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Abstract 

 In Canada, prairie-oak ecosystems along the south-east coast of Vancouver Island are both 

the country’s most biodiverse and threatened. Anthropogenic land use change and fire suppression 

are altering the traditional composition of plant species and structure in these savannas, as well as 

reducing their total area. In 2001, Environment Canada published a study highlighting the impact of 

habitat fragmentation, the role of fire and the associated consequences of its removal, as well as the 

presence and effects of exotic species as fundamental ecosystem characteristics that are  currently 

threatened, central to the recovery of prairie-oak savannas and require further scientific enquiry. 

Each of these fundamental characteristics required an enhanced understanding of the spatial 

distribution of plant species, lifeform and function. Due to the potential for high species richness 

and small individual plant footprints relevant data must be collected at fine spatial resolutions. 

Remote sensing, specifically drone-based imaging spectroscopy, presents a viable method for 

gathering information that can be used in analyses evaluating the aforementioned fundamental 

ecosystem characteristics. My research demonstrates the complexity facing studies examining prairie-

oak savannas using imaging spectroscopy and provides evidence that plant diversity and function, as 

well as structural composition, can be spatially evaluated. This work also substantiates the capacity 

for remote sensing to detect a key exotic species, Cytisus scoparius (L.) Link (Scotch broom) and 

examine the effects of anthropogenic activities on the primary tree species associated with these 

ecosystems, Quercus garryana Douglas ex. Hook (Garry oak). Combined, this information directly 

addresses key knowledge gaps and provides land managers with a variety of new methods to 

monitor prairie-oak savannas.  
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Lay Summary 

 Human activities, including agriculture, road construction and fire suppression affect the 

environments in which they occur in a variety of ways. One of the most impacted ecosystems in 

Canada are prairie-oak savannas located on the south-east coast of British Columbia’s Vancouver 

Island. Traditionally, these ecosystems are composed mostly of open meadows with Garry oak trees 

(Quercus garryana Douglas ex. Hook) scattered throughout and experienced low severity fires 

relatively often. Currently, the encroachment of closed-canopy forests and the introduction of exotic 

plants threaten the highly diverse plant and animal communities that have inhabited these savannas 

for thousands of years. I present a method for identifying the invasive Scotch broom (Cytisus 

scoparius (L.) Link) and examine the effects of anthropogenic activities of plant species composition 

and function across the landscape, as well as address the challenges associated with collecting 

information from multiple plant species in a single data point.  
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Chapter 1: Foundation for research 

This chapter establishes the context of this dissertation. The impacts of anthropogenic 

activities on biodiversity are discussed and research objectives are presented in relation to current 

scientific knowledge gaps pertaining to Canadian prairie-oak savannas. 

1.1 Humans and biodiversity 

As the Anthropocene progresses, human activities will continue to modify ecosystems across 

the planet (Johnson et al., 2017; Pimm et al., 1995; Western, 2001). These changes can lead to the 

loss of ecological function, threatening the ecological goods and services humans depend on 

(Chapin III et al., 2000). To monitor the effects of these modifications, plant biodiversity has been 

proposed as a surrogate indicator of ecosystem health (Pereira et al., 2013). Specifically, plant 

functional diversity has been identified as a variable that can be used to track biodiversity as it relates 

directly to the uptake and allocation of resources by individual plants (Jetz et al., 2016). It is essential, 

then, to monitor the plant functional biodiversity of human-modified ecosystems.   

Central to the monitoring of plant functional health is the understanding of leaf properties. 

The chemical and structural properties of a leaf play fundamental roles in characteristics such as 

photosynthesis, life span and respiration (Wright et al., 2004). There are a variety of leaf types 

exhibited by the estimated 298,000 species that span the globe (Butler et al., 2017). This number 

decreases considerably in the context of remote sensing as only the leaves of species that dominate 

the canopy are observable. Among dominant plant species there are a variety of leaf types. The cell 

types discussed below have all been synthesized from Jacquemoud and Ustin’s 2019 book Leaf 

Optical Properties, with additional literature cited as necessary. 
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1.2 Leaf properties 

1.2.1 Outer cells 

The first leaf component that photons interact with is the epidermis. Usually one-cell thick, 

the primary functions of the epidermis are mechanical strength and exchange moderation, 

particularly of water and carbon dioxide (Figure 1). Multiple different cells can be present in the 

epidermis, each providing a specific function. The outer surface of these cells is coated by a non-

cellular layer called the cuticle (Figure 1). The cuticle acts in many capacities relating to the regulation 

of exchanges between the cells in protects and the surrounding medium, as well as in defence against 

micro-organisms and decomposition. In conjunction with trichomes, which are essentially leaf hairs 

that extend from the epidermis, the cuticle’s thickness and composition can alter the ability of 

photons to interact with internal leaf structures. Waxes and oils present on cuticle can also influence 

the interactions of photons with the internal structures. The consequence of this is that the 

epidermis and associated structures are the initial location of interaction between photons and a leaf. 

 

Figure 1. Leaf cross section depicting various structural components. 

  



3 
 

1.2.2 Mesophyll 

Beneath the epidermis is the mesophyll. All leaf cells that are between the upper and lower 

epidermis are considered to be in the mesophyll (Figure 1). Parenchyma cells make up the majority 

of the mesophyll, some of which contain chloroplasts. These ‘chlorenchyma’ interact with incoming 

photons in order to generate glucose from photosynthesis. The amount of total chlorophyll in the 

mesophyll determines leaf’s ability to photosynthesize and influences its optical properties. 

Reflectance, particularly, is affected by the interactions of photons and chlorophyll. This provides 

opportunities for the estimation of plant characteristics related to stress and growth.   

1.2.3 Vascular System 

A core function of a leaf is the creation of carbohydrates. These carbohydrates are 

transferred to other plant organs through the vascular system. This system consists of two tissue 

types, xylem (transports water and nutrients from roots to leaves) and phloem (transports carbon 

from leaves to plant), and also transfers water collected by roots to the leaf. The vascular system also 

contains the vascular cambium, which determines the function of new cells as needed for plant 

growth. There are anatomical differences between gymnosperms and angiosperms that can lead to 

variations in the optical properties of, but one of the main optical distinctions relates to the primary 

pathways of photosynthesis. The bundle sheath cell walls of C4 plants vary to such a degree from 

those found in C3 plants that the optical properties of the leaves utilizing these systems are different.  

1.2.4 Shape and Venation 

Leaf shape and venation also play important roles in the expression of leaf optical properties. 

The distribution and thickness of veins within a leaf can alter the interaction between photons and 

the organs with the leaves (Figure 1). These characteristics are closely related to the environmental 

conditions in which the leaf exists. The plasticity of leaf phenotypes under varying environmental, 
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including venation and shape, affect biochemical composition as well as the leaves optical 

properties. 

1.2.5 Pigments  

Plant colour is related to the distribution of pigments within chloroplasts. When photons 

interact with these pigments a transfer of energy occurs that enables the light and dark reactions 

comprising photosynthesis, as well as fluorescence. Chlorophyll a and chlorophyll b are two 

photosynthetic pigments that absorb photons primarily in the red and blue visible regions of the 

electromagnetic spectrum (EMS), as well as at 1660 nm specifically (Kokaly and Skidmore, 2015). 

Carotenoids are another type of pigment that affects photosynthesis in a leaf. The main functions of 

carotenoids in relation to leaf optics are to increase the range of light wavelengths that can be 

absorbed for photosynthesis and to dissipate excess energy. They are also responsible for mitigating 

damage caused by environmental extremes relating to temperatures or light availability. Carotenoids 

and chlorophylls both absorb light in the visible section of the EMS, meaning that their presence, 

distribution and amount greatly influences the optical properties of the leaf.  

In the same manner that carotenoids disperse excess energy to deter the degradation of the 

photosynthetic system, phenolic compounds act as absorbents for high intensity photons in the UV 

and blue ranges of the EMS. This means that the presence of phenols directly influences the optical 

properties of the leaves, but a relationship with leaf mass per area (LMA) means that the amount 

and type of phenolic compounds in a leaf can potentially highlight other leaf characteristics that 

impact optics.  

1.2.6 Nitrogen  

Plant health is limited by the ability of an individual to collect and use nitrogen (Berendse 

and Aerts, 1987). Within a leaf, nitrogen content is linked with the capacity to photosynthesize 
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(Serrano et al., 2002). In terms of leaf structure, the quantity of nitrogen determines the size of the 

parenchyma cells and, as a consequence, drives leaf thickness and size(Loomis, 1997). When 

nitrogen is less available leaves tend to have smaller parenchyma cells and smaller overall 

size(Morton and Watson, 1948).  Any change in leaf size and thickness will affect the manner in 

which photons interact with the leaf, making nitrogen content a useful trait to measure using optical 

sensors.  

1.2.7 Water  

The amount of water in a leaf can range from 50% - 90% of its total mass. Inadequate water 

supply decreases the ability of the leaf to transpire, which in turns affects its ability to maintain an 

ideal temperature for metabolic processes and capture CO2 (Mahan and Upchurch, 1988). Since 

access to, and efficient use of, water drives many plant functions, leaf water content also affects the 

underlying processes that govern the reflectance, transmission and absorption of photons (Carter, 

1993). 

Although important, the aforementioned leaf properties are not the only components related 

to functional capacity. Cellulose, starch, lignin and other chemicals also contribute to leaf function 

and add to the complexity of monitoring plant health. However, the limitations imposed on plants 

by environmental and genetic constraints force individuals to allocate resources into specific traits. 

The economic nature of this resource allocation offers an opportunity to monitor plant health 

through the leaf functional trait associations. 

1.3 Functional trait associations  

1.3.1 Carbon Economics  

In leaf economics, carbon is the common currency and is linked to plant energy budgets as 

these processes govern the rate of carbon assimilation (Michaletz et al., 2015). Generally, successful 
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carbon economic strategies are those that maximize the return on carbon investment over the 

lifespan of a leaf (Westoby et al., 2002). Michaletz et al., 2016 demonstrated that plants across the 

planet work to maintain ideal cellular temperatures in pursuit of this maximization and suggest that 

this can result in the alteration of functional traits.  

The fact that plants are limited homeotherms and can thermoregulate has multiple 

implications (Michaletz et al., 2015). The first, and perhaps largest, is the provision of a mechanistic 

link between climate and leaf functional traits (Michaletz et al., 2016). In functional ecology, this 

relationship presents the opportunity to determine how abiotic factors like temperature affect the 

metabolic processes that drive trait manifestation (Michaletz et al., 2016, 2015). Put simply, it may be 

possible to determine shifts in the underlying health conditions of a plant based on a relatively 

observable trait like leaf nitrogen content.  

This suggests that remote sensing technologies, such as imaging spectroscopy, could provide 

information that enables the estimation of plant energetic processes (Michaletz et al., 2016). Such a 

link between imagery and internal plant processes is necessary to accurately evaluate plant health and 

presents a multitude of management opportunities. With the capacity for sensors to collect relevant 

data at the site, landscape and global scale, leaf thermoregulation may play a vital role in monitoring 

plant health at the global scale (Michaletz et al., 2018).  

1.3.2 Leaf economic spectrum 

 In 2004, Wright et al. published a fundamental paper presenting a multi-species, global leaf 

economic spectrum (LES) that differentiates between leaf longevity and leaf growth. Their work was 

based on the findings of Reich et al. (1998), which showed the significant relationship between net 

photosynthetic capacity, leaf nitrogen and specific leaf area. The underlying principle of the LES is 

that finite resources are either stored or used immediately in pursuit of a specific purpose (Wright et 
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al., 2004). The use of a resource for one particular function means that said resource is unavailable 

for other functions. This limitation requires the individual, in our case a plant, to invest in relation to 

underlying factors like genetics and environmental conditions. For most living organisms there are 

three main pursuits: survival, growth and reproduction. Plants must select, then, which pursuit takes 

precedent. These investments are made throughout the plants lifetime and are based largely on 

nutrient availability and the environment in which it lives.  

Wright et al., 2004 present a concise and informative outline for the LES. Through the 

creation of a global dataset consisting of over 2,548 species and their associated functional traits, 

they were able to show that trade-offs exist between six mass-based leaf characteristics (Figure 2). 

The relationship between leaf lifespan (LL) and leaf mass area (LMA) was found to be particularly 

interesting as it highlights the need for long-lived leaves to be durable, which relates to investment in 

defences rather than growth (Figure 2) (Wright et al., 2004). Wright et al., 2004 found other 

important relationships between LL and both photosynthetic capacity and leaf nitrogen content.   

 

Figure 2. Visualization of the leaf economic spectrum. Leaf mass per area (LMA) and leaf lifespan (LL) 
are anticorrelated with phosphorous (P), photosynthetic capacity (A), dark respiration (R), and nitrogen 
content (N). Created using the principal component loadings from the mass-based evaluation presented 
in Wright et al., 2004. 
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These trait associations present opportunities to observe the effect that abiotic phenomena, 

such as climate, have on the plants across multiple sites. First, however, it is necessary to determine 

if the observed relationships are consistent at a global scale. Wright et al., 2005a conducted such an 

assessment and found that the LES was transferable at a global scale. They showed that LL-LMA 

associations were maintained globally and introduced the concept that the ratio of photosynthetic 

capacity and leaf N,  photosynthetic-N-use efficiency (PNUE) can also be considered as part of the 

LES (Wright et al., 2005a). Compared to LL and LMA, PNUE was negatively correlated, supporting 

the claim that short-lived leaves with faster growth rates have higher capacity for photosynthesis 

(Wright et al., 2005a). The leaf trait associations highlighted in the LES provide relevant information 

for monitoring overall plant health and function, as well as understating leaf investment strategies. 

These foundational findings prompted further investigation of the linkages between trait 

manifestation and plant life strategies, such as specific methods of leaf defence and metabolic 

efficiency. 

1.3.3 Leaf defence strategies 

The universal relationships of plant functional traits apply directly to the growth differential 

balance hypothesis: to invest in overall growth or cell specialization (Herms and Mattson, 1992). 

There are many functions that a cell can specialize in, but one of the most important is defence. This 

is especially key for plants with long lifespans and is a general driver of the positive correlation of LL 

and LMA (Wright et al., 2004). Allocation of resources to the creation of defensive leaf compounds, 

such as phenolics and lignin, means that resources cannot be made in growth, or leaf nutrition.  

McManus Chauvin et al., 2018 used the same methodology as Wright et al., 2004 to evaluate 

10 traits, including those related to a variety of defensive compounds, and found that there is a 

primary trade off between a leaf’s investment in nutrition and chemical defence, which follows the 
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LES. They also found a secondary spectrum of leaf defences that highlights a gradient of investment 

in phenolics as well as trade-offs between anti-herbivore compounds like tannins and latex and 

highlights the complexity of resource allocation that an individual plant faces (Chauvin et al., 2018).  

1.3.4 Leaf thermoregulation 

Another relevant leaf economic spectrum is that relating to the capacity for a leaf to control 

its internal temperature. The metabolic efficiency of leaf cells is important for plant health (Enquist 

et al., 2015; Michaletz et al., 2016). A major component of this is the maintenance of optimal 

temperatures for enzymes related to photosynthetic and respiratory functions (Michaletz et al., 

2016). It was believed that plants were poikilotherms, meaning that the temperature of a plant organ, 

such as a leaf, was equivalent to and driven by the external temperature (Upchurch and Mahan, 

1988). This theory would suggest that a plants ability to function was dependent on the 

environmental conditions in which it lived (Michaletz et al., 2015).  

In the mid-20th century, a variety of studies demonstrated that plant were in fact able to 

control their internal temperature in order to maintain optimum functioning (Gates, 1964; Mahan 

and Upchurch, 1988; Upchurch and Mahan, 1988). These findings prompted further study of plant 

thermoregulation, specifically how the maintenance of internal temperatures in various 

environmental conditions affected the manifestation of leaf traits. Since plants are limited 

homeotherms, rather than poikilotherms, it could be possible to determine mechanistic links 

between functional traits and drivers of environmental temperature, such as climate.  

The identification of consistent relationships between plant functional traits and climate 

would be useful in the management of agricultural and forestry resources. It may also be possible to 

use variations in plant functional traits as indicators of climate change (Michaletz et al., 2018). To 
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confirm such relationships, it is necessary to identify the underlying drivers of leaf thermoregulation 

and quantify its effect on plant energy budgets.  

1.3.5 Energy budgets  

Plants can manage the temperatures of their internal tissues in a variety of ways, including 

the alteration of functional traits, the generation of metabolic heat and transpiration cooling (Gates, 

1964; Watling et al., 2008). It is hypothesized that the functional characteristics of plant leaves have 

been selected over time based on their ability to maintain optimal leaf temperatures for 

photosynthesis (Korner and Diemer, 1987; Michaletz et al., 2015). This follows the leaf economic 

theory of trade offs between traits associated with growth and defence and suggests that thermal 

traits follow similar trends. For example, leaves with long functional longevity have a smaller breadth 

of temperatures at which they can  conduct photosynthesis (Michaletz et al., 2016).  

The manifestation of one leaf functional trait over another comes down to two things: (1) 

the need for a specific function and (2) resource availability (Reich, 2014; Wright et al., 2005b). 

Cumulative manifestations of leaf properties relating to pursuit of specific leaf functional traits 

constitute a functional strategy. These strategies cost both time and energy, so it is vital for plants to 

select appropriate strategies for their environment (Freschet et al., 2010). To determine which traits 

to produce plants employ economic theories similar to those of humans. 

1.3.6 Plant economic spectrum  

Although leaves provide useful information relating to photosynthetic capacity, defence 

strategies and overall health, they do not necessarily represent the characteristics of plants as a 

whole. For example, plant organs such as roots and stems are ignored in these analyses. Freschet et 

al., 2010 suggested that the summary of functional traits for a plant should include leaves, stems and 

roots and present findings in support of a plant economic spectrum (PES) in relation to the entire 
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plant in subarctic flora. The authors observed a variety of species and determined that significant 

correlations between the same functional traits existing in the leaves, stem and roots of individual 

plants (Freschet et al., 2010).  

This is evidence that a PES exists, extending the leaf economic spectrum across the entire 

individual. Such a revelation presents opportunities to expand the study of functional ecology. It also 

provides the relationships required to estimate the values of one organ from that of another (Reich, 

2014). For example, remote sensing technologies that evaluate the functional traits of leaves have the 

potential to link to the below-ground traits of a plant (Laliberté, 2017). Such a connection could 

enable airborne imagery to detect soil type and moisture content on a large-scale, which in turn 

enables the mapping of soil properties and a more complete understanding of relevant 

environmental conditions (Cavender‐Bares et al., 2022). 

1.4 Remote sensing of leaf functional traits 

1.4.1 Spectroscopy of foliar chemistry 

Many technologies collect information about leaf traits. Spectroscopy is a fundamental 

technology that has proven effective at retrieving relevant functional trait information from plant 

leaves (Curran et al., 2001; Goetz, 1992). This technique entails the use of a spectroradiometer to 

observe and record relevant leaf optical properties at many narrow wavelengths across the optical 

range (300 nm and 2500 nm). Spectroradiometers can be deployed at multiple spatial scales to 

investigate individual leaves (leaf spectroscopy) or entire landscapes (imaging spectroscopy) (Asner 

et al., 2008a; Curran, 1989; Schaepman et al., 2009). These sensors  have been highly effective in 

biodiversity science, allowing researchers to assess the content of certain leaf pigments, map species 

diversity and monitor exotic species (Asner et al., 2018; Butler et al., 2017; Ustin et al., 2009). 
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This method is also scalable between the leaf and landscape levels, which enables analyses at 

various functional scales (Figure 3). Spectroscopy also lends itself to prominent validation analyses, 

such as partial least squares regression, that efficiently link laboratory derived chemical properties of 

a substance with its spectral signature (Asner and Martin, 2016). 

 
Figure 3. Progression of spectroscopy from (a) collection of leaf spectra to (b) partial least-squares 
regression before finally being applied at the (c) landscape level using imaging sensors. 

 

Curran et al., 1989 used spectroscopy to identify 42 absorption features of vegetation along 

the visible and near-infrared sections of the electromagnetic spectrum (EMS) (Curran, 1989) . These 

features use the interactions between photons and the molecules within leaves to estimate the 

content of the organic compound of interest (Table A1)(Curran, 1989). Simply put, the vibrational 

energy state of the molecules in a leaf will change based on its interaction with energy from the sun. 

The key chemicals identified by Curran (1989) are highlighted in Table 1.  
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Table 1. Important absorption features identified by Curran (1989). The number of appearances of each 
chemical, as well as their location along the EMS and functional associations, are outlined. VIS: visible, 
NIR: near infrared, SWIR: shortwave infrared  

Chemical Appearances EMS Region(s) Functional Association 
Chlorophyll a 2 VIS Photosynthesis 
Chlorophyll b 2 VIS Photosynthesis  

Nitrogen  7 SWIR Size of parenchyma cells, 
photosynthesis 

Starch  19 NIR, SWIR Energy storage 
Oil 3 NIR Photon scattering, 

defence, attractant 
Lignin 6 SWIR Cell wall structure 
Water  5 NIR, SWIR Transpiration, 

temperature 
Cellulose 11 SWIR Cell structure 

Sugar  7 NIR, SWIR Energy 
Protein  12 NIR, SWIR Photosynthesis (rubisco) 

Chlorophyll a and b, for example, experience electron transitions when they interact with 

energy from the visible range of the EMS (400 – 700nm)(Curran, 1989). These transitions occur as 

the molecules in the chlorophyll are excited to a higher energy level and absorb light (Curran, 1989). 

This absorption is what creates colour. Some compounds experience stretching and bending of their 

covalent bonds as they interact with infrared energy (Kumar et al., 2006). This occurs as their spring-

like structures absorb IR energy and produces variations in the absorption properties of the 

compound (Kumar et al., 2006).  

It is important to discuss the physics that cause certain features to be dominant drivers of 

absorption. In the visible region of the EMS (400-700nm), absorption is controlled by the 

transitions of electrons between energy levels (Curran, 1989). In the near infrared (NIR: 700-

1300nm) and short-wave infrared (SWIR: 1300-2500nm), absorption is driven by the stretching, 

bending or deformation of certain molecular bonds (Kumar et al., 2006). In vegetation studies, this 

difference is highlighted in the transition between the visible and NIR regions, which has been 

termed the red-edge (690 – 720nm) (Gitelson and Merzlyak, 1998; Kumar et al., 2006). A large 

increase in reflectance is observed due to a shift in primary photon interaction from leaf pigments in 
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the visible region to leaf water content and internal leaf structures in the NIR (Kumar et al., 2006). 

The various influence that leaf properties exert on subsequent leaf optical properties provide 

valuable information about the internal components of a leaf and can be used to predict functional 

traits.  

1.4.2. Functional trait prediction 

In order to validate the trait estimates produced from spectroscopy, the foliage used for the 

leaf-level spectroscopy undergoes a variety of chemometric tests to determine the chemical 

composition of the compounds of interest (Asner et al., 2011). Chemical results are commonly 

associated with spectral reflectance values in two ways: index-based and partial least squares 

regression. Both methods are prevalent in literature and have been proven successful (Feilhauer et 

al., 2010; Xue and Su, 2017). 

The indices method utilizes individual spectral wavelengths that are associated with certain 

foliar chemicals (Cornelissen et al., 2003; Curran, 1989). In an index-based analysis the reflectance 

values of specific wavelengths are used as the input values for predefined equations to estimate the 

relative amount of chemical abundance, such as carotenoids, chlorophyll, lignin or nitrogen 

(Blackburn, 1998; Daughtry, 2001; Ferwerda et al., 2005). Although effective, this methodology 

presents issues related to accuracy as the limited number of spectral bands used lacks statistical 

sensitivity (Xue and Su, 2017). 

Partial least squares regression (PLSR) addresses the issues caused by a limited number of 

spectral bands by utilizing the entire spectral signature and is commonly used in conjunction with 

chemometric data (Wold and Sjostrom, 2001). PLSR is particularly adept at averting  issues of 

collinearity, which are implicit in spectroscopy as the reflectance values of adjacent wavelengths can 

represent similar information (Wang et al., 2016). Recently, PLSR has been used as the predominant 
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method of trait extraction when conducting spectranomic analyses for ecological purposes 

(Chavana-Bryant et al., 2019; Roth et al., 2015). Upon determining associations between leaf 

spectroscopy and the chemometric results, it is possible to relate the leaf-level spectral data with that 

acquired through imaging spectroscopy (Feilhauer et al., 2015).  

1.4.3 Scaling from land to air 

Remote sensing technologies provide information relating to leaf reflectance and plant 

morphology and are effective for mapping multiple functional traits (Schweiger et al., 2017; Wang et 

al., 2019). Airborne imaging spectroscopy is not uncommon, but the cost and time associated with 

collecting the leaf-level validation data is a limiting factor in large studies. Asner et al., 2009 

proposed a methodology called ‘spectranomics’, which combined airborne laser scanning (ALS), 

airborne imaging spectroscopy and leaf spectroscopy to remotely sense plant functional traits. 

Spectranomics combines leaf and imaging spectroscopy with leaf chemical analysis, or 

chemometrics, to evaluate the functional traits of plants. Leaf spectroscopy is competed by scanning 

leaf samples from the species of interest. The results of this analysis provide reflectance values from 

350 nm to 2500 nm for the associated leaf, which can be organized in a two-dimensional plane to 

provide a spectral signature (Figure 4).  
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Figure 4. Spectral signatures of thirty Q. garryana (Garry oak) trees. Note that the signatures all have the 
same general shape, but vary slightly in reflectance value at multiple wavelengths. 

The data acquired through imaging spectroscopy is similar to that of leaf spectroscopy as it 

contains spectral information at multiple wavelengths between 300 nm – 2500 nm, but is presented 

in a pixelated format similar to the imagery collected form a standard commercial camera (Martin et 

al., 2008). Each pixel collected using imaging spectroscopy contains reflectance information that can 

span the same spectral range of the leaf spectroscopy, allowing comparisons between the chemically 

validated leaf spectroscopy and the spectral information in an image (Butler et al., 2017). 

Connections between a pixel and the validated leaf-level spectral data facilitate the identification of 

individual species, species diversity and the distribution of foliar chemistry present within the 

imagery (Asner et al., 2014, 2012; Yang et al., 2016). 
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One advantage of spectranomics is that imaging spectroscopy can be completed at a variety 

of scales. Airborne sensors with a spatial resolution larger than 30 cm2 dominate the literature (Asner 

et al., 2018; Skowronek et al., 2017; Zhao et al., 2018), but recent studies are exploring the use of 

imaging spectroscopy at finer spatial scales (Schweiger et al., 2018). A larger scale provides good 

results for the interpretation of forest canopies, but precludes the evaluation of individual leaves or 

relatively small plant species (Asner et al., 2008a; Serrano et al., 2002). This inherently ignores many 

non-tree species and creates mixed pixels. The consequent effects of capturing spectral reflectance 

data from multiple plant species in a single data point has not been explored and could present 

challenges when attempting to accurately predict leaf functional traits. As a result, this issue is 

specifically addressed in this thesis. Many spectranomic studies are also conducted in closed canopy 

ecosystems (Asner et al., 2011; Zhao et al., 2018). This enables spectral analysis of the uppermost 

foliage across the landscape, but does not allow the evaluation of vertical variation in spectral 

properties. This research was conducted in the tropics and proved to be both effective and efficient 

at differentiating the species and functional characteristics of forest canopies (Asner and Martin, 

2009). The ability to map leaf functional traits over space and time compliments previous research 

that evaluated the impact of various abiotic factors on leaf trait distribution and promotes similar 

studies utilizing remote sensing to determine large-scale leaf economic trends. As such, it is 

important to understand key global trends already established in leaf functional trait literature. 

1.5 Gradients of functional diversity 

1.5.1 Elevational Trends 

An integral study relating to the diversity of leaf traits in relation to elevation was conducted 

by Ehleringer (1988). This study examines over 150 vascular plant species along a gradient of 

elevation and precipitation. The authors found that leaf absorptance remained relatively constant 
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except in the driest areas, in which it decreased (Ehleringer, 1988). Leaf angle changed considerably 

in relation to precipitation, with steeper angles occurring in drier areas (Ehleringer, 1988). Elevation 

also influenced leaf angle, with the lowest sites having the steepest angles (Ehleringer, 1988). The 

combination of characteristics observed at the lowest, driest sites suggest that plants are altering 

functional leaf traits to minimize heating and water loss (Ehleringer, 1988).   

Read et al., 2014 observed that some leaf traits vary predictably along elevation gradients. 

This meta-analysis found that leaf nitrogen (N) content and leaf mass per area (LMA) vary along 

elevation gradients in relation to mean annual temperature (Read et al., 2014). These variations were 

found across a multitude of species and existed both inter- and intraspecifically (Read et al., 2014). 

Asner et al., 2016 found that the spatial variation of foliar N, P and LMA are strongly linked to both 

elevation and substrate. Other abiotic factors were important in predicting the distribution of 

specific traits, such as mean annual precipitation and relative elevation in predicting N and LMA, but 

were insignificant for others (Asner et al., 2016). Many LES relationships, such as the negative 

correlation of LMA and N, were shown to exist but vary in their strength across elevation and 

substrate (Asner et al., 2016). This suggests that abiotic conditions play a significant role in 

determining the variation of functional diversity across landscapes and influences the resource 

allocation strategies of plants (Asner et al., 2016). 

1.5.2 Global Trends 

Functional 

The relationships of various leaf functional traits transcend biomes and remain consistent 

across the globe. The methods employed to derive the leaf economic spectrum were used as a 

springboard for Diaz et al., 2016 to explore the relationships of six plant functional traits considered 

to be indicators of specific ecological strategies (Díaz et al., 2016). Two important axis were derived. 
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The first is related to morphological characteristics of the plant, such as total height, LMA and leaf 

nitrogen per mass (Díaz et al., 2016). The second dimension follows the LES and reflects the trade-

off between leaf construction and growth (Díaz et al., 2016). These findings support the idea that 

spectrums relating to plant resource investment strategies span multiple plant organs, rather than 

just leaves, and are consistent at a global scale (Díaz et al., 2016; Freschet et al., 2010). Evidence of a 

plant economic spectrum had previously been hypothesized by Freschet et al., 2010, but only 

considered species sub-arctic flora.  
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Latitudinal 

The theory that plant species diversity varies along a latitudinal gradient was well established 

in the 20th century (Pianka, 1966). Essentially, this theory outlines the relationship between 

geography and biodiversity (Usinowicz et al., 2017). In tropical ecosystems, the climate allows for 

longer growing seasons and supports a larger standing biomass (Wright, 2002). As latitude increases 

ecosystems experience shorter growing seasons and a more variable climate, limiting growth, 

reproduction and survival (Usinowicz et al., 2017). Such drastic changes in species diversity along a 

predictable gradient presents interesting opportunities to study variations in ecosystem processes, 

such as the primary productivity of forests.  

Productivity  

As with species diversity, terrestrial net primary productivity varies along latitudinal gradients 

that can be defined according to their climate (Huxman et al., 2004; Usinowicz et al., 2017). Tropical 

forests tend to have higher net primary productivity than temperate stands (Usinowicz et al., 2017). 

The role of precipitation and temperature have been found to be less important than stand 

properties like age, biomass and growing season length, suggesting that indirect factors drive 

productivity (Michaletz et al., 2018).  

The spatial gradients of plant functional characteristics are of great importance for 

monitoring plant health and underlying environmental conditions. Elevation and soil substrate have 

been proven to have significant impact on plant functional traits and demonstrate the need for 

continued analysis at all spatial scales (Asner et al., 2016; Ehleringer, 1988; Read et al., 2014). A 

combination of air- and spaceborne imaging spectroscopy will provide the information required to 

estimate and understand the functional characteristics of earth’s vegetation, as well as present timely 

information from which management decisions can be implemented (Enquist et al., 2015; 

Vihervaara et al., 2017).   
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1.6 Humans and leaf functional traits 

Along with identifying the distribution of foliar chemistry and taxonomy, spectranomics 

presents an opportunity to examine how the spatial distribution of specific anthropogenic landscape 

modifications interact with biodiversity. Land use change, fire suppression and urban encroachment 

are common activities that persist worldwide and threaten biodiversity (Gurevitch and Padilla, 2004; 

MacDougall et al., 2004; Tratalos et al., 2007). These processes can impose shifts in the chemical and 

physical properties of an ecosystem (Fuchs, 2001). Such changes lead to alterations in the functional 

traits, and therefore fitness, of individual plants and can unhinge the traditional balance of species 

richness and abundance (Eldegard et al., 2015; Godbold and Solan, 2009; Stevens et al., 2010). To 

exploit the full potential of the spectranomic technique, it is important to gather information about a 

variety of ecosystems.  

1.7 Canadian prairie-oak savannas 

Traditionally, prairie-oak savanna ecosystems contained the highest level of biodiversity in 

BC, with a range spanning the south-east coast of Vancouver Island and the Gulf Islands (Bjorkman 

and Vellend, 2010). The range of these ecosystems stretches south into the states of Washington and 

Oregon and have played pivotal roles in the placement of European settlements. Also named Garry 

oak ecosystems, these spaces were created and maintained by First Nations through prescribed 

burning and thoughtful species selection . For centuries prior to European colonization these 

partially wild and partially managed ecosystems provided essential overwintering food through the 

bulbs of Camassia sp., amenable living quarters and designated meeting spaces for West Coast 

communities (Dunwiddie and Bakker, 2011; Fuchs, 2001). Ultimately, however, these favourable 

characteristics guided Sir James Douglas’ decision to settle in the harbour of Camosack, now 

Victoria, rather than relatively larger Esquimalt, kindling European immigration (Acker, 2012). The 

settlement of almost 16 km2 of prairie-oak savanna surrounding the harbour made land use change 
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easy and fostered the spread of urbanization and agriculture into similar landscapes (Acker, 2012). 

Specifically, settlers were attracted to the fertile and relatively deep soils associated with some 

portions of prairie-oak savannas. At the turn of the 21st century, the relatively small land area of 

woodland-grassland savannas (< 4%) contained over 75% of the area’s human population (Floberg 

et al., 2004). 

Currently,  prairie oak ecosystems are threatened by multiple anthropogenic landscape 

modifications and continue to experience losses in both biodiversity and area (Bjorkman and 

Vellend, 2010; MacDougall et al., 2004). Prairie-oak ecosystems are considered endangered in 

Canada as the percent of near-natural habitat is less than 5% of it’s original footprint (Bjorkman and 

Vellend, 2010; Dunwiddie and Bakker, 2011; MacDougall et al., 2004). Abiotic threats stem mainly 

from the complete suppression of fire, which has enabled woody plants to establish unabated (Fuchs 

et al., 2000). Biotic threats include invasive plant species, such as C. scoparius, herbivory and the 

encroachment of Coastal Douglas-fir forests (Fuchs, 2001).  

In 2001, Environment Canada published a formal recovery strategy for these ecosystems. 

Their report highlighted that the health status of prairie-oak savannas are linked with the plant 

species composition, structure underlying plant function (Fuchs, 2001). Three fundamental 

environmental features were identified by Fuchs et al. (2001) as being under threat from 

contemporary anthropogenic activities: 

1. Spatial integrity, in terms of the consequences of habitat fragmentation; 

2. The role of fire as a natural disturbance agent; and 

3. Biotic integrity, in terms of the presence and effects of exotic species.  

Fuchs et al (2004), and subsequently Dunwiddie and Bakker (2011), also state that minimal 

research has been conducted in British Columbia related to the quantitative impact of these issues. 
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Although 20 years have passed since the publication of Environment Canada’s recovery strategy, 

prairie-oak savannas continue to be relatively underrepresented in the literature, especially in relation 

to the effects of anthropogenic activities on plant habitat, function and invasive species.   
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1.8 Objectives 

The goal of this research is to address knowledge gaps related to the estimation and scaling 

of leaf functional traits in a heterogenous ecosystem. Specifically, I will explore the consequences of 

scaling trait prediction from a single leaf to an airborne sensor. I will also explore the capacity for 

imaging spectroscopy to evaluate the influence that anthropogenic activities have on the three 

fundamental environmental features of prairie-oak ecosystems (spatial integrity, fire suppression and 

biotic integrity) considered to be significantly at risk by Fuchs et al. (2001). These objectives will be 

achieved by:  

- Evaluating the accuracy of remotely sensed leaf functional trait predictions 

- Mapping leaf functional traits and assessing the impact of anthropogenic activities, including 

land use change and the subsequent habitat fragmentation, as well fire suppression, on their 

spatial distribution 

- Using leaf functional traits to identify invasive plant species  
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1.9 Research Questions 

The aforementioned objectives will be addressed through the following research questions: 

1. How are the predictions of plant functional traits affected by the inclusion of reflectance 

information from multiple species in a single reflectance spectrum? 

2. How do anthropogenic activities influence the spatial distribution of interspecific plant 

functional traits? 

3. How are the functional traits of a single plant species affected by anthropogenic 

activities? 

4. What is the capacity for remotely sensed plant functional traits to distinguish invasive 

plant species?  
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1.9 Dissertation Overview 

Chapter 2 provides an overview of the site at which data for this research was collected and 

discusses the methods used for data acquisition. Chapter 3 is the first research chapter of this 

dissertation and explores how the prediction of functional traits are impacted by spectral mixing. 

Chapter 4 maps plant functional traits across the landscape and evaluates the influence of 

environmental and anthropogenic influences on their spatial distribution. Chapter 5 assesses the 

capacity of plant functional traits to distinguish an invasive shrub, Cytisus scoparius (L.) Link, in 

prairie-oak savannas. Chapter 6 investigates the impact of anthropogenic activities on the intra-

specific variation of leaf functional traits in the dominant tree species in prairie-oak savannas, Quercus 

garryana var garryana Douglas ex Hook. Chapter 7 provides conclusions relative to the scientific 

objectives pursued in this dissertation, highlighting the innovations and limitations of this research. 
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Chapter 2: Site Overview and Data Curation 

2.1 Study site 

The field work relating to this research was conducted at the Cowichan Garry Oak Preserve 

(CGOP;  Lat: 48°48’29.85”N, Long: 123°37’54.34”W) in Duncan, British Columbia (BC), Canada 

between May 4 – 19, 2019 (Figure 5). Managed by the Nature Conservancy of Canada (NCC), this 

site contains a variety of ecosystems, including prairie-oak savannas. Known commonly as Garry 

oak savannas, these mixed grassland-woodlands harbour a large variety of plant, vertebrate and 

insect species. Another component of the site is a recently converted agricultural pasture that was 

traditionally managed to grow hay. This portion of the CGOP likely experienced a variety of 

agricultural activities including fertilization and irrigation. Due to the variety of traditional land 

management practices (prairie-oak savanna, agriculture) it is also likely that the site contains 

subzones that vary in soil depth. 

Anthropogenic activities such a fire suppression and land use change pose an immediate 

threat to the traditional structure of these ecosystems (Fuchs, 2001). Roads abut the site from the 

south, east and west, while Q. garryana var. garryana, a native tree species, has been able to increase its 

canopy cover due to the removal of burning. The presence of roads and increased canopy cover 

impact a variety of ecological factors, including soil wetness, availability of photosynthetic radiation 

and microclimate (Caldwell et al., 1986; Forman and Alexander, 1998). Considering the nature of 

this ecosystem as a hybrid of woodland and grassland plant species, as well as the direct impact of 

fire suppression on the presence of trees, it is logical to evaluate subsites based on their relative tree 

canopy cover.  



28 
 

 

 

Figure 5. Study area composite depicting (a) the range extent of Quercus garryana, (b) the Cowichan 
Garry Oak Preserve (CGOP) in Duncan, BC, Canada and (c) a section of the meadow in bloom during 
May 2019. The range of Q. garryana includes both Canadian and North American areas (Little, Elbert L., 
1971). 

Plant communities have been evaluated and richness within 1 m2 vegetation plots can range 

from 4 – 26 species. Many of the plant species have small spatial footprints and can represent 

between 1 – 19% of vegetation plot cover. This capacity for high species richness and low individual 

cover means that the accurate prediction of leaf functional traits is unrealistic and that relative trait 

values should be used when comparing spatial relations (Hacker et al., 2022). The CGOP exists 

within the Coastal Douglas-fir moist maritime Biogeoclimatic Ecosystem Classification (BEC) zone 

(Fuchs, 2001; Hamann and Wang, 2006). The mean annual temperature at the CGOP is 9.5 °C with 

approximately 1200 mm of annual precipitation.  
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2.2 Data Overview 

The data used to conduct the research presented in this dissertation was collected over two 

field programs. The first occurred from July 22 – 28, 2018 and collected information relative to 

Chapter 5. A second field campaign took place from May 4 – 19, 2019 and collected data relative to 

Chapters 3, 4 and 6. A total of 23 plant species were sampled during the aforementioned field work 

(Table 2). The specific methodologies employed for data collection are detailed in the remainder of 

Chapter 2 and reiterated in Chapters 3, 4, 5 and 6 when required.  

Table 2. Species list of the 23-plant species and the number of individuals collected (parentheses) at the 
CGOP in May 2019. 

Berberis aquifolium Pursh (10) Lomatium utriculatum (Nuttall ex Torrey & A. Gray) J.J. 
Coulter & Rose (10) 

Bromus sitchensis var. carinatus (Hooker & Arnott) 
R.E. Brainerd & Otting (10) 

Oemleria cerasiformis (Torrey & A. Gray ex Hooker & Arnott) 
J.W. Landon (10) 

Bromus sterilis Linnaeus (6) Plectritis congesta (Lindley) de Candolle (10) 
Camassia leichtlinii (Baker) S. Watson (10) Poa pratensis Linnaeus (10) 

Camassia quamash (Pursh) Greene (10) Polystichum munitum (Kaulfuss) C. Presl (7) 
Claytonia perfoliata  Donn ex Willdenow (10) Quercus garryana Douglas ex Hooker (10) 

Crataegus monogyna Jacquin (10) Rosa nutkana C. Presl (10) 
Dactylis glomerata Linnaeus (10) Sanicula crassicaulis Poeppig ex de Candolle (10) 

Festuca idahoensis Elmer (6) Sericocarpus rigidus Lindley (3) 
Holodiscus discolor (Pursh) Maximowicz (10) Symphoricarpos albus Poeppig ex de Candolle (10) 

Lathyrus sphaericus Retzius (6) Vicia sativa Linnaeus (10) 
 

2.3 Leaf Spectroscopy 

2.3.1 July 22 – 29, 2018 

Sun-lit leaf samples were collected from each of the 40 Q. garryana individual using 18m long 

pruners. All leaf samples were stored on ice for no longer than 1 hour. Samples stored in the cooler 

underwent spectroscopy, scanning and weighing no more than 8 hours after collection, after which 

they were flash frozen until drying. An Analytical Spectral Devices (ASD) FieldSpec3 portable 
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spectroradiometer and ASD Integrating Sphere, which is a closed illumination system (Analytical 

Spectral Devices Inc., Boulder, Colorado (CO), USA) was used to measure the reflectance spectra of 

each sampled leaf. White and dark references were taken before each sample was scanned to 

normalize the recorded radiance, which enables the calculation of reflectance (Analytical Spectral 

Devices, 2010). Each full scan comprised the average of 20-sub scans. Three leaves per tree 

underwent full scans an average of 20 times to provide a mean of approximately 400 scans per leaf 

sample. Reflectance was measured from 350–2500 nm and the values of each spectral band were the 

inputs for the PLSR that was used to estimate plant functional trait values. 

2.3.2 May 4 – 19, 2019 

Between May 4 – 19, 2019 the leaves of 23 plant species were collected using metal pruners 

and latex gloves to avoid interaction of skin oils with leaf surfaces (Table 2). Only healthy, non-

damaged leaves were sampled for all individuals. All leaves were considered to be fully sunlit, fully 

expanded and mature. Individuals were sampled randomly within species and across site. Leaves 

were stored in sealed plastics immediately after collection. Prior to sealing the bags, the collector 

breathed into the bag to increase CO2 and water vapour concentration to minimize leaf water loss. 

Sealed bags were stored in a cool box surrounded by (no direct contact) with ice  and spectroscopy 

was conducted within 8 hours of collection. An Spectra Vista Corp (SVC) HR-1024i 

spectroradiometer and integrating sphere were used to measure leaf spectral reflectance and 

transmittance between 350 nm – 2500 nm (Laliberté and Soffer, 2018). I sampled six leaves from 

each of 201 individuals belonging to 23 plant species. All spectra were vector normalized prior to 

modelling to normalize brightness and emphasize differences in spectral shape and only bands 400 – 

2400 nm were used in analyses. A Savitzky-Golay filter was used to reduce noise, ambient light or 

slight variations in sensor conditions (Gautam et al., 2015). 
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2.4 Leaf Chemistry 

A total of 14 leaf functional traits were measured during this study (Table 3). These traits 

represent a subset of plant functional traits and were selected based on their proven correlation with 

other key traits such as phenolics, flavonoids and anthocyanins (Díaz et al., 2016; Reich, 2014; 

Wright et al., 2004). Three pigments, chlorophyll a ( chl a; mg/g), chlorophyll b (chl b; mg/g) and 

carotenoids (Car; mg/g), were selected based on their association with plant growth (Curran et al., 

2001; Girard et al., 2019). The percentage of carbon (%C) and nitrogen (%N), and their ratio (C:N) 

were included as these chemicals are related to optimal plant growth, with %N also being identified 

as an important trait in the leaf economics spectrum  (Ayotte et al., 2019; Wright et al., 2004; Zheng, 

2009). Two traits associated with leaf mass, leaf mass per area (LMA; g/m2) and leaf dry matter 

content (LDMC; mg/g) were selected based on their relationship to plant ecological strategies, 

primary production and the leaf economics spectrum (Reich et al., 1997; Smart et al., 2017; Westoby 

et al., 2002; Wright et al., 2004). Equivalent water thickness (EWT; cm) was included due to 

associations with plant ecological strategy (Féret et al., 2019). Structural leaf components cellulose 

(%), hemicellulose (%), lignin (%), solubles (%) and recalcitrants (%) were also evaluated based on 

their relationship with nutrient cycling (Ayotte and Laliberté, 2019; Nagler et al., 2000; Van 

Cleemput et al., 2018). 
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Table 3. Measured values of 14 traits for 201 samples at the CGOP 

Trait Mean Standard Deviation Trait Mean Standard Deviation 

Chlorophyll a (mg/g) 10.4 4.81 LDMC (mg/g) 219.0 87.2 

Chlorophyll b (mg/g) 3.53 1.81 EWT (cm) 0.013 0.0056 

Carotenoids (mg/g) 2.24 0.86 Cellulose (%) 14.7 6.23 

N (%) 3.05 0.88 Hemicellulose (%) 16.2 8.35 

C (%) 45.6 1.56 Solubles (%) 62.3 13.1 

C:N 16.3 5.31 Lignin (%) 6.57 5.04 

LMA (g/m2) 40.7 17.6 Recalcitrants (%) 0.22 0.16 

 

2.5 Imaging Spectroscopy  

The imagery utilized in this dissertation was collected using a Mjolnir VS-620 (HySpex 

NEO, Skedsmokorset, Norway) hyperspectral imaging system (HSI) deployed using an remotely 

piloted aircraft system (RPAS) consisting of an XL gimbal (Gremsy, Ho Chi Minh City, Vietnam) 

mounted on an octocopter over three consecutive days from May 15 – 17, 2019 (Arroyo-Mora et al., 

2021). Three unique subsites covering a total of 11,900 m2 and experiencing varying levels of 

anthropogenic influence (distance to roads, canopy cover, etc.) were surveyed using this HSI-RPAS. 

Flight altitude and speed remained consistent across all flights at 60 m above ground level and 1.0 

m/s, respectively (Arroyo-Mora et al., 2021). 

Image pre-processing was conducted following the workflow presented in Arroyo-Mora et 

al. 2021 in order to  compensate for variations in illumination conditions. A total of 331 spectral 

bands are usable for images collected on May 16 and 17, while imagery collected on May 15 had 333 

usable bands. The spatial resolution of imagery collected on May 16 and 17 is 3.25 cm2, while the 
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image collected on May 15 has a spatial resolution of 3.0 cm2. A greenness mask was applied by 

calculating the hyperspectral normalized difference vegetation index (hNDVI) using ranges of 

spectral bands surrounding those traditionally used in NDVI in order to identify pixels containing 

vegetation (Equation 1). Pixels with hNDVI values less than 0.2 were excluded from further 

analyses. Metrics derived from the CGOP DSM enabled the identification of pixels higher than 2 m 

above the ground, which were subsequently removed.  

ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑎𝑎𝑎𝑎𝑎𝑎(890: 910) − 𝑎𝑎𝑎𝑎𝑎𝑎(675: 995)
𝑎𝑎𝑎𝑎𝑎𝑎(890: 910) +  𝑎𝑎𝑎𝑎𝑎𝑎(675: 995) 

Equation 1.  

 

2.6 Vegetation Plots 

A total of 30 plots were evaluated, each 3 x 3 m and consisting of 9, 1 x 1 m subplots. A 

total of 61 plant species were observed with a minimum and maximum number of species per 

subplot of 4 and 26, respectively (Table 4). Vicia sativa was the most common species, occurring in 

all vegetation plots with cover ranging from 1% - 19%. Poa pratensis showed the largest single subplot 

coverage (85%) and was present in 23 plots. Four different lifeforms were observed in the 

vegetation plots: forb, shrub, graminoid and tree. 

Table 4. Summary statistics of the vegetation surveys conducted at the Cowichan Garry Oak Preserve in 
May 2019. 

Total Subplots 
(1m2) 

Total 
Species 

Max 
Species/Plot 

Min 
Species/Plot 

Lowest Cover 
(%) 

Highest 
Cover (%) 

270 61 26 4 1 85 
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2.7 Airborne Laser Scanning and Roads 

Road vector information and airborne laser scanning (ALS) data were acquired from the BC 

Data Catalogue maintained by the BC Ministry of Forest, Lands and Natural Resource Operations 

and Rural Development and is freely available online (www.catalogue.data.gov.bc.ca). The road 

dataset was last updated April, 2017, while the ALS data of the CGOP was acquired by the 

Municipality of North Cowichan on 29 May 2017. The ALS data were collected using a Riegl Q1560 

dual-channel ALS system at a nominal flight height of 1700 m above ground level and has a density 

of 15 returns/m2. 
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Chapter 3: Effects of spectral mixing on leaf functional trait prediction1 

3.1 Background and Motivation 

 In this chapter I will address the theoretical knowledge gap relating to effects spectral mixing 

on leaf functional trait prediction. Spectral mixing occurs when reflectance information from 

multiple plant species in a single data point is recorded. This complication arises as an issue of 

scaling from leaf-level to the canopy-level analyses in which an airborne sensor, in my case an 

imaging spectrometer deployed on a drone, is used to capture optical reflectance information across 

a landscape, rather than a single leaf. The issue of spectral mixing is particularly challenging are 

heterogenous ecosystems, such as prairie-oak savannas, which are often rich in plant diversity with 

high variations of interspecific adjacencies (House et al., 2003).  

The plants occurring in these ecosystems are small, increasing the likelihood that pixels 

generated from airborne or spaceborne imaging spectroscopy contain multiple species (Van 

Cleemput et al., 2018). This leads to concerns about the capacity of imaging spectroscopy to 

accurately predict leaf functional traits from models generated using the spectral information of 

species that may not be providing a large portion of the measured reflectance. Variations in trait 

prediction due to spectral mixing may lead to a misestimation of the number of species present in a 

pixel or in the trait value itself, compromising the effectiveness of functional trait estimation and any 

associated evaluations of biodiversity or ecosystem health. It is of vital importance, then, to 

understand the complications presented by spectral mixing on the accuracy of leaf trait predictions if 

we are to properly evaluate their spatial distribution and associated ecosystem health metrics. 

                                                 
1 Content presented in this chapter has been adapted from: 
Hacker, P. W., Coops, N. C., Laliberté, E., & Michaletz, S. T. (2022). Variations in accuracy of leaf functional trait 
prediction due to spectral mixing. 136(February). https://doi.org/10.1016/j.ecolind.2022.108687 
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Using a framework developed to recreate the effects of spectral mixing in a prairie-oak 

ecosystem, this research will explore three research questions: 

1. How does spectral mixing affect the prediction error of functional trait estimation? 

2. Are leaf functional traits equally affected by spectral mixing? 

3. Does spectral mixing with different plant lifeforms affect trait prediction? 

3.2 Materials and Methods 

3.2.1 Data Overview and PLSR modelling 

The data used for this research was collected during the May 2019 field campaign. Leaf 

spectroscopy and chemical results from 23-plant species (Table 2) were used as input spectra for the 

body of this analysis, as well as to generate leaf functional trait PLSR models. PLSR was used to 

create site-wide, species-inclusive models consisting of 201 samples from 23 plant species for the 14 

functional traits of interest (Haaland and Thomas, 1988; Serbin et al., 2019) (Table A2).  Data were 

split into training (70%) and validation sets (30%). The ideal number of components was determined 

using one-sigma heuristic cross-validation (Mevik and Wehrens, 2015). Model accuracy was 

evaluated using the coefficient of determination (R2), root mean squared error of the predictor 

(RMSEP) and normalized RMSEP (NRMSEP) (Wehrens, 2007). Bias was not included as RMSEP 

are bias-corrected. The threshold for good and adequate R2 is considered to be 0.65 and 0.50, 

respectively. Good and adequate thresholds for NRMSEP are considered to be 20% and 30%, 

respectively. Coefficients from each of these models were applied to each band of the pure and 

mixed spectral signatures to generate trait predictions.  
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3.2.2 Theory 

To evaluate the effects of spectral mixing on the prediction of leaf functional traits among 

species I developed a simple scaling framework (Coops et al., 2003). First, I generated species- 

inclusive PLSR models for 14 functional traits. Of the 14 models evaluated, it is necessary to select 

only those with acceptable R2 and NRMSEP. For this study, only 8 traits were accepted (R2: 0.54 – 

0.85, NRMSEP: 16-31%) (Table A2). Second, I selected a target species which was relatively 

ubiquitous throughout the study area and used the accepted PLSR models to predict baseline trait 

values to which to compare future trait prediction values . Multiple fractionated spectra were then 

created for each species by completing per-band weighted averages of each species pure spectral 

reflectance signature, or endmember (Figure 6). Next, I generated mixed spectral signatures by 

combining fractionated leaf spectra of various species (Figure 6). I then applied the accepted PLSR 

models to these mixed spectra to predict each functional trait and evaluate the effects of spectral 

mixing based on our predefined hypotheses.  

 

Figure 6. Flow diagram depicting the generation of mixed spectral signatures. This example demonstrates 
how a 1) theoretical pixel containing two species contributing 75% (Species A) and 25% (Species B) of 
the spectral reflectance, respectively, is mixed. The 2) endmembers, or pure spectral reflectance 
signatures, of Species A and B are selected from a candidate database and 3) undergo per-band 
weighting according their respective spectral contributions. These fractionated spectra are 4) combined 
linearly to generate a 2-species mixed spectral signature. 

 I chose V. sativa as the baseline species as it was present in 100% of vegetation plots and 

had subplot coverage ranging from 1-15%. This nitrogen-fixing legume also demonstrates capacity 
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to entangle and climb with other plant species, causing the overlapping of leaves. Mixed spectra 

were generated by linearly mixing the fractionated spectra of two or more species across all bands 

using set percentage combinations on the assumption that any portion of a leaf surface contributing 

to reflectance is equal across all wavelengths (Figure A1).I  allow co-occurrence of species at 3 

mixing levels: 2-, 3- and 4-species. 2-species mixes consist of the target species and one other species 

(22 mixes per target species) with target species presence decreasing by 10% from 100% to 0%. A 

total of 110 3-species mixes were generated by combining the spectra of two non-target species with 

the target species. To ensure that all lifeforms were mixed equally all non-target species were split 

into 2 groups before mixing.  

Spectral mixes containing four species were generated using four separate species lists. The 

first list enabled each species to be mixed with each species from a different lifeform. The remaining 

three lists enabled the target species to be mixed with 3 species of the same lifeform. Combined, this 

4-species mixing strategy created 409 unique mixed spectral signatures that captured the effects of 

mixing within and across lifeforms. A total of 541 unique mixed spectra were created across all 

mixing levels. Upon completion, this framework was used to examine our three research hypotheses. 

3.2.3 Hypotheses 

H1: Spectral mixing increases the prediction error of functional trait estimation  

Comparison between the predicted trait value for the target species endmember, or baseline 

trait value, and the predicted mixed spectra trait values were conducted for 8 functional traits using 

95% confidence intervals (CI) from the baseline. The confidence interval was calculated as two 

standard errors from the mean. Observed mean trait values beyond the 95% CI are significantly 

different.  
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H2: Traits are equally affected by spectral mixing 

Variations in the average percent difference of a predicted trait value from the predicted trait 

value of the target species endmember, or average percent change, were calculated for each trait by 

summing the percent variation of each 50% mix and dividing by the number of species (n = 23). 

Average percent change is relevant for determining if the addition of 2, 3, or 4 other species within a 

spectral signature causes an observable change in the predicted trait value from the predicted value 

of the pure target species spectra. Variation from the baseline would suggest that the spectral mixing 

does alter the capacity to estimate a trait and can highlight which traits are affected the most by 

mixing. Cumulative percent was calculated by summing the absolute value of percent change in trait 

value of each 50% mix.  Cumulative percent change is relevant for two reasons. First, it presents the 

effect that each additional species has on the prediction of a specific trait. Second, it highlights 

which traits are more affected than others at each specific mixing level (2, 3 or 4 species). The 

average and cumulative percent changes of each trait at 50% target presence were calculated for 2-, 

3- and 4-species mixes.  

H3: Spectral mixing with different plant lifeforms does not affect trait prediction  

The evaluation of significant trait variation between lifeforms was conducted by grouping 

measured trait values by lifeform. I  tested each lifeform group for normality using the Shapiro-Wilk 

test and found many traits exhibited a non-parametric distribution. Significance of trait variation 

between lifeforms was therefore tested using the Kruskal-Wallis one-way analysis of variance. If the 

Kruskal-Wallis test was significant a pairwise Wilcox test was used to determine which specific 

lifeforms were different.  
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3.2.4 Software 

Modelling, data manipulation and plotting were conducted using the R computing language 

4.0.0 (R Core Team, 2021), the ‘pls’ (Liland et al., 2021)  and ‘tidyverse’ (Wickham et al., 2019) 

packages . The mathematical functions used to conduct vector normalization and generate 

fractionated spectra were provided by the ‘spectrolab’ package (Meireles and Schweiger, 2021).  

3.3 Results 

3.3.1 Measured trait values and PLSR modelling 

All but two of the 14 measured leaf functional traits varied significantly between graminoid, 

forb, shrub and tree lifeforms (Figure A2). Carotenoid values for graminoid and tree species and 

LMA values between graminoids and shrubs were the only trait-lifeform relationships that did not 

significantly differ from each other. The accuracy of the trait prediction using the single species leaf 

spectra models varied, with R2 ranging from 0.10 to 0.85. Due to their low accuracy, carotenoid 

content (R2 = 0.36), carbon % (R2 = 0.48), solubles % (R2  = 0.41), hemicellulose % (R-2=0.36), 

lignin % (R2 = 0.46) and recalcitrant % (R2 = 0.28) were not included in further analyses. The 

remaining 8 traits demonstrated acceptable predictive accuracies (R2 = 0.54 – 0.85), with LDMC (R2 

= 0.67), LMA (R2 = 0.69) and EWT (R2 = 0.85) producing the highest R2 (Table A2). The 8 accepted 

traits demonstrated NRMSEP values between 16% and 33%. Model accuracies of the 8 accepted 

traits are within our thresholds and consistent with other scientific literature evaluating plant 

functional traits in grasslands using leaf spectroscopy and PLSR (Wang et al., 2019). The number of 

components used in a single model varies from 4-8.  

3.3.2 Effects of spectral mixing on functional trait prediction 

The predicted means and 95% confidence intervals of the eight accepted traits derived from 

spectra with 100% target species (V. sativa) presence are presented in Table 5. The values displayed 
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under “Percent of Deviation” in Table 5 represent the lowest percentage of target species for which 

the predicted functional trait values would be considered accurate (within the 95% CI). Any mix 

containing a lower percentage of the target species resulted in a significantly different trait prediction 

and precluded target detection using that specific trait. 

As target species presence decreased, the predicted values of each trait deviated from the 

baseline mean (Table 5). When target species presence dropped below 80% the predicted values for 

both C:N and EWT crossed beyond the 95% CI for 2-species mixes, indicating that the effects of 

spectral mixing were significant when the target species comprised less than 80% of the mixed 

spectral signature (Table 5). Nitrogen % demonstrated significant changes in prediction accuracy at 

70% when two species were mixed together, while LMA and LDMC remained accurately predicted 

until target species presence dropped below 30% (Table 5). Predicted values of chl a remained 

accurate until only 20% of the 2-species mix was composed of V. sativa (Table 5). Chlorophyll b and 

cellulose were accurately predicted as long as target species presence remained 20% or higher (Table 

5). 

When the number of species present in a spectral mix increased, the accuracy of trait 

prediction was affected more heavily for certain traits than others. The effects of spectral mixing on 

the predicted values of EWT, C:N, cellulose and chl b were realized at the same percent of target 

species presence, regardless of 2-, 3-, or 4-species being included (Table 5). The accuracy of %N 

predictions were compromised when target species was below 70% for 2- and 3-speices mixes, while 

4-species mixing effects occurred when V. sativa dropped below 80% (Table 5). Chlorophyll a was 

significantly affected by spectral mixing at 20% target species presence for 2- and 4- species 

presence, but 10% for 3-species mixing. Spectral mