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Abstract 

Treatment of BCR-ABL1+ human leukemia, especially for early phase chronic myeloid 

leukemia (CML) patients, has been greatly improved by ABL tyrosine kinase inhibitor (TKI) 

therapies. However, early relapses and acquired drug resistance remain problems. Thus, 

identification of new biomarkers and therapeutic targets are needed to predict patients’ responses 

for providing alternative treatment strategy and to overcome drug resistance by developing more 

effective therapies in CML. 

To identify new biomarkers that can predict a patient’s response to TKI therapies in 

CML, the expression of 47 microRNAs (miRNAs) that were differentially expressed between 

normal bone marrow and CML or in Imatinib (IM)-responders versus nonresponders was 

evaluated in CD34+ CML cells pre- and post-nilotinib (NL) therapy from a cohort of 58 patients 

enrolled in a clinical trial. Using Cox Proportional Hazard analysis and machine learning 

algorithms, miR-145 and miR-708 were identified as predictors for NL nonresponse in 

treatment-naïve cells, while miR-150 and miR-185 were predictors at 1-month and 3-month 

post-NL treatment. Interestingly, incorporation of in vitro colony formation data into either panel 

improved the predictive power at each time point. Thus, this new predictive model may be 

developed into a prognostic tool for use in the clinic.  

To investigate the molecular functions of the Ahi-1 oncogene and its SH3 domain in 

regulation of TKI resistance, a high-content antibody microarray was performed in BCR-ABL1+ 

cells expressing different constructs of Ahi-1. This analysis uncovered that the eIF4F complex, 

the key regulator of the mRNA-ribosome recruitment phase of translation initiation, was 

differentially expressed in wildtype Ahi-1 and IM-resistant cells. Interestingly, increased 

expression of several eIF4F complex members was demonstrated in CD34+ CML patient cells 
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compared to normal bone marrow, particularly eIF4G1, the scaffolding protein of the complex. 

Strikingly, inhibition of eIF4G1 by shRNA or a selective inhibitor, SBI-756 impaired survival, 

increased IM sensitivity and reduced eIF4F complex activity significantly in IM-resistant cells. 

Additionally, inhibition of eIF4G1 resulted in a significant reduction of BCR-ABL1 protein 

expression in resistant cells, which may provide a novel strategy of targeting BCR-ABL1. Thus, 

understanding the mechanism of drug resistance mediated by eIF4G1 could lead to novel 

strategies to overcome these challenges. 
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Lay Summary 

 

Chronic myeloid leukemia (CML) can be managed by drugs that act against the disease-

specific fusion protein, BCR-ABL1, which drives the disease. Even though these therapies are 

effective, they are not curative, and relapses occur due to the survival of drug-resistant cells. 

Thus, it is necessary to find markers that can predict resistance to adapt therapies or use 

alternative combination strategies when treatments are no longer effective. Small pieces of 

genetic materials called microRNAs were found to have predictive abilities for patients’ drug 

responses. Furthermore, a protein called eIF4G1 involved in the process of protein production 

was detected in greater amounts in drug resistant CML cells. Suppression of eIF4G1, by an 

inhibitor or genetic knockdown, resulted in an impairment of CML cell survival and increased 

their sensitivity to BCR-ABL1 inhibitors. These treatments resulted in a reduction of BCR-

ABL1 protein levels and may offer alternative strategies to drug inhibition of BCR-ABL1’s 

effects. 
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Chapter 1: Introduction 

1.1 Chronic Myeloid Leukemia 

1.1.1 Introduction to CML 

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by 

the uncontrolled growth of myeloid cells. This disease develops in 1-2 people per 100,000 people 

every year and accounts for 15% of all newly diagnosed adult leukemia cases.1 The median age 

of patients with CML diagnosis is 50-60 years with a slight skew towards males than females.2 

The defining feature of CML is the Philadelphia (Ph) chromosome, an abnormally small 

chromosome first discovered by Peter Nowell and David Hungerford in 1959.3 Later in 1973, the 

Ph chromosome was described as a reciprocal translocation between the long arms of 

chromosome 9 and 22 by Janet D. Rowley.4 Even though most CML patients have the Ph 

chromosome, a small proportion of patients that are Ph negative have other translocations that 

result in a disease resembling CML.5 

CML is a triphasic disease and is caused by the acquisition of the BCR-ABL1 fusion gene 

in a hematopoietic stem cell (HSC), which transforms it into a leukemic stem cell (LSC) (Figure 

1.1). The LSC population expands due to self-renewal properties and gives rise to a progeny of 

cells with oncogenic properties, overtaking normal cells with BCR-ABL1+ cells.6 This results in 

an elevated white cell counts and CML patients most often are diagnosed at this point with 

chronic phase (CP) CML. As the untreated disease progresses due to an accumulation of 

mutations, CML patients advance to an accelerated phase (AP) in 3-5 years. Eventually, these 

patients progress to a blastic phase (BP) or blast crisis (BC), which is the most aggressive and 

final stage of CML.7 BP is characterized by an accumulation of undifferentiated blast cells in the 

blood and the bone marrow (BM) resembling a more deadly acute leukemia. There are twice as 
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many CML-BP cases with elevated levels of myeloid blast cells than lymphoid blast cells.2 

Patients in AP are diagnosed with a presence of 15-29% blasts in the blood or BM, while patients 

with ≥30% blasts are diagnosed with BP as defined by the European Leukemia Network 

(ELN).8,9 

CML is driven by the gene product of the Ph chromosome. This chromosomal 

abnormality fuses the Abelson murine leukemia viral oncogene homolog 1 (ABL1) and the 

breakpoint cluster region (BCR) gene to create a fusion oncoprotein BCR-ABL1 with 

constitutive protein tyrosine kinase activity.10 ABL1 is a non-receptor protein tyrosine kinase 

that shuttles between the cytoplasm and nucleus to transduce signaling pathways initiated from 

the cell surface by growth factors and adhesion receptors.11 Normally, the ABL1 

phosphotransferase activity is auto-inhibited by the myristoyl group at the N-terminus.12 

However, when fused to BCR, this auto-inhibitory structure is lost and results in a constitutively 

active kinase that is confined to the cytoplasm.13  Additionally, the coiled-coil domain of BCR 

aids in the dimerization and constitutive activation of the ABL1 kinase domain to phosphorylate 

many substrates on tyrosine (Tyr) residues in multiple signaling pathways such as MAPK, 

PI3K/AKT, and JAK/STAT pathways.14–18 This is aided by the phosphorylation of Tyr-177 by 

ABL1, allowing for the binding of GRB2, which is an adaptor protein to transduce epidermal 

growth factor signals to activate MAPK and PI3K pathways.19,20 Hence, BCR-ABL1 drives the 

pathogenesis of CML by activating these signaling pathways to provide growth advantages and 

resist apoptosis, which leads to a massive accumulation of myeloid cells in CML patients. 
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Figure 1.1: Hematopoiesis and Development of Chronic Myeloid Leukemia. The 

hematopoietic stem cell (HSC) gives rise to two types of progenitors: common myeloid 

progenitor (CMP) and common lymphoid progenitor (CLP). CMPs will then give rise to 

granulocyte/macrophage progenitors (GMPs) and megakaryocyte/erythrocyte progenitors 

(MEPs). These progenitor cells then differentiate into their respective mature blood cells. The 

CLP will go through phases of cell differentiation and result in mature T and B cells. CML is a 

clonal disease which begins with the acquisition of the Philadelphia chromosome (Ph chr) in a 

(HSC) turning it into a leukemic stem cell (LSC). BCR-ABL1-driven LSCs given rise to an 

excessive number of granulocytes, which is defined as the chronic phase of CML (CML-CP). As 

mutations accumulate through CML progression to the blast phase (CML-BP), differentiation is 

blocked and LSCs can give rise to both the myeloid and lymphoid blast cells. Created with 

BioRender.com 

BCR-ABL1 fusion genes can exist as three different molecule weights depending on the 

breakpoints of the BCR gene: P190, P210, and P230 BCR-ABL1. The variations in the 

breakpoints lead to differing lengths of the BCR gene, while the ABL1 gene remains consistent 
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for all three forms of BCR-ABL1.21 The most common form of BCR-ABL1 in CML-CP patients 

is P210, but it can also be found in acute myeloid leukemia (AML) and acute lymphoid leukemia 

(ALL) patients that progressed from CML-BP.5,22 The P190 form is found more commonly in 

patients with primary Ph+ B-cell ALL and occasionally in primary AML patients that did not 

progress from CML-BP.23 The P230 form is found in neutrophilic-chronic myeloid leukemia, 

which is a more benign version of CML that seldom progress to BP.24 

 

1.1.2 Early CML Therapies and Discovery of Imatinib Mesylate 

CML was a difficult disease to treat without the current knowledge and technology in our 

present society. The earliest documented treatment for CML was the use of arsenic-containing 

compounds in 1865, which later during beginning of the 20th century, radiotherapy was adopted 

as the standard therapy.25 Radiotherapy was then replaced by alkylating agents, such as busulfan 

and hydroxyurea in the 1960s, which were able to reduce white blood cell counts and minimize 

symptoms.25,26 Unfortunately, alkylating agents did not stop CML disease progression due to 

persistence of Ph-positive cells; hence, alternative therapies were necessary to target these 

cells.25,26 The next development of CML therapy was allogenic stem cell transplantation (allo-

SCT) and helped prolong the survival of patients, with some achieving complete and permanent 

cytogenic remission.27,28  Although allo-SCT was the only curative therapy during this period, it 

limited patients by forcing them to find suitable donors and carries a significant risk of graft-

versus-host disease and infections.29 Patients without suitable donors for allo-SCT required an 

alternative therapy and were treated with recombinant human interferon-alpha (rIFN-α). 

Although rIFN-α increased median survival of patients with cytogenetic response compared to 
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past treatments, there were many adverse side effects such as hair loss, vomiting, and muscle 

pain.30,31  

In the 1990’s, CML therapy dramatically advanced with the idea to use an ABL1-specific 

kinase inhibitor to target ABL-associated leukemias and, several protein-tyrosine kinase blockers 

were able to reduce the activity of BCR-ABL1.32 Continuing with this study, Druker et al. 

demonstrated the use of CGP57148 or STI571, which now is referred to as imatinib mesylate 

(IM), to inhibit cellular proliferation, colony formation, and leukemia development in mice 

transplanted with BCR-ABL1-expressing cells.33 IM selectively inhibits the ABL1 kinase by 

blocking the binding site of adenosine triphosphate (ATP), preventing the downstream 

phosphorylation of targets that activate growth pathways to drive leukemogenesis.25  A phase I 

clinical trial tested the use of IM in CML-CP patients with previous rIFN-α treatment failure and 

demonstrated that 98% of patients achieved a complete hematological response with daily doses 

of >300 mg IM, which is defined as a white blood cell count of <10×109/L, basophils <5%, 

platelet count <450×109/L with no detection of myelocytes or myeloblasts.34,35 Furthermore, 

54% of these patients reached major or minor cytogenetic responses (1-35% or 36%-65% Ph-

positive metaphases, respectively) and 13% of patients had complete cytogenetic remission (≤1% 

Ph-positive metaphase).34,35 Following this, a phase III randomized clinical trial, IRIS 

(International Randomized Study of Interferon and Cytarabine versus STI751), was conducted to 

compare the efficacy and toxicity of rIFN-α and IM in 1,106 newly diagnosed CML-CP patients. 

At a median follow-up of 18 months, 76% of patients that received IM reached complete 

cytogenetic remission compared to only 34.7% of patients that received rIFN-α and cytarabine.36 

After 8 years of follow-up, patients with IM had an event-free survival rate of 81% and a 

progression-free survival rate of 92%.37  
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1.1.3 Protein-Tyrosine Kinase Inhibitor Resistance in CML 

Although IM is still recommended as a front-line therapy today, it is not curative as some 

AP and BC CML patients are less responsive to treatments and cases of resistance are apparent 

in 20-30% of patients.38–40 With the advancement of technology, BCR-ABL1 transcript levels 

measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is the 

preferred method of monitoring disease due to its simplicity and requiring only a blood draw 

versus a bone marrow biopsy for cytogenetics. Failure to respond is defined by having >10% 

BCR-ABL1 transcript (1-log reduction) by 6 months of treatment and >1% (2-log reduction) at 12 

months, while the optimal response is ≤0.1% (3-log reduction) at 12 months.9 A major molecular 

response (MMR) is defined by a 3-log reduction in BCR-ABL1 transcript levels compared to pre-

treatment levels and a loss of this response after 12 months is also considered a failure to 

respond, which may be a consequence of resistance.9,35 Drug resistance can be divided into 

primary resistance, a lack of efficacy, or acquired resistance, a loss of a prior response. Due to 

the selective nature of targeted therapies, like IM, resistant cells can arise due to the eradication 

the responsive population and allowing less responsive cells to accumulate mutations to 

eventually become resistant to IM treatment. Due to the oncogenic nature of BCR-ABL1 causing 

genetic instability, these cells can develop BCR-ABL1-dependent or independent resistant 

mechanisms.41,42 

 

1.1.3.1 BCR-ABL1-dependent Resistance Mechanisms and Current TKIs 

BCR-ABL1-dependent resistance arise most often due to point mutations that prevent 

drug binding but can also involve BCR-ABL1 gene amplification. X-ray crystallographic studies 
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revealed that IM binds to the inactive conformation of BCR-ABL1 and Y253, E225, and T315 

are important residues that when mutated can prevent IM binding.43,44 To overcome these 

mutations, second-generation tyrosine kinase inhibitors (TKIs) were developed such as nilotinib 

(NL), an improved version of IM, as well as dasatinib (DA) and bosutinib (BOS), which are both 

dual Src/ABL1 inhibitors. NL is similar in structure to IM, but it is more potent and can bind to 

the inactive form of BCR-ABL1 with 10-50-fold greater affinity.45 DA was found to be bound to 

multiple conformation states of BCR-ABL1, which explains its greater potency over IM.46 BOS 

can bind to both the active and inactive conformations of BCR-ABL1 and still be active in BCR-

ABL1 mutants with Q252H and L384M point mutations, which are insensitive to both NL and 

DA.47,48 Unfortunately, these TKIs are still insensitive to BCR-ABL1 having the “gatekeeper” 

mutation T315I, which hinders the formation of a critical hydrogen bond necessary to bind the 

ATP-binding site.49 Only ponatinib, a third-generation TKI designed to overcome the 

“gatekeeper” mutation, can inhibit the BCR-ABL1 T315I mutant, but was shown to have 

significant risk of adverse events in patients during a phase II clinical trial compared to previous 

TKIs.49,50 Another third-generation TKI, Asciminib, was designed to bind to the myristoyl 

pocket making it the first allosteric inhibitor of BCR-ABL1 and can inhibit multiple BCR-ABL1 

mutants including T315I.51 Currently, four TKIs are approved as front-line treatments for CML-

CP: imatinib, nilotinib, dasatinib, and bosutinib.1 However, resistance mechanisms can arise 

independent of BCR-ABL1. 

 

1.1.3.2 BCR-ABL1-independent Resistance Mechanisms 

Cases of BCR-ABL1-independent resistance are mostly observed in patients who 

progressed to CML-AP or BC and/or relapsed. TKIs generally target proliferative CML cells but 
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fail to eliminate quiescent LSCs.52–54 LSCs are phenotypically similar to HSCs with both having 

cell surface antigens of Lin-CD34+CD38-CD90+CD45RA- but it has been reported that LSCs also 

express additional markers such as CD25, CD26, CD33, CD123, and IL1RAP.55–62 Although 

CML LSCs also have increased level of BCR-ABL1 expression and kinase activity, LSCs do not 

completely rely on BCR-ABL1 transforming activity for survival. Hence, TKIs do not 

effectively eliminate this population.63,64 Finding mechanisms for LSC survival and TKI 

resistance can uncover alternative treatment strategies to target this population for a more 

curative treatment.  

Genome instability is a hallmark of cancer and BCR-ABL1 activity enables this 

phenotype in CML patients.65 This is supported by the observation of CML patients in BC 

having a higher frequency of copy number alterations and cytogenetic abnormalities compared to 

patients in CP.66 BCR-ABL1 contributes to genomic instability through generation of reactive 

oxygen species leading to higher rates of mutation and disruption of the DNA damage response 

resulting in error prone DNA repair, and several other mechanisms.42,67,68 Accumulation of 

mutations can result in the activation of alternative signaling pathways to promote survival and 

proliferation (JAK/STAT, Src, RAF/MEK/ERK), bone marrow microenvironment interactions 

(ILK, Notch), stem cell maintenance (PI3K/AKT, Alox5, AHI-1-BCR-ABL1-JAK2-PP2A, 

Msr1, Blk) and self-renewal (Hedgehog, WNT/β-catenin), and pro-survival pathways including 

autophagy.69–80 Additionally, BCR-ABL1-independent resistance mechanisms include 

deregulation of drug transporters by decreasing influx or increasing efflux of IM.63,81 Since TKI 

monotherapies are not curative due to a wide range of resistance mechanisms, it is imperative to 

be able to predict drug resistance to overcome primary resistance and acquired resistance by 

developing more effective combination therapies for improved treatment and care. 
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1.2 Biomarkers and Predictive Models in CML 

1.2.1 Identification of Molecular and Genetic Signatures as Biomarkers in CML 

Biomarkers are clinical and diagnostic tools with predictive powers for treatment 

selection to identify patients who are likely to benefit from a particular therapy or alternative 

therapies are needed. Measurements for biomarkers are evaluated to indicate normal biological 

processes, pathogenic processes, or responses treatments.82 Interestingly, studies have 

demonstrated that molecular and genetic signatures in CML could serve as important biomarkers 

of disease progression and drug resistance. Such markers include gene mutation signatures, gene 

and protein expression patterns, and cell surface markers. The most well-known biomarker in 

CML is BCR-ABL1. Its expression, copy number and mutational status are useful indicators of 

TKI response and offers utility in the clinic. For example, screening for point mutations in BCR-

ABL1 kinase domain, like the T315I gatekeeper mutation, prior to treatment would allow 

clinicians to devise a treatment regimen for patients that targets resistant cells immediately and 

bypass early generation TKIs which would be ineffective.83 Expression profiling of CML-CP 

patients at diagnosis and post-treatment can be used to identify of molecular markers of 

progression. A 75 mRNA transcript signature, comprised of 50 upregulated and 25 

downregulated genes, in treatment-naïve patient cells was able to predict major cytogenetic 

response in 12 months with an accuracy of 87%.84 Another study explored the changes in gene 

expression of CML patients that progressed from CP to advanced CML (AP/BC) and found 

3,000 genes to be significantly associated with CML disease progression.85 Components of the 

WNT/β-catenin pathway and alternative kinase signaling regulation, decreased expression of 

transcription factors (Jun B, Fos), and increased expression of PRAME were associated with 
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advanced CML.85 Building off the data generated from the previous study, another group used an 

algorithm that integrated expression data with predicted protein functional relationships and 

CML progression associated genes to develop a 6-gene panel from CML-CP patients that 

predicted relapse after bone marrow transplantation.86 Expression profiles are not limited to 

analyzing gene expression but can also be expanded to analyze protein expression and cell 

surface markers. Proteomic analysis has also been used to identify overexpressed proteins like 

HSP90, RB, BCL2, and PP2A in CML-BC patient cells compared to those in CP.87 Another 

study used high-resolution label-free mass spectrometry to compare bone marrow plasma from 

IM-resistant and IM-sensitive patients and identified altered lipid metabolism and WNT 

signaling in resistant patients.88 Furthermore, cell surface marker analysis coupled with single-

cell transcriptomics determined that the most TKI-insensitive LSC population is Lin-

CD34+CD38-CD45RA-cKIT-CD26+, which expressed a primitive, quiescent molecular 

expression signature.89 These studies demonstrate the differences found in each stage of CML 

progression or in TKI-resistant and TKI-sensitive patients that can be used as a foundation for 

biomarkers for predictive studies. 

 

1.2.2 Biological Functions of MicroRNAs and their Predictive Roles as Biomarkers in 

CML 

Another class of biomarkers are microRNAs (miRNAs), which are small pieces of 

noncoding RNA (18-25 nucleotides long) that are highly conserved across many species and can 

act as a tumour suppressor or oncogene in regulating gene expression post-transcriptionally.90 In 

the nucleolus, miRNAs are transcribed by RNA polymerase II as primary miRNAs. The Drosha-

DGCR8 complex then process the primary miRNAs into hairpin intermediate pre-miRNAs.90 
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Pre-miRNAs are exported to the cytoplasm and meet the DICER1 enzyme to be further 

processed into mature miRNAs. Finally, mature miRNAs are loaded onto the RNA-induced 

silencing complex (RISC), which can degrade specific mRNA transcripts dependent on the 

sequence of the miRNA or repress translation by binding to the 3’-untranslated region (3’-

UTR).90 The miRNA loaded RISC complex recruits Argonaute (AGO) proteins such as AGO-2, 

to specific sequences via base-pairing interactions.91 This binding is dependent on a short span of 

the miRNA sequence of 7 nucleotides long called the seed.91 The complementary pairing 

between the seed and its target is considered the minimum element required to engage the target 

mRNA.91 After the seed binds to its target, a partial duplex is formed, which disrupts the 

endonuclease activity of AGO-2 and only complementary binding of the full miRNA sequence 

can allow for mRNA cleavage by AGO-2.91,92 However, regulation of target expression by 

miRNA relies on AGO cofactors through translational suppression and mRNA destabilization.91 

The first report of differential miRNA expression linked to human malignancies described miR-

15a and miR-16-1 expression was consistently reduced in approximately 68% cases of chronic 

lymphoid leukemia (CLL).93 Currently, many studies demonstrate that deregulation of miRNAs 

can lead to aberrant expression of their downstream target genes in numerous solid tumours and 

hematopoietic malignancies.94–99 

Interestingly, multiple groups have also studied the role of miRNA expression in CML. 

BCR-ABL1 activity has been reported to overexpress several miRNAs that activate a variety of 

oncogenic pathways.100 On the one hand, the expression of the miR-17-92 cluster, which targets 

TGF-β, STAT3, and PTEN, was significantly elevated in CD34+ CML-CP progenitor and CML-

BC cells compared to normal CD34+ cells.100,101 Additionally, the BCR-ABL1-dependent 

overexpression of miR-130 reduced the expression of CCN3, which is a growth inhibitor that can 
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reverse the anti-apoptotic block, allowing CML cells to evade negative growth regulation.102 

Finally, miR-21 is an oncogenic miRNA that targets negative regulators of the PI3K/AKT 

pathways and miR-21 suppression resulted in the enhancement of IM-induced apoptosis in CML 

CD34+ cells.103 On the other hand, tumour suppressive miRNAs (miR-29b, miR-30a, miR-30e, 

miR-320, miR-424) that target BCR-ABL1 were reported to be downregulated.100  Different 

miRNA expression profiles have also been observed in CML patients at different stages of the 

disease. A panel of miRNAs (miR-19a, miR-20a, miR-146, miR-150, miR-155, miR-181a, miR-

221, miR-222) had a higher level of expression in CML patients that experienced hematological 

relapse, therapy failure and CML-BP compared to patients at diagnosis. These miRNAs target 

genes are involved in MAPK and p53 signaling pathways and controlling growth and cell 

cycle.104 Additionally, TKI resistance could be predicted by the expression of miRNAs (miR-21, 

miR-26a, miR-29a, miR-100, miR-191) and the expression of some miRNA can be affected by 

TKI treatments (let-7d, let-7e, miR-15a, miR-16, miR-145).105–107 Our lab has also reported the 

reduced expression of miR-185 in CD34+ stem/progenitor cells compared to normal bone 

marrow and its expression is significantly decreased in IM-nonresponsive patients compared to 

IM-responsive patients.96 Restoration of miR-185 expression using lentivirus sensitized CML 

LSCs to TKI treatment, significantly inhibited their proliferation, and reduced their engraftment 

in vivo.96  Studies of miRNA in CML has proved the predictive ability of miRNA for TKI 

responsiveness and identified new targets for novel therapies to overcome TKI-resistance. 

However, differences in the cell types profiled, the technologies used, and the heterogeneous 

treatment outcomes observed in patients pose challenges in identifying reliable biomarkers and 

predictive models with clinical utility. 
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1.3 Abelson Helper Integration Site 1 (AHI-1/Ahi-1) Involvement in Diseases 

1.3.1 AHI-1 Structure and Regulation of Expression 

Abelson helper integration site 1 (Ahi-1) was characterized as a common helper provirus 

integration site in mice that had an increased insertional mutagenesis rate over the expected 

frequency for random integrations.108 This insertional mutation was commonly observed in pre-

B-cell lymphomas transformed by the oncogene v-abl found in Abelson murine leukemia virus 

(A-MuLV).108 Full transformation by A-MuLV and its ability to replicate in vivo and in vitro 

requires a non-defective helper Moloney MuLV, which harbours the Ahi-1 locus.108–110 Later, 

the Ahi-1 gene was identified within this locus using an exon trapping method.111 In humans, the 

AHI-1 gene is found on chromosome 6 with 33 exons spanning 200 kilobases.111 Alternate 

splicing of the AHI-1 gene occurs at the 3’-region which results in three isoforms.111 

Additionally, a functional promoter was found 1.3 kilobases upstream to the start codon 

containing two putative TATA boxes, a cis-acting CCAAT box and binding sites for 

transcription factors like c-fos and Oct-1.112 AHI-1 protein was found to be a 1096 amino acid 

protein with three domains: an N-terminal coiled-coil domain, a WD40-repeat domain with 

seven repeats, and a Src homology 3 (SH3) domain (Figure 1.2A).111 Coiled-coil domains are 

comprised of two or more α-helices wrapped around each other, which allows for interactions 

with another coiled-coil domain, whether on another molecule of the same protein for 

dimerization or another protein for complex formation.113 The WD40-repeat domain has a 

propeller structure, which is a large surface for interactions (including for phosphorylation sites) 

with other proteins involved in many different cellular processes like cell cycle control, 

intracellular transport, cytoskeletal organization, and apoptosis.114 The SH3 domain is one of the 

most common protein-interacting domains which bind to proline-rich motifs.115 Our lab has 
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solved the AHI-1 SH3 domain structure by X-ray crystallography and discovered a unique C-

terminal a helix not observed in other SH3 domains, which may act as an additional binding site 

for increased specificity for residues outside the traditional PXXP motifs.116 AHI-1 also contains 

several PXXP motifs, which allows binding to proteins with SH3 domains, and two PEST 

sequences, which mediate protein degradation.117 Being well-equipped with many important 

interaction domains for signal transduction, AHI-1 can mediate multiple protein-protein 

interactions as a scaffold protein for signaling pathways. 

Ahi-1 expression is found in several organs such as the kidney, thymus, and lungs, but 

was especially highly expressed in the brain and testis.111 Ahi-1 is also developmentally regulated 

during mouse embryo development, with the highest expression just prior to birth.118 For 

hematopoiesis in humans and mice, AHI-1/Ahi-1 expression is the highest in the most primitive 

cells and is reduced as cells become more differentiated, indicating a role in the regulation of 

stem cell development and it may play a role in human leukemias like CML.119 

 

1.3.2 The Role of AHI-1 in CML 

The deregulation of AHI-1 expression was first found to be linked to hematopoietic 

malignancies in a panel of leukemic cells lines with greater AHI-1 expression compared to 

normal bone marrow cells.119 In CML, AHI-1 expression was increased in all stages of the 

disease and an in vivo model demonstrated a cooperative effect from the overexpression of AHI-

1 and BCR-ABL1 inducing a more lethal leukemia than either alone.75,119,120 The highest 

expression of these genes was also found in the leukemic stem cell-enriched population, which 

further supports the idea of AHI-1 and BCR-ABL1 cooperative abilities in the transformation of 

hematopoietic cells and regulating leukemic properties in LSCs.119 Immunoprecipitation 



15 

 

experiments demonstrated that the Ahi-1 WD40-repeat domain is necessary for the protein-

protein interaction between Ahi-1 and BCR-ABL1, while the N-terminus portion of Ahi-1 is 

required for the interaction between Ahi-1 and JAK2, a BCR-ABL1 substrate that is a protein-

tyrosine kinase that is also involved in cell signaling.75,121 The expression and activities of JAK2 

and one of its substrate transcription factor STAT5 were enhanced in cells co-expressing AHI-1 

and BCR-ABL1, which contributed to TKI resistance and disease progression.120 The cooperation 

between AHI-1 and BCR-ABL1 could be explained by AHI-1’s ability to bring BCR-ABL1 and 

its substrates together to enhance BCR-ABL1’s transformative activities (Figure 1.2B). 
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Figure 1.2: AHI-1 as a Scaffold Protein. (A) Schematic of AHI-1 structural motifs including 

coiled-coil domain (purple), WD40-repeat domain (red), SH3 domain (blue), and proline-

rich motifs (PXXP). (B) AHI-1 interacts with multiple proteins to deregulate leukemic 

properties in CML. AHI-1 interacts with BCR-ABL1 with the WD40-repeat domain and 

interacts with JAK2 with the N-terminal portion, and dynamin 2 with its SH3 domain. AHI-1 

enhances BCR-ABL1 activity by interacting with BCR-ABL1 substrates allowing for increased 

BCR-ABL1-phosphorylation of substrates resulting in increased activity leading and 

deregulation of biological processes. Created with BioRender.com 
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AHI-1 has been demonstrated to contribute to TKI resistance as genetic inhibition by 

shRNA increased the sensitivity of CD34+ CML stem/progenitor cells to TKI treatment.120 A 

combination treatment of TKIs and JAK2 inhibitors were able to reduce the proliferation and 

colony forming abilities of TKI-resistant CML stem/progenitor cells in vitro and vivo.18,75 

Co-immunoprecipitation experiments demonstrated the interaction between AHI-1 and PR55α, 

which is the B subunit of the phosphatase PP2A, and β-catenin.76 Dual inhibition of PP2A and 

BCR-ABL1 led to a synergistic effect of targeting CML stem/progenitor cells in vitro and LSCs 

in vivo.76 Mechanistically, this dual inhibition disrupted AHI-1 mediated signaling resulting in 

the degradation of β-catenin, which is necessary for the maintenance of CML LSCs.76 

Previous studies have also demonstrated the AHI-1 SH3 domain contributes to TKI 

resistance and is required for the cytoplasmic anchoring of AHI-1.122 Furthermore, the AHI-1 

SH3 domain was found to interact with the proline rich domain of a mechanoenzyme, dynamin 2 

(DNM2), involved in multiple cellular activities such as endocytosis, intracellular trafficking, 

and the reorganization the cytoskeleton.122,123 Again, it was demonstrated that AHI-1 bridged the 

interaction between BCR-ABL1 and DNM2, leading to an increased phosphorylation and 

activity of DNM2.122 The AHI-1-BCR-ABL1-DNM2 complex deregulated endocytosis, ROS 

production, and autophagy to provide enhanced survival of primitive CML cells.122 Most 

importantly, dual inhibition of BCR-ABL1 and DNM2 could reverse these deregulated leukemic 

functions to reduce the proliferative ability and TKI-resistance in CML stem/progenitor cells. 

These reports demonstrate the oncogenic ability of AHI-1 in regulating CML LSC properties and 

TKI resistance and support the notion to target key processes involving AHI-1 and its interacting 

partners to effectively target CML LSCs and TKI resistant cells. 
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1.3.3 The Role of AHI-1 in Other Diseases 

Although AHI-1 has a large role in CML, mutations and deregulation of AHI-1 play a 

role in many other diseases as well. For example, AHI-1 transcript levels were found be higher in 

patient cells with cutaneous T-cell lymphoma (CTCL), which is characterized by the infiltration 

of malignant T cells on the skin, or the leukemic variant of CTCL, Sezary Syndrome.124,125 

Suppressing AHI-1 in Hut78 cells, a Sezary Syndrome cell line, resulted in a reduction of 

transforming phenotypes and impaired tumour growth in vivo, suggesting AHI-1’s role in CTCL 

pathogenesis.124 Additionally, suppression of AHI-1 led to restoration of the expression of a 

tumour suppressor, BIN1, in CTCL cells; patient cells with suppressed BIN1 resulted in reduced 

induction of Fas/Fas ligand-mediated apoptosis allowing for disease persistence.124,125 

Beyond hematopoietic malignancy, AHI-1 also plays a role in neurological diseases as it 

is highly expressed in brain tissues. Mutations in AHI-1 was found to cause Joubert syndrome 

(JS), a rare autosomal recessive disease characterized by abnormal brain development, and 

Joubert syndrome related disorders (JSRD), which include renal cystic disease and retinal 

dystrophy.118,126,127 The most common AHI-1 mutations in JSRD are frameshift or nonsense 

mutations that result in the truncation of AHI-1 missing the WD40-repeat and/or SH3 domains or 

missense mutations found in these domains.127–129 JS and JSRD are part of a group of genetic 

disorder resulting in the dysfunction of the primary cilium called ciliopathies.130 The non-motile 

primary cilium is essential as a hub for cell signaling pathways for organ development and 

maintenance, which AHI-1 plays a crucial role in the structure and function of the primary 

cilium.131–134 Additionally, multiple sclerosis, a degenerative disorder of the myelin sheath of 

neurons, was linked to reduced AHI-1 mRNA expression resulting in an enhancement of 

proinflammatory IFNγ+ T cells development that is implicated in multiple sclerosis.135 Some 
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AHI-1 single nucleotide polymorphisms were associated with elevated risk for schizophrenia, 

autism, and mood disorders.136–138 Multiple studies demonstrate the consequences of AHI-1 

suppression resulting in a depressive phenotype due to impaired release of 

neurotransmitters.139,140 Furthermore, Ahi-1 deficiency was reported to promote the degradation 

of glucocorticoid receptors and reduced nuclear translocation in response to stress, which 

resulted in hyposensitivity to antidepressants in mice.141 These observations indicate the 

importance of AHI-1 in proper brain development and function. 

There are also strong associations with certain AHI-1 single nucleotide polymorphisms 

that result in metabolic disorders such as type 2 diabetes.142,143 AHI-1 expression was also found 

in skeletal muscle and linked to the regulation of glucose uptake and glucose homeostasis.143 In 

the hypothalamus, Ahi-1 mediates feeding behaviour of mice by interacting with serotonin 

receptor 2C (5-HT2CR), which plays an important role in feeding and appetite control.144 When 

fasting, increased Ahi-1 induced the lysosomal degradation of 5-HT2CR, and suppression of 

hypothalamic Ahi-1 resulted in a decrease of food intake and body weight.144 These reports 

demonstrate the importance of proper AHI-1 function and regulation as it is crucial in brain 

development and function. When AHI-1 function is deregulated, this leads to a wide range of 

brain and metabolic disorders. Therefore, understanding AHI-1 function in the pathogenesis of 

these diseases is crucial for the development of potential treatments of these diseases. 

 

1.4 The Eukaryotic Translation Initiation Mechanism 

1.4.1 Cap-Dependent Initiation of Translation by eIF4F Complex 

Protein synthesis is a critical cellular function that builds a chain of amino acids on 

ribosomes based on an mRNA template sequence. As most cellular functions are carried out by 
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proteins, cells are dependent on this process for multiple aspects including survival, proliferation, 

and stress response. Therefore, it is crucial for cells to have translational control. Protein 

synthesis is divided into multiple steps: initiation, elongation, termination, and recycling.145 This 

process involves the recruitment of an initiator methionyl-tRNA bound ribosome to the start 

codon of an mRNA transcript; then, the ribosome travels down the transcript and extends the 

amino acid chain depending on the codons of the transcript.146 Termination of this process occurs 

when the ribosome arrives at a stop codon that promotes the release of the nascent protein.146 

Finally, the ribosome is recycled back into subunits to continue another cycle of translation.146  

In this dissertation, the focus will mainly be on the eukaryotic initiation of translation.  

The rate-limiting step of translation in eukaryotes is the initiation step as it is highly 

regulated with multiple controls.147 Initiation of translation begins with the recruitment of the 

small 40S ribosomal subunit to the 5’ untranslated region (UTR) of an mRNA through the 

assembly of the 43S preinitiation complex (PIC).148 The 43S PIC is composed of the 40S 

ribosomal subunit bound by eukaryotic initiation factors (eIFs) 1, 1A, and 5, the eIF3 complex, 

and the ternary complex (TC), which is comprised of an initiator methionyl-tRNA and the GTP-

bound form of eIF2.148  The 43S PIC binds to the 5’-cap of the mRNA facilitated by the eIF4F 

complex.149 The eIF4F complex is made up of multiple proteins including: the cap-binding 

protein, eIF4E, the RNA helicase, eIF4A, and the scaffold protein, eIF4G (Figure 1.3).150 After 

the 43S is bound near the cap, it scans for an AUG start codon through the sequence 

complementation of the anticodon of the initiator tRNA forms the 48S PIC.148 The eIFs that are 

responsible for scanning are released to allow the 60S ribosome subunit to join and produce an 

80S initiation complex that leads into the elongation step.148 
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Figure 1.3: The Regulation of eIF4F Complex by Cancer-Related Signaling Pathways. The 

eukaryotic initiation factor (eIF4F) complex is responsible for the cap-dependent translation of 

mRNAs. This complex is comprised of the scaffold, eIF4G, the cap-binding protein, eIF4E, and 

the mRNA helicase, eIF4A. This complex is regulated at multiple points by PI3K/AKT/MTOR 

and MAPK pathways by phosphorylating the 4E-binding protein (4E-BP) and eIF4B. A subset of 

mRNAs (CCND3, MYC, MCL1, MDM2) are translated at different rates compared to the global 

translation rate depending on eIF4F activity. The transcription factor c-Myc has also been 

reported to increase the protein expression of eIF4F complex resulting in a feed-forward loop. 

Created with BioRender.com 
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The eIF4F complex serves as the effector for the regulation of translation initiation, 

containing essential proteins to carry out the recruitment of the 43S PIC. On the one hand, the 

rate-limiting component for translation is eIF4E as it is the least abundant initiation factor with 

0.2 to 0.3 molecules per ribosome.150 On the other hand, eIF4A is the most abundant initiation 

factor with 3 to 6 molecules per ribosome and exists in two homologs with 90% similarity: 

eIF4A1, which is the more abundant form, and eIF4A2 in humans.151,152 eIF4G also exists in two 

homologs with 46% similarity, eIF4G1, the more abundant homolog, and eIF4G2.153 eIF4G 

contains two separate domains to interact with different regions of the same eIF4A molecule and 

another defined domain for eIF4E to allow for the interaction with other important factors for the 

initiation process.154,155 Additional members of the eIF4F complex include eIF4B and eIF4H, 

which are RNA-binding proteins that stimulate the helicase activity of eIF4A to unwind stable 

secondary structures of the transcript.156 These RNA-binding proteins affect eIF4A activity by 

increasing the affinity for ATP when helicase activity is inhibited by secondary structure of the 

5’ end of the transcript.150,157 

The eIF4F complex contributes to the differences in mRNA translation efficiency. This is 

due to the rate-limiting levels of eIF4E and eIF4F complex has different affinities for mRNA 

depending on the degree of secondary structure of the 5’-UTR.158,159 The first step of the process 

of recruiting the 43S PIC to the mRNA is the binding of eIF4E to the 5’cap and is stabilized by 

the RNA-binding sites on eIF4G.160 Then eIF4A is recruited to unwind any secondary structure 

proximal to the 5’-cap to allow for the recruitment of the 43S PIC or is recycled to unwind 

further secondary structures.150 Differences in the structural barriers of mRNA results in 

differences in translation efficiency; “weaker” mRNAs often have more secondary structures in 

their 5’-UTR which require eIF4F complex activity to unwind and efficiently translate the 
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transcript.150 Interestingly, most of these “weak” mRNAs that encode for growth and survival 

factors that are generally suppressed except under the context of cancer, where eIF4F complex 

activity may be enhanced.150 

Many efforts have been poured into studying the effects of elevated eIF4F activity on a 

small subset of mRNA transcripts. eIF4E overexpression models have demonstrated that there 

was only a small increase in overall protein synthesis rate. However, there was a subset of 

mRNAs with a substantial, disproportionate increase in translation.150 Translation of transcripts 

of housekeeping proteins, like glyceralehyde-3-phosphate dehydrogenase and actin, did not 

respond to eIF4E expression changes, but transcripts of ornithine decarboxylase, cyclin D1, and 

c-MYC were identified as eIF4E-responsive mRNAs.150,161,162 The 5’-UTR structures of “weak” 

mRNA are longer and highly structured containing more guanine/cytosine content compared to 

the shorter and easier to unwind “strong” mRNAs of housekeeping proteins.163 More detailed 

studies with codon-by-codon resolution using ribosome profiling identified a pyrimidine-rich 

translation element in 5’-UTR that interacts with eIF4E, which is key to control the translation of 

a subset of mRNAs encoding proteins with transformative properties for cancer.164,165 

Phosphorylation of eIF4E has a similar effect to overexpression as it stimulates the translation of 

prosurvival mRNAs, like MCL1, and proinvasion mRNAs, like MMP3, unproportionally to the 

global protein synthesis rate.166,167 Due to the oncogenic potential of increased eIF4F complex 

activity, it is crucial to understand the regulation of this complex. 

 

1.4.2 Regulation of the eIF4F Complex 

Multiple pathways are involved in the regulation of the eIF4F complex that respond to 

environmental changes, like nutrient availability and stress. The mTOR kinase pathway receives 
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extracellular signals and information about cellular energy status, nutrient availability, oxygen 

levels, and hormones and growth factors to induce cellular growth, proliferation, and 

differentiation.168–171 There are two forms of mTOR complexes, mTORC1 and mTORC2; 

mTORC1 is linked to translation control as its substrates, 4E-binding proteins (4E-BPs) and 

ribosomal S6 kinases, are involved in regulating the eIF4F complex.172–174 The 4E-BPs are a 

family of small translation suppressors that bind to cap-binding protein, eIF4E, and have three 

homologs: 4E-BP1, 4E-BP2, and 4E-BP3.175 Dephosphorylated 4E-BPs bind to eIF4E, 

sequestering it to prevent interaction with eIF4G.175 However, when mTORC1 phosphorylates 

4E-BPs, it causes the dissociation with eIF4E, allowing for the eIF4E-eIF4G interaction leading 

to the assembly of the eIF4F complex (Figure 1.3).172 On 4E-BP1, mTORC1 phosphorylates T37 

and T46, which are primer sites for further phosphorylation of T70 then S65 last and finally 

allows for dissociation with eIF4E.172,176 Therefore, phosphorylation by mTORC1 induces eIF4F 

complex activity for translation, while inhibition of mTORC1 using an inhibitor like rapamycin, 

will reduce translation rates.  

The p70 ribosomal S6 kinase (p70S6K1), a member of the ribosome S6 kinases, is also 

regulated by mTORC1 by phosphorylation. The T389 phosphorylation on p70S6K1 is the most 

important residue for its activation and studies have proven this site to be sensitive to rapamycin 

treatment, further supporting the fact that mTORC1 is responsible for its phosphorylation.177,178 

Activation of p70S6K1 results in the phosphorylation of S422 on eIF4B, which increases its 

affinity for the 43S PIC and eIF4A to increase translation rates.179,180 Additionally, p70S6K1 can 

also phosphorylate S67, which is the programmed cell death protein 4 (PDCD4), and its 

phosphorylation leads to its degradation.181 PDCD4 is a tumour suppressor which inhibits eIF4A 

helicase activity to reduce translation rates, in which degrading PDCD4 will enhance translation 
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rates.182 Although mTORC1 has a larger role in regulating protein synthesis through the 

elongation step and ribosome biogenesis, these are a few examples of mTORC1’s effect on the 

eIF4F complex. 

 Another pathway involved in the regulation of the eIF4F complex is the MAPK 

pathway, which is involved in transmitting upstream growth factor signals to regulate cell 

proliferation, differentiation, apoptosis, and survival.183 MAP kinase-interacting kinase 1 (MNK1 

also known as RPS6KA5) and MNK2 (also known as RPS6KA4) may be tightly bound to 

extracellular signal-regulated kinase 1 (ERK1) and ERK2, which are part of the MAPK 

pathway.184 When receiving a mitogen signal, ERKs are activated and phosphorylate MNKs, 

releasing them and activates their phosphotransferase activities.184 MNKs then phosphorylate 

eIF4E on S209, which promotes the translation of mRNAs encode for chemokines and 

metalloproteases.185,186 Another kinase that is activated by ERKs is the p90 ribosomal S6 kinase-

1 (RSK1 also known as RPS6KA1), which can phosphorylate eIF4B on S422, the same residue 

phosphorylated by p70S6K1 from the mTOR pathway.180 Since the MAPK and mTOR pathway 

are often deregulated in cancers and can control eIF4F complex activity, aberrant translation 

initiation can lead to the overexpression of oncogenes to promote the development of cancers. 

 

1.4.3 eIF4F Complex Involvement in Cancers 

Some proto-oncogenes, like c-Myc, have a relatively high degree of sequence complexity 

in their 5’UTR rendering them “weak” mRNAs that is only translated during very specific times. 

However, elevated eIF4F complex activity levels unlock the structural barriers to increase the 

translation of oncogene mRNAs for cancer pathogenesis. Elevated c-Myc expression 

dramatically increases the protein synthesis rates as it drives the translation of ribosomal RNA 
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(rRNA) and genes involved in rRNA processing.150 Interestingly, increased c-Myc expression 

also increases the expression of eIF4F complex members, eIF4E, eIF4A1, and eIF4G1, resulting 

in a feed-forward loop in which c-Myc and eIF4F complex enhances the expression of each 

other.187,188 With c-Myc being one of the most common oncogenes for cancer pathogenesis, it is 

not surprising that each member of the eIF4F complex has been demonstrated to play a role in 

cancer.  

Early studies of the cap-binding protein eIF4E demonstrated its overexpression in 

multiple cancer cell lines and ectopic expression of eIF4E in non-transformed cell lines resulted 

in cellular transformation and tumourigenesis.189–192 An eIF4E transgenic mouse model 

demonstrated its transformative activity that leads to a wide variety of cancers developing in the 

mice.193 The elevated expression of eIF4E has been reported in multiple forms of cancers 

including breast, head and neck, colorectal, bladder, lung, and cervical cancers.161 Studies on the 

effects of eIF4E suppression in transformed cells showed impaired the formation and 

proliferation of tumours.194,195 Mechanistically, eIF4E activation aids cancers in apoptosis 

evasion through the cooperation of c-Myc to counter the c-Myc-mediated apoptotic program or 

increase the expression of anti-apoptotic proteins such as Bcl-XL.196,197 These studies support the 

notion elevated eIF4E expression contributes to cancer pathogenesis. Furthermore, the 

phosphorylation of eIF4E also contributes to its oncogenic capabilities. In AML, overexpression 

of MNK1 resulted in the increased phosphorylation of S209 on eIF4E, and MNK1 inhibition 

impaired the proliferation and enhanced differentiation of AML cells.198  Additionally, MNK 

inhibitors reduced the S209 phosphorylation of eIF4E, which resulted in reduced cyclin D1 

expression and proliferation in breast cancer cells.199 These studies show that targeting eIF4E 

expression and phosphorylation has some efficacy to reverse the oncogenic effects of eIF4E. 
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There are several observations of eIF4A1 overexpression associated with cancer. A panel 

of 14 melanoma cell lines and primary melanoma and hepatocellular carcinomas samples have 

been reported to have elevated levels of eIF4A1.200,201 Additional studies also showed that 

protein expression of eIF4A1 predicted poorer outcome in estrogen negative breast cancer, while 

the eIF4A1 inhibitor, PDCD4, was associated with improved outcome.202 Furthermore, eIF4A1 

overexpression in non-small cell lung cancer is associated with metastasis.203 These studies 

indicate that increased eIF4A1 may play a role in different cancer types. 

