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Abstract

Good approximations have been attained for the sparsest cut problem by rounding solutions to convex relax-

ations via low-distortion metric embeddings [5, 24]. Recently, Bryant and Tupper showed that this approach

extends to the hypergraph setting by formulating a linear program whose solutions are diversities which are

rounded via diversity embeddings into ℓ1 [31]. Diversities are a generalization of metric spaces in which the

nonnegative function is defined on all subsets as opposed to only on pairs of elements.

We show that this approach yields an O(logn)-approximation when either the supply or demands are

given by a graph. This result improves upon Plotkin et al.’s O(log(kn) logn)-approximation [28], where k

is the number of demands, in the setting where the supply is given by a graph and the demands are given

by a hypergraph. Additionally, we provide an O(min{rG,rH} log(rH) logn)-approximation for when the

supply and demands are given by hypergraphs whose hyperedges are bounded in cardinality by rG and rH

respectively.

To establish these results we provide an O(logn)-distortion ℓ1 embedding for the class of diversities

known as diameter diversities. This improves upon Bryant and Tupper’s O((logn)ˆ2)-distortion embedding

[31]. The smallest known distortion with which an arbitrary diversity can be embedded into ℓ1 is O(n).

We show that for any ε > 0 and any p > 0, there is a family of diversities which cannot be embedded

into ℓ1 in polynomial time with distortion smaller than O(nˆ(1− ε)) based on querying the diversities on

sets of cardinality at most O((logn)ˆp), unless P = NP. This disproves (an algorithmic refinement) of

Bryant and Tupper’s conjecture that there exists an O(
√

n)-distortion ℓ1 embedding based off a diversity’s

induced metric. In addition, we demonstrate via hypergraph cut sparsifiers that it is sufficient to develop a

low-distortion embedding for diversities induced by sparse hypergraphs for the purpose of obtaining good

approximations for the sparsest cut in hypergraphs.
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Lay Summary

Given a network with pairwise capacities and demands, a fundamental problem is to compute its bottleneck

or sparsest cut. A classic approach is to formulate a convex relaxation whose solutions form a metric on the

nodes. Cut information is then extracted via embedding this metric into ℓ1. In spite of the powerful ability of

hypergraphs to model multiway relationships, the sparsest cut has received relatively little attention in this

setting. Extending the approach of metric embeddings to the hypergraph sparsest cut yields a convex relax-

ation whose solutions are nonnegative set-functions that satisfy a certain type of triangle-inequality. These

are known as diversities. We show that this approach of diversity embeddings is tractable and guarantees

good approximations when either the supply or demand hyperedges are small in cardinality. We also make

progress on open questions in the theory of ℓ1 diversity embeddings.
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Chapter 1

Introduction

1.1 Introduction
The sparsest cut problem is a fundamental problem in theoretical computer science. In this thesis we con-

sider the sparsest cut problem in the general hypergraph setting. That is, the problem is defined by two

hypergraphs, a supply hypergraph and a demand hypergraph.

We let G = (V,EG,wG) be a hypergraph with node set V , hyperedge set EG, and nonnegative hyperedge

weights wG : EG → R+ and H = (V,EH ,wH) be a hypergraph with node set V , hyperedge set EH , and

nonnegative hyperedge weights wH : EH → R+. We refer to G and H as the supply hypergraph and the

demand hypergraph, respectively. We use the notation rG for the rank of G and rH for the rank H where we

define the rank of a hypergraph as follows

Definition 1.1.1 (Hypergraph Rank) Let H = (V,E) be a hypergraph with node set V and hyperedge set

E. We say that H has rank k if the maximum cardinality of a hyperedge of H is k. Or, more formally the rank

is defined as

max{|U | : U ∈ E}= k (1.1)

A hypergraph of rank two is simply a graph. In settings where G or H is a graph we state explicitly that G

is a supply graph and H is a demand graph, respectively.

Then we define the sparsity of a cut as follows

Definition 1.1.2 Let G=(V,EG,wG) be a supply hypergraph and H =(V,EH ,wH) be a demand hypergraph.

For A ⊆V such that A ̸= /0,V , the sparsity of the cut defined by A, which we denote by φ(A), is defined as

φ(A) =
∑U∈EG

wG(U)1{U∩A̸= /0,U}

∑S∈EH wH(S)1{S∩A ̸= /0,S}
(1.2)

where 1 is the indicator variable.

1p =

1 if p = true

0 if p = false
(1.3)
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The sparsest cut of G and H is defined as

Definition 1.1.3 Let G=(V,EG,wG) be a supply hypergraph and H =(V,EH ,wH) be a demand hypergraph.

Then the sparsity of the sparsest cut of G and H, denoted by φ , is defined as

φ = min
A⊆V :A ̸= /0,V

φ(A) = min
A⊆V :A ̸= /0,V

∑U∈EG
wG(U)1{U∩A̸= /0,U}

∑S∈EH wH(S)1{S∩A ̸= /0,S}
(1.4)

Additionally, we refer to an argmin of (1.4) as the sparsest cut of G and H. If the underlying hypergraphs

are ambiguous we may use the notation φG,H and φG,H(A).

Computing the sparsest cut is NP-hard, even for the case where G and H are graphs [27]. Consequently,

there is a rich history of approximation algorithms for the sparsest cut problem in the graph setting which

has culminated in an O(
√

logn log logn)-approximation factor for general supply and demand graphs [3].

A common approach to achieve such bounds begins with formulating a convex relaxation, such as a linear

program (LP) or a semidefinite program (SDP), and then rounding its optimal solution to obtain an integral,

but approximate, sparsest cut. Often, solutions of these convex relaxations form a metric space for the nodes

V and the rounding step involves embedding this metric into another metric space such as the ℓ1 or the ℓ2

metric.

Extending such metric-relaxations to the hypergraph setting results in a convex relaxation whose solu-

tions are vectors δ which assign nonnegative values to arbitrary subsets as opposed to only pairwise distances

d(u,v) from a metric space (V,d). The vector δ does satisfy certain triangle inequalities and the ordered

tuples (V,δ ) are termed “diversities” according to Bryant and Tupper [10]. Analogous to the approach

based on metric embeddings into ℓ1 [5, 24], one can extract an approximate sparsest cut in the hypergraph

setting via diversity embeddings into ℓ1. The focus of this thesis is largely concerned with low-distortion

embeddings of diversities into ℓ1 and their application to the sparsest cut in hypergraphs.

In Section 1.2 we summarize our contributions to this topic, in Section 1.3 we provide an overview of

the history and related work of this problem, in both the graph and hypergraph settings. In Section 1.4 we

overview the organization and structure of this thesis.

1.2 Overview of Our Results
In this section we list our contributions as theorem and conjecture statements.

1.2.1 Approximating the Sparsest Cut in Hypergraphs

Our contributions for the sparest cut problem are in the setting where the supply and demand hypergraphs are

in general hypergraphs, namely Theorem 1.2.1. This more general hypergraph setting has received relatively

little investigation except for recent work in the setting where G is a supply hypergraph and H is a demand

graph [19, 25, 26].

Theorem 1.2.1 Let G = (V,EG,wG) be a supply hypergraph with rank rG and H = (V,EH ,wH) be a de-

mand hypergraph with rank rH . Then there is a randomized polynomial-time O(min{rG,rH} logn logrH)-

approximation algorithm for the sparsest cut of G and H.

2



Although the approach of Theorem 1.2.1 is introduced by Bryant and Tupper in [31], we present the first

randomized polynomial-time implementation of this approach. We next consider the case where the supply

is a graph, but the demands arise from a hypergraph.

Theorem 1.2.2 Let G = (V,EG,wG) be a supply graph, that is it has rank rG = 2, and H = (V,EH ,wH) be

a demand hypergraph. Then there is a randomized polynomial-time O(logn)-approximation algorithm for

the sparsest cut of G and H.

As for this setting where G is a supply graph and H is a demand hypergraph, Theorem 1.2.2 is an im-

provement upon an existing polynomial time O(logn log(|EH |rH))-approximation algorithm due to Plotkin

et al. [28]. Specifically, the approximation factor guaranteed by Plotkin et al.’s algorithm has a logarith-

mic dependence on |EH |, which is exponentially large in general, while Theorem 1.2.2 truly guarantees a

polylogarithmic approximation factor.

1.2.2 Diversity Embeddings

We shall see that Theorem 1.2.1 relies critically on the following embedding result. It is also an improvement

upon the existing O(log2 n)-distortion embedding of a diameter diversity into the ℓ1 diversity, (RO(logn),δ1),

[31]. See Definition 2.2.7 for the definition of a diameter diversity.

Theorem 1.2.3 Let (X ,δdiam) be a diameter diversity with induced metric (X ,d) and with |X | = n. Then

there exists a randomized polynomial time embedding of (X ,δdiam) into the ℓ1 diversity (RO(log2 n),δ1) with

distortion O(logn).

In contrast, we also give bad news in terms of embedding a general diversity.

Theorem 1.2.4 For any p ≥ 0 and for any ε > 0, there does not exist a polynomial-time diversity ℓ1 embed-

ding that queries a diversity on sets of cardinality at most O(logp n) and achieves a distortion of O(n1−ε),

unless P=NP.

Theorem 1.2.4 provides an inapproximability result for embedding diversities into ℓ1 based only on

their induced metric space. This answers an algorithmic-refinement of Bryant and Tupper’s conjecture that

there exists an O(
√

n)-distortion embedding into ℓ1 solely using the induced metric of a diversity [9], see

Conjecture 3.4.2.

1.2.3 The Minimum Cost Hypergraph Steiner Problem

Theorem 1.2.5 There exists a polynomial time O(logn)-approximation algorithm for the minimum cost hy-

pergraph Steiner problem. Specifically, for a hypergraph G = (V,E,w) with nonnegative hyperedge weights

w : E →R+ and for a set of Steiner nodes S ⊆V , HSP(G,S) can be approximated up to a factor of O(log |S|)
in polynomial time.

3



To our knowledge, this is the first polynomial-time approximation algorithm for the minimum-cost hy-

pergraph Steiner problem, a generalization of the classic Steiner tree and the minimum-cost spanning sub-

hypergraph problems. For our purposes, this approximation algorithm provides a critical subroutine for

Theorem 1.2.1.

1.2.4 A Sparse Diversity Embedding Conjecture

Conjecture 1.2.6 Let H = (V,E,w) be a hypergraph with node set V , hyperedge set E, and nonnegative

hyperedges weights w : E →R+, where |V |= n and |E|= m. Let (V,δH ) be the corresponding hypergraph

Steiner diversity defined by H. Then for some p > 0 there is an O(logp (n+m))-distortion embedding of

(V,δH ) into the ℓ1 diversity.

We conjecture that a diversity embedding into ℓ1 with polylogarithmic distortion in the number of hy-

peredges that define the diversity is possible. This conjecture is motivated by the fact that hypergraph cut

sparsifiers allow us to replace an instance of the sparsest cut with dense hypergraphs by an instance with

sparse hypergraphs in polynomial time and with an arbitrarily small approximation factor. Then the diversity

that arises as the solution to the sparsest-cut convex-relaxation is one that is defined by a sparse hypergraph.

We believe that this sparse structure may give rise to low-distortion embeddings, hence our Conjecture 1.2.6.

1.3 Related Work and History
A closely related property to the sparsity of a cut is the expansion of the cut. This is defined as the ratio of

the weight of the (hyper)edges crossing the cut to the number of nodes in the smaller partition of the cut.

Formally,

Definition 1.3.1 Let G = (V,E,w) be a (hyper)graph with nonnegative hyperedge weights w : E →R+ and

let A ⊆V such that A ̸= /0,V . Then the expansion of the cut A, Φ(A), is defined as

Φ(A) =
∑U∈E w(U)1{U∩A ̸= /0,U}

min{|A|, |AC|}
(1.5)

Then the (hyper)graph expansion of G is defined as

Definition 1.3.2 Let G = (V,E) be (hyper)graph with nonnegative hyperedge weights w : E → R+. Then

the expansion of the (hyper)graph G, denoted by Φ, is defined as

Φ = min
A⊆V :A ̸= /0,V

Φ(A) = min
A⊆V :A ̸= /0,V

∑U∈E w(U)1{U∩A ̸= /0,U}

min{|A|, |AC|}
(1.6)

Often, when discussing (hyper)graph expansion, the supply (hyper)graph G has unit weight and the

expansion of a cut is simply the ratio of the number of (hyper)edges crossing the cut to the number of nodes

in the smaller partition of the cut. The expansion of a cut is closely related to the sparsity of the cut when

the demand network is a complete graph with unit weights, which we call uniform demands. The problem

of computing the minimum expansion cut, even with uniform demands, is NP-hard [27].
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Definition 1.3.3 A demand graph H = (V,EH ,wH) is said to be a uniform demand graph if H is a complete

graph with unit weights, that is for each distinct pair of elements u,v ∈V , wH({u,v}) = 1. Furthermore, it

is easy to verify that for A ⊆V we have that

∑
S∈EH

wH(S)1{S∩A ̸= /0,S} = |A||AC| (1.7)

Thus for a supply hypergraph G and a uniform demand graph H, we have for each A⊆V with |A| ≤ |AC|,
that n

2 |A| ≤ |A||AC| ≤ n|A|. Hence up to a factor of 2, approximability of the sparsest cut and the minimum

expansion cut is equivalent. In particular, existence of an O(α)-approximation algorithm for the sparsest

cut is also an O(α)-approximation algorithm for the (hyper)graph expansion problem and vice-versa. Many

of the breakthroughs for the sparsest cut problem are in this specific setting of uniform demands due to this

close connection with (hyper)graph expansion. Expander graphs have played a ubiquitous role in theoretical

computer science and consequently approximation algorithms for computing the cut with minimal expansion

are critical to tasks like verifying whether a graph is an expander and constructing spectral sparsifiers [19].

We begin with discussing the history of the sparsest cut problem in the setting where G and H are both

graphs. Leighton and Rao gave the first approximation algorithm for the sparsest cut problem with uniform

demands, achieving an O(logn) approximation factor [23]. Specifically, Leighton and Rao showed that

the flow-cut gap for the uniform demand multicommodity flow problem and the sparsest cut problem with

uniform demands is Θ(logn), allowing algorithms for the multicommodity flow problem to be employed

as approximation algorithms for the sparsest cut problem in this setting. Moreover, they showed that the

flow-cut gap in this setting is Ω(logn) due to an example where the supply graph is a unit-capacity constant-

degree expander graph. The Leighton and Rao algorithm is an LP approach and their Ω(logn) integrality

gap necessitated the use of more powerful tools to improve the approximability of the sparsest cut problem,

even for the uniform demands setting (see further below).

Later, Linial, London, and Rabinovich [24] and Aumann and Rabani [5] generalized Leighton and Rao’s

flow-cut gap result to the setting of an arbitrary demand graph. Specifically, Linial et al. showed that

the flow-cut gap is bounded by the minimum distortion of embedding a finite metric space into the ℓ1

metric. According to Bourgain, the minimum distortion of embedding a finite metric into ℓ1 is O(logn).

However, before [24] it remained an open question as to whether this distortion factor is tight. Linial et

al.’s result coupled with Leighton and Rao’s Ω(logn) flow-cut gap lower bound definitively answered this

question. Furthermore, Linial et al. were the first to give a randomized polynomial time implementation of

Bourgain’s O(logn)-distortion ℓ1 embedding. From their geometric analysis of graphs, Linial et al. gave

an approximation algorithm for the sparsest cut problem via embedding finite metric spaces into the ℓ1

metric, producing the first O(logn) approximation factor for the sparsest cut problem for arbitrary supply

and demand graphs.

One can strengthen the metric relaxation of the sparsest cut problem, introduced by Linial et al., by

adding negative-type metric constraints through the use of an SDP relaxation. (X ,d) is a metric of the

negative-type if (X ,
√

d) is a subset of the ℓ2 metric space. We use the notation ℓ2
2 for a metric of the

negative-type. The minimum distortion of embedding a finite metric of the negative-type into the ℓ1 metric

5



space yields the integrality gap for this SDP approach. Furthermore, a polynomial time algorithm that

embeds a finite metric of the negative-type into the ℓ1 metric with low distortion yields a polynomial time

approximation algorithm for the sparsest cut problem.

On this front, Arora, Rao, and Vazirani gave a polynomial time approximation algorithm for the sparsest

cut problem with uniform demands that attains an approximation factor of O(
√

logn) [4]. However, Arora

et al.’s approach is a randomized rounding scheme of their SDP relaxation as opposed to directly embedding

an arbitrary ℓ2
2 metric into ℓ1.

Later, Chawla, Gupta, and Räcke proved that a finite ℓ2
2 metric can indeed be embedded into the ℓ1

metric with distortion O(log
3
4 n) and they gave a polynomial time algorithm for achieving such a metric

embedding [13]. For arbitrary demand graphs, this improved the O(logn) approximation factor for the

sparsest cut problem due to Linial et al.’s metric embedding technique to O(log
3
4 n). Later, Arora, Lee, and

Naor [3] improved this result by showing that a finite ℓ2
2 metric can be embedded in the ℓ1 metric space

with distortion O(
√

logn log logn) and in turn they gave a polynomial time approximation algorithm to the

generalized sparsest cut problem that achieves this approximation factor [3]. This metric embedding result

is tight up to a factor of O(log logn).

Next ,we discuss recent work on the sparsest cut problem in the setting where G is a supply hypergraph

and H is a demand graph. In this setting, Kapralov et al. in [19] gave a polynomial time approximation

algorithm for the hypergraph expansion problem and the sparsest cut problem with uniform demands that

yields an O(logn) approximation factor. Their algorithm is a rounding scheme of an LP relaxation of the

hypergraph expansion problem that optimizes over pseudo metrics. We note that Kapralov et al.’s result

comes after Louis and Makarychev’s O(
√

logn) approximation factor in [26], however Kapralov et al.’s

approximation algorithm is an LP approach whereas Louis and Makarychev’s approximation algorithm is an

SDP approach. Kapralov et al.’s work is motivated by the construction of spectral sparsifiers for hypergraphs

and they require an approximation algorithm for the hypergraph expansion problem in order to extract cuts

with approximate minimal expansion.

Louis and Makarychev in [26] obtained a randomized polynomial time approximation algorithm with

an approximation factor O(
√

logn) for the hypergraph expansion problem, and in turn, for the sparsest cut

problem with uniform demands. This approximation factor matches the approximation factor for graph

expansion in the setting where G is a graph and in turn the sparsest cut with uniform demands, obtained by

Arora, Rao, and Vazirani [4]. Louis and Makarychev’s approach is a randomized rounding scheme of an

SDP relaxation of the sparsest cut problem.

Similar to the progression of [4] to [3], in this setting where G is a supply hypergraph and H is an

arbitrary (non-uniform) demand graph, Louis gave a randomized polynomial time approximation algorithm

for the sparsest cut problem that obtains an O(
√

logrG logn log logn) approximation factor [25]. Louis’

technique is inspired by [3], whereby Louis’ algorithm solves an SDP relaxation of the sparsest cut problem,

with negative type metric constraints, where its solution, a metric of the negative type, is embedded into ℓ2

with distortion O(
√

logn log logn) according to [3]’s metric embedding result. Finally, Louis’ algorithm

performs randomized rounding to obtain an approximate sparsest cut, incurring an additional O(
√

logrG)

approximation factor.
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As for the setting where G is a supply graph and H is a demand hypergraph, Plotkin et al. provided

a polynomial time O(logn log(|EH |rH))-approximation algorithm. Plotkin et al.’s approach rounds a frac-

tional solution of an LP relaxation without the use of metric embeddings. To our knowledge, there is no

polynomial-time algorithm in this setting that utilizes metric embeddings. Furthermore, we are not aware of

any polynomial-time approach in the more general setting where G and H are arbitrary supply and demand

hypergraphs.

Recently introduced by Bryant and Tupper [10], diversities are a generalization of metric spaces where

instead of a nonnegative function defined on pairs of elements, it is defined on arbitrary finite sets of el-

ements. Additionally, Bryant and Tupper have developed a substantial theory on diversities [9–11, 31]

including the notion of a diversity embedding. They have demonstrated that several types of diversities

attain polynomial-time low-distortion embeddings into ℓ1. Most pertinent to our discussion, in [31] they

generalized the work of Linial et al. [24] whereby they show that the flow-cut gap in the hypergraph setting

is equivalent to the minimum distortion of embedding some finite diversity into the ℓ1 diversity. Notably,

this work provides an approach to approximating the sparsest cut in hypergraphs. However, Bryant and

Tupper did not expand their investigation into an algorithmic direction, leaving open questions of whether

this approach is even polynomial-time tractable in the hypergraph setting.

1.4 Organization of this Thesis
In Chapter 2 we introduce the notion of a diversity, present properties of diversities, and define several

diversities that are pertinent to our discussion and results in this thesis.

In Chapter 3 we introduce the notion of embedding one diversity into another along with several prop-

erties of embedding into ℓ1. This chapter also includes polynomial-time low-distortion ℓ1 embeddings of

several classes of diversities. Notably, this chapter includes proofs of Theorem 1.2.3, in Section 3.3, and

Theorem 1.2.4, in Section 3.4.

In Chapter 4 we present the approach of approximating the hypergraph sparsest cut via diversity embed-

dings. Specifically, in Section 4.1 we provide an LP relaxation for the sparsest cut and show how we can

extract an approximate sparsest cut via diversity embeddings. In Section 4.2 we characterize the optimal so-

lutions of this LP relaxation which is necessary for the proofs of Theorems 1.2.1 and 1.2.2 in the subsequent

Section 4.3.

In Chapter 5 we introduce the minimum-cost hypergraph Steiner problem and present a proof of Theo-

rem 1.2.5.

Finally, in Chapter 6 we introduce the notion of a hypergraph cut-sparsifier and show how it can be used

to replace a dense instance of the sparsest cut problem with a sparse instance. We conclude this chapter with

Conjecture 1.2.6.
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Chapter 2

Diversities

2.1 Introduction
Recently introduced by Bryant and Tupper [10], diversities are a generalization of metric spaces where in-

stead of a nonnegative function defined on pairs of elements, it is defined on arbitrary finite sets of elements.

In this section we introduce the notion of a diversity along with some of their relevant properties. In the

subsequent section we define several diversities that are pertinent to our discussion and results with regards

to the sparsest cut problem in hypergraphs. Additionally, in Section 2.3 we show when and how a subaddi-

tive set function yields a diversity. This is a necessary technical lemma for the proof of Theorem 3.4.3, our

inapproximability result for diversity embeddings into ℓ1. We begin by formally defining a diversity.

Definition 2.1.1 Let X be a set, then the collection of finite subsets of X, P(X), is defined as

P(X) = {A ⊆ X : |A| is finite}. (2.1)

Definition 2.1.2 A diversity is a pair (X ,δ ) where X is a set and δ is a real-valued function defined over

the finite subsets of X satisfying the following three axioms:

1. ∀A ∈ P(X),δ (A)≥ 0

2. δ (A) = 0 if and only if |A| ≤ 1

3. ∀A,B,C ∈ P(X),C ̸= /0 ⇒ δ (A∪B)≤ δ (A∪C)+δ (B∪C)

Similar to the notion of a pseudo-metric there is a definition of a pseudo diversity. Formally, (V,δ )

is a pseudo diversity if (X ,δ ) satisfies the three axioms of Definition 2.1.2 with the second axiom being

weakened to

δ (A) = 0 if |A| ≤ 1 (2.2)

We refer to the third axiom of Definition 2.1.2 as the triangle inequality, and it is the property that makes

(pseudo) diversities a generalization of (pseudo) metrics.
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From this point onward, when we refer to (X ,δ ) as being a “diversity” we mean that (X ,δ ) is a pseudo

diversity (and may not necessarily be a diversity). We make this assumption since in our approach to the

sparsest cut the LP relaxations optimize over pseudo diversities.

We note that any (pseudo) diversity (X ,δ ) yields an induced (pseudo) metric space (X ,d) where for any

x,y ∈ X we define d as

d(x,y) = δ ({x,y}) (2.3)

Conversely, a metric can induce an infinite number of diversities for whom it is the induced metric.

Definition 2.1.3 (D(X ,d)) For a metric space (X ,d), D(X ,d) is the family of diversities for whom (X ,d) is

their induced metric. For contexts where the set X is unambiguous the notation Dd may be used.

A consequence of the triangle inequality is that (pseudo) diversities are monotone increasing set func-

tions.

Proposition 2.1.4 (Pseudo) diversities are monotone increasing. That is, if (X ,δ ) is a (pseudo) diversity

then for any A,B ∈ P(X) we have that

A ⊆ B ⇒ δ (A)≤ δ (B) (2.4)

Proof: We let A,B ∈ P(X) be arbitrary and we assume that A ⊆ B. Then we let B \A = {x1,x2, . . . ,xk}.

We define A0 = A and for each i ∈ {1,2, . . . ,k} we define Ai = A∪{x1,x2, . . . ,xi}. For any arbitrary i ∈
{0,1,2, . . . ,k−1} we show that δ (Ai)≤ δ (Ai+1).

δ (Ai)≤ δ (Ai ∪{xi+1})+δ ({xi+1}) by the triangle inequality of diversities (2.5)

= δ (Ai ∪{xi+1}) δ ({xi+1}) = 0 since |{xi+1}|= 1 (2.6)

= δ (Ai+1) (2.7)

Since Ak = B, the above result implies that

δ (A)≤ δ (A1)≤ δ (A2)≤ . . .≤ δ (Ak−1)≤ δ (B) (2.8)

thus completing the proof. □

2.2 Examples of Diversities
In this section we provide definitions of several diversities that are relevant to our discussion of and results

on the generalized sparsest cut problem in hypergraphs. All of the diversities defined below are in general

pseudo diversities, with the exception of the ℓ1 diversity which is always a diversity. For each diversity

that we define below it is easy to verify that it satisfies the axioms of Definitions 2.1.2. We note that these

diversities have been previously defined by Bryant and Tupper [9, 10, 31].
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We begin with the hypergraph Steiner diversity, a critical diversity to our approach to the sparsest cut

problem in hypergraphs. Given a hypergraph H = (V,E), we define T(H,S), the collection of subsets of

hyperedges that correspond to connected subhypergraphs that contain the nodes S ⊆V .

Definition 2.2.1 Let H =(V,E) be a hypergraph with node set V and hyperedge set E. For a set of nodes S⊆
V , we define, T(H,S), the collection of subsets of hyperedges that correspond to connected subhypergraphs

of H that contain S, as

T(H,S) = {t ⊆ E : (V (t), t) is a connected hypergraph and S ⊆V (t)} (2.9)

where we define V (t) as

V (t) = ∪U∈tU (2.10)

In contexts where the hypergraph H is unambiguous we may use the notation TS.

A hypergraph Steiner diversity is defined as

Definition 2.2.2 (Hypergraph Steiner Diversity) Let H = (V,E,w) be a hypergraph with node set V , hy-

peredge set E, and nonnegative hyperedge weights w : E → R+. The hypergraph Steiner diversity (V,δH )

is defined as

δH (A) =

mint∈TA ∑U∈t w(U) if |A| ≥ 2

0 otherwise
(2.11)

where TA is the collection of subsets of hyperedges that correspond to connected subhypergraphs of H that

contain the nodes A, as defined according to Definition 2.2.1.

Analogous to the fact that any metric space arises from a shortest path metric on some graph, every

(pseudo) diversity is a hypergraph Steiner diversity for some hyperedge-weighted hypergraph [9]. Given

a diversity (X ,δ ), one can easily verify that (X ,δ ) is equivalent to the hypergraph Steiner diversity corre-

sponding to the hyperedge-weighted hypergraph H = (X ,P(X),w) where w is defined as w(A) = δ (A).

Proposition 2.2.3 (Section 2.3 of [9]) Let (X ,δ ) be a (pseudo) diversity. Then (X ,δ ) is a hypergraph

Steiner diversity for some hyperedge-weighted hypergraph H = (X ,E,w) where w : E → R+.

2.2.1 The l1 and Cut Diversities

Just as the hypergraph Steiner diversity is a generalization of the shortest path metric of a graph, the ℓ1

diversity is a natural generalization of the ℓ1 metric. For context, we first define the ℓ1 metric.

Definition 2.2.4 Let (Rm,d) be a metric space. Then (Rm,d) is the ℓ1 metric if for any x,y ∈ Rm

d(x,y) =
m

∑
i=1

|xi − yi| (2.12)
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Similarly, the ℓ1 diversity is defined as follows

Definition 2.2.5 (ℓ1 Diversity) (Rm,δ1) is an ℓ1 diversity if for any A ∈ P(Rm)

δ1(A) =
m

∑
i=1

max
a,b∈A

|ai −bi| (2.13)

Likewise, the cut pseudo metric is generalized by the cut pseudo diversity. A classic property of the

ℓ1 metric is that it can be represented as sum of cut pseudo metrics. Similarly, we present an analogous

generalization for the ℓ1 diversity and cut pseudo diversities as Theorem 3.1.2.

Definition 2.2.6 (Cut Diversity) Let X be a set and let U ⊆ X be a nonempty subset. Then (X ,δU) is a cut

pseudo diversity (induced by U) if for any A ∈ P(X)

δU(A) =

1 if A∩U ̸= /0,A

0 otherwise
(2.14)

2.2.2 Extremal Diversities

Given a (pseudo) metric space, (X ,d), a natural extension of the (pseudo) metric space to a (pseudo) diversity

is to define a diversity (X ,δ ) where δ (A) is simply the diameter of the set A in the metric space (X ,d).

Unsurprisingly, we refer to such a diversity as a diameter diversity.

Definition 2.2.7 (Diameter Diversity) Given a (pseudo) metric space (X ,d), a (pseudo) diameter diversity

(X ,δdiam) satisfies for each A ∈ P(X)

δdiam(A) = max
x,y∈A

d(x,y) (2.15)

Alternatively, one case also extend the (pseudo) metric (X ,d) to a (pseudo) diversity by defining a

diversity (X ,δ ) where δ (A) is simply the minimum cost Steiner tree containing the nodes A in the complete

graph with node set X and edge weights d. We refer to such a diversity as a Steiner diversity. Such a

diversity is the special case of the hypergraph Steiner diversity in which the hyperedge-weighted hypergraph

H = (V,E,w) is simply a graph.

Definition 2.2.8 (Steiner Diversity) Let G = (V,E,w) be a graph with node set V , edge set E, and non-

negative edge weights w : E → R+. Then the Steiner diversity (V,δSteiner) is a Steiner diversity if for any

A ∈ P(V ) we have that δSteiner(A) is defined as

δSteiner(A) =

mint∈TA ∑e∈t w(e) if |A| ≥ 2

0 otherwise
(2.16)

where TA is the collection of subsets of edges that correspond to connected subgraphs of G that contain the

nodes A, as defined according to Definition 2.2.1. Or in other words, δSteiner(A) is defined to be the minimum

weight of a subtree of G containing the nodes A.
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A special case of Steiner diversities and a generalization of tree metrics are the tree diversities. We note

that Bryant and Tupper introduced the definition of a tree diversity by the name phylogenetic diversity.

Definition 2.2.9 (Tree Diversity) Let G=(V,E,w) be a graph with node set V , edge set E, and nonnegative

edge weights w : E → R+. Let (V,δSteiner) be the corresponding Steiner diversity. If (V,E) is a tree then

(V,δSteiner) is a tree diversity, for which we may use the notation (V,δtree).

The following extremal result characterizes the (pseudo) diameter diversity as being the “minimal”

(pseudo) diversity and characterizes the (pseudo) Steiner diversity as being the “maximal” (pseudo) diversity

among the family of (pseudo) diversities sharing an induced (pseudo) metric.

Theorem 2.2.10 (Bryant and Tupper in [31]) let (X ,d) be a (pseudo) metric space. Let D(X ,d) be the

family of diversities for whom (X ,d) is their induced (pseudo) metric space. Let (X ,δdiam) ∈ D(X ,d) be

the (pseudo) diameter diversity with induced metric space (X ,d). Let (X ,δSteiner) be the (pseudo) Steiner

diversity with induced metric space (X ,d). Then for any (X ,δ ) ∈ D(X ,d) and any A ∈ P(X) it follows that

δdiam(A)≤ δ (A)≤ δSteiner(A) (2.17)

Or in other words (X ,δdiam) is the minimal (pseudo) diversity of the family D(X ,d) and (X ,δSteiner) is the

maximal (pseudo) diversity of the family D(X ,d).

Proof: Let (X ,δ ) ∈ D(X ,d) and A ∈ P(X) be arbitrary. Let x,y ∈ A be such that

d(x,y) = max
u,v∈A

d(u,v) (2.18)

Let t ⊆ X ×X such that

∑
(u,v)∈t

d(u,v) = min
t ′∈TA

∑
(u,v)∈t ′

d(u,v) (2.19)

Then it follows that

δdiam(A) = max
u,v∈A

d(u,v) by definition of δdiam (2.20)

= d(x,y) by choice of x and y (2.21)

= δ ({x,y}) by (X ,δ ) ∈ D(X ,d) (2.22)

≤ δ (A) by δ being increasing, Proposition 2.1.4 (2.23)

≤ ∑
(u,v)∈t

d(u,v) by the triangle inequality, Proposition A.1.1 (2.24)

= min
t ′∈TA

∑
(u,v)∈t ′

d(u,v) by choice of t (2.25)

= δSteiner(A) by definition of δSteiner (2.26)
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This completes the proof. □

Finally, we introduce the k-diameter diversity which generalizes the diameter diversity and satisfies a

similar extremal result to Theorem 2.2.10. We note that Bryant and Tupper introduced the definition of a

k-diameter diversity by the name truncated diversity.

Definition 2.2.11 (k-Diameter Diversity) Given a (pseudo) diversity (X ,δ ) and a k ∈ Z≥0, we say that

(X ,δk-diam) is the k-diameter (pseudo) diversity of (X ,δ ) if for any A ∈ P(X)

δk-diam(A) = max
B⊆A:|B|≤k

δ (B) (2.27)

Furthermore, if a (pseudo) diversity satisfies equation (2.27) then it is referred to as a k-diameter (pseudo)

diversity.

From the definition of the k-diameter diversity, it is easy to see that a diameter diversity is a 2-diameter

diversity.

Fact 2.2.12 A 2-diameter (pseudo) diversity is a diameter (pseudo) diversity. Furthermore if (X ,δ ) is a

diversity with the induced metric space (X ,d) then D(X ,d) = D(X ,δ ,2).

Additionally, we introduce a generalization of D(X ,d), the family of diversities which have the induced

metric space (X ,d).

Definition 2.2.13 (D(X ,δ ,k)) For a (pseudo) diversity (X ,δ ) and k ∈ Z≥0, D(X ,δ ,k) is the family of (pseudo)

diversities which are equivalent to δ on subsets of X of cardinality at most k. For contexts where the set X

is unambiguous the notation D(δ ,k) may be used.

Next, we prove that a k-diameter diversity (X ,δ ) is the minimal diversity of the family D(X ,δ ,k), gener-

alizing Theorem 2.2.10 due to Bryant and Tupper. We use this extremal property of the k-diameter diversity

in order to characterize the optimal solutions of the diversity-relaxation for the sparsest cut, Theorem 4.2.1.

Theorem 2.2.14 Given a (pseudo) diversity (X ,δ ) and k∈Z≥0 we let (X ,δk-diam) be the k-diameter (pseudo)

diversity of (X ,δ ). Then for any (X ,δ ′) ∈ D(X ,δ ,k) and any A ∈ P(X) it follows that

δk-diam(A)≤ δ
′(A) (2.28)

Or in other words (X ,δk-diam) is the minimal (pseudo) diversity of the family D(X ,δ ,k).

Proof: For an arbitrary k ∈ Z≥0, we let (X ,δk-diam) be the k-diameter diversity of (X ,δ ). First, we argue

that (X ,δk-diam) is in fact a member of D(X ,δ ,k). We consider an arbitrary A ∈ P(X) such that |A| ≤ k. Then

it follows that
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δk-diam(A) = max
B⊆A:|B|≤k

δ (B) by definition of a k-diameter diversity (2.29)

= δ (A) by |A| ≤ k and diversities being increasing, Proposition 2.1.4 (2.30)

Hence, ∀A ∈ P(X) such that |A| ≤ k it follows that δk-diam(A) = δ (A) and so (X ,δk-diam) ∈ D(X ,δ ,k).

Next, we establish the minimality of (X ,δk-diam) with regards to this family of diversities. We let (X ,δ ′) ∈
D(X ,δ ,k) and A ∈ P(X) be arbitrary. Then it follows that

δk-diam(A) = δ (B) for some B ⊆ A such that |B| ≤ k (2.31)

= δ
′(B) by definition of (X ,δ ′) ∈ D(X ,δ ,k) (2.32)

≤ δ
′(A) by diversities being increasing, Proposition 2.1.4 (2.33)

This completes the proof.

□

2.3 Subadditive Set Functions as Diversities
In this section we seek to answer two questions. First, when is a subadditive set function a diversity?

Secondly, when can a subadditive set function be modified into a diversity? We proceed with the definition

of a subadditive set function.

Definition 2.3.1 (Subadditive Set Function) Given a set X, a set function f : 2X → R is subadditive if for

any A,B ⊆ X, f satisfies

f (A∪B)≤ f (A)+ f (B) (2.34)

Subadditive functions are closely related to diversities if we consider the third axiom of diversities,

the triangle inequality. Specifically, in the case where /0 ̸= C ⊆ A ∩ B, where (X ,δ ) is a diversity and

A,B ∈ P(X). Then we observe that

δ (A∪B)≤ δ (A∪C)+δ (B∪C) = δ (A)+δ (B) (2.35)

which can be interpreted as δ being subadditive for sets A,B∈P(X) with nonempty intersection. One might

try to redefine the third axiom of diversities using subadditivity (for subsets with nonempty intersection)

instead of a generalized triangle inequality, but a few other nuances would be required in this new definition.

Nonetheless, this close relationship between diversities and subadditive set functions motivates this section.

Returning to our motivating questions, we recall the first axiom of a diversity, nonnegativity, and Propo-

sition 2.1.4, a diversity is an increasing set function. The combination of these properties implies that in
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order for a subadditive set function to be, or even “resemble”, a diversity it must be nonnegative and in-

creasing. This intuition is reflected in the lemma below, which answers our motivating questions for this

section. We remark that this lemma is also critical to the proof of our inapproximability result for diversity

embeddings into ℓ1, Theorem 3.4.3. Specifically, as a key technical lemma which is used to establish our

notion of an independent set diversities, Definition 3.4.5, as in fact being diversities.

Lemma 2.3.2 Let X be a set and let f : 2X →R be a nonnegative, increasing, and subadditive set function.

Then (X ,δ ) is a pseudo-diversity where δ is defined as

δ (A) =

 f (A) if |A| ≥ 2

0 otherwise
(2.36)

Proof: Let δ be defined as in the lemma statement. We begin by showing that (X ,δ ) satisfies the first two

axioms of a pseudo-diversity. By the nonnegativity of f , δ is likewise nonnegative by its construction, thus

(X ,δ ) satisfies the first axiom of pseudo-diversities. Likewise by construction, δ (A) = 0 if |A| ≤ 1 and thus

(X ,δ ) satisfies the second axiom.

In order to prove that (X ,δ ) satisfies the third axiom of a pseudo-diversity we first establish that δ is an

increasing set function. Let A ⊆ B ∈ P(X) be arbitrary. For the case where |A| ≤ 1 then

δ (A) = 0 ≤ δ (B) (2.37)

by the nonnegativity of δ . As for the case where |A| ≥ 2 then

δ (A) = f (A)≤ f (A∪B) = δ (A∪B) (2.38)

where the two equalities follow by the fact that |A|, |A∪B| ≥ 2 and the inequality follows by the fact that f

is increasing. This concludes the proof that δ is an increasing set function.

We now prove that (X ,δ ) satisfies the third axiom of pseudo-diversities. Let A,B,C ⊆ X be arbitrary

where C ̸= /0. We consider several cases.

1. The first case is where one of A and B is empty. Without loss of generality, we assume that A = /0.

Then,

δ (A∪B) = δ (B) (2.39)

≤ δ (B∪C) by δ being increasing (2.40)

≤ δ (A∪C)+δ (B∪C) by δ being nonnegative (2.41)

2. The second case that we consider is where |A| = |B| = 1. There are two subcases that we consider.

The first is where A = B in which case |A∪B|= 1 and so
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δ (A∪B) = 0 by |A∪B|= 0 (2.42)

≤ δ (A∪C)+δ (B∪C) by δ being nonnegative (2.43)

Then the second subcase is where A ̸= B and so |A∪B| ≥ 2. Additionally, we divide this subcase

into two more sub-subcases. The first sub-subcase is where A∩C = /0 and B∩C = /0, in which case

|A∪C|, |B∪C| ≥ 2 and so

δ (A∪B) = f (A∪B) by |A∪B| ≥ 2 (2.44)

≤ f (A)+ f (B) by subadditivity of f (2.45)

≤ f (A∪C)+ f (B∪C) by f being increasing (2.46)

= δ (A∪C)+δ (B∪C) by |A∪C|, |B∪C| ≥ 2 (2.47)

The second sub-subcase is where, without loss of generality, B ⊆C, and so

δ (A∪B)≤ δ (A∪C) by δ being increasing (2.48)

≤ δ (A∪C)+δ (B∪C) by δ being nonnegative (2.49)

3. The final case is where, without loss of generality, |A| ≥ 2 and |B| ≥ 1. Furthermore, we consider two

subcases. The first is where |B∪C|= 1 in which case B =C and so

δ (A∪B) = f (A∪B) by |A∪B| ≥ 2 (2.50)

= f (A∪C) by B =C (2.51)

= δ (A∪C) by |A∪C| ≥ 2 (2.52)

≤ δ (A∪C)+δ (B∪C) by δ being nonnegative (2.53)

Then the second subcase is where |B∪C| ≥ 2. Then,

δ (A∪B) = f (A∪B) by |A∪B| ≥ 2 (2.54)

≤ f (A)+ f (B) by f being subadditive (2.55)

≤ f (A∪C)+ f (B∪C) by f being increasing (2.56)

= δ (A∪C)+δ (B∪C) by |A∪C|, |B∪C| ≥ 2 (2.57)

16



This completes the proof. □

17



Chapter 3

Diversity Embeddings

3.1 Introduction
In this chapter we discuss diversity embeddings. Analogous to the notion of embedding a metric space

into another metric space, one can define the notion of embedding a diversity into another diversity. In this

section we introduce such a notion of diversity embeddings along with some properties and known upper

and lower bounds on the minimum distortion of embedding into the ℓ1 diversity. In Section 3.2 we present

an O(logn)-distortion embedding of a Steiner diversity into the ℓ1 diversity. In that section, we also present a

corollary of the aforementioned result, an O(k logn)-distortion embedding of a hypergraph Steiner diversity

corresponding to a rank-k hypergraph into the ℓ1 diversity. In Section 3.3 we present an O(logn)-distortion

embedding of a diameter diversity into the ℓ1 diversity. This embedding improves upon an earlier result

of Bryant and Tupper who gave an O(log2 n)-distortion embedding. We also give an O(k logn)-distortion

embedding of a k-diameter diversity into the ℓ1 diversity, as a corollary of our O(logn)-distortion diameter

diversity embedding. Finally, in Section 3.4 we present an Ω(n)-inapproximability result for embedding an

arbitrary diversity into the ℓ1 diversity in polynomial-time while solely using its induced metric. We begin

by formally defining an embedding of one diversity into another.

Definition 3.1.1 (Diversity Embedding) Let (X ,δX) and (Y,δY ) be two diversities. Let f be a map from

X to Y . We say that f is an embedding of the diversity (X ,δX) into the diversity (Y,δY ) with distortion c if

there are constants c1,c2 ≥ 1 such that c = c1c2 and for any A ∈ P(X) we have that

1
c1

δX(A)≤ δY ( f (A))≤ c2δX(A) (3.1)

For convenience, when referring to such an embedding we may use the notation (X ,δX) → (Y,δY ) and

(X ,δX)
c−→ (Y,δY ), where the latter specifies the distortion of the embedding. We may also precede such

notation with “ f :” in order to specify the map.

If we restrict Equation 3.1 in Definition 3.1.1 to sets A of cardinality two, then we recover the exact

definition of a metric embedding. This is significant since facts about metric embeddings can and often do

extend to facts about diversity embeddings since each diversity “encodes” an induced metric space.

18



Our approach to the sparsest cut involves embedding into the ℓ1 diversity due to the fact that ℓ1-

embeddable diversities are a sum of cut pseudo-diversities. We use the term ℓ1-embeddable to mean embed-

ding into ℓ1 isometrically, or in other words, with distortion c = 1. This fact, due to Bryant and Tupper [31],

is a generalization of the analogous fact that ℓ1-embeddable metrics are a sum of cut pseudo-metrics.

Theorem 3.1.2 Let (X ,δ ) be a diversity where |X |= n < ∞. Then the following are equivalent.

1. (X ,δ ) is embeddable into ℓm
1 .

2. (X ,δ ) is a nonnegative combination of O(nm) cut diversities.

In Chapter 4 we show how Theorem 3.1.2 is utilized in our approach to the sparsest cut problem in

hypergraphs, and furthermore, how the distortion of embedding a diversity into the ℓ1 diversity yields a mul-

tiplicative approximation factor. Henceforth, the remainder of this chapter is concerned with the embedding

of diversities, both arbitrary diversities and particular families of diversities, into the ℓ1 diversity with low

distortion. This investigation can be formulated by the following question posed by Bryant and Tupper in

[9].

Problem 3.1.3 Let (X ,δ ) be an arbitrary diversity where |X | = n. What is the minimum distortion with

which (X ,δ ) can be embedded into an ℓ1 diversity?

This is an existential question in that it seeks a minimum distortion embedding into ℓ1 without any algo-

rithmic or computational constraints. Specifically, by “algorithmic” or “computational” we mean constraints

on the embedding, the map f as in Definition 3.1.1, being computable in polynomial-time with respect to

the size of encoding (X ,δ ) (often simply the cardinality of X). Implicit in this constraint of polynomial-time

computability is that the dimension m of the ℓ1 diversity (Rm,δ1) must also be bounded by a polynomial

factor. We formalize this refinement of Problem 3.1.3 as the following problem.

Problem 3.1.4 Let (X ,δ ) be an arbitrary diversity where |X | = n. What is the minimum distortion with

which (X ,δ ) can be embedded into an ℓ1 diversity in polynomial-time.

Bryant and Tupper have shown in [9] that an arbitrary diversity can be embedded into the ℓ1 diversity

with distortion O(n). In fact, this embedding is solely based off the induced metric of a diversity. Moreover,

this embedding is computable in polynomial-time provided that the induced metric of the diversity can be

queried in polynomial-time. Below, we restate this result with proof.

Theorem 3.1.5 (Restatement of Theorem 1 in [9]) Let (X ,δ ) be an arbitrary diversity where |X | = n.

Then there is an embedding of (X ,δ ) into the ℓ1 diversity, (Rn,δ1), with distortion n.

Proof: We consider an arbitrary diversity (X ,δ ) and we let (X ,d) be its induced metric space. We enu-

merate the elements of X as X = {x1,x2, . . . ,xn}. Then we define our embedding f : X → Rn as

f (x) = (d(x1,x),d(x2,x), . . . ,d(xn,x)) (3.2)
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We consider an arbitrary A ∈ P(X). It suffices to show that

δ (A)≤ δ1( f (A))≤ nδ (A) (3.3)

We now prove the first inequality. First, we consider an arbitrary a0 ∈ A.

δ (A)≤ ∑
x∈A

d(x,a0) by the triangle inequality, Proposition A.1.2 (3.4)

≤ ∑
x∈A

max
a∈A

d(x,a) (3.5)

= ∑
x∈A

max
a,b∈A

d(x,a)−d(x,b) since max
b∈A

−d(x,b) =−d(x,x) = 0 (3.6)

= ∑
x∈A

max
a,b∈A

|d(x,a)−d(x,b)| since max
a,b∈A

d(x,a)−d(x,b)≥ 0 (3.7)

≤
n

∑
i=1

max
a,b∈A

|d(xi,a)−d(xi,b)| (3.8)

=
n

∑
i=1

max
a,b∈A

| fi(a)− fi(b)| (3.9)

= δ1( f (A)) by definition of the ℓ1 diversity (3.10)

As for the second inequality, we choose for each i ∈ {1,2, . . . ,n} ai,bi ∈ A such that

max
a,b∈A

|d(xi,a)−d(xi,b)|= d(xi,ai)−d(xi,bi) (3.11)

Then it follows that
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δ1( f (A)) =
n

∑
i=1

max
a,b∈A

| fi(a)− fi(b)| (3.12)

=
n

∑
i=1

max
a,b∈A

|d(xi,a)−d(xi,b)| (3.13)

=
n

∑
i=1

d(xi,ai)−d(xi,bi) by choice of ai,bi ∈ A (3.14)

≤
n

∑
i=1

d(ai,bi)+(xi,bi)−d(xi,bi) by the triangle inequality (3.15)

=
n

∑
i=1

d(ai,bi) (3.16)

=
n

∑
i=1

δ ({ai,bi}) (3.17)

≤
n

∑
i=1

δ (A) by diversities being increasing, Proposition 2.1.4 (3.18)

= nδ (A) (3.19)

This completes the proof. □

As for a lower bound to Problem 3.1.3, it is evident that some diversities cannot be embedded into the

ℓ1 diversity with distortion smaller than Ω(logn). This is due to the fact that each diversity encodes an

induced metric space and there are finite metric spaces which cannot be embedded into the ℓ1 metric with

distortion smaller than Ω(logn). Specifically, Linial, London, and Rabinovich showed that the flow-cut gap

in a graph is equivalent to the minimum distortion necessary to embed some metric space into the ℓ1 metric.

Given that the flow-cut gap for a constant degree expander graph is Ω(logn), they concluded that there exist

metric spaces which cannot be embedded into ℓ1 with distortion smaller than Ω(logn) [24]. Interestingly,

this result answered the open question of what is the minimum distortion to embed an n-point metric into

the ℓ1 metric, the metric variant of Problem 3.1.3. This lower bound matched the O(logn) upper bound due

to Bourgain [8].

Theorem 3.1.6 (Proposition 4.2 in [24]) There exists a family of metric spaces {(Xn,dn)}∞
n=1, where |Xn|=

n, which cannot be embedded into the ℓ1 metric with distortion smaller than Ω(logn).

Theorem 3.1.7 (Restatement of Bryant and Tupper’s observation in [9]) There exists a family of diver-

sities {(Xn,δn)}∞
n=1, where |Xn|= n, which cannot be embedded into the ℓ1 diversity with distortion smaller

than Ω(logn).

