1: Overall structure of a binary Decision Tree classifier, consist-
ing of multiple nested conditioning nodes to predict the output labels.

threshold, respectively, we split the whole training set into two left

and right subsets.

• From Gini impurity function defined in Eq. (3.6), we construct the

following cost function to be minimized:

J (x, tx) =
nleft
ntotal

Gleft +
nright
ntotal

Gright (3.7)

The algorithm loops through all input features and different thresholds

to find a split that yields purest subsets. This process is essentially

different than what Logistic Regression does by using optimization

56



3.1. Machine Learning Classification

techniques.

• This process is repeated for each subset, until either the maximum

depth of the tree controlled by the user is reached, or the subsets

cannot be subdivided into two purer subsets.

When the Decision Tree is created, the probability of each data sample

in the ith conditioning node belonging to the kth label can be computed

by the ratios
mi,k

ni
defined in Eq. (3.6), and the labels can be distributed

accordingly.

3.1.3 Random Forest Classification

The Random Forest algorithm is among the most powerful machine learning

models one could use. It is based on a technique called the Ensemble Learn-

ing, where multiple machine learning models are mixed together to predict

the output. In the case of Random Forest, multiple Decision Trees (shown

in Fig. 3.1) are trained on distinct random subsets of the training set (hence

the name forest). To predict the label, the data sample is passed to each

of these models, and the label that gets the most votes will be assigned to

the sample. In most cases, the Random Forest algorithm performs better

than a single Decision Tree model, since it introduces more randomness and

flexibility in growing trees.

Random Forest inherits all properties linked to Decision Trees, such as

the ability to calculate probabilities. In addition, Random Forest makes

meaningful calculations based on impurity values to assign an importance

weight to each input feature. Having this information can help us reduce

the dimensionality even further by discarding less important input values.

This process is a type of feature selection, which was explained in Chapter

2.

3.1.4 Neural Networks and Deep Learning for Classification

Neural networks are our interpretation of how the brain works. The hu-

man brain is an impressive collection of neurons that work closely together
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to process input information and make decisions accordingly. Figure 3.2

represents the structure of artificial neural networks we use to mimic the

functionality of the brain.

Output Label⋯

Input Layer Output LayerHidden Layers

Figure 3.2: Overall structure of an artificial neural network for classifi-
cation.

It consists of input, hidden, and output layers with respect to the direc-

tion in which information flows. The input layer holds all the input features

based on which the desired output in the output layer is predicted. The

hidden layers in between are responsible for processing data for decision

making. If there are more than one hidden layer in the structure, it is called

a deep learning system. Each neuron, except the ones in the input layer,

takes weighted summation of all values in the previous layer, and apply an

activation function on the resulting value. This activation function can be of

different forms, such as threshold function, sigmoid, rectifier, and hyperbolic

tangent. The purpose of applying such functions is to break the linearity

of the weighted summation, allowing us to perform more complicated pre-

dictions. It is suggested in the literature [78] to use rectifier in the hidden

layers. Also, since we intend to calculate probabilities at the end to assign

proper labels to each data sample, we employ sigmoid activation for the

output neuron, similar to Logistic Regression. In fact, by removing all hid-
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den layers, the neural network acts exactly the same as Logistic Regression,

indicating the flexibility of neural networks.

Unknown parameters in this structure are the weights between differ-

ent layers that can be tuned by minimizing a cost function based on the

predicted and actual labels. The neural network is trained using Adam

optimizer [79], which is an extension to stochastic GD, through multiple

back-propagation processes to update network weights accordingly.

3.1.5 Classifier Selection

We used the Random Forest algorithm [80, 81] within Scikit-Learn library

[82] to train the model on the training set, and then evaluate it on the

test set. As mentioned previously, Random Forest works based on devel-

oping multiple Decision Trees, giving it the following advantages over other

machine learning algorithms for our purposes:

• it is commonly known to be more robust to possible outliers in the

data set.

• it is less likely to over-fit the data.

• it is generally more accurate because of a process called cross-validation.

• it works well for problems with high dimensionality.

• it can be used for feature selection, which can lead to a more efficient

classifier.

In comparison to neural networks, the Random Forest algorithm is com-

putationally more efficient. Neural networks require much more data com-

pared to the Random Forest models to yield reliable outputs. In our case,

where the data set is not as enormous as usual data sets in deep learning,

implementing a deep neural network is not justified. Nevertheless, the re-

sults of employing Logistic Regression and Neural Network will be presented

in the results section for comparison.

Also, probability values extracted from the Random Forest classifier in

our case can be considered as how certain the model is that the simulation
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is capturing the separation bubble. This will become useful in identifying

some challenging cases where the probability of being captured is estimated

to be 50%.

3.2 Feature Selection

The goal of this chapter is to detect the CFD simulations where the separa-

tion bubble is poorly captured. It was demonstrated in the previous chapter

that PCA is an effective method in extracting information regarding the

missing separation. Therefore, it makes sense to use expansion coefficients

obtained from PCA as the features of the model. Even though we found

that the 16th PCA mode is the possible source of the missing flow feature,

we consider all the first 40 modes as inputs to the classifier. The reason

is to make the classifier more flexible and let the algorithm decide which

attributes matter the most for its learning purposes without being biased.

The following 43-dimensional vector of features for the ith solution vector is

formed to be passed into the classifier:

x(i) =
[
AoA, M, Re, αi1, αi2, . . . , αi40

]
(3.8)

Each vector of features contains the flow conditions as its first three entries,

as well as the expansion coefficients for each solution vector.

3.3 Label Generation

3.3.1 Manual Labeling

To produce the labels for supervised learning, we took advantage of the avail-

ability of the high-order solution vectors. Since the 4th-order simulation is

assumed to be the exact solution to the Navier-Stokes equations, we labeled

all the 4th-order solution vectors as captured. This produced a collection of

benchmark solutions for all the 525 groups of flow conditions around the air-

foil. Each 2nd-order solution was compared to its higher-order peer from the

benchmark, and based on the quality of its separation region, was labeled ei-
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ther captured or missed. It must be noted that there exist some challenging

cases in the data set where it is not evident whether the low-order simulation

captures the separation bubble compared to the benchmark solution. More

discussion on this matter is provided in the results subsection. Statistical

information about the generated labels is provided in Table 3.1.

Table 3.1: General statistical information about the data set.

total captured missed

1050 814 236

3.3.2 Physics-Oriented Labeling

It is worth mentioning that our first attempt to generate labels was based on

a more physical study. In that process, we analyzed different characteristics

of the simulation such as the error in the drag coefficient and the location

of separation to decide whether a simulation captures the separation bubble

properly. Although this examination provided useful initial labels for our

manual labeling system, it was not proved to be a reliable label generator.

In a sense, this can be a good sign as it strengthens our claim that we

need to use machine learning to detect missing flow separation. Otherwise,

if we could generate labels only based on simple flow physics such as the

separation location, then we could simply use this label generator as our

flow feature detector, without having to develop a machine learning model.

3.3.3 Unsupervised Labeling

The manual labeling system could become quite tedious as the number of

data samples in data set increases. Another approach to produce labels for

huge data sets is by using a clustering algorithm. Clustering is a type of

unsupervised machine learning, where an intelligent model detects clusters

(groups) of labels showing similarity, without being guided. From one per-

spective, we expect the computer to be able to detect patterns and clusters

in the space of input features presented in Eq. (3.8) related to the missing

separation. On the other hand, this approach could yield misleading labels,
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as it is not guaranteed that the produced labels are linked to the missing

flow feature. We do not specify our intention at any point along the clus-

tering process, and the computer decides only based on the input space.

Consequently, the generated labels may be associated with other kinds of

similarities, such as the Mach number or the Reynolds number. Nonethe-

less, for huge data sets where the manual labeling in not practical, clustering

could be used, but with great caution. We have employed a well-used clus-

tering algorithm called k-means to generate the labels and compare those to

the manually generated ones. The results are provided in Section 3.11 where

we present label clusters in the 2-D plane of the most important features.

3.3.4 Imbalanced Data Sets

Having generated all the actual labels for each case, the captured labels

outnumbered the missed ones by a ratio of around 7 : 2 (refer to Table 3.1).

This is the characteristic of an imbalanced data set, which could negatively

affect the algorithm and make the learning biased towards the majority data.

We handled this problem by randomly discarding some captured data and

producing multiple copies of the missed data in the training set, provided

as part of the Imbalanced-Learn python module [83]. Table 3.2 provides the

quantity of the captured and the missed labels in each set, before and after

balancing. It must be mentioned that the balancing operation is only applied

to the training set for training purposes, since the test set is only meant for

model validation, and it should represent the statistical characteristics of

the whole data set.

Table 3.2: Statistical information about the training set and the test set,
before and after applying the balancing algorithm.

training set (∼ 80%) test set (∼ 20%)
total captured missed total captured missed

imbalanced 839 561 188 211 163 48
balanced 390 195 195 — — —
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3.4 Evaluative Measures for Classification

After training the model on the training set, it should be evaluated on the

test set before being considered as a sound flow feature detector. For binary

classification, the following tools can be used for model evaluation:

• Confusion Matrix

To evaluate the binary classifier, a matrix known as the confusion

matrix can be formed based on the model predictions for the samples

in the test set. The overall structure of this matrix is provided in

Fig. 3.3. The confusion matrix provides an efficient way to explore

the predictions made by the classifier. Each entry shows the number

of data samples with actual and predicted labels defined by row and

column tags, respectively. These are defined as:

◦ True Negative (TN)

TN entry accounts for the quantity of the solution vectors that

actually capture the flow separation and are correctly detected

as captured.

◦ True Positive (TP)

TP entry accounts for the quantity of the solution vectors that

actually miss the flow separation and are correctly detected as

missed.

◦ False Positive (FP)

FP entry accounts for the quantity of the solution vectors that

actually capture the flow separation and are falsely detected as

missed.

◦ False Negative (FN)

FN entry accounts for the quantity of the solution vectors that

actually miss the flow separation and are falsely detected as cap-

tured.

The same coloring convention shown in Fig. 3.3 will be used through-

out this thesis to illustrate TN, TP, FP, and FN data. Based on the
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Figure 3.3: The structure of the confusion matrix for a supervised binary
classifier.

confusion matrix, the following performance measures can be defined

for a binary classifier.

• Accuracy Score

The accuracy score measures, among all the samples, how many are

correctly labeled. It can be defined as follows:

accuracy score =
(TP + TN)

(TP + TN+ FP + FN)
(3.9)

It should be noted that this performance score is not an ideal choice for

an imbalanced data set, such as the one we have. The reason is that

it is fairly easy to come up with a poor classifier with a high accuracy

score. For instance, a model that labels all of the samples as captured

will record an accuracy of nearly 77%, since there are relatively fewer

missed data than the captured ones in the test set. As alternatives,

other measures can be used as mentioned in the following.

• Precision Score

The precision score, also know as Positive Predictive Value, accounts

for how many of the solutions predicted as missed, in fact miss the
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separation bubble. It can be formulated as:

precision score =
TP

(TP + FP)
(3.10)

• Recall Score

The recall score, also known as sensitivity or True Positive Rate, mea-

sures out of all cases where the flow separation is missed, how many

samples are identified by our classifier:

recall score =
TP

(TP + FN)
(3.11)

• F1 Score

Finally, the F1 score is simply the harmonic mean between the preci-

sion and the recall, and is defined as:

F1 score =
TP(

TP +
FP + FN

2

) (3.12)

FP samples indicate that the model suggests extra caution be taken, even

though the simulation already resolves the separation region. However, FN

data are more critical, as the model asserts that the simulation does not

need improvement, while in reality, it misses an important flow pattern.

Consequently, our focus in this thesis is more on the recall score, since the

deficient simulations predicted as good simulations are more unpleasant than

the good simulations detected as deficient ones. In other words, we prefer

to develop a model with very few FN predictions, even though the cost of

having such a model is to end up with extra FP data.

3.5 Parameter Tuning

Parameter tuning is an essential component of any machine learning work-

flow. As discussed, all learning algorithms define some tunable hyperparam-
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eters that make models flexible to be used for different problems. For each

particular case, these parameters can be tweaked to maximize prediction ac-

curacy. Scikit-learn provides modules for this purpose, where the training set

is divided into multiple bins. An iterative technique called cross-validation is

implemented to evaluate different combinations of hyperparameters to find

the best set of values. The steps of parameter tuning are provided here:

• We take a single set of hyperparameters to begin the iteration process.

• In each iteration, one of the bins is considered as a temporary test set

and a model based on the current combination of hyperparameters is

trained on the remaining samples.

• At the end of all iterations, the average performance measure is as-

signed to that specific combination of hyperparameters.

