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Abstract

Electrical conduction becomes non-local when an inhomogeneous electronic distribution is induced

with a spatial variation shorter than the mean free path (MFP) between momentum-relaxing electronic

scattering processes. Two important methods of inducing such a distribution are via the size and skin

effects. In the size effect, one or more dimensions of a medium are reduced below the MFP. The scatter-

ing of electrons from the medium’s boundaries then induces an inhomogeneous electronic distribution

under an applied direct current. In the skin effect, the exponential decay of alternating electromagnetic

fields as they propagate into the medium gives rise to a so-called skin layer. The electronic distribution

within the skin layer becomes inhomogeneous as the skin depth falls below the MFP.

Here we study the size and skin effects in PdCoO2, both experimentally and theoretically. While pre-

vious theoretical treatments of non-local electrical conductivity have assumed a free-electron dispersion,

we observe that the anisotropic Fermi surface (FS) in PdCoO2 results in behaviour that is incompatible

with this assumption.

Measurements of the size effect in PdCoO2 revealed two novel phenomena, both of which are

symmetry-forbidden for local conduction: anisotropy in the in-plane longitudinal resistivity, and a non-

zero transverse resistivity at zero magnetic field. We developed a theory of the size effect for arbitrary

FS geometry and used it to reproduce the key features of these measurements.

Motivated by recent interest in the possibility that electrons in solids may behave viscously as a

result of frequent internal momentum-conserving scattering, we developed a generalized theory of the

skin effect, taking into account separate rates of momentum-conserving and momentum-relaxing scat-

tering for arbitrary FS geometry. For an isotropic FS, our theory encompasses several known limiting

behaviours. For anisotropic FSs, we explored geometries which lead to changes in the scaling of the

surface impedance.

By applying bolometric broadband microwave spectroscopy, we studied the skin effect in PdCoO2

for three different directions of electromagnetic propagation. Using symmetry-based arguments, we

determined that our measurements were neither in the local nor purely viscous regime. We argued

instead that the data demonstrate a novel, predominantly ballistic effect as a result of the faceted FS.
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Lay Summary

Two familiar formulas of physics, Newton’s second law and Ohm’s law, are seemingly at odds with one

another. In Newton’s second law, a constant force produces a constant acceleration. But in Ohm’s law,

the force of a constant electric field on the electrons in a metal leads to a constant current, proportional

to the electrons’ velocity. The reason this holds in most metals is that the electrons undergo frequent

collisions that randomize their velocity. But in the absence of these collisions, electrical conductivity

becomes non-local: an electron’s velocity at a given point in space depends not only on the electric field

at the same point, but over its entire trajectory. Unlike familiar fluids in which particles are equally

likely to travel in any direction, the electrons in PdCoO2 are almost exclusively confined to travel in

only six directions. Here we study how this leads to several novel non-local effects.
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Chapter 1

Introduction

1.1 Overview
When describing electrical transport in solids, the assumption of a local relationship between electrical

current JJJ and electrical field EEE—that the current at position rrr depends only on the electric field at that

same point rrr—is ubiquitous, leading to the familiar version of Ohm’s law

Ji(rrr) = σi jE j(rrr) (1.1)

where σσσ is the electrical conductivity tensor. In fact, this is a special case of a more general relation. In

general, the dynamics of electrons can depend on the entire history of the electric field they have expe-

rienced, and therefore electrical current at a given position can depend on the electrical field elsewhere:

Ji(rrr) =
∫

drrr′σi j(rrr,rrr′)E j(rrr′). (1.2)

The reason that eq. (1.1) can be used so widely in place of eq. (1.2) is that typically electrons are

scattered, in a manner which resets their dynamics, on a length scale much shorter than the spatial

variation in the electric current or electric field.

Historically, non-local electrical conduction has been studied in two distinct settings. In direct

current (DC) electrical measurements in micro-structured samples, scattering of electrons at the bound-

aries of the sample leads to spatially non-uniform current—a phenomenon known as the size effect. In

alternating current (AC) electromagnetic measurements in bulk samples, spatially non-uniform current

arises because electromagnetic fields decay as they propagate into the sample—a phenomenon known

as the skin effect. In both cases, non-local effects arise when the current is sufficiently non-uniform.

Recently, two things have served to generate significant interest in non-local electrical conduction,

as described in the following two sections.
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Scattering beyond the relaxation time approximation

When an electric field is applied to a metal, it modifies the distribution of electrons away from the

distribution at equilibrium. The scattering of electrons acts to return the distribution to its equilibrium

form.

Historically, the understanding of both the size effect and the skin effect has been rooted in the

relaxation time approximation (RTA), which assumes that there is a single rate at which collisions

cause the entire non-equilibrium distribution to decay. (We will describe the RTA mathematically in

chapter 2.) This gives rise to the notion of a single electron mean free path (MFP) between collisions.

In this case, the spatial nature of electron dynamics can fall into one of two regimes, depending on

how the measurement length scale w compares to the MFP λ . (In the size effect, w is a physical sample

dimension; in the skin effect, w is the skin depth—the decay length of the electromagnetic fields). When

λ � w, electrical conduction is local. When λ � w, electrical conduction is non-local and ballistic:

electrons travel unimpeded on the scale of w.

From an ab initio viewpoint, the dynamics by which the various possible electron scattering mech-

anisms act to relax the non-equilibrium electronic distribution are far more complex than assumed in

the RTA. While the local conductivity is only sensitive to the rate at which non-equilibrium momentum

decays, the non-local conductivity is sensitive to the entire spectrum of decay rates associated with the

various scattering mechanisms at play. Of particular recent interest has been the prospect of a regime

in which momentum-conserving (MC) scattering is more frequent than momentum-relaxing (MR) scat-

tering, in which electrons would behave collectively as a viscous fluid1. The regimes that arise when

scattering is characterized by distinct MC and MR MFPs are illustrated in fig. 1.1.

New ultra-pure materials with anisotropic Fermi surfaces

Materials with sufficiently high purity to allow for the potential observation of non-local electrical con-

duction are scarce. The materials for which non-local conduction has previously been studied have

posessed Fermi surfaces (FSs) that consist of either (1) a single, nearly-isotropic sheet, or (2) multiple

sheets with complex geometries.

Early studies of non-local conduction were performed on certain elemental metals for which a high

level of refinement is possible. Among the elements, only the monovalent metals posess simple FSs.

These consist of the alkali metals Na, K, Rb, and Cs, and the noble metals Cu, Ag, and Au. The alkali

metals posess almost exactly spherical FSs, while the FSs of the noble metals are nearly spherical except

for “necks” at which they make contact with the boundaries of the Brillouin zone. For all other elemental

metals, the FS is relatively complex [3].

Over the last several decades, non-local electrical conduction has been studied most intensely in

GaAs and graphene, both of which posess FSs which consist of a single, two-dimensional sheet which

is approximately isotropic.

Ultra-high purity has recently become available in the delafossite metals PdCoO2, PtCoO2, PdRhO2,

1The distinction between MC and MR scattering is with respect to the total momentum of all electrons rather than the
momentum of an individual electron.
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Figure 1.1: Illustration of non-local conduction regimes as a function of measurement length scale
w. Top: When the MR and MC MFPs are equal, conduction is local at long length scales
and ballistic at short length scales. Bottom: When the MC MFP is much shorter than the MR
MFP, a viscous regime exists at intermediate length scales.

and PdCrO2. These metals share the feature of having a quasi-two-dimensional FS with a nearly-

hexagonal cross section. Therefore, their FSs are both simple yet anisotropic. This combination has the

potential to lead to novel non-local effects distinct from those observed in any previous materials.

The work described in this thesis is both theoretical and experimental in nature, with PdCoO2—the

delafossite metal with the longest low-temperature MFP—as the focus of the experimental efforts. The

central aim is to be able to theoretically treat the size and skin effects in a metal of arbitrary Fermi

surface and with arbitrary ratio of MC and MR scattering, and to experimentally measure how these

various factors are manifested in the properties of PdCoO2. The remainder of this chapter is focussed

on setting the context for the work described in subsequent chapters. The two branches of inquiry—

the size effect and the skin effect—have developed largely independently of one another. Therefore,

both require that different gaps be filled in. It is therefore instructive to consider the histories of these

two branches separately, up to their status immediately prior to the present work. In section 1.2, we

review the history of non-local electrical transport studies. In section 1.3, we review both the basic

experimental facts about PdCoO2 and several non-local transport studies to date. In section 1.4, we

review the historical development of the theory of non-local electrodynamics. Finally, in section 1.5, we

summarize the status of each of these areas and outline the problem that each of the subsequent chapters

will address.

1.2 History of non-local transport
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1.2.1 Local transport

Ohm’s law, in the context of electromagnetism, is conventionally written as

Ji = σi jE j (1.3)

where JJJ is current density [A/m2], EEE is electric field [Vm−1] and σσσ is the conductivity matrix [Ωm].

This equation can be inverted to obtain

Ei = ρi jJ j (1.4)

where

ρi j ≡ σ
−1
i j (1.5)

is the resistivity tensor.

In the context of electrical circuits, Ohm’s law is conventionally stated as

V = RI (1.6)

where V is voltage [V], I is current [A], and R is resistance [Ω]. Consider a conductor of arbitrary but

uniform cross section with cross-sectional area A and length l. If the potential V is uniform across each

end, then EEE is uniform throughout the conductor. Using

V =−
∫

dlll ·EEE (1.7)

we have

E =
V
l
. (1.8)

If we take eq. (1.3) to be true, then JJJ is also uniform throughout the conductor. Using

I =
∫

daaa · JJJ (1.9)

we have

J =
I
A
. (1.10)

Substituting eqs. (1.8) and (1.10) into eq. (1.4) we get eq. (1.6) with

R =
lρ
A
. (1.11)

Conventionally, ρ is viewed as an intrinsic property of a material, with R containing extrinsic geometri-

cal factors.
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1.2.2 Ballistic transport

Ballistic size effect

In the 1930s, Lovell [37] and Appleyard and Lovell [2] observed width-dependent resistivity in high-

purity films of the alkali metals K, Rb, and Cs deposited in high vacuum. They observed a resistivity

which approached that of bulk samples for sufficiently thick films, suggesting that the origin of the

increasing resistivity with decreasing film thickness was a result of the electron MFP being limited by

film thickness. While there had been previous reports of width-dependent resistivity, the films in those

reports had not been deposited in high vacuum. Their resistivities were always much greater than the

bulk value, regardless of thickness, suggesting that they were instead dominated by defects introduced

in the deposition process.

Soon after the work of Lovell and Appleyard, Fuchs [24] developed what is now the standard theory

of the “size effect”. This theory is now commonly known as Fuchs-Sondheimer theory as a result of

Sondheimer’s well-known review [56]. Fuchs-Sondheimer theory is a kinetic theory based on the Boltz-

mann equation, a mathematical treatment of which we will defer to chapter 2. Fuchs-Sondheimer theory

uses the RTA and is based on the assumption of a three-dimensional metal with electronic dispersion

relation

Ekkk =
h̄2k2

2m
. (1.12)

It describes how the ratio of resistivity ρ to bulk resistivity ρ0 varies with the ratio of the finite dimension

W to the MFP λ , defined as κ:

κ ≡ W
λ

(1.13)

The main result is that
ρ

ρ0
=

Φ(κ)

κ
(1.14)

with
1

Φ(κ)
=

1
κ
− 3

2κ2

∫
∞

1
dt
(

1
t3 −

1
t5

)(
1− e−κt) . (1.15)

Later, Beenakker and van Houten [8, 9] developed a theory of the size effect for a two-dimensional

metal, with all other assumptions the same as for Fuchs-Sondheimer theory. They found that

ρ

ρ0
=

[
1− 4

πκ

∫ 1

0
dξ ξ

√
1−ξ 2(1− e−κ/ξ )

]−1

(1.16)

In both 2D and 3D, the asymptotic behaviour is given by

ρ

ρ0
=


1+

α

κ
κ � 1

β

κ log(1/κ)
κ � 1

(1.17)

with the coefficients α and β listed in table 1.1.
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3D 2D

α
3
8

3
4π

β
4
3

π

2

Table 1.1: Coefficients for the asymptotic behaviour of the ballistic size effect. Cf. eq. (1.17).

The key result is that there are two distinct regimes. When the sample width W is much larger than

the MFP λ , the resistivity ρ tends to a width-independent, intrinsic value ρ0. This is known as the local

regime. When the MFP λ is much larger than the sample width ρ , the resistivity ρ is dominated by the

scattering of electrons at sample boundaries and has a strong width dependence given by [κ log(1/κ)]−1.

This is known as the ballistic regime, because electrons propagate in straight paths across the finite

dimension of the sample.

10 2 100 102

W/l

100

101

102

/
0

3D
2D

Figure 1.2: Theory of the ballistic size effect for two- and three-dimensional free electron metals.
The ratio of resistivity to bulk resistivity as a function of the ratio of channel width to bulk
MFP, as per eqs. (1.14) to (1.16).

Other manifestations of ballistic transport

Ballistic transport generally refers to any case in which the MFP exceeds a physical sample dimension.

The size effect for a single finite dimension, as discussed above, represents the simplest such geometry.

The size effect has also been studied for two finite dimensions, in channels with rectangular and cir-

cular cross-sections. Throughout the early history of ballistic transport, the systems under study were

high-purity elemental metals. In the 1980s, high-purity semiconductor heterostructures and novel mi-

crostructuring techniques emerged. GaAs-based heterostructures became a central system in the study

of ballistic transport, and novel microstructuring techniques allowed for more complex geometries to
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become available. Two important experimental geometries were transverse electron focusing (TEF) and

square junctions. These will be described in section 1.3.3.

It is also worth briefly clarifying what is beyond the scope of the current discussion of ballistic trans-

port. In microstructured conductors, another length scale can become important: the Fermi wavelength

λF , defined as λF = 2π/kF where kF is the Fermi momentum. When sample dimensions are compara-

ble to λF , quantum interference effects can become important. In this case, a fully quantum-mechanical

treatment based in the Landauer-Büttiker formalism becomes necessary, rather than the semiclassical

Boltzmann approach [8]. We will not be concerned with such effects here. In high-conductivity materi-

als, the MFP is much greater than λF . Furthermore, λF in metals is much smaller than in semiconductors

such as GaAs. In PdCoO2, the low-temperature MFP is 20µm while λF = 0.66nm [28].

1.2.3 Viscous transport

Viscous size effect

In the 1960s, Gurzhi [26] proposed that viscous effects may be observable in the flow of electrons in

solids. Indeed, a viscous regime exists in both classical and quantum fluids. The difference in a solid-

state system is that the electrons flow amidst the background of an ionic lattice, providing a pathway for

the electronic momentum to be relaxed. Gurzhi’s proposal was that while local electrical conduction is

set by MR scattering, MC collisions give rise to viscosity and, if MC scattering were frequent enough,

this could be observable in non-local electrical conduction. While earlier work in this field assumed

that MR scattering would arise from impurities while MC scattering would arise from normal electron-

electron scattering, recently there has been growing awareness that the microscopic attribution of MC

and MR scattering can be more complex. For example, even a single scattering mechanism can relax

the momentum of a non-equilibrium distribution of electrons faster than other modes of that distribution

[35, 36].

The simplest model for how viscosity would manifest in electrical transport in a channel of finite

width W is based in a hydrodynamical description. Note that such a description is already based in the

assumption that MC scattering is more frequent than both scattering at the sample’s boundaries and MR

scattering. Within a hydrodynamical description, a charged fluid flowing in a channel bounded along

the y direction has a flow velocity u(y) described by

ν
d2u
dy2 + e

Ex

m
= γmru. (1.18)

where ν is the fluid’s viscosity and γmr is the rate of MR scattering [26]. Defining

κ ≡ W
lG

(1.19)
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where here the relevant length scale is the Gurzhi length

lG ≡
√

ν

γmr
, (1.20)

one arrives at
ρ

ρ0
=

(
1− 2

κ
tanh

κ

2

)−1

. (1.21)

Equation (1.21) assumes so-called no-slip boundary conditions, meaning that at the boundaries, the fluid

has no velocity relative to the boundaries. Equation (1.21) has the asymptotic behaviour

ρ

ρ0
=


1 κ � 1

12
κ2 κ � 1.

(1.22)

Here again, we see that two distinct regimes emerge. When sample width W is much greater than the

Gurzhi length lG, we recover the local regime. In the opposite limit, the resistivity is dominated by the

viscosity and varies as ν/γmrW 2. This is known as the viscous regime.

Size effect in GaAs

In the 1990s, Molenkamp and de Jong [42] and De Jong and Molenkamp [20] were the first to observe

viscous electron flow in a solid by studying narrow wires of GaAs. Their work was also significant

because of the model they developed, which is now widely adopted. This model accounted for both MR

and MC MFPs, and was thus able to provide a unified description for the local, viscous, and ballistic

regimes. As will become important to the work described in this thesis, however, their theory made the

assumption of a two-dimensional metal with free-particle-like dispersion, leading to an isotropic FS.

Other manifestations of viscous transport

Viscous transport has been searched for most widely in GaAs and graphene [38]. While the presence of

ρ ∼W−2 behaviour in a sample with a single finite dimension is particularly conceptually simple, other

more complex experiments have been studied as well.

One class of experiments that has recently emerged is to study the same geometry as the size effect—

a sample with one finite dimension—but to use a local imaging technique to measure the profile of the

electric current and field across the finite sample dimension via scanning probe techniques. The electric

field can be measured locally via a scanning single-electron transistor [58]; the electric current can be

measured via scanning nitrogen-vacancy magnetometry [33, 70].

Another class of experiments has looked at more complex geometries, like flow past a slit, in which

vortex behaviour can form [7, 45].
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1.3 PdCoO2

The delafossite metal PdCoO2, whose crystal structure is shown in fig. 1.3, is uniquely positioned as a

result of two factors:

1. The delafossite metals are unique among ultra-high-conductivity metals in exhibiting simple yet

anisotropic and facetted Fermi surfaces, and

2. PdCoO2 exhibits the longest low-temperature MFP among the delafossites.

In sections 1.3.1 and 1.3.2 I will present the key experimental results which establish these two prop-

erties of PdCoO2 and briefly discuss their potential causes. In section 1.3.3, I will present several

mesoscopic transport studies whose results are a consequence of one or both of these two properties.

Figure 1.3: Crystal structure of PdCoO2.