The scaffold protein of the eIF4F complex, eIF4G, has also been found to play a role in 

cancer development. The transformative properties of eIF4G1 were confirmed in NIH-3T3 cells 

overexpressing eIF4G1 in vitro, which resulted in morphological changes, and in vivo by tumour 

formation in nude mice.204 These findings may be a result of eIF4G1’s ability to drive the cap-

independent, by internal ribosome entry site (IRES), translation of mRNAs of oncogene instead 

of cap-dependent translation associated with eIF4E.201 Many reports have described eIF4G1 

overexpression in cancers such as non-small cell lung cancer, prostate cancer, and pancreatic 

ductal adenocarcinoma.205–207 eIF4G1 overexpression results in the promotion of the G1/S 

transition of the cell cycle and increased cell proliferation and tumourigenesis in vitro and in 

vivo.205,206 A pan-cancer study was performed using datasets from The Cancer Genome Atlas 

(TCGA) and found that most cancers have increased expression of eIF4G1 mRNA expression 

compared to normal tissues and higher eIF4G1 mRNA level was associated with worse outcome 

in multiple types of tumours.208 Another study analyzing large public datasets identified eIF4G1 

to be more selectively overexpressed than eIF4E, which in this context displayed a preference for 

cap-independent translation of cancer-related mRNAs over the translation of the mRNA of 

housekeeping proteins via cap-dependent initiation.209 This phenotype is attributed to eIF4G1 
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hyperphosphorylation resulting in increased binding to eIF4A1 and reduced eIF4E 

availability.209 Since eIF4F complex is clearly involved in cancer development, it is critical to 

explore therapeutic options to reverse the effects of eIF4F complex activity for developing 

improved treatment strategies for cancer patients. 

 

1.4.4 eIF4F Complex Inhibitors 

There has been a large amount of effort in exploring the inhibition of each member of the 

eIF4F complex in different cancers. Multiple approaches have been utilized to target eIF4E 

including targeting the cap-binding activity or the expression of eIF4E. A compound called 4Ei-1 

was used in preventing the eIF4E to bind to the 5’-cap of mRNAs and reduced cap-dependent 

translation in vitro and in vivo in zebrafish embryos.210 4Ei-1 is a pronucleotide that is 

metabolized in the target cells by histidine triad nucleotide binding protein (HINT), which 

produces 7-benzyl monophosphate guanosine, a cap analogue, to prevent eIF4E binding the 

5’cap.210 Additionally, 4Ei-1 has been demonstrated to sensitize mesothelioma cells, breast and 

lung cancer cell lines to chemotherapy and reduce their proliferation.140,211 Mechanistically, 4Ei-

1 treatment induces the proteasomal degradation of eIF4E.211 Other studies have used an eIF4E-

specific antisense oligonucleotide (ASO) called LY2275796 to reduce the expression of eIF4E, 

which demonstrated promising activity in cell lines and xenograft models.212 Interestingly, 

LY2275796 treatment did not reduce global protein synthesis, but showed reduced levels of 

cancer-related and anti-apoptotic protein expression like c-Myc, VEGF, Bcl-2, and survivin.212 

After these preclinical studies, LY2275796 was tested in a phase I clinical trial, which 

demonstrated reduced eIF4E mRNA and protein expression in patients with stage IV colon, lung, 

or head and neck cancer with moderate side effects like fatigue, nausea, fever, and vomiting.213  
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Phase II clinical trials are currently being conducted with the combination of LY2275796 and 

various chemotherapies in NSCLC (NCT01234038) and prostate cancer (NCT01234025).  

Drug screens have been performed to identify inhibitors that can target the eIF4A1 

helicase activity. Three natural products that selectively targeted eIF4E were identified: 

hippuristanol, pateamine A (Pat A), silvestrol.214–216 Hippuristanol binds to the C-terminal end of 

eIF4A1 and prevents RNA binding by locking eIF4A1 in a closed conformation.214,217 On the 

other hand, Pat A and silvestrol work similarly by inducing eIF4A1 dimerization and 

sequestration onto RNA non-specifically, which results in a depletion of available eIF4A1.216,218 

All three inhibitors demonstrated anti-cancer activity in vitro and in vivo, but silvestrol had more 

favourable pharmacologic properties for in vivo studies.150,219–221 A synthetic inhibitor called 

zotatifin was then developed based on silverstol with improved pharmacokinetics for preclinical 

and clinical studies.222 Zotatifin impaired cell proliferation and induced apoptosis in multiple 

solid tumour cell lines driven by receptor tyrosine kinases and inhibited tumour growth in human 

lymphoma xenograft models.223,224 Mechanistically, zotatifin increases the affinity between 

eIF4A1 and specific polypurine tracts in 5’-UTRs that prevent the scanning of the 43S PIC for 

initiation of translation leading to decreases in expression of c-Myc and Bcl6.224,225 Currently, 

there are ongoing clinical trials for the use of zotatifin in advanced solid tumours 

(NCT04092673). 

Another approach to targeting the eIF4F complex is disrupting the interaction between 

eIF4G and eIF4E to prevent the assembly of the eIF4F complex. The first identified compound 

was 4EGI-1 (eIF4E/eIF4G interaction inhibitor) through a high throughput drug screen that 

involved displacing a fluorescent peptide that bound that eIF4E.226 This compound is a 

competitive inhibitor of eIF4G1 binding to eIF4E, which resulted in a reduction of c-Myc and 
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Bcl-xL protein expression and induced apoptosis in multiple cancer cell lines.226,227 4EGI-1 

treatment also reduced the tumour growth of human melanoma and breast cancer xenografts 

showing efficacy in vivo.228 Another high throughput drug screen identified another compound 

called 4E1RCat, which also binds to eIF4E to disrupt its interaction with eIF4G1 and 4E-BPs, 

and treatment reversed the doxorubicin chemoresistance in Eµ-Myc lymphoma mice model.229 

Instead of binding to eIF4E, SBI-756 was another compound found to disrupt the eIF4E and 

eIF4G1 interaction but bound to eIF4G1.230 SBI-756 dissociated eIF4G1 from eIF4F complex 

and increased the interaction between eIF4E and 4E-BPs, an indication of reduced eIF4F 

complex activity.230 SBI-756 inhibited the growth of NRAS, BRAF, and NF1-mutant driven 

melanomas and reduced tumour growth in vivo.230 Another study reported a synergistic effect of 

the anti-apoptotic protein BCL2 inhibitor, venetoclax in combination with SBI-756 in inducing 

apoptosis in vitro and tumour burden in vivo in lymphoma cells.231 Molecularly, SBI-756 

treatment disrupted the assembly of eIF4F complex leading to selectively reduced translation of  

mRNAs encoding ribosomal proteins and translation factors, displaying the specificity of SBI-

756.231 In summary, the eIF4F complex has been demonstrated to play an important role in the 

translation of mRNAs of cancer-related proteins to which cancers become addicted, and there is 

also a growing appreciation for eIF4F complex inhibitors to target the overexpression of these 

specific oncogenes for translation to pre-clinical and clinical studies. 

 

1.5 Thesis Objectives 

Drug resistance and disease relapse remain major challenges for curative treatment of CML 

patients. It is crucial to identify patients who are irresponsive to standard TKI monotherapies, so 

that they may be considered rapidly for transplant-based or novel combination treatments, to 



31 

 

significantly improve treatment outcomes. However, current clinical scoring systems cannot 

accurately predict the heterogeneous treatment outcomes observed in patients. It is also essential 

to identify key targets and develop new treatment strategies to overcome drug resistance by 

understanding the mechanisms in which CML LSCs and TKI-resistant cells can resist TKI 

treatments. To achieve these objectives, I focused my work on two specific projects: 

1. Development of a predictive model by evaluating miRNA expression changes in CD34+ 

CML stem/progenitor cells pre- and post-nilotinib therapy and examining the correlation of 

miRNA expression with patients’ CD34+ cell sensitivity to TKIs in a colony formation assay 

in vitro. 

2. Identification and characterization of a highly deregulated eIF4F translation initiation 

complex in drug-resistant BCR-ABL1+ cells by using a phospho-proteomic antibody 

microarray and various functional assays. 

Recent studies have shown that differentially expressed miRNAs can be identified in 

primitive CML patient cells compared to normal bone marrow, particularly between IM-

responders and IM-nonresponders.96 Additionally, IM sensitivity determined using colony-

forming cell (CFC) assays can predict a patient’s response.232 I hypothesize that the correlation 

of miRNA expression with patients’ CD34+ cell sensitivity to TKIs in CFC assays predicts TKI 

response in CML patients. In Chapter 3 of this dissertation, I describe the use of multiple 

bioinformatic analysis to develop a model of miRNA expression and in vitro TKI sensitivity to 

predict patient response to NL. I analyzed the expression of differentially expressed miRNAs in 

CD34+ CML cells pre- and post-NL treatment from 58 patients enrolled in the Canadian sub-

analysis of the ENESTxtnd phase IIIb clinical trial and correlated with sensitivity of CD34+ cells 

to TKI treatments from in vitro CFC assays. Cox proportional hazard (CoxPH) analysis was 
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performed on these miRNAs and applied machine learning algorithms to generate multivariate 

miRNA panels that can predict NL response at treatment-naïve or post-treatment timepoints. 

Understanding resistant mechanisms is important to discovering novel therapeutic 

strategies for drug resistant CML patients. Previous reports have demonstrated that AHI-1 is 

highly deregulated in CML LSCs and interacts with BCR-ABL1 to enhance its oncogenic 

activity.75,119,120 AHI-1 contains multiple domains involved in signal transduction including the 

SH3 domain, which mediates TKI resistance.116,122 I hypothesize that targeting key biological 

processes regulated by AHI-1 and its interacting partners and their pathways can sensitize drug-

resistant cells to TKI treatment. Chapter 4 begins with the presentation of my antibody 

microarray analysis to identify differences in the proteome and the phosphorylation landscape of 

BCR-ABL1+ cells expressing different Ahi-1 constructs and their response to IM treatment. I 

observed the greatest number of differential antibody signal intensities in BCR-ABL1+ cells co-

transduced with wildtype Ahi-1 compared to BCR-ABL1+ cells or cells co-expressing Ahi-1 

SH3 domain deletion with and without IM treatment. This analysis led me to identify that the 

regulation of the eIF4F complex is deregulated in BCR-ABL1+ cells expressing wildtype Ahi-1, 

which were relatively more IM-resistant. Furthermore, transcript levels of several eIF4F complex 

members were found to be elevated in CD34+ CML patient cells compared to normal bone 

marrow. This led me to investigate the protein expression of eIF4F complex members and I 

discovered that IM-resistant CML cells expressed higher levels of eIF4G1 and eIF4B. 

Subsequently, I used genetic and pharmaceutical inhibition of eIF4G1 to study the effects of 

targeting the eIF4F complex and I reported reduced survival and increased sensitivity to IM 

treatment by inhibition of eIF4G1 in IM-resistant cells. I also demonstrated that eIF4G1 
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inhibition resulted in significant reduction in eIF4F complex activity, the protein expression of 

BCR-ABL1, and several eIF4E-sensitive genes.  
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Chapter 2: Materials and Methods 

2.1 Cell Culture 

2.1.1 Cell lines 

The human CML BC cell lines K562 and IM-resistant K562 cells (K562R, no detectable 

BCR-ABL1 kinase domain mutations; kindly provided by Dr. A. Turhan, University of Poitiers, 

France) and BCR-ABL1-transduced murine pro-B cell line, BaF3, (B/A only), BCR-ABL1+ 

BaF3 co-transduced with wild-type mouse Ahi-1 (WT Ahi-1) or SH3 domain-deleted mouse 

Ahi-1 (Ahi-1 SH3Δ) were cultured in Rosewell Park Memorial Institute (RPMI) 1640 medium 

containing 2 mM L-glutamine supplemented with 10% fetal bovine serum (FBS) (Life 

Technologies, Carlsbad, CA), 100 U/mL penicillin (Thermo Fisher Scientific, Waltham, MA), 

0.1 mg/mL streptomycin (Thermo Fisher Scientific) and 0.1 mM β-mercaptoethanol 

(STEMCELL Technologies, Vancouver, BC), henceforth referred to as complete RPMI medium. 

eIF4G1 knockdown cells were cultured in complete RPMI medium supplemented with 2 µg/mL 

puromycin. Human HEK-293T cells were cultured in Dulbecco’s modified Eagle media 

(DMEM) (Life Technologies) supplemented with 10% FBS, 100 U/mL penicillin, 0.1 mg/mL 

streptomycin and L-glutamate (STEMCELL Technologies, Vancouver, BC). All cell lines were 

maintained in 10 cm Falcon® (Corning Inc., Lowell, MA) or Sarstedt (Nümbrecht, Germany) 

tissue culture dishes at 37°C and 5% CO2. 

 

2.1.2 Human Cells and Study Design of Nilotinib Predictive Study 

Heparin-anticoagulated peripheral blood (PB) samples were obtained from 62 newly 

diagnosed CML patients enrolled in the Canadian sub-analysis arm of the ENESTxtnd phase IIIb 

clinical trial (https://clinicaltrials.gov/ct2/show/NCT01254188, Supplementary Table 1). 

https://clinicaltrials.gov/ct2/show/NCT01254188
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Enrichment of CD34+ cells were enriched immunomagnetically using an EasySep CD34 positive 

Selection Kit (STEMCELL Technologies). However, 4 patients were excluded from the study 

due to insufficient enrichment of CD34+ cells in the samples (<65%), leaving a total of 58 patient 

samples for analysis. These patients were newly diagnosed (within 6 months) CML-CP patients 

who have not been previously treated with IM. PB samples were obtained prior to therapy (BL), 

1 month (M1) and 3 months (M3) after 300 mg or 400 mg BID nilotinib (NL) therapy.233,234 

Clinical responses of patients were classified as either NL-responders (R) or NL-nonresponders 

(NR) at 12 months (46 R, 12 NR) after treatment based on BCR-ABL1 transcript levels following 

the European Leukemia Net treatment guidelines.235 

 

2.1.3 Small Molecule Inhibitors 

IM and NL were obtained from Novartis (Basel, Switzerland) and DA was obtained from 

Bristol-Myers Squibb (New York, NY). SBI-756 was purchased from Selleck Chemicals 

(Houston, TX). Cycloheximide solution and MG132 were purchased from Sigma-Aldrich (St. 

Louis, MO). Stock solutions of 10 mM were prepared with ddH2O (IM) or dimethyl sulfoxide 

(NL, DA, SBI-756, MG132) and stored at -20°C. 

 

2.2 Microfluidic Quantification PCR and Bioinformatic Analysis 

Microfluidic quantitative PCR (qPCR) was performed as previously described.96,236  

Pooled RT primer mix containing 47 different miRNA stem-loop primers plus RNU48 were 

prepared and mixed with RNA extracted from CD34+ CML cells. Amplified cDNA from these 

reactions were combined with Taqman master mix and loaded to sample inlets of a Fluidigm 

48.48 Dynamic array device. High-throughput quantitative real-time PCR was then performed 
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using the BioMark HD system (Fluidigm, San Francisco, CA) to produce image-based 

fluorescent signals and raw Ct values.  

Data quality control and normalization was performed using the HTqPCR package.237 

The Ct values were normalized to the endogenous control RNU48 (ΔCt method). Two samples 

were excluded due to having high RNU48 Ct values and were determined to be outliers as 

defined as 1.5 times the interquartile range. Univariate Cox Proportional Hazard (CoxPH) 

analyses were performed on 47 normalized miRNAs at each individual time point applying four 

different dichotomization cut-offs (median, 1st quartile, 3rd quartile, maximally selected rank 

statistics calculated cut-off) using the R survival packages while treating “non-response” at 12 

months as the hazardous event.238,239 Although maximally selected ranked statistics calculated 

cut-offs were used as the final cut-offs in the presented models and scores, only variables that 

were significantly associated with non-response in at least two of the four cut-off categories were 

considered for multivariate CoxPH analyses and machine learning. All features with significant 

expression differences between groups determined by Welch t-test were subjected to train two 

individual types of machine-learning models for “non-response” prediction for treatment-naïve 

samples, being random forest (RF) and Naïve Bayes (NB), using the R caret and MLeval 

packages.240,241 For samples taken after patients received treatment, only miRNAs with stable 

association for NL non-response between 1 month and 3 months after treatment were considered 

for machine learning. Each model was repeatedly 10-fold cross-validated and performance of the 

two trained model per feature combination was evaluated based on receiver operating 

characteristic (ROC) and precision recall (PR) plots and recorded in the form of area under the 

curve (AUC) values. 
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2.3 Antibody Microarray and Bioinformatic Analysis 

The Kinex KAM-1325 antibody microarray (Kinexus Bioinformatics Corporation, 

Vancouver, BC) was performed in accordance with the manufacturer’s specification. In brief, 

cells were lysed and sonicated for 40 seconds in intervals of 10 seconds with 10 seconds 

intermissions over ice. The resulting homogenates were incubated for 30 minutes with 6 mM 

NTCB at 37°C for cysteine chemical cleavage and then subjected to ultracentrifugation for 30 

minutes at 20°C at 50,000 RPM. The samples were then labeled with 20 µg of NHS-Biotin 

(APExBIO, Houston, TX) for 1 hour. The resulting labeled protein fragments were then purified 

using Sephadex G-25 Spin columns (Sigma-Aldrich) and eluted. Samples were then diluted to 

400 µL with PBS with 0.05% Tween and 50 mM ethanolamine and then protein concentrations 

were measured by Bradford protein assay. Lysates were then applied to the antibody microarray 

and incubated in a humidity chamber for 2 hours. Slides were then washed, and anti-biotin 

antibody labelled with Alex546/Cy3 was then applied over the slides for 10 minutes in the 

humidity chamber. The slides were then washed, dried under nitrogen, and scanned at 543 nM 

using a ScanArray GX Microarray scanner (Perkin-Elmer, Wellesley, MA). Fluorescent signals 

from the antibody microarray were quantified with ImaGene 9.0 microarray image analysis 

software (BioDiscovery, El Segundo, CA). Antibody signal intensity was calculated as a 

function of the net median signal and spot size. 

The raw antibody signal intensities were normalized using a semi-global method. 

Antibodies with the lowest 20% standard deviation across all samples were used as a subset for 

normalization. The R packages ConcensusClusterPlus and pheatmap was used to generate the 

heatmap with hierarchical clustering while the UMAP projection was generated using the R 

package M3C.242–244 Differential expression analysis was performed using the R limma package 
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and volcano plots were generated using EnhancedVolcano.245,246 Antibodies with significant 

differential signal intensities were subjected to pathway enrichment analysis using the g:Profiler 

toolset.247 Criteria for enriched pathways include p-value > 0.05,  size of pathway contains 10 ≤ 

number of proteins ≤ 500, and contains at least two proteins with significantly differential 

antibody signal intensities. Data sources for g:Profiler include GO biological process, KEGG, 

Reactome, and WikiPathways. 

 

2.4 Molecular Techniques 

2.4.1 Protein Extraction and Quantification 

Protein was extracted from cells by incubating in lysis buffer on ice for 20 minutes. The 

lysis buffer contained 900 µL of phosphorylation solubilization buffer (PSB), 100 µL 10% NP-

40 Alternative Protein Grade Detergent (Calbiochem, San Diego, CA) solution, 10 µL 10% 

sodium dodecyl sulfate (SDS) solution, 5 µL phenylmethylsulfonyl fluoride (Sigma-Aldrich), 5 

µL protease inhibitor cocktail (Sigma-Aldrich). The lysate was then centrifuged at 13,000 RPM 

for 20 minutes at 4°C and the clarified lysate was separated into another tube. Protein 

concentration was quantified using 200 µL of 1:5 diluted Bio-Rad Protein Assay Dye (Bio-Rad, 

Hercules, CA) with 20 µL of 1:20 diluted protein lysate in triplicate on a 96-well Falcon® plate. 

The absorbance of each sample was measured using the Sunrise absorbance microplate reader 

(Tecan, Männedorf, Switzerland). 

 

2.4.2 Immunoblotting 

Protein lysates containing 30 µg of protein were mixed with 4x SDS-PAGE loading 

buffer, followed by heating at 95°C for 10 minutes. Samples were then loaded and separated in 
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8%-12% SDS-PAGE gels by electrophoresis, then transferred to a low fluorescence PVDF 

(MilliporeSigma, Burlington, MA). The membrane was blocked with EveryBlot Blocking Buffer 

(Bio-Rad) for 5 minutes at room temperature. Primary antibody incubation was done overnight at 

4°C followed by a wash with Tris-buffered saline with 0.1% Tween 20 (TBST) for 5 x 6 

minutes. Secondary antibody incubation was performed at room temperature for 1 hour and 

followed by a wash with TBST for 5 x 6 minutes. After, the membrane was incubated with 

Clarity Western Enhanced Chemiluminescence Substrate (Bio-Rad) and was imaged using the 

ChemiDoc Imaging System (Bio-Rad). 

The primary antibodies used for immunoblotting were anti-phospho-mTOR (Ser2448, 

#2971, Cell Signaling Technology (CST), Danvers, MA), anti-phospho-RSK (Ser227, #3556, 

CST), anti-phospho-PTK2 (Tyr576/577, #3281, CST), anti-phospho-eIF4G1 (Ser1231, NBP2-

04965, Novus Biologicals, Littleton, CO), anti-eIF4G1 (#2858, CST), anti-phospho-eIF4B 

(Ser422, #3591, CST), anti-eIF4B (#3592, CST), anti-eIF4A (#2013, CST), anti-eIF4E 

(#610269, Thermo Fisher Scientific), anti-phospho-4EBP (Thr37/46, #2855, CST), anti-4EBP 

(#9644, CST), anti-cyclin D3 (#2936, CST), anti-ABL (8E9, AB_2220994, BD Biosciences, 

Franklin Lakes, NJ), anti-MDM2 (sc-13161, Santa Cruz, Dallas, TX), and anti-MCL1 (#16225-

1-AP, Proteintech, Rosemont, IL). 

 

2.4.3 Proximity Ligation Assay 

Approximately 7.5 × 104 cells were seeded on a 1 cm2 square drawn using a Super PAP 

Pen (Electron Microscopy Sciences (EMS), Hatfield, PA) on a poly-L-lysine coated slide (EMS). 

Cells were then allowed to adhere to slide for 20 minutes in a 37°C incubator. The cells were 

then fixed with 4% paraformaldehyde (EMS) in PBS for 15 minutes at room temperature. Slides 
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were washed with PBS 3 times and incubated with 0.1% Triton X-100 (Sigma-Aldrich) in PBS 

solution for 10 minutes at room temperature for permeabilization. Cells were washed again with 

PBS 3 times and blocked with Blocking Solution (Sigma-Aldrich) in a 37°C incubator for 1 

hour. eIF4G1 (1:125 dilution) and eIF4E (1:250 dilution) primary antibodies were diluted in 

Antibody Diluent (Sigma-Aldrich) and incubated on the slides overnight at 4°C. The next day, 

cells were washed twice with Wash Buffer A (Sigma-Aldrich) for 5 minutes with gentle agitation 

and incubated with PLA probe PLUS and MINUS (Sigma-Aldrich) diluted 1:5 with Antibody 

Diluent for 1 hour in a 37°C incubator. Cells were washed again with Wash Buffer A twice for 5 

minutes and incubated with the Ligase-Ligation solution at 37°C for 30 minutes. Cells were 

washed again with Wash Buffer A for 5 minutes twice and incubated with the Polymerase-

Amplification solution at 37°C for 100 minutes. Cells were then washed with Wash Buffer B for 

10 minutes twice with gentle agitation, followed by a 0.01X Wash Buffer B solution for 1 

minute. Finally, slides were mounted in Prolong Diamond antifade reagent with DAPI (Thermo 

Fisher Scientific), and fluorescence signals were detected using a confocal Nikon X1 microscope 

(Nikon, Minato City, Japan). 