Proof: We let (X ,δ ) be an arbitrary diversity with induced metric space (X ,d). We recall that any embed-

ding of (X ,δ ) into the ℓ1 diversity includes an embedding of (X ,d) into the ℓ1 metric space. Thus we can

find a family of diversities, according to theorem 3.1.6, that require distortion Ω(logn) for embedding into

ℓ1. □
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3.2 A Steiner Diversity Embedding
In this section we present a proof of Bryant and Tupper’s O(logn)-distortion embedding of a Steiner diversity

into the ℓ1 diversity. In Subsection 3.2.1 we present a corollary of this result which is an O(k logn)-distortion

embedding of a hypergraph Steiner diversity corresponding to a rank-k hypergraph into the ℓ1 diversity. We

say that a hypergraph has rank k if the cardinalities of its hyperedges are bounded by k.

We note that Bryant and Tupper’s embedding utilizes Fakcharoenphol, Rao, and Talwar’s probabilistic

embedding of n-node metric spaces into dominating tree metrics with distortion O(logn) in expectation [16],

which we refer to as the FRT algorithm for brevity. Given that tree metrics are isometrically embeddable

into the ℓ1 metric, the FRT algorithm provides an alternate O(logn)-distortion metric embedding into ℓ1.

Theorem 3.2.1 (The FRT Algorithm) Let (X ,d) be a metric space where |X |= n. Then there is a random-

ized polynomial-time algorithm that embeds (X ,d) into a dominating tree metric with distortion O(logn)

in expectation. Specifically, this randomized polynomial-time algorithm produces a tree T = (X ,E,w) with

nonnegative edge weights w such that the corresponding shortest path metric, which happens to be a tree

metric, (X ,dT ) satisfies for every x,y ∈ X

d(x,y)≤ dT (x,y) (3.20)

E[dT (x,y)]≤ O(logn)d(x,y) (3.21)

In addition to the FRT algorithm, Bryant and Tupper’s embedding utilizes the fact that tree diversities

are isometrically embeddable into the ℓ1 diversity [10]. This embedding follows by the fact that, like a tree

metric, a tree diversity is a sum of cut pseudo-diversities which correspond to the edges of the tree that

defines the diversity.

Theorem 3.2.2 Let (X ,δtree) be a tree diversity. Then there exists an embedding of (X ,δtree) into the ℓ1

diversity with distortion 1. Moreover, this embedding is computable in polynomial-time with respect to |X |.

Given Theorems 3.2.1 and 3.2.2, we present a proof of Bryant and Tupper’s Steiner diversity embedding

from [9].

Theorem 3.2.3 (Restatement of Theorem 2 in [9]) Let (X ,δSteiner) be a Steiner diversity where |X | = n.

Then there is a randomized polynomial-time algorithm that embeds (X ,δSteiner) into the ℓ1 diversity with

O(logn) distortion.

Proof: Given Theorem 3.2.2, it suffices to prove that there is a randomized polynomial-time algorithm

that embeds (X ,δSteiner) into a dominating tree diversity with distortion O(logn) in expectation. That is, we

show that there is a randomized polynomial-time embedding into a random tree diversity (X ,δtree) such that

for each A ∈ P(X) the embedding satisfies
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δSteiner(A)≤ δtree(A) (3.22)

E[δtree(A)]≤ δSteiner(A) (3.23)

We let (X ,d) be the induced metric space of (X ,δSteiner). We then apply the FRT algorithm to (X ,d),

according to Theorem 3.2.1, and we let (X ,dT ) be the resulting random tree metric satisfying (3.20) and

(3.21). We then define (X ,δtree) to be a random tree diversity, that is induced by the tree metric (X ,dT ).

That is, for an arbitrary A ∈ P(X) we define (X ,δtree) as

δtree(A) = min
t∈T(T,A)

∑
(u,v)∈t

dT (u,v) (3.24)

where T = (X ,E) is the spanning tree of the nodes X that is defined by the tree metric (X ,dT ). We recall

that T(T,A) is the collection of subsets of edges of T that correspond to subgraphs of T that contain the nodes

A.

We recall that the FRT algorithm has randomized polynomial-time complexity. Since we can extend

a tree metric into a tree diversity trivially in polynomial-time then this embedding of (X ,δSteiner) into the

random tree diversity (X ,δtree) runs in randomized polynomial-time. Then we let A ∈ P(X) be arbitrary

and we choose t ∈ T(T,A) such that

δtree(A) = ∑
(u,v)∈t

dT (u,v) (3.25)

Then (3.22) is established with the following argument

δSteiner(A)≤ ∑
(u,v)∈t

d(u,v) by the triangle inequality (3.26)

≤ ∑
(u,v)∈t

dT (u,v) by (X ,dT ) dominating (X ,d), (3.20) (3.27)

= δtree(A) by choice of t (3.28)

As for (3.23), we choose t ′ ⊆ X ×X such that

δSteiner(A) = ∑
(u,v)∈t ′

d(u,v) (3.29)

Then we argue that
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E[δtree(A)]≤ E[ ∑
(u,v)∈t ′

dT (u,v)] by the triangle inequality (3.30)

= ∑
(u,v)∈t ′

E[dT (u,v)] by linearity of expectation (3.31)

≤ ∑
(u,v)∈t ′

O(logn)d(u,v) by (3.21) (3.32)

= O(logn)δSteiner(A) by choice of t ′ (3.33)

This completes the proof. □

3.2.1 A Hypergraph Steiner Diversity Embedding

In this section we provide a proof, due to Bryant and Tupper [9], of the fact that a hypergraph Steiner diver-

sity corresponding to a rank k hypergraph can be embedded into the ℓ1 diversity with distortion O(k logn).

At a high level, this O(k logn)-distortion embedding follows by approximating a hyperedge-weighted

rank-k hypergraph with an edge-weighted graph while incurring an O(k) approximation factor. Or in other

words, embedding a hypergraph Steiner diversity into a Steiner diversity with distortion O(k). Then, the

additional O(logn) factor is incurred by embedding this Steiner diversity into the ℓ1 diversity.

Theorem 3.2.4 Let H = (V,E,w) be a rank k hypergraph with node set V , edge set E, and nonnegative

hyperedge weights w : E → R+. Let (V,δH ) be the corresponding hypergraph Steiner diversity. Then there

is a Steiner diversity (V,δSteiner) into which (V,δH ) can be polynomial-time embedded with distortion O(k).

Proof: We let (X ,d) be the induced metric space of (V,δH ). We first note that for any u,v ∈ V and any

U ∈ E such that u,v ∈U then

d(u,v) = δH ({u,v})≤ w(U) (3.34)

by definition of a hypergraph Steiner diversity and the fact that the hyperedge U is a connected subhyper-

graph of H that contains the nodes u and v.

Then we let (V,δSteiner)∈D(V,d) be the corresponding Steiner diversity with induced metric space (V,d).

We remark that (V,δSteiner) can be represented by the metric space (V,d) or by the complete edge-weighted

graph G = (V,E ′,d). Moreover, (V,d) is the shortest path metric for the hyperedge-weighted hypergraph

H and can be computed in polynomial-time, for instance, by reducing the hypergraph to a bipartite graph

in which each hyperedge is replaced by a corresponding node and then computing the shortest path in said

graph. Hence, this embedding of (V,δH ) into (V,δSteiner) can be computed in polynomial-time.

It remains to show that this embedding of (V,δH ) into (V,δSteiner) has distortion O(k). That is, for any

A ∈ P(V ) it follows that

δH (A)≤ δSteiner(A)≤ (k−1)δH (A) (3.35)
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We let A ∈ P(V ) be arbitrary and we choose t ∈ T(H,A) to be such that

δH (A) = ∑
U∈t

w(U) (3.36)

Then the first inequality of (3.35),

δH (A)≤ δSteiner(A) (3.37)

follows by the fact that (V,δH ),(V,δSteiner) ∈ D(V,d) and (V,δSteiner) is the maximal diversity of this family,

Theorem 2.2.10.

As for the second inequality,

δH (A) = ∑
U∈t

w(U) by the choice of t, (3.36) (3.38)

≥ ∑
U∈t

max
u,v∈U

d(u,v) by (3.34) (3.39)

For each U ∈ t we define T (U) ⊆ E ′ to be a subtree of the complete graph G′ that spans the nodes U

and only contains the nodes U . Therefore, |T (U)|= k−1 since T (U) is a spanning tree. Then we continue

as follows

∑
U∈t

max
u,v∈U

d(u,v) = ∑
U∈t,(u′,v′)∈T (U)

1
k−1

max
u,v∈U

d(u,v) by |T (U)|= k−1 (3.40)

≥ 1
k−1 ∑

U∈t,(u′,v′)∈T (U)

d(u′,v′) (3.41)

≥ 1
k−1 ∑

(u′,v′)∈∪U∈t T (U)

d(u′,v′) by not double-counting edges (3.42)

≥ δSteiner(A) (3.43)

where the last inequality follows by the fact that

∪U∈t T (U) ∈ T(G,A) (3.44)

or in other words, ∪U∈tT (U) is a connected subgraph of G that contains the nodes A. This completes the

proof.

□

Then the main result of this section follows as a corollary of Theorems 3.2.3 and 3.2.4.

Corollary 3.2.5 Let H = (V,E,w) be a rank-k hypergraph with node set V , edge set E, and nonnegative

hyperedge weights w : E → R+. Let (V,δH ) be the corresponding hypergraph Steiner diversity. Then

(V,δH ) can be embedded into the ℓ1 diversity with distortion O(k logn), in randomized polynomial-time.
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Proof: We let f : (V,δH )→ (V,δSteiner) be a polynomial-time O(k)-distortion embedding of (V,δH ) into

some Steiner diversity (V,δSteiner), due to Theorem 3.2.4. We let g : (V,δSteiner)→ (Rm,δ1) be a randomized

polynomial-time O(logn)-distortion embedding of (V,δSteiner) into the ℓ1 diversity for some dimension m,

due to Theorem 3.2.3. Then the map g · f is an embedding of (V,δH ) into the ℓ1 diversity with distortion

O(k logn). Moreover, this embedding is computable in randomized polynomial-time. This completes the

proof. □

3.3 Diameter Diversity Embeddings
In this section we provide two polynomial-time low-distortion embeddings of the diameter diversity into ℓ1.

The first is an O(log2 n)-distortion embedding due to Bryant and Tupper [31], presented as Theorem 3.3.7 in

Section 3.3.2. The second is an O(logn)-distortion embedding, Theorem 1.2.3, restated as Theorem 3.3.8 in

Section 3.3.3. The distortion achieved by the latter embedding is asymptotically optimal given the Ω(logn)

lower bound on the distortion of embedding arbitrary diversities into ℓ1, Theorem 3.1.7.

Although our analysis reduces the distortion by a logarithmic factor from O(log2 n) to O(logn), we

provide both embeddings to juxtapose their associated proofs. Specifically, we include Lemma 3.3.6, which

states that the diameter diversity, (Rd ,δdiam), whose induced metric is the ℓ1 metric is within a factor of

O(d) of the ℓ1 diversity, (Rd ,δ1). This result is significant in that it essentially states that the ℓ1 diversity

defined over a low-dimensional space behaves similarly to a diameter diversity. This is a potentially relevant

observation for tackling the remaining unsolved questions in the realm of diversity embeddings into ℓ1.

3.3.1 Fréchet Embeddings

Both ℓ1 embeddings of the diameter diversity are based off polynomial-time implementations of Bourgain’s

original O(logn)-distortion metric embedding into ℓ1 [8].

Theorem 3.3.1 (Restatement of Proposition 1 of [8]) Let (X ,d) be a finite metric space where |X | = n.

There exists an embedding of (X ,d) into the ℓ1 metric (Rk,d1), where k ∈ O(2n), with distortion O(logn).

We remark that Bourgain’s embedding is a scaled Fréchet embedding, which we define below.

Definition 3.3.2 Let (X ,d) be a metric space. A Fréchet embedding is a map f : (X ,d)→ (Rk,d′) where

each coordinate, fi : X → R, of the embedding is defined as

fi(x) = d(x,Ai) = min
y∈Ai

d(x,y) (3.45)

for some nonempty Ai ⊆ X.

Due to the triangle inequality of metrics, a Fréchet embedding is coordinate-wise non-expansive, which

we define and prove below.

Proposition 3.3.3 Let (X ,d) be a metric space and let f : (X ,d)→ (Rk,d′) be a Fréchet embedding. Then

for any coordinate, i ∈ {1,2, . . . ,k} and any x,y ∈ X, it follows that
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| fi(x)− fi(y)| ≤ d(x,y) (3.46)

Proof: Let x,y ∈ X and let i ∈ {1,2, . . . ,k} be arbitrary. Then it follows that

| fi(x)− fi(y)|= |d(x,Ai)−d(y,Ai)| for some nonempty Ai ⊆ X (3.47)

= |d(x,u)−d(y,u′)| for some u,u′ ∈ Ai (3.48)

Without loss of generality, we assume that d(x,u)−d(y,u′)≥ 0. Then we have that

|d(x,u)−d(y,u′)|= d(x,u)−d(y,u′) (3.49)

≤ d(x,u′)−d(y,u′) since d(x,u) = min
v∈Ai

d(x,v) (3.50)

≤ d(x,y)+d(y,u′)−d(y,u′) by the triangle inequality (3.51)

= d(x,y) (3.52)

This completes the proof. □

The original embedding due to Bourgain is an existential result that is algorithmically intractable. It was

later that Linial, London, and Rabinovich [24] who provided randomized polynomial-time implementations

of Theorem 3.3.1. This is achieved by sampling a relatively small subset of the collection of coordinate

maps

{ fi(x) = d(x,Ai)}Ai⊆X (3.53)

in order to achieve a randomized polynomial-time complexity.

The following implementation of Bourgain’s embedding according to Linial et al. [24] forms the basis

of Bryant and Tupper’s O(log2 n)-distortion embedding.

Theorem 3.3.4 Let (X ,d) be a metric space with |X |= n. Then there exists an embedding, f : X →RO(logn),

of (X ,d) into the ℓ1 metric (RO(logn),d1) with distortion O(logn). That is,

d(x,y)≤ ∥ f (x)− f (y)∥1 ≤ O(logn)d(x,y) (3.54)

The fact that Bourgain’s embedding is a scaled Fréchet embedding is key to Theorem 3.3.8. Specifically,

Theorem 3.3.8 is based off the following implementation of Bourgain’s embedding.

Theorem 3.3.5 (Lemma 3 in [5]) Let (X ,d) be a metric space with |X | = n. Then there exists an embed-

ding, f : X → RO(log2 n), of (X ,d) into the ℓ1 metric (RO(log2 n),d1) with distortion O(logn). That is,

1
O(logn)

d(x,y)≤ ∥ f (x)− f (y)∥1 ≤ d(x,y) (3.55)
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Furthermore, the embedding f is a scaled Fréchet embedding where for an arbitrary coordinate i∈{1,2, . . . ,O(log2 n)},

fi is defined as

fi(x) =
1

O(log2 n)
d(x,Ai) (3.56)

where Ai ⊆ X.

Scaling the Fréchet embedding, in the above theorem, is a necessary step. In fact, the original embedding

of Bourgain is also scaled proportionally to the exponentially large dimension of the ℓ1 metric space being

embedded into.

3.3.2 An O(log2 n)-Distortion Embedding

In this section we present the proof of Theorem 3.3.7, closely following Bryant and Tupper’s original proof.

First, we prove their technical lemma.

Lemma 3.3.6 (Restatement of Lemma 1 of [31]) Let (Rk,d1) be a metric space where d1 is the ℓ1 metric,

let (Rk,δ
(1)
diam) be the diameter diversity whose induced metric space is (Rk,d1), and let (Rk,δ1) be the ℓk

1

diversity. Then for any A ∈ P(Rk) it follows that

δ
(1)
diam(A)≤ δ1(A)≤ kδ

(1)
diam(A) (3.57)

Proof: Let A ∈ P(Rk) be arbitrary and let x,y ∈ A be such that d(x,y) = maxa,b∈A d(a,b). Then it follows

that

δ
(1)
diam(A) = max

a,b∈A
d1(a,b) (3.58)

= d1(x,y) by choice of x and y (3.59)

=
k

∑
i=1

|xi − yi| by definition of the ℓ1 metric (3.60)

≤
k

∑
i=1

max
a,b∈A

|ai −bi| (3.61)

≤
k

∑
i=1

max
a,b∈A

∥a−b∥1 (3.62)

= kd1(x,y) (3.63)

= kδ
(1)
diam(A) by definition of the diameter diversity (3.64)

Given that δ1(A) = ∑
k
i=1 maxa,b∈A |ai −bi|, as in Equation (3.61) above, this completes the proof. □

Given Lemma 3.3.6 and Theorem 3.3.4, we present and prove the following result of Bryant and Tupper.
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Theorem 3.3.7 Let (X ,δdiam) be a diameter diversity with |X |= n. Then there exists a randomized polynomial-

time embedding of (X ,δdiam) into the ℓ1 diversity (RO(logn),δ1) with distortion O(log2 n).

Proof: As according to Theorem 3.3.4, we let f : X → RO(logn) be an embedding of (X ,d) into the ℓ1

metric (RO(logn),d1) with distortion O(logn). We then define our diversity embedding from (X ,δdiam) to the

ℓ1 diversity (RO(logn),δ1) to be simply the map f . Given that Theorem 3.3.4 guarantees that f is computable

in randomized polynomial-time, it remains to verify that the corresponding diversity embedding attains a

distortion of O(log2 n). That is, for any A ∈ P(X), we show that

δdiam(A)≤ δ1( f (A))≤ O(log2 n)δdiam(A) (3.65)

We let (RO(logn),δ
(1)
diam) be the diameter diversity with the induced metric space (RO(logn),d1). We choose

x,y ∈ A such that

δdiam(A) = max
a,b∈A

d(a,b) = d(x,y) (3.66)

and we choose u,v ∈ A such that

δ
(1)
diam( f (A)) = max

a,b∈A
d1( f (a), f (b)) = d1( f (u), f (v)) = ∥ f (u)− f (v)∥1 (3.67)

Then it follows that

δdiam(A) = d(x,y) by definition of the diameter diversity and choice of x,y (3.68)

≤ ∥ f (x)− f (y)∥1 by (3.54), the metric embedding f (3.69)

≤ max
a,b∈A

∥ f (a)− f (b)∥1 (3.70)

= δ
(1)
diam( f (A)) by definition of the diameter diversity (3.71)

≤ δ1( f (A)) by Lemma 3.3.6 (3.72)

≤ O(logn)δ (1)
diam( f (A)) by Lemma 3.3.6 (3.73)

= O(logn)∥ f (u)− f (v)∥1 by definition of the diameter diversity and choice of u,v (3.74)

≤ O(log2 n)d(u,v) by (3.54), the metric embedding f (3.75)

≤ O(log2 n)max
a,b∈A

d(a,b) (3.76)

= O(log2 n)δdiam(A) by definition of the diameter diversity (3.77)

This completes the proof. □

3.3.3 An O(logn)-Distortion Embedding

In this section we present an O(logn)-distortion ℓ1 embedding for diameter diversities.
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Theorem 3.3.8 (Restatement of Theorem 1.2.3) Let (X ,δdiam) be a diameter diversity with |X |= n. Then

there exists a randomized polynomial-time embedding of (X ,δdiam) into the ℓ1 diversity (RO(log2 n),δ1) with

distortion O(logn).

Proof: As according to Theorem 3.3.5, we let f : X → RO(log2 n) be a scaled Fréchet embedding of (X ,d)

into the ℓ1 metric (RO(log2 n),d1) with distortion O(logn). We then define our diversity embedding from

(X ,δdiam) to the ℓ1 diversity (RO(log2 n),δ1) to be simply the map f . Given that Theorem 3.3.5 guarantees

that f is computable in randomized polynomial-time, it remains to verify that the corresponding diversity

embedding attains a distortion of O(logn). That is, for any A ∈ P(X), we show that

1
O(logn)

δdiam(A)≤ δ1( f (A))≤ δdiam(A) (3.78)

We choose x,y ∈ A such that

δdiam(A) = max
a,b∈A

d(a,b) = d(x,y) (3.79)

We begin with the first inequality.

1
O(logn)

δdiam(A) =
1

O(logn)
max
u,v∈A

d(u,v) by definition of a diameter diversity (3.80)

=
1

O(logn)
d(x,y) by choice of x,y (3.81)

≤ ∥ f (x)− f (y)∥1 by (3.55), the metric embedding f (3.82)

=
O(log2 n)

∑
i=1

| fi(x)− fi(y)| by definition of the ℓ1 metric (3.83)

≤
O(log2 n)

∑
i=1

max
a,b∈A

| fi(a)− fi(b)| (3.84)

= δ1( f (A)) by definition of the ℓ1 diversity (3.85)

This completes the first inequality. Then, for each i ∈ {1,2, . . . ,O(log2 n)} we let ai,bi ∈ A be chosen

such that

|d(ai,Ai)−d(bi,Ai)|= max
a,b∈A

|d(a,Ai)−d(b,Ai)| (3.86)

We continue with the second inequality.
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δ1( f (A)) =
O(log2 n)

∑
i=1

max
a,b∈A

| fi(a)− fi(b)| by definition of the ℓ1 diversity (3.87)

=
1

O(log2 n)

O(log2 n)

∑
i=1

max
a,b∈A

|d(a,Ai)−d(b,Ai)| by (3.56), definition of f (3.88)

=
1

O(log2 n)

O(log2 n)

∑
i=1

|d(ai,Ai)−d(bi,Ai)| by choice of ai,bi’s (3.89)

≤ 1
O(log2 n)

O(log2 n)

∑
i=1

d(ai,bi) by Proposition 3.3.3 (3.90)

≤ 1
O(log2 n)

O(log2 n)

∑
i=1

max
a,b∈A

d(a,b) by ai,bi ∈ A (3.91)

= max
a,b∈A

d(a,b) (3.92)

= δdiam(A) by definition of the diameter diversity (3.93)

This completes the proof □

Theorem 3.3.9 The diameter diversity embedding into the ℓ1 diversity from Theorem 3.3.8 achieves an

asymptotically optimal distortion.

Proof: This result follows immediately by Theorem 3.1.7, the ℓ1-diversity embedding Ω(logn)-distortion

lower bound. □

3.3.4 A k-Diameter Diversity Embedding

In this section we provide a proof of the fact that a k-diameter diversity can be embedded into the ℓ1 diversity

with distortion O(k logn).

At a high level, this O(k logn)-distortion embedding follows by approximating a k-diameter diversity

with a diameter diversity, incurring an O(k) approximation factor. Or in other words, embedding a k-

diameter diversity into a diameter diversity with distortion O(k). Then, the additional O(logn) factor is

incurred by embedding this diameter diversity into the ℓ1 diversity.

Theorem 3.3.10 Let (X ,δk-diam) be a k-diameter diversity, where k ∈Z≥0. Then there is a diameter diversity

into which (X ,δk-diam) can be embedded with distortion O(k), in polynomial-time.

Proof: We let (X ,d) be the induced metric space of (X ,δk-diam). We let (X ,δdiam) ∈ D(X ,d) be the cor-

responding diameter diversity whose induced metric space is (X ,d). It suffices to show that (X ,δk-diam)

embeds into (X ,δdiam) with distortion k. That is, for any A ∈ P(X) it suffices to show that
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δdiam(A)≤ δk-diam ≤ kδdiam (3.94)

We let A ∈ P(X) be arbitrary and we choose B ⊆ A where |B| ≤ k and

δk-diam(A) = δk-diam(B) (3.95)

Without loss of generality we enumerate the elements of B as

B = {v1,v2, . . . ,v j} (3.96)

where j ≤ k. Then it follows that

δdiam(A)≤ δk-diam(A) by minimality of the diameter diversity, Theorem 2.2.10 (3.97)

= δk-diam(B) by choice of B (3.98)

≤
j

∑
i=2

d(v1,vi) by the triangle inequality, Proposition A.1.2 (3.99)

≤
j

∑
i=2

max
u,v∈B

d(u,v) (3.100)

≤ k max
u,v∈B

d(u,v) by j ≤ k (3.101)

= kδdiam(B) by definition of the diameter diversity (3.102)

≤ kδdiam(A) by B ⊆ A and diversities being increasing, Proposition 2.1.4 (3.103)

The induced metric space of (X ,d) of (X ,δk-diam) can be computed in polynomial-time. Then the cor-

responding diameter diversity (X ,δdiam) can be computed in polynomial-time given the (X ,d). Hence, this

embedding is polynomial-time computable. This completes the proof. □

Then the main result of this section follows as a corollary of Theorems 3.3.10 and 3.3.8.

Corollary 3.3.11 Let (X ,δk-diam) be a k-diameter diversity, where k ∈Z≥0. Then (X ,δk-diam) can be embed-

ded into the ℓ1 diversity with distortion O(k logn), in randomized polynomial-time.

Proof: We let f : (X ,δk-diam)→ (X ,δdiam) be a polynomial-time O(k)-distortion embedding of (X ,δk-diam)

into some diameter diversity (X ,δdiam), due to Theorem 3.3.10. We let g : (X ,δdiam)→ (Rm,δ1) be a ran-

domized polynomial-time O(logn)-distortion embedding of (X ,δdiam) into the ℓ1 diversity for some dimen-

sion m, due to Theorem 3.3.8. Then the map g · f is an embedding of (X ,δk-diam) into the ℓ1 diversity

with distortion O(k logn). Moreover, this embedding is computable in randomized polynomial-time. This

completes the proof. □
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3.4 An Inapproximability Result for Diversity Embeddings
In this section we provide an inapproximability result for diversity embeddings into ℓ1. In short, our re-

sult states that there are diversities which cannot be embedded into ℓ1 with distortion smaller than Ω(n)

by a polynomial-time algorithm that only queries the induced metric of the diversity, unless P=NP. A con-

sequence of this result is that the O(n)-distortion ℓ1 embedding, Theorem 3.1.5, is asymptotically optimal

among algorithms that query only the induced metric of a diversity. We start by stating a conjecture of

Bryant and Tupper [9] where its algorithmic refinement is disproved by our inapproximability result.

Conjecture 3.4.1 (Restatement of Bryant and Tupper’s Conjecture in [9]) There exists an O(
√

n)-distortion

diversity embedding into ℓ1 that is based solely on the induced metric of a diversity.

Bryant and Tupper conjecture the existence of a diversity embedding that attains low-distortion, specif-

ically O(
√

n), and that this embedding utilizes only a diversity’s induced metric. However, Bryant and

Tupper do not insist on any algorithmic requirements, notably time complexity. We provide the following

algorithmic refinement of their conjecture.

Conjecture 3.4.2 (Algorithmic Refinement of Conjecture 3.4.1) There exists a polynomial-time O(
√

n)-

distortion diversity embedding into ℓ1 that is based solely on the induced metric of a diversity.

We refute this refinement with the following inapproximability result.

Theorem 3.4.3 (Restatement of 1.2.4) For any p ≥ 0 and for any ε > 0, there does not exist a polynomial-

time diversity ℓ1 embedding that queries a diversity on sets of cardinality at most O(logp n) and achieves a

distortion of O(n1−ε), unless P=NP.

This theorem statement is quite cumbersome and so we provide the following corollary which more

clearly disproves Conjecture 3.4.2.

Corollary 3.4.4 For any ε > 0, there does not exist a polynomial-time diversity ℓ1 embedding that is based

solely on the induced metric of a diversity with a distortion of O(n1−ε).

Proof: Setting p = 0 in Theorem 3.4.3, we have that there does not exist a polynomial-time diversity ℓ1

embedding that queries a diversity on sets of cardinality at most O(1) and attains a distortion of O(n1−ε),

unless P=NP. Specifically, sets of cardinality O(1) include sets of cardinality two, or in other words, the

induced metric of the diversity. □

Therefore, Conjecture 3.4.2 is disproved. An interesting observation is that existing diversity embed-

dings into ℓ1 are both computable in polynomial-time and are computed solely using the induced metric of

a diversity. Notably, these include Bryant and Tupper’s O(n)-distortion embedding of an arbitrary diversity

into ℓ1, Theorem 3.1.5, and the two O(logn)-distortion embeddings of the diameter and Steiner diversities

into ℓ1, Theorems 3.2.3 and 3.3.8. This naturally posits the observation that if one were to improve upon the
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O(n)-distortion of embedding an arbitrary diversity into ℓ1, say for a hypergraph Steiner diversity, one must

construct an algorithm that utilizes the value of the diversity on sets of arbitrary size.

The proof of Theorem 3.4.3 rests upon a reduction from the notorious independent set problem to the

problem of embedding a diversity into ℓ1. In Section 3.4.1 we introduce the independent set problem, state

an inapproximability result for it, and define the independent set diversity. In Section 3.4.2 we give our

proof of Theorem 3.4.3.

3.4.1 The Independent Set Diversity

In this section we introduce the independent set problem, state an inapproximability result for it, and con-

clude with defining the independent set diversity.

Definition 3.4.5 (Independent Set) Given a graph G = (V,E), a subset of nodes S ⊆ V is an independent

set of G if for all u,v ∈ S there does not exist an edge (u,v) ∈ E.

Thus, the independent set problem is simply the problem of computing the maximum cardinality of an

independent set of a graph.

Definition 3.4.6 (Independent Set Problem) Given a graph G=(V,E), the independent set problem, ISP(G),

is defined as

ISP(G) = max{|S| : S is an independent set of G} (3.104)

For any ε > 0, the independent set problem is inapproximable up to a factor of O(n1−ε), unless P = NP

[2, 18].

Theorem 3.4.7 (Inapproximability of the Independent Set Problem) For any ε > 0, there does not exist

a polynomial-time approximation algorithm for the independent set problem with an approximation factor

smaller than O(n1−ε), unless P=NP.

In order to construct the independent set diversity we require the following technical lemma that char-

acterizes an independent set function as being nonnegative, increasing, and subadditive.

Lemma 3.4.8 Let G = (V,E) be a graph. We define the independent set function fIS : 2V → Z≥0 as

fIS(A) = max{|S| : S ⊆ A, S is an independent set of G} (3.105)

Then the set function fIS is nonnegative, increasing, and subadditive.

Proof: By construction, fIS is clearly nonnegative. As for the increasing property of fIS, it suffices to show

that for any any arbitrary A ⊆ B ⊆ V , fIS(A) ≤ fIS(B). We let A ⊆ B ⊆ V be arbitrary and we suppose that

S ⊆ A is an independent set of G such that fIS(A) = |S|. Since S ⊆ A ⊆ B, it also follows that |S| ≤ fIS(B).

Hence fIS(A)≤ fIS(B) and thus fIS is increasing.
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Next, to prove that fIS is subadditive we first argue that independent sets of G are downwards closed.

That is, if S ⊆V is an independent of G, then for any S′ ⊆ S it follows that S′ is an independent set of G. Let

u,v ∈ S′ be arbitrary, since u,v ∈ S′ ⊆ S and S is an independent set of G then (u,v) ̸∈ E and so S′ is also an

independent set of G.

Now we proceed to prove that fIS is subadditive. Let A,B ⊆ V be arbitrary. It suffices to show that

fIS(A∪B)≤ fIS(A)+ fIS(B). We define A′ = A\B and B′ = B. Then A′∩B′ = /0 and A′∪B′ = A∪B. Hence,

f (A∪B) = f (A′∪B′) (3.106)

We let SA′∪B′ ⊆ A′∪B′,SA′ ⊆ A′,SB′ ⊆ B′ be independent sets of G such that

fIS(A′∪B′) = |SA′∪B′ |, fIS(A′) = |SA′ |, fIS(B′) = |SB′ | (3.107)

Since SA′∪B′ ⊆ A′∪B′ then

SA′∪B′ = (SA′∪B′ ∩A′)∪ (SA′∪B′ ∩B′) (3.108)

Moreover, since A′∩B′ = /0 then

|SA′∪B′ |= |SA′∪B′ ∩A′|+ |SA′∪B′ ∩B′| (3.109)

We also note that by the downwards closed property of independent sets, SA′∪B′ ∩A′ and SA′∪B′ ∩B′ are

independent sets of G. Furthermore, this implies that

|SA′∪B′ ∩A′| ≤ fIS(A′) and |SA′∪B′ ∩B′| ≤ fIS(B′) (3.110)

Putting everything together, we have that

fIS(A∪B) = fIS(A′∪B′) by (3.106) (3.111)

= |SA′∪B| by (3.107) (3.112)

= |SA′∪B′ ∩A′|+ |SA′∪B′ ∩B′| by (3.109) (3.113)

≤ fIS(A′)+ fIS(B′) by (3.110) (3.114)

≤ fIS(A)+ fIS(B) by the fact that fIS is increasing (3.115)

This completes the proof. □

Next, we define the independent set diversity and according to Lemma 2.3.2 and Lemma 3.4.8 it follows

that our construction is in fact a diversity.

Definition 3.4.9 (Independent Set Diversity) Let G = (V,E) be a graph and let fIS be defined as it is in

Lemma 3.4.8. Then we define the independent set diversity, (V,δIS), as
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δIS(A) =

 fIS(A) if |A| ≥ 2

0 otherwise
(3.116)

Proof: We prove that (V,δIS) is in fact a diversity. According to Lemma 3.4.8, fIS is nonnegative, increas-

ing, and subadditive set function over the ground set V . Then, according to Lemma 2.3.2 and the definition

of (V,δIS) it follows that (V,δ ) is a (pseudo)-diversity. In particular, (V,δIS) is a diversity since for any

A ⊆V where |A| ≥ 2 it follows that δIS(A) = fIS(A)≥ 1 > 0. □

3.4.2 Proof of Theorem 3.4.3

Theorem 3.4.10 (Restatement of Theorem 3.4.3) For any p ≥ 0 and for any ε > 0, there does not exist a

polynomial-time diversity ℓ1 embedding that queries a diversity on sets of cardinality at most O(logp n) with

a distortion of O(n1−ε), unless P=NP.

Proof: For this proof, we assume that P ̸=NP, and for the sake of contradiction, we assume the negation of

the theorem statement. That is, we suppose that for some p ≥ 0 and for some ε > 0 there is a polynomial-

time diversity embedding into ℓ1 that queries the diversity on sets of cardinality at most O(logp n) with a

distortion of O(n1−ε).