1.3.1 Fermi surface

The quantum oscillations (QO) measurements by Hicks et al. [28] provide key information about the

three-dimensional Fermi surface of PdCoO2. The FS deduced from the QO measurements of Hicks

et al. [28], in combination with information from earlier angle-resolved photoemission spectroscopy

(ARPES) [46], is shown in fig. 1.4. It is seen that only a single band crosses the Fermi level. This band

is nearly cylindrical and has a nearly-hexagonal cross section. Later ARPES measurements by Sunko

[60] provide a high-resolution picture of the nearly-hexagonal cross section.

A nearly hexagonal Fermi surface which fills half the Brillouin zone is common to PdCoO2, PdRhO2,

PtCoO2, and PdCrO2 [39]. It is instructive to consider how it arises in a tight-binding model. For a tri-
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Figure 1.4: Quantum oscillations measurements of PdCoO2. Top: Fit to oscillation frequencies as
a function of angle. Bottom: Harmonic components included in the fit and their amplitudes.
From [28].

Figure 1.5: Angle-resolved photoemission spectroscopy measurements of PdCoO2. (d) Photoe-
mission intensity in grayscale. Dots are Fermi momenta obtained by fitting radial momentum
distribution curves. (e) Fermi momenta as a function of angle with harmonic fit (line). (f)
Harmonic fit superimposed on photoemission intensity. From [60].

angular lattice with only nearest-neighbour hopping, a hexagonal FS appears, but at 3/4 filling rather

than at 1/2 filling. If hopping is included beyond nearest neighbours, a hexagonal FS arises at 1/2 filling.

1.3.2 Bulk transport

Hicks et al. [28] also performed high-resolution resistivity measurements of PdCoO2, as shown in sec-

tion 1.3.2.

The in-plane resistivity ρab is consistent with the sum of a temperature-independent and an Ar-

rhenius term. The temperature independent residual resistivity is typically associated with electron-

impurity scattering. When combined with the plasma frequency ωp and Fermi velocity vF taken from

QO measurements, the residual resistivity corresponds to a MFP of ≈ 20µm. The observation of an
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Figure 1.6: Tight-binding model on a triangular lattice. (a) Contours for a model with only nearest-
neighbour hopping (indicated by t1 in (c)). A hexagonal contour appears at 3/4 filling of the
Brillouin zone. (b) Contours for a model with t1 and t3 hopping terms (as shown in (c) with
t3 = 0.15t1. A nearly-hexagonal contour appears at 1/2 filling, similar to the FS of PdCoO2
determined by ARPES. A similar result can also be obtained for a model including hopping
term t2 rather than t3. From [39].

Arrhenius term is associated with phonon drag, which is electron-phonon scattering in which the decay

of the non-equilibrium phonon distribution is slow.

The out-of-plane residual resistivity is roughly 1000× greater than the in-plane residual resistivity.

This large resistivity anisotropy has frequently been used to treat electrical transport in PdCoO2 in a two

dimensional approximation. Given that the shape of the Fermi surface (as determined from QO) only

leads to an anisotropy of ≈ 250, this implies that scattering itself is anisotropic.

The exceptionally long low-temperature in-plane MFP raises the question of its cause. Comparable

MFPs have only been achieved after decades of effort. While the focus of this thesis is more so on the

consequences of this, we will comment briefly here on possible causes. There have been two studies

to look into possible causes [61, 65]. The residual scattering rate may be low because of crystalline

perfection or because scattering is suppressed for some reason. For example, for dilute impurities, the

collision probability is given by

Wkkk,kkk′ =
2π

h̄
δ (Ekkk−Ekkk′)nimpU2

kkk,kkk′ (1.23)

where nimp is the number of impurities per unit volume and the matrix element Ukkk,kkk′ is given by

Ukkk,kkk′ =
∣∣〈kkk |U |kkk′〉∣∣= ∫ drrr ψ

∗
kkk′(rrr)U(rrr)ψkkk(rrr) (1.24)

where ψkkk are the single-electron states and U(rrr) is the impurity potential. The question then is whether

Wkkk,kkk′ is low because nimp is low (crystalline perfection) or because Ukkk,kkk′ is low (suppression of scatter-

ing).

Usui et al. [65] argued that Ukkk,kkk′ is suppressed. While their focus was on PtCoO2, the same ideas
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Figure 1.7: Bulk resistivity of PdCoO2. Top: In-plane resistivity. Using the plasma frequency and
Fermi velocity values deduced from QO measurements, the residual resistivity value corre-
sponds to a MFP of 20 µm. The temperature dependent part of the resistivity is better fit to
an Arrhenius rather than a T 5 dependence, indicating electron-phonon drag. Bottom: c-axis
resistivity. The residual resistivity is > 1000× greater than the in-plane residual resistivity.
From [28].

apply to PdCoO2. They considered two tight-binding models for the Pt triangular-lattice planes: (1) a

single-orbital model that reproduces the experimentally-observed FS geometry, and (2) a microscopi-

cally realistic multi-orbital model. They found that the multi-orbital model leads to a suppression of

scattering, as shown in fig. 1.8.

Sunko et al. [61] sought to investigate the role of nimp. The authors introduced defects via elec-

tron irradiation and looked at the relationship between the increase in resistivity and introduced defect

concentration, as shown in fig. 1.9. From this relationship, they found that the introduced defects were

acting as strong scatterers. They used this fact to argue that suppression of scattering must not be sig-

nificant, and that the low resistivity in as-grown crystals must arise from a low impurity concentration.

Of course, an implicit assumption of this logic is that the behaviour of the defects in as-grown samples
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Figure 1.8: Theoretical calculation of matrix element based suppression of impurity scattering in
PtCoO2. (a) FS-averaged impurity scattering rate as a function of the parameter g ∝ U2

0 ,
where U0 is the strength of the impurity potential. The scattering rate in a microscopically
realistic multi-orbital model is lower than that for a single-orbital model. (b) The overlap
of wave functions on the Fermi surface relative to that at θ = 0 as a function of angle. The
overlap is strongly suppressed along certain directions for which the two wave functions
have different orbital character. This suppresses the impurity scattering matrix element and
therefore also reduces the averaged impurity scattering rate. From [65].

is sufficiently similar to that of defects introduced via electron irradiation.

1.3.3 Mesoscopic transport

Evidence for viscous effects

Moll et al. [43] reported evidence for viscous effects in PdCoO2 in 2016. Their experiment consisted of

using a focused ion beam (FIB) to create and then repeatedly narrow a channel, as shown in fig. 1.10 a. In

so doing, the authors measured resistivity as a function of width. By comparing to the theory developed

by Molenkamp and de Jong [42], they showed that their data was more consistent with γmc/γmr ≈ 10
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Figure 1.9: Electron irradiation induced resistivity increase in PtCoO2, PdCoO2, and PdCrO2.
Electron irradiation was used to introduce Frenkel pairs—the combination of a vacancy and
an interstitial atom created when an atom is displaced. The increase in resistivity (relative
to that prior to irradiation) versus concentration of introduced Frenkel pairs is similar to the
unitary scattering prediction, implying that Frenkel pairs act as strong scatterers. From [61].

than a purely ballistic calculation, as shown in fig. 1.10 b & c.

Moll et al. [43] did not provide a conclusive interpretation as to the source of MC scattering observed

in their experiment, but did discuss two possibilities. They commented that the rate of electron-electron

scattering was uncertain because of the Fermi surface faceting. They also commented that electron-

phonon scattering in the presence of phonon drag could be MC. Since then, both of these issues have

been explored theoretically.

Cook and Lucas [18] studied electron-electron collisions in polygonal Fermi surfaces. They found

that electron-electron scattering rates are modified relative to a circular Fermi surface. However, they

noted that, given that T � TF , electron-electron scattering was unlikely to be a significant factor in

the data of Moll et al. [43]. They further noted that the unconventional width dependence of the resis-

tivity only set in at the lowest temperatures. Based on these observations, they called into question a

hydrodynamic interpretation of the data.

Levchenko and Schmalian [36] and later Huang and Lucas [29] studied electron-phonon hydrody-

namics. We will defer a discussion of these results until later in this thesis.

Evidence for directional ballistic effects

The first evidence for “directional ballistic” effects came from the work of Bachmann et al. [4]. They

studied TEF in PdCoO2, an effect which had previously been observed in GaAs and graphene. The setup

for such an experiment is shown in fig. 1.11 a. Electrons are injected through a narrow nozzle attached
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Figure 1.10: Evidence for viscous effects from mesoscopic transport in PdCoO2. (a) PdCoO2
channel fabricated by FIB which was successively thinned in order to measure the width-
dependence of the resistivity. Shown at an intermediate stage in the process in which a
30 µm channel has been defined from a 60 µm channel. (b), (c) Ratio of resistivity ρ to bulk
resistivity ρ0 as a function of the ratio of the MR MFP lMR to the channel width W . The
full dataset is shown in (c), while (b) shows a more detailed view of the data at low values
of lMR/W . The blue line is the ballistic prediction. The red line is a calculation for MC
scattering in excess of MR scattering, and provides a closer match to the data. From [43].

to a current source. An out-of-plane magnetic field induces in-plane cyclotron motion with cyclotron

radius rc. A receiver nozzle is placed a distance L from the injection nozzle and is connected to a

voltmeter. When L = n2rc where n is an integer, electrons are focused onto the second nozzle leading

to a voltage peak. In this study, the authors performed a TEF experiment for two different orientations

of the FS relative to the nozzles. As shown in fig. 1.11 b & c, one orientation results in higher focussing

peaks than the other.

Recent measurements by McGuinness et al. [41], shown in fig. 1.12, found new directional ballistic

effects. They studied electrical transport in square junctions of PdCoO2 and PtCoO2, an experiment

which had previously been done in GaAs and graphene. The authors produced two square junctions

with different orientations relative to the FS and studied electrical properties as a function of square size

w. At high temperature, when the MFP is smaller than w, the measurements are independent of w. At

low temperature, when the MFP is greater than w, the measurements depend strongly on w. For one FS
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Figure 1.11: Anisotropic transverse electron focussing in PdCoO2. (a) Schematic of a TEF ex-
periment and depiction of electron trajectories for a circular FS. (b) Depiction of electron
trajectories for two orientations of the Fermi surface relative to the injection nozzle. (c)
Voltage as a function of magnetic field for nozzle separation lengths of 2 µm and 4 µm
showing the expected peak structure. Measured peaks are larger on the left than on the right
as a consequence of FS orientation (top), as confirmed by ballistic Monte Carlo simulations
(bottom). From [4].
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orientation, the results are independent of which “bend” is used. In the other FS orientation, the results

vary strongly between the two bends.

Figure 1.12: Anisotropic electrical transport in square junctions of PtCoO2. Square junctions were
fabricated for two different FS orientations, and in each junction the I−V characteristic of
two “bends” was measured. In all cases, V/I becomes width dependent at low-temperature
upon entering the ballistic regime. For the high-symmetry junction (a), V/I is approxi-
mately equal for both bends (b). For the low-symmetry junction (c), V/I becomes highly
anisotropic in the ballistic regime (d). From [41].

1.4 History of non-local electrodynamics

1.4.1 Classical skin effect

The Classical Skin Effect (CSE) corresponds to the standard textbook result for the propagation of an

electromagnetic wave in a good conductor. Maxwell’s equations lead to the following equation for the

electric field: (
∇

2− ∂ 2

∂ t2

)
EEE = µ0

∂

∂ t
JJJ. (1.25)
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The CSE occurs if we assume the local version of Ohm’s law, eq. (1.1). In this case, eq. (1.25) has the

general solution

EEE = ∑
i

EEE0iei(qqqi·rrr−ωt) (1.26)

where the qi are given by

q± =±
√

ω2

c2 + iµ0ωσ . (1.27)

In a semi-infinite sample only the exponentially-decaying solution can exist and so EEE0− = 0. The

simplest model of frequency-dependent conductivity is the Drude model, as given by

σ(ω) = ε0ω
2
p

1
γ− iω

(1.28)

where ωp is the plasma frequency and γ is the scattering rate. This has two limiting cases depending on

how frequency compares to the scattering rate:

σ(ω)

ε0ω2
p
=


1
γ

γ � ω (Hagen-Rubens)

− 1
iω

γ � ω (relaxation).

(1.29)

In fact, the Drude model arises from the Boltzmann equation in the RTA under the assumption that the

electronic distribution is spatially uniform, as will be discussed in section 2.2.6.

Finally, there is a third regime in the electromagnetic behaviour, the transmission regime, which

is not manifested in the conductivity. The transmission regime occurs when the qi are predominantly

real, meaning that the electromagnetic fields decay negligibly as they propagate into the sample. From

eqs. (1.27) and (1.28), the condition for the transmission regime in the context of the Drude model is

ω >


ωp γ � ω

ω2
p

γ
γ � ω.

(1.30)

1.4.2 Anomalous skin effect

Discovery

In the 1940s, Pippard [47] made temperature-dependent measurements of the DC conductivity σ and

AC microwave-frequency surface conductance Σ of the metals Ag, Au, Sn, and Hg. Pippard’s results

are shown in fig. 1.13. Pippard found that for low σ (high temperature), Σ ∼
√

σ , as expected from

the CSE. At high σ (low temperature), Pippard observed that Σ became independent of σ . Pippard

proposed that this anomalous behaviour, now known as the Anomalous Skin Effect (ASE), was a result

of the MFP becoming longer than the skin depth δ .
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Pippard proposed a phenomenological picture for this phenomenon, which is known as Pippard’s

ineffectiveness concept. The logic is as follows: Only those electrons which undergo a collision within

the skin layer are effective in the conduction process. The smaller the angle at which an electron is

propagating relative to the sample’s surface, the more likely it is to undergo a collision within the skin

layer. If we consider only a fraction βδ/λ of electrons to be effective where β is a dimensionless

coefficient, then we may define an effective conductivity

σ
eff = β

δ

λ
σ (1.31)

The classical skin depth is given by

δ =

√
2

µ0ωσ
. (1.32)

If we substitute σ eff from eq. (1.31) for σ in eq. (1.32) and solve for δ , we obtain

δ =

(
2

β µ0ω

λ

σ

)1/3

. (1.33)

Using the Drude model (eq. (1.28)) and that λ = vF/γ , eq. (1.33) can be re-written as

δ =

(
2

β µ0ω

vF

ε0ω2
p

)1/3

. (1.34)

For a metal, typically the temperature dependence of σ comes from that of γ , while ωp and vF are

temperature independent. Therefore, the skin depth in eq. (1.34) is temperature independent. This

explains Pippard’s observation that Σ becomes independent of σ in the ASE: Σ (which depends on δ )

becomes temperature independent regardless of temperature dependence in σ .

Theory for an isotropic three-dimensional Fermi surface

Soon after the publication of Pippard’s results, Reuter and Sondheimer [51] published a kinetic model

which has since served as the standard theory of the ASE. Here we will present the results of their work,

though we will change the language and notation from that of the original work to better match the rest

of this thesis.

In section 1.1, we stated that the most general form of Ohm’s law is given by eq. (1.2):

Ji(rrr) =
∫

drrr′σi j(rrr,rrr′)E j(rrr′). (1.35)

If we assume translational invariance,2 the conductivity can only depend on the relative coordinate rrr−rrr′

and eq. (1.35) becomes

Ji(rrr) =
∫

drrr′σi j(rrr− rrr′)E j(rrr′). (1.36)

2The crystalline lattice breaks translational symmetry. However, the assumption of translational invariance is approxi-
mately valid at wavelengths large compared to the lattice spacing. All phenomena discussed in this thesis meet this criterion.
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Figure 1.13: Discovery of the anomalous skin effect. Microwave surface conductance Σ versus
square root of the DC conductivity σ at the same temperature. In the CSE, Σ ∼

√
σ , as

observed for low σ . In the ASE, Σ is independent of σ , as observed for high σ . ∇ Sn, O
Hg, o Ag, ∆ Au. From [47].

Then, by the convolution theorem, eq. (1.36) can be expressed as

Ji(qqq) = σi j(qqq)E j(qqq) (1.37)

where the wavevector qqq is the Fourier conjugate of rrr− rrr′.3

For a spherical FS and within the RTA, conductivity is given by

σ(q,ω) = ε0Ω
2
p

1
γ− iω

Q
(

vFq
γ− iω

)
(1.38)

where

Q(s) =
1

2s3 [(s
2 +1)arctan(s)− s]. (1.39)

The function Q(s) has the limiting behaviour

Q(s) =


1
3

s� 1

π

4s
s� 1

(1.40)

3Re-expressing eq. (1.36) as eq. (1.37) is only strictly valid when electrons scatter specularly at the sample’s surface,
in which case the integration in eq. (1.36) can be taken over all space. For diffuse scattering of electrons at the sample’s
surface, the integration is limited to the spatial domain of the sample. Nonetheless, even for diffuse scattering, experimentally-
measurable quantities can be related to the wavevector dependent conductivity σi j(qqq).
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so that, in the parameter space of {qqq,ω} there are three limiting cases:

σ(q,ω)

ε0ω2
p

=



1
γ

γ �{ω,vFq}

− 1
iω

ω �{γ,vFq}

3π

4vFq
vFq�{γ,ω}.

(1.41)

For specular scattering, the surface impedance is given by

Z =
∫

∞

0
dqA (q,ω) (1.42)

with

A (q,ω) =
1

iµ0ωσ(q,ω)−ω2/c2−q2 . (1.43)

We see that Z(ω) is a q-integrated function of σ(q,ω). In a sense, there is a feedback process involved

in determining Z(ω). The conductivity determines the q values which contribute most to the integral,

but the q value influences the conductivity.

Casimir and Ubbink [15] published a “phase diagram” which summarizes the resulting behaviour

of the surface impedance in the phase space of {γ,ω} (fig. 1.14) as well as corresponding cartoon

pictures for the physical interpretation of each regime (fig. 1.15). In the CSE, an electron undergoes

many collisions within the skin layer. In the ASE, an electron propagates ballistically within the skin

layer. In both the anomalous reflection and relaxation regimes, the shortest length scale is the distance

an electron travels within a period of oscillation of the electromagnetic fields. The difference between

these two regimes is how the MFP compares to the skin depth, which here is approximately the London

penetration depth λL ≡ c/ωp. To leading order, the surface impedance has the following asymptotic

behaviours:

Z(ω) =


µ0λLγ1/2ω1/2e−iπ/4 CSE

µ0c1

(
4λ 2

L vF

3π

)1/3

ω2/3e−iπ/3 ASE

µ0λLωe−iπ/2 anomalous reflection & relaxation regimes

(1.44)

where c1 depends on whether the scattering of electrons from the sample’s boundaries is specular or

diffuse:

c1 =


4

3
√

3
specular

√
3

2
diffuse.