After image acquisition, FIJI (FIJI is Just Image J) was used to quantify the PLA foci 

signal. The background was corrected with “Subtract Background” and a Gaussian Blur was 

applied to the images. The PLA foci and DAPI channels were split, and threshold were applied 

using “MaxEntropy” and “Mean”, respectively. “Analyze Particles” was used to quantify the 

area of the images with threshold and the area ratio between the PLA foci and DAPI signals of 

each image was calculated. 
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2.4.4 O-Propargyl-Puromycin Assay 

To measure protein synthesis rate, the Click-iT Plus OPP Alexa Fluor 647 Protein 

Synthesis Assay Kit (Thermo Fisher Scientific) was used. In brief, 2.5 × 105 cells were 

transferred to a clean FACS tube. Cells were spun down and resuspended with 100 µL of 20 µM 

Click-iT® OPP solution (Thermo Fisher Scientific) in pre-warmed complete RPMI medium. 

Cells were incubated in a 37°C incubator for 30 minutes and followed by a wash using 1 mL of 

PBS. The cells were then fixed using 100 µL of 4% paraformaldehyde solution in PBS (EMS) 

for 15 minutes at room temperature, followed by a wash using 1 mL of PBS. Cells were then 

permeabilized using 100 µL of 0.5% Triton X-100 (Sigma-Aldrich) solution in PBS for 15 

minutes at room temperature, followed by a wash with 1 mL of PBS. The cells were then 

incubated with 100 µL of Click-iT® OPP reaction cocktail (Thermo Fisher Scientific) for 30 

minutes at room temperature protected from light, followed by a wash using 1 mL of PBS. Cells 

were then washed with 100 µL of Click-iT® Reaction Rinse Buffer (Thermo Fisher Scientific) 

and resuspended with 150 µL of 1% FBS in PBS. OPP fluorescent signals were measured using 

the BD LSRFortessa Cell Analyzer (BD Biosciences) using the red laser and 670/14 filter. 

 

2.4.5 Sucrose Gradient Centrifugation and Polysome Fractionation 

Ten minutes prior to harvesting of cells, 100 µg/mL of cycloheximide was added to each 

condition. Cells were then harvested, washed with PBS supplemented with 100 µg/mL 

cycloheximide, and the cell pellets were stored at -80°C until lysis. Cells were lysed using a 

hypotonic lysis buffer containing 20 µM TRIS pH 7.3, 150 mM KCl, 5 µM MgCl2, 0.5X protein 

inhibitor cocktail, 0.5% NP40, 0.5% deoxycholate, 100 µg/µL cycloheximide and Turbo DNase 

(Thermo Fisher Scientific). After 5-minute incubation on ice, the lysates were centrifuged at 
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5000xg for 5 minutes at 4°C to separate the nuclear fraction from the cytosolic fraction. The 

cytosolic fraction was then collected and loaded onto a sucrose gradient (10%, 34%, 55%) that 

was prepared the previous day. Then each sucrose gradient was centrifuged at 35,000 RPM for 2 

hours at 6°C in a SW60 Ti rotor and a Beckman Coulter Ultracentrifuge (Beckman, Brea, CA). 

The samples were then fractionated and collected using the BioComp gradient profiler 

(BioComp Instruments, Fredericton, NB). After, fractions containing peaks that correspond to 

polysomes with 6 or more ribosomes were pooled together as the heavy polysome fraction and 

were then used for RNA extraction (Figure 2.1). This definition of heavy polysomes is used in 

Chapter 4. 

 

Figure 2.1: Example of Polysome Profile. Trace from a polysome fractionation experiment 

containing peaks that correspond to ribosome subunits (40S and 60S), monosomes (80S), and 

polysomes (numbers indicate number of ribosomes). Heavy polysomes are defined as those 

containing 6 or more ribosomes. 
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2.4.6 RNA Extraction 

Samples were mixed with TRIzol (Thermo Fisher Scientific) for RNA extraction.248 

Glycoblue (Thermo Fisher Scientific) was added as a carrier to visualize the RNA pellet. RNA 

was dissolved in Nuclease-free water (Thermo Fisher Scientific) and the RNA concentration was 

measured using the Nanodrop (Thermo Fisher Scientific). 

 

2.4.7 Quantitative Real-time PCR 

Approximately 500 ng of RNA were reverse transcribed into cDNA using STEMscript 

cDNA synthesis kit (STEMCELL Technologies) according to the manufacturer’s instructions. 

The cDNA was then diluted 1:10 using nuclease-free water. Quantitative real-time PCR (qRT-

PCR) was performed using 6.25 µL of SYBR Green PCR Master Mix (Thermo Fisher 

Scientific), 0.25 uL of 20 µM gene specific primer solution, and 6 µL of the diluted cDNA on 

the 7500 Real Time PCR System (Thermo Fisher Scientific). SYBR was used as the reported dye 

while ROX was used as the passive reference. The ΔΔCt method was used to calculate relative 

transcript levels using β2-microglobulin (β2M) as the housekeeping gene. Primers used in this 

study for BCR-ABL1 were 5’-CATTCCGCTGACCATCAATAAG-3’ (forward) and 5’-

GATGCTACTGGCCGCTGAAG-3’ (reverse) and for β2M are 5’-

TAGCTGTGCTCGCGCTACT-3’ (forward) and 5’- TCTCTGCTGGATGACGTGAG-3’ 

(reverse). 
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2.5 Transfection and Transductions 

2.5.1 Lentivirus Production 

Lentiviruses were produced in HEK293T cells using polyethylenimine (PEI) as 

transfection reagent. 18-20 hours prior to transfection, 5.5 × 106 cells were seeded in each of 10-

cm Falcon® tissue culture plate in 7 mL DMEM supplemented with 10% FBS and L-glutamine 

and incubated in a 37°C incubator with 5% CO2.  Seven plates were seeded per construction. 

Four hours prior to transfection, the medium was removed and replaced with 4.5 mL of medium. 

For each plate, a 250 µL DNA mixture with 6 µg of shRNA plasmids, packaging vectors (1.5 µg 

of REV, 3.9 µg of ΔR), 2.1 µg of vesicular stomatitis virus glycoprotein (VSV-G) envelope in 

Opti-MEM® medium (Thermo Fisher Scientific) was added dropwise into a solution of 40 µL of 

PEI (1 µg/µL) with 210 µL of Opti-MEM® medium and was incubated at room temperature for 

20 minutes. After, this combined 500 µL solution was added dropwise to each plate of HEK293T 

cells. After 48 hours, the viral supernatant was collected and filtered using a 0.45 µM low-

binding filter (Pall Corporation, New York, NY), followed by ultracentrifugation to concentrate 

the viral particles for 1.5 hours. The virus pellet was resuspended in Iscove’s Modified 

Dulbecco’s Medium (STEMCELL Technologies) containing 5% DNase with gentle agitation for 

30 minutes at room temperature, which was then aliquoted and stored at -80°C.  

 

2.5.2 Lentiviral shRNA-Mediated Knockdown of eIF4G1 

K562 or IM-resistant K562R cells were seeded at 3 × 105 cells in 400 µL of RPMI 1640 

medium in a 24-well plate. The cells were then infected with 5 µL of concentrated lentivirus 

containing MISSION shRNA construct targeting human eIF4G1 (TRCN0000061769, 

TRCN0000061771) or a non-targeting sequence (SHC002, pLKO.1-puro non-mammalian 
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shRNA control plasmid, Sigma-Aldrich) in the presence of protamine sulfate for 18 hours. Cells 

were then washed with PBS and resuspended in complete RPMI medium containing 2 µg/mL 

puromycin. Cells were exposed to puromycin for 48 hours before setting up assays. 

 

2.6 In Vitro Assays 

2.6.1 Trypan Blue Viability Assay 

Trypan blue exclusion method was used to assess the total cell counts and cell viability. 

Trypan blue (Thermo Fisher Scientific) remains in unhealthy cells with compromised cell 

membranes resulting in a dark blue colour to distinguish between healthy cells that have a white 

appearance. Cells were then counted using a Neubauer hemocytometer. Cells were seeded at a 

density of 1 × 105 cells/mL with or without inhibitors, and cell counts were performed at 24, 48, 

and 72 hours. 

 

2.6.2 PI-Annexin V Apoptosis Assay 

Apoptosis was detected using an Annexin V-APC apoptosis detection Kit (Thermo Fisher 

Scientific) and was used according to the manufacturer’s instructions. In brief, cells were washed 

with PBS with 1% FBS and then resuspended with 100 µL of 1x Annexin V binding buffer 

(Thermo Fisher Scientific). Next, 2.5 µL Annexin V-APC and propidium iodide (PI) (Thermo 

Fisher Scientific) were added to each sample. After 20 minutes incubation at room temperature 

protected from light, 500 µL of 1x Annexin V binding buffer were added to each sample as a 

wash. Cells were then resuspended with 200 µL of 1x Annexin V binding buffer and flow 

cytometry was performed using the BD LSRFortessa Cell Analyzer. Percent apoptotic cells were 
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computed using FlowJo 10 software to sum “early” (Annexin V+/PI-) and “late” apoptotic cells 

(Annexin V+/PI+) together. 

 

2.6.3 Colony-Forming Cell Assay 

Colony-forming cell assays were performed as previously described.120 Briefly, 3000 

primary CD34+ cells were mixed with 1 mL MethoCult H4230 (STEMCELL Technologies) in 

duplicate with growth factor cocktail in the presence or absence of inhibitors: 10 µM NL, 150 

nM DA, 5 µM IM. Colonies were counted 14 days after plating. 

 

2.7 Statistical Analysis 

Unless otherwise indicated, results are shown as the mean ± standard deviation obtained 

from two to four independent experiments. Differences between groups were compared using a 

two-tailed Student’s t-test for unpaired samples with unequal variances or one-way ANOVA, 

with corrections for multiple comparisons, using GraphPad Prism version 9 (GraphPad Software, 

San Diego, CA). P-values <0.05 were considered statistically significant and were computed 

applying the Welch Two Sample t-test with a 95 percent confidence interval. 
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Chapter 3: Identification of Key MicroRNAs as Predictive Biomarkers of 

Nilotinib Response in Chronic Myeloid Leukemia 

3.1 Introduction 

CML is a myeloproliferative stem cell disease characterized by the fusion oncoprotein 

BCR-ABL1.4,249 TKIs that selectively target BCR-ABL1, such as IM, and second generation 

TKIs such as DA and NL, have demonstrated remarkable clinical efficacy in the treatment of 

CML-CP.33,45,250–254 For example, a 10-year follow up of the ENESTnd clinical trial that 

evaluated long-term outcomes of NL and IM, demonstrated that NL had increased rates of 

treatment-free remission (TFR) eligibility and overall survival compared to IM treatment.234,255 

The extension of the ENESTnd clinical trial, ENESTxtnd, further supported the use of NL as a 

front-line therapy, with 81% of CML-CP patients achieving major molecular response (MMR) 

by 24 months.256 These advances in TKI therapy have improved cancer-free survival rates and 

resulted in faster and deeper levels of molecular response in these patients. However, TKI 

treatments are not usually curative as some patients develop drug-resistance or are at risk of 

disease relapse when treatment is discontinued.38,257–260 Thus, it has been of interest to develop 

predictive biomarkers to accurately predict whether patients may achieve a deep molecular 

response with first-line TKI, require a switch to second generation TKIs or can discontinue 

treatment safely. Patient material from a variety of sources has been profiled using microarrays, 

RNA-sequencing and, more recently, single cell RNA-sequencing.89,261–263 Some studies have 

identified parameters that may indicate poor TKI response in CML patients, such as the detection 

of additional chromosomal abnormalities in BCR-ABL1+ cells at diagnosis or observing a slow 

rate of change in BCR-ABL1 transcript levels in the first 3 months of TKI therapy, among 
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others.264–266 It was also reported that IM response could be predicted in treatment-naïve CD34+ 

stem/progenitor cells by an in vitro CFC assay.232 Moreover, analysis of differential gene 

expression between IM-nonresponders and responders has offered predictive potential: a 17-gene 

panel quantified via qRT-PCR to classify patients as high-risk or low-risk was able to predict 

early molecular response failure, based on BCR-ABL1 transcript levels at 3 months in CML-CP 

patients treated with IM or NL.267 However, differences in the cell types profiled, the 

technologies used, and the inherent complexity associated with the interpretation of molecular 

data pose challenges in identifying reliable biomarkers with clinical utility.   

MicroRNAs (miRNA) are single-stranded non-coding RNAs of about 18-25 nucleotide 

length that are aberrantly expressed in various malignancies and regulate numerous biological 

processes including cell differentiation and survival.268–271 Some miRNA tumor suppressors 

regulating BCR-ABL1 were reported to be downregulated in CML cells whereas oncogenic 

miRNAs (oncomiRs) modulated by BCR-ABL1 were found to be overexpressed.100,272,273 

Additionally, BCR-ABL1-dependent and -independent miRNA expression profiles were 

observed in CML patient cells at different stages of the disease.104,272 Interestingly, the 

expression of some of these miRNAs was reported to change in response to TKI-treatment and 

may therefore be good indicators of TKI-resistance.101,104–107 Recently, our lab has generated 

miRNA and strand-specific RNA sequencing profiles on treatment-naïve CD34+ CML cells with 

known subsequent IM responses and identified several differentially expressed miRNAs, 

including miR-185 and miR-145, in IM-nonresponders as compared to IM-responders.96  

The goal of this study was to generate an effective, combinational predictive model 

consisting of miRNAs and in vitro TKI CFC data by analyzing miRNA expression profiles in 
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CD34+ cells from 58 patients (retrospectively classified as NL-responders or NL-nonresponders) 

and the sensitivity of these cells to TKIs. Through Cox Proportional Hazard (CoxPH) analysis 

and machine learning approaches, two predictive miRNA panels were identified and evaluated in 

treatment-naïve or post-NL treatment in CML patients. Interestingly, incorporation of in vitro 

CFC data into either panel improved the predictive power at each time point. To my knowledge, 

this is the first study to utilize miRNA expression profiles, CFC data, and clinical response data 

from matched patient samples to develop a predictive model of response to NL treatment.  

 

3.2 Results 

3.2.1 Treatment-naïve CD34+ CML Cells from NL-Responders and NL-Nonresponders 

Generate Significantly Different CFC Outputs during in Vitro Nilotinib Treatment 

Previously, it has been demonstrated that CFC assays in IM-supplemented cultures can 

classify CML patients into IM-responders and IM-nonresponders, based on the colony output 

from treatment-naïve CD34+ stem/progenitor cells obtained at diagnosis.232 To determine 

whether a similar method can be applied to NL, in vitro CFC assays were performed with and 

without TKI treatments on CD34+ cells from 58 newly diagnosed CML patients enrolled in the 

ENESTxntd trial. NL-responders have a 3-log-fold or greater reduction in BCR-ABL1 transcripts 

(< 0.1%) at month 12 of NL therapy, while those that failed to achieve this response were 

classified as NL-nonresponders (NR, Appendix A). As expected, there was an overall reduction 

in CFC outputs generated from CD34+ cells upon NL, DA or IM treatment compared to 

untreated controls. Furthermore, NL-response in patient CFC data correlated with DA-CFC and 

IM-CFC counts from the same patient sample (DA: Pearson’s R = 0.06831, p < 0.0001; IM: R = 
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0.7243, p < 0.0001; Figure 3.1A). However, while most retrospectively classified responders 

produced overall fewer colonies upon any TKI treatment, a more diverse pattern was observed 

for nonresponders, clustering into two response fractions in CFC assays. Some of the 

nonresponder samples showed that they responded poorly and produced high numbers of 

colonies upon NL or DA or IM treatment, but a few samples produced similar numbers of 

colonies as CD34+ cells from responders (Figure 3.1B). Nevertheless, a significant difference in 

CFC output was observed between responder and nonresponder samples for NL (p = 0.014) but 

not for IM or DA (Figure 3.1B). To determine if CFC output was significantly associated with 

nonresponse, each patient was categorized as CFC low or high based on maximally selected rank 

statistics calculated cut-offs (NL = 46.2%, DA = 26.9%, IM = 34.3%). Univariate CoxPH 

analysis showed that CFC outputs from all three TKIs were significant classifiers in predicting 

NL clinical response status (p ≤ 0.019, Table 3.1) and displayed hazard-ratios (HR) <1, 

associating higher colony output with NL nonresponse. 
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Figure 3.1: Comparison of the Effect of TKIs in vitro on CD34+ Cells from NL-Responders 

and Nonresponders. (A) Correlations of CFC output between NL and IM or DA. (B) 

Differential CFC output between NL-NR and NL-R patient samples after treatment with NL, 

DA, and IM. Dashed line represents the calculated cut-offs determined by maximally selected 

rank statistics for CoxPH analysis. P-values for comparing NL-NR and NL-R groups were 

calculated using a two-tailed unpaired Student t-test. Data shown are mean ± standard deviation 

(SD). 

Table 3.1 Cox Proportional Hazard Analysis of CFC Data 

TKI beta HR (95% CI for HR) Wald test p-value 

RF 

ROC 

NB 

ROC 

NL (10 µM) -2.2 0.11 (0.033-0.34) 14 0.00016 0.75 0.75 

DA (150 nM) -1.4 0.26 (0.083-0.8) 5.5 0.019 0.73 0.72 

IM (5 µM) -1.4 0.26 (0.083-0.8) 5.5 0.019 0.58 0.57 
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3.2.2 Expression of MiR-145 and MiR-708 in Treatment-Naïve CML Cells Predicts 

Patient Response and Accuracy is Further Improved by Incorporation of In Vitro NL-CFC 

data 

Our lab recently published a miRNA-sequencing study highlighting 47 differentially 

expressed miRNAs identified in CD34+ stem/progenitor cells between normal bone marrow 

(NBM) and CML patient samples, particularly between IM-responders and IM-nonresponders.96 

In the present study, microfluidic qRT-PCR expression data was collected for this panel of 47 

miRNAs in CD34+ cells obtained at diagnosis (BL), 1-month (M1) and 3-month (M3) post-NL 

treatment from 58 CML patients. The HTqPCR R package was used to perform data quality 

control and test several normalization methods on a large data set generated from 8,256 

microfluidic qPCR reactions consisting of TaqMan probes specific for 47 miRNAs and an 

RNU48 control for each of the 58 patients. Ct values normalized to an endogenous RNU48 

control produced a favourable normal distribution and this normalization method was then 

selected for this study (Figure 3.2). Interestingly, univariate CoxPH analysis identified that 

expression of 17/47 miRNAs were significantly associated with NL nonresponse (four miRNAs 

at BL, nine miRNAs at M1, and ten miRNAs at M3; p < 0.05, Figure 3.3A and Table 3.2). Some 

of these miRNAs were significantly associated with nonresponse across all the three time points 

and overall, 9/47 miRNAs were differentially expressed between NL-responder and NL-

nonresponder patients at any time point (BL, M1, M3; p ≤ 0.047, Figure 3.3B).  
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Figure 3.2: Distributions of Ct Values According to Different Normalization Methods from 

HTqPCR package. Frequency plots displaying the distribution of normalized Ct values of all 

8,256 microfluidic qPCR reactions after each normalization method was applied with the Ct 

values plotted along the X-axis and their proportion on the Y-axis. The HTqPCR R package was 

used to calculate and plot the distribution of normalized Ct values. 
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Figure 3.3: Study Design and Univariate Analysis of 47 Differentially Expressed MiRNAs 

between NL-Responders and Nonresponders. (A) Workflow of statistical and analytical 

processes. (B) Univariate analysis of differentially expressed miRNAs associated with NL-

nonresponse across pre- and post-treatment time points as indicated. Box-plots of transcript 

levels are displayed relative to NL-NR at the treatment-naïve state (BL) on a log scale. P-values 

were calculated using Welch’s t-test. 

Table 3.2: Univariate Cox Proportional Hazard Analysis of MiRNAs at Different Time 

Points 

 A. miRNAs with significant hazard ratios at baseline 

Name beta HR (95% CI for HR) Wald test p-value 

miR-3607-5p 1.5 4.7 (1.4-16) 6.3 0.012 

miR-363 1.3 3.8 (1.1-13) 4.7 0.031 

miR-708 -1.6 0.2 (0.044-0.92) 4.3 0.038 

miR-128a 1.4 3.9 (1.1-14) 4.2 0.041 

 

        B. miRNAs with significant hazard ratios after 1 month NL treatment 

 

 

 

 

 

 

        C. miRNAs with significant hazard ratios after 3 months NL treatment 

Name beta HR (95% CI for HR) Wald test p-value 

miR-145 -1.6 0.19 (0.057-0.67) 6.8 0.0092 

miR-3676 1.4 4.1 (1.2-13) 5.4 0.02 

miR-182 -1.5 0.23 (0.06-0.86) 4.8 0.029 

miR-185 -1.3 0.28 (0.085-0.92) 4.4 0.036 

miR-192 -1.3 0.28 (0.085-0.92) 4.4 0.036 

miR-3607-5p 1.2 3.4 (1-11) 4.2 0.042 

miR-660 -1.3 0.28 (0.082-0.95) 4.1 0.042 

miR-139-5p -1.3 0.28 (0.083-0.97) 4 0.045 

miR-150 1.3 3.5 (1-12) 4 0.045 

miR-324-5p -1.3 0.26 (0.07-1) 3.9 0.049 

 

To evaluate their predictive capacity, the nine miRNAs that demonstrated significant 

association with NL nonresponse and were differentially expressed between NL-responders and 

Name Beta HR (95% CI for HR) Wald test p-value 

miR-150 2.3 10 (3.1-32) 15 0.00011 

miR-365 2 7.7 (2.5-24) 12 0.00045 

miR-192 1.8 6.3 (2-20) 9.7 0.0018 

miR-452 -1.9 0.15 (0.045-0.5) 9.5 0.002 

miR-363 1.8 6 (1.9-19) 9.3 0.0023 

miR-660 1.7 5.5 (1.8-17) 8.6 0.0033 

miR-451 1.6 4.8 (1.5-15) 7.2 0.0071 

miR-3607-5p 1.5 4.6 (1.2-17) 5.2 0.023 

miR-146b 1.4 3.9 (1.1-14) 4.2 0.041 
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NL-nonresponders were combined into multivariate models for each individual time point of 

sample collection. At the treatment-naïve state (BL), increased miR-145 expression (HR 6.95, p 

= 0.013) and decreased miR-708 expression (HR 0.13, p = 0.009) were associated with NL-

nonresponse in multivariate CoxPH modeling (Figure 3.4A). Two different classification 

algorithms were used to evaluate the combinations of miRNAs for robust predictive 

performance, in which the resulting AUC-ROC values were used to select the combination of 

miRNAs with the best performance. The random forest (RF) classifier algorithm generates 

multiple decision trees based on random subsets of the original dataset, which when combined 

would produce a “forest” of decision trees that averages the performance of each individual 

tree.274 The Naïve-Bayes (NB) classifier utilizes Bayesian techniques to form networks based on 

independent probabilities of each input variable.275 AUC-ROC values generated by trained RF- 

and NB-machine learning models also indicated predictive performance of miR-145 and miR-

708 (AUC-ROC: RF = 0.58, NB = 0.67; Figure 3.4C and E).  