We let G = (V,E) be an arbitrary graph with |V |= n. We let (V,δIS) be the corresponding independent

set diversity as defined by Definition 3.4.5. (V,δIS) is defined implicitly by the graph G and, at this point,

we are not insisting on being able to explicitly compute δIS(A) for any A ⊆V . We note that by definition of

(V,δIS) we have that

δIS(V ) = max{|S| : S ⊆V , S is an independent set of G}= ISP(G) (3.117)

Therefore, any approximation of δIS(V ) yields an approximation of the instance of the independent

set problem, ISP(G). In particular, we show how an algorithm that embeds a diversity into ℓ1 yields an

approximation algorithm for δIS(V ) and in turn for ISP(G).

We let f : V → Rd , for some d ∈ Z≥0, be the diversity embedding of (V,δIS) into (Rd ,δ1) given by our

algorithm at the beginning of this proof. By assumption we can compute f in polynomial-time, provided

we can query δIS(A) for sets A ⊆V where |A| ∈ O(logp n) in polynomial-time. Although, (V,δIS) is defined

implicitly by the graph G, we can compute δIS(A) for every A ⊆ V where |A| ∈ O(logp n) in polynomial-

time, specifically O(np), using a brute-force enumeration of all independent sets of G that are subsets of A.

Therefore, f is computable in polynomial-time.

Furthermore, the distortion of the embedding f is of the factor O(n1−ε). Specifically, we have the

following guarantee on the value of δIS(V ) with respect to δ1( f (V )),

1
c1

δIS(V )≤ δ1( f (V ))≤ c2δIS(V ) (3.118)
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where c1,c2 > 0 and c1c2 = O(n1−ε). Given that δIS(V ) = ISP(G) and that f is computable in polynomial-

time, this implies that we have a polynomial-time approximation algorithm for the independent set problem

with an approximation factor of O(n1−ε). However, this contradicts Theorem 3.4.7. This completes the

proof.

□
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Chapter 4

Approximating the Sparsest Cut in
Hypergraphs

4.1 Approximating the Sparsest Cut via Diversity Embeddings
In this chapter we present approximation algorithms for the sparsest cut problem in hypergraphs via diversity

embeddings. Our approach follows the seminal technique of utilizing metric embeddings for the sparsest

cut problem in the setting where the both supply and demand hypergraphs are simply graphs. This is

approach is due to Linial, London, and Rabinovich [24] and Aumann and Rabani [5]. They formulate an

LP relaxation for the sparsest cut that optimizes over pseudo-metric spaces and then embed the metric space

corresponding to the optimal LP solution into the ℓ1 metric with low distortion. An approximate sparsest cut

is then extracted due to the fact that ℓ1 metrics are a nonnegative sum of cut pseudo-metrics. The approach

that we follow is due to Bryant and Tupper [31] where they show that the flow-cut gap of the sparsest cut and

the maximum concurrent multicommodity flow is bounded above by the minimum distortion of embedding

a diversity into ℓ1. This generalizes the classical graph setting.

In this section, we present this work of Bryant and Tupper. Specifically, we present an LP relaxation

for the sparsest cut in hypergraphs that optimizes over pseudo diversities. Then, we show how embedding

a diversity, corresponding to an optimal solution, into ℓ1 yields an approximate sparsest cut in hypergraphs.

We culminate this discussion with a randomized polynomial-time approximation algorithm for the sparsest

cut in hypergraphs, Theorem 4.1.1. Bryant and Tupper did not specifically address the tractability of their

approach. Namely, how to solve the LP relaxation and then extract cut information in polynomial time.

In Section 4.2 we characterize the optimal solutions of the LP relaxation of the sparsest cut. In particular

we show that if either the supply or demand hypergraphs is a graph, then the resulting optimal solution is

a Steiner or a diameter diversity, which both have O(logn)-distortion embeddings into the ℓ1 diversity (see

Theorems 3.2.3 and 3.3.8. Then, in Section 4.3 we provide algorithmic details which show that there is a

randomized polynomial-time O(logn)-approximation algorithm for the sparsest cut problem in the setting

where either the supply or demand hypergraphs is a graph.

Throughout this chapter we consider an instance of the sparsest cut problem defined by a supply hyper-
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graph G = (V,EG,wG) with rank rG and a demand hypergraph H = (V,EH ,wH) with rank rH , as defined in

Section 1.1 and Definition 1.1.1.

4.1.1 A Linear Programming Relaxation

According to the definition of the sparsest cut φ , Definition 1.1.3, and the definition of a cut pseudo diversity,

Definition 2.2.6, we have that the sparsest cut φ is equivalent to

φ = min
A⊆V

∑U∈EG
wG(U)δA(U)

∑S∈EH wH(S)δA(S)
(4.1)

Furthermore, we can relax this optimization over cut pseudo diversities δA by the following optimization

over all pseudo diversities

min
(V,δ ) is a pseudo-diversity

∑U∈EG
wG(U)δ (U)

∑S∈EH wH(S)δ (S)
(4.2)

We call (4.2) the sparsest cut diversity-relaxation. Moreover, since (4.2) is a relaxation of (4.1) we have that

φ ≥ min
(V,δ ) is a pseudo-diversity

∑U∈EG
wG(U)δ (U)

∑S∈EH wH(S)δ (S)
(4.3)

It can be shown that (4.2) is equivalent to the following optimization problem

min ∑
U∈EG

wG(U)δ (U)

s.t. ∑
S∈EH

wH(S)δ (S)≥ 1

(V,δ ) is a pseudo-diversity

(4.4)

We recall Definition 2.2.1, T(G,S), the collection of subsets of hyperedges of G that correspond to con-

nected subhypergraphs that contain the nodes S. Then (4.4) can be shown to be equivalent to the following

LP

min ∑
U∈EG

w(U)dU

s.t. ∑
S∈EH

wH(S)yS ≥ 1

∑
U∈t

dU ≥ yS ∀S ∈ EH , t ∈ T(G,S)

dU ≥ 0 ∀U ∈ EG

yS ≥ 0 ∀S ∈ EH

(4.5)

We can take a feasible solution of (4.5), {dU}U∈EG and {yS}S∈EH , and define a corresponding feasible solu-

tion to (4.4) with an equivalent objective value. This corresponding solution is a hypergraph Steiner diversity

(V,δ ) that corresponds to the hypergraph (V,EG,w) (4.6)
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where w : EG → R+ is defined as w(U) = dU .

We remark that this LP relaxation has polynomially1 many variables and in general it has exponentially

many constraints. Specifically, for an S ∈ EH it could be the case T(G,S) contains exponentially many subsets

of hyperedges. Hence, the set of constraints

{∑
U∈t

dU ≥ yS}t∈T(G,S) (4.7)

is exponentially large in general. Thus, we can solve this LP (approximately) if there is a polynomial time

(approximate) separation oracle for

min
t∈T(G,S)

∑
U∈t

dU ≥ yS (4.8)

for each S ∈ EH . This is the hypergraph Steiner problem (HSP) it is NP-complete [6]. We do have an

O(logrH)-approximate separation oracle however. We defer discussion of HSP to Chapter 5.

4.1.2 Rounding the Linear Programming Relaxation

Given a solution to LP Relaxation (4.5) we immediately have a solution to the sparsest cut diversity-

relaxation (4.2), namely (V,δ ) from (4.6). We show how to extract a cut from this diversity that approximates

the sparsest cut. We let f : V →Rm be an embedding from (V,δ ) to the ℓ1 diversity (Rm,δ1) with distortion

c ≥ 1. This yields the following inequalities

∑U∈EG
wG(U)δ1( f (U))

∑S∈EH wH(S)δ1( f (S))
≤ c

∑U∈EG
wG(U)δ (U)

∑S∈EH wH(S)δ (S)
≤ cφ (4.9)

where the first inequality follows by the fact that f is an embedding with distortion c and the second in-

equality follows by the fact that (V,δ ) is a feasible solution to (4.2) which is a relaxation of φ according to

Equation (4.3).

According to Theorem 3.1.2, δ1 is a nonnegative sum of O(nm) cut pseudo-diversities. Therefore, there

exists some collection of subsets of 2 f (V ), F ⊆ 2 f (V ) where |F | ∈ O(nm), such that for any A ⊆V

δ1( f (A)) = ∑
B∈F

αBδB( f (A)) (4.10)

where {αB}B∈F are positive scalars and {( f (V ),δB)}B∈F is a collection of cut pseudo-diversities. This

immediately yields that

∑U∈EG
wG(U)δ1( f (U))

∑S∈EH wH(S)δ1( f (S))
=

∑U∈EG
wG(U)

[
∑B∈F αBδB( f (U))

]
∑S∈EH wH(S)

[
∑B∈F αBδB( f (S))

] (4.11)

Next, rearranging the order of the summations, we have that (4.11) is equivalent to

∑B∈F αB
[

∑U∈EG
wG(U)δB( f (U))

]
∑B∈F αB

[
∑S∈EH wH(S)δB( f (S))

] (4.12)

1Unless G and H are not defined explicitly.
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Finally, it can be shown that there exists some cut B0 ⊆V where f (B0) ∈ F such that

∑U∈EG
wG(U)δ f (B0)( f (U))

∑S∈EH wH(S)δ f (B0)( f (S))
≤ ∑B∈F αB

[
∑U∈EG

wG(U)δB( f (U))
]

∑B∈F αB
[

∑S∈EH wH(S)δB( f (S))
] (4.13)

We note that the left side of the inequality (4.13) is simply

φ(B0) =
∑U∈EG

wG(U)δB0(U)

∑S∈EH wH(S)δB0(S)
=

∑U∈EG
wG(U)δ f (B0)( f (U))

∑S∈EH wH(S)δ f (B0)( f (S))
(4.14)

where the second equality follows by the fact that cuts are preserved under the map f : V → Rm.

Hence putting together (4.9), (4.11), (4.12), (4.13), (4.14), and the fact that φ ≤ φ(B0) we have that

φ ≤ φ(B0)≤ cφ (4.15)

4.1.3 An Approximation Algorithm for the Sparsest Cut

Theorem 4.1.1 Let G= (V,EG,wG) be a supply hypergraph with rank rG and H = (V,EH ,wH) be a demand

hypergraph with rank rH .

1. Let αLP be the approximation factor for some (randomized) polynomial-time algorithm that (approx-

imately) solves LP Relaxation (4.5).

2. Let αdiv be the approximation factor for some (randomized) polynomial-time algorithm that com-

putes the hypergraph Steiner diversity corresponding to the optimal solution of LP Relaxation 4.5, as

defined according to Equation (4.6).

3. Let α f be the distortion of embedding the aforementioned diversity into the ℓ1 diversity for some

(randomized) polynomial time algorithm.

Then the approach outlined in this section forms a (randomized) polynomial-time O(αLPαdivα f )-approximation

algorithm for the sparsest cut problem in hypergraphs.

4.2 Characterizing the Optimal Solutions of the Sparsest Cut
Diversity-Relaxation

In this section we provide our contributions, the characterization of the optimal solutions of the sparsest cut

diversity-relaxation, Equation (4.2), or equivalently, of LP Relaxation (4.5). We show that when the supply

hypergraph is a graph then the optimal diversity is a Steiner diversity and when the demand hypergraph is

a graph then the optimal diversity is a diameter diversity. Notably, both of these diversities have O(logn)-

distortion polynomial-time embeddings into ℓ1.

Theorem 4.2.1 Let G = (V,EG,wG) be a supply hypergraph and let H = (V,EH ,wH) be a demand hyper-

graph with rank rH . Let (V,δ ) be a (pseudo) diversity attaining the optimal objective value to the sparsest

41



cut diversity-relaxation, Equation (4.2). Let (V,δrH -diam) be the rH-diameter diversity of (V,δ ). Then (V,δ )

can be asummed to be (V,δrH -diam).

Proof: According to Theorem 2.2.14, (V,δ ) and (V,δrH -diam) are both members of D(V,δ ,rH), and moreover,

(V,δrH -diam) is the minimal diversity of this family. By definition of D(V,δ ,rH) and by the fact that ∀S ∈
EH , |S| ≤ rH , it follows that

∑
S∈EH

wH(S)δ (S) = ∑
S∈EH

wH(S)δrH -diam(S) (4.16)

By the minimality, of (V,δrH -diam) among the family D(V,δ ,rH) it follows that

∑
U∈EG

wG(U)δrH -diam(U)≤ ∑
U∈EG

wG(U)δ (U) (4.17)

Then (4.16) and (4.17) imply that

∑U∈EG
wG(U)δrH -diam(U)

∑S∈EH wH(S)δrH -diam(S)
≤ ∑U∈EG

wG(U)δ (U)

∑S∈EH wH(S)δ (S)
(4.18)

Therefore, the optimal diversity for the sparsest cut diversity-relaxation, (V,δ ), can be assumed to be its

the rH-diameter diversity (V,δrH -diam), thus completing the proof. □

Corollary 4.2.2 Let G = (V,EG,wG) be a supply hypergraph and let H = (V,EH ,wH) be a demand graph,

that is it has rank rH = 2. Let (V,δ ) be a (pseudo) diversity attaining the optimal objective value to the

sparsest cut diversity-relaxation, Equation (4.2). Let (V,d) be the induced metric space of (V,δ ) and let

(V,δdiam) ∈ D(V,d) be the diameter diversity whose induced metric space is (V,d). Then (V,δ ) can be

assumed to be (V,δdiam), a diameter diversity.

Proof: This corollary follows by Fact 2.2.12 and Theorem 4.2.1. □

Theorem 4.2.3 Let G= (V,EG,wG) be a supply graph, that is it has rank rG = 2, and let H = (V,EH ,wH) be

a demand hypergraph. Let (V,δ ) be a (pseudo) diversity attaining the optimal objective value to the sparsest

cut diversity-relaxation, Equation (4.2). Let (V,d) be the induced metric space of (V,δ ) and let (V,δSteiner)∈
D(V,d) be the Steiner diversity whose induced metric space is (V,d). Then (V,δ ) can be assumed to be

(V,δSteiner), a Steiner diversity.

Proof: Let U ∈ EG be arbitrary. Since rG = 2 then |U |= 2 and we let U = {u,v}. Then it follows that

δ (U) = d(u,v) = δSteiner(U) (4.19)

where the two equalities follow by the fact that (V,δ ),(V δSteiner) ∈ D(V,d). From this we have that

∑
U∈EG

wG(U)δ (U) = ∑
U∈EG

wH(S)δSteiner(U) (4.20)
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By theorem 2.2.10, (V,δSteiner) is the maximal diversity of the family D(V,d) and so it follows that

∑
S∈EH

wH(S)δ (S)≤ ∑
S∈EH

wH(S)δSteiner(S) (4.21)

Then (4.20) and (4.21) imply that

∑U∈EG
wG(U)δSteiner(U)

∑S∈EH WH(S)δSteiner(S)
≤ ∑U∈EG

wG(U)δ (U)

∑S∈EH wH(S)δ (S)
(4.22)

Therefore, the optimal diversity for the sparsest cut diversity-relaxation (V,δ ) can be assumed to be the

Steiner diversity (V,δSteiner). This completes the proof. □

4.3 Algorithmic Implications
Based off our approach, we first present a polynomial-time approximation algorithm for the case where the

supply and demand hypergraphs are arbitrary hypergraphs with ranks rG and rH , respectively.

Theorem 4.3.1 (Restatement of 1.2.1) Let G = (V,EG,wG) be a supply hypergraph with rank rG and let

H = (V,EH ,wH) be a demand hypergraph with rank rH . Then there is a randomized polynomial-time

O(min{rG,rH} logn logrH)-approximation algorithm for the sparsest cut of G and H.

Proof: According to Theorem 4.1.1 there is a polynomial-time O(αLPαdivα f )-approximation algorithm

for the sparsest cut of G and H, where αLP αdiv, and α f are as defined in Theorem 4.1.1.

According to Corollary 5.3.2, there is an O(logrH)-approximation algorithm for LP Relaxation (4.5),

hence αLP = O(logrH).

We let (V,δ ) be an optimal solution to the sparsest cut diversity-relaxation (4.2). We note that (V,δ ) is a

hypergraph Steiner diversity corresponding to a rank rG hyperedge-weighted hypergraph, namely (V,EG,w)

where w(U) = dU and {dU}U∈EG are from an optimal solution to LP Relaxation (4.5). Then according to

Corollary 3.2.5 there exists a randomized polynomial-time O(rG logn)-distortion embedding of (V,δ ) into

the ℓ1 diversity.

Alternatively, according to Theorem 4.2.1 (V,δ ) is a rH-diameter diversity. Then according to Corollary

3.3.11 there is a randomized polynomial-time O(rH logn)-distortion embedding of (V,δ ) into the ℓ1 diver-

sity. Thus, we can choose whether to embed (V,δ ) into ℓ1 as a hypergraph Steiner diversity or a rH-diameter

diversity based on whether rG or rH is smaller. Therefore, α f = O(min{rG,rH} logn).

Since the two embeddings, Corollary 3.2.5 and 3.3.11 only require the induced metric space of (V,δ )

then we only need to compute δ (A) for A ∈ P(V ) where |A| = 2. Thus, by Corollary 5.3.1 we have that

α = O(log2) = O(1).

Hence, we have a randomized polynomial-time O(min{rG,rH} logn logrH)-approximation algorithm

for the sparsest cut problem in G and H. This completes the proof □

This is the first randomized polynomial-time approximation algorithm for the setting where G and H are

arbitrary hypergraphs. An immediate corollary of this result is an O(logn)-approximation algorithm for the

case where the demand hypergraph is simply a graph
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Corollary 4.3.2 Let G = (V,EG,wG) be a supply hypergraph and H = (V,EH ,wH) be a demand graph, that

is it has rank rH = 2. Then there is a randomized polynomial-time O(logn)-approximation algorithm for

the sparsest cut of G and H.

Proof: This corollary follows immediately by Theorem 4.3.1 and the fact that rH = 2. □

For this setting where G is a hypergraph and H is a graph, there is a randomized polynomial-time

O(
√

logrG logn log logn)-approximation algorithm due to Louis [25] which is based off an SDP relaxation.

However, among LP-based approaches our algorithm is the first to attain an O(logn)-approximation when

H is an arbitrary graph. Specifically, Kapralov et al. [19] attain an O(logn)-approximation when H has

uniform demands.

We note that this corollary can be proven alternatively by our characterization of the optimal diversity

to the sparsest cut diversity-relaxation (4.2) being a diameter diversity for the case when the demand hy-

pergraph is a graph, Corollary 4.2.2. Similarly, our characterization Theorem 4.2.3 underpins a randomized

polynomial-time O(logn)-approximation algorithm for the case where the supply hypergraph is a graph.

Theorem 4.3.3 (Restatement of 1.2.2) Let G = (V,EG,wG) be a supply graph, that is it has rank rG = 2,

and H = (V,EH ,wH) be a demand hypergraph. Then there is a randomized polynomial-time O(logn)-

approximation algorithm for the sparsest cut of G and H.

Proof: According to Theorem 4.1.1 there is a polynomial-time O(αLPαdivα f )-approximation algorithm

for the sparsest cut of G and H, where αLP αdiv, and α f are as defined in Theorem 4.1.1.

We recall that for each S ∈ EH the LP Relaxation (4.5) may have exponentially many constraints of the

form

{∑
U∈t

dU ≥ yS}t∈T(G,S) (4.23)

Approximately separating over these constraints amounts to approximating the minimum cost Steiner tree

for the nodes S. Therefore, we can approximately separate over these constraints in polynomial time using a

polynomial-time O(1)-approximation algorithm for the minimum-cost Steiner tree problem [12, 22, 30, 32].

Hence αLP = O(1).

We let (V,δ ) be the optimal diversity of the sparsest cut diversity-relaxation. Then according to Theorem

4.2.3 (V,δ ) is a Steiner diversity, and moreover, we can compute δ (A) for any A ⊆V in polynomial time up

to a factor of O(1), again, by a polynomial-time O(1)-approximation algorithm for the Steiner tree problem.

Therefore, αdiv = O(1).

Finally, according to Theorem 3.2.3, there is a randomized polynomial-time O(logn)-distortion embed-

ding of (V,δ ), a Steiner diversity, into ℓ1. Hence α f = O(logn).

Hence, we have a randomized polynomial-time O(logn)-approximation algorithm for the sparsest cut

problem in G and H. This completes the proof.

□
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The previous state-of-the-art algorithm for the setting where G is a graph and H is a hypergraph is a

polynomial-time O(logn log(|EH |rH)-approximation algorithm due to Plotkin et al. [28]. Our O(logn)-

approximation is a notable improvement due to the fact that |EH | may be exponentially large.
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Chapter 5

The Minimum Cost Hypergraph Steiner
Problem

In this chapter we give an asymptotically optimal approximation algorithm for the minimum cost hypergraph

Steiner problem, a key problem that emerges in the computation of diversities and in their application to the

generalized sparsest cut problem in hypergraphs. Not only is our algorithm optimal but it is also the first

approximation algorithm for this problem. In Section 5.1 we define and introduce the problem, commenting

on its relevance to the computation of diversities and to their application to the sparsest cut problem in

hypergraphs. We also our new results, Theorems 5.1.2 and 5.1.3. In Section 5.2 we provide proofs of these

two theorems. In Section 5.3 we provide applications of our approximation algorithm to the minimum-cost

hypergraph Steiner problem.

5.1 The Minimum Cost Hypergraph Steiner Problem
We begin by defining the the minimum cost hypergraph Steiner problem.

Definition 5.1.1 (Minimum Cost Hypergraph Steiner Problem (HSP)) Let G=(V,E,w) be a hypergraph

with nonnegative hyperedge weights w : E → R+. For a set of Steiner nodes S ⊆ V , we define TS to be the

collection of connected subhypergraphs of G that contain the Steiner nodes S. Then the minimum cost

hypergraph Steiner Problem, HSP(G,S) is defined as

HSP(G,S) = min
t∈TS

∑
U∈t

w(U) (5.1)

For convenience we may refer to the minimum cost hypergraph Steiner problem as simply the hypergraph

Steiner problem, hence the use of the abbreviation HSP.

In the context of diversities and the generalized sparsest cut problem in hypergraphs, the minimum cost

hypergraph Steiner problem emerges in the following two computational problems.

1. Given a hypergraph Steiner diversity (V,δH ) defined by a hypergraph H = (V,E,w) with nonnega-

tive hyperedge weights w : E → R+, for any S ⊆ V , the diversity value δH (S) is precisely defined
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as δ (S) = HSP(H,S). If one is given (V,δH ) by the hypergraph H then to (approximately) query

δH (S) one must (approximately) solve HSP(H,S). For the application to sparsest cut in hypergraphs,

the hypergraph Steiner diversity that emerges from the sparsest cut LP Relaxation (4.5) is defined im-

plicitly by a hyperedge-weighted hypergraph. Thus, to (approximately) solve the sparsest cut problem

in hypergraphs via diversity embeddings it is necessary to (approximately) solve the minimum cost

hypergraph Steiner problem.

2. Additionally, the sparsest cut LP Relaxation (4.5) has polynomially many variables but exponentially

many constraints. Specifically, for each demand S ∈ EH , there may be an exponential number of

constraints of the form

∑
U∈t

dU ≥ yS,∀t ∈ T(G,S) (5.2)

which can be (approximately) separated over by (approximately) solving an instance of the hypergaph

Steiner problem. Hence, computing a polynomial time (approximate) separation oracle, and in turn,

obtaining a polynomial time (approximation) algorithm for the sparsest cut LP relaxation amounts

to obtaining a polynomial time (approximation) algorithm for the minimum cost hypergraph Steiner

problem.

Thus, it is evident that the minimum cost hypergraph Steiner problem is a computational bottleneck for

our approach of utilizing diversity embeddings for the sparsest cut problem in hypergraphs. This problem

is a natural generalization of both the Steiner tree problem in graphs and the minimum cost spanning sub-

hypergraph problem (MSSP) [6], and yet surprisingly, it has not been previously investigated. On this note,

we state our contribution which is the first polynomial time approximation algorithm for the minimum cost

hypergraph Steiner problem, and moreover, this algorithm also happens to be optimal unless P=NP.

Theorem 5.1.2 (Restatement of Theorem 1.2.5) There exists a polynomial time O(logn)-approximation

algorithm for the minimum cost hypergraph Steiner problem. Specifically, for a hypergraph G = (V,E,w)

with nonnegative hyperedge weights w : E → R+ and for a set of Steiner nodes S ⊆ V , HSP(G,S) can be

approximated up to a factor of O(log |S|) in polynomial time.

Theorem 5.1.3 The minimum cost hypergraph Steiner problem cannot be approximated to a factor smaller

than Ω(logn) in polynomial time unless P=NP. Specifically, for a hypergraph G=(V,E,w) with nonnegative

hyperedge weights w : E →R+ and for a set of Steiner nodes S ⊆V , HSP(G,S) cannot be approximated up

to a factor smaller than Ω(log |S|) in polynomial time unless P=NP.

In the subsequent section we provide proofs of Theorem 5.1.2 and Theorem 5.1.3. Respectively, these

theorems rest upon a reduction to the minimum cost node-weighted Steiner tree problem and a reduction

from the set cover problem.
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5.2 An Optimal Algorithm for the Minimum Cost Hypergraph Steiner
Problem

In this section we provide a proof of Theorem 5.1.2 followed by a proof of Theorem 5.1.3.

5.2.1 Proof of Theorem 5.1.2

We proceed by defining the minimum cost node-weighted Steiner tree problem.

Definition 5.2.1 Let G = (V,E,w) be a graph with nonnegative node weights w : V → R+. For a set of

Steiner nodes S ⊆ V we define TS to be the set of minimally connected subgraphs of G containing the

Steiner nodes S, or simply subtrees of G spanning S, in accordance with Definition 2.2.1. Then the minimum

cost node-weighted Steiner tree problem (NSTP), NSTP(G,S), is defined as

NSTP(G,S) = min
t∈TS

∑
v∈∪e∈t e

w(v) (5.3)

According to Klein and Ravi [21] the minimum cost node-weighted Steiner tree problem has a polyno-

mial time O(logn)-approximation algorithm, which we state as the following theorem.

Theorem 5.2.2 (Restatement of Theorem 1.1 of [21]) Let G= (V,E,w) be a graph with nonnegative node

weights w : V → R+. For a set of Steiner nodes S ⊆V there is a polynomial time O(log |S|)-approximation

algorithm for the minimum-cost node-weighted Steiner tree problem NSTP(G,S).

As noted earlier, our algorithm for the minimum-cost hypergraph Steiner problem follows by a reduction

to the minimum-cost node-weighted Steiner tree problem.

Lemma 5.2.3 Let G = (V,E,w) be a hypergraph with nonnegative hyperedge weighted w : E → R+ and

let S ⊆ V be a set of Steiner nodes. Then the minimum-cost hypergraph Steiner problem HSP(G,S) can be

reduced to an instance of the minimum-cost node-weighted Steiner tree problem in polynomial time.

Proof: We first construct the instance of the minimum-cost node-weighted Steiner tree problem to which

we are reducing from HSP(G,S). For each hyperedge U ∈ E we define an associated node vU and we denote

these nodes by VE as defined below.

VE = {vU : U ∈ E} (5.4)

We then define V ′ = V ∪VE . Next, for each vU ∈ VE we create an edge between vU and each v ∈ U .

Specifically, we define this collection of edges E ′ as

E ′ = {{v,vU} : v ∈U} (5.5)

Finally, we define the nonnegative node-weights w′ : V ′ → R+ as
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w′(v) =

0 if v ∈V

w(U) if v = vU for some vU ∈VE

(5.6)

Thus, our node-weighted graph is defined to be G′ = (V ′,E ′,w′) and the instance of the minimum-

cost node-weighted Steiner tree problem that we are reducing to is NSTP(G′,S). It is easy to see that this

reduction can be computed in polynomial time with respect to G. It remains to prove the correctness of this

reduction.

We first prove that HSP(G,S) ≥ NSTP(G′,s). Let t be subset of hyperedges of G that correspond to a

connected subhypergraph of G that contains the Steiner nodes S. We define feasible solution to NSTP(G′,S)

as

t ′ = {{v,vU} : v ∈U,U ∈ t} (5.7)

Then the objective value of this solution to NSTP(G′,S) is

∑
v∈∪e∈t′e

w′(v) = ∑
U∈t

w′(vU) = ∑
U∈t

w(U) (5.8)

where the first equality follows by the fact that w(v) = 0 for all v ∈V and the second equality follows by the

fact that w′(vU) = w(U) for all vU ∈VE . Thus, the objective value of t ′ to NSTP(G′,S) is at least as small as

that of t to HSP(G,S). It remains to show that t ′ is a feasible solution to NSTP(G′,S), that is t ′ is connected

and t ′ contains the nodes S.

We first prove the latter condition on t ′. Let v ∈ S be arbitrary. Since t is subhypergraph of G that

contains the nodes S there is some U ∈ t such that v ∈U . By construction of t ′, there is an edge (v,vU) ∈ t ′

and so t ′ contains v. Since v is arbitrary, it follows that t ′ contains the Steiner nodes S.

As for the former condition on t ′, we let v,v′ ∈ ∪e∈t ′e be two arbitrary but distinct nodes of the graph

defined by t ′. Without loss of generality, we can assume that v,v′ ∈ V since we can always form a path

from any vU ∈ VE to some node in V , specifically, by considering an edge from vU to one of the nodes

u ∈U . Since t is a connected subhypergraph of G, there is a sequence of hyperedges U1,U2, . . . ,Uk such that

v ∈ U1, v′ ∈ Uk, and for each i ∈ {1,2, . . . ,k−1}, Ui ∩Ui+1 ̸= /0. By the last property of U1,U2, . . . ,Uk, we

can create a sequence of nodes v1,v2, . . . ,vk such that for each i ∈ {1,2, . . . ,k−1},vi ∈Ui ∩Ui+1. Then, by

the construction of t ′, it follows that the sequence

v,U1,v1,U2,v2, . . . ,vk−1,Uk,v′ (5.9)

of nodes of G′ forms a path in the subgraph t ′ of G′. Hence HSP(G,S)≥ NSTP(G′,s).

Lastly, we prove the remaining inequality, HSP(G,S) ≤ NSTP(G′,s). Let t ′ be a connected subhyper-

graph of G′ containing the Steiner nodes S, or in other words t ′ is a feasible solution to NSTP(G′,S). We

define a feasible solution to HSP(G,S) as

t = {U : vU ∈VE ∩ t ′} (5.10)
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Then the objective value of this solution to HSP(G,S) is

∑
U∈t

w(U) = ∑
vU∈VE∩t ′

w′(vU) = ∑
v∈t ′

w′(v) (5.11)

where the first equality follows by the fact that w(U) = w′(vU) for all vU ∈ VE ∩ t ′ and the second equality

follows by the fact that w′(v) = 0 for all v ∈ V . Thus, the objective value of t to HSP(G,S) is at least as

small as that of t ′ to NSTP(G′,S). It remains to show that t is a feasible solution to HSP(G,S), that is, t is

connected and t contains the Steiner nodes S.

We first prove the latter condition on t. Let v ∈ S be arbitrary. Due to the fact that t ′ contains the Steiner

nodes S, and in particular v, and that t ′ is connected there must be some edge (v,v′) ∈ t ′. Furthermore, G′ is

a bipartite graph by construction, with the partitions V ⊆V ′ and VE ⊆V ′, and since v ∈ S ⊆V then v′ ∈VE .

Therefore, v′ = vU for some vU ∈ VE where U is a hyperedge of G that contains the node v. Finally, U ∈ t

by construction of t and so the subhypergraph t contains the node v. Since v is arbitrary, it follows that t

contains the Steiner nodes S.

As for the former condition on t, we let v,v′ ∈ ∪U∈tU be two arbitrary but distinct nodes of the sub-

hypergraph defined by t. Since t ′ is a connected bipartite subgraph of G′ there is a sequence of nodes

v1,vU1 ,v2,vU2 , . . . ,vUk−1,vk where v= v1, v′= vk and for each i∈{1,2, . . . ,k−1} there are edges (vi,vUi),(vUi ,vUi+1)∈
E ′. Given that such edges were created when constructing t ′, for each i ∈ {2,3, . . . ,k− 1} it follows that

vi ∈ Ui ∩Ui+1. Or in other words, the sequence of hyperedge U1,U2, . . . ,Uk−1 forms a path from v ∈ U1 to

v ∈Uk−1, where the membership of v ∈U1 and v ∈Uk−1 follows by construction of the edges of G′. Hence

it is shown that t is connected which completes the proof that t is a feasible solution of HSP(G,S). Hence,

HSP(G,S)≤ NSTP(G′,S) as claimed.

□

Having proven Lemma 5.2.3 it is easy to see that Theorem 5.1.2 follows as a corollary.

Corollary 5.2.4 (Restatement of Theorem 5.1.2) There exists a polynomial time O(logn)-approximation

algorithm for the minimum cost hypergraph Steiner problem. Specifically, for a hypergraph G = (V,E,w)

with nonnegative hyperedge weights w : E → R+ and for a set of Steiner nodes S ⊆ V , HSP(G,S) can be

approximated up to a factor of O(log |S|) in polynomial time.

Proof: The proof follows immediately as a corollary of Theorem 5.2.2 and Lemma 5.2.3. □

5.2.2 Proof of Theorem 5.1.3

As with the previous subsection, we proceed by defining the set cover problem.

Definition 5.2.5 Let V be a universal set of n nodes and let E = {U1,U2, . . . ,Uk} be a collection of subsets

of V where ∪k
i=1Ui = V . Then the set cover problem, SCP(V,E), is defined as the minimum number of sets

Ui ∈ E whose their union contains V . More formally, SCP(V,E) is defined as

SCP(V,E) = min
A ⊆E:V⊆∪U∈A U

|A | (5.12)
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The set cover problem is a well-known NP-complete problem [20] cannot be approximated with a factor

smaller than O(logn) in polynomial time [1, 15, 29]. Specifically, Feige gave a lower bound of (1−o(1)) lnn

for polynomial-time approximation unless NP has slightly superpolynomial time algorithms [17].