(1.45)

In fact, the surface resistance R=Re(Z) differs between the anomalous reflection and relaxation regimes;

in the former, it becomes highly sensitive to the nature of the boundary scattering. However, this differ-
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ence only appears to sub-leading order in the asymptotic expansion.

Figure 1.14: Diagram of skin effect regimes. Log-log plot of scattering time τ (inverse of scatter-
ing rate γ) versus frequency ω . (A) CSE, (B) relaxation regime, (C) transmission regime,
(D) ASE, and (E) anomalous reflection regime. λp in the figure corresponds to our λL. v in
the figure corresponds to our vF . From [15].

Work on anisotropic Fermi surfaces

Sondheimer [57] went on to generalize the work of Reuter and Sondheimer [51] to spheroidal Fermi

surfaces, as would arise with an anisotropic free-electron dispersion

E =
h̄2

2ma

(
k2

x + k2
y
)
+

h̄2

2mc
k2

z . (1.46)

In this case, Sondheimer found that the asymptotic frequency dependence and phase of the surface

impedance in the anomalous regime remained the same. Around the same time, Pippard [48] developed

a phenomenological theory of the anomalous skin effect for an arbitrarily shaped Fermi surface. Pippard

assumed that Z ∼ ω2/3 was always true, and used the ineffectiveness concept to connect the prefactor

to the curvature of the Fermi surface in a plane dependent on the orientation of the sample face being

measured. Pippard went on to apply this theory to perform the first ever experimental determination of a

FS, by measuring the ASE in Cu samples that had been cut in a series of directions relative to the crystal

structure [49], as shown in figs. 1.16 and 1.17.
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Figure 1.15: Electron trajectories in the skin layer in four skin effect regimes. Labels A, B, D and
E refer to those in fig. 1.14. Horizontal arrows represent electromagnetic waves incident on
the metal’s surface. Dashed vertical line represents the skin layer. Zig-zag lines represent
an electron undergoing collisions. Wavy lines represent oscillatory electron motion due to
alternating fields. From [15].

Figure 1.16: Anomalous skin effect data used to determine the Fermi surface of Cu. I
−1/3

x repre-
sents a Fermi surface integral proportional to the surface resistance. θ represents the angle
of the normal to the sample’s surface. In (a) it quantifies rotation about the (110) axis while
in (b) it quantifies rotation about the (100) axis. In both cases, the (100) direction corre-
sponds to θ = 0◦. Circles are measurements and the line is a fit to a model of the Fermi
surface geometry. From [49].
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Figure 1.17: Fermi surface of Cu as determined from anomalous skin effect measurements. Based
on the data from fig. 1.16. This was the first ever experimental determination of a Fermi
surface. It revealed the “necks” where the Fermi surface intersects the hexagonal faces
of the Brillouin zone boundaries, thus demonstrating the insufficiency of the free-electron
model. From [49].

1.4.3 Viscous skin effect

Gurzhi [26] considered the AC electrodynamics of a charged, viscous fluid, as described by

∂u
∂ t

+ν
∂ 2u
∂y2 +

e
m

Ex = γu, (1.47)

where uuu is the flow velocity, leading to the conductivity

σ(q,ω) = ε0ω
2
p

1
γ− iω +νq2 . (1.48)

This has the limiting behaviour

σ(q,ω)

ε0ω2
p

=



1
γ

γ �{ω,νq2}

− 1
iω

ω �{γ,νq2}

1
νq2 νq2�{γ,ω}.

(1.49)

As a result, the surface impedance has a regime in which

Z(ω) ∝ µ0

√
λ 2

L ν

γ
ω

3/4e−i3π/8 (1.50)
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which we call the Viscous Skin Effect (VSE). More recently, there have been several works consid-

ering essentially the same model in the case that ν arises from strong electron-electron interactions as

described by Fermi liquid theory [22, 66, 67].

1.5 Outlook
The various instances of the size and skin effects introduced above, as they occur for an isotropic, free-

electron, three-dimensional metal, are summarized in table 1.2.

The theory of the size effect for a single MFP was developed by Fuchs [24], Sondheimer [57] and

for separate MR and MC mean free paths by [42]. However, in all cases, an isotropic Fermi surface

was assumed. In chapter 2, we address the question of how to calculate the resistivity of a finite-size

conductor with arbitrary Fermi surface. We apply these calculations to interpret our collaborators’

measurements of PdCoO2.

A kinetic theory of the anomalous skin effect was developed by Reuter and Sondheimer [51] for

spherical Fermi surfaces, and later generalized to spheroidal Fermi surfaces by Sondheimer [57]. Pip-

pard [47] developed an approximate theory for arbitrary Fermi surfaces. Meanwhile, a hydrodynamic

theory was considered by Gurzhi [26] and later Forcella et al. [22]. In chapter 3, we develop the the-

ory of the skin effect in the presence of both MR and MC scattering and for arbitrary Fermi surface

geometry.

There exists debate as to the presence of MC scattering in PdCoO2. While chapter 3 demonstrates

that AC measurements of non-local electrodynamics can help differentiate these effects, there have

never been AC spectroscopic measurements of non-local electrodynamics nor any AC measurements

of non-local electrodynamics outside of the elemental metals. In chapter 4, we describe spectroscopic

measurements of the skin effect in PdCoO2 and interpret them in the context of the theory developed in

chapter 3. Finally, in chapter 5 we summarize what has been learnt in this work and outline a number of

future directions.

Regime Resistivity ratio ρ/ρ0 Surface impedance Z

Local/classical 1 ∝
√

γMRωe−iπ/4

Viscous ∝ νλmr/W 2 ∝
√

νλmrω
3/4e−i3π/8

Ballistic/anomalous ∝ (λmr/W )/ log(λmr/W ) ∝ ω2/3e−iπ/3

Table 1.2: Summary of key size and skin effect regimes for an isotropic, free-electron, three-
dimensional metal. In the middle column, ρ0 is the bulk resistivity and W is the channel
width. In the right column, ω is the angular frequency of the electromagnetic fields. ν is the
viscosity and λmr is the momentum-relaxing mean free path.
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Chapter 2

The size effect in PdCoO2

2.1 Overview
In this chapter, we investigate the effect of Fermi surface anisotropy on the electrical conductivity of

finite-size crystalline solids. The experimental results presented herein are mainly the work of Maja

Bachmann while completing a doctorate under the supervision of Andrew Mackenzie and Philip Moll

at the Max Planck Institute for Chemical Physics of Solids. The calculations are the work of the author.

In a bulk (i.e., infinite) crystalline solid, DC electrical conduction is described by a local relation

Ji = σi jE j (2.1)

where the symmetry of the local conductivity tensor σi j is dictated by the symmetries of the crystalline

lattice. In principle, any finite-size solid breaks the symmetries of the crystalline lattice; in practice, this

usually has no observable effect. For this effect to be observable, two ingredients are needed:

1. The electron MFP λ must be comparable to or greater than the minimum physical dimension of

the solid W : λ≥W . When this is the case, the scattering of electrons from the solid’s boundaries

will have an appreciable effect on its conductivity.

2. The Fermi surface must be sufficiently anisotropic.

Existing theoretical treatments of the size effect make the assumption of free-particle dispersion

Ekkk =
h̄2k2

2m
(2.2)

either in 3D [24] or 2D [8], leading to an isotropic FS. Because the two materials in which the ballistic

regime has been most widely studied—GaAs and graphene—have nearly isotropic Fermi surfaces, the-

ory based on this assumption has been sufficient to date. In this chapter, we will see that the resistivity

of narrow channels of PdCoO2 develops anisotropy that is symmetry-forbidden in the context of the

local conductivity tensor. Calculating this effect requires expanding on theoretical treatments of the size

effect to include arbitrary Fermi surfaces, which is the main focus of this chapter.
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2.2 Kinetic theory of electronic transport phenomena in solids, part I
The results in this chapter and the next are based in the kinetic theory of transport phenomena in solids.

In order to introduce the relevant background information only as needed, we will split it between the

present section and part II in the next chapter. The material in the remainder of this chapter will rely

on the results of the present section (part I). The material in the next chapter will build on both the

information of part I and part II.

2.2.1 Electrons in a periodic potential

In a perfect crystal, electrons are subject to a potential with the periodicity of the Bravais lattice. The

single-electron Hamiltonian in this case is

Ĥ =− h̄2

2m
∇

2 +U(rrr) (2.3)

where the lattice potential U satisfies

U(rrr+RRR) =U(rrr) (2.4)

for all Bravais lattice vectors RRR. Bloch’s theorem states that the eigenstates of Ĥ are given by

φnkkk(rrr) = eikkk·rrrunkkk(rrr) (2.5)

with corresponding eigenvalues Enkkk and where

unkkk(rrr+RRR) = unkkk(rrr) (2.6)

for all Bravais lattice vectors RRR. The quantum number kkk is known as crystal momentum. While it acts

analogously to momentum in some ways, h̄kkk 6= ppp. Bloch states are not eigenstates of the momentum

operator p̂pp = (h̄/i)∇:

p̂ppφnkkk = h̄kkkφnkkk + eikkk·rrr h̄
i
∇unkkk(rrr). (2.7)

However, the velocity operator v̂vv = (h̄/mi)∇ for a Bloch state has a non-zero expectation value. We will

refer to this quantity simply as the Bloch state’s velocity:

vvvnkkk ≡ 〈φnkkk| v̂vv |φnkkk〉=
1
h̄

∇kkkEnkkk (2.8)

where ∇kkk represents the vector differential operator with respect to crystal momentum kkk.1 From here on

we shall suppress the band index n.

1We use the nabla symbol ∇ without subscript to represent the vector differential operator with respect to real space
coordinate rrr, as per convention.
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2.2.2 Semiclassical dynamics

In the semiclassical model of electron dynamics, the periodic potential is treated quantum mechanically

(as per section 2.2.1) while the effect of external fields is treated classically. Electrons are treated as wave

packets of Bloch states. If the spread ∆k of the wave packet is small compared to the Brillouin zone,

then eq. (2.8) corresponds to taking the wave packet’s group velocity ∇kkkω . This implies a real-space

spread ∆r large compared with the lattice constants, which restricts the semiclassical model to external

fields with wavelength much greater than the lattice constants. Electron dynamics in the absence of

collisions are then described by

ṙrr = vvvkkk =
1
h̄

∇kkkEkkk (2.9)

and

h̄k̇kk =−e
[

EEE(rrr, t)+
1
c

vvvkkk×HHH(rrr, t)
]
. (2.10)

2.2.3 Boltzmann equation

Kinetic theory is based on a statistical description of the distribution of particles in single-particle phase

space. The single-particle distribution function fkkk(rrr, t) is defined such that fkkk(rrr, t)drrr dkkk/(2π h̄)3 is the

mean number of particles at time t in the phase-space element drrr dkkk. (Note that we will use the common

notational convention of indicating a function A of kkk as A(kkk) = Akkk.) The Boltzmann equation tracks how

the single-particle distribution function evolves with time, and is given by:(
∂

∂ t
+ D̂

)
fkkk(rrr, t) = C [ fkkk(rrr, t)]. (2.11)

The streaming operator D̂ is given by

D̂ = ṙrr ·∇rrr + k̇kk ·∇kkk (2.12)

with ṙrr and k̇kk given by eqs. (2.9) and (2.10), and describes how fkkk(rrr, t) changes as particles’ phase

space coordinates evolve continuously under semiclassical motion. The collision integral C describes

how fkkk(rrr, t) is modified when scattering events lead to a discontinuous change in particles’ phase space

coordinates. In other words, the left hand side tracks the semiclassical dynamics of wave packets of

Bloch states—i.e., the eigenstates of the Hamiltonian for the interaction of electrons with stationary

ions. On the right hand side, the collision integral takes into account the effect of electron-impurity,

electron-phonon, and electron-electron interactions.

We are interested in describing the linear response to weak perturbations. Therefore, we expand the

distribution function about its equilibrium value f0:

fkkk(rrr, t) = f0(Ekkk)+δ fkkk(rrr, t) (2.13)
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where f0 is the Fermi-Dirac distribution

f0 =
1

exp[(Ekkk−µ)/kBT (rrr)]+1
. (2.14)

Linear response is then found by retaining only the terms to linear order in δ fkkk in the Boltzmann equa-

tion. It is often convenient to write δ fkkk as

δ fkkk = wkkkψkkk (2.15)

where

wkkk = f0(1− f0) = kBT
(
− ∂ f0

∂Ekkk

)
. (2.16)

The Boltzmann equation can be applied to describe a system’s response to perturbations by an

electric field, a magnetic field, a temperature gradient, or combinations thereof. We now specialize to

the case of only an applied electric field, which is relevant to the work in this thesis. To linear order, we

have (
∂

∂ t
+ D̂

)
fkkk(rrr, t) =

(
∂

∂ t
+ vvvkkk ·∇rrr

)
δ fkkk(rrr, t)+ eEEE(rrr, t) · vvvkkk

(
− ∂ f0

∂Ekkk

)
. (2.17)

2.2.4 Importance of the Fermi surface

It is often the case that we are interested in taking the sum over all states of some quantity A which is a

function of crystal momentum kkk. It is well-known that in the thermodynamic limit, this can be written

as an integral:
1
V ∑

kkk,σ
Akkk =

2
(2π)d

∫
dkkk Akkk. (2.18)

A particularly useful way of decomposing the integral over kkk is as an integral over energy E and surfaces

of constant energy S (E ):

2
(2π)d

∫
dkkk Akkk =

2
(2π)d

∫
dE
∫

S (E )
dSAkkk (2.19)

We will frequently encounter functions of the type

Akkk =

(
− ∂ f0

∂Ekkk

)
akkk. (2.20)

We may then make use of the property of the Fermi-Dirac distribution that

lim
T→0
− ∂ f0

∂Ekkk
→ δ (Ekkk−EF) (2.21)

so that
2

(2π)d

∫
dkkk Akkk =

2
(2π)d

∫
SF

dS
h̄vkkk

akkk (2.22)
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where SF is the Fermi surface, defined by S (Ekkk = EF) where EF is the Fermi energy. The limit in

eq. (2.21) is valid whenever T � TF where TF ≡ EF/kB. In metals, the high density of electrons means

that T � TF over all temperatures typically accessible in a laboratory. This illustrates the centrality of

the Fermi surface in determining the transport properties of metals.

2.2.5 The relaxation time approximation

The collision integral tracks how scattering processes modify the distribution function for the state kkk.

We will defer a more in-depth treatment of its properties until chapter 3; for now, we will describe it in

broad strokes. Its exact form depends on the type of scattering process being considered. In general, the

integrand of the collision integral depends on

1. the electronic distribution function for state kkk,

2. the distribution functions for the other states involved in the scattering process, and

3. the scattering probabilities for scattering an electron into and out of state kkk.

The scattering probabilities for a given process are commonly determined via Fermi’s golden rule. The

integral is over the quantum numbers specifying the other states involved in the scattering processes, so

that one arrives at a description of the net effect of all scattering on the distribution function for state kkk.

In the presence of scattering, the Boltzmann equation is an integro-differential equation for fkkk which

is in general difficult to solve. To overcome this, a common approach is to use the RTA to make estimates

of transport properties. The RTA corresponds to assuming that the collision integral C is given by

C =−1
τ

δ fkkk. (2.23)

Once this phenomenological assumption is made, the Boltzmann equation can then be solved more

straightforwardly. Physically, eq. (2.23) means that collisions act to decay the entire non-equilibrium

distribution function δ fkkk at a rate 1/τ . An example of a scenario for which the RTA is strictly justified

is the scattering of electrons from a dilute ensemble of randomly-distributed, point-like impurities.

2.2.6 The Drude model

Before moving on, it is instructive to see how the Drude model can be derived from the Boltzmann

equation. The Drude model arises under two assumptions: (1) the RTA, and (2) the assumption that the

distribution function is uniform, i.e., independent of rrr, so that ∇rrrδ fkkk = 0. Using ψkkk(t) = ψkkk(ω)e−iωt ,

the Boltzmann equation can be solved straightforwardly as

ψkkk(ω) =− e
kBT

EEE(ω) · vvv 1
1/τ− iω

. (2.24)

Electrical current is given by

JJJ =−2e
1

(2π)d

∫
dkkk vvvkkkδ fkkk (2.25)
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and using the local version of Ohm’s law, we find

σi j(ω) = ε0ω
2
p,i j

1
1/τ− iω

(2.26)

where

ε0ω
2
p,i j ≡

2e2

(2π)d

∫
dkkk
(
− ∂ f0

∂Ekkk

)
vkkkivkkk j. (2.27)

2.3 Theory of the size effect for a metal of arbitrary dispersion
In this section, we develop the theory of the size effect for an arbitrary three-dimensional dispersion. We

then show that this general treatment reproduces the results of previous treatments for isotropic Fermi

surfaces [8, 24]. Next, we apply the result to the case of PdCoO2.

We consider a channel of width W extending from y = 0 to y = W . The distribution function then

has the form

fkkk(y) = f0 +δ fkkk(y) (2.28)

where, as before, f0 is the equilibrium distribution function and δ fkkk(y) represents a small deviation from

equilibrium. The linearized Boltzmann equation in the presence of an electric field EEE and in the RTA is

given by

vkkky
∂δ fkkk(y)

∂y
+

e
h̄

EEE · vvvkkk

(
− ∂ f0

∂Ekkk

)
=−1

τ
δ fkkk(y). (2.29)

We assume diffuse scattering at the boundaries of the channel. Using δ f+(−)
kkk to denote the non-

equilibrium distribution function of electrons with vkkky > 0 (vkkky < 0), this imposes the conditions

δ f+kkk (0) = 0

δ f−kkk (W ) = 0.
(2.30)

This has the solution

δ fkkk(y) =
eτ

h̄
EEE · vvvkkk

(
−∂ f0

∂Ekkk

)
gkkk(y) (2.31)

where

gkkk(y) =


1− exp

(
− y

τvkkky

)
vkkky > 0,

1− exp
(

W − y
τvkkky

)
vkkky < 0.

(2.32)

We define a spatially-dependent conductivity tensor by

σi j ≡
Ji(y)
E j

. (2.33)
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Using eqs. (2.22) and (2.25), we get

σi j(y) =
e2τ

4π3

∫
SF

dS
vkkkivkkk j

vkkk
gkkk(y). (2.34)

Next we obtain a spatially-averaged conductivity tensor as

σ̄i j ≡
1

W

∫ W

0
dyσi j(y)

=
e2τ

4π3

∫
SF

dS
vkkkivkkk j

vkkk
ḡkkk(y)

(2.35)

where

ḡkkk = 1−
τ|vkkky|

W

[
1− exp

(
− W

τ|vkkky|

)]
. (2.36)

The bulk conductivity tensor σbulk
i j in eq. (2.26) can be obtained from eq. (2.35) by setting ḡkkk = 1 .

Resistivity is found by inverting the spatially-averaged conductivity tensor:

ρi j = σ̄
−1
i j . (2.37)

For a Fermi surface SF parametrized by the Fermi vector kkkF(g,h) with g∈ (g1,g2) and h∈ (h1,h2),

we define a vector

nnn(g,h) =
∂kkkF(g,h)

∂g
× ∂kkkF(g,h)

∂h
(2.38)

where n(g,h) = |nnn(g,h)|. Then the integral over the Fermi surface is given by

∫
SF

dS =
∫ g2

g1

dg
∫ h2

h1

dhn(g,h). (2.39)

The unit vector normal to the Fermi surface—and thus parallel to the Fermi velocity—is given by

n̂nn(g,h) =
nnn(g,h)
n(g,h)

. (2.40)

2.3.1 Check against previous results

Spherical Fermi surface

For a free-particle dispersion (eq. (2.2)) in 3D, the Fermi surface is parameterized by

kkkF(θ ,φ) = kF [sinθ cosφ iii+ sinθ sinφ jjj+ cosφ kkk] (2.41)

and the Fermi velocity can be found from eqs. (2.2) and (2.8) as

vvvF(θ ,φ) = vF [sinθ cosφ iii+ sinθ sinφ jjj+ cosθ kkk] (2.42)
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where mvF = h̄kF . Inserting eqs. (2.41) and (2.42) into eqs. (2.35) and (2.36) reproduces exactly the

results of Fuchs [24], as in eqs. (1.14) and (1.15).

Circular Fermi surface

For a free-particle dispersion in 2D, we have

kkkF(φ) = kF [cosφ iii+ sinφ jjj] (2.43)

and

vvvF(φ) = vF [cosφ iii+ sinφ jjj] (2.44)

which, when combined with eqs. (2.35) and (2.36), produce the results of Beenakker and van Houten

[8], as in eq. (1.16).

2.4 PdCoO2

2.4.1 Fermi surface parameterization

In a two-dimensional approximation, the Fermi surface of PdCoO2 can be parametrized as

kkkF(φ ,φ0,kz) = ρ(φ −φ0−π/2)[cosφ iii+ sinφ jjj]+ kz kkk (2.45)

with

ρ(φ) = ∑
µ

kµ cos(µφ) (2.46)

where the kµ are listed in table 2.1. kz is the component of kkkF along the c-axis of the crystal structure

(cf. fig. 1.3), with kz ∈ (−π/d,π/d) and d = 17.743/3 Å. φ is the angle in the plane perpendicular to

the c-axis with φ ∈ (0,2π), while φ0 parameterizes the channel orientation by controlling the orientation

of the FS relative to the coordinate system.

Here we assume that the Fermi velocity has a constant magnitude vF :

vvvkkk = vF n̂nnkkk (2.47)

for kkk on the FS SF , as justified by electronic structure calculations [44] and ARPES measurements [60].

We use vF = 7.5×105 m/s.

µ kµ [Å−1]

0 0.9518
6 0.0444
12 0.0048

Table 2.1: Fermi surface harmonics of PdCoO2 in two-dimensional parameterization from [60].
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2.4.2 Results

Using only the shape of the Fermi surface, we can calculate ρi j/ρbulk
xx , the ratio of the resistivity ρi j of a

finite width channel to the longitudinal resistivity ρbulk
xx of an infinitely wide channel. (Here the subscript

x refers to any direction in the plane perpendicular to the c-axis.) This depends only on W/λ , the ratio

of the channel width W to the bulk MFP λ = vF/τ . The calculated angle-dependence of the longitudinal

and transverse resistivities is shown in fig. 2.1 for two values of W/λ .

Figure 2.1: Calculated angle dependent resistivity of PdCoO2 at two ratios of channel width W to
MFP λ . Resistivity ρ is normalized by the bulk value ρbulk. Angles are defined in fig. 2.2 a.
From [5].

2.5 Experimental results

2.5.1 Longitudinal resistivity

A FIB was used to create multiple channels of differing orientations in series in the same sample of

PdCoO2, as shown in fig. 2.2a. Based on the symmetry of the crystalline lattice, the full unique angular

range corresponds to a range of 30°. This range was spanned by four equally-spaced channel angles.

The temperature-dependent apparent MFP λ apparent, as inferred from resistivity measurements, be-

comes width dependent at low temperature, as shown in fig. 2.2b. This is consistent with the onset of

the size effect at low temperature as the bulk MFP λ bulk becomes greater than W . In other words, the

channels are in a diffusive (local) regime at high temperature and a ballistic regime at low temperature.

As the channels enter the ballistic regime, anisotropy develops in the resistivity, as shown in fig. 2.2c.

While the properties of the Fermi surface alone determine how ρ varies with W/λ , the experimental

data is for ρ(T ) at fixed W . To make a direct comparison, it is necessary to determine λ (T ). To do so,

we fit the temperature-dependent resistivity of a 155 µm channel, as reported in [44], which we assume

to be in the bulk limit. The data and fit are shown in fig. 2.3. We fit to a phenomenological temperature
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dependence

ρ
bulk
xx (T ) = ρα +

ρβ

eT0/T −1
. (2.48)

The second term, which has a Bose-Einstein-like form, was motivated by the observed ρbulk
xx ∼e−T/T0

behaviour at low temperature and ρbulk
xx ∼T behavior at high temperature. We then determined τ(T )

from the fit to ρbulk
xx (T ). Having done so, it was then possible to perform the calculations shown in

fig. 2.2d, showing a good match to the data in fig. 2.2c.

Figure 2.2: Anisotropic in-plane resistivity in narrow channels of PdCoO2. (a) Scanning electron
microscope image of FIB microstructured crystal comprising four channel orientations. The
real-space orientation of the FS relative to the crystal is shown. (b) Temperature-dependent
MFP for the 30◦ orientation at several channel thicknesses, inferred from the measured re-
sistivity. The MFP becomes width dependent at low temperature, indicating the onset of
the ballistic regime (c) Measured temperature-dependent longitudinal resistivities of the four
channels. The resistivities are equal in the diffusive regime but become anisotropic in the
ballistic regime. (d) Results from kinetic calculation. From [5].

It is instructive to compare the FS of PdCoO2 with an isotropic FS. As shown in fig. 2.4a, the

difference in FS geometry alone does not appear to be drastic. However, the FS geometry determines the

distribution of velocity directions, as the Fermi velocity is perpendicular to the Fermi surface. As shown

in fig. 2.4b, the distribution of velocity directions in PdCoO2 is strongly peaked along six directions,
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Figure 2.3: Phenomenological fit to temperature-dependent bulk resistivity. This fit was used to
obtain a temperature-dependent bulk MFP to use as an input to the kinetic calculation. From
[5].

corresponding to the flat portions of the FS.

Figure 2.4: Effect of Fermi surface geometry on distribution of Fermi velocity directions. (a)
The FS of PdCoO2 (blue) compared with a circular FS (red). The relative difference in the
magnitude of the Fermi momentum at a given angle is never large. (b) Angular distribution of
Fermi velocity directions for the two FSs for equal normalization. Each facet of the PdCoO2
Fermi surface results in a large number of states with the same Fermi velocity direction.
From [5].

Figure 2.5 illustrates how a velocity direction distribution peaked along six direction plays out in

narrow channels of different orientations. For a circular FS, collisions at the boundary limit the MFP
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of essentially all of the electrons, in a manner which is dependent on the angle that they make with

the channel. The orientation of the channel makes no difference. For a hexagonal FS, there exists an

orientation in which a third of electrons make no collisions with the sample’s boundaries and are thus

unaffected by variations in the channel’s width.

Figure 2.5: Ballistic electron propagation for a circular versus hexagonal Fermi surface. (a) For
a circular FS, the Fermi velocity vF and Fermi momentum kF are always parallel. (b) For a
hexagonal FS they are not, and there are only three possible Fermi velocity directions. (c)
The resistance of a channel does not depend on its orientation for a circular FS. (d) For a
hexagonal FS, a channel aligned parallel to a direction of electron propagation will show
lower resistance than a channel aligned perpendicular to a direction of electron propagation.
From [5].

2.5.2 Transverse resistivity

When a channel is oriented along a low-symmetry direction, there will be an imbalance in the number

of electrons propagating toward the two boundaries of the channel, as illustrated in fig. 2.6a. While for
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a bulk sample, symmetry dictates that the transverse resistivity must be zero, in a finite sample, one

might expect that it would be possible for a transverse voltage to develop in this situation. One further

expects that channels tilted by equal but opposite angles away from a high-symmetry direction would

yield equal but opposite transverse voltages. To test these ideas, two channels were fabricated at ±3°,

as shown in fig. 2.6b.

Figure 2.6c shows the results of these measurements. At low temperature, when the MFP becomes

comparable to the channel width, a transverse voltage develops. As expected, the voltages for the two

opposite angles are equal in magnitude and opposite in sign. As shown in fig. 2.6d, calculations capture

the temperature dependence of the data well.

One complication arises in the comparison of data and calculations here. The measurements of

transverse resistivity are inevitably contaminated by a longitudinal contribution as a result of imperfect

contact alignment. In subtracting this contribution from the measurement, it is assumed that the trans-

verse signal is zero at high temperature. In order to facilitate a direct comparison between data and

calculations, the calculations were given the same treatment as the data and were set to zero at 120 K.

2.6 Outlook
The present work invites several future research directions. The delafossite metals PtCoO2 and PdCrO2

have similarly nearly-hexagonal Fermi surfaces, but with slightly different warping parameters. Further-

more, they are also of sufficiently high conductivity that the ballistic regime is attainable. This provides

the opportunity to test the predictive ability of the theoretical treatment developed in this chapter. Simi-

lar effects are likely to occur in other classes of high-conductivity materials as well. For example, gated

bilayer graphene has a nearly triangular Fermi surface.

An interesting consequence of this work is the potential for finite-size-induced anisotropy to con-

found studies of other phenomena. For example, the area of nematic and smectic electronic phases is

of widespread interest within condensed matter physics. Here, resistivity anisotropy that is forbidden

by the symmetry of the crystalline lattice is often used as evidence for electronically-driven symmetry-

breaking states. In the Weyl semi-metal WP2, the MFP is sufficiently long that even as-grown crystals

may enter the ballistic regime.

Technologically, these results are relevant to the miniaturization of electrical conductors. With suf-

ficiently small dimensions, conductors will enter the ballistic regime even at elevated temperatures. In

this case, their conductivity will be limited by boundary scattering. The present results show that con-

ductivity can be significantly increased by channel orientation. This effect is expected to grow with

decreasing width, as shown in fig. 2.7.
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Figure 2.6: Transverse resistivity in narrow channels of PdCoO2. (a) Illustration of electron propa-
gation for channels oriented along low-symmetry directions of the FS. (b) Scanning electron
microscope image of FIB microstructured crystal for the measurement of transverse resistiv-
ity at ±3◦. (c) Measured transverse resistivity. A non-zero transverse resistivity develops at
low temperature with antisymmetric values at±3◦. The values are not strongly dependent on
the position of the voltage contacts along the current path. (d) Result of kinetic calculation.
From [5].

Figure 2.7: Calculated width-dependent resistivity anisotropy in PdCoO2 at 2 K. The anisotropy
is predicted to increase rapidly with decreasing channel width. From [5].
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Chapter 3

Generalized theory of the skin effect

3.1 Overview
In this chapter, we develop a generalized theory of the skin effect. Relative to previous theoretical work

on the skin effect, we introduce two generalizations:

1. Arbitrary Fermi surface geometry. The original kinetic theory of the Boltzmann equation by

Reuter and Sondheimer [51] considered a spherical FS. Later, Sondheimer [57] generalized to

a spheroidal FS. While Pippard [48] developed a phenomenological theory that was argued to

cover arbitrary FS, the treatment was not rooted in kinetic theory. Here we develop a kinetic

theory valid for arbitrary FS. As we will see, the results highlight the limitations of Pippard’s

phenomenological treatment.

2. Arbitrary rates of momentum-relaxing and momentum-conserving scattering. Theories of the

skin effect to date can be grouped into two categories. On the one hand, the works of Reuter and

Sondheimer [51], Sondheimer [57], while based in kinetic theory, made the RTA—assuming a

single relaxation rate for the decay of the non-equilibrium distribution function. As a result, these

works cannot capture the effect of frequent MC collisions, leading to viscous behaviour. On the

other hand, the works of Forcella et al. [22], Gurzhi [26] were rooted in a continuum description

of a charged, viscous fluid. By design, these works capture viscous behaviour. However, they

are rooted in an a priori assumption of frequent MC scattering. Being rooted in a continuum

description, they cannot capture the ASE, which is an inherently statistical phenomenon. By

incorporating separate MC and MR scattering rates into a kinetic description, we are able to

capture all regimes.

3.2 Kinetic theory of transport phenomena in solids, part II
Before presenting our results, we will cover some additional background from kinetic theory, building

on that presented in chapter 2.
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3.2.1 Conserved quantities

Consider a quantity χkkk which is a function of crystal momentum. An associated density ρχ can be

defined as

ρχ(rrr, t)≡
∫

kkk
χkkk fkkk(rrr, t) (3.1)

where fkkk is the electronic distribution function and
∫

kkk represents an integral over all Bloch states

∫
kkk
· · · ≡ 2

(2π)d

∫
dkkk · · · (3.2)

where a factor of 2 has been included to account for spin degeneracy. An associated current Jχ can be

defined as

JJJχ(rrr, t)≡
∫

kkk
vvvkkk χkkk fkkk(rrr, t). (3.3)

Multiplying the distribution function by χkkk and integrating the Boltzmann equation over all Bloch states

yields
∂ρχ(rrr, t)

∂ t
+∇ · JJJχ(rrr, t) = C [χkkk fkkk(rrr, t)] . (3.4)

A quantity χkkk which has the property that C [χkkk] = 0 is known as a collisional invariant. Equation (3.4)

expresses that collisional invariants are conserved quantities.

3.2.2 Properties of linearized collision operator

In section 2.2.3, we introduced the idea of expanding the distribution function about equilibrium as

fkkk(rrr, t) = f0 +wkkkψkkk (3.5)

where wkkk = f0(1− f0) and f0 is the Fermi-Dirac distribution function. We discussed that linear response

was described by keeping only terms up to linear order in ψkkk. The linear term of the collision integral is

known as the linearized collision operator Ĉ and is formally defined by

Ĉψkkk ≡
1

wkkk

∫
kkk′

δCkkk

δψkkk′
ψkkk′ . (3.6)

It can be shown that Ĉ is Hermitian and negative semidefinite, meaning that it is diagonalizable and

its eigenvalues are real and are ≤ 0 [55]. In this context, collisional invariants can be understood as

eigenfunctions of Ĉ with an eigenvalue of zero.

3.2.3 Surface impedance

For a semi-infinite medium occupying the half-space z > 0, surface impedance is defined as

Z =
Ex

Hy

∣∣∣∣
z=0

. (3.7)
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Using Faraday’s law, this becomes

Z(ω) = iµ0ω
Ex(z,ω)

∂Ex(z,ω)/∂ z

∣∣∣∣
z=0

. (3.8)

The electric field is governed by the wave equation(
∂ 2

∂ z2 +
ω2

c2

)
Ex(z,ω) =−iµ0ωJx(z,ω). (3.9)

The relevant boundary conditions for a kinetic theory relate to the specular or diffuse nature of the

scattering of the electrons at the sample’s surface. We have

Js(d)
x (z,ω) =

∫
∞

−∞(0)
dz′σxx(z− z′,ω)Ex(z′,ω) (3.10)

where the superscript s (d) denotes specular (diffuse) scattering. Defining the photon propagator as

A =
1

iµ0ωσ(q,ω)+ω2/c2−q2 (3.11)

we have that [51]

Zs(ω) = iµ0ω
2
π

∫
∞

0
dqA (q,ω) (3.12)

and [21]

Zd(ω) = iµ0ω

(∫
∞

0
dq ln

[
1

q2A (q,ω)

])−1

. (3.13)

3.3 Results

3.3.1 Collision operator

Here we are interested in deriving a collision operator for which momentum is relaxed at a higher rate

than all other modes of the non-equilibrium distribution function. We take the Fourier transform of the

Boltzmann equation and keep terms to linear order in ψkkk to obtain

[−iω + ivvvkkk ·qqq]ψkkk(qqq,ω)+
e

kBT
EEE(qqq,ω) · vvvkkk =−Ĉkkkψkkk(qqq,ω) (3.14)

where Ĉ is the linearized collision operator

Ĉψkkk =
1

wkkk

∫
kkk′

δCkkk

δψkkk′
ψkkk′ . (3.15)

Let ψkkk be an element of a function space with inner product

〈φ |ψ〉=
∫

kkk
wkkkφ

∗
kkk ψkkk. (3.16)
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We use as a basis the complete and orthonormal set of eigenfunctions χkkk,m of the collision operator:

Ĉχkkk,m = γkkk,mχkkk,m (3.17)

with

∑
m

∣∣χkkk,m
〉〈

χkkk,m
∣∣= 1 (3.18)

and 〈
χkkk,m

∣∣χkkk,m′
〉
= δm,m′ . (3.19)

We assume that the eigenfunctions χkkk,m include

χkkk,0 = c0 (3.20)

and

χkkk,i = cic0v̂kkk,i (3.21)

where i ∈ {x,y,z} and that the eigenvalue spectrum is given by

γkkk,m =


0 m = 0

γmr
kkk,i m = i

γmc
kkk otherwise.

(3.22)

This describes a scenario in which collisions conserve charge, relax momentum in the i direction at a

rate γmr
kkk,i , and relax all other modes at a rate γmc

kkk . Using eq. (3.18), we may write the collision operator

as

Ĉ = γ
mc
kkk (1−

∣∣χkkk,0
〉〈

χkkk,0
∣∣)−∑

i
δγkkk,i

∣∣χkkk,i
〉〈

χkkk,i
∣∣ (3.23)

where δγkkk,i ≡ γmc
kkk − γmr

kkk,i .

Throughout, we will use that∫
kkk
· · · ≡ 2

(2π)d

∫
dkkk · · ·= 2

(2π)d h̄

∫
∞

0
dE
∫

S (E )

dS
vkkk
· · · . (3.24)

Furthermore, we will assume that T�TF such that∫
kkk
− ∂ f0

∂Ekkk
· · ·= 2

(2π)d h̄

∫
SF

dS
vkkk
· · · (3.25)

where SF is the Fermi surface S (Ekkk = EF). Finally, for simplicity, we will assume that on the Fermi

surface the magnitude of the velocity is isotropic: vvvkkk = vF v̂vvkkk for kkk on SF .

The constants c0 and ci are determined by eq. (3.19). We find

1
c2

0
=

2kBT
(2π)d h̄vF

SF (3.26)
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and
1
c2

i
=
∫

SF

dS
SF

v̂2
kkki (3.27)

where

SF ≡
∫

SF

dS. (3.28)

We can now rewrite the collision integral as

Ĉψkkk = γ
mc
kkk ψkkk− γ

mc
kkk n0−∑

i
c2

i δγkkk,iv̂kkki pi (3.29)

where

n0 ≡
∫

SF

dS
SF

ψkkk (3.30)

and

pi ≡
∫

SF

dS
SF

v̂kkkiψkkk (3.31)

The solution to the Boltzmann equation is then

ψkkk(qqq,ω) =
− e

kBT EEE(qqq,ω) · vvvkkk + γmc
kkk n0(qqq,ω)+∑i c2

i δγkkk,i v̂kkki pi(qqq,ω)

γmc
kkk − iω + ivvvkkk ·qqq

. (3.32)

Because we are ultimately interested in finding the transverse conductivity, as is relevant to mea-

surements of surface impedance, we take EEE ⊥ qqq with EEE ‖ α̂αα and qqq ‖ β̂ββ . We define

〈A 〉 ≡
∫

SF

dS
SF

A

γmc
kkk − iω + ivF v̂kkkβ q

. (3.33)

We find that
γmc

kkk 〈1〉−1 c2
β

δγkkk,β 〈v̂kkkβ 〉 c2
αδγkkk,α 〈v̂kkkα〉 c2

γ δγkkk,γ 〈v̂kkkγ〉
γmc

kkk 〈v̂kkkβ 〉 c2
β

δγkkk,β 〈v̂2
kkkβ
〉−1 c2

αδγkkk,α 〈v̂kkkβ v̂kkkα〉 c2
γ δγkkk,γ 〈v̂kkkβ v̂kkkγ〉

γmc
kkk 〈v̂kkkα〉 c2

β
δγkkk,β 〈v̂kkkα v̂kkkβ 〉 c2

αδγkkk,α 〈v̂2
vvvα〉−1 c2

γ δγkkk,γ 〈v̂kkkα v̂kkkγ〉
γmc

kkk 〈v̂kkkγ〉 c2
β

δγkkk,β 〈v̂kkkγ v̂kkkβ 〉 c2
αδγkkk,α 〈v̂kkkγ v̂kkkα〉 c2

γ δγkkk,γ 〈v̂2
kkkγ
〉−1




n0

pβ

pα

pγ

=
e

kBT
EyvF


〈v̂kkkα〉
〈v̂kkkβ v̂kkkα〉
〈v̂2

kkkα
〉

〈v̂kkkγ v̂kkkα〉


(3.34)

and assuming three mirror planes, we get
γmc

kkk 〈1〉−1 c2
β

δγkkk,β 〈v̂kkkβ 〉 0 0

γmc
kkk 〈v̂kkkβ 〉 c2

β
δγkkk,β 〈v̂2

kkkβ
〉−1 0 0

0 0 c2
αδγkkk,α 〈v̂2

vvvα〉−1 0

0 0 0 c2
γ δγkkk,γ 〈v̂2

kkkγ
〉−1




n0

pβ

pα

pγ

=
e

kBT
EyvF


0

0

〈v̂2
kkkα
〉

0


(3.35)
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To ensure that ψkkk = 0 when EEE = 0, we must also have n0 = pβ = 0. For pα we have

pα =−eEvF

kBT
〈v̂2

kkkα
〉

1− c2
αδγkkk,α〈v̂2

kkkα
〉

(3.36)

so that

ψkkk =−
eEvF

kBT
1

γmc
kkk − iω + iqvF v̂kkkβ

v̂kkkα

1− c2
yδγkkk,α〈v̂2

kkkα
〉
. (3.37)

3.3.2 Reference Fermi surface geometries

In the remainder of this chapter, we will apply the kinetic theory developed in the previous section to

several Fermi surface geometries, working in two dimensions for simplicity.

1. Circular: We are interested in the behaviour of a perfectly isotropic Fermi surface.

2. Square: A square Fermi surface is in some sense the most “extreme” anisotropic Fermi surface

geometry (which still possesses two mirror planes): it has the most anisotropic distribution of

Fermi velocity directions.

3. Hexagonal: A hexagonal geometry lies in between the square and circular geometries in terms of

the anisotropy of the distribution of Fermi velocity directions. This makes the hexagonal geometry

useful for exploring the sensitivity of conductivity and surface impedance to anisotropy. The

hexagonal geometry is also of interest because it approximates the Fermi surface of PdCoO2.

However, the focus of this chapter will be on a more general analysis; we defer considerations

specific to PdCoO2 to the following chapter.

3.3.3 Conductivity

Electrical current is given by

JJJ =−e
∫

kkk
vvvkkk fkkk. (3.38)

Via

Ji(qqq,ω) = σi j(qqq,ω)E j(qqq,ω) (3.39)

and assuming δγkkk,α to be kkk-independent, we find the non-local transverse conductivity for EEE ‖ α̂αα and

qqq ‖ β̂ββ as

σ(q,ω) = ε0Ω
2
p

G0(q,ω)

1− c2
αδγαG0(q,ω)

(3.40)

where

G0(q,ω)≡ 〈v̂2
kkkα
〉=

∫
SF

dS
SF

v̂2
kkkα

γmc
kkk − iω + iqvF v̂kkkβ

. (3.41)

and

Ω
2
p ≡∑

i
ω

2
p,ii (3.42)
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Figure 3.1: Reference Fermi surface geometries. We will apply our kinetic theory to these five
geometries. Their labels and orientation relative to the current ~J and wavevector~q directions
are shown. The sample’s surface is represented in dark blue and the skin layer in light blue.

where plasma frequency is given by

ε0ω
2
p,ii =

e2v2
F

c02kBT

∫
SF

dS
SF

v̂2
kkki. (3.43)

We note that eq. (3.41) can be rewritten as

G(qqq,ω) =
1

γmc− iω
g
(

qvF

γmc− iω

)
(3.44)

with

g(s) =
∫

SF

dS
SF

v̂2
kkkα

1+ iv̂kkkβ s
. (3.45)
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For each of the reference Fermi surfaces considered here

lim
s→0

g(s) =
1
2
. (3.46)

The full form of g(s) for each geometry as well as the asymptotic behaviour as s→ ∞ is given in

table 3.1.

Fermi surface g(s) lims→∞ g(s)

Circular

√
s2 +1−1

s2
1
s

Square 0◦
1
2

1
2

Hexagonal 0◦
2+ s2

4+3s2
1
3

Square, 45◦
1

2+ s2
1
s2

Hexagonal, 30◦
2

4+ s2
2
s2

Table 3.1: g(s) for reference Fermi surface geometries (cf. eq. (3.45)). In all cases, lims→0 g(s) =
1/2. The behaviour of the non-local transverse conductivity σ(q,ω) is set by the behaviour
of g(s = qvF/(γ

mc− iω)) (cf. eqs. (3.40) and (3.44)).

Circular

In the limit that qvF � 1, the conductivity reduces to that of the Drude model:

σ(q,ω)

ε0Ω2
p

=
1
2

1
γmr− iω

. (3.47)

We see that for local electrodynamics, the conductivity is unaffected by MC scattering. In the limit that

qvF � 1, we have
σ(q,ω)

ε0Ω2
p

=
1

vFq
+

γmr− iω +δγ

(vFq)2 (3.48)

To leading order, we have
σ(q,ω)

ε0Ω2
p

=
1

vFq
. (3.49)

While the prefactor is different, this σ ∼ 1/q behaviour for qvF � 1 is exactly what is responsible for

the ASE in three dimensions for a spherical FS (cf. eq. (1.41)). In the limit that δγ → ∞, we have

σ(q,ω)

ε0Ω2
p

=
δγ

(vFq)2 (3.50)
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This is the behaviour associated with a viscous, charged fluid with viscosity

ν =
v2

F

2δγ
(3.51)

(cf. section 1.4.3).

Polygonal

We note that for the four polygonal geometries, g(s) takes the form

g(s) =
n0 +n2s2

2n0 +d2s2 (3.52)

where n0, n2, and d2 are non-negative integers. This results in a conductivity of the form

σ(q,ω)

ε0Ω2
p

=
(γmr− iω +δγ)2n0 +n2(vFq)2

2(γmr− iω)(γmr− iω +δγ)2n0 +[(γmr− iω +δγ)d2−2δγn2](vFq)2 (3.53)

for which we will now analyze the limiting behaviors. For all geometries, the conductivity reduces to

the Drude conductivity for qvF � 1:

σ(q,ω)

ε0Ω2
p

=
1
2

1
γmr− iω

. (3.54)

For qvF � 1, several different cases emerge.

The square 45◦ and hexagonal 30◦ geometries have n2 = 0 and d2 = 1. When qvF � 1, we have

σ(q,ω)

ε0Ω2
p

= n0
δγ + γmr− iω

(vFq)2 . (3.55)

where n0 is 1 for the square 45◦ geometry and 2 for the hexagonal 30◦ geometry.

For the square 0◦ geometry, σ is independent of vFq and is exactly the Drude conductivity, eq. (3.54),

for all parameter ranges. For the hexagonal 0◦ geometry with qvF � 1 we have

σ(q,ω)

ε0Ω2
p

=
1

3(γmr− iω +δγ)−2δγ
+

2(γmr− iω +δγ)3

[3(γmr− iω +δγ)−2δγ]2(vFq)2 . (3.56)

To leading order, we have:
σ(q,ω)

ε0Ω2
p

=
1
3

1
γmr +δγ/3− iω

(3.57)

Similarly to the square 0◦ geometry, the conductivity takes a Drude form except with the substitutions

ω
2
p →

2
3

ω
2
p (3.58)
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and

γmr→ γmr +δγ/3 (3.59)

However, for δγ → ∞, we see that viscous behaviour emerges:

σ(q,ω)

ε0Ω2
p

=
2δγ

(vFq)2 . (3.60)

3.3.4 Surface impedance

We now proceed to examine the behaviour of the surface impedance Z based on the conductivities σ of

Section 3.3.3. We analyzed σ as a function of qqq and ω . Z is a q-integrated function of σ . The weight

of the contribution from a given q is determined self-consistently via Maxwell’s equations, and will

depend on ω , vF , ωp, γmr and δγ . For a metal, it is appropriate to take the limit T�TF at experimentally

accessible temperatures, and so one can expect vF and ωp to be temperature independent. Therefore, it

is instructive to examine the behaviour of Z as a function of ω and γi. In practice, one would actually

measure Z(ω,T ) = Z(ω,γi(T )).

First, we examine where crossovers in the surface impedance may possibly occur based on dimen-

sional analysis. The boundaries are displayed in Figure 3.2. Table 3.2 identifies the regimes which were

identified and named by Casimir and Ubbink [15]. Table 3.3 identifies the equations describing the

boundaries for the left side of Figure 3.2. Table 3.4 identifies the equations describing the boundaries

for the right side. Finally, Table 3.5 outlines the definitions of the various relevant length scales.

Figure 3.2: Possible crossover locations in the skin effect, as deduced by comparing the various
length scales involved. (a) Log-log plot of MR scattering rate versus frequency. (b) Log-log
plot of MC scattering rate versus frequency. The two plots meet at their minimum horizontal
values, i.e. the fixed value of γmc for plot (a) is the minimum value of γmc for plot(b) and vice
versa.
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Region Existing name

1 Classical skin effect
2 Relaxation
3 –?

4 –?

5 Anomalous reflection
6 Viscous skin effect
7 –

* Known together as anomalous skin effect.

Table 3.2: Existing nomenclature in literature.

Boundary By length scales By ω− γmr relation

1 - 2, 3 - 4 lω = lmr ω = γmr

1 - 3 δ = lmr ω = (λL/vF)
2γ3

mr
2 - 5 δ = lmr γmr = vF/λL

4 - 5 lω = δ ω = vF/λL

Table 3.3: Definitions of boundaries in ω− γmr diagram.

Boundary By length scales By ω− γmc relation

3 - 4 lω = lmc ω = γmc

3 - 6 δ = lmc ω = (λL/vF)
2γ3

mc
5 - 7 δ = lmc γmc = vFλL

4 - 5 lω = δ ω = vF/λL

1 - 6 δ = lG ω = (λL/vF)
2γ2

mrγmc

6 - 7 δv = λL ω = (vF/λL)
2γ−1

mc

Table 3.4: Definitions of boundaries in ω− γmc diagram.

Symbol Definition Meaning

λL c/ωp London penetration depth
lω vF/ω Distance travelled during one oscillation of fields
lG

√
lmclmr Gurzhi length

δv
(
λ 2

L lω lmc
)1/4 Skin depth in viscous regime

Table 3.5: Definitions of length scales.

Next, we examine the actual behaviour of the surface impedance for circular, square, and hexagonal

Fermi surfaces. It is instructive to note that the asymptotic forms of the conductivity found in the
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previous section can always be written in the form

σ(q,ω)

ε0ω2
p
≈ a(vFq)−α [γ1−β (−iω)β ]α−1 (3.61)

where α ∈ {0,1,2}, β ∈ {0,1}, a is a dimensionless constant, and γ is some linear combination of γmr

and δγ . For specular (diffuse) boundary scattering, this corresponds to an asymptotic impedance of the

form

Zs(d) = µ0cs(d)
1 c2ω

η exp[−i(π/2)η ] (3.62)

where we have

η =
1+α +β (1−α)

2+α
(3.63)

c2 =

(
λ 2

L vα
F γ(β−1)(α−1)

a

)1/(2+α)

(3.64)

cs
1 =

2
π

Γ

(
α +1
α +2

)
Γ

(
α +3
α +2

)
(3.65)

cd
1 = π

[
Γ

(
1

α +2

)
Γ

(
α +1
α +2

)]−1

. (3.66)

In table 3.6 we examine how boundary conditions affect the magnitude of the asymptotic values of the

surface impedance. We see that only for α = 1 do the boundary conditions have an effect. The ratio we

find between the two cases, 8/9, is exactly that originally found by Reuter and Sondheimer [51].

It is worth noting that the analysis herein is limited by the assumption that the conductivity is given

by eq. (3.61), which considers only leading-order terms in the expansion of the conductivity. It turns

out that in region 5 (cf. fig. 3.2), the surface impedance is strongly dependent on boundary conditions.

In this region, we get η = 1 and the analysis above captures the dominant behaviour of the impedance,

namely Z ∝ ωe−i(π/2). There is in fact, a finite real part of the impedance in which the sensitivity to

boundary conditions is manifested, but this only appears by considering the second-order terms in the

expansion of the conductivity.

α cs
1 cd

1 cs
1/cd

1

0 1 1 1

1
4

3
√

3

√
3

2
8
9

2
1√
2

1√
2

1

Table 3.6: Influence of boundary conditions on magnitude of surface impedance.
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Circular geometry

In the plane defined by γmc = γmr, we see that the qualitative behaviour matches that for a spherical FS,

as first presented by Casimir and Ubbink [15]. In the γmc−ω plane, we see the appearance of a viscous

regime. As predicted by Gurzhi, the onset of this regime occurs for lG > δ and the regime persists until

lmc > δ . A previously unidentified boundary on this regime is defined by δv = λL.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η : Z(ω)∝ωη

100 102 104 106 108

γmc/γmr

viscous skin effect,
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skin effect,
η= 2/3

perfect conductor, η = 1
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Figure 3.3: Surface impedance for circular geometry. ~E ‖ y and ~q ‖ x. The two plots meet at their
minimum horizontal values. From [69].

Square 0◦ and hexagonal 0◦ geometries

In these two geometries, for a large portion of the FS, the electrons are propagating perfectly parallel to

the electric field EEE (and thus perfectly perpendicular to the wavevector qqq).

In the case of the square 0◦ geometry (fig. 3.4, bottom), all states which contribute to the current are

also perfectly parallel to the electric field. Therefore, there is no wavevector dependence whatsoever.

The surface impedance is exactly that found for the Drude model, with no dependence on δγ . Both the

ASE and the VSE are suppressed. Physically, both originate from the fact that electrons only propagate

parallel to the sample’s surface. Because they do not travel in and out of the skin layer, they cannot be-

come ineffective, suppressing the ASE. Because there is no way to couple momentum between different

layers parallel to the sample’s surface, there can be no viscous effects, suppressing the VSE.

The case of the hexagonal 0◦ geometry (fig. 3.5, bottom) is similar to that of the square 0◦ geometry,

though the deviations from the circular geometry are less extreme. In regions 3 and 4, this geometry

also exhibits Drude-like behaviour. For δγ = 0, the only deviation from true Drude behaviour is that

the apparent plasma frequency is reduced by a factor of 2/3. This can be understood by appeal to the

ineffectiveness concept: deep in regions 3 and 4, the skin depth is much shorter than the MFP. The

edges of the hexagonal FS with electrons propagating parallel to the sample’s surface are exhibiting
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Drude (local) behaviour, while the electrons from all other edges have become ineffective. For δγ > 0,

the scattering rate that enters the Drude-like behaviour is γmr + δγ/3. Unlike the square geometry 0◦,

here the VSE is not suppressed. In region 6, with lG < δ < lmc, the edges of the hexagonal Fermi

surface with electrons not propagating parallel to the samples surface are effective in contributing to the

coupling of transverse momentum, giving rise to viscous behaviour.

Square 45◦ and hexagonal 30◦ geometries

For both the square 45◦ geometry (fig. 3.4 top) and hexagonal 30◦ geometry (fig. 3.5 top), a surprising

behaviour emerges: viscous behaviour is present in region 3, even for δγ = 0. This is interesting be-

cause it means that viscous behaviour does not have to originate from frequent MC scattering. In these

geometries and in the absence of excess MC scattering, viscous behaviour arises as a result of the com-

bination of (1) MR scattering, in which an electron’s velocity is randomized, and (2) the symmetry of

the discrete number of allowed velocity directions that the electron can randomly scatter into. In region

4, both geometries exhibit η = 1/2 behaviour, which is typically associated with the CSE. However,

aside from the same η , all other aspects of the behaviour are different. The CSE occurs as a result of

α = 0, β = 0 whereas here α = 2, β = 1. Therefore, the two have different dependences on λL, vF , γmr,

and δγ . The behaviour across regions 3 and 4 can be understood as viscous behaviour with a frequency

dependent viscosity

ν(ω) =
v2

F

δγ− iω
(3.67)

which takes the limiting behaviours

ν(ω) =


v2

F

δγ
region 3

v2
F

−iω
region 4.

(3.68)

Viscosity tensor for hexagonal symmetry

It is interesting to note that the asymptotic conductivity and surface impedance in region 4 is identical

for the two hexagonal geometries. This is not the case for the two square geometries. In fact, this

is a consequence of the fact that systems with hexagonal symmetry have an isotropic viscosity tensor.

Interestingly, this fact is exploited in computational fluid dynamics, where spatially-discretized fluid

simulations are performed on hexagonally-symmetric lattices to ensure isotropy [23].

3.4 Outlook
In this chapter, we have derived the transverse, non-local conductivity for a metal of arbitrary FS and

with separate rates of MR and MC scattering. We applied our result to a circular FS, and showed

that we could capture both ASE and the VSE, unifying simpler models that captured only the former

[51, 57] or the latter [22, 26]. We showed that polygonal Fermi surfaces lead to significant differences
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Figure 3.4: Surface impedance for square geometries. ~E ‖ y and~q ‖ x. The two plots meet at their
minimum horizontal values. From [69].

in the phenomenology of non-local electrodynamics. For square or hexagonal FSs aligned such that

a significant fraction of electrons propagate parallel to the sample’s surface, there is a suppression of

non-locality. For square and hexagonal FSs rotated by π/N (where N is the order of the polygon),

we saw that viscous behaviour emerged even in the absence of frequent MC collisions. The square

FS represents the most extreme possible deviation from a circular FS among materials with isotropic

local conductivity tensors. The hexagonal FS represents an intermediate case, and also demonstrates the

special property of lattices with six-fold rotational symmetry: namely, an isotropic viscosity tensor.
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Figure 3.5: Surface impedance for hexagonal geometries. ~E ‖ y and ~q ‖ x. The two plots meet at
their minimum horizontal values. From [69].
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Chapter 4

The skin effect in PdCoO2

4.1 Overview
In this chapter, we describe microwave-frequency measurements of PdCoO2. These measurements were

aimed at differentiating between diffusive, ballistic, and viscous effects and at examining directional

effects arising from Fermi surface anisotropy.

In section 4.2, we describe the microwave spectroscopy technique that was employed in these mea-

surements. Spectroscopic techniques in this frequency range are scarce, and this particular technique is

unique to our lab.

While many treatments of the electrodynamics of conducting media are based on solving Maxwell’s

equations at the planar interface to a semi-infinite medium, the electrodynamics of finite bodies are, in

general, more complicated. While in many cases it is possible to use sample geometries which permit

simplifying assumptions, this work necessitated using geometries which require going beyond these

standard simplifying assumptions. This is the topic of section 4.3.

Finally, in section 4.4, we present and discuss our results.

4.2 Experimental technique
Here we describe the experimental technique used in this work. As in-depth descriptions are available

elsewhere [12, 63, 64], here we focus only on the essential elements of its operation. The basis of the

technique is that (1) a spatially-uniform magnetic field of variable microwave frequency is applied to a

sample, and (2) the power absorbed by the sample is detected bolometrically. We will consider these

two steps in sections 4.2.1 and 4.2.2.

4.2.1 Detection

Bolometric detection

We start with a review of the basic principle of bolometric detection [52, 64], as illustrated in fig. 4.1.

A bolometer consists of an absorbing element, which converts incident electromagnetic radiation to

56



heat, in thermal contact with a resistive thermometer. The combination is attached to a heat sink at

temperature T0 via thermal conductance K. The absorbing element, thermometer, and thermal link have

a heat capacity C. The resistive thermometer, with resistance RB, is biased with a constant current IB,

which determines the bolometer temperature TB according to

I2
BRB(TB) = K(TB−T0). (4.1)

An incident radiant power PS raises the bolometer temperature by an amount1

δTB =
PS

K
(4.2)

with time constant τ =C/K. The corresponding change in bolometer voltage is given by

δVB = IB

(
dRB

dT

)
TB

δTB +O(δTB
2) (4.3)

The responsivity of the bolometer for incident radiant power PSe−iωt is

S≡ δVB

PS
=

(
dRB

dT

)
TB

IB/K
1− iωτ

, (4.4)

exhibiting low-pass behaviour. A key simplifying assumption in the above is the treatment in terms

of lumped thermal elements. Indeed, for our implementation of bolometric detection, a treatment in

terms of distributed thermal elements has been shown to yield a better quantitative description of the

responsivity [12]. However, the key qualitative features of the responsivity remain the same.

Sample stage

In our technique, the sample under test serves as the absorbing element. The sample and resistive

thermometer are attached to a sapphire plate, as shown in fig. 4.2. Sapphire is used in part because

its high thermal diffusivity ensures that it is isothermal on the time scale of bolometer operation. The

sapphire plate is epoxied into the bore of a quartz tube. The quartz tube serves as a thermal link to the

liquid helium bath, which acts as a heat sink.

A key requirement for using bolometric detection with the sample as the absorbing element is the

ability to electromagnetically shield the thermometry. As will be described in section 4.2.2, microwave

fields are delivered to the sample via a waveguide. The sample is inserted into the waveguide through a

hole. The cutoff frequency for the propagation of electromagnetic modes through this hole is inversely

proportional to its radius. This means that, at microwave frequencies, we can make a hole that is

simultaneously large enough to allow mm-sized samples to pass while being small enough that the

1Here we are neglecting thermal feedback. The expected temperature rise δTB = PS/K is modified by the fact that δTB
leads to a change in RB, modifying the bias heating. This can be captured via an effective thermal conductance Ke = K−
I2
B(dRB/dT )TB . In practice, this effect should be captured by our calibration procedure, which is performed after IB and TB

have already been set.
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Figure 4.1: Principle of bolometric detection. Incident radiative power raises the temperature of
the bolometer relative to that of that of a heat sink, as measured via a resistive thermometer.
From [64].

cutoff frequency is greater than our maximum operating frequency. The same cannot be accomplished

at infrared frequencies.

Figure 4.2: Sample stage of the bolometric microwave spectrometer and cross section of coaxial
transmission line. The sample is mounted on an isothermal sapphire plate and inserted into
the transmission line where it absorbs power from a spatially-uniform, microwave-frequency
magnetic field. The resulting rise in temperature is measured via a resistive thermometer
(“Cernox sensor”). The quartz tube provides a weak thermal link to a liquid helium bath.
The heater provides an in-situ calibration of the bolometric responsivity. A reference sample,
placed at an electromagnetically equivalent position, serves to calibrate the absolute magnetic
field strength. From [64].
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Signal processing

Microwave power is amplitude-modulated by a square wave and the resulting AC variation in thermome-

ter voltage δVB is measured. The thermometer voltage is band-pass filtered and amplified before being

digitized. The component at the modulation frequency is then determined via a home-built software-

defined lock-in detection system. The modulation frequency is typically∼1 Hz and is set by the balance

of two considerations: (1) the higher the modulation frequency, the lower the 1/ f noise, and (2) the

lower the modulation frequency, the greater the responsivity of the bolometric detection, which exhibits

low-pass behaviour.

Calibration 1: Bolometric responsivity

To extract the power absorbed by the sample from the measured AC thermometer voltage δV , we must

determine the bolometric responsivity. A heater is attached to the sapphire plate at a position external to

the transmission line. After determining the resistance Rhtr of the heater, we can apply a known power

with amplitude Phtr = I2
htrRhtr to the heater, square wave-modulated at the intended modulation frequency

of the microwave power. We then measure the responsivity to heater power as

Shtr ≡
δV
Phtr

(4.5)

We then assume that the responsivity to microwave power Sµw is equivalent to Shtr, and determine the

power absorbed by the sample from the response to microwave power as

P = ShtrδV. (4.6)

Sµw and Shtr may differ due to the finite thermal diffusivity of the sapphire plate or the thermal dynamics

of the connection between the sample and the sapphire plate (which is made via vacuum grease). How-

ever, assuming a good connection between sample and sapphire plate, these differences in responsivity

occur at modulation frequencies higher than the corner frequency set by the thermal behaviour intrinsic

to the sample holder, which sets the maximum practical modulation frequency anyway. In fact, a poor

thermal connection between sample and sapphire plate may be identified via a lag in the thermometer

response for applied microwave power as compared to that for applied heater power.

4.2.2 Microwave circuitry

Waveguide

We want to expose the sample under study to a spatially-uniform magnetic field of known polarization.

To do so we use a rectangular transmission line. By using a broad septum, acting as the centre conductor

of the transmission line, we create large regions of uniform magnetic field in the transverse electromag-

netic (TEM) mode. To create an electric field node, we short circuit the transmission line with a metallic

end wall and insert the sample into the transmission line as close to this end wall as possible. While the
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TEM mode propagates at all frequencies, transverse electric (TE) and transverse magnetic (TM) modes

propagate above their respective cutoff frequencies. The upper frequency limit of the apparatus is set

by the lowest frequency at which one of the TE or TM modes forms a resonant standing wave. This

occurence is problematic because it leads to asymmetry in the transmission line, causing a breakdown

of the calibration described in section 4.2.2.

Calibration 2: Absolute magnetic field strength

Standing waves in the microwave circuitry result in a microwave power delivered to the sample that is

strongly frequency-dependent. Key to the success of this experimental technique is an in-situ reference

sample placed at an electromagnetically equivalent position—the mirror position with respect to the

septum (see fig. 4.2). We use an AgAu alloy with 70:30% atomic composition. By virtue of being an

alloy, we can expect its surface resistance to be isotropic and to exhibit the CSE over the entirety of our

frequency range. Its surface resistance is then entirely determined by its known resistivity. This sample

is used to calibrate the strength of the applied magnetic field H0, controlling for the frequency-dependent

effect of standing waves as shown in fig. 4.3.

4.2.3 Comparison with other techniques

Here we briefly compare bolometric microwave spectroscopy (BMS) to alternative microwave-frequency

techniques.

Cavity perturbation

The microwave cavity perturbation (MCP) technique has historically been the primary technique for

microwave measurements. In this technique, the power transmitted or reflected by a resonant microwave

cavity is measured with and without a sample present. The sample acts to perturb the resonance. The

change in resonance width is related to the sample’s surface resistance R, and the shift in the resonance

frequency is related to the sample’s surface reactance X .

An advantage of MCP over BMS is that the full complex impedance Z =R+ iX is measured by MCP

whereas only R is measured by BMS. In the limit of local electrodynamics, knowledge of both R and

X is sufficient to directly determine the full complex conductivity σ = σ1 + iσ2, whereas knowledge of

R alone is insufficient. There are, however, methods of indirectly determining the complex conductivity

from R alone, e.g. via Kramers-Kronig relations, though these always rely on certain assumptions.

Another advantage of MCP is that it retains sensitivity up to room temperature, whereas the sensitiv-

ity of BMS is limited to low temperatures. This is because the resolution of MCP is set by the resonance

width of the empty cavity, which depends on the cavity’s temperature. Using a sapphire hot finger, the

sample’s temperature can be raised while keeping the cavity at base temperature.

An obvious disadvantage of MCP is that it is restricted to a small number of discrete resonance

frequencies.
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Figure 4.3: Calibration of microwave field strength in the bolometric microwave spectrometer.
In the raw sample and reference signals, the intrinsic frequency dependence is hidden by a
strongly frequency-dependent magnetic field strength as a result of standing waves in the mi-
crowave circuitry. Taking the ratio of the two signals eliminates the dependence on magnetic
field strength, revealing a clear trend coming from the frequency dependent surface resistance
of the two samples. From [64].
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Corbino spectroscopy

Corbino microwave spectroscopy (CMS) is another spectroscopic technique in the GHz range. In this

technique, a sample short circuits the end of a coaxial transmission line. The complex reflection coef-

ficient S11 is measured using a vector network analyzer. A key advantage of CMS over BMS is that it

measures a complex quantity.

A disadvantage of CMS is that its sensitivity depends on impedance matching between the coaxial

line (which has a characteristic impedance of 50 Ω) and the sample. This limitation is particularly

severe in the present context of measuring highly conductive materials in which the surface impedance

at microwave frequencies is typically ∼ 1mΩ.

Another disadvantage of CMS is the lack of flexibility in terms of geometry. As is evident from the

previous chapter, in the non-local regime, one must consider the wavevector direction being probed, on

top of the usual consideration of current direction. In PdCoO2, it is of interest to take measurements

with wavevectors within the highly-conductive ab planes, which necessitates applying fields to the thin

edges of platelet samples. This would not be possible with CMS.

4.3 Sample geometry & electromagnetic induction
In chapter 3, we were interested in how FS geometry and ballistic and viscous effects were manifested

in the optical conductivity and in the surface impedance, as defined for a semi-infinite sample. At

infrared frequencies and above, a ray optics paradigm is valid and one may consider the incidence of

electromagnetic radiation at a single sample surface. The relevant observables then include reflectance

and transmittance. However, one can deduce that the regimes of interest in PdCoO2 occur at microwave

frequencies. Here, the free-space electromagnetic wavelength λ0 = c/ f is much greater than the sample

dimensions. To make contact between the quantities discussed in chapter 3 and those that are actually

measured at these frequencies, one must consider the application of Maxwell’s equations to finite bodies.

4.3.1 General considerations

Because we are interested in highly-conducting materials, we may consider the regime of quasi-magnetostatics

(see fig. 4.4) and make the corresponding simplifications to Maxwell’s equations. Charge relaxation oc-

curs on a time scale much shorter than those of interest, so we may set ρ f = 0. Furthermore, we may

neglect the displacement current, as the dominant dynamical phenomenon in this regime is electromag-

netic induction. We are left with the quasi-magnetostatic Maxwell’s equations:

∇ ·EEE = 0 (4.7)

∇ ·HHH = 0 (4.8)

∇×EEE = iµ0ωHHH (4.9)
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∇×HHH = σEEE. (4.10)

These can be combined to yield a diffusion equation for EEE and HHH:

(
∇

2 + k2){EEE

HHH

}
= 0 (4.11)

where

k =
√

iµ0ωσ =
1+ i

δ
. (4.12)

Figure 4.4: Electromagnetic regimes for a good conductor. The equations of quasimagnetostatics
(eqs. (4.7) to (4.10)) apply when ω � 1/τE where τE ≡ ε/σ and ω � 1/l

√
µε where l is

a characteristic physical dimension of the conductor. Taking µ = µ0, ε = ε0, and l = 1mm
leads to an upper limit of 300 GHz. The boundary between the thin and thick limits is given
by ω ≈ 1/τM with τM ≡ µσ l2, or equivalently l ≈ δ . Adapted from [72].

We now wish to analyze general aspects of the qualitative behaviour of a good conductor in an

external magnetic field H0. We consider a medium with conductivity σ , ε = ε0 and µ = µ0. We will

focus on two properties: the net magnetization

M̄MM ≡ mmm
V

=
σ

2V

∫
d3r rrr×EEE (4.13)

and power dissipation

P =
σ

2

∫
d3r |EEE|2. (4.14)

One may distinguish between two regimes based on the size of the skin depth δ relative to the sam-

ple’s dimensions. Using l to represent a characteristic sample dimension, the “thin” limit corresponds

to l� δ while the “thick” limit corresponds to δ � l. In these two cases, we may use the estimates

∇∼

1/l l� δ

1/δ δ � l.
(4.15)
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We may then use eqs. (4.9), (4.10) and (4.15) to estimate the behaviour of the induced fields of EEE ind and

HHH ind in terms of the series expansions. The first order term for E comes from substituting H = H0 in

eq. (4.9):

E(1)
ind ∼

iµ0ωlH0 l� δ

iµ0ωδH0 δ � l.
(4.16)

We then substitute E(1)
ind into eq. (4.10) to find H(1)

ind :

H(1)
ind ∼

il2/δ 2H0 l� δ

iH0 δ � l.
(4.17)

Continuing the procedure to find the second-order term for Eind, we get:

E(2)
ind ∼

µ0ωl3/δ 2H0 l� δ

µ0ωδH0 δ � l.
(4.18)

Finally, we may use the estimate ∫
d3r ∼

l3 l� δ

l2δ δ � l
(4.19)

which is motivated by the fact that for l� δ , current flows through the entire volume of the conducting

body, whereas for δ � l, the skin effect means that current only flows in a small volume of depth δ

within the surface.

We arrive at the results

Re(M̄)∼

µ2
0 ω2σ2l4H0 l� δ

H0 δ � l
(4.20)

Im(M̄)∼

µ0ωσ l2 l� δ

1/
√

µ0ωσ δ � l
(4.21)

P∼

µ2
0 ω2σ l5H2

0 l� δ√
µ0ω/σ l2H2

0 δ � l.
(4.22)

We emphasize that we have arrived at these results independently of any assumptions about sample

geometry. They will be relied upon heavily in sections 4.3.2 and 4.3.3.

Example: conducting sphere

Here we consider the specific example of a conducting sphere, for which the solution is known for

arbitrary l/δ , and is shown in fig. 4.5.
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Magnetization is given by [10]
M̄
H0

=
3
2

j2(ka)
j0(ka)

(4.23)

where jn(ξ ) are spherical Bessel functions of the first kind, a is the radius. This has the asymptotic

behaviour

−Re
(

M̄
H0

)
=


(µ0ωσ)2a4

105
a� δ

3
2

δ � a

(4.24)

and

Im
(

M̄
H0

)
=


µ0ωσ a2

10
a� δ

9
2
√

2a
√

µ0ωσ
δ � a.

(4.25)

We see that eqs. (4.24) and (4.25) match the form deduced via general arguments in eqs. (4.20) and (4.21).

We see in particular that

lim
δ/a→0

M̄
H0

=−3
2
. (4.26)

This is exactly the well-known result one obtains at ω = 0 for a perfectly diamagnetic sphere (µ = 0).

Power is given by [10]
P

H2
0
= πa3

µ0ω Im
[

j2(ka)
j0(ka)

]
(4.27)

and has the asymptotic behaviour

P
H2

0
=


πµ2

0 ω2σa5

15
a� δ

3π√
2

√
µ0ω

σ
a2 δ � a.

(4.28)

We see that eq. (4.28) matches the form deduced via general arguments in eq. (4.22).