Next, I tested if the model accuracy could be further improved through incorporation of 

the TKI-CFC response data (NL, IM, and DA). Indeed, multivariate CoxPH models 

incorporating CFC output (HR 0.15, p = 0.003) but not IM or DA showed superior Concordance 

in predicting NL nonresponse compared to models based on miRNA expression alone (Ci = 0.8 

vs Ci = 0.89) (Figure 3.4B). Most interestingly, results from the trained RF and NB machine 

learning models showed that inclusion of NL-CFC increased the AUC-ROC and AUC-PR values 

by 1.2-fold (RF) and 1.9-fold (NB) (Figure 3.4D and F). Of note, no other clinical factors except 

for NL-CFC, including WBC count and BCR-ABL1 transcript levels at BL and 12 months, were 

identified as important features in machine learning or associated with patient response (Table 

3.3). Other factors including age and sex of the patients were not available, which could not be 
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included in the analysis. Thus, the combination of miR-145 and miR-708 expression was 

identified as a predictive indicator of NL response at the treatment-naïve state and inclusion of 

NL-CFC data further enhanced predictive performance. 
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Figure 3.4: Multivariate Analysis of MiRNAs Associated with NL-Nonresponse in 

Treatment-Naïve Patients (BL). MiR-145 and miR-708 are associated with and can predict 
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NL-nonresponse as determined by multivariate CoxPH analysis (A) and ROC (C) and PR (E) 

plots from trained machine learning models. Inclusion of NL-CFC data (B) enhances predictive 

performance based on AUC-ROC and AUC-PR (C-F). N represents the number of patient 

samples that were classified as high or low in miRNA level or CFC output using the calculated 

cut-offs. The hazard ratios for each variable in the multivariate CoxPH analyses are displayed 

with 95% confidence and the corresponding p-value. ROC and PR plots for each machine 

learning algorithm, RF and NB, are shown with their corresponding AUC values. 

Table 3.3: Univariate Cox Proportional Hazard Analysis of Clinical Parameters 

Variable beta HR (95% CI for HR) Wald test p-value 

White blood cell count -1.4 0.25 (0.055-1.2) 3.1 0.076 

% CD34+ cells -19 4.00E-09 (0-Inf) 0 1 

BCR-ABL1 ratio (BL) -1 0.36 (0.11-1.1) 3.1 0.078 

% BCR-ABL1 (12 m) -24 5.50E-11 (0-Inf) 0 1 

Log change 12 m-BL 24 1.80E+10 (0-Inf) 0 1 

 

3.2.3 MiR-150 and MiR-185 Expression Levels in Post-NL CML Samples Predict 

Treatment Response and Accuracy is Further Improved by Incorporation of in Vitro NL-

CFC Data 

Since the model performed well in treatment-naïve patient cells, I next tested if a similar 

predictive panel could be generated at the M1 and M3 post-NL treatment. From the nine 

miRNAs that showed significant association with nonresponse in univariate CoxPH analyses, 

four miRNAs (miR-145, miR-365, miR-150, miR-185) displayed HR values that remained 

consistent between M1 and M3 and were therefore selected for further analysis. Overall, 

combination of miR-150 and miR-185 expression levels into multivariate CoxPH and machine 

learning models, achieved the best performance (AUC-ROC: RF = 0.76, NB = 0.73; Ci = 0.8; 

Figure 3.5A, C and E). Addition of NL-CFC to the M1 model improved Concordance (Ci = 0.88) 

and overall accuracy (AUC-ROC RF = 0.84, NB = 0.88, Figure 3.5 B, C and E), overall by up to 

1.3-fold (Figure 3.5D and F). Applying the same panel to data collected at M3 validated the 

predictive potential of miR-150 and miR-185 in multivariate CoxPH analysis (Figure 3.6A) but 
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underperformed in the machine learning evaluation with lower-than-expected AUC-ROC values 

(RF = 0.52, NB = 0.51; Ci = 0.74) (Figure 3.6A, C and E). However, predictive performance was 

again greatly improved when NL-CFC was included to the M3 model, enhancing Concordance 

(Ci = 0.84), and increasing AUC-ROC values by 2-fold (RF = 0.72, NB = 0.68; Figure 3.6C-F). 

After NL treatment, both at M1 and M3, expression levels of miR-150 and miR-185 were 

identified as potential classifiers of treatment response and incorporation of NL-CFC data 

yielded significantly improved predictive accuracy, particularly after 1 month of treatment. 
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Figure 3.5: Multivariate Analysis of MiRNAs Associated with NL-Nonresponse in 1-Month 

Post-Treatment Patients (M1). MiR-150 and miR-185 are associated with and can predict NL-

nonresponse, as determined by multivariate CoxPH analysis (A) and ROC (C) and PR (E) plots 

from trained machine learning models (C). Inclusion of NL-CFC data (B) enhances predictive 

performance based on improved AUC-ROC and AUC-PR (C-F). N represents the number of 

patient samples that were classified as high or low in miRNA level or CFC output using the 

calculated cut-offs. The hazard ratios for each variable in the multivariate CoxPH analyses are 

displayed with 95% confidence and the corresponding p-value. ROC and PR plots for each 

machine learning algorithm, RF and NB, are shown with their corresponding AUC values. 
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Figure 3.6: Multivariate Analysis of MiRNAs Associated with NL-Nonresponse in 3-Month 

Post-Treatment Patients (M3). MiR-150 and miR-185 are associated with and can predict NL-
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nonresponse, as determined by multivariate CoxPH analysis (A) and ROC and PR plots from 

trained machine learning models (C). Inclusion of NL-CFC data (B) enhances predictive 

performance based on improved AUC-ROC and AUC-PR (C-F). N represents the number of 

patient samples that were classified as high or low in miRNA level or CFC output using the 

calculated cut-offs. The hazard ratios for each variable in the multivariate CoxPH analyses are 

displayed with 95% confidence and the corresponding p-value. ROC and PR plots for each 

machine learning algorithm, RF and NB, are shown with their corresponding AUC values. 

 

3.3 Discussion 

TKI therapies induce high rates of initial hematological and molecular responses in 

CML-CP patients, but TKI resistance and disease progression continue to pose a challenge for 

some patients. Current clinical scoring systems cannot accurately predict the heterogeneous 

treatment outcomes that are observed. From the analyses of CML patient samples at the 

treatment-naïve and post-NL treatment states from 58 patients, there are two proposed panels of 

NL-nonresponse predictors: The first panel consists of NL-CFC, miR-145 and miR-708, which 

predicts NL-nonresponse at diagnosis. The second panel of NL-CFC, miR-150 and miR-185 

predicts NL-nonresponse at M1 and M3 post-NL treatment. Although miRNA signatures have 

alluded to TKI response prediction in CML, this study shows merit for combining matched 

miRNA expression profiles with in vitro CFC output to predict NL-specific response.  

Previously, it has been demonstrated that IM response could be predicted in treatment 

naïve CD34+ cells by an in vitro CFC assay in a small cohort study.232 Here, CFC output data 

from patient CD34+ cells obtained at diagnosis can also predict NL response in a larger cohort. 

Since singular predictive variables alone may not be sufficient to predict response due to cellular 

variations and molecular complexity among patients, we generated a multivariate predictive 

panel based on a combination of expression of specific miRNAs and patient’s NL-CFC response. 

This combination improved the predictive value of using miRNA levels alone, as demonstrated 
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by improved Concordance, AUC-ROC, and AUC-PR at all time points. It has been well-

documented that CML stem cells and their progenitor cells are the least TKI responsive and are 

responsible for disease recurrence when TKIs are discontinued.42,63,64,249,276,277 Notably, BCR-

ABL1 transcript and protein levels are significantly elevated in CD34+ cells and even more so in 

the CD34+CD38- stem cell-enriched population compared to the bulk CD34- population.63,278 

Therefore, it has been of interest to determine whether distinguishing features of CD34+ 

leukemic stem/progenitor cells from CML patients might vary amongst patients in correlation 

with the subsequent clinical response to TKI therapy. In this study, primitive CD34+ CML cells 

from individual CP patients show that they indeed display cellular and molecular differences. In 

particular, clinically defined responders and nonresponders differ significantly from each other 

with respect to the growth response of their pre-treatment CFC to NL, and their miRNA 

expression changes. The two newly identified predictive panels, based on stably down- and up-

regulated miRNAs whose expression levels differ significantly and associate with treatment 

response pre- and post-NL therapy, might therefore form the basis of prospective tests for 

predicting early treatment response and ultimately for optimizing CML patient management.     

In this study, miR-145 and miR-708 are highlighted as potential predictive biomarkers in 

treatment naïve patients. MiR-145 expression changes were significantly different between IM-

responders and IM-nonresponders in CD34+ CML cells obtained at diagnosis, adding to previous 

reporting that miR-145 is differentially expressed between CML peripheral blood patient 

samples and normal hematopoietic progenitor cells and between CML-AP versus CML-CP 

cells.96,106 NL treatment also seems to be able to increase expression of miR-145 in BCR-ABL1+ 

cell lines.107 Although overall miR-145 expression in CD34+ cells differed significantly between 

NL-responders and NL-nonresponders in this study, the variation in miR-145 expression level 
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among responders is relatively high with some responder patient cells expressing levels similar 

to NL-nonresponders; a trend that was also observed in other miRNAs in this study. These 

observations indicate heterogeneous and differential expression of miRNAs in individual CML 

patients even before NL treatment. Thus, it is critical to use advanced multivariable statistical 

and bioinformatics tools to precisely identify useful miRNA predictors among other clinical, 

biological, and molecular parameters. Mechanistically, the role of miR-145 in CML has yet to be 

fully explored. However, miR-145 was found to be downregulated and has been suggested to 

sensitize resistant cancer cells to treatment by modulating drug efflux and apoptotic pathways in 

solid tumors.279,280 A conflicting report shows that miR-145 is overexpressed in later stage breast 

cancer and supports cancer cell survival by promoting epithelial to mesenchymal transition and 

hypermethylating apoptotic genes.281 However, miRNA expression is highly context-dependent 

and downstream effects can differ greatly between tumour types. While expression of miR-708 

was found to be significantly reduced in CD34+ CML cells compared to normal CD34+ bone 

marrow cells, there is a lack of understanding of miR-708 in CML and other myeloid 

leukemias.96 MiR-708 has been studied most extensively in lymphoblastic leukemias like acute 

lymphoblastic leukemia (ALL) where it is speculated to have both oncogenic and tumor 

suppressive functions depending on the subtype of ALL.282 Clinically, ALL patients with low 

miR-708 levels were reported to have an increased risk of relapse.282 Based on the analysis from 

this study, reduced miR-708 expression in NL-nonresponder cells may also be indicative of more 

aggressive and drug-resistant properties. Although the role of miR-145 and -708 in TKI 

sensitivity in CML patients have not been elucidated, reports of their participation in drug 

resistance of other cancers encourages further studies regarding their roles in TKI sensitivity. 

Furthermore, these miRNAs were identified prior to NL treatment and were used to predict NL 
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sensitivity. The changes in miRNA expression in response to NL treatment may differ compared 

to other TKI treatments as each TKIs have different specificities and off-target effects. The 

expression of these miRNAs could be useful for clinicians to select the most suitable TKI for 

their patients at the start of their treatments to reduce the risk of nonresponse. 

In CD34+ CML cells obtained 1-month and 3-month post-NL treatment, NL-

nonresponder patients had increased levels of miR-150 and decreased levels of miR-185 

compared to NL-responders. Combining both miRNAs into multivariate models predicted NL-

nonresponse at both time points. Interestingly, both miR-150 and miR-185 have been 

demonstrated to have tumour suppressive properties in CML.96,283–285 MiR-150 was suggested to 

be negatively regulated by BCR-ABL1 via MYC which in turn increases MYB expression and 

contributes to CML pathogenesis.283 CML patients who were able to achieve early treatment 

response (ETR) after IM treatment were observed to have higher miR-150 levels.284,285 MiR-185 

can be repressed by BCR-ABL1 in IM-nonresponder patients, which contributes to leukemic 

stem cell survival and TKI-resistance through increased PAK6 and OXPHOS mechanisms.96 

Furthermore, restoration of miR-185 could sensitize IM-resistant cells to TKIs.96 In summary, 

these studies support the identification of that both miR-150 and miR-185 as key players in CML 

pathogenesis and rationalize their association with TKI-resistance.   

The differences in significant miRNA classifiers among the two predictive panels, 

generated at the treatment naïve and post-NL treatment state, are likely attributed to dynamic 

changes in miRNA expression in response to NL treatment. The observation of increased miR-

150 expression in NL-nonresponder patients appears to conflict with other studies that reported 

miR-150 to be downregulated in CML and that its increased expression following IM treatment 
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is an early positive predictor for IM response.284 This discrepancy may be due to the use of 

enriched CD34+ stem/progenitor cells in this study as opposed to unpurified peripheral blood and 

bone marrow cells or because miRNA expression may be modulated differently between NL and 

IM treatments.263 Furthermore, it is not uncommon for miRNAs to possess conflicting roles, e.g., 

serving as oncogenic and tumour suppressive properties in the same cancer type, mainly owed to 

their ability to regulate expression of multiple target genes, which in turn also include both 

oncogenes and tumour suppressors.286 Therefore, independent validation of these proposed 

predictive panels using greater numbers of patient samples and further exploration of the 

mechanistic roles of these select miRNAs in CML is warranted to facilitate their utility as 

prognostic tools in the clinic. Unique to this study, miRNA expression data were combined with 

patient-matched in vitro CFC outputs. In both BL and M1/M3 models, the inclusion of NL-CFC 

data in the multivariate panels improved predictive performance compared to miRNAs alone. It 

is widely agreed that treatment response may be affected by multiple factors not just related to 

biological mechanisms, such as pharmacokinetic variations between CML patients. Thus, 

prognostic algorithms that rely on genetic signatures alone may not be sufficient to model these 

extrinsic factors, highlighting the need for multifaceted molecular panels to improve predictive 

accuracy. The ability to develop rapid and robust tests to predict individual patients’ response to 

TKI therapy could ultimately have a profound impact on CML patient management, providing a 

foundation for more effective treatment decisions. 
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Chapter 4: Identification and Characterization of a Highly Deregulated eIF4F 

Translation Initiation Complex in Drug-Resistant BCR-ABL1+ Cells by a 

Phospho-Proteomic Antibody Microarray 

4.1 Introduction 

CML is a multi-lineage myeloproliferative disease arising from the overactivation of 

growth and survival signaling pathways driven by BCR-ABL1 kinase activity.5,10 Introduction of 

TKIs, like IM, to block BCR-ABL1 activity has greatly improved the outcomes of CML patients 

at the chronic phase, which is characterized by the expansion of the granulocyte population.37 

Due to the nature of targeted monotherapies, like TKIs, primary and acquired resistance remains 

an issue for CML patients as they are not curative and some patients experience early relapses 

and disease progression.68 Furthermore, there is a population of quiescent LSCs that are not 

effectively eliminated by TKIs.63 Therefore, improved treatments, such as combination therapy 

are necessary to reduce the prevalence of resistant LSCs and drug-resistant cells. Although 

targeting BCR-ABL1 activity is key to treating CML, finding other therapeutic targets could help 

to develop more effective treatment strategies to overcome TKI resistance in CML patients.  

AH1-1 is a potential target of interest as it contains multiple important signaling domains 

and interacts with BCR-ABL1.75 AHI-1 was found to be highly expressed in CML patient cells, 

especially in the LSC-enriched population.119 Further studies demonstrated AHI-1 directly 

interacts with BCR-ABL1 with its WD40-repeat domain and a synergistic effect on 

leukemogenesis was observed with cells co-expressing both AHI-1 and BCR-ABL1 than either 

alone in a xenograft mice model.75,120 At the N-terminus, human AHI-1 also contains a coiled-

coil domain that allows for interactions with other coiled-coil domains and in mouse, the N-
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terminal is crucial for interaction with a BCR-ABL1 substrate involved in cell signaling, 

JAK2.75,111,121 At the C-terminus, AHI-1/Ahi-1 contains another important signaling domain, the 

Src homology 3 (SH3) domain, that can interact with proline-rich motifs (PXXP).111 The Ahi-1 

SH3 domain mediates TKI resistance and interacts with another BCR-ABL1 substrate, dynamin 

2, to deregulate multiple biological processes including endocytosis, ROS generation, and 

autophagy.116,122 AHI-1 has also been reported to interact with the B subunit of the phosphatase 

PP2A and β-catenin; dual inhibition of BCR-ABL1 and PP2A disrupted AHI-1 mediated 

signaling leading to β-catenin, which is required for LSC maintenance.76 These studies 

demonstrate the important role of AHI-1 as a scaffold protein to bring together BCR-ABL1 and 

its substrates to deregulate leukemic properties in CML. Therefore, it is interesting to study the 

biological processes downstream of AHI-1 and its interacting partners to find potential 

mechanisms of TKI resistance. 

In this study, a high content antibody microarray was used to investigate the differences 

in the proteome and the phosphorylation landscape of BCR-ABL1+ cells expressing different 

constructs of mouse Ahi-1 in the presence or absence of IM. I performed bioinformatic analyses 

and uncovered the eIF4F complex to be highly deregulated in BCR-ABL1+ cells co-expressing 

wildtype Ahi-1. In an RNA-sequencing dataset, the transcript level of several eIF4F complex 

members were elevated in CD34+ CML patient cells compared to normal bone marrow, which 

prompted for further investigation of differences in eIF4F complex member expression in BCR-

ABL1+ cell line models. Interestingly, I demonstrated that several key members of eIF4F 

complex and downstream genes were highly expressed in IM-resistant cells, particularly eIF4G1. 

Indeed, suppression of eIF4G1 by genetic inhibition using lentiviral-mediated shRNA and 

pharmacological inhibition of eIF4G1 by SBI-756 resulted in reduced survival, an increased 
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sensitivity to IM in resistant cells, and reduced eIF4F complex activity. Most notable, the protein 

expression of BCR-ABL1 was significantly suppressed by the inhibition of eIF4G1. These 

findings have demonstrated a proof of concept for the novel targeting BCR-ABL1 through the 

eukaryotic translation initiation machinery. 

 

4.2 Results 

4.2.1 An eIF4F Translation Initiation Complex is Identified in BCR-ABL1+ Cells Co-

Expressing Wildtype Ahi-1 Cells by Antibody Microarray Analysis 

Previously, BaF3 cells transduced to co-express BCR-ABL1 (B/A only) and various 

mouse Ahi-1 constructs including wildtype Ahi-1 (WT Ahi-1) or SH3 domain-deleted Ahi-1 

(Ahi-1 SH3Δ) have demonstrated differential sensitivity to TKI treatments.116,122 The Kinex 

antibody microarray platform was used to investigate the differences in the proteome expression 

and phosphorylation landscape between these cells that contribute to TKI sensitivity. The KAM-

1325 antibody microarray consisted of antibodies targeting proteins involved with cell signaling 

including 875 antibodies for specific phosphorylation sites and 451 pan-specific antibodies.287 To 

identify differences in IM response, cells were also treated with 5 µM of IM for 3 hours which 

resulted in a differential reduction in BCR-ABL1 tyrosine phosphorylation levels. Therefore, this 

dose selected as the optimized IM treatment for the antibody microarray analysis (Figure 4.1A). 

Each of the 6 samples were applied onto two fields of the antibody microarray, with each field 

containing duplicate antibody spots; this yielded a total of 4 technical replicates for each sample. 
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Figure 4.1: Antibody Microarray Analysis Study Design and Overview of Antibody Signal 

Intensities. (A) Cells expressing BCR-ABL1 only (B/A only), BCR-ABL1 with wildtype Ahi-1 

(WT Ahi-1), or BCR-ABL1 with SH3 domain-deleted Ahi-1 (Ahi-1 SH3Δ) were treated with or 

without imatinib (IM) for 3 hours and were then used for the antibody microarray. Western blot 

analysis was performed on these cells for detection of phosphorylation of BCR-ABL1 using a 

4G10 antibody, which demonstrated a reduction in phospho-tyrosine signals of BCR-ABL1 after 

IM treatment. (B) Workflow of statistical and analytical processes. (C) Heat map of antibody 

signal intensities with hierarchical clustering of the sample replicates used for the antibody 

microarray. (D) UMAP projection of the antibody signal intensities for each sample replicate. 

The row z-scores were used to display changes in antibody signal intensities changes across all 

replicates. 
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The pipeline for the bioinformatic analysis of the antibody microarray data is outlined in 

Figure 4.1B. First, the raw intensities of each antibody spot were normalized using a semi-global 

normalization method to eliminate any technical variations during the experiment. This approach 

used a subset of antibodies with the lowest standard deviation across all samples to normalize for 

any differences but still preserved the reduction in total signal intensities after IM treatment. As 

many of the antibodies are for specific phosphorylation sites, it is expected that IM treatment 

would reduce the global phosphorylation levels. After normalization, hierarchical clustering 

using Consensus Cluster Plus and UMAP projection was performed for a macroscopic look at 

the antibody microarray data. This revealed that WT Ahi-1 cells were the most different 

compared to the other cells as these replicate samples were clustered together in both analysis 

(Figure 4.1C, D). Next, differential expression analysis was performed by filtering out antibodies 

with low signal intensities and using limma. Aligning with the previous observation, WT Ahi-1 

cells had the greatest number of significantly differential antibody signals (29 decreased, 3 

increased, Table 4.1 & Figure 4.2A-C) when compared to B/A only cells, while Ahi-1 SH3Δ 

cells resulted in fewer significantly differential antibody signals (2 decreased, 12 increased, 

Table 4.1). Furthermore, there were more significantly differential antibody signals (42 

decreased, 7 increased, Table 4.1 & Figure 4.3A-C) in the comparison between WT Ahi-1 and 

Ahi-1 SH3Δ cells. In response to IM treatment, WT Ahi-1 cells had the greatest number of 

significantly differential antibody signals (56 decreased, 7 increased, Table 4.1 & Figure 4.4A-C) 

compared to B/A only cells (5 decreased, Figure 4.1) and Ahi-1 SH3Δ cells (9 decreased, 2 

increased, Table 4.1).  
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Table 4.1: Summary of Significant Changes in Antibody Signal Intensities 

Comparison 

Decreased 

Signals 

Increased 

Signals 

WT Ahi-1 vs B/A only 29 3 

WT Ahi-1 vs Ahi-1 SH3Δ 42 7 

Ahi-1 SH3Δ vs B/A only 2 12 

B/A only + IM vs B/A only 5 0 

WT Ahi-1 + IM vs WT Ahi-1 56 7 

Ahi-1 SH3Δ + IM vs Ahi-1 SH3Δ  9 2 

  

As the comparisons with WT Ahi-1 yielded the greatest number of differential antibody 

signals, these targets were subjected to a pathway enrichment analysis using g:Profiler to find 

pathways that could be altered in these comparisons. In the comparison of WT Ahi-1 and B/A 

only cells, there were 77 pathways enriched from the decreased targets and 3 pathways from the 

increased targets (Figure 4.2D, E). Interestingly, a pathway involving the eukaryotic translation 

initiation machinery, “translation inhibitors in chronically activated PDGFRA cells”, was 

enriched in the decreased targets from this comparison. Additionally, there were also multiple 

enriched  pathways involving the MAPK and the PI3K/AKT/mTOR pathways, which play a role 

in the regulation of translation initiation.150 Furthermore, there were multiple pathways again 

involving the MAPK and PI3K/AKT/mTOR pathways that were also enriched between WT Ahi-

1 and Ahi-1 SH3Δ cells with 85 enriched pathways for decreased targets and 23 for increased 

targets (Figure 4.3D, E). Finally, the presence of these enriched pathways of the MAPK and 

PI3K/AKT/mTOR pathways, were found in the WT Ahi-1 cells with IM treatment with 111 

enriched pathways from decreased targets and 27 from the increased targets (Figure 4.4D, E). 