• We tweak the values of hyperparameters and repeat the above steps

to get the new performance measure for the new set of values.

• We continue this process until we find the best combination of hyper-

parameters that records the highest score.

We followed the same principles to tune the parameters of our Random

Forest classifier by defining 5 bins over the training set. The hyperparam-

eters considered in our analysis were {‘n estimators’, ‘max features’,

‘bootstrap’, ‘max depth’}, that regulate tree configuration. Scikit-learn

documentation [84] provides a detailed overview of these parameters. The

tuned values will be presented in the results section.

3.6 Classification Steps

The skeleton of our proposed flow feature detector is shown in Fig. 3.4.

Every step covered so far are included in the figure, from gathering data

samples, to evaluating the model. The final criterion based on which one

decides whether the model is ready to be used for general simulations de-

pends on the need and complexity of specific applications. We will provide
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instructions on how evaluative measures can be interpreted to assess a clas-

sifier, which can be helpful in weighing our satisfaction with regard to a

particular model.

Full Data Set PCA Space

Training Set

Test Set
map

~80%

~20%

⋯
⋯

⋯

⋯

Random Forest Classifier

Satisfied?

Change the 

Model

Ready to Examine 

Simulations

No

Yes
Training

Evaluation

Figure 3.4: Proposed flowchart to develop a machine learning classifier
to detect possible missing flow features in CFD simulations.

3.7 Results: Correlation Matrix for Separation

Identification

Before training the model on the training set, we investigate how learning

features are correlated with some of the important parameters of the prob-

lem. This is done by constructing a correlation matrix, as shown in Fig.

3.5, which helps us gain an insight into the possible role of each parameter

in the decision making process. Each element of the correlation matrix is

colored and filled with a weight that can be treated as the covariance of

the parameters labeled in the corresponding rows and columns. Important

points deduced from the correlation matrix are presented below:
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Figure 3.5: Correlation matrix for feature detection, where each entry represents the covariance of the
corresponding row and column tags.
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• PC16, PC21, the Mach number, and PC1 contribute the most to the

target label, respectively. This is consistent with our previous obser-

vation that the 16th PCA mode is the possible source of the missing

separation.

• PC13 and PC16 represent the effect of order of accuracy, which could

be an interesting topic from the numerical analysis standpoint.

• PC1 is directly correlated with the Mach number, meaning that the

effect of the Mach number can be fully represented by the first mode.

• The angle of attack is highly correlated with PC2.

• The effects of the Reynolds number can not be described by a single

mode and is distributed mostly between PC4 and PC6.

We drew some of the same conclusions when inspecting the mode shapes in

the previous chapter. However, for more complicated mode shapes, such as

the 16th one, the correlation matrix becomes the single descriptive source

of information. These results indicate that using the flow conditions as

features of the model could be redundant, since their influence is well defined

by the PCA modes. This matter is further discussed when extracting the

importance weights from the Random Forest classifier. For now, we keep

the input features intact and let the machine learning model decide the

importance of each feature.

3.8 Results: Classifier Predictions

3.8.1 Random Forest Classifier

A binary classifier based on the Random Forest machine learning algorithm

was trained on the balanced training set and evaluated on the test set rep-

resented in Table 3.2, to detect the solution vectors lacking the separation

bubble. The model was tuned using the guidelines discussed in Section 3.5,

giving the optimized hyperparameters presented in Table 3.3. The perfor-

mance of the default and the tuned models on the test set are shown as
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Table 3.3: Default and tuned hyperparameters for the Random Forest
classifier, when optimized on the training set in Table 3.2.

n estimators max features bootstrap max depth

Default 100 auto True None
Tuned 60 10 False 4

confusion matrices in Fig. 3.6. The confusion matrix in Fig. 3.6a demon-

strates that the default model is able to label most of the solution vectors

correctly before being tuned, and only a handful of cases are misidentified

by the classifier. Comparing the results with the tuned version in Fig. 3.6b,

we see that the latter correctly labels every simulation that misses the sep-

aration, while the model with the default parameters misses one of these

deficient simulations. However, the tuned model fails to perform as well

as the default model when assessing captured flow separations. Overall,

tuning the model in our case does not make a significant difference in the

output, as both models correctly tag simulations in most situations. Hence,

we decided to pick the default model in our analysis, since it yields fewer

incorrect predictions. Therefore, the results we provide for the classifier

hereafter correspond to the Random Forest algorithm with the default pa-

rameters mentioned in Table 3.3. It is worth mentioning that the parameter

tuning generally makes the model attain its best possible performance on

both the training and the test sets when the training samples provide a

good representation of the whole data set. In our case, however, we have

access to a limited number of CFD simulations to train the classifier, and so

optimizing the algorithm on the training set does not necessarily guarantee

better performance on the test instances as well. It is expected that by

adding more simulations into the data matrix, the tuned model will perform

slightly better than the default one. Nevertheless, parameter tuning will not

become a concern when the model shows small sensitivity to the change in

parameters and performs well on both the tuned and the default models.

For a quantitative assessment of the model, we look at the performance

scores provided in Table 3.4. As justified in the methodology of this section,

we pay extra attention to the FN data and the recall score. The model
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records an impressive recall score of 97.92%, since only one solution vector

that actually misses the separation is mislabeled as captured. Moreover,

the classifier shows a precision score of 90.38%, which means that having

a very high recall score has not resulted in many FP predictions and the

model correctly detects most of the high quality simulations. Also, it was

found that the model is 97.16% accurate, which indicates that the overall

performance of the classifier is very promising.
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Figure 3.6: Confusion matrix, resulted from testing the trained binary
classifier on the test set presented in Table 3.2. The percentage values
describe the quantity of each TN, TP, FN, and FP data relative to the
total number of samples in the test set.

Table 3.4: Performance of the trained binary classifier on the test set,
calculated based on the confusion matrix presented in Fig. 3.6 and the
measures given by Eqs. (3.9-3.12).

Accuracy Precision Recall F1

Default Model 97.16% 90.38% 97.92% 94.00%
Tuned Model 96.21% 85.71% 100.00% 92.31%

To investigate the performance of the classifier in more detail, we ex-

tracted the probabilities of its decisions for all the data samples in the test

set. The way the Random Forest algorithm works is that it allocates a

number to each data sample, which represents the probability of that case
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3.8. Results: Classifier Predictions

capturing the separation. It also sets the threshold for decision making to

probability = 50% and assigns labels accordingly. Figure 3.7 displays a side-

by-side comparison of the 2nd- and the 4th-order separation bubble patterns

for a few samples in the test set, as well as their actual label, predicted label,

and the probability of those cases being captured. Again, the colormap for

the streamwise momentum is manipulated so that only the negative veloc-

ity regions are illustrated. Examining the FN data in Fig. 3.7a, we observe

that it is a challenging task to decide whether the 2nd-order solution misses

the separation region. In this case, although the 4th-order solution depicts

a larger separation region, it appears that the 2nd-order solution correctly

captures the overall pattern of the separation bubble. Nevertheless, assign-

ing a single label to the low-order solution in this particular case seems to

be a difficult task, even for the experts in the field. The model predicts

that the low-order solution is solving for the separation bubble with 52%

accuracy, hence it is labeled as captured. The extracted probability for this

case is quite close to the boundary of decision making, meaning that the

algorithm is confused and insecure to correctly assign a label to the data

sample. The investigation suggests that the probability value is a logical way

to describe how certain the model is that the separation region is captured

in the simulation. The same point can be made for the solution provided

in Fig. 3.7b, which is one of the FP data. Again, in this case it is not evi-

dent whether the low-order solution captures the separation. The separation

bubble seems to be roughly the same size for both the 2nd- and the 4th-order

solutions. However, the low-order separation region appears to be slightly

different from a qualitative point of view. The classifier suggests that the

separation bubble is 40% captured in the 2nd-order simulation, which seems

to be a proper estimate. To further analyze the validity of probability pre-

dictions, one example of a TN data, and two examples of TP predictions

are presented in Figs. 3.7c, 3.7d, and 3.7e, respectively. It seems that the

probability values are indeed good measures to be reported alongside the

labels to exhibit the level of certainty of the model. Figure 3.8 shows a

histogram of the probability values predicted by the model on the test set.

It can be seen that the false predictions happen near the threshold of the
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algorithm, probability = 50%, where the cases are more challenging. For

the samples located farther from the threshold, in what we might call the

confidence zone of the classifier, the model identifies the captured and the

missed solution vectors correctly.

AoA = 5 deg, M = 0.1, Re = 3000

(a) Actual: missed, prediction: captured, probability of being
captured: 52%, FN

AoA = -3 deg, M = 0.3, Re = 7000

(b) Actual: captured, prediction: missed, probability of being
captured: 40%, FP

AoA = -4 deg, M = 0.3, Re = 8000

(c) Actual: captured, prediction: captured, probability of be-
ing captured: 92%, TN

Figure 3.7: Prediction information for some of the cases in the test
set. Both the 2nd- and the 4th-order solution vectors are shown for
comparison.
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AoA = 1 deg, M = 0.4, Re = 8000

(d) Actual: missed, prediction: missed, probability of being
captured: 18%, TP

AoA = 0 deg, M = 0.5, Re = 7000

(e) Actual: missed, prediction: missed, probability of being
captured: 37%, TP

Figure 3.7: Prediction information for some of the cases in the test
set. Both the 2nd- and the 4th-order solution vectors are shown for
comparison. (cont.)
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Figure 3.8: The predicted probabilities histogram.
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3.8.2 Classifier Comparison

Here, we compare our developed Random Forest classifier to other common

classification algorithms. In that regard, two models based on Logistic Re-

gression and a deep neural network were trained on the same training set and

evaluated on the test set. The neural network consisted of two hidden layers,

each containing 10 neurons with rectifier activation functions, making it a

powerful learning structure. Figure 3.9 and Table 3.5 present confusion ma-

trices and evaluative measures for all the three models tested. We see that

Random Forest performs significantly better than Logistic Regression in de-

tecting missing separation bubble. The reason is that Logistic Regression is

a very simple model that finds a linear decision boundary in the hyperspace

of input features. Obviously, for a complicated decision making task where

features are expected to show nonlinear relations, Logistic Regression is not

a suitable choice. On the other hand, neural network performs comparable

to the Random Forest model due to its deep structure. Neural networks

provide an impressive flexible learning system, with many tunable param-

eters. Everything, from the number of hidden layers and neurons in each

layer to the type of activation functions can be manipulated based on the

task. However, as mentioned previously, training a deep neural network is

more costly compared to a Random Forest classifier, and for cases where

the number of the data samples is limited, Random Forest is generally a

better choice. Nonetheless, as neural networks are becoming more popular

in science and engineering, we should keep an eye on these powerful learning

structures for more complex data sets involving 3-D simulations.

Table 3.5: Performance comparison of the trained binary classifiers.

Accuracy Precision Recall F1

Logistic Regression 93.84% 78.69% 100.00% 88.07%
Neural Network 95.73% 84.21% 100.00% 91.43%
Random Forest 97.16% 90.38% 97.92% 94.00%
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(c) Random Forest

Figure 3.9: Confusion matrix comparison, resulted from testing three
binary classifiers on the test set presented in Table 3.2.

3.9 Results: Evaluative Curves

To further explore the performance of the classifier, Learning, Receiver Op-

erating Characteristic (ROC), and Precision-Recall curves can be used. A

brief introduction for each, as well as the results of plotting these for the

Random Forest classifier is presented in the following.
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3.9.1 Learning Curve

The learning curve (Fig. 3.10) demonstrates the learning ability of the model

over the experience it gains by gradually feeding in the training samples. The

behavior of this plot is a convenient means to inspect whether the model is

over-, under-, or well-fitted to the training data. The performance of the

model over the training set shows perfect learning with zero false predictions

throughout the learning process. This is not unusual, since the size of the

balanced training set is relatively small. This makes the model able to learn

all the training samples flawlessly, in a supervised learning procedure. This

excellent performance of the model over the training set is not a concern

as long as it executes with the expected accuracy over the test set. The

accuracy measure over the test data is increased with experience, to a point

of stability where it starts to show small oscillations around a fixed value.