Theorem 5.2.6 The set cover problem cannot be approximated to a factor smaller than (1− o(1) lnn in

polynomial time (unless NP has slightly superpolynomial time algorithms).

As noted earlier, our inapproximability result for the minimum-cost hypergraph Steiner problem follows

by a reduction from the set cover problem.

Lemma 5.2.7 Let V be a universal set of n nodes and let E = {U1,U2, . . . ,Uk} be a collection of subsets of V

where ∪k
i=1Ui =V . Then the set cover problem SCP(V,E) can be reduced to an instance of the minimum-cost

hypergraph Steiner problem in polynomial time.

Proof: Given an instance of the set cover problem, w create a new node u and a node set

V ′ =V ∪{u} (5.13)

For each subset Ui ∈ E of V , we create a corresponding hyperedge U ′
i =Ui ∪{u} and we define the set

of hyperedges as

E ′ = {U ′
i : Ui ∈ E} (5.14)

As for the nonnegative hyperedge weights, we define w : V ′ → R+ as

w(U ′
i ) = 1, ∀U ′

i ∈ E ′ (5.15)

Thus, out hyperedge-weighted hypergraph is defined to be G = (V ′,E ′,w) and the instance of the

minimum-cost hypergraph Steiner problem that we are reducing to is HSP(G,V ). It is easy to see that

this reduction can be computed in polynomial time with respect to the set cover instance SCP(V,E). It

remains to prove the correctness of the reduction.

As usual we let TV be the collection of connected subhypergraphs of G containing the nodes V . We

create a map f : {A ⊆ E : V ⊆ ∪Ui∈A Ui}→ TV whereby

f (A ) = {U ′
i : Ui ∈ A } (5.16)

and

f−1(t) = {Ui : U ′
i ∈ t} (5.17)

We first prove the correctness of the map, that is, we show that f (A ) ∈ TV and f−1(t) ∈ {A ⊆ E : V ⊆
∪Ui∈A Ui}. Let A ⊆ E such that V ⊆ ∪Ui∈A Ui be arbitrary. By construction it follows that each Ui ⊆ U ′

i
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and so V ⊆ ∪Ui inf(A )U ′
i . As for the connectivity of f (A ), since each U ′

i contains the node u, then f (A ) is

connected so f (A ) ∈ TV .

As for the other direction, let t ∈ TV be arbitrary. By definition of TV we have that V ⊆ ∪U ′
i ∈tU ′

i , and

since u ̸∈V and each Ui =Ui \{u}, then V ⊆ ∪Ui∈ f−1(t)Ui. Hence f−1(t) ∈ {A ⊆ E : V ⊆ ∪Ui∈A Ui}.

Hence, f and f−1 map between solutions of SCP(V,E) and HSP(G,V ). It remains to argue that objective

value is preserved under f and f−1. By the fact that w(U ′
i ) = 1 for each U ′

i ∈ E ′, it follows that for each

t ∈ TV the objective value of the feasible solution t is equal to ∑U ′
i ∈t w(U ′

i ) = |t|. Then for any aribtrary

A ∈ {A ⊆ E : V ⊆ ∪Ui∈A Ui} we have that

|A |= | f (A )|= ∑
U ′

i ∈ f (A )

w(U ′
i ) (5.18)

where the first equality follows by the definition of f and the second follows by the above observation.

Likewise, for an arbitrary t ∈ TV we have that

∑
U ′

i ∈t
w(U ′

i ) = |t|= | f−1(t)| (5.19)

where the first equality follows by the above observation and the second follows by the definition of

f−1.

Therefore, any feasible solution of our instance of SCP(V,E) can be mapped to a feasible solution of

our instance of HSP(G′,V ) with an equivalent object value, and vice-versa. This completes the proof.

□

Having proven Lemma 5.2.7 it is easy to see that Theorem 5.1.3 follows as a corollary.

Corollary 5.2.8 (Restatement of Theorem 5.1.3) The minimum cost hypergraph Steiner problem cannot

be approximated to a factor smaller than (1− o(1)) lnn in polynomial time (unless NP has slightly su-

perpolynomial time algorithms). Specifically, for a hypergraph G = (V,E,w) with nonnegative hyperedge

weights w : E →R+ and for a set of Steiner nodes S ⊆V , HSP(G,S) cannot be approximated up to a factor

smaller than (1−o(1) ln |S| in polynomial time (unless NP has slightly superpolynomial time algorithms)

Proof: The proof follows immediately as a corollary of Theorem 5.2.6 and Lemma 5.2.7. □

5.3 Applications
In this section we provide two applications of our approximation algorithm for the minimum cost hypergraph

Steiner problem, Theorem 5.1.2. The first application is that of approximately computing a hypergraph

Steiner diversity given a hyperedge-weighted hypergraph.

Corollary 5.3.1 Let H = (V,E,w) be a hypergraph with node set V , hyperedge set E, and nonnegative

hyperedge weights w : E → R+. Let (V,δH ) be the corresponding hypergraph Steiner diversity defined by

H. Then for any A ∈ P(V ), δ (A) can be computed up to a factor of O(log |A|) in polynomial time.
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Proof: This corollary follows immediately from Theorem 5.1.2 and by the fact that for any A ∈ P(V ) we

have that

δ (A) = min
t∈T(H,A)

∑
U∈t

w(U) = HSP(H,A) (5.20)

and so computing δ (A) is equivalent to solving HSP(H,A). □

The second application of Theorem 5.1.2 is that LP Relaxation (4.5) can be approximated up to an

approximation factor of O(logrH) in polynomial time.

Corollary 5.3.2 Let G = (V,EG,wG) be a supply hypergraph and let H = (V,EH ,wH) be a demand hyper-

graph with rank rH . Then the sparsest cut LP Relaxation (4.5) can be be approximated up to a factor of

O(logrH) in polynomial time.

Proof: LP Relaxation (4.5) has polynomially many variables and, in general, exponentially many con-

straints. Specifically, for each S ∈ EH the following set of constraints may be exponentially large

{∑
U∈t

dU ≥ yS}t∈T(G,S) (5.21)

Separating over these constraints amounts to the decision problem

HSP(G,S) = min
t∈T(G,S)

∑
U∈t

dU ≥ yS (5.22)

We can Theorem 5.1.2 to approximate HSP(G,S) up to an O(logrH) factor, as |S| ≤ rH . Hence, up to a

factor of O(logrH), we can verify whether the set of constraints (5.21) are approximately satisfied, and if

not, we can find an approximate separating hyperplane. Then by the ellipsoid algorithm we can solve the

LP Relaxation (4.5) up to an O(logrH) approximation factor in polynomial time. □
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Chapter 6

Cut Sparsifiers and Sparse Diversities

6.1 Sparsification of the Sparsest Cut Problem
During this project a two-part question unfolded. Can we characterize the optimal diversity of the sparsest

cut relaxation, Equation (4.2), with regards to properties such as the rank and sparsity of the supply and

demand hypergraphs? Can we embed said classes of diversities into ℓ1 with low distortion? One natural

class of diversities to investigate are hypergraph Steiner diversities induced by a sparse hypergraph. We

recall that the optimal diversity from the sparsest cut diversity relaxation is a hypergraph Steiner diversity

induced by a reweighting of the supply hypergraph, see (4.6). Consequently, a low distortion embedding

for a diversity induced by a sparse hypergraph would imply that the sparsest cut problem in hypergraphs is

“easier” to solve via diversity embeddings when the supply and demand hypergraphs are sparse.

In fact, the existence of hypergraph cut sparsifiers implies that any instance of the sparsest cut can be

approximated by a sparse instance up to an arbitrarily small (1± ε)-approximation factor. Consequently,

we can restrict our investigation of diversity embeddings to those that are induced by sparse hypergraphs.

In this section we formalize these ideas, but first, we define a hypergraph cut sparsifier; note the definition

is analogous for graph cut sparsifiers, [7, 14].

Definition 6.1.1 (Hypergraph Cut Sparsifier) Let G = (V,E,w) be a hypergraph with node set V , hyper-

edge set E, and hyperedge weights w : E →R+. Let ε > 0 and G′ = (V,E ′,w′) where E ′ ⊆ E is a hypergraph

with hyperedge weights w′ : E ′ → R+, then G′ is a (1± ε)-approximate cut sparsifier of G if for any cut

A ⊆V , where A ̸= /0,V , its weight in G′ is within a multiplicative factor of (1± ε) of its weight in G:

(1− ε) ∑
U∈E:U∩A ̸= /0,U

w(U)≤ ∑
U∈E ′:U∩A ̸= /0,U

w′(U)≤ (1+ ε) ∑
U∈E:U∩A̸= /0,U

w(U) (6.1)

(Hyper)graph cut sparsifiers are of practical importance due to the computational and memory benefits

when working with sparse (hyper)graphs. Consequently, there is a rich history of work on cut sparsifiers in

graphs. In particular, the seminal work of Benczur and Karger [7] showed that for an n-node and m-edge

graph and any ε ∈ (0,1), there is a near linear-time algorithm that computes a (1± ε)-approximate cut

sparsifier with a near linear number of edges, specifically O(n logn
ε2 ) edges. In recent years, there has been a
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series of work on hypergraph cut sparsifiers, and of particular relevance to our investigation, we utilize the

near linear-size hypergraph cut sparsifier of Chen, Khanna, and Nagda [14].

Theorem 6.1.2 Let H = (V,E,w) by a hypergraph with |V | = n, |E| = m, and hyperedge weights w : E →
R+. Then for any ε ∈ (0,1), there is a randomized polynomial-time algorithm that constructs a (1± ε)-

approximate cut sparsifier of H with O(n logn
ε2 ) hyperedges in O(mn+ n10

ε7 )-time with high probability.

Using the notion of a hypergraph cut sparsifier, we prove the following lemma.

Lemma 6.1.3 Let G = (V,EG,wG) be a supply hypergraph and let H = (V,EH ,wH) be a demand hyper-

graph. Let G′ = (V,EG′ ,wG′) be a (1± ε1)-approximate cut sparsifier of G and let H ′ = (V,EH ′ ,wH ′) be a

(1±ε2)-approximate cut sparsifier of H, where ε1,ε2 ∈ (0,1). Then φG,H is within a factor of (1+ε1)(1+ε2)
(1−ε1)(1−ε2)

of

φG′,H ′ .

Proof: Let A ⊆V where A ̸= /0,V be arbitrary. It suffices to show that

(1− ε1)

(1+ ε2)
φG,H(A)≤ φG′,H ′(A)≤ (1+ ε1)

(1− ε2)
φG,H(A) (6.2)

Since G′ is a (1± ε1)-approximate cut sparsifier of G we have the following inequalities

(1− ε1) ∑
U∈EG:U∩A ̸= /0,V

wG(U)≤ ∑
U∈EG′ :U∩A̸= /0,V

wG′(U)≤ (1+ ε1) ∑
U∈EG:U∩A ̸= /0,V

wG(U) (6.3)

Likewise, since H ′ is a (1± ε2)-approximate cut sparsifier of H we have the following inequalities

(1− ε2) ∑
S∈EH :S∩A ̸= /0,V

wH(S)≤ ∑
S∈EH′ :S∩A ̸= /0,V

wH ′(S)≤ (1+ ε2) ∑
S∈EH :S∩A ̸= /0,V

wH(S) (6.4)

Since all weights wH and w′
H are nonnegative, then taking the inverse of (6.4) we have the following in-

equalities

1
(1+ ε2)∑S∈EH :S∩A ̸= /0,V wH(S)

≤ 1
∑S∈EH′ :S∩A ̸= /0,V wH ′(S)

≤ 1
(1− ε2)∑S∈EH :S∩A ̸= /0,V wH(S)

(6.5)

Then putting together (6.3) and (6.5) we have that
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(1− ε1)

(1+ ε2)
φG,H(A) =

(1− ε1)∑U∈EG:U∩A ̸= /0,U wG(U)

(1+ ε2)∑S∈EH :S∩A ̸= /0,S wH(S)
(6.6)

≤
∑U∈EG′ :U∩A̸= /0,U wG′(U)

∑S∈EH′ :S∩A̸= /0,S wH ′(S)
by (6.3) and (6.5) (6.7)

≤
(1+ ε1)∑U∈EG:U∩A ̸= /0,U wG(U)

(1− ε2)∑S∈EH :S∩A ̸= /0,S wH(S)
by (6.3) and (6.5) (6.8)

=
(1+ ε1)

(1− ε2)
φG,H(A) (6.9)

Since

φG,H(A) =
∑U∈EG:U∩A ̸= /0,U wG(U)

∑S∈EH :S∩A ̸= /0,S wH(S)
(6.10)

this completes the proof. □

With Theorem 6.1.2 and Lemma 6.1.3, we obtain the following corollary.

Corollary 6.1.4 Let G= (V,EG,wG) be a supply hypergraph and H = (V,EH ,wH) be a demand hypergraph

where |V |= n, EG = mG, and EH = mH . Let ε ∈ (0,1), then computing the sparsest cut of G and H can be

reduced up to a multiplicative approximation factor of (1+ε)2

(1−ε)2 , in randomized polynomial-time with respect

to n,mG, mH , and 1
ε
, to an instance of the sparsest cut in which the supply and demand hypergraphs each

have O(n logn
ε2 ) hyperedges.

Proof: The result follows by Theorem 6.1.2 and Lemma 6.1.3. □

The implication of Corollary 6.1.4 is that, fixing a constant approximation factor, one can reduce the

sparsest cut problem to an instance where the number of supply and demand hyperedges is nearly linear, of

order O(n logn) to be precise. The consequences of this are two-fold. Firstly, the LP relaxation (4.6) for the

sparsified instance has fewer variables and constraints and could potentially be solved more quickly and with

a smaller approximation factor. But more importantly, the diversities from solutions to this LP relaxation

are induced by sparse hypergraphs. This fact motivates the investigation of low distortion embeddings

for diversities induced by sparse hypergraphs. On this note, we conclude this thesis with the following

conjecture.

Conjecture 6.1.5 (Restatement of Conjecture 1.2.6) Let H = (V,E,w) be a hypergraph with node set V ,

hyperedge set E, and nonnegative hyperedges weights w : E → R+, where |V | = n and |E| = m. Let

(V,δH ) be the corresponding hypergraph Steiner diversity defined by H. Then for some p > 0 there is

an O(logp (n+m))-distortion embedding of (V,δH ) into the ℓ1 diversity.
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Appendix A

Supporting Materials

A.1 Application of the Triangle Inequality
Proposition A.1.1 Let (X ,δ ) be a (pseudo) diversity and let (X ,d) be its (pseudo) metric space. Let A =

{v1,v2, . . . ,vk} ∈ P(X). Then it follows that

δ (A)≤
k−1

∑
i=1

d(vi,vi+1) (A.1)

Proof: For each i ∈ {1,2, . . . ,k−1} we define

Ai = {v1,v2, . . . ,vi+1} (A.2)

Then for any arbitrary i ∈ {2,3, . . . ,k−1} we have that

δ (Ai)≤ δ (Ai−1)+δ ({vi,vi+1}) = δ (Ai−1)+d(vi,vi+1) (A.3)

where the inequality follows by the triangle inequality and the fact that Ai−1 ∩{vi,vi+1} = {vi} ≠ /0. Then

we have that

δ (A) = δ (Ak−1) by Ak−1 = A (A.4)

≤ δ (Ak−2)+d(vk−1,vk) by A.3 (A.5)

≤ δ (Ak−3)+d(vk−2,vk−1)+d(vk−1,vk) by A.3 (A.6)

(A.7)
... (A.8)

≤
k−1

∑
i=1

d(vi,vi+1) by repeated application of A.3 (A.9)

(A.10)
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This completes the proof. □

Proposition A.1.2 Let (X ,δ ) be a (pseudo) diversity and let (X ,d) be its (pseudo) metric space. Let A ∈
P(X) and a ∈ X be arbitrary. Then it follows that

δ (A)≤ ∑
v∈A

d(v,a) (A.11)

Proof: First, we enumerate the elements of A as A = {v1,v2, . . . ,vk}. For each i ∈ {1,2, . . . ,k} we define

Ai = {a,v1,v2, . . . ,vi} (A.12)

Then for any arbitrary i ∈ {2,3, . . . ,k} we have that

δ (Ai)≤ δ (Ai−1)+δ ({vi,a}) = δ (Ai−1)+d(vi,a) (A.13)

where the inequality follows by the triangle inequality and the fact that Ai−1 ∩{vi,a} = {a} ̸= /0. Then we

have that

δ (A)≤ δ (A∪{a}) by diversities being increasing, Proposition 2.1.4 (A.14)

= δ (Ak) by A∪{a}= Ak (A.15)

≤ δ (Ak−1)+d(vk,a) by A.13 (A.16)

≤ δ (Ak−2)+d(vk−1,a)+d(vk,a) by A.13 (A.17)
... (A.18)

≤ ∑
v∈A

d(v,a) by repeated application of A.13 (A.19)

(A.20)

This completes the proof. □
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