Most interestingly, the “translation inhibitors in chronically activated PDGFRA cells” pathway 

was enriched for with the lowest p-value (p = 4.1 x 10-6) from targets with increased antibody 

signal intensities. The full list of enriched pathways for each comparison can be found in 
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Appendix B. These findings highlight the deregulation of the translation initiation machinery 

(eIF4F complex) through the MAPK and PI3K/AKT/mTOR pathways in WT Ahi-1 cells, which 

may explain the increased resistance to TKI treatment in these cells.   
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Figure 4.2: Changes in Antibody Signal Intensities in WT Ahi-1 Cells Compared to B/A 

Only Cells. (A) Volcano plot displaying significant changes (p < 0.05, -0.5 < log2(fold change) < 

0.5) in antibody signal intensities. Heat maps of targets with decreased (B) or increased (C) 

signal intensity in WT Ahi-1 cells. Selected enriched pathway from decreased (D) or increased I 

targets in WT Ahi-1 cells with the total number of enriched pathways displayed at the top. For 

each enriched pathway, the p-value, number of proteins (Pathway size), and number of targets 

with significant differential antibody signal intensities (Targets) are displayed. The row z-scores 

were used to display changes in antibody signal intensities changes across the replicates. 
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Figure 4.3: Changes in Antibody Signal Intensities in WT Ahi-1 Cells Compared to Ahi-1 

SH3Δ Cells. (A) Volcano plot displaying significant changes (p < 0.05, -0.5 < log2(fold change) 

< 0.5) in antibody signal intensities. Heat maps of targets with decreased (B) or increased (C) 

signal intensity in WT Ahi-1 cells. Selected enriched pathway from decreased (D) or increased I 

targets in WT Ahi-1 cells with the total number of enriched pathways displayed at the top. For 

each enriched pathway, the p-value, number of proteins (Pathway size), and number of targets 

with significant differential antibody signal intensities (Targets) are displayed. The row z-scores 

were used to display changes in antibody signal intensities changes across the replicates. 



80 

 

 



81 

 

Figure 4.4: Changes in Antibody Signal Intensities in WT Ahi-1 Cells after IM treatment. 

(A) Volcano plot displaying significant changes (p < 0.05, -0.5 < log2(fold change) < 0.5) in 

antibody signal intensities. Heat maps of targets with decreased (B) or increased (C) signal 

intensity in WT Ahi-1 cells after IM treatment. Selected enriched pathway from decreased (D) or 

increased I targets in WT Ahi-1 cells after IM treatment with the total number of enriched 

pathways displayed at the top. For each enriched pathway, the p-value, number of proteins 

(Pathway size), and number of targets with significant differential antibody signal intensities 

(Targets) are displayed. The row z-scores were used to display changes in antibody signal 

intensities changes across the replicates. 

Some of the targets with significant differential antibody signals in these enriched 

pathways were probed to validate the findings from the antibody microarray. The 

phosphorylation of mTOR at S2448, the protein-serine/threonine kinase in the mTORC 

complexes, was reduced in WT Ahi-1 cells compared to B/A only (0.9-fold) and Ahi-1 SH3Δ 

cells (0.7-fold, Figure 4.5A). Furthermore, the Y576 and Y577 phosphorylation of PTK2, a non-

receptor protein-tyrosine kinase which promotes the activation of the PI3K/AKT pathway, was 

increased in WT Ahi-1 cells compared to B/A only (2.2-fold) and Ahi-1 SH3Δ cells (1.3-fold, 

Figure 4.5B). However, the S221 phosphorylation of RPS6KA1, a kinase downstream of the 

MAPK pathway that is involved in eIF4F complex regulation, and S1231 phosphorylation of 

eIF4G1, the scaffold protein of the eIF4F complex, did not match the significant antibody signal 

intensity changes observed from the antibody microarray (Figure 4.5C, D). Interestingly, the 

phosphorylation of eIF4G1 was instead increased in WT Ahi-1 cells compared to B/A only (1.9-

fold) and Ahi-1 SH3Δ cells (3-fold), which prompted for further investigation of the expression 

of eIF4F complex members, particularly, the protein level of eIF4G1 (Figure 4.5D). 
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Figure 4.5: Validation of Targets with Significant Changes from Antibody Microarray. 

Immunoblots of several targets identified from antibody microarray analysis. Lysates of BCR-

ABL1 only cells (B/A only), BCR-ABL1+ cells expressing wildtype Ahi-1 (WT Ahi-1) or SH3 

domain deleted Ahi-1 (Ahi-1 SH3Δ) with or without 3-hour 5 µM IM treatment were used for an 

immunoblot to validate significant changes observed from antibody microarray analysis. The 

numbers displayed below each band represents the average relative expression to B/A only cells 

from three experiments. Additional numbers represent the average relative expression 

normalized to the condition indicated as 1. Bolded values are those referenced in the text. The 

blots shown are representative of those from two other independent experiments. 

 

4.2.2 Transcript Levels and Protein Phosphorylation/Expression of Several eIF4F 

Complex Members are Increased in CD34+ CML Patient Cells and IM-Resistant Cells 

Due to the observations of changes in the regulation of the translation initiation 

machinery from the pathway enrichment analysis of the antibody microarray and eIF4G1 

phosphorylation changes in WT Ahi-1 cells, I first investigated whether the differential 

expression of eIF4F complex members could be observed in primitive CML patient cells 

compared to normal bone marrow, based on our RNA-sequencing dataset of CD34+ cells 
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obtained from 6 CML-CP patients at diagnosis and NBM of 3 healthy donors.96 Interestingly, 

this analysis revealed elevated transcript levels of several eIF4F complex members in CML 

patients including EIF4G1 (p = 0.0013), EIF4A1 (p = 0.0019), and EIF4BP1 (p = 0.0001, Figure 

4.6), indicating that eIF4F complex expression is indeed demonstrated in CML stem/progenitor 

cells, which encouraged me to further study the molecular relevance of the eIF4F complex in 

regulation of TKI response/resistance in cell line models.  

 

Figure 4.6: Differential Expression of eIF4F Complex Members in CD34+ CML Patient 

Cells. RPKM values in CD34+ cells from 3 normal bone marrow (NBM) samples and 6 CML 

patient samples from an RNA sequencing dataset with displayed p-values from two-tailed 

Student’s t-test. Data shown are mean ± standard deviation.  

To investigate differences in the protein expression of eIF4F complex members, two cell 

line models were used: the BaF3 model used in the antibody microarray and an IM-resistant 

CML cell line model (K562/K562R). Interestingly, WT Ahi-1 cells had a >2-fold increase (p = 

0.044) in eIF4G1 S1231 phosphorylation and >2.7-fold increase in eIF4G1 protein expression, 
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while the IM-resistant K562R cells had 1.9-fold increase in S1231 phosphorylation with a 2.1-

fold increase in eIF4G1 protein expression than parental K562 cells (Figure 4.7A, B). 

Additionally, both IM-resistant cells showed a 4.6-fold increase (p = 0.05, Figure 4.7C) in S422 

phosphorylation, which induces eIF4F complex activity, with a >1.3-fold increase in eIF4B 

protein expression compared to the IM-sensitive cells (Figure 4.7D). Activation of eIF4B results 

in an increase in eIF4A helicase activity, but differences in eIF4A protein expression was not 

observed between IM-resistant and IM-sensitive cells (Figure 4.7E). Unexpectedly, a 0.6-fold 

reduction in the cap-binding protein, eIF4E, protein expression was observed in IM-resistant 

cells compared to IM-sensitive cells (Figure 4.7F). Furthermore, the hyperphosphorylation of 

eIF4E binding protein (4E-BP), which frees eIF4E to bind to 5’caps of mRNA transcripts, was 

increased in both WT Ahi-1 and IM-resistant cells, demonstrated by the increased intensity of 

the upper band (Figure 4.7G, H). The observation of increased expression and/or activation of 

these members of eIF4F complex indicates an overall increase in eIF4F complex activity in the 

IM-resistant cells. To test this, I also probed for the expression of cyclin D3, a gene reported to 

be sensitive to eIF4F complex activity and demonstrated an increase in cyclin D3 protein 

expression (4.3-fold, p = 0.019) in K562R cells compared to K562 cells supporting this 

statement (Figure 4.7I). These findings indicate that eIF4F complex members are highly 

activated in CML stem/progenitor cells or IM-resistant cells that may contribute to enhanced 

survival and reduced apoptosis of these cells. 
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Figure 4.7: Protein and Phosphorylation Levels of Several eIF4F Complex Members are 

Elevated in IM-Resistant Cells. Immunoblots of eIF4F complex members in Ba/F3 cell line 

model and K562 and IM-resistant K562R cells with or without 5 µM IM treatment for 3 hours. 

Displayed values under each band represent the average relative expression to B/A only or K562 

cells, except for 4E-BP (H) which is the average ratio of intensities of the hyperphosphorylated 

upper band to the phosphorylated/non-phosphorylated lower bands from three experiments. 

Additional numbers represent the average relative expression normalized to the condition 

indicated as 1. Bolded values are those referenced in the text. The blots shown are representative 

of those from two other independent experiments. 
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4.2.3 Lentiviral-Mediated Suppression of eIF4G1 by shRNA Impairs Cell Proliferation, 

Apoptosis, TKI Response, and eIF4F Complex Activity in IM-Resistant Cells 

Due to the observations of increased eIF4G1 phosphorylation and protein expression in 

K562R cells, the effects of eIF4G1 knockdown on IM sensitivity and eIF4F complex activity 

were investigated using a short hairpin RNA (shRNA) approach. The transduction of K562 and 

K562R cells using two shRNAs that targeted the coding region of eIF4G1 resulted in the 

reduction of eIF4G1 levels (87%, 61%, for shRNA A, B in K562, 94%, 77% for shRNA A, B in 

K562R, p < 0.042, Figure 4.8A, B). Knockdown of eIF4G1 from both shRNAs significantly 

impaired survival of K562 and K562R cells (p < 0.019) at 48 and 72 hours (Figure 4.8C, D). 

Furthermore, K562R cells with eIF4G1 knockdown displayed increased sensitivity to IM 

treatment (p < 0.0021, Figure 4.8F) but not in K562 cells (Figure 4.8E). Apoptosis was also 

induced in K562 cells with eIF4G1 knockdown (p < 0.038) but not statistical significantly 

increased in K562R cells (Figure 4.8G, H). Observing these interesting biological effects of the 

eIF4G1 knockdown, I then investigated the changes in eIF4F complex activity. 
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Figure 4.8: The Effect of eIF4G1 Knockdown on Cell Proliferation, IM Sensitivity, and 

Apoptosis. (A) Immunoblot of eIF4G1 expression in K562/K562R cells transduced with 

lentivirus containing a scrambled control (Ctrl), or shRNAs targeting eIF4G1. (B) Densitometry 

of relative eIF4G1 protein expression to K562/K562R cells expressing the scrambled control 

(shCtrl) from five independent experiments of (A). Growth curves of K562 (C) or K562R (D) 

cells expressing shCtrl or shRNAs targeting eIF4G1. Cell counts of K562 (E) or K562R (F) cells 

expressing shCtrl or shRNAs targeting eIF4G1 with or without IM (K562 = 0.5 µM or K562R = 

5 µM) after 48 hours. Apoptosis assays were performed in K562 (G) or K562R (H) cells using 

the same treatments. Data shown are mean ± standard deviation. P-values shown are calculated 

from Šídák’s multiple comparisons tests after a one-way ANOVA was performed from three 

independent experiments. (*p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001) 

To assay the activity of the eIF4F complex, the proximity ligation assay was used to 

measure the level of eIF4F complex assembly through the interaction between eIF4G1 and 

eIF4E, which is an important step in forming the eIF4F complex. K562R cells transduced with 

the scrambled control displayed a reduction in PLA foci formation compared to K562 cells 

transduced with the scrambled control (p = 0.0021, Figure 4.9A, B). Furthermore, K562 and 

K562R cells with both shRNAs targeting eIF4G1 showed reduced levels of PLA foci formation 

compared to control indicating a reduction in eIF4F complex formation (p < 0.013, Figure 4.9A, 

B). After demonstrating a reduction in the assembly of the eIF4F complex, I examined the 

protein expression of several eIF4E-sensitive genes. In the knockdown cells, I observed a 

reduction in the protein expression of cyclin D3 (p < 0.01), MDM2, and MCL1 (p < 0.026, 

Figure 4.9C). Most interestingly, cells transduced with the eIF4G1 shRNA construct A, with 

>90% suppression of eIF4G1 targeting, greatly reduced the protein expression of BCR-ABL1 

(70% reduction, Figure 4.9C). These findings demonstrate that eIF4G1 plays an integral role in 

the translation of several key genes, particularly BCR-ABL1, and pharmaceutical inhibition of 

eIF4G1 may have a synergistic effect with TKI in CML cells. 
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Figure 4.9: The Effect of eIF4G1 Knockdown on eIF4F Complex Assembly and the 

Expression of eIF4E-Sensitive Genes. (A) Confocal images of K562/K562R cells expressing 

control or eIF4G1 targeting shRNAs with PLA foci (red) and DAPI (blue) staining. (B) 

Quantification of the ratio between PLA foci and DAPI area relative to K562 with the scrambled 

control of three independent experiments from three separate field of views containing at least 30 

cells each. Data shown are mean ± standard deviation. P-values shown are calculated from 

Šídák’s multiple comparisons tests after a one-way ANOVA was performed. (C) Immunoblots of 

BCR-ABL1 and several eIF4E-sensitive genes. Displayed values under each band represents the 

average relative expression to K562 cells with the control shRNA from three experiments. The 

blots shown are representative of those from two other independent experiments. 
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4.2.4 The eIF4G1 Inhibitor SBI-756 Reduces Cell Survival and Enhanced IM-Sensitivity 

of CML Cells 

To investigate the effects of pharmaceutical inhibition of eIF4G1 in CML cells, a 

selective, small molecule inhibitor, SBI-756, was used to target eIF4G1 to mimic the effects of 

eIF4G1 knockdown. SBI-756 specifically binds to eIF4G1 to prevent the binding of eIF4E, 

which prevents disrupts the assembly of the eIF4F complex.230 First, the half maximal inhibitory 

concentration (IC50) was determined in BCR-ABL1+ BaF3 cell lines expressing the different 

Ahi-1. Although the differences in the IC50 were small between the cell lines, the Ahi-1 SH3Δ 

cells was the most sensitive to the compound (IC50 = 233 nM, 95% confidence interval (CI) = 

160 – 318 nM), then WT Ahi-1 cells (IC50 = 315 nM, 95% CI = 260 – 374 nM), and the most 

resistant was the B/A only cells (IC50 = 480 nM, 95% CI = 356 – 608 nM, Figure 4.10A). After 

determining the IC50, 300 nM of SBI-756 was used to treat these cells in combination with 500 

nM of IM. A statistically significant decrease in proliferation after 48 hours of SBI-756 treatment 

was observed in WT Ahi-1 cells (p = 0.001) and Ahi-1 SH3Δ cells (p = 0.032) but not for B/A 

only cells (Figure 4.10B). Although an additive effect was observed with the combination 

treatment in all three cell lines, it was not statistically significant. Furthermore, there was small 

but statistically insignificant increase in apoptotic cells after 48 hours of SBI-756 treatment in all 

three cell lines (Figure 4.10C). However, the combination of SBI-756 with IM significantly 

increased apoptotic cells in B/A only cells compared to either treatment alone and also in Ahi-1 

SH3Δ cells compared to SBI-756 single treatment (Figure 4.10C).  
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Figure 4.10: The Effect of SBI-756 Treatment in the Ba/F3 Cell Line Model on Cell 

Proliferation, IM Sensitivity, and Apoptosis. (A) IC50 curves from SBI-756 treatment after 48 

hours. IC50 values are displayed with the 95% confidence interval in parentheses. Cell counts (B) 

or apoptosis (C) of B/A only, WT Ahi-1, and Ahi-1 SH3Δ cells with 300 nM SBI-756, 500 nM 

IM, or combination treatment after 48 hours. Data shown are mean ± standard deviation. P-

values shown are calculated from Šídák’s multiple comparisons tests after a one-way ANOVA 

was performed from three independent experiments. 

Next, I observed that IM-resistant K562R cells were more sensitive to SBI-756 treatment 

(IC50 = 667 nM, 95% CI = 505 – 868 nM) than parental K562 cells (IC50 = 892 nM, 95% CI = 

770 – 1020 nM, Figure 4.11A). Although the difference in IC50 values were minimal, 48-hour 

SBI-756 treatment was able to reduce the growth of K562R cells with 500 nM (p = 0.0055) and 

750 nM (p = 0.0001) but was not statistically significant in K562 cells (Figure 4.11B, C). 

Additionally, SBI-756 treatment sensitized K562R cells to IM treatment (p = 0.018) and was 

also reflected with an increase in apoptotic cells (p = 0.0185) but was not observed in K562 cells 

(Figure 4.11B-E). These findings demonstrate that K562R cells are more sensitive to SBI-756 

treatment and can sensitize these resistant cells to IM treatment.  
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Figure 4.11: The Effect of SBI-756 Treatment in K562/K562R Cells on Cell Proliferation, 

IM Sensitivity, and Apoptosis. (A) IC50 curves from SBI-756 treatment after 48 hours. IC50 

values are displayed with the 95% confidence interval in parentheses. Cell counts were 

performed in K562 (B) and K562R (C) cells with the indicated concentrations of SBI-756 and/or 

IM. Apoptosis assays in K562 (D) or K562R (E) cells were also performed using the same 
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treatments. Data shown are mean ± standard deviation. P-values shown are calculated from 

Šídák’s multiple comparisons tests after a one-way ANOVA was performed from three 

independent experiments. 

 

4.2.5 The eIF4G1 Inhibitor SBI-756 Reduces eIF4F Complex Activity and the Protein 

Translation Process in IM-Resistant Cells 

To study the molecular mechanisms of the observed biological effects of SBI-756, a PLA 

assay was used again to determine if SBI-756 can disrupt the interaction between eIF4G1 and 

eIF4E in the K562 cell line model. A reduced level of PLA foci formation was observed using 5 

µM SBI-756 in K562 treatment (p < 0.0001) and K562R (p = 0.014) cells (Figure 4.12A, B). 

Interestingly, 5 µM IM treatment also reduced PLA foci in K562R cells (p = 0.0037) and in 

combination with SBI-756 treatment further reduced PLA foci formation (p < 0.023), but this 

was not observed using a combination of 5 µM SBI-756 and 0.5 µM IM in K562 cells (Figure 

4.12A, B).  

To further assay the activity of eIF4F complex involved in the translation process, an 

o-propargyl-puromycin (OPP) assay was used to measure the global protein synthesis rate. SBI-

756 treatment reduced the OPP MFI in both K562 and K562R cells (p < 0.0001), which 

confirmed a reduction of the translation process by SBI-756 treatment. Furthermore, IM 

treatment significantly reduced the protein synthesis rate in K562 cells (p = 0.0017), but not in 

K562R cells, and the combination of SBI-756 and IM further reduced the protein synthesis rate 

in both cell lines (Figure 4.12C, D).  
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Figure 4.12: The Effect of SBI-756 Treatment on eIF4F Complex Assembly, Protein 

Synthesis Rates, and Translation. (A) Confocal images of K562/K562R cells with 1-hour 5 

µM SBI-756 treatment and/or 18-hour 5 µM IM treatment with PLA foci (red) and DAPI (blue) 

staining. (B) Quantification of the ratio between PLA foci and DAPI area relative to K562 

control of three independent experiments from three separate field of views containing at least 30 

cells each. (C) Histogram of OPP signals from K562/K562R cells with the same treatments. (D) 

Plot of the mean fluorescent intensity of OPP signals from three independent experiments. Data 

shown are mean ± standard deviation. P-values shown are calculated from Šídák’s multiple 

comparisons tests after a one-way ANOVA was performed. (E) Polysome profiles of K562 

(dashed line)/K562R (filled line) in the absence (black) or presence of SBI-756 (blue). (F) 

Relative BCR-ABL1 transcript levels in K562/K56R cells with or without SBI-756 treatment in 

total RNA (top) or fractions containing heavy polysomes (bottom). Data shown are mean of 

duplicate values ± standard deviation from a single experiment. 

Next, to analyze the level of translation initiation that can be affected by SBI-756 

treatment in IM-resistant cells, especially if it directly inhibits the translation of BCR-ABL1 

transcripts in these cells, polysome profiling analysis was then performed. K562R cells had a 

higher absorbance in the fractions containing heavy polysomes and smaller 80S peak than K562 

cells which is indicative of higher global translational levels (Figure 4.12E, bottom left). 

Following SBI-756 treatment, the absorbances of fractions containing heavy polysomes were 

reduced with an increase in 80S peak in both cell lines, but this effect was more dramatic in 

K562R cells. This increase in the 80S peak represents an accumulation of 80S monosomes due to 

blocked translation initiation and preventing the formation of polysomes, which supports SBI-

756 as a translation initiation inhibitor. These findings may explain the increased sensitivity for 

SBI-756 treatment in the K562R cells. Following the polysome fractionation, qPCR was 

performed to analyze BCR-ABL1 transcript levels from total RNA or in fractions containing 

heavy polysomes (as defined in Section 2.4.5 and Figure 2.1) and observe the changes after SBI-

756 treatment. In total RNA samples, BCR-ABL1 transcript levels were higher in K562R cells 

than K562 cells and SBI-756 treated cells appeared to have higher levels of BCR-ABL1 transcript 

levels (Figure 4.12F, top). Interestingly, BCR-ABL1 transcript levels were further increased in 
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K562R cells in heavy polysomes compared to total RNA, indicating BCR-ABL1 transcripts are 

more actively translated in K562R cells (Figure 4.12F, bottom). Furthermore, SBI-756 treatment 

slightly reduced the BCR-ABL1 transcript levels in the fractions containing heavy polysomes in 

both cells, indicating a decrease in translation of BCR-ABL1 transcript after SBI-756 treatment. 

However, additional experiments to optimize these experimental conditions and inclusion of IM 

to this assay are still needed. 

Finally, to further analyze the effects of SBI-756 treatment on the protein expression of 

BCR-ABL1 and several eIF4E-sensitive genes in K562/K562R cells, western blot analysis was 

performed. Interestingly, BCR-ABL1 expression was reduced upon SBI-756 treatment in both 

K562 and K562R cells (approximately 0.3-fold, Figure 4.13A). Of the eIF4E-sensitive genes, 

cyclin D3 expression was obviously reduced after SBI-756 treatment in K562 (0.5-fold) and 

K562R cells (0.4-fold) and a combination of SBI-756 and IM reduced expression of MDM2 and 

MCL1, but not SBI-756 or IM alone (Figure 4.13A). To dissect the mechanisms of BCR-ABL1 

and cyclin D3 protein expression reduction after SBI-756 treatment in a specific process of 

translation, cycloheximide (CHX) and MG132 treatments were performed in K562R cells in the 

presence or absence of SBI-756 over the span of two hours. BCR-ABL1 levels were relatively 

steady during CHX treatment but were greatly reduced in the presence of SBI-756 (Figure 

4.13B). However, cyclin D3 levels were reduced in the presence of CHX alone as well as in 

combination with SBI-756 treatment. These results indicate that reduction in BCR-ABL1 is due 

to inhibition of the eIF4F complex, which is the initiation step of translation, whereas CHX 

inhibits the elongation step of translation, which occurs after. Next, K562R cells were treated 

with MG132, a proteasome inhibitor, with or without SBI-756 treatment over a span of two 

hours to determine if protein expression reduction is a result of degradation by the proteasome. 
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BCR-ABL1 protein levels were reduced with MG132 treatment, but there was an accelerated 

reduction in combination of SBI-756 treatment (Figure 4.13C). Cyclin D3 levels were steady 

throughout these treatments. These results indicate that BCR-ABL1 protein level reduction is 

independent of the proteasomal degradation, but it is indeed interesting to observe BCR-ABL1 

protein expression reduction upon eIF4G1 inhibition by SBI-756. These findings support 

potential treatment strategy by targeting BCR-ABL1 through the inhibition of eIF4F complex in 

drug-resistant CML cells. 
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Figure 4.13: The Effect of SBI-756 Treatment on BCR-ABL1 and Several eIF4E-Sensitive 

Genes. (A) Immunoblots of BCR-ABL1 and several eIF4E-sensitive genes in K562/K562R cells 

treated with 1 hour of 5 µM SBI-756 and/or 18 hours of 0.5/5 µM IM. Numbers below each band 

represent the average relative expression to control from two experiments. Bolded values are 

referenced in the text. The blots shown are representative of those from one other experiment. 