4.3.2 Magnetization

Here we consider magnetization, for which the treatment of finite bodies is better developed. For a linear

magnetic medium, a body’s magnetization M(rrr) is related to the internal field H(rrr) via the susceptibility

χ:

M(rrr) = χH(rrr). (4.29)

Ellipsoids

In ellipsoids, H(rrr) is related to the applied magnetic field H0(rrr) via a demagnetizing factor N via

H(rrr) = H0(rrr)−NM(rrr) (4.30)
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Figure 4.5: Magnetization and power dissipation for a conducting sphere with a radius of 1 mm,
ε = ε0, µ = µ0 and σ = 1µΩcm. Two limiting behaviours occur according to how the skin
depth δ compares to the radius a: in the low-frequency limit, a� δ ; in the high-frequency
limit, δ � a.

so that

M(rrr) =
χ

1+χN
H0(rrr). (4.31)

For an ellipsoid with dimensions a, b, and c and taking c to be the dimension parallel to HHH0, the demag-

netizing factor is given by [50]

N =
abc
2

∫
∞

0
ds

1

(s+ c2)
√
(s+a2)(s+b2)(s+ c2)

. (4.32)
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Figure 4.6: Demagnetizing factor of a spheroid as a function of aspect ratio. The magnetic field
is applied along c. N is the demagnetizing factor and 1/(1−N) is the factor that relates the
magnitudes of the effective magnetization and applied magnetic field.

Arbitrary shapes

For arbitrary shapes, a relationship between H(rrr) and H0(rrr) as in eq. (4.30) does not exist in gen-

eral. However, one may introduce an equation analogous to eq. (4.31) for effective, integral quantities.

Assuming a constant external field, we have

M̄ = χ̄H0 (4.33)

with

χ̄ =
χ

1+χN
(4.34)

where the effective magnetization M̄MM is defined in terms of the total magnetic moment mmm as

M̄MM ≡ mmm
V

(4.35)

and where N is now an effective demagnetizing factor. For a given sample geometry and susceptibility

χ , if the magnetic moment mmm can be computed, then N can be found as

N =
1
χ̄
− 1

χ
. (4.36)

While for an ellipsoid, N is only a function of sample geometry, for an arbitrary shape, N is, in general,

also a function of χ .

For a strongly diamagnetic sample, an established approximation scheme is the following: (1) Find

N for the geometry of interest for a perfect diamagnet (χ =−1), which is a function of only geometry;
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(2) Use this N to infer the intrinsic susceptibility χ from measurements of M using eq. (4.34) [50].

4.3.3 Power absorption

Surface impedance boundary condition

The surface impedance boundary condition (SIBC) is a boundary condition for the tangential EEE and HHH

fields at the surface of a good conductor:

EEEt = ZsHHHt × n̂ (4.37)

where n̂ is a unit normal pointing into the material. Certain conditions must be met for this condition to

be valid [54]:

1. The requirements of the quasi-magnetostatic regime must be met.

2. The minimum radius of curvature and minimum thickness of the conductor must be large com-

pared to the skin depth.

3. The variation of the electromagnetic fields in directions along the surface must be small compared

to the variation in the normal direction.

In our work, we measured cylindrical samples of hexagonal cross-section which consist of piecewise

flat surfaces. The only place in which the above assumptions are not met is at the edges joining flat

surfaces, at which the radius of curvature goes to zero. In practice, it has been found that the details of

sharp edges matter for non-linear but not for linear properties [11].

Definition of power factor

Time-averaged electromagnetic power dissipated in a sample is given by

P =
∫

S̄SS ·dAAA =
1
2

Re
[∫

dAEt ×H∗t

]
(4.38)

where S̄SS is the time-averaged Poynting vector. Assuming the surface impedance approximation, we have

P =
1
2

Reff
∫

dSK2 (4.39)

where Reff is the effective surface resistance and K is the magnitude of the effective surface current

KKK = n̂nn×HHH (4.40)

where n̂nn is the outward pointing normal vector of the sample’s surface and HHH is the magnetic field at the

surface. We consider the case of an applied field HHH0 along the z direction:

HHH0 = H0ẑzz. (4.41)
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We define a “power factor” α as

α ≡ 1
SH2

0

∫
dSK2 (4.42)

where

S =
∫

dS (4.43)

such that power absorption can be written as

P =
1
2

αReffSH2
0 . (4.44)

For a conductor with δ � l, to lowest order, α is independent of conductivity and equivalent to that

for a perfect conductor of the same shape [34], as can be deduced from eq. (4.22). Therefore, to re-

late our power absorption measurements to a surface resistance, we performed simulations of perfectly

conducting samples of the relevant shapes to find their power factors.

Power factor of of an ellipsoid

Here we derive the power factor of an ellipsoid. We consider this case because the ellipsoid is the lowest-

symmetry geometry for which the internal induced magnetic field is uniform, a fact which enables an

analytic solution. To our knowledge, this is an original result. We have

HHH = Hẑzz. (4.45)

Using that

H =
1

1+χN
H0 (4.46)

we may further write

α =
β

(1+χN)2 (4.47)

so that

β =
1

SH2

∫
dSK2. (4.48)

For a general ellipsoid, we find that

β =
1
S

∫ 2π

0
dφ

∫
π

0
dθ

c2 sin4
θ (b2 cos2 φ +a2 sin2

φ)

sinθ

√
c2 sin2

θ (b2 cos2 φ +a2 sin2
φ)+a2b2 cos2 θ

(4.49)

with

S =
∫ 2π

0
dφ

∫
π

0
dθ sinθ

√
c2 sin2

θ (b2 cos2 φ +a2 sin2
φ)+a2b2 cos2 θ . (4.50)
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Figure 4.7: Power factor of a spheroid as a function of aspect ratio. The magnetic field is applied
along c. We have defined the power factor so that it quantifies the geometric enhancement of
power absorption per unit area relative to that for a semi-infinite medium.

4.4 Results
The FS of PdCoO2 (fig. 4.8b) immediately suggests three extremal wavevector directions for which to

perform measurements: qqq ‖< 110 > (“0”), qqq ‖< 100 > (“30”), and qqq ‖< 001 > (“c”). Samples of

PdCoO2 grow as platelets with in-plane dimensions aroumd 1 mm and typical thicknesses of 10s of

µm. To reflect the underlying symmetry of the crystal structure, we cut samples to have hexagonal cross

section, with lateral dimensions of about 0.5 mm. We applied a spatially-uniform, microwave-frequency

magnetic field parallel to the c axis, inducing eddy currents which flow in loops perpendicular to the

magnetic field. This establishes two skin regions: near the edges of the two large hexagonal faces, with

wavevector along the c axis, and on the six small rectangular faces, with wavevector perpendicular to

the c axis (fig. 4.8c).

By measuring three different sample geometries—two orientations relative to the crystal structure

and two thicknesses—we obtained the necessary data to determine the three components we sought.

Platelet samples were cut into hexagons using a high-precision wire saw with a 50 µm tungsten

wire and 50 nm Al2O3 abrasive suspended in glycerin. The orientation of the crystals was determined

via their growth edges, which are oriented perpendicular to the crystallographic axes. A goniometer

mounted to the wire saw was used to rotate the samples in between cuts. Samples 1 and 2 were cut

from the same original crystal. For Sample 3, a smaller thickness was desired and so it was cut from a

separate original crystal from the same batch. The sample dimensions listed in table 4.1 were determined

via optical microscopy.

To quantitatively interpret our measurements, it was necessary to account for the extrinsic geometric

effects which lead to a difference between the externally applied, spatially-uniform magnetic field HHH0

and the magnetic field HHH(rrr) at the sample’s surface. To do so, we relied on power factors, as introduced
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Figure 4.8: Microwave spectroscopy measurements of PdCoO2. (a) PdCoO2 crystal structure,
belonging to the trigonal crystal system. (b) PdCoO2’s hexagonally faceted Fermi surface,
as determined via ARPES and quantum oscillations. (c) Measurement geometry. Samples,
which grow naturally as thin platelets, were cut into hexagons to reflect the 6-fold rotational
symmetry of the crystal structure. A microwave-frequency magnetic field is applied along z.
This induces eddy currents (blue) acting to screen the magnetic field (red) from the interior
of the sample. The resulting field strength at the sample’s surface (grey shading) is highest
on the side faces but also becomes appreciable toward the edges of the top and bottom faces.
Because the skin depth is much smaller than the sample dimensions, this gives rise to two
separate “skin regions” (indicated by green arrows). In both, current flows in the (001) plane
and the wavevector is perpendicular to the surface. The measured signal contains a mixture
of the two skin regions that depends on the sample’s aspect ratio. (d) Raw data. We measured
three samples, with two different cut orientations and two different aspect ratios. When the
sample is cut with a ‖ x, qqq ‖ 〈110〉 (“30”) on the side faces; when the sample is cut with a ‖ y,
qqq ‖ 〈100〉 (“0”) on the side faces. Varying the aspect ratio enables isolating the contribution
from the top and bottom faces, where qqq ‖ c. All three measurements differ—by symmetry,
this can only occur for non-local electrodynamics. From [6].
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Sample
Hexagonal face
area [mm2]

Hexagonal face
perimeter [mm] Thickness [µm] Cut orientation

1 0.187 1.72 88 a ‖ x
2 0.169 1.62 79 a ‖ y
3 0.191 1.76 49 a ‖ y

Table 4.1: Sample information. The cut orientations refer to the directions defined in fig. 4.8.

in section 4.3.3. This relies on the assumption that the skin depth is much less than the sample dimen-

sions. To verify this assumption, in fig. 4.9 we estimated the skin depth across our measurement range

using the classical expression. Comparison to table 4.1 shows that this assumption is indeed valid.

Figure 4.9: Classical skin depth of PdCoO2 across the range of measured frequencies. From [6].

We studied the power factor α as a function of sample aspect ratio c/a for several different shapes,

as shown in fig. 4.10. For spheroids, it was possible to treat the problem analytically. For cylinders

and hexagonal prisms, finite-element simulations were performed [14]. Because the axial symmetry of

cylinders allows for faster convergence of simulation results, this shape was studied over a wide range of

aspect ratios. Since the simulation of hexagonal prisms was more resource-intensive, we only focused

on directly relevant aspect ratios. Within the range of aspect ratios relevant to the samples studied here,

all three shapes yielded similar results.

Because δ � {c,a}, Reff can be viewed as a sum of two independent components: R⊥ comes from

the faces perpendicular to HHH0 (the two large hexagonal faces) and R‖ comes from the faces parallel to

HHH0 (the six small rectangular faces). The relative contribution of the two components is set by a weight

w⊥:

Reff = w⊥R⊥+(1−w⊥)R‖ (4.51)

The weight w⊥ can be found via the variation of the tangential magnetic field strength over the surface
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Figure 4.10: Effect of sample geometry on overall power absorption. Power factor α versus aspect
ratio c/a for several sample geometries. Vertical lines represent the aspect ratios of the
measured samples. From [6].

of a perfect conductor of the same shape:

w⊥ =
∫

A⊥
H2

t dA
/∫

A⊥+A‖
H2

t dA (4.52)

where A⊥ (A‖) is the area of the perpendicular (parallel) faces. The weights determined by our finite-

element simulations are shown in fig. 4.11.

Figure 4.11: Effect of sample geometry on relative contribution of faces. Weight w⊥ of large faces
(perpendicular to applied magnetic field) as a function of aspect ratio c/a. From [6].
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Applying eq. (4.51) to the three samples that we measured, we get

R1 = w1Ra,c +(1−w1)R30,0 (4.53)

R2 = w2Ra,c +(1−w2)R0,30 (4.54)

R3 = w3Ra,c +(1−w3)R0,30 (4.55)

where on the left side of the equations, Ri refers to Reff for Sample i, and on the right side of the

equations, the two subscripts refer to the directions ĴJJ, q̂qq. Using eqs. (4.54) and (4.55), Ra,c was found

from the measurements of Samples 2 and 3:

Ra,c =
w3R2−w2R3

w3−w2
. (4.56)

Ra,c was then used to determine R30,0 and R0,30 from eqs. (4.53) and (4.54):

R30,0 =
R1−w1

1−w1
(4.57)

R0,30 =
R2−w2Ra,c

1−w2
. (4.58)

The values of α and w⊥ that were used in eqs. (4.44) and (4.56) to (4.58) to arrive at the presented

data are summarized in table 4.2. For Samples 1 and 2, we used the values of α and w⊥ from our simula-

tions. For Sample 3, some adjustment relative to the simulation values was necessary in order to obtain

physically plausible results for Ra,c, R30,0, and R0,30. We found that the magnitude of R3 determined

using the simulation value αsim
3 was larger than expected. Specifically, unless R3 is of a comparable

magnitude to R2, then the decomposition into components via eqs. (4.56) to (4.58) yields negative val-

ues, which is unphysical. A comparable magnitude of R3 to R2 can be accomplished by using a value of

α3 of≈ 4, whereas the simulation value αsim
3 is≈ 2.5. There are a couple potential explanations for this

discrepancy. The first is that Sample 3, being cut from a different original sample, has a higher residual

scattering rate than Sample 2. In the classical case, R ∝
√

1/τ , so a factor of 4/2.5 = 1.6 difference in

magnitude corresponds to a factor of 1.62 ≈ 2.6 difference in residual scattering rates. This is consistent

with the variation in residual resistivity reported by Nandi et al. [44]. The second potential explanation

is that we failed to accurately account for geometric effects in our simulations, with αsim
3 being smaller

than the true value of α3. This difference in magnitude would result if the power factor α increases more

rapidly with decreasing aspect ratio c/a than captured by our simulations. With α3 set to 4, next we

turned to w3. The simulation value of ≈ 0.45 also lead to negative decomposed values, whereas there

is a wide range of w3 values near ≈ 0.6 for which the decomposed values are positive and only weakly

dependent on the specific choice of w3. As with α , the difference between empirical and simulated

results may indicate that simulations are underestimating the magnitude of extrinsic geometric effects
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for small aspect ratios. Despite that it was necessary to adjust α3 and w3 relative to the simulation values

to get physically reasonable results, in both cases there is a range of values which lead to qualitatively

similar results.

Sample α w⊥

1 2 0.4
2 2 0.4
3 4 0.6

Table 4.2: Data calibration parameters.

The measurements of the three samples, after having applied the power factors from table 4.2,

are shown in fig. 4.8d. The fact that the three measurements differ in frequency dependence provides

immediate evidence of non-local electrodynamics. In all cases, current flows in the plane perpendicular

to the c axis; for local electrodynamics, the triangular in-plane lattice dictates that the conductivity tensor

has non in-plane anisotropy and so all three measurements would be identical. Next we will examine

the individual surface resistances obtained via the effective surface resistances via eqs. (4.56) to (4.58).

The measured surface resistance for the two in-plane wavevectors is shown in fig. 4.12a. Surpris-

ingly, the two orientations exhibit distinct power-law behaviours. A useful property of the viscosity

tensor in a plane with six-fold rotational symmetry provides an elegant avenue for differentiating ballis-

tic and viscous effects: in this setting, as is the case in PdCoO2, the in-plane viscosity tensor is isotropic

[23]. This implies the qualitative insight that the anisotropy in the surface resistance at 2 K for the two

orientations cannot be due to purely viscous effects.

With this in mind, we turn to the possible ballistic origin of this effect. The standard theory of the

anomalous skin effect (i.e., ballistic propagation within the skin layer)—Pippard theory [48]—predicts

that any orientation should exhibit R∼ ω2/3, with only the pre-factor being orientation-dependent. Our

data is at odds with Pippard theory: while one orientation exhibits behavior close to ω2/3, the other ex-

hibits only a weak deviation from classical behavior. This breakdown of Pippard theory is all the more

surprising because—aside from its ubiquity—Pippard theory has previously demonstrated success in

describing the behavior of anisotropic FSs. Famously, Pippard performed the first ever experimental

determination of a FS by applying his eponymous theory to measurements of the ASE in Cu, revealing

deviation from a spherical FS [49]. Nonetheless, Pippard theory treats FS geometry phenomenolog-

ically, and was originally justified by agreement with more rigorous treatments based on solving the

Boltzmann equation for spherical [51] and spheroidal [57] FSs.

To model our results, we solved the Boltzmann equation using a realistic parameterization of the

FS of PdCoO2 based on ARPES and quantum oscillation measurements [28]. As seen, our calculations

reproduce the difference in power-law behaviour between the two orientations. An intuitive explanation

for the difference in power laws comes from applying Pippard’s “ineffectiveness concept” [47, 48] to

the FS of PdCoO2: only those electrons that spend an entirety of a MFP within the skin layer are

effective at screening electromagnetic fields. As the ratio of MFP to skin depth increases, electrons

spend an increasingly small fraction of a MFP within the skin layer, so the surface resistance becomes
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increasingly larger than the classical value. Mathematically, this can be described as an effective MFP

for each state kkk, which represents that state’s contribution to the overall conductivity:

λ
eff
kkk =

(v̂vvkkk · ÊEE)λ0

1+ i(v̂vv · q̂qq)qλ0
(4.59)

where λ0 is the bare MFP and v̂vvkkk is the unit velocity vector. (Because the present discussion is focused

on purely ballistic effects, here we have taken λmr = λmc = λ0). In PdCoO2, a third of electrons prop-

agate nearly parallel to the sample’s surface, such that v̂vv · q̂qq = 0. These electrons remain effective at

screening regardless of the ratio of MFP to skin depth, largely suppressing the increase in surface re-

sistance. Indeed, there have been several theoretical works predicting extreme FS geometries for which

Pippard theory would break down [25, 31, 73]. To our knowledge, the present results represent the first

experimental confirmation of these ideas.

We used the Fermi surface parameterization from Hicks et al. [28]:

kkkF(φ ,φ0,kz) = ρ(φ −φ0,kz)[cosφ îii+ sinφ ĵjj]+ kzk̂kk (4.60)

where

ρ(φ −φ0,kz) = ∑
µ,ν

kµν cos[µ(φ −φ0)]

sin[νdkz] k31

cos[νdkz] otherwise
(4.61)

with d = c/3 where c = 17.743Å and with the Fermi surface harmonics listed in table 4.3. The angle

φ0 sets the in-plane rotation of the Fermi surface relative to the coordinate system. To take advantage

of the simplifications arising from three mirror planes, we set k31 = 0. We assumed diffuse surface

scattering when calculating the surface resistance. We used the reported experimental parameters as

given in table 4.4. We took γmr
kkkx = γmr

kkkx = γmr using the value from table 4.4, and took γmc
kkk = γmc with γmc

as a free parameter.

µ ν kµ,ν

0 0 0.9538
6 0 0.040
12 0 0.007
0 1 0.0107
0 2 -0.009
3 1 0.0010

Table 4.3: Harmonics for parameterization of Fermi surface of PdCoO2 from Hicks et al. [28].