After the point of stability, the small gap between the training and the test

curves is retained, demonstrating good performance on the test set. This is

an indication that the model is a good fit to the data set and is sufficiently

trained.
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Figure 3.10: Learning curve of the developed Random Forest classifier.
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3.9.2 Receiver Operating Characteristic Curve

The ROC curve (Fig. 3.11) is a tool to investigate if the binary classifier

is a skilled predictor compared to a model that randomly labels the data

in the test set. It is generated by changing the threshold of the Random

Forest algorithm multiple times, obtaining various sets of precision and recall

scores. Both the shape of the curve and the Area Under the Curve (AUC) are

good measures to decide if the classifier is a skilled one. We also inspect the

differences between the default Random Forest model and the tuned version,

by showing both curves on the same plot. The general rule of thumb to

interpret AUC is that values between 0.7 and 0.8 are considered acceptable,

between 0.8 and 0.9 point to an excellent model, and above 0.9 show an

outstanding classifier [85]. In our case, both the default and the tuned

classifiers fall into the latter range with AUCs of 0.994 and 0.981, which

outperform a random predictor with an AUC of 0.5. Comparing the results

of the default and the tuned models, we notice that the former performs

slightly better, justifying our decision on using that one. By the standards of

AUC, the developed classifier in this work is considered a remarkable model

to detect simulations with missing separations. However, for an imbalanced

data set, the ROC curve can be misleading [86, 87], for the same reason that

accuracy score is not a very good measure for such data sets.

3.9.3 Precision-Recall Curve

The Precision-Recall curve (Fig. 3.12) analyzes both the recall and the

precision on the same plot. Again, the curves are generated for both the

default and the tuned models by changing the threshold of the Random

Forest algorithm and are compared to a random predictor. As shown in

Fig. 3.12, both curves show good performances over the selected thresholds

with AUCs of 0.97 and 9, reassuring that the models are indeed skilled

predictors to detect the solution vectors with missing separation bubbles.

Precision-Recall plot demonstrates that the default model shows a more

natural behavior compared to the tuned one, which suggests that picking

the default parameters would be a more prudent choice.
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Figure 3.11: Receiver Operating Characteristic (ROC) curve of the de-
veloped Random Forest classifier; default AUC = 0.994, tuned AUC =
0.981.
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Figure 3.12: Precision-Recall curve of the developed Random Forest
classifier; default AUC = 0.977, tuned AUC = 0.9.
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3.10 Results: Feature Importance Analysis for

Separation Identification

The Random Forest algorithm provides a set of weights assigned to the input

features, to assess the importance of each parameter in the learning task.

The feature importance plot is presented in Fig. 3.13, and demonstrates

that:

• The classifier learns mostly from PC16, as we expected from the results

of PCA and the correlation matrix shown in Fig 3.5.

• After that, PC21, PC3, PC2, PC13, PC8, PC14, and PC1 are proved to

be the next major factors in detecting the missing separation, respec-

tively.

• Unsurprisingly, flow conditions have little effect on the model, since

their influence is already projected on the PCA modes.

Furthermore, it can be seen that most PCs have a very small effect on

the output of the predictor, and decision making is centered around only

a handful of the modes. This suggests the possibility of a more efficient

classifier based only on the modes that matter. We expect that it will

not affect the overall performance of the model significantly, since only the

trivial parameters are discarded. This process of removing less important

features is feature selection, which was introduced in the previous chapter.

The results of this efficient classifier will be presented in Section 3.12.

3.11 Results: Label Clusters

Another outcome of the feature importance plot is that it helps us visualize

the data set more effectively. Although PCA has significantly reduced the

dimensionality of the data set, it is still not possible to picture the sample

points in the 40-dimensional PCA subspace. The feature importance plot

indicates that PC16 and PC21 are the most important parameters in decision

making. The plot of the data points in a 2-D plane created by these two
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Figure 3.13: Feature importance of the classifier extracted from the
Random Forest algorithm.

features is shown in Figs. 3.14a and 3.14b for the training and the test sets,

respectively. It can be seen from the training set plot that the missed labels

are clustered in a certain region when plotting the data in the plane of the

two most important learning features. The clusters are not perfectly distinct

and overlap, because other modes are also involved in decision making. It

is not visually possible to plot the high-dimensional data; otherwise, we

would have detected perfect clusters of the missed and the captured data

in the hyper-dimensional space created by PCs. It once again demonstrates

the power of PCA in extracting information about the missing separation

bubble. It in fact creates a subspace from the high-dimensional data with

more discrimination in different label clusters. This subspace is suitable for

learning purposes where it is much easier for the classifier to detect label

clusters and create a hyperplane as its decision boundary. We clearly observe

that a linear decision boundary is not a good choice for our purpose, and a

model capable to detect nonlinearities in the input data should be employed;

this is another reason that Logistic Regression is not a proper option for this

case.

Looking at the test set plot (Fig. 3.14b), it can be observed that the

model is capable of detecting the regions assigned to each label. The perfor-
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mance scores of the model on the test set have been mentioned previously

in Table 3.4. Here, we only point out the placement of the falsely predicted

samples in the 2-D plane of PC16 and PC21. It is clear that the single FN

data and most of the FP predictions are positioned near the boundary of

the missed labels cluster. This explains the confusion of the classifier when

facing such challenging data points. In such cases, the probability value

extracted from the model is often a good signal to the uncertainty of the

predictions.
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Figure 3.14: Label positions on the 2-D plane created by PC16 and PC21.

Testing Unsupervised Labeling

Now that we have found the two most important features and are able to

visually scan the label clusters in the data set, we can go back and assess the

unsupervised clustering method for generating the true labels, introduced

in Section 3.3. We applied a k-means clustering method to generate binary

labels for the full data set in Fig. 1.11. Figure 3.15 depicts the resulting

labels in the 2-D plane of PC16 and PC21. We see that the clusters captured

by the k-means algorithm matches our manual labels for the most part.

However, compared to the manual labeling, k-means mislabels ∼ 30% of

the data, which is concerning. Even so, clustering could become handy

when the manual labeling becomes tedious as the number of data samples

increases. Also, it can be treated as both the label generator and the flow
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feature detector (results of which is presented in Fig. 3.15). However, the

combination of the manual labeling and Random Forest still gives much

better predictions.
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Figure 3.15: Label positions on the 2-D plane created by PC16 and PC21,
for an unsupervised classifier.

3.12 Results: Efficient Classifier

The results of the feature importance analysis, presented in Fig. 3.13, sug-

gest that a more efficient classifier could be developed based on the most

influential parameters in the vector of features. Here, we present the re-

sult of a binary classifier that was trained using PC16, PC21, PC3, PC2,

PC13, PC8, PC14, and PC1, which were proved to be the major factors

regarding the missed separation, respectively. Thus, instead of operating

in a 43-dimensional space of information, the learning algorithm tries to

find patterns and clusters in an 8-dimensional subspace, which makes the

learning task much easier, and also faster. The confusion matrix and the

performance scores are presented in Fig. 3.16a and Table 3.6. In addition,

the label predictions for the test samples on the plane of the most impor-

tant features, namely PC16 and PC21, are plotted in Fig. 3.16b. The plot

of the labels in the training set remains the same as Fig. 3.14a, since the

data set is not changed. From the results, we conclude that the model is
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still able to correctly label most of the solution vectors. Compared to the

previous model, the efficient classifier produces a few more false predictions,

but not enough to affect the overall performance of the model significantly.

Again, the false predicted labels are positioned near the boundary of decision

making, meaning that these cases are the challenging ones.
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Figure 3.16: Results of testing the efficient classifier on the test set.

Table 3.6: Performance comparison of the main and the efficient Random
Forest classifiers.

Accuracy Precision Recall F1

Main Model 97.16% 90.38% 97.92% 94.00%
Efficient Model 95.73% 86.79% 95.83% 91.09%

To ensure that this efficient classifier is a skilled and reliable model in de-

tecting the simulations with missing separation, evaluative curves are plotted

in Fig. 3.17. Again, the behavior of the test curve suggests that the efficient

model is a good fit to the training samples, and performs well on the test set.

Even though AUCs calculated for the ROC and the Precision-Recall curves

are slightly smaller than the ones for the previous model, they still indicate

that the efficient model is an outstanding predictor for our goals. Hence, it

is proved that it is possible to detect the poorly simulated separation regions

using the proposed efficient model with acceptable accuracy.
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(b) ROC curve, AUC = 0.989
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(c) Precision-Recall curve, AUC =
0.959

Figure 3.17: Evaluative curves to study the performance of the efficient
classifier.

3.13 Results: Classifier Generalization

One of the most important characteristics of a machine learning model to

be considered suitable is its ability to be generalized to a wide range of data

samples. The model developed in the previous sections is only applicable

for simulations performed on the mesh shown in Fig. 1.10. This is because

of the solution projection step where we take the inner product of a solution

vector and the PCA modes to calculate expansion coefficients as the input

information to the model. This operation requires the solution vector to

be of the same dimension as the PCA modes. This imposes the following

restrictions if we intend to examine a new 2-D simulation around an airfoil:
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• The airfoil is limited to be NACA 0012, and the model is not applicable

to other geometries.

• The computational domain should be exactly identical to the mesh

pictured in Fig. 1.10, which we refer to as the base mesh henceforth.

In this section, we address the second limitation and the first one is left for

future studies.

Let us consider a flow simulation around NACA 0012 airfoil on the mesh

shown in Fig. 3.18. We call this new unstructured mesh, containing 6176

cells, the arbitrary mesh, as opposed to the base mesh. The aforementioned

limitations suggest that to analyze this new simulation, our already-trained

model is not suitable as we cannot map the new 24704-dimensional solution

vector on the available 16568-dimensional PCA modes. Hence, we need to

repeat the whole PCA decomposition by generating a new data set of flow

simulations on the arbitrary mesh to create an acceptable PCA subspace.

This operation is computationally exorbitant and we are better off perform-

ing the current accuracy improvement methods mentioned in Chapter 1.

One approach to generalize our previously-trained model to be functional

on new simulations on any arbitrary mesh is to map the new solution vector

to our base mesh. This is done by utilizing a built-in function in ANSLib,

which takes a solution on a mesh and transforms it to another. By doing

that, the new mapped solution vector can be projected to the previously-

created PCA subspace to get the input features for the classifier. Therefore,

our suggested generalization method is as simple as concatenating the afore-

mentioned mapping functionality at the very beginning of the classification

pipeline shown in Fig. 3.4.

To test the generalization, we simulated the flow field on the arbitrary

mesh (Fig. 3.18) using the following group of flow conditions:

• the angles of attack (AoA): {-4, -1, 0, 2, 3},

• the Mach numbers (M): {0.2, 0.5},

• and the Reynolds numbers (Re): {4000, 8000}
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Figure 3.18: Unstructured mesh around NACA 0012, containing a total
of 6176 triangular cells.

to cover various flow configurations, and manually labeled each solution

vector using the guidelines provided in Section 3.3. Statistical information

about this new set of flow simulations is provided in Table 3.7.

Using the efficient classification model on these new simulations, which

have gone through the mapping operation described above, results into the

confusion matrix and evaluative measures presented in Fig. 3.19 and Table
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3.13. Results: Classifier Generalization

Table 3.7: General statistical information about the data set generated
to generalize the classifier.

total captured missed

40 23 17

3.8, respectively. The results indicate that although the performance of the

model is not as good as before, generalization can be still considered suc-

cessful. When we map a solution vector from a mesh to another, there will

be an inevitable information loss along the way. This introduces additional

inaccuracy that can alter expansion coefficients, and therefore reduce the

performance. However, the model still remarkably marks most of the defi-

cient CFD simulations. Note that the generalization set presented in Table

3.7 is a very small group of simulations and is only generated to test our

proposed method to assess solution vectors obtained on arbitrary meshes.

To perform an accurate comparison between the performance of the model

when applied on different mesh configurations, a more comprehensive data

set would be required. This comes with the challenge of manually labeling

a large number of simulations, which could become burdensome. At this

point, we believe that the small data set considered here is sufficient for the

purpose of this section.
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Figure 3.19: Confusion matrix, resulted from testing the efficient binary
classifier on the generalization set presented in Table 3.7.
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3.14. Summary

Table 3.8: Performance of the trained binary classifier on the general-
ization set, calculated based on the confusion matrix presented in Fig.
3.19.

Accuracy Precision Recall F1

87.50% 87.50% 82.35% 84.85%

3.14 Summary

This chapter presented the development of a machine learning classifier to

detect CFD simulations where flow separation is missing, or poorly-resolved.

It was demonstrated that PCA subspace is a suitable information space to

build a classifier to evaluate CFD solution vectors. The results of the devel-

oped classifier is a single label, either missed or captured, accompanied by a

probability value signifying its certainty. Either scenario can be interpreted

as follows:

• A captured label specifies that the separation region in the simulation

is well-resolved and no further accuracy improvement is needed. In

these cases, the probability of being captured should be checked as an

indicator to the level of certainty. If this value is close to 50%, it is a

good idea to act cautiously in the next steps of the design.

• On the other hand, a missed label alerts us that the separation bubble

is either missed or poorly-resolved. Therefore, accuracy improvement

methods should be utilized.

In the second scenario, we have not achieved a major improvement in

our analysis and we still need to implement costly methods such as grid

refinement or error estimators. The classifier only tells us that improving

the simulation is necessary in these cases. An alternative error estimator

can be developed based on the similar machine learning approach we took

in this chapter. This new alternative accuracy improvement model will be

introduced in the next chapter.
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Chapter 4

Error Prediction

In the previous chapter, we demonstrated that the expansion coefficients

obtained from PCA can play an important role in detecting missing flow

separation in CFD simulations. A separation bubble has a direct impact on

the drag coefficient of the airfoil. This is because flow separation changes the

pressure distribution around the airfoil, which directly changes the pressure

drag. Hence, we expect the same inputs that signaled us to the poorly-

resolved separation bubble to be usable for estimation of the error in the

computed drag coefficient. Thus, in this chapter, we explore the implemen-

tation of a machine learning regressor to accurately quantify uncertainties

in CFD, which is the error in drag in our case.

There are many theoretical and practical overlaps between regression

and classification. Therefore, in this chapter we only provide necessary

information about the main differences between these two types of machine

learning approaches. New algorithms and evaluative measures specific to

regression are presented and discussed in the first four sections, and the

subsequent sections cover the ability of our intelligent regressor in estimating

the error in the drag coefficient.

4.1 Machine Learning Regression

In this chapter, we turn our attention to a different type of machine learning

called regression. Unlike classification, where the goal is to predict a cat-

egorical label, regression aims at estimating a continuous numerical value.

There are numerous possibilities for the value of the error in a simulation,

and therefore a machine learning regression must be employed for estimat-

ing this numerical parameter. Regression and classification are based on the
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4.1. Machine Learning Regression

same principles described in the previous chapter and they only differ in

the algorithms used to produce the output from the input features. While

classifiers generate a label as the output, regressors give a number, known

as the target value. The following presents a brief overview of some of the

algorithms specific to machine learning regression.

4.1.1 Linear Regression

Linear regression is the simplest form of curve fitting, where the relation

between the input features and the target value is represented by a flat

hyperplane (or a straight line when there is only one input feature). To

perform linear regression, let x(i) be the vector of input features and y(i) be

the actual target value for the ith data sample. We can predict the target

value as a weighted summation over the input values:

ŷ(i) = θ0 +
∑
j=1

θjx
(i)
j = θ · x(i) (4.1)

where θ is the vector of unknown weights, and a constant value equal to 1 is

added as the first entity to x(i) to yield a clean vectorized form. Gathering

all the manipulated features (containing 1 as the first entity) of the training

samples as columns of a data matrix X, and the target values as a column

vector y, we can construct the following least-square system of equations:

XTθ = y (4.2)

To find the best set of unknown weights, a cost function should be defined

and minimized similar to the classification process. For linear regression, the

mean squared error is used:

MSE (X,θ) =
1

m

m∑
i=1

(
ŷ(i) − y(i)

)2
(4.3)

where m is the number of the training samples, and ŷ(i) is substituted from

Eq. (4.1). There are two general approaches to minimize this cost function:
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4.1. Machine Learning Regression

• The Normqal Equation

For linear regression represented in Eq. (4.2), there exists a closed-

form solution called the normal equation written as follows:

θ =
(
XXT

)−1
Xy (4.4)

which minimizes the cost function in Eq. (4.3). This equation directly

yields the best possible values for the unknown weights. A somewhat

different representation of this equation is:

θ = X†y (4.5)

whereX† is the pseudoinverse ofXT , also known as the Moore-Penrose

inverse, computed using singular value decomposition. The normal

equation results in relatively expensive operations, and generally is

not used for real-world applications.

• Optimization

Optimization gives a more efficient approach, where the cost function

is minimized through an iterative process. A well-known optimization

algorithm is the Gradient Descent (GD) and its variants such as the

Batch and the Stochastic GD. This approach is much more efficient

compared to the normal equation when dealing with high-dimensional

data sets, and is used for minimization purposes throughout this work.

Comparing linear regression (Eq. (4.1)) with Logistic Regression (Eq.

(3.3)), we notice that the only difference is the presence of a sigmoid function

in the latter. The reason is that for classification, we need to map the

result of the linear summation to a range between 0 and 1 to assign labels

accordingly, whereas in regression problems, the target value is estimated

directly using the weighted summation in Eq. (4.1).
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4.1.2 Polynomial Regression

For more complex data sets that cannot be well represented linearly, a poly-

nomial regression can be used to take nonlinear relations into account. This

algorithm is a derivative of linear regression rather than a stand-alone regres-

sion technique. Let us set the polynomial degree as z, and add all nonlinear

combinations of the n-dimensional input features up to the zth-degree to the

input vector:

xnew =

∀xj ∈ x and kj ∈ N :

n∏
j=1

x
kj
j ; where:

n∑
j=1

kj ≤ z

 (4.6)

Using this new set of the input features, a linear regression model can be

developed using the same guidelines provided in the previous subsection.

One major drawback of employing polynomial regression is that it sub-

stantially increases the dimensionality of the input vector by adding non-

linear terms. It negates the efforts of PCA in creating an efficient space

to perform machine learning. To be more specific, if we take the same 43-

dimensional input space presented in Eq. (3.8), we will get:

• a 990-dimensional input vector, if we use a 2nd-degree polynomial,

• a 15180-dimensional input vector, if we use a 3rd-degree polynomial,

• and a 178365-dimensional input vector, if we use a 4th-degree polyno-

mial.

It is clearly shown that polynomial regression completely wastes the achieve-

ments of PCA in dimensionality reduction. Furthermore, polynomial regres-

sion is prone to over-fitting the training data, as it introduces many degrees

of freedom into the model. It all makes this regression algorithm an unfitting

tool in this project.

4.1.3 Random Forest Regression

Decision Tree, and its advanced version Random Forest, can be used for

both classification and regression tasks. The structure of the regressor is
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4.1. Machine Learning Regression

exactly identical to the Random Forest classifier pictured in Fig. 3.1, where

the learning system is composed of multiple conditioning nodes. The only

difference is that in the Random Forest regression, instead of assigning a

label to each child node, the arithmetic average of actual target values of

data samples entering the node is considered as their estimated target values.

To create the overall structure of the Decision Tree, the Random Forest

classifier branches off from the parent node to yield minimum Gini impurity

for each of its child nodes (refer to Eq. (3.7)). However, the Random Forest

regressor does the same based on minimization of the mean squared error,

introduced in Eq. (4.3), in each of its child branches. The cost function for

such a system is provided as:

J (x, tx) =
nleft
ntotal

MSEleft +
nright
ntotal

MSEright (4.7)

where

{
MSEleft/right =

∑
i∈node

(
ŷleft/right − y(i)

)2
ŷleft/right =

1
nleft/right

∑
i∈node y

(i)

In this equation, ŷleft/right represents the estimated target value in each con-

ditioning node, and y(i) is the actual target value of each sample entering the

node. The Random Forest regression is considered an advanced model that

is often used in cases where linear and polynomial regressors are incapable

of predicting accurate target values.

4.1.4 Neural Networks and Deep Learning for Regression

Neural networks are another learning algorithm that are applicable for both

classification and regression tasks. The structure of a neural network re-

gressor is the same as the one depicted in Fig. 3.2, consisting of an input

layer, one or more hidden layers, and an output layer. The output layer

contains only one neuron that gives the estimated target value. Similar to

the classification case, we apply rectifier activation functions to the neurons

in hidden layers. However, unlike neural network classifier where a sigmoid

function was applied to the output neuron to yield probability, a neural net-

work regressor does not need such an activation function. Linear regression
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can be thought as a neural network without any hidden layers in between

its input and output layers.

The common cost function used in the neural network regression is the

mean squared error defined in Eq. (4.3). A variant of GD optimization

techniques called the Adam optimizer [79] is employed similar to neural

network classification to minimize this cost function.

4.1.5 Regressor Selection

So far in this chapter, we mentioned that there are lots of similarities be-

tween classification and regression models. In particular, Random Forest

and neural network are capable to tackle both learning tasks as their struc-

ture allows them. We also introduced two models specific to regression

problems, namely linear and polynomial regressors that are suitable for rel-

atively simple applications. We argued in the previous chapter that our

CFD data set is inherently complex, having nonlinear correlations between

the features; it automatically makes the use of simple models obsolete for

such complicated learning tasks. Also, we discussed in detail why polyno-

mial regression is a wasteful model that tends to over-fit the data.

To stay consistent with the classifier we developed in the previous chap-

ter, which was proved to be a successful one, we trained the regressor using

the Random Forest algorithm. We can take the same arguments made in

Section 3.1 as the logic behind this choice. The results of employing other

methods are also presented and compared to ultimately decide which model

performs best when trying to estimate the error in the drag coefficient.

4.2 Features and Target Values

Missing flow separation directly affects the drag coefficient of the airfoil.

Hence, the same input features used to detect separation are expected to be

proper choices to estimate the error in the drag coefficient. Consequently,

the same vector of input features shown in Eq. (3.8) is passed to the regressor

for the purpose of this chapter. We will analyze the importance of each of
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these entities when training the model to see if we can further reduce the

dimensionality of the input space.

The output values, however, are no longer the binary labels (captured or

missed) defined for the classifier. Instead, we compute the drag coefficient

for each of the 2nd- and the 4th-order simulations in the same flow condition,

and take the relative error in the value computed for the lower-order case

as its target value. This relative error is calculated as:

Cderror =
|CdLow-Order

− CdHigh-Order
|

CdHigh-Order

(4.8)

Note that the drag coefficients correspond to the total drag, taking both the

pressure and the viscous drags into account. Although it is expected that the

missing flow separation affects the pressure drag the most, we take the error

in the total drag as the target value since it is the quantity we often appraise

for performance evaluation. For the higher-order simulation, target value is

set to zero, since it is assumed to be the exact solution. Unlike classification

where label generation was a challenging step, the guidelines for setting

target values are straightforward for the regression task. Generating these

values for our data set, relative errors for 2nd-order solutions ranged from

0.0156 to 0.1052 (or 1.56% to 10.52% when presented in percentage). The

goal is to estimate these errors based on the input features defined in Eq.

(3.8) using machine learning regression. The estimated relative error in total

drag can then be used as a correcting term for the simulation output.

4.3 Evaluative Measures for Regression

Since classification and regression predict different data types, evaluative

measures employed for these differ as well. For regression tasks, we deal

with continuous numerical values instead of labels and metrics capable of

handling these types of data must be used. There are generally two evalua-

tive measures for regression, as explained in the following:
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• Root Mean Squared Error (RMSE)

RMSE, which directly corresponds to the l2 norm3 denoted by ∥.∥,
is the typical performance measure for regression problems. It is ob-

tained by taking the second root of the mean squared error defined in

Eq. (4.3):

RMSE (X) =

√√√√ 1

m

m∑
i=1

(
ŷ(i) − y(i)

)2
(4.9)

where X is the data set containing all the input features, m is the total

number of samples, and y and ŷ represent the true and the predicted

target values, respectively. RMSE is more intuitive than the mean

squared error, as it has the same unit as the target values.

• Coefficient of Determination

This measure is commonly denoted by R2, and indicates how well the

model performs compared to an estimator that always takes the mean

of the target values as its prediction. Let y be the vector of true target

values and ŷ be the vector of predictions, each containing n entities.

R2 score for this system is defined as:

R2 = 1− SSresidual
SStotal

(4.10)

where

{
SSresidual =

∑n
i=1(y

(i) − ŷ(i))2

SStotal =
∑n

i=1(y
(i) − ȳ)2

In the above equations, ȳ represents the arithmetic mean of the true

target values. R2 score shows how much of the variation in the target

value can be represented by the input features. A perfect model that

predicts all the true target values without any error yields R2 = 1,

while a naive estimator that sets all predictions as the mean of the

target values results in R2 = 0. Therefore, we intend to develop a

model with an R2 score closer to 1. This score is usually between

0 and 1, but negative values could be obtained for the models that

3In general, the lk norm of vector v is written as: ∥v∥k =
(
|v0|k + |v1|k + · · ·+ |vn|k

) 1
k
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exhibit extremely bad behavior.

4.4 Regression Steps

Similar to the classification process depicted in Fig. 3.4, Fig. 4.1 presents

our attempt to develop an intelligent model to predict the error in an output

parameter of a CFD simulation. We notice that the suggested pipelines for

both the feature detector and the error estimator are exactly identical, indi-

cating the correlation between these two tasks. The only difference between

the two is the algorithm used to generate the output.

Full Data Set PCA Space

Training Set

Test Set
map

~80%

~20%

⋯
⋯

⋯

⋯

Random Forest Regressor

Satisfied?

Change the 

Model

Ready to Examine 

Simulations

No

Yes
Training

Evaluation

Figure 4.1: Proposed flowchart to develop a machine learning regressor
to predict the error in CFD output parameters.

4.5 Results: Correlation Matrix for Error

Estimation

Before passing the input features to the model to observe how it performs,

we inspect the correlations between the input data and some of the im-

portant parameters of the simulation. This gives a general insight into the

importance of each feature in estimating the error in the drag coefficient, and
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provides an additional means to examine the behavior of the model. Corre-

lation information is provided in Fig. 4.2. The structure of this matrix was

previously described in Section 3.7.

Since we use the same data set as we considered for classification, gen-

eral correlation data remains the same. For instance, the same conclusions

we drew for the role of each input feature in capturing the variance in the

general flow parameters and the order of accuracy apply here as well. In

this chapter, our attention is on the capability of input variables in pre-

dicting the error in the drag coefficient. Looking at the corresponding row

in the correlation matrix, we observe that PC16, PC13, and PC1 represent

most of the target value. We omitted the effects of the Mach number, as

it is directly correlated with PC1. Inspecting the correlation matrix for the

missing separation in Fig. 3.5, we see the aforementioned features have also

considerable contributions to the missing flow separation. This reinforces

our earlier argument that the flow separation and the drag coefficient are

directly related, as their variance is well captured by the same input features.

It also increases our hope in developing the regressor based on the defined

input features, since the classifier exhibited outstanding performance in the

previous chapter. It is worth mentioning that not all important features in

predicting the missing separation bubble are necessary for error estimation.

This is because the error in the computed drag is only one of the side effects

of the missing flow separation. Other outcomes of the missing pattern are

captured by other features that appear to be less important for error predic-

tion, such as PC21. We will compare the results of the feature importance

analysis to the arguments we made in this section for further assessment.
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Figure 4.2: Correlation matrix for the error estimation, where each entry represents the covariance of the
corresponding row and column tags.
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4.6 Results: Regressor Estimations

4.6.1 Random Forest Regressor

A machine learning regressor was developed to take the input information in

Eq. (3.8) and estimate the relative error in the total drag coefficient. It was

trained and evaluated on the training and the test data sets shown in Table

3.2, before balancing. The regressor was tuned following the steps provided

in Section 3.5, which results in the values presented in Table 4.1. Using

Table 4.1: Default and tuned hyperparameters for the Random Forest
regressor, when optimized on the imbalanced training set in Table 3.2.

n estimators max features bootstrap max depth

Default 100 auto True None
Tuned 320 20 True None

evaluative measures in Eqs. (4.9) and (4.10), we get the results provided in

Table 4.2. Unlike classification, where the tuned model failed to make pre-

dictions better, here the tuned regressor is slightly improved. Nevertheless,

both the default and the tuned models exhibit comparable results, indicat-

ing that the regressor is not highly sensitive to the hyperparameters. The

results presented hereafter correspond to the tuned Random Forest regres-

sor. We observe that the model performs very well on the training set, as we

expected. It shows that the model does not under-fit the data, and is able to

detect patterns and correlations in the input space for its predictions. For

ultimate assessment, we must inspect the performance of the regressor when

applied to the test samples. The results demonstrate that the regressor re-

markably estimates the error in the drag coefficient for the previously unseen

simulations. It suggests that the model is not over-fitting the training set,

and can be considered a well-fit intelligent model for uncertainty quantifica-

tion. More specifically, the RMSE we get from the test data indicate that

the model predicts the target values with an average error of ±0.0024. Note

that the true target values range from 1.56% to 10.52%, when written in

percentage form, and estimating these values with only ±0.24 uncertainty

is quite an achievement. Also, this is an outstanding performance consider-
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ing the fact that the model predicts the error with such accuracy without

introducing additional computational burdens imposed by the current error

estimation techniques.

Table 4.2: Evaluative measures of the Random Forest regressor when
applied to the imbalanced data set presented in Table 3.2.

Default Model Tuned Model
training test training test

RMSE 0.0007796 0.002627 0.0007424 0.002446
R2 0.9989 0.9872 0.9990 0.9889

RMSE provides significant information about the output of the regres-

sor and how well the model is fitted to the data. To inspect the relation

between the input and the output space of the regressor, we must analyze

the coefficient of determination denoted by R2 in Table 4.2. As we argued

before, values closer to 1 are favorable and signal that the input features

capture most of the variance observed in the target values. Referring to the

measures, our model shows a remarkable R2 score of 0.9889 when applied

on the test set, which illustrates perfect correspondence between the input

and output spaces.

The combination of RMSE and R2 scores demonstrate that our intelli-

gent regressor based on the Random Forest algorithm is a potent tool for

predicting the error in the drag coefficient.

4.6.2 Regressor Comparison

We performed the same regression using two other machine learning algo-

rithms, namely linear and deep neural network regression. As discussed

before, polynomial regression is not a wise choice in this case as it greatly

increases the dimensionality of the input space of features. The results

are mentioned here to examine whether Random Forest is indeed the most

suitable choice for the purpose of this chapter. To better compare the per-

formance of different algorithms in predicting the error, evaluative measures

are all put together and shown in Table 4.3. We only focus on the perfor-

mance of the models when applied to the test instances, since these samples
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4.6. Results: Regressor Estimations

mimic the real-world simulations that the models have not seen before.

Table 4.3: Performance comparison of the selected regressors when ap-
plied to the imbalanced data set presented in Table 3.2.

Linear Regression Neural Network Random Forest

RMSE 0.0076 0.0058 0.0024
R2 0.8939 0.9377 0.9889

Surprisingly, linear regression does not show a poor performance when

attempting to estimate the error in the drag coefficient. We expected to see

worse outputs since we already know there are many nonlinear correlations

between the input data and a linear model is not generally a good choice

for these cases. Yet the linear regression model apparently detects many

correlations correctly based on the values of RMSE and R2. However, Ran-

dom Forest still outperforms this simple linear regression due to its more

advanced and capable structure.

Now, we compare the performance measures of the Random Forest re-

gressor with a deep neural network structure. General configuration of the

neural network is the same as the one we used for classification, with 2

hidden layers and 10 neurons in each. A rectifier activation function was

utilized for these layers, while no activation was imposed on the output layer.

The results demonstrate that the neural network performs better than the

simple regression models such as the linear algorithm. The structure of the

neural network is very flexible and one can tune the regressor by changing

the number of hidden layers and neurons in each to further improve the pre-

dictions. It is likely to beat the performance of the Random Forest model

by fine-tuning these parameters. However, for the same reasons mentioned

in the previous chapter when developing the classifier, using a deep neural

network when a more efficient algorithm such as Random Forest gives such

high quality results does not sound rational.
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4.7 Results: Learning Curve

Similar to classification, plotting the learning curve is a proper way to inspect

the fitting condition of the regressor. General tips and guidelines on how

to interpret this curve are provided in Section 3.9. Figure 4.3 presents the

training and the test curves for the Random Forest regressor as the training

samples are fed in. Unlike classification, the performance measure consid-

ered to plot the learning curve is RMSE. The performance of the model on

the training set starts off from zero when only one training sample is con-

sidered. It then jumps to a large RMSE as more instances are introduced

to the training process. Then, the performance improves as the number of

the training data increases until it converges to a fixed value. This conver-

gence demonstrates that the model is sufficiently trained and no additional

training data are needed. The performance of the model on the test set

starts from a large RMSE and gradually enhances as the model becomes

more experienced. This curve reaches a point of stability where a small gap

between the training and the test curves retain. This satisfactory behavior

indicates that the Random Forest model is well-fitted to the training data

and performs skillfully on the test samples.

0 200 400 600 800
Training set size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

R
M

SE

training set
test set

Figure 4.3: Learning curve of the developed Random Forest regressor.
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4.8 Results: Feature Importance Analysis for

Error Estimation

Beneficial properties of the Random Forest classification are transferred to

its regression algorithm as well. One of these is the ability to assign weights

to the input features to compare their contribution to decision making. Fig-

ure 4.4 illustrates this feature importance analysis for our regression model.

From the figure, we derive the following conclusions:

• Random Forest identifies PC16 as the major decisive factor to esti-

mate the error in the drag coefficient. PC1 and PC13 are respectively

marked as the next important features. The Mach number is fully

represented by PC1, and hence we ignore its importance shown in the

plot. These results are consistent with our previous analysis on the

correlation matrix presented in Fig. 4.2. We see that relatively fewer

parameters appear to be significant for the regression task compared to

the flow feature detector. This is because the target value considered

here is only one of the many outcomes associated with the missing flow

pattern. This automatically makes our regression less complex than

our classification. It is worth noting that the main feature in decision

making for both the regressor and the classifier was proved to be PC16.

It indicates that the error in the drag is the major effect of missing

flow separation in a simulation around a 2-D airfoil.

• Similar to the classifier results in Fig. 3.13, we notice that the angle of

attack and the Reynolds number play negligible roles in estimating the

error. It appears that the other flow condition, namely the Mach num-

ber, is an important feature for the regressor. This is a false impression

as we already know that the Mach number is directly correlated with

PC1, and having one of these in the set of important features suf-

fices. This is where the correlation matrix helps us to avoid possible

misinterpretations when examining the feature importance plot.
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Figure 4.4: Feature importance of the Random Forest regressor.

As a comparison, we provide the feature importance plot of the linear

regression algorithm applied to the data set in Fig. 4.5. The weights in

the summation written for linear regression, presented in Eq. (4.1), show

the importance of their corresponding input features. We notice that the

linear model decides mainly based on the value assigned to PC1 (or, the

Mach number). This is inconsistent with the correlation matrix where we

tagged PC16 as the most important input parameter, while linear regressor

completely neglects the input features other than PC1. In our case, the Mach

number is indeed a major factor ruling the error, and hence the result of the

linear regression model presented in Table 4.3 is not very poor. However,

linear regression totally misses the most significant point of this study, that

PC16 is the main source of the missing flow separation and its consequent

error in drag. Hence, once again Random Forest is proved to be the suitable

choice for this study.

These results help us to perform some postprocessing assessments and

also in development of an efficient regressor, as explained in the following.
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Figure 4.5: Feature importance of the linear regressor.

4.9 Results: Data Clusters

The feature importance analysis narrowed down the 43-dimensional vector

of input features to only three major parameters, namely PC16, PC1, and

PC13, ordered by their relative importance. This becomes extremely useful

when trying to inspect data points visually. Figures 4.6a and 4.6b depict

the position of the data samples in the 2-D plane of PC16 and PC1 and the

3-D space of all important features. The points are colored by the true value

of their relative error in the drag coefficient. We clearly see a trend in both

plots, where certain regions exhibit higher errors. We can also notice why

PC16 is considered as the main feature, as it separates data points having

lower-value errors from higher-value ones. These plots roughly visualize how

the Random Forest regressor operates in these subspaces to assign a value

to a new data point.

In Figs. 4.7a and 4.8a, the test samples colored by the error values

predicted by the Random Forest regressor are plotted in the same 2-D and

3-D spaces mentioned before. These plots indicate that the model correctly

identifies clusters shown in Fig. 4.6. To better visualize how the model

performs in assigning error values to each of the data points, we must com-

pare the predicted values with the actual ones. This is done by computing
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Figure 4.6: Positions of the data samples, colored by their corresponding
true target values.

the absolute difference between these values and picturing the same data

points colored by this difference. The results of such analysis are shown in

Figs. 4.7b and 4.8b. We see that only a handful of data points show large

differences between the predicted and the true target values, and in most

cases, the model does an outstanding job in predicting the error.
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Figure 4.7: Performance of the Random Forest regressor on the test
samples, visualized in the 2-D plane of PC16 and PC1.
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Figure 4.8: Performance of the Random Forest regressor on the test
samples, visualized in the 3-D space of PC16, PC13, and PC1.

4.10 Results: Efficient Regressor

We can perform a feature selection on the input vector based on the results

we got from the feature importance analysis. Therefore, we select PC1,

PC13, and PC16 to develop a more efficient Random Forest regressor, and

discard all other features. The combination of feature extraction and feature

selection reduces the dimensionality of the 16568-dimensional complex CFD

outputs to a 3-dimensional vector of features, which is quite impressive. It

is substantially more convenient for a machine learning algorithm to operate

in this low-dimensional space to detect relevant patterns shown in Fig. 4.6.

We train and evaluate this efficient model using the Random Forest al-

gorithm on the same training and test sets as before. The performance of

the model on the test samples is tabulated in Table 4.4. The evaluative

measures demonstrate that the efficient regressor performs impressively well

on the test set, and can be considered an acceptable error estimator. The

value of RMSE suggests that the true target values are approximated with

an average error of ±0.21, when presented in percentage. In fact, it out-

performs our main regressor where 43 input features were used instead of 3.
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4.10. Results: Efficient Regressor

This interesting behavior is not unusual, since in many cases as we increase

the number of irrelevant input information, the model could be confused

by misleading correlations between the data. Here, when we use only the

relevant input features, the model can predict the error values without any

possible noise from other futile information. Overall, the model performs

well enough to be marked as a reliable error estimator for our CFD data set.

Predicted data clusters for the efficient model are plotted in Figs. 4.9 and

4.10.

Table 4.4: Performance comparison of the efficient Random Forest with
the main model when applied to the imbalanced data set presented in
Table 3.2.

Main Model Efficient Model

RMSE 0.0024 0.0021
R2 0.9889 0.9918
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Figure 4.9: Performance of the efficient Random Forest regressor on the
test samples, visualized in the 2-D plane of PC16 and PC1.

To assess whether the model is over-, under-, or well-fitted to the data,

we analyze the output of the learning curve presented in Fig. 4.11. The

training and test curves for the efficient model exhibit similar behavior to

our main regressor, indicating that the model is a good fit to the data set.

This proves that the efficient regressor developed based on only three input

parameters is a skilled model in estimating the error in the drag coefficient.
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Figure 4.10: Performance of the efficient Random Forest regressor on
the test samples, visualized in the 3-D space of PC16, PC13, and PC1.
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Figure 4.11: Learning curve of the efficient Random Forest regressor.

4.11 Results: Regressor Generalization

For the same reasons mentioned in the classification chapter, our developed

regressor is only applicable to simulations performed on the base mesh pre-

sented in Fig. 1.10. To generalize the model, we again consider the arbitrary
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4.11. Results: Regressor Generalization

mesh shown in Fig. 3.18. The generalization steps are exactly the same as

before, where we need to map the solution from the arbitrary mesh onto

the base mesh for dimension consistency. For a detailed explanation of the

mapping process, refer to Section 3.13. Here, we only present the results of

the generalization to see whether the model is able to estimate the error in

the drag coefficient for a 2-D flow simulation around NACA 0012 performed

on an arbitrary mesh.

We take the same simulations on the arbitrary mesh as the ones we used

to generalize the classifier. The flow conditions are mentioned here again:

• the Angles of Attack (AoA): {-4, -1, 0, 2, 3},

• the Mach numbers (M): {0.2, 0.5},

• and the Reynolds numbers (Re): {4000, 8000}

that yield 40 data samples to test generalization. The true target value is

set to the relative error in the drag coefficient for each of the simulations,

using the guidelines provided in Section 4.2. The results of applying the

efficient Random Forest regressor on this new data set are provided in Table

4.5.

Table 4.5: Performance of the efficient Random Forest when applied to
the generalized data samples.

RMSE 0.0135
R2 0.3127

Evaluative measures indicate that the model is not performing as ex-

pected on the new solution vectors obtained on a different mesh than the

one it was trained on. More specifically, the model yields an RMSE = 0.0135,

or equivalently, an average ±1.36 error margin when specified in percentage.

This is a very poor performance compared to the results presented in the

previous sections. Looking at the R2 score, we conclude that the expansion

coefficients do not represent the error in the drag coefficient for the new sim-

ulations sufficiently. It suggests that the PCA subspace created using the

simulations performed on the base mesh is not a suitable information space
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4.11. Results: Regressor Generalization

to estimate the error on other arbitrary meshes. This is surprising since

our classification that shares similar properties to our regression showed ac-

ceptable results on the same generalized data set. We inspect the predicted

values the same way we analyzed data clusters in previous sections, by pre-

senting Figs. 4.12 and 4.13. Comparing the positions of the generalization

data set in Figs. 4.12a and 4.13a with the main data set in Fig. 4.6, we

detect a possible source of our failed attempt in generalizing the regressor.

In Fig. 4.6a, we can easily identify a hard threshold at around PC16 = 0.0.

Looking at the placement of the generalization data points in the same 2-D

plane in Fig. 4.12a, we see that the aforementioned threshold does not ex-

ist anymore, as if the data points are slightly shifted to the right. This is

concerning since the hard threshold we identified in the main data set plays

an integral role in the decision making process of the model.
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Figure 4.12: Performance of the efficient Random Forest regressor on
the generalization samples, visualized in the 2-D plane of PC16 and PC1.
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Figure 4.13: Performance of the efficient Random Forest regressor on
the generalization samples, visualized in the 3-D space of PC16, PC13,
and PC1.

In the following, we provide possible reasons for the poor performance

we observed when generalizing the regressor:

• One possible source of the performance contrast between the classifier

and the regressor could be related to the different evaluative measures

for these two types of machine learning models. RMSE is a much

more strict measure than the confusion matrix and its derived perfor-
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mance metrics when dealing with poor individual predictions. In the

case of classification, when a single data point is incorrectly labeled,

it has minor effects on the overall performance of the model. When

the number of incorrect labels increases, then we start to notice ma-

jor differences in performance measures. On the other hand, RMSE

penalizes the regressor severely even if only a single target value is

poorly estimated. This comes from the numerical nature of the re-

gression tasks. In fact, if we look at the predictions of the regressor

when applied to the generalization samples, it shows good estimations

in most of the simulations, while a few samples exhibit large discrep-

ancies between the estimated and the true target values. It turns out

that these large errors are sufficient to hugely affect the RMSE score,

and mark the generalized model as a poor estimator.

• Another reason could be that the PCA subspace created based on

the base mesh is fundamentally inconsistent with the new simulations.

One major assumption in our analysis is that the same PCA subspace

we used to develop the model can represent the arbitrary simulations

just as accurate. However, it could be the case that the new set of

simulations result in a different PCA subspace and projecting those

on the old PCA modes is meaningless. To check this possible source of

error, we repeated the whole PCA decomposition for the simulations

on the arbitrary mesh shown in Fig. 3.18. We considered the same flow

conditions as before to generate 1050 solution vectors, and performed

the decomposition on this new data set. The goal is to compare this

new PCA subspace with the one we developed our models on. Thus,

we provide mode shapes and PCA coefficient plots for the new PCA

subspace in Appendices D and E, respectively. Comparing the mode

shapes and the coefficient plots with the ones provided in Appendices

B, and C, we notice that the dominant modes appear the same for both

spaces. In particular, the first and the second modes that respectively

represent the Mach number and the angle of attack are identical. In

the third one, we observe similar patterns for the two spaces with
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4.11. Results: Regressor Generalization

a sign flip, where negative regions in one space appear positive in

the other, and vice versa. In general, this is not a concern since the

PCA algorithm has correctly detected one of the high-variance axes for

both data sets, with opposite directions. As we compare less dominant

modes, it appears that these modes do not match anymore. Especially,

the 16th mode in the old PCA subspace that was the major factor in

our decision making does not have an identical counterpart in the new

PCA subspace. This could be one of the reasons that the regressor

performs poorly on the simulations on different meshes.
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Chapter 5

Concluding Remarks

5.1 Summary

Missing flow features in CFD simulations, originating from inaccuracies in-

volved in the numerical solver, impose a major challenge upon the appli-

cation of CFD methods in the industry. The inability of the simulation

in properly capturing these major patterns results in unreliable output pa-

rameters and directly affects the design and performance assessment in the

postprocessing stage. The current accuracy improvement methods proposed

to fill this gap, such as grid refinement and error estimators, can become

computationally inefficient. Also, these methods do not provide a priori

assessment of the quality of the features captured in the computational do-

main. Hence, an efficient alternative tool capable of evaluating the accuracy

of CFD simulations both qualitatively and quantitatively could make a huge

difference in computational aerodynamics.

In this thesis, we took advantage of the availability of the massive output

data from CFD simulations to construct a purely data-driven framework

to address the aforementioned challenges. The goal was to develop two

intelligent machine learning models to:

• first, predict whether a simulation properly captures the dominant flow

pattern,

• and second, estimate the error in one of the aerodynamic parameters

calculated by the simulation.

In our analysis, the major flow pattern was the separation bubble behind a

NACA 0012 airfoil and the drag coefficient was selected as the aerodynamic

parameter as it is more likely to be affected by the separation.

117



5.1. Summary

CFD data sets suffer from the curse of dimensionality, as the output

solutions usually contain many degrees of freedom. This makes it quite dif-

ficult for machine learning algorithms to detect patterns and identify useful

correlations in this high-dimensional space of information. Therefore, we

applied a dimensionality reduction technique, called Principal Component

Analysis (PCA), to map the high-dimensional CFD solution vectors onto a

low-dimensional PCA subspace. The resulting subspace consisted of a set

of orthonormal modes, tailored to our specific data set, which created an

ideal space for machine learning purposes. Apart from making the data

considerably more efficient to work with, PCA was proved to be a powerful

tool in extracting meaningful information from the flow field. In particular,

we were able to identify the modes representing the effects of the angle of

attack, the Mach number, the Reynolds number, and also the order of ac-

curacy of the simulation. Furthermore, a single mode primarily responsible

for the missing separation bubble was uncovered. PCA sheds light on every

detail of the flow physics as well as the numerical aspects of the simulation,

which in turn makes it a potent tool in many applications in aerodynamics,

provided sufficient data are available.

For the qualitative part of our analysis, a machine learning classifier

based on the extracted PCA modes was implemented with the aim of de-

tecting the simulations where the separation bubble behind the airfoil was

not well captured. The performance measures demonstrated that the su-

pervised binary classifier developed in this study is an outstanding model

in detecting the solution vectors lacking separation. A comparison between

the performance of common machine learning algorithms was provided, and

it was proved that Random Forest is the best model to train the flow fea-

ture detector. By performing a feature importance analysis, a more efficient

classifier was developed with less input information, which was proved to

be a comparable tool. We attempted to generalize the model to handle

simulations on different meshes by mapping solution vectors obtained on an

arbitrary mesh onto our base mesh. The results demonstrated that the gen-

eralized classifier makes acceptable predictions, and can be used for any 2-D

flow simulations around NACA 0012 airfoil regardless of the mesh configu-
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raion. The proposed approach could be used as a priori examination tool to

identify deficiencies in a CFD simulation, before attempting to improve its

accuracy.

We extended the classifier and developed a supervised machine learning

regressor based on the same information space for uncertainty quantifica-

tion. In particular, we set the relative error in the drag coefficient as the

target value to implement an alternative approach to the current error esti-

mators such as Error Transport Equation (ETE) and Adjoint methods. The

performance measures indicated that our regressor estimates the errors with

remarkable accuracy. The regression was trained using the Random Forest

algorithm, and a comparison between this model and other machine learn-

ing techniques was provided. Similar to the classification, we performed a

feature importance analysis to reduce the dimensionality of the input vector

even further using feature selection. The resulting efficient regressor exhib-

ited better performance compared to the main model, possibly because of

the better input information. Our generalization to make the regressor ac-

cept flow simulations on different meshes, however, was not as successful. We

thoroughly discussed possible issues related to regressor generalization. This

new error estimator based on machine learning regression has the potential

to replace the current costly accuracy improvement methods, if properly

generalized. It can be used concurrently with the classifier to assign a pre-

dicted error value to the CFD simulations that miss a major flow pattern.

This way, our machine learning models that operate based on PCA modes

provide both qualitative and quantitative assessment tools.

5.2 Key Outcomes

This work is very much at the proof of concept stage, with many features

that are not scalable to large industrial problems. Nonetheless, we think

there are valuable lessons to be learned from our progress thus far. Here,

we discuss the key findings of the present study:

• We performed a modal decomposition based on PCA on the CFD sim-
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ulations around a NACA 0012 airfoil. The resulting PCA subspace

provides a suitable framework to train different machine learning and

deep learning models efficiently. Besides learning tasks, PCA modes

are physically interpretable and each holds a great amount of informa-

tion about the simulated flow field. Since PCA yields an orthonormal

basis, the modes are linearly independent, and therefore, each mode

can be analyzed separately. This might become extremely useful when

a single aspect of the simulation is to be studied. Using PCA, we can

filter out all redundant information and only focus on the mode(s) rep-

resenting the particular characteristic we are interested in. Our full

data set and its PCA modes, as well as other useful information are

all available in an open-source GitHub repository4. This data set can

be used to develop various machine learning models for several appli-

cations or to study different aspects of the simulation by inspecting

PCA modes.

• We developed two supervised machine learning models on the PCA

subspace to tackle one of the grave challenges in CFD. The models

were successful in predicting the missing flow feature and estimating

the error in the drag coefficient with outstanding accuracy. The pro-

posed data-driven approach examines inaccuracies involved in CFD

simulations without introducing additional equations and complexi-

ties into the process; all we need to do is to get the simulation output

and pass it to our machine learning pipeline to yield a qualitative and

quantitative assessment of the simulation. Although there still remain

challenges regarding generalization, the developed models manifested

great potential for efficient accuracy analysis in numerical simulations.

5.3 Future Directions

The next steps to further develop the proposed machine learning approach

can be listed as follows:

4https://github.com/APHedayat/missing-flow-feature-dataset.git
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• In this project, the focus was on the missing separation bubble be-

hind an airfoil. However, the proposed method is not limited to this

particular flow feature, and similar classifiers and regressors can be

trained to deal with other major flow patterns, such as shock waves.

It is expected that the effects of any dominant flow feature would be

well captured in its PCA subspace. This is because PCA scans all

values in every single cell in the domain, and the major patterns in

the flow field show themselves within these values. As a result, if the

flow feature has enough energy to considerably affect the flow field,

PCA will represent it among its leading modes. Therefore, using the

same flowcharts presented in Figs. 3.4 and 4.1 for a set of simulations

with different missing features, we can develop other models to deal

with inaccuracies in those particular cases.

• We faced serious issues when attempting to generalize the regressor

to make it independent of the mesh configuration. By performing fur-

ther analysis provided in Appendices D and E, we noticed that the

PCA modes for similar simulations performed on different meshes dif-

fer. This weakens our generalization idea where we map the arbitrary

solution vector on the base mesh on which PCA was performed. There

are still uncertainties attached to our generalization, and a successful

idea to make our machine learning models independent of the mesh

would be delightful.

• The ultimate target of this project are costly three-dimensional (3-

D) applications. Such 3-D simulations with complex geometries will

reveal the true potential of this method, since utilizing accuracy im-

provement techniques in these cases becomes computationally heavy,

and in some cases, infeasible. Having a classifier to decide whether

to apply such costly methods would save us valuable time. On the

other hand, developing a regressor to work in parallel with the classi-

fier and act as an alternative to the current improvement techniques

can eliminate such costly methods from the simulation cycle and save

us further time in 3-D cases.

121



5.3. Future Directions

• The created data set with labeled simulations (captured or missed) can

be a reference for other data-driven or pattern recognition approaches.

Labeling such a huge number of solution vectors manually is a tedious

task, and therefore we have provided the data set in a GitHub reposi-

tory for anyone interested in participating (URL address was provided

previously). This work only explores one data-driven approach to

tackle the problem of missing flow features in CFD simulations. We

do not claim that our developed models are the best possible solutions

to this problem, and further endeavors using various methods to pro-

vide a comparing platform with the models developed in this thesis

will advance the use of data-driven approaches in CFD.

• The logical path to take from now on, in our opinion, is to focus

more on the interesting modes we find during the process, instead of

developing other machine learning models that are not scalable to real-

world problems. In this thesis, for instance, we found one particular

PCA mode that was the source of the missing flow separation in our

test cases. Using the same data-driven approach, we can find different

modes related to other missing patterns, such as shock waves. The

reason that these modes could become helpful in the future is that they

can be thought of as footprints of the numerical errors involved in the

simulation that are causing certain patterns to be missed. Therefore,

we believe there is more value in further studying these modes and

discover possible ways to take advantage of these to reduce numerical

errors in general flow simulations.

Overall, the data-driven framework developed in this study was proved

to have a great potential to be used for accuracy improvement in numerical

simulations, and hopefully, this work opens more opportunities to develop

capable machine learning models or other novel approaches for CFD appli-

cations.
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Appendix A

Eigendecomposition

Eigendecomposition provides another means to break down a CFD simula-

tion into a set of modes. Unlike PCA, this approach does not require a data

set, and can be applied directly on the Jacobian operator in the linearized

system of equations. Therefore, eigendecomposition is considerably easier

to implement as we do not have to simulate the flow field multiple times to

get a large set of solution vectors. That being said, there are severe limita-

tions associated with eigendecomposition as opposed to PCA, which will be

explained at the end of this appendix. We will briefly provide the implemen-

tation and possible usage of this method in detecting missing flow features,

and also point out the possible conditioning problem in the following.

A.1 Methodology

Let A be the n by n square Jacobian operator of a CFD simulation. By

performing an eigenanalysis on this matrix, we can extract the left and the

right eigenvectors alongside their corresponding eigenvalues:

[A]X = ΛX (A.1a)

YT [A] = ΛYT (A.1b)

where X and Y contain the right and the left eigenvectors as their columns,

respectively, and Λ is a diagonal matrix containing the eigenvalues. The

Jacobian matrix is generally not symmetric, and therefore the left and the

right eigenvectors span different spaces. The right eigenvectors are called

the eigenmodes, and similar to PCA modes, they span a basis on which we

can represent any field vector. Here, we consider the truncation and the
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A.1. Methodology

discretization error vectors respectively as τ and ε as a combination of the

eigenmodes:

τ =

n∑
i=1

aixi (A.2a)

ε =

n∑
i=1

bixi (A.2b)

where xi are the right eigenvectors and ai and bi are the truncation and the

discretization error eigencoefficients, respectively. The two types of errors

are linked through the Jacobian matrix as follows (from Error Transport

Equation presented in Eq. (1.28)):

[A] ε = τ (A.3)

By substituting Eqs. (A.2a) and (A.2b) in Eq. (A.3), we get:

[A]
n∑

i=1

bixi =
n∑

i=1

aixi =⇒
n∑

i=1

bi[A]xi =
n∑

i=1

aixi (A.4)

and using the definition of eigenvalues λi:

n∑
i=1

biλixi =
n∑

i=1

aixi (A.5)

The right eigenvectors are linearly independent, and therefore, Eq. (A.5)

indicates:

ai = λibi (A.6)

which relates the eigendecomposition of the truncation and the discretization

errors through the eigenvalue in each mode. Unlike the PCA modes, the

eigenmodes are not orthonormal for general non-symmetric matrices; hence,

the same approach we presented to compute the expansion coefficient in

Eq. (2.5) does not apply here. Instead, we use the orthonormality property

between the left and the right set of eigenvectors (i.e., ⟨xi,yj⟩ = δij) to

135



A.2. Conditioning Problem

compute ai as:

ai = ⟨yi, τ⟩ = yT
i τ (A.7)

where yi are the left eigenvectors. Having ai and λi, we can then use Eq.

(A.6) to calculate bi.

We can combine eigendecomposition results with the Adjoint error es-

timator, where we represent the error in a single functional J as the inner

product of the truncation error τ and the adjoint vector ψ:

δJ = ⟨ψ, τ⟩ (A.8)

We discussed how to get the adjoint vector in Section 1.5. If we substitute

Eq. (A.2a) in Eq. (A.8), we get:

δJ =

n∑
i=1

ai⟨ψ,xi⟩ = a1⟨ψ,x1⟩+ a2⟨ψ,x2⟩+ · · ·+ an⟨ψ,xn⟩ (A.9)

The above expression writes the total error in a solution functional as a

combination of errors resulting from each eigenmode. This way, we can mark

the mode that shows the largest contribution to the error and tag it as the

source of inaccuracy in the simulation. In our case, the solution functional

we are interested in is the drag coefficient of the airfoil, since the missing

separation bubble mostly affects this parameter. Consequently, performing

eigendecomposition in conjunction with the adjoint error estimation can

yield a single mode responsible for the missing separation bubble.

A.2 Conditioning Problem

A crucial assumption in eigendecomposition is that the left and the right set

of eigenvectors are orthogonal. This is in general true for any square matrix,

regardless of it being symmetric or not. We took advantage of this property

when computing the eigencoefficients of the truncation error in Eq. (A.7).

A possible challenge arises when the inner product of the left and the

right eigenvectors corresponding to a particular eigenvalue, which is known
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A.2. Conditioning Problem

as the condition number of the eigenvalue λi and denoted by s(λi), is nearly

zero:

s(λi) = ⟨xi,yi⟩ ≈ 0 (A.10)

In other words, the corresponding left and right eigenvectors are very close

to being orthogonal to each other. To make the sets of left and right eigen-

vectors orthonormal, we need to augment this insignificant inner product to

be equal to 1. This is done by applying a constant scaling factor equal to

1/s(λi) (which becomes very large when s(λi) ≈ 0) to one of the eigenvec-

tors. In an ideal situation, where the inner product of orthogonal vectors

are exactly zero, the scaling factor will not affect the off-diagonal entities in

the diagonal matrix of YTX. However, since the computer zero is slightly

deviated from the exact zero, a gigantic scaling factor inevitably makes some

off-diagonal entities attain significant values and the orthogonality condition

breaks. This makes our computations in Eq. (A.7) invalid, and we can no

longer calculate the eigencoefficients.

In these cases, square matrixA is ill-conditioned with regard to its eigen-

system, and the eigenvalues that show a very low condition number are

called the ill-conditioned eigenvalues (note that the condition number of a

single eigenvalue is different from the overall condition number assigned to

a matrix). The Jacobian matrix in our CFD simulation exhibited this prob-

lematic behavior, and therefore, performing an eigendecomposition became

impractical for our analysis.

We provide the following points to compare PCA and eigendecomposi-

tion for the purpose of this work. The single advantage of eigendecomposi-

tion over PCA is that it can be performed on a single simulation by taking

only the Jacobian operator. Therefore, in initial implementation stage, the

modes from eigendecomposition are achieved much easier and faster com-

pared to the PCA modes. However, there are many reasons to consider PCA

as the decomposition method for flow feature detection:

• PCA shows more robustness compared to eigendecomposition, for which

the matrix could be ill-conditioned.
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A.2. Conditioning Problem

• For machine learning purposes, we always need lots of data. Therefore,

the mentioned advantage of eigendecomposition over PCA becomes

neutralized, as we still need to gather multiple CFD simulations to

form a learning system.

• The hierarchical structure of PCAmakes it the ideal choice for machine

learning as it substantially reduces the dimensionality of the data.

• PCA captures the most important physical and numerical aspects of

the simulation, whereas eigendecomposition only focuses on the nu-

merical characteristics.

• Applying PCA on a CFD data set is generally more efficient than per-

forming a full eigenanalysis on the Jacobian operator. If we take the

dimensionality of the CFD simulations as n, then the Jacobian ma-

trix is a square n by n matrix; whereas the data set is a rectangular

n by m matrix where m is the number of simulations and often we

have m ≪ n. Also, we normally implement the economy SVD when

performing PCA, which further reduces involved computations. Note

that we assume here that we want to use machine learning for which

we need to create a full data set, regardless of the decomposition tech-

nique; otherwise, if an alternative feature detector can be proposed

using eigenanalysis without the need for a full data set, then eigende-

composition becomes much more efficient compared to PCA, for which

the existence of a full data set is inevitable.
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Appendix B

Principal Modes (Base

Mesh)

Figure B.1: x-momentum component of solution modes, extracted by
performing PCA on the CFD data matrix shown in Fig. 1.11.

139



Appendix B. Principal Modes (Base Mesh)

Figure B.1: x-momentum component of solution modes, extracted by
performing PCA on the CFD data matrix shown in Fig. 1.11. (cont.)
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Appendix B. Principal Modes (Base Mesh)

Figure B.1: x-momentum component of solution modes, extracted by
performing PCA on the CFD data matrix shown in Fig. 1.11. (cont.)
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Appendix B. Principal Modes (Base Mesh)

Figure B.1: x-momentum component of solution modes, extracted by
performing PCA on the CFD data matrix shown in Fig. 1.11. (cont.)
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Appendix C

Principal Coefficient (Base

Mesh)
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Figure C.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, calculated by taking the inner product of the solution
vectors with PCA modes (Eq. (2.5)). The amount of energy captured
by each mode is presented on top of its associated plot, and is calculated
by σi/

∑m
j=1 σj, where σ represents the singular value.
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Appendix C. Principal Coefficient (Base Mesh)
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Figure C.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, calculated by taking the inner product of the solution
vectors with PCA modes (Eq. (2.5)). (cont.)
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Figure C.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, calculated by taking the inner product of the solution
vectors with PCA modes (Eq. (2.5)). (cont.)
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Figure C.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, calculated by taking the inner product of the solution
vectors with PCA modes (Eq. (2.5)). (cont.)
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Figure C.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, calculated by taking the inner product of the solution
vectors with PCA modes (Eq. (2.5)). (cont.)
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Appendix C. Principal Coefficient (Base Mesh)
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Figure C.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, calculated by taking the inner product of the solution
vectors with PCA modes (Eq. (2.5)). (cont.)
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Appendix D

Principal Modes (Different

Mesh)

Figure D.1: x-momentum component of PCA modes, extracted from the
simulations performed on the mesh shown in Fig. 3.18.
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Appendix D. Principal Modes (Different Mesh)

Figure D.1: x-momentum component of PCA modes, extracted from the
simulations performed on the mesh shown in Fig. 3.18. (cont.)
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Appendix D. Principal Modes (Different Mesh)

Figure D.1: x-momentum component of PCA modes, extracted from the
simulations performed on the mesh shown in Fig. 3.18. (cont.)
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Appendix D. Principal Modes (Different Mesh)

Figure D.1: x-momentum component of PCA modes, extracted from the
simulations performed on the mesh shown in Fig. 3.18. (cont.)
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Appendix E

Principal Coefficients

(Different Mesh)
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Figure E.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, corresponding to the mesh shown in Fig. 3.18. The
amount of energy captured by each mode is presented on top of its
associated plot, and is calculated by σi/

∑m
j=1 σj, where σ represents

the singular value.
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Appendix E. Principal Coefficients (Different Mesh)
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Figure E.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, corresponding to the mesh shown in Fig. 3.18. (cont.)
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Appendix E. Principal Coefficients (Different Mesh)
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Figure E.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, corresponding to the mesh shown in Fig. 3.18. (cont.)
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Appendix E. Principal Coefficients (Different Mesh)
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Figure E.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, corresponding to the mesh shown in Fig. 3.18. (cont.)
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Appendix E. Principal Coefficients (Different Mesh)
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Figure E.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, corresponding to the mesh shown in Fig. 3.18. (cont.)
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Appendix E. Principal Coefficients (Different Mesh)
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Figure E.1: PCA expansion coefficients of the 2nd- and the 4th-order
solution vectors, corresponding to the mesh shown in Fig. 3.18. (cont.)
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Appendix F

Code Snippets and Shell

Commands

This Appendix provides important terminal commands and python func-

tions used to generate the results presented in this thesis. All programs

have been executed on a linux workstation running on Ubuntu 20.04.4 LTS.

F.1 GRUMMP Shell Commands

To generate the computational domains in this study, we used GRUMMP,

which is a linux package written in C++ and runs based on the commands

given in the terminal window. The following commands were used to gen-

erate the base and the arbitrary meshes:

$ {PATH_TO_GRUMMP }/apps/edam/2D/edam2d -i {BDRY_FILE} -R 8 -G 8

-x 0.001 -g 1.2 -o 0012 -l {LEN_FILE} -s -n 55

Program F.1: GRUMMP terminal command to generate the base mesh

shown in Fig. 1.10.

$ {PATH_TO_GRUMMP }/apps/edam/2D/edam2d -i {BDRY_FILE} -R 16 -G

48 -x 0.002 -g 1.2 -o 0012 -l {LEN_FILE} -t

Program F.2: GRUMMP terminal command to generate the arbitrary

mesh shown in Fig. 3.18.

Although these meshes are basically unstructured, they share similarities

to structured configurations. To generate a fully-unstructured mesh, the

following command may be used:
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F.2. ANSLib Shell Commands

$ {PATH_TO_GRUMMP }/src/programs/tri -i {BDRY_FILE} -r 4 -g 4 -o

0012 -l {LEN_FILE}

Program F.3: GRUMMP terminal command to generate a fully-

unstructured mesh.

F.2 ANSLib Shell Commands

To solve the flow field on the domains created using GRUMMP, ANSLib

package for linux that is also written in C++ was utilized. This package

takes input commands from the terminal, similar to GRUMMP. To generate

proper data for our machine learning purposes, we developed an application

specific to this task. The code can be run by entering the following com-

mand:

$ {PATH_TO_ANSLIB }/apps/feature -identification/feature -

identification -f {MESH_FILE} -physics RoeVisc2D -mach {M}

-angle {AOA} -reynolds {RE} -Adjoint -drag -pqr 244 -C 0.1

-mesh_type v

Program F.4: ANSLib terminal command to solve the flow field using

2nd- and 4th-order discretization schemes.

F.3 Python Code Snippets

To create the machine learning structures depicted in Figs. 3.4 and 4.1, we

used python v3.8.10, which is the most popular programming language for

machine learning nowadays. The learning pipeline can be divided into three

steps: modal decomposition, classification, and regression. Important code

snippets and modules used in each step are provided in the following.

Principal Component Analysis

We used Linear Algebra module from NumPy library to decompose the data

matrix shown in Fig. 2.1 (after being processed) into PCA modes. The code

is provided as follows:
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F.3. Python Code Snippets

# Import NumPy

import numpy as np

# Compute economic SVD of the data matrix

U, S, V = np.linalg.svd(data_matrix , full_matrices=False)

# Outputs:

# U -> left singular vectors (PCA modes)

# S -> singular values

# V -> right sinular vectors

Program F.5: Performing Principal Component Analysis on the data

matrix.

Classification - Missing Flow Feature Identification

To perform machine learning classification, we utilized Scikit-learn and Ten-

sorflow libraries. Scikit-learn encompasses most conventional machine learn-

ing algorithms, such as Logistic Regression and Random Forest, while Ten-

sorflow provides a framework suitable for creating deep neural networks. The

following python snippets present different steps taken to train a classifier

on the imbalanced data set presented in Table 3.2:

# Import Pandas and Scikit -learn modules

import pandas as pd

from sklearn.model_selection import train_test_split

# Separate "MISSED" and "CAPTURED" cases

dataset_capt = dataset[ dataset["Label"] == "CAPTURED" ]

dataset_miss = dataset[ dataset["Label"] == "MISSED" ]

# Randomely create the training and the test sets for each "

MISSED" and "CAPTURED" labels

train_capt , test_capt = train_test_split(dataset_capt ,

test_size =0.2, random_state =20)

train_miss , test_miss = train_test_split(dataset_miss ,

test_size =0.2, random_state =20)

# Gather "MISSED" and "CAPTURED" cases back together

train_data = pd.concat ([ train_capt , train_miss], axis = 0)

test_data = pd.concat ([test_capt , test_miss], axis = 0)

# shuffle the data if needed

NEED_SHUFFLE = True

if NEED_SHUFFLE:
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F.3. Python Code Snippets

train_data = train_data.sample(frac=1, random_state =20).

reset_index(drop=True)

test_data = test_data.sample(frac=1, random_state =20).

reset_index(drop=True)

Program F.6: Splitting the full data set into the training and the test

subsets for classification.

from imblearn.over_sampling import RandomOverSampler

from imblearn.under_sampling import RandomUnderSampler

# over -sample minority so that: minor/major = sampling_strategy

over_sampler = RandomOverSampler(sampling_strategy = 0.3,

random_state = 20)

X_train , y_train = over_sampler.fit_resample(X_train , y_train)

# under -sample majority so that: minor/major =

sampling_strategy

under_sampler = RandomUnderSampler(sampling_strategy= 1.0,

random_state = 20)

X_train , y_train = under_sampler.fit_resample(X_train , y_train)

Program F.7: Balancing the imbalanced data set.

# Import classification algorithms

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

# Select the classification algorithm

model = RandomForestClassifier(random_state =20, n_jobs = -1)

# model = LogisticRegression(random_state =20, solver = ’lbfgs ’)

# Training

model.fit(X_train , y_train)

# Test (prediction)

y_pred = model.predict(X_test)

y_proba = model.predict_proba(X_test)

Program F.8: Training and testing the classifier. The same code

structure is used for both Logistic Regression and Random Forest.

# Import tuning module

from sklearn.model_selection import GridSearchCV

# Select the parameters and the range on which the model will

be tuned
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F.3. Python Code Snippets

param_grid = [

{’n_estimators ’: [60, 70, 80],

’max_features ’: [10],

’bootstrap ’: [True , False],

’random_state ’: [20],

’criterion ’: ["gini", "entropy"],

’max_depth ’: [2, 3, 4],

’min_samples_split ’: [2],

’min_samples_leaf ’: [1]

}

]

# Perform tuning

grid_search = GridSearchCV(model , param_grid , cv=5,

scoring=’accuracy ’,

return_train_score=True ,

n_jobs = -1)

grid_search.fit(X_train , y_train)

# Extract the tuned model

model_tuned = grid_search.best_estimator_

Program F.9: Parameter tuning for the Random Forest classification.

# Import Tensorflow (ignore possible warning messages)

import tensorflow as tf

# Initialize the network

ann = tf.keras.models.Sequential ()

# Add the hidden layers

ann.add(tf.keras.layers.Dense(units = 10, activation = ’relu’))

ann.add(tf.keras.layers.Dense(units = 10, activation = ’relu’))

# Add the output layer

ann.add(tf.keras.layers.Dense(units = 1, activation = ’sigmoid ’

))

# Train the network

ann.compile(optimizer = ’adam’, loss = ’binary_crossentropy ’,

metrics = [’accuracy ’])

ann.fit(X_train , y_train , batch_size = 32, epochs = 100)

# Test the network (inspect predictions)

y_proba = ann.predict(X_test)

y_pred = (y_proba > 0.5)
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F.3. Python Code Snippets

Program F.10: Creating a deep neural network structure for

classification.

# Import evaluative metrics

from sklearn.metrics import (confusion_matrix , precision_score ,

recall_score , f1_score , accuracy_score)

# Confusion matrix

conf_matrix = confusion_matrix(actual_labels , predicted_labels)

# Precision score

prec_score = precision_score(actual_labels , predicted_labels)

# Recall score

rec_score = recall_score(actual_labels , predicted_labels)

# F1 score

f_score = f1_score(actual_labels , predicted_labels)

# Accuracy score

acc_score = accuracy_score(actual_labels , predicted_labels)

Program F.11: Compute evaluative measures for the classifier.

Regression - Error Prediction

Similar to classification, we used Scikit-learn and Tensor flow libraries to

develop our regressors. Creating the training and the test sets is easier than

the classification task, since we do not have to separate captured and missed

cases. Also, there is no need to perform balancing step, since the target

values are continuous numbers in regression. Everything else in splitting

the data set remains similar, and train test split() function can be used

similar to classification. The code snippets to develop the regressors in this

study are provided below:

# Import Scikit -learn modules

from sklearn.model_selection import train_test_split

# Randomely create the training and the test sets

train_data , test_data = train_test_split(dataset , test_size

=0.2, random_state =20)

Program F.12: Splitting the full data set into the training and the test

subsets for regression.
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F.3. Python Code Snippets

# Import regression algorithms

from sklearn.ensemble import RandomForestRegressor

from sklearn.linear_model import LinearRegression

# Select the regression algorithm

model = RandomForestRegressor(random_state =20, n_jobs =-1)

# model = model = LinearRegression ()

# Training

model.fit(X_train , y_train)

# Test (prediction)

y_pred = model.predict(X_test)

Program F.13: Training and testing the regressor. The same code

structure is used for both Linear Regression and Random Forest.

# Import tuning module

from sklearn.model_selection import GridSearchCV

# Select the parameters and the range on which the model will

be tuned

param_grid = [

{’n_estimators ’: [200 ,300 ,400] ,

’max_features ’: [20],

’bootstrap ’: [False ,True],

’random_state ’: [20],

’criterion ’: ["mse", "mae", "poisson"],

’max_depth ’: [6,10,None]

}

]

# Perform tuning

grid_search = GridSearchCV(model , param_grid , cv=5,

scoring=’neg_mean_squared_error ’,

return_train_score=True ,

n_jobs = -1)

grid_search.fit(X_train , y_train)

# Extract the tuned model

model_tuned = grid_search.best_estimator_

Program F.14: Parameter tuning for the Random Forest regression.

# Import Tensorflow (ignore possible warning messages)

import tensorflow as tf
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# Initialize the network

ann = tf.keras.models.Sequential ()

# Add the hidden layers

ann.add(tf.keras.layers.Dense(units = 10, activation = ’relu’))

ann.add(tf.keras.layers.Dense(units = 10, activation = ’relu’))

# Add the output layer

ann.add(tf.keras.layers.Dense(units = 1, activation = None))

# Train the network

ann.compile(optimizer = ’adam’, loss = ’mse’, metrics = [tf.

keras.metrics.RootMeanSquaredError ()])

ann.fit(X_train , y_train , batch_size = 32, epochs = 100)

# Test the network (inspect predictions)

y_pred = ann.predict(X_test)

Program F.15: Creating a deep neural network structure for regression.

# Import evaluative metrics

from sklearn.metrics import (mean_squared_error , r2_score)

import numpy as np

# RMSE

mse = mean_squared_error(true_target , predicted_target)

rmse = np.sqrt(mse)

# R2

r2 = r2_score(true_target , predicted_target)

Program F.16: Compute evaluative measures for the regressor.
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