(B) Immunoblots of K562R cells treated with 5 µM SBI-756, 100 µg/mL cycloheximide (CHX), 

or a combination over 2 hours. (C) Immunoblots of K562R cells treated with 10 µM MG132 

with or without 5 µM SBI-756 over 2 hours. Numbers below each band represent the average 

relative expression to the start of the experiment (0 hours) from two experiments. The blots 

shown are representative of those from one other experiment. 
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4.3 Discussion  

In this study, decreased expression and/or phosphorylation of proteins involved in the 

regulation of the translation initiation machinery, the eIF4F complex, was identified in BCR-

ABL1+ cells co-expressing wildtype Ahi-1 using an antibody microarray analysis. This finding 

was further supported by the enrichment of the MAPK and PI3K/AKT pathways from targets 

with decreased antibody signals, since these pathways are integral parts of eIF4F complex-

mediated network.150,180 Although the antibody microarray revealed that the WT Ahi-1 cells 

yielded the greatest number of differential antibody signals when compared to the other cell lines 

and after IM treatment, the activity of eIF4F complex and its relevant pathways were found to be 

mostly decreased in these cells compared to control BCR-ABL1+ cells. It is possible that this 

unexpected result is partially mediated by BCR-ABL1 kinase-independent mechanisms in WT 

Ahi-1 cells as they still responded to IM-treatment by showing reduced phosphorylation of BCR-

ABL1 (Figure 4.1A). Thus, their IM-resistant phenotypes observed may be caused by impaired 

activity of the eIF4F complex and its network. In addition, an overexpression model system was 

used in this study and both BCR-ABL1 and Ahi-1 were highly expressed in these cells as 

compared to their endogenous levels in human CML cells, and the construct of mouse Ahi-1 

used in this model system is different from human AHI-1 as the mouse Ahi-1 lacks an N-

terminal coiled-coil domain.75,111 Considering all of these possibilities, I evaluated expression 

changes of eIF4F complex members in CD34+ CML patient cells and found that several 

members of the eIF4F complex were highly expressed in these cells, in comparison with normal 

bone marrow cells, and this is also confirmed in a human CML cell line model. Thus, functional 

changes of the eIF4F complex were further explored in CML cells. 
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I also attempted to validate my potential targets from the antibody microarray analysis 

with immunoblotting. However, there were only a few changes that I was able to confirm. 

Firstly, the sensitivity between the antibody microarray and immunoblotting is different, where 

the antibody microarray can detect target antigens with one to two magnitude greater sensitivity 

compared to immunoblotting. The difference in detection methods, fluorescence for the antibody 

microarray and enhanced chemiluminescence for immunoblotting, could also attribute to 

different sensitivities and protein expression being too low to appear on an immunoblot. 

Furthermore, the proteins in the lysate used for the antibody microarray has been chemically 

cleaved by NTCB at the amino terminal of cysteine residues prior to the application on the 

slides, but this process was not performed during immunoblotting. Chemical cleavage can reduce 

the number of false positives resulting from interactions between proteins, since they are cleaved 

into peptides. Additionally, it can reveal the intended epitopes buried within the protein for 

antibodies on the microarray. However, this process can also reveal epitopes on other proteins 

resulting in off-target antibody binding and new interactions between peptides could also result 

in false positives on the antibody microarray. While the antibody microarray could potentially 

have fewer cross-reactivities, immunoblots resolve the proteins based on size, which leads to 

further confirmation of the correct target determined by the molecular weight. All the potential 

immunoreactivity with an antibody, both target and off-target proteins, are all combined into one 

spot with the antibody microarrays. It is difficult to predict a priori the potential cross-reactivity 

of antibodies in different tissues and cell lineages. In addition, some antibodies used were 

obtained from different sources between the antibody microarray and immunoblotting, which 

may lead to different specificities and sensitivities to validate the results. Nevertheless, I was 
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able to find differences in the protein expression and phosphorylation of several eIF4F complex 

members in IM-resistant CML cells by immunoblotting. 

 Most notably, I was able to detect the overexpression of eIF4G1 protein and its 

phosphorylation at S1231 in IM-resistant cells compared to their IM-sensitive counterparts. The 

increase in phosphorylation of eIF4G1 (S1231), was found to mediate translation.288,289  It was 

also reported that overexpression of BCR-ABL1 increased the eIF4F complex activity by 

phosphorylating 4E-binding protein (4E-BP), leading to an increase in cyclin D3 expression.290 I 

confirmed these findings in my study by demonstrating a reduction in the hyperphosphorylation 

of 4E-BP (Figure 4.7G, H). I observed an increase in cyclin D3 protein expression in IM-

resistant CML cells, which indicated a higher level of eIF4F complex activity in these cells. 

However, the IM treatment at the dosage that I used did not reduce cyclin D3 levels and may 

require a longer time treatment to observe this effect or other mechanisms may also be involved 

in regulation of cyclin D3 expression. In addition, the increase in eIF4B S422 phosphorylation 

and protein expression was also observed in the IM-resistant CML cells compared to IM-

sensitive cells. eIF4B is a cofactor to induce eIF4A activity by increasing its affinity for ATP and 

RNA to allow for the unwinding of secondary structures of the transcript.150,156,157 The S422 

phosphorylation on eIF4B through both the MAPK and PI3K/AKT/mTOR pathways can also 

induce translation and demonstrate another route of regulation of the eIF4F complex by these 

pathways.180 It is of interest to follow up on the effect of increased eIF4B phosphorylation and 

protein expression on TKI sensitivity using additional biological and molecular assays.  

Although the results of western blot analysis of eIF4F complex members and cyclin D3 

could hint towards an increased eIF4F complex activity, I performed multiple assays to dissect 

some molecular details. The proximity ligation assay (PLA) displayed a great reduction in the 
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eIF4F complex assembly in K562R cells compared to parental K562 cells in eIF4G1 knockdown 

cells (Figure 4.9B). Although this result is interesting, the assembly of the eIF4F complex does 

not entirely dictate the translation process as there are also multiple points of regulation in the 

initiation, elongation, and termination of translation. Furthermore, the global protein synthesis 

rate assayed by o-propargyl-puromycin was not different between K562R and K562 cells, which 

did not reflect the observation of increased eIF4F complex activity in K562R cells (Figure 

4.12D). However, the most telling difference between K562 and K562R cells is from the 

polysome profiling experiment, which displayed two completely different profiles and indicated 

a difference in translation initiation. K562R cells had a higher absorbance in the fractions 

containing heavy polysomes and a much lower 80S peak compared to K562 cells, indicating an 

increased level of translation initiation in IM-resistant cell than IM-sensitive cells (Figure 4.12E, 

bottom left). These differences strongly support the observations from the immunoblots in which 

the eIF4F complex activity is increased in the IM-resistant K562R cells and supported the notion 

that targeting the eIF4F complex by reducing abnormal activity of translation initiation may help 

to overcome drug resistance in CML cells. 

To test this hypothesis, a selective eIF4G1-targeting small molecule, SBI-756, was used 

to investigate its ability to inhibit the cell growth and the eIF4F complex activity in IM-resistant 

cells. Notably, SBI-756 has been used in other cancer models, including melanoma, diffuse large 

B-cell lymphoma and BCR-ABL1+ B-acute lymphoblastic leukemia, to sensitize drug-resistant 

cells to chemotherapies, which supported its potential for pre-clinical studies.230,231,291 In my 

study, SBI-756 treatment significantly inhibited cell viability and increased apoptosis in IM-

resistant cells and this effect was enhanced by a combination of SBI-756 and IM. Additional 

studies will be needed to determine if this is an additive or synergistic effect and the ability of 
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SBI-756, alone or in combination with TKI, can effectively eradicate CML LSCs and their 

progenitor cells from TKI-nonresponders. Mechanistically, the PLA assay demonstrated a 

reduction in the assembly of the eIF4F complex, while polysome profiling revealed a reduction 

in heavy polysomes and an accumulation in 80S ribosomes, which indicated a global reduction 

in translation initiation after SBI-756 treatment (Figure 4.12E). Furthermore, o-propargyl-

puromycin assay showed that SBI-756 treatment reduced the global protein synthesis rate 

(Figure 4.12D). Strikingly, BCR-ABL1 protein expression was significantly inhibited by SBI-

756 treatment in IM-resistant cells to a lesser extent in IM-sensitive cells (Figure 4.13A). This 

was further supported by observing the slight reduction in BCR-ABL1 transcript levels in 

fractions containing heavy polysomes after SBI-756 treatment in both cell lines (Figure 4.12F). 

More experiments are necessary to optimize and confirm the observed changes in BCR-ABL1 

transcript specific translation. These findings demonstrate the efficacy of SBI-756 in inhibiting 

the growth of IM-resistant cells and its inhibition to reduce the activity of eIF4F complex 

involved in translation initiation, particularly targeting BCR-ABL1 protein expression in CML 

cells. 

To determine that the effects observed with SBI-756 treatment were due uniquely 

targeting eIF4G1, I further demonstrated that knockdown of eIF4G1 in IM-resistant cells 

significantly reduced the cell growth and made them more susceptible to IM treatment, including 

reduction in the functional activity of eIF4F complex. In particular, knockdown of eIF4G1 

demonstrated significant reduction in BCR-ABL1 expression as observed by SBI-756 treatment. 

This consistent finding strongly supports a novel therapeutic approach to targeting BCR-ABL1 

by SBI-756. Since BCR-ABL1 is a driver of CML pathogenesis, TKIs are used to inhibit the 

BCR-ABL1 phosphotransferase activity, but there are still problems with resistance due to 
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mutations within the BCR-ABL1 kinase domain, particularly the T315I mutation that is resistant 

to most TKIs.  

There have been multiple approaches attempted to reduce the protein expression of BCR-

ABL1. Proteolysis targeting chimera (PROTAC) is the chemical modification of TKIs to include 

a moiety to recruit an E3 ligase that would ubiquitinate BCR-ABL1 to tag for degradation by the 

proteasome.292 However, point mutations in BCR-ABL1 could still prevent the binding of TKIs, 

which would render it ineffective. To overcome this, some studies have demonstrated the use of 

small interfering RNA targeting the fusion point of BCR-ABL1 transcript to reduce its protein 

expression in primary CML patient cells.293,294 Another study used the antimalarial drug 

artesunate to target the ubiquitin-specific protease 7, which stabilizes BCR-ABL1 by removing 

ubiquitin, and results in the degradation of BCR-ABL1.295 In my study, SBI-756 treatment can 

still reduce BCR-ABL1 protein expression in the presence of the protease inhibitor MG132 

(Figure 4.13C). It is feasible that the BCR-ABL1 protein still underwent partial proteolysis by 

proteases despite inhibition of the 20S proteasome complex by MG132. One potential alternative 

degradation pathways was homoharringtonine (HHT)-induced lysosomal degradation of BCR-

ABL1 through autophagy.296 HHT, which also targets translation like SBI-756, was found to 

synergize with sequential IM treatment by first reducing BCR-ABL1 levels to increase the 

antileukemic property of IM.297 The 5’UTR of BCR-ABL1 transcript is long and highly 

structured, similar to other “weak” mRNAs like c-myc, which is dependent on eIF4F complex 

activity for translation.193,298  

In summary, I present a proof-of-concept for targeting BCR-ABL1 protein expression 

through the inhibition of eIF4F complex by SBI-756. Increase in eIF4F complex activity leads to 

an increase in expression of cyclin D3 and reduced TKI response. However, when eIF4G1 is 
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suppressed, there is a reduction in eIF4F complex activity leading to a reduced expression of 

BCR-ABL1 and cyclin D3 expression, which in turn reduces survival and increase TKI response 

in these cells (Figure 4.14). As these experiments were only performed in a cell line model, these 

findings must be confirmed in primary CML patient and normal healthy donor samples to 

establish the efficacy and safety of this targeting strategy. These studies provide evidence in 

targeting the eIF4F complex as alternative strategies in addition to TKIs to overcome drug-

resistance in CML patients. 
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Figure 4.14: Working Model of eIF4G1 Inhibition in CML Cells. (A) eIF4G1 is 

overexpressed in IM-resistant CML cells resulting in an increase in eIF4F complex activity 

leading to an increase in cyclin D3 expression. (B) When eIF4G1 is targeted by shRNA or SBI-

756 treatment, eIF4F complex assembly is reduced, leading to a reduction in translation and 

protein synthesis rate. This then results in a reduction in BCR-ABL1 and cyclin D3 protein 

expression with reduced survival and increased TKI response in drug-resistant CML cells. 

Created with BioRender.com 
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Chapter 5: General Summary and Discussion 

5.1 Summary 

The introduction of TKIs has revolutionized the treatment of CML-CP patients. 

Unfortunately, primary and acquired resistance to TKIs remains an issue for a proportion of 

CML patients. Therefore, it is necessary to develop robust tests to predict patients’ response to 

TKI treatment and identify novel targets to overcome TKI resistance in CML patients. Here, I 

believe I have made new and insightful contributions to the field by identifying panels of 

miRNAs with in vitro TKI sensitivity data that can predict NL response in CML patients. 

Importantly, I also uncovered that the eIF4F complex plays a critical role in TKI resistance and 

the regulation of BCR-ABL1 protein expression. These studies are important in finding novel 

strategies to overcome TKI resistance in CML. 

My work in Chapter 3 demonstrates the use of in vitro TKI CFC output combined with 

the expression of miRNAs to predict NL response. By using multiple bioinformatic analyses, I 

have identified that the expression of miR-145 and miR-708 can predict NL response in CD34+ 

treatment-naïve CML patient cells, while the expression of miR-150 and miR-185 can predict 

NL response in post-treatment patient cells. Additionally, inclusion of NL-CFC data improved 

the predictive performances of both miRNA panels for NL response. Therefore, these findings 

offer a predictive model with two specific panels for prediction of NL response in pre- and post-

treatment CML patients, which could be used as potential prognostic biomarkers for clinical uses 

to predict resistance. 

In Chapter 4, I focused on studying the biological processes that are affected by different 

constructs of Ahi-1 using a high content antibody microarray. I identified the deregulation of the 

eIF4F complex in IM-resistant CML cells, which showed increased expression and 
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phosphorylation of two members, eIF4G1 and eIF4B. Moreover, I demonstrated that the 

inhibition of eIF4F complex activity by eIF4G1 suppression by shRNA and SBI-756 treatment 

led to an impaired survival and increased sensitivity to IM in resistant cells, using multiple 

biological and molecular assays. Most interestingly, I observed a significant reduction of BCR-

ABL1 protein expression by targeting eIF4G1 and I have suggested a novel approach of 

targeting BCR-ABL1 through the inhibition of the eIF4F complex, which could be developed as 

a novel combination therapy with TKIs. 

 

5.2 Limitations of the Work and Future Directions 

Due to the prevalence of drug-resistant cells from CML patients in response to TKI 

monotherapies, there is still a need for better strategies to treat patients with resistant CML stem 

cells and BCR-ABL1 mutant cells. It is critical to identify useful biomarkers to predict TKI 

response as clinicians can change the drug regiment for CML patients as necessary. In the first 

part of my studies, I demonstrated the predictive capabilities of integrating matched in vitro TKI 

sensitivity data with the expression of miRNA to predict NL response in CML patients. 

Although this study already included a relatively large cohort of 58 patients with more than 

8,000 microfluidic qRT-PCR reactions of TaqMan probes specific for 47 miRNAs and an 

RNU48 control for each patient sample that were extensively analyzed, only 12 NL 

nonresponder patients were available, which could reduce the statistical power of the analysis 

used. However, through the limitations of the number of NL nonresponder samples, the 

association of NL nonresponse to the expression of several miRNAs was still found to be 

statistically significant. Even though several miRNAs were identified and associated with NL 

nonresponse, additional studies to evaluate a different patient cohort or include more patient 
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samples will further confirm these findings and ensure the robustness of this predictive model. 

Furthermore, the preselection of miRNAs used in this study limited the assessment of the 

predictive potential of other miRNAs.  

In the predictive panels, the expression of miR-145, -708, -150, and -185 were identified 

to have association to NL nonresponse. Currently, the role of miR-145 and -708 has yet to be 

fully investigated in CML. However, miR-145 has been hypothesized to play a role in drug 

sensitivity in solid tumours by affecting drug efflux.280 MiR-708 has been found to play both 

oncogenic and tumour suppressive roles depending on the subtype of acute lymphoblastic 

leukemia.282 In CML, miR-150 has been suggested to play a tumour suppressive role, which is 

negatively regulated by BCR-ABL1 via MYC, which results in increased MYB expression and 

contributes to CML pathogenesis.283 Furthermore, miR-185 is also found to be repressed by 

BCR-ABL1 in IM-nonresponder patients, which increases PAK6 levels and OXPHOS 

mechanisms contributing to leukemic stem cell survival and TKI-resistance.96 Although overall 

expression of these miRNAs in CD34+ cells differed significantly between NL-responders and 

NL-nonresponders, I also observed that the variations in these miRNA expression levels among 

responders are relatively high with some responder patient cells expressing levels similar to NL-

nonresponders. These observations indicate heterogeneous and differential expression of 

miRNAs in individual CML patients even before NL treatment. Thus, it would be important to 

further explore the role of these miRNAs on how they contribute to NL response/resistance. 

Further molecular studies of these miRNAs could potentially reveal common targets that could 

explain their significance to predicting NL response. Moreover, it would also be interesting to 

find if these miRNAs would also have predictive power for detection of responses to other TKIs 

including IM or DA. These studies also demonstrated the importance of the inclusion of NL-
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CFC data, which improved the predictive performance of the miRNA panels. The predictive 

performance may be further improved with the inclusion of other clinical prognostic parameters 

that also predict survival of CML patients including Sokal and EUTOS scores.299,300 Integration 

of multiple variables from different sources could potentially produce a panel that could have 

predictive abilities encompassing a larger proportion of CML patients; thus, more studies are 

necessary to develop these panels for clinical use. 

In the second project of my studies, I identified the deregulation of the eIF4F complex in 

IM-resistance CML cells using the Kinex antibody microarray platform. Deregulated eIF4F 

complex activity has been observed in multiple different cancers and play a role in development 

of cancers through the elevated translation of transcripts of specific oncogenes.150,161,200,201,205–207 

With several bioinformatics analyses, I identified significant changes to the MAPK and 

PI3K/AKT/mTOR pathways, which are directly involved in the regulation of eIF4F complex, 

using pathway enrichment from targets of antibodies with significant differences in comparisons 

with WT Ahi-1 cells. Although there were 1,326 antibodies in total, these were preselected and 

focused mainly on phosphorylation sites and proteins involved with cellular signaling pathways. 

Therefore, the antibody microarray analysis and the following bioinformatic analyses were 

limited to predefined subset of targets, which may not show all the processes that were different 

in the WT Ahi-1 cells and introduce bias for the enrichment of cellular signaling pathways. 

Moreover, the number of significant targets from the bioinformatic study were limited due to the 

variations in the data, which could be improved using more replicates. Perhaps the inclusion of 

other proteomic techniques, such as mass spectrometry, could reveal more processes that are 

deregulated in WT Ahi-1 cells compared to BCR-ABL1+ cells expressing the other constructs of 

Ahi-1. Applying phosphopeptide enrichment by titanium oxide prior to mass spectrometry, the 
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phosphorylation landscape could also be further explored and extend the findings from the 

antibody microarray analysis. Inclusion of multiple proteomic techniques can improve the 

confidence of the significant differences identified by the bioinformatic analysis. 

The antibody microarray platform could also be used to identify specific phosphorylation 

and protein expression that could potentially predict TKI response in CML patient cells. The 

advantage of this technology compared to mass spectrometry is that less material is required for 

detection of differences in phosphorylation sites with higher sensitivities. The phospho-

proteomic antibody microarray could identify differential phosphorylation and expression of 

proteins between TKI-responsive and nonresponsive CML patient cells, which a TKI-

nonresponsive signature could be developed based on this dataset. This phospho-proteomic 

signature would need to be evaluated if it could be used to predict TKI response in CML patient 

cells. Furthermore, antibodies with the best predictive ability could be used to develop for a flow 

cytometry-based panel for clinical use.  

Interestingly, the overexpression and deregulated phosphorylation of the eIF4F complex 

was observed in two cell line models involved in IM resistance. I primarily explored the eIF4F 

complex members, but the other pathways involved in the regulation of the eIF4F complex 

would still be important to explore, because these pathways, such as the MAPK and 

PI3K/AKT/mTOR pathways, are also highly activated by BCR-ABL1 in CML cells.301,302 There 

are still multiple points of eIF4F complex regulation that I have not explored and could also 

contribute to the observed increased eIF4F complex activity. 

To identify proteins that have increased expression due to increased eIF4F complex 

activity, mass spectrometry can be utilized in IM-resistant cells with SBI-756 treatment or in 

eIF4G1 knockdown cells. Due to the observation of a subset of “weak” mRNAs that are 
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dependent of eIF4F complex activity, there may be proteins identified that could contribute to 

the IM resistance of these cells. Another approach could be performing RNA sequencing of the 

transcripts found in the different fractions after polysome fractionation in the presence or 

absence of SBI-756 treatment. Identifying transcripts that change in abundance in the heavy 

polysome fractions after SBI-756 treatment could potentially reveal eIF4E-sensitive genes in a 

CML context to support the hypothesis of selective translation. Furthermore, the proteomic and 

RNA sequencing datasets could be intersected to find common genes and proteins that are 

changed after SBI-756 treatment. Identification of these changes will be very interesting and 

potentially find specific targets that could explain the mechanism of IM-resistance due to an 

increase in eIF4F complex activity.  

Strikingly, I observed a significant reduction in BCR-ABL1 protein levels after eIF4G1 

knockdown or SBI-756 treatment. I also demonstrated that this reduction process is independent 

of the elongation step of translation by CHX treatment and the proteasome by MG132. However, 

there are still some explanations for BCR-ABL1 protein level reduction by SBI-756 treatment. 

For example, BCR-ABL1 could be reduced by lysosomal degradation induced by 

homoharringtonine treatment, which would be an independent process of the proteasome.296 

Moreover, the quantification of BCR-ABL1 transcript from the polysome fractionation 

experiment followed by qPCR must be further studied as SBI-756 demonstrated a global 

inhibition on translation and protein synthesis. Thus, changes of BCR-ABL1 transcript levels in 

the polysome fraction can be further validated by treating IM-resistant cells with SBI-756 or IM, 

alone or in combination. Therefore, more studies are necessary for a better understanding of the 

mechanism of the reduction of BCR-ABL1 protein levels that could lead to more optimized 

targeting of BCR-ABL1 protein expression. 
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Finally, the majority of my experiments were performed in cell lines, particularly 

K562/K562R cells. These biological and molecular observations must be validated in primary 

CML patient cells, especially in CML stem and progenitor cells from TKI-nonresponders, to 

confirm the efficacy of the combination treatment of SBI-756 and TKIs both in vitro and in vivo. 

In particular, the inhibition of the eIF4F complex by SBI-756 treatment must be confirmed in 

primary patient cells, including the reduction in PLA foci formation between eIF4G1 and eIF4E 

to demonstrate the disruption of the eIF4F complex and the reduction global protein synthesis 

rates by SBI-756 treatment. Most importantly, it is crucial to demonstrate reduction of BCR-

ABL1 protein expression by SBI-756 treatment in primitive CML patient cells, which may differ 

in the regulation of the translation initiation process and may not be observed in quiescent 

leukemic stem cells. In addition, potential toxicity or off-target activity of SBI-756 against 

normal cells should be assessed and CD34+ bone marrow cells from healthy individuals will be 

included to determine optimized inhibition doses that eradicate CML cells, but not healthy cells. 