The measured surface resistance for wavevector along the c axis, shown in fig. 4.13a, exhibits a

clear deviation from classical R ∼
√

ω behavior. The observation of non-local electrodynamics in this

orientation is surprising: as per the ineffectiveness concept, this means that electrons must be able to

propagate in and out of the skin layer within a single mean free path. However, the nearly cylindrical

geometry of the Fermi surface means that in this orientation, electrons propagate at a shallow angle
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Figure 4.12: Surface resistance measurements for in-plane wavevector. (a) Data obtained by sub-
tracting the qqq ‖ c component from the raw data. The different power-law behavior originates
from predominantly ballistic propagation within the skin layer coupled with a strongly-
facetted Fermi surface, as illustrated in (b) and (c). (b) Calculated surface resistance based
on the experimentally-determined Fermi surface, capturing the different power-law behav-
ior of the two orientations. The calculation is for a single relaxation rate, i.e. γmc = γmr,
and uses published values with no free parameters. (c) Illustration of ballistic propagation
within the skin layer. Top: There are two main directions of electron propagation, both at
an angle to the surface. As frequency increases, the skin depth becomes shallower. The
electrons spend an increasingly smaller fraction of a mean free path inside the skin layer,
leading to an increasing surface resistance—the anomalous skin effect. Bottom: There are
three main directions of electron propagation. Electrons propagating parallel to the sam-
ple’s surface spend the entirety of a mean free path within the skin layer, regardless of how
shallow the skin depth becomes. Often, this is a negligible fraction of the Fermi surface;
in PdCoO2, approximately a third of the Fermi surface propagates parallel to the sample’s
surface. The anomalous skin effect is largely suppressed even when the mean free path is
much larger than the skin depth. From [6].
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Parameter Value

vF 7.5×105 m/s
ωp,ab 7.2×1015 Hz
ρab(T = 2K) 7.5 nΩcm
γmr(T = 2K) 34 GHz

Table 4.4: Parameters for PdCoO2. All parameters are directly from Hicks et al. [28], except for
γmr which was found as γmr = ε0ω2

p,abρab.

relative to the skin layer (fig. 4.13c). PdCoO2 is often described as electronically two-dimensional

or quasi-two-dimensional, as supported by its low-temperature resistivity anisotropy of ρc/ρa ≈ 1000

[28]. However, in a perfectly two-dimensional material, the ASE would be completely suppressed.

Its presence here is a result of the subtle warping of the Fermi surface along kz, as was resolved by

quantum oscillations, and highlights the limitations of a purely two-dimensional description of transport

properties in PdCoO2. This observation has implications for DC transport measurements. To date,

studies have focused on how resistivity varies when restricting in-plane dimensions; these results imply

that size effects will also be present while varying thickness along the c axis. The estimated maximum

skin depth over the measured frequency range is on the order of 100 nm. This implies that size effects

are likely to be especially important to thin films, which have been the subject of recent growth efforts

[13, 27, 59].

Having identified a ballistic origin for the main features of the three measured surface resistances,

we now turn to placing a quantitative bound on the rate of MC scattering by comparing to calculations.

In fig. 4.14, we show the calculated power-law behaviour of the surface resistance as a function of

the relative size of the MC and MR scattering rates γmc/γmr. The colour scale displays the evolution

of the frequency dependence in this cross-over regime, with the frequency range of our measurement

indicated by vertical green lines. Too high a rate of MC scattering (γmc/γmr > 10) leads to too little

anisotropy between Ra,q̂qq‖0 and Ra,q̂qq‖30. Below this, the model captures the higher power law seen for

Ra,q̂qq‖0. However, for γmc/γmr < 3, the calculated anisotropy overestimates that seen in the data. We thus

indicate lower and upper bounds, corresponding to 3 < γmc/γmr < 10 for measurements at 2 K. This

raises the question of the source of MC scattering at this temperature. Given that T�TF , it is expected

that direct electron-electron scattering is negligible [18]. Recent theoretical work has explored electron-

phonon scattering as a source of MC scattering [29, 36], though we estimate that it is insufficient to

give rise to our experimentally-determined value of γmc. Another recent work has proposed a phonon-

mediated electron-electron interaction as a potential source of sufficient MC scattering [71], but such a

mechanism in PdCoO2 would be predominantly momentum-relaxing due to electron-electron Umklapp

processes. The low temperature of our measurements is suggestive of impurity scattering as the source

of the observed γmc [1, 30]. It was noted by Ref. [18] that the evidence for viscous effects in the width-

dependent resistivity measurements from Ref. [43] only sets in at low temperature, further corroborating

the impurity scattering scenario. A comparison between the data and calculations for a few selected

values of γmc is shown in fig. 4.15.
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Figure 4.13: Surface resistance measurements for out-of-plane wavevector. (a) Data showing up-
ward deviation from classical R ∼

√
ω behavior. Because of the high ratio of mean free

path to skin depth reached in the present frequency range, even the small amount of Fermi
surface warping along kz is sufficient to produce non-local effects. (b) Calculated surface
resistance based on the experimentally-determined Fermi surface. The calculation is for a
single relxation rate, i.e. γmc = γmr, and uses published values with no free parameters. (c)
Illustration of ballistic propagation within the skin layer. From [6].
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Figure 4.14: Bounds on rate of momentum-conserving scattering. Plots show the dependence of
the surface resistance on the rate of momentum-conserving scattering, as calculated using
our kinetic theory. Vertical green lines indicate the range of measurement frequency. Hori-
zontal green lines represent bounds on the rate of momentum-conserving scattering deduced
for PdCoO2 based on comparison of our theory and experiment. From [6].

4.5 Outlook
Our experiments demonstrate the utility of broadband microwave spectroscopy in the investigation of

non-local electrodynamics. While the foundational measurements of the ASE having been performed at

fixed frequencies [16, 17, 47, 49], in the present work, continuous-frequency measurements were critical

to the interpretation of our results: in particular, in identifying a ballistic- rather than viscous-dominated

regime, and in revealing the predicted breakdown of Pippard theory as a result of a strongly-faceted

Fermi surface. These effects are also technologically relevant, as future applications of ultra-high-

conductivity materials are likely to operate at GHz frequencies. The ASE is known to limit the conduc-

tance of interconnects in integrated circuits when operated at these high frequencies [53]. The present

results demonstrate that conductance can be improved by aligning interconnects along a direction for

which the ASE is suppressed. Finally, to our knowledge, our findings represent the first experimen-

tal observation of the ASE outside of elemental metals, suggesting experimental opportunities among

new-generation ultra-high-conductivity materials. The interplay of frequency, scattering rates, carrier
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Figure 4.15: Comparison of data with calculations for varying γmc. From [6].

density, and Fermi surface geometry gives rise to a rich phenomenological landscape for non-local elec-

trodynamics, particularly in the microwave and THz range—which, to date, remains largely unexplored

[15, 22, 40, 66–68].
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Chapter 5

Conclusion

This thesis has focused on non-local electrical conductivity in PdCoO2, as manifested in measurements

of the size effect and the skin effect, and the influence of Fermi surface anisotropy and momentum-

conserving scattering.

5.1 Summary
In chapter 1, we introduced the idea of non-local electrical conduction. We reviewed the historical

development of its manifestation in the size and skin effects. We also introduced PdCoO2, a material

whose long electronic mean free path and simple yet anisotropic Fermi surface presented opportunities

to observe novel non-local electrical conduction effects.

We saw in chapter 1 that while theory of the size effect combining both ballistic and viscous effects

had been developed, the assumption of an isotropic Fermi surface had always been made. In chapter 2,

we addressed this shortcoming, deriving a formula for the size effect within the relaxation time approx-

imation for arbitrary Fermi surface. We applied this result to explain two novel experimental results in

the resistivity of narrow channels of PdCoO2 that would be symmetry-forbidden for a local conductivity

tensor: in-plane longitudinal resistivity anisotropy, and non-zero transverse resistivity in zero magnetic

field.

We saw in chapter 1 that existing theories of the skin effect had captured either ballistic or viscous

effects, but not both, and had always assumed an isotropic Fermi surface. In chapter 3, we devel-

oped a theory of the electromagnetic response for arbitrary Fermi surface and arbitrary combination of

momentum-relaxing and momentum-conserving scattering rates. For a circular Fermi surface geometry,

we saw that our theory encompassed previous results based in the two limits of either equal MR and

MC scattering rates or of very frequent MC scattering. For polygonal surface geometries, we showed

that the qualitative behaviour of the surface impedance differs not just relative to the circular geometry

but also based on the relative orientation of the Fermi surface.

In chapter 4, we described our measurements of non-local microwave electrodynamics in PdCoO2.

We reviewed the key operating principles of bolometric microwave spectroscopy and discussed its ap-

propriateness to the present goal relative to other experimental techniques. We discussed general fea-
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tures of the electrodynamics of finite conductors, revealing the principles that allowed us to connect

our power absorption measurements to surface resistances for specific current and wavevector direc-

tions. We were able to measure the surface resistance of PdCoO2 for three distinct wavevectors, all

for in-plane current. The fact that all three measurements differed implied non-local electrodynamics

because they would be symmetry-equivalent within a local picture. The difference in frequency depen-

dence between the two measurements with in-plane wavevectors went beyond Pippard’s theory of the

anomalous skin effect for anisotropic Fermi surfaces. However, we were able to show that the origin of

this difference arises from ballistic propagation in the skin layer; the faceted Fermi surface of PdCoO2

means that for one orientation, a large fraction of electrons are confined to always travel within the skin

layer, largely suppressing the anomalous skin effect. We showed that our results were best described by

3 < γmc/γmr < 10. The measurement for out-of-plane wavevector demonstrated that the finite warping

of the Fermi surface along kz is sufficient to give rise to non-local electrodynamics along this direction

as well, showing that a purely two-dimensional description of PdCoO2 is insufficient.

5.2 Future directions
Our view is that this line of research fits in the context of a field for which there are many interesting

questions and many opportunities to address these questions. Here we discuss a number of potential

future directions related to the present work.

5.2.1 Improved interpretation of electromagnetic measurements

While the power factor approximation developed in section 4.3.3 is well justified in the limit of skin

depth much smaller than the sample dimensions, one would ideally like to be able to make a more direct

comparison between measurements and calculations. The ultimate capability would be to calculate the

power absorption for a given sample geometry and orientation directly from a non-local conductivity

tensor σi j(qqq,ω). This is in principle possible via the finite element method, though it remains to be seen

if it is computationally feasible.

5.2.2 Improved capabilities for electromagnetic measurements

Expanded experimental capabilities for electromagnetic measurements in the microwave and adjacent

frequency regimes are likely to be fruitful for investigations of non-local electrodynamics.

One potential direction is to pursue measurements over a broader range of temperature. In many

materials, the temperature range most favourable to the observation of the viscous regime is expected

to be at a temperature higher than those currently accessible via the bolometric technique. A broader

temperature range would enable the possibility of observing a temperature-dependent crossover from

local to non-local electrodynamics. The current implementation of the bolometric method is limited

to temperatures <30 K. It may be possible to extend this range to higher temperature by selecting a

thermometer whose sensitivity is optimized for a higher temperature range, though thermal noise may

place inherent limitations on the upper temperature limit of the technique. Another possibility is to use
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microwave cavity perturbation to obtain broad temperature dependence at a fixed frequency.

Another potential direction is to pursue measurements over a broader range of frequency. In many

materials, being able to extend measurements to lower frequencies than currently accessible by BMS

would aid our chances of being able to observe the viscous regime. On the other hand, the anomalous

reflection regime, which may be useful for diagnosing the nature of boundary scattering, is likely to

exist at frequencies higher than those currently accessible by BMS. The upper frequency limit can be

extended by miniaturizing the transmission line; the lower frequency limit, potentially, by increasing

the sensitivity of the bolometric detection. Another avenue would be to apply techniques from the

radio-frequency and THz regimes.

Finally, it is desirable to be able to measure the surface reactance in addition to the surface resistance.

It is possible to do so in principle via microwave cavity perturbation, though it may be difficult to achieve

in practice depending on sample geometry [14].

5.2.3 Improved treatment of anisotropic properties within the RTA

In this thesis, we derived expressions for the size and skin effect for arbitrary Fermi surface geometries

and properties. However, we then went on to assume that the scattering time and Fermi velocity mag-

nitude were constant over the Fermi surface, and only analyzed Fermi surface geometries for which a

simple, closed-form parameterization was available. It would be desirable to be able to numerically cal-

culate the non-local conductivity using a band structure model as input to determine the Fermi surface

geometry and variation of the Fermi velocity magnitude.

5.2.4 Improved treatment of the scattering integral: beyond the viscous versus ballistic
dichotomy

The idea of observing hydrodynamic effects in solids has attracted significant recent attention. Con-

tributing to this interest is the universality of a hydrodynamic description of transport processes.

However, the experimental effects being observed in new-generation ultra-high-conductivity ma-

terials may be interpreted through a different lens, which was briefly alluded to in chapter 1: these

experiments are observing scattering processes that cannot be described with the relaxation time ap-

proximation.

The non-equilibrium distribution function can be expanded in terms of the eigenfunctions of the

collision operator, each with an associated scattering rate (eigenvalue). For transport processes involv-

ing a spatially homogeneous electronic distribution, only a single scattering rate enters the observable

properties. For an inhomogeneous electronic distribution, the various eigenfunctions become coupled,

and the observable properties depend on the entire spectrum of scattering rates.

Recently, Nazaryan and Levitov [45] showed that the eigenfunctions of the collision operator in

an isotropic, two-dimensional metal are the functions eimφ with m a non-negative integer. They then

derived the non-local conductivity for arbitrary eigenvalue scattering rates γm in terms of a continued

fraction over all γm.

Ultimately, it would be desirable to derive the non-local conductivity in terms of the eigenvalues γm
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of the collision operator for both two- and three-dimensional metals and allowing for arbitrary crystal

symmetry

At the same time, it would be desirable to understand what the γm spectrum is for different scattering

mechanisms (electron-impurity, electron-phonon, electron-electron) in either 2D or 3D and for arbitrary

crystal symmetry. To date, we are aware of work deriving the γm spectrum for electron-phonon scatter-

ing in three-dimensional free-electron metals [36], for electron-electron scattering in two-dimensional

metals [35], and for electron-electron scattering in graphene (with a Dirac dispersion) [32]. We note

also that the RTA is exact for electron-impurity scattering from point-like impurities.

5.2.5 PdCoO2

For PdCoO2, the source of the MC scattering observed in chapter 4 and by Moll et al. [43] remains

an important open question. As mentioned in chapter 4, the temperature at which the MC scattering is

observed is strongly suggestive of a basis in electron-impurity scattering. Electron-impurity scattering

is not typically associated with MC scattering; as noted in the previous section, for point-like impurities

it gives rise to the RTA in which there is no MC scattering in excess of the MR scattering. However, two

factors may modify the situation in PdCoO2. With conduction taking place primarily in the Pd planes,

defects in the CoO2 layers will act as out-of-plane scatterers, which are known to enhance forward

scattering [19]. Additionally, the γm spectrum for electron-impurity scattering may be altered in the

presence of Fermi surface anisotropy.

5.2.6 Other materials

Conductors

The number of high-conductivity metals for which effects related to non-local electrical conduction may

be observable has grown steadily in recent years. These, and likely other materials yet to be synthesized,

will offer the possibility to explore many of the ideas explored in this thesis. Other materials will offer

different FS geometries. Just by virtue of having different Fermi velocity and plasma frequency, e.g. in

semimetals, different regimes may be accessible even in the same range of measurement frequencies.

Finally, it remains to be seen whether a material can be found for which the viscous skin effect is

observable.

Superconductors

Closely tied in with the discovery and early development of the anomalous skin effect in metals was the

development of non-local electrodynamics (NLE) in superconductors. In chapter 4, studying NLE in

metals bore fruit to new discoveries both because of the development of new materials and because of

the development of new experimental techniques—namely, bolometric microwave spectroscopy. Since

the early work on NLE in superconductors, a plethora of new superconducting materials have been

discovered. Therefore, there is good reason to expect the possibility of new discoveries by applying

BMS to the study of NLE in superconductors.
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Appendix A

Estimate of momentum-conserving
electron-phonon scattering in PdCoO2

Here we estimate the rate of momentum-conserving electron-phonon scattering in PdCoO2. First, we

obtained an experimental MR scattering rate as γ
exp
1 = ρxx/ε0ω2

p,xx using ρxx for a 155 µm channel from

Nandi et al. [44] and using ωp,xx = 7.2×1015 Hz from Hicks et al. [28]. Next, we performed fits to

γ
exp
1 . The results are shown in fig. A.1 and the fit parameters given in table A.1. To find the MR

electron-impurity scattering rate γ
imp
1 , we fit γ

exp
1 to a constant over the range 2K < T < 10K. Next we

considered electron-phonon scattering. It has previously been noted that at high temperature γ
exp
1 ∝ T α

with α > 1, in contrast with expectation that α = 1 within the Bloch-Grüneisen treatment of electron-

acoustic phonon scattering. This discrepancy has been attributed to electron-optical phonon scattering

[28, 62]. Therefore, we fit γ
exp
1 − γ

imp
1 to a sum of Einstein and Debye contributions using

h̄γ
Ein
1 =

π

2
λEkBTE

TE/T
sinh2(TE/2T )

(A.1)

and

h̄γ
Deb
l = 4πλDkBT

(
T
TD

)2 ∫ TD/T

0
dx

x3

cosh(x)−1
[
1−Pl

(
1− (T/TD)

2x2)] (A.2)

with l = 1 (cf. eq. A.45 from Levchenko and Schmalian [36]). The fit returned Debye and Einstein

temperatures TD and TE and transport electron-phonon couplings λD and λE . Following Hicks et al. [28],

the fit was performed over the range 60K < T < 300K . Having determined TD and λD, we then used

eq. (A.2) to determine γ
Debye
l for all l, as shown in fig. A.2. We see that at 2 K, all γl for electron-Debye

phonon scattering are less than the experimentally determined MR scattering rate. Therefore, electron-

phonon scattering is unlikely to be responsible for the MC scattering inferred from our measurements.
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Figure A.1: Momentum-relaxing temperature-dependent scattering rates determined by fitting to
bulk resistivity measurements. From [6].

γ
imp
1 39 GHz

λD 0.049
TD 331 K
λE 0.030
TE 1120 K

Table A.1: Fit parameters.
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Figure A.2: Spectrum of scattering rates for electron-Debye phonon scattering compared with 2 K
momentum-relaxing scattering rate. From [6].
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