These experiments are necessary to demonstrate this proof-of-concept study by targeting the 

eIF4F complex as a new therapeutic approach, which may lead to a more effective treatment 

strategy in CML. 
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Appendices 

Appendix A   

Overview of BCR-ABL1 Transcript Changes and Nilotinib Responses of CML Patients 

Patient # 

Baseline  

(BCR-ABL1 ratio) 

12 month 

BCR-ABL1 (%) 

Response status* 

(12 month) 

1 144 0.31           NR 

2 91 0.86           NR 

3 126 0.01            R 

4 112 0.02            R 

5 176 0.009            R 

6 201 0.002            R 

7 142 0.02            R 

8 206 0.07            R 

9 150 0.1            R 

10 173 0.3            NR 

11 133 0.04            R 

12 124 0            R 

13 202 2.6            NR 

14 30 0.03            R 

15 98 0.8            NR 

16 253 0.9            NR 

17 93 0            R 

18 341 0.007            R 

19 306 0.02            R 

20 258 0            R 

21 80 0.01            R 

22 122 0.01            R 

23 76 0.4            NR 

24 168 0.03            R 

25 123 0.1 R 

26 210 0.03 R 

27 124 0.01 R 

28 179 0.20 NR 

29 258 0.009 R 

30 123 0.04 R 

31 85 81.5 NR 

32 43 0.002 R 

33 56 0.01 R 

34 83 0 R 

35 123 0.3 NR 

36 62 0.005 R 

37 124 0.014 R 
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38 101 0.009 R 

39 126 0.003 R 

40 148 0 R 

41 91 0 R 

42 60 0.05 R 

43 206 0.3 NR 

44 140 0.003 R 

45 97 0 R 

46 113 0.001 R 

47 124 0.0022 R 

48 117 0.6 NR 

49 137 0.003 R 

50 109 0.08 R 

51 100 0 R 

52 46 0 R 

53 100 0.006 R 

54 124 0.002 R 

55 68 0.001 R 

56 78 0.001 R 

57 152 0.03 R 

58 107 0 R 

 

  * Patient response statuses were classified into NL-responders (R) and NL-nonresponders (NR) based 

on the European Leukemia Net Treatment Guidelines. Responders achieved major molecular response, 

characterised as measured BCR-ABL1 transcript levels of < 0.1% (3 log reduction) at 12 months while 

NL-nonresponders did not achieve this threshold of response criteria. 0% for response = undetected 

BCR-ABL1, n/a= data not available. 
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Appendix B   

Table 1: Table of Enriched Pathways for Targets with Decreased Signals for WT Ahi-1 

Versus B/A Only 

Pathway Name p-value Pathway Size Targets 

MAPK signaling pathway 6.9E-13 286 12 

Protein autophosphorylation 3.3E-09 227 9 

MAPK signaling pathway 4.7E-09 241 10 

Angiopoietin-like protein 8 regulatory pathway 2.7E-08 127 8 

Translation inhibitors in chronically activated 

PDGFRA cells (eIF4F complex) 7.5E-08 45 6 

Insulin signaling 1.5E-07 157 8 

Peptidyl-tyrosine phosphorylation 2.8E-07 373 9 

Peptidyl-tyrosine modification 3.0E-07 376 9 

Malignant pleural mesothelioma 1.5E-06 433 10 

Glioblastoma signaling pathways 3.0E-06 82 6 

Interleukin-1 (IL-1) structural pathway 1.1E-05 50 5 

Cardiac hypertrophic response 2.1E-05 57 5 

Positive regulation of kinase activity 7.4E-05 489 8 

MAPK cascade 1.1E-04 33 4 

EGFR tyrosine kinase inhibitor resistance 1.3E-04 81 5 

TNF signaling pathway 1.4E-04 110 5 

Host-pathogen interaction of human coronaviruses - 

MAPK signaling 1.6E-04 36 4 

Central carbon metabolism in cancer 6.7E-04 69 4 

Photodynamic therapy-induced AP-1 survival 

signaling 6.7E-04 51 4 

Interferon type I signaling pathways 8.4E-04 54 4 

IL-1 signaling pathway 8.4E-04 54 4 

Hepatitis B 8.8E-04 159 5 

EGFR tyrosine kinase inhibitor resistance 9.8E-04 76 4 

4-hydroxytamoxifen, dexamethasone, and retinoic 

acids regulation of p27 expression 0.0011 18 3 

ErbB signaling pathway 0.0013 81 4 

MAP kinase activation 0.0018 63 4 

GnRH signaling pathway 0.0021 92 4 

Kaposi sarcoma-associated herpesvirus infection 0.0021 191 5 

Hepatitis B infection 0.0027 151 5 

Interleukin-17 signaling 0.0029 71 4 

Cellular senescence 0.0040 83 4 

ErbB signaling pathway 0.0056 87 4 

MyD88 cascade initiated on plasma membrane 0.0057 84 4 

Toll Like Receptor 10 (TLR10) cascade 0.0057 84 4 

Toll Like Receptor 5 (TLR5) cascade 0.0057 84 4 

Regulation of myeloid cell differentiation 0.0058 208 5 

MAPK family signaling cascades 0.0061 308 6 
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Pathway Name p-value Pathway Size Targets 

TRAF6 mediated induction of NFkB and MAP kinases 

upon TLR7/8 or 9 activation 0.0072 89 4 

MyD88 dependent cascade initiated on endosome 0.0076 90 4 

Toll Like Receptor 7/8 (TLR7/8) cascade 0.0079 91 4 

p38 MAPK signaling pathway 0.0081 34 3 

Toll Like Receptor 3 (TLR3) cascade 0.0082 92 4 

Yersinia infection 0.0086 132 4 

Toll Like Receptor 9 (TLR9) cascade 0.0090 94 4 

MicroRNAs in cardiomyocyte hypertrophy 0.0094 99 4 

TRIF(TICAM1)-mediated TLR4 signaling  0.0097 96 4 

MyD88-independent TLR4 cascade  0.0097 96 4 

Stress-activated MAPK cascade 0.011 239 5 

MyD88:MAL(TIRAP) cascade initiated on plasma 

membrane 0.011 100 4 

Toll Like Receptor TLR6:TLR2 cascade 0.011 100 4 

Toll Like Receptor TLR1:TLR2 cascade 0.013 103 4 

Toll Like Receptor 2 (TLR2) cascade 0.013 103 4 

Stress-activated protein kinase signaling cascade 0.013 246 5 

Positive regulation of telomerase activity 0.013 34 3 

Cellular senescence 0.015 152 4 

Regulation of myeloid leukocyte differentiation 0.017 119 4 

JAK-STAT signaling pathway 0.018 159 4 

Fc epsilon RI signaling pathway 0.019 64 3 

MicroRNAs in cancer 0.020 306 5 

Positive regulation of apoptotic signaling pathway 0.022 128 4 

Melanoma 0.025 70 3 

TGF-beta signaling pathway 0.026 129 4 

Wnt signaling pathway 0.029 52 3 

RANKL/RANK signaling pathway 0.032 54 3 

Diseases of signal transduction by growth factor 

receptors and second messengers 0.033 417 6 

Toll Like Receptor 4 (TLR4) Cascade 0.034 132 4 

Epstein-Barr virus infection 0.036 191 4 

VEGFA-VEGFR2 signaling pathway 0.037 415 6 

RAF/MAP kinase cascade 0.039 264 5 

Peptidyl-serine phosphorylation 0.042 313 5 

MAPK1/MAPK3 signaling 0.042 269 5 

Regulation of telomerase activity 0.044 50 3 

Positive regulation of neuron apoptotic process 0.044 50 3 

Positive regulation of extrinsic apoptotic signaling 

pathway 0.044 50 3 

PD-L1 expression and PD-1 checkpoint pathway in 

cancer 0.048 88 3 

Human immunodeficiency virus 1 infection 0.048 207 4 

Lipid and atherosclerosis 0.050 209 4 



136 

 

Table 2: Table of Enriched Pathways for Targets with Increased Signals for WT Ahi-1 

Versus B/A Only 

Pathway Name p-value Pathway Size Targets 

Small cell lung cancer 0.0061 95 2 

Small cell lung cancer 0.020 90 2 

Regulation of cell-matrix adhesion 0.048 119 2 

 

Table 3: Table of Enriched Pathways for Targets with Decreased Signals for WT Ahi-1 

Versus Ahi-1 SH3Δ 

Pathway Name p-value Pathway Size Targets 

Protein autophosphorylation 1.4E-11 227 12 

Peptidyl-tyrosine phosphorylation 1.2E-07 373 11 

Peptidyl-tyrosine modification 1.3E-07 376 11 

Signaling by phosphorylated juxtamembrane, 

extracellular and kinase domain KIT mutants 

5.9E-07 17 5 

Signaling by KIT in disease 5.9E-07 17 5 

Thymic stromal lymphopoietin (TSLP) signaling 

pathway 

4.8E-06 47 6 

Regulation of myeloid cell differentiation 8.2E-06 208 8 

Malignant pleural mesothelioma 1.4E-05 433 12 

Diseases of signal transduction by growth factor 

receptors and second messengers 

2.0E-05 417 11 

Insulin signaling 3.0E-05 157 8 

Signaling by SCF-KIT 5.2E-05 39 5 

MAPK signaling pathway 9.2E-05 286 9 

Angiopoietin-like protein 8 regulatory pathway 1.1E-04 127 7 

Regulation of myeloid leukocyte differentiation 1.7E-04 119 6 

Peptidyl-serine phosphorylation 1.9E-04 313 8 

Peptidyl-serine modification 3.4E-04 336 8 

Central carbon metabolism in cancer 5.2E-04 69 5 

Kit receptor signaling pathway 5.9E-04 59 5 

Kaposi sarcoma-associated herpesvirus infection 6.3E-04 191 7 

Regulation of hemopoiesis 7.6E-04 374 8 

Response to insulin 7.8E-04 253 7 

EGFR tyrosine kinase inhibitor resistance 8.4E-04 76 5 

CD28 co-stimulation 9.7E-04 31 4 

Fc-gamma receptor signaling pathway 9.9E-04 35 4 

Myeloid cell differentiation 0.0012 396 8 

Response to peptide hormone 0.0012 398 8 

Hippo-Merlin signaling dysregulation 0.0013 120 6 

PECAM1 interactions 0.0017 11 3 

FLT3 Signaling 0.0018 36 4 

Head and neck squamous cell carcinoma 0.0018 74 5 

EGFR tyrosine kinase inhibitor resistance 0.0028 81 5 

Regulation of KIT signaling 0.0030 13 3 

Response to heat 0.0031 107 5 
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Pathway Name p-value Pathway Size Targets 

PI3K-Akt signaling pathway 0.0035 342 8 

PI3K/AKT signaling in cancer 0.0039 92 5 

Peptidyl-threonine phosphorylation 0.0043 114 5 

Response to peptide 0.0047 477 8 

Myeloid leukocyte differentiation 0.0052 214 6 

Positive regulation of kinase activity 0.0056 489 8 

Peptidyl-threonine modification 0.0062 123 5 

Aryl hydrocarbon receptor pathway 0.0062 48 4 

Immune response-regulating signaling pathway 0.0063 497 8 

Hippo signaling regulation pathways 0.0074 99 5 

MAPK signaling pathway 0.0076 241 7 

PI3K-Akt signaling pathway 0.0081 333 8 

Interferon type I signaling pathways 0.010 54 4 

RANKL/RANK signaling pathway 0.010 54 4 

CTLA4 inhibitory signaling 0.012 20 3 

Melanoma 0.012 70 4 

Regulation of protein serine/threonine kinase activity 0.012 383 7 

Cellular response to heat 0.012 65 4 

Transcriptional regulation by RUNX2 0.013 118 5 

Regulation of signaling by CBL 0.014 21 3 

Regulation of osteoclast differentiation 0.014 67 4 

Regulation of lipid kinase activity 0.016 69 4 

Regulation of protein-containing complex assembly 0.017 402 7 

Costimulation by the CD28 family 0.022 67 4 

AMP-activated protein kinase (AMPK) signaling 0.022 66 4 

Thyroid stimulating hormone (TSH) signaling pathway 0.022 66 4 

Melanoma 0.023 67 4 

Inactivation of CSF3 (G-CSF) signaling 0.023 25 3 

Receptor signaling pathway via JAK-STAT 0.027 166 5 

Fc receptor signaling pathway 0.027 79 4 

Focal adhesion: PI3K-Akt-mTOR-signaling pathway 0.027 295 7 

Regulation of leukocyte differentiation 0.028 288 6 

Cellular response to peptide hormone stimulus 0.028 288 6 

JAK-STAT signaling pathway 0.029 159 5 

PD-L1 expression and PD-1 checkpoint pathway in 

cancer 

0.029 88 4 

Extracellular vesicle-mediated signaling in recipient 

cells 

0.031 29 3 

Receptor signaling pathway via STAT 0.032 172 5 

Fc-gamma receptor signaling pathway involved in 

phagocytosis 

0.032 27 3 

Immune response-regulating cell surface receptor 

signaling pathway involved in phagocytosis 

0.032 27 3 

Leptin signaling pathway 0.036 75 4 

Energy reserve metabolic process 0.036 85 4 



138 

 

Pathway Name p-value Pathway Size Targets 

Brain-derived neurotrophic factor (BDNF) signaling 

pathway 

0.038 140 5 

Response to temperature stimulus 0.039 180 5 

Bladder cancer 0.041 41 3 

Signaling by CSF3 (G-CSF) 0.041 30 3 

Regulation of MAP kinase activity 0.042 182 5 

Immune response-activating cell surface receptor 

signaling pathway 

0.046 314 6 

Immune response-activating signal transduction 0.046 314 6 

Positive regulation of peptidyl-tyrosine 

phosphorylation 

0.049 188 5 

Cellular response to external stimulus 0.049 317 6 

Chemokine signaling pathway 0.049 179 5 

 

Table 4: Table of Enriched Pathways for Targets with Increased Signals for WT Ahi-1 

Versus Ahi-1 SH3Δ 

Pathway Name p-value Pathway Size Targets 

Hepatocyte growth factor receptor signaling 7.0E-05 34 3 

Androgen receptor signaling pathway 0.0012 87 3 

MFAP5-mediated ovarian cancer cell motility and 

invasiveness 0.0022 13 2 

Focal adhesion 0.0033 192 3 

Quercetin and Nf-kB / AP-1 induced apoptosis 0.0034 16 2 

Chemical carcinogenesis - reactive oxygen species 0.0041 206 3 

MFAP5 effect on permeability and motility of 

endothelial cells via cytoskeleton rearrangement 0.0044 18 2 

EGF/EGFR signaling pathway 0.0074 159 3 

Focal adhesion 0.013 190 3 

Response to muscle stretch 0.018 25 2 

Regulation of epithelial cell migration 0.021 225 3 

Protein autophosphorylation 0.022 227 3 

Signaling by nuclear receptors 0.034 291 3 

ErbB signaling pathway 0.035 81 2 

Netrin-UNC5B signaling pathway 0.036 51 2 

Copper homeostasis 0.036 51 2 

RANKL/RANK signaling pathway 0.040 54 2 

PD-L1 expression and PD-1 checkpoint pathway in 

cancer 0.041 88 2 

Small cell lung cancer 0.043 90 2 

Endocrine resistance 0.043 90 2 

MET in type 1 papillary renal cell carcinoma 0.044 56 2 

Epithelial cell migration 0.047 293 3 

Epithelium migration 0.048 296 3 
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Table 5: Table of Enriched Pathways for Targets with Decreased Signals in WT Ahi-1 Cells 

after IM Treatment 

Pathway Name p-value Pathway Size Targets 

Protein autophosphorylation 2.5E-15 227 15 

Peptidyl-tyrosine phosphorylation 4.8E-15 373 17 

Peptidyl-tyrosine modification 5.5E-15 376 17 

Positive regulation of kinase activity 1.0E-11 489 16 

Peptidyl-serine phosphorylation 6.6E-09 313 12 

Peptidyl-serine modification 1.5E-08 336 12 

Axon development 1.0E-06 484 12 

Regulation of cell growth 3.8E-06 425 11 

Cellular response to chemical stress 4.0E-06 323 10 

Gland development 4.8E-06 435 11 

Axonogenesis 5.1E-06 438 11 

Aell growth 1.6E-05 490 11 

G1/S transition of mitotic cell cycle 3.1E-05 205 8 

Cellular response to reactive oxygen species 4.8E-05 140 7 

Positive regulation of neuron death 6.8E-05 86 6 

Leukocyte proliferation 8.4E-05 331 9 

Cell cycle G1/S phase transition 9.0E-05 235 8 

Axon guidance 9.6E-05 237 8 

Neuron projection guidance 9.9E-05 238 8 

Ephrin signaling 1.8E-04 17 4 

Ephrin receptor signaling pathway 2.0E-04 52 5 

Actin cytoskeleton reorganization 2.8E-04 109 6 

Cellular response to oxidative stress 2.9E-04 274 8 

Leukocyte apoptotic process 3.2E-04 111 6 

MAPK signaling pathway 3.2E-04 286 9 

Response to reactive oxygen species 4.3E-04 193 7 

Lymphocyte proliferation 5.6E-04 298 8 

Mononuclear cell proliferation 6.1E-04 302 8 

Response to oxidative stress 6.3E-04 420 9 

Glioblastoma signaling pathways 7.4E-04 82 6 

Wound healing 7.6E-04 429 9 

Regulation of neuron death 7.9E-04 312 8 

Regulation of neuron projection development 7.9E-04 431 9 

Mitotic cell cycle phase transition 9.3E-04 440 9 

Regulation of G1/S transition of mitotic cell cycle 0.0012 140 6 

Regulation of tissue remodeling 0.0013 75 5 

Lymphocyte apoptotic process 0.0013 76 5 

Response to X-ray 0.0013 32 4 

Regulation of fibroblast proliferation 0.0017 80 5 

Hematopoietic progenitor cell differentiation 0.0019 150 6 

Fibroblast proliferation 0.0020 82 5 

Neuron death 0.0020 353 8 

Positive regulation of production of miRNAs involved 0.0022 10 3 
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Pathway Name p-value Pathway Size Targets 

in gene silencing by miRNA 

Regulation of leukocyte apoptotic process 0.0023 85 5 

Regulation of axonogenesis 0.0023 156 6 

Positive regulation of cellular component biogenesis 0.0026 497 9 

Telencephalon development 0.0026 252 7 

Regulation of leukocyte proliferation 0.0027 254 7 

Positive regulation of cell growth 0.0030 163 6 

Regulation of miRNA-mediated gene silencing 0.0030 39 4 

Tissue remodeling 0.0034 166 6 

Regulation of cell cycle G1/S phase transition 0.0036 168 6 

Regulation of post-transcriptional gene silencing by 

RNA 0.0037 41 4 

Regulation of gene silencing by RNA 0.0041 42 4 

Regulation of post-transcriptional gene silencing 0.0041 42 4 

Positive regulation of G1/S transition of mitotic cell 

cycle 0.0045 43 4 

Positive regulation of protein kinase activity 0.0059 409 8 

EPHB-mediated forward signaling 0.0065 40 4 

NF-kappa B signaling pathway 0.0073 102 5 

Positive regulation of fibroblast proliferation 0.0077 49 4 

Cell junction assembly 0.0077 424 8 

Neural crest cell migration during development 0.0079 39 4 

Corpus callosum development 0.0082 15 3 

Axon guidance 0.0097 174 6 

EPH-Ephrin signaling 0.0099 90 5 

Peptidyl-threonine phosphorylation 0.010 114 5 

Mononuclear cell differentiation 0.010 440 8 

VEGFA-VEGFR2 signaling pathway 0.010 415 10 

Neural crest cell migration in cancer 0.011 42 4 

Regulation of mitotic cell cycle phase transition 0.012 320 7 

Embryonic organ development 0.013 455 8 

Positive regulation of protein localization 0.013 457 8 

Negative regulation of cell activation 0.013 211 6 

Integrated cancer pathway 0.014 45 4 

Regulation of lymphocyte apoptotic process 0.014 57 4 

Necrotic cell death 0.014 57 4 

Peptidyl-threonine modification 0.014 123 5 

Malignant pleural mesothelioma 0.015 433 10 

EPH-ephrin mediated repulsion of cells 0.015 49 4 

Negative regulation of B cell proliferation 0.015 18 3 

Positive regulation of cell cycle G1/S phase transition 0.015 58 4 

Regulation of protein localization to cell periphery 0.016 125 5 

Gland morphogenesis 0.016 126 5 

Regulation of mitotic cell cycle 0.018 475 8 

Response to peptide 0.018 477 8 
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Pathway Name p-value Pathway Size Targets 

Positive regulation of MAPK cascade 0.019 479 8 

Imatinib and chronic myeloid leukemia 0.019 19 3 

Regulation of production of miRNAs involved in gene 

silencing by miRNA 0.020 20 3 

Regulation of production of small RNA involved in 

gene silencing by RNA 0.020 20 3 

Melanoma 0.022 70 4 

Regulation of lymphocyte proliferation 0.022 231 6 

Photodynamic therapy-induced AP-1 survival 

signaling 0.023 51 4 

Non-small cell lung cancer 0.023 71 4 

Glioma 0.023 71 4 

Regulation of B cell proliferation 0.024 65 4 

Regulation of mononuclear cell proliferation 0.024 234 6 

Mammary gland development 0.025 138 5 

Positive regulation of miRNA-mediated gene silencing 0.028 22 3 

Hippo signaling regulation pathways 0.028 99 5 

Human cytomegalovirus infection 0.031 215 6 

EGF/EGFR signaling pathway 0.031 159 6 

Positive regulation of post-transcriptional gene 

silencing by RNA 0.032 23 3 

Positive regulation of post-transcriptional gene 

silencing 0.032 23 3 

Mammary gland epithelium development 0.034 71 4 

Peptidyl-tyrosine autophosphorylation 0.036 24 3 

Positive regulation of growth 0.039 255 6 

Regulation of protein serine/threonine kinase activity 0.040 383 7 

Forebrain development 0.040 384 7 

TP53 regulates transcription of DNA repair genes 0.042 64 4 

Negative regulation of cell cycle 0.043 388 7 

Negative regulation of transferase activity 0.049 265 6 

 

Table 6: Table of Enriched Pathways for Targets with Increased Signals in WT Ahi-1 Cells 

after IM Treatment 

Pathway Name p-value Pathway Size Targets 

Translation inhibitors in chronically activated 

PDGFRA cells (eIF4F complex) 4.1E-06 45 4 

MAPK signaling pathway 7.4E-05 286 5 

Angiopoietin-like protein 8 regulatory pathway 2.8E-04 127 4 

Regulation of epithelial cell migration 4.4E-04 225 4 

Insulin signaling 6.5E-04 157 4 

Interferon type I signaling pathways 0.0013 54 3 

Epithelial cell migration 0.0013 293 4 

Epithelium migration 0.0013 296 4 

Tissue migration 0.0014 302 4 
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Pathway Name p-value Pathway Size Targets 

EGFR tyrosine kinase inhibitor resistance 0.0017 76 3 

Thyroid stimulating hormone (TSH) signaling pathway 0.0023 66 3 

EGFR tyrosine kinase inhibitor resistance 0.0043 81 3 

Glioblastoma signaling pathways 0.0044 82 3 

Ameboidal-type cell migration 0.0052 418 4 

Liver development 0.0088 134 3 

Thermogenesis 0.0088 103 3 

Hepaticobiliary system development 0.0094 137 3 

4-hydroxytamoxifen, dexamethasone, and retinoic 

acids regulation of p27 expression 0.012 18 2 

Positive regulation of epithelial cell migration 0.012 147 3 

Regulation of endothelial cell migration 0.017 167 3 

Extracellular vesicle-mediated signaling in recipient 

cells 0.031 29 2 

Regulation of myeloid cell differentiation 0.033 208 3 

Thermogenesis 0.033 207 3 

Malignant pleural mesothelioma 0.035 433 4 

Endothelial cell migration 0.036 215 3 

BDNF-TrkB signaling 0.040 33 2 

Host-pathogen interaction of human coronaviruses - 

MAPK signaling 0.047 36 2 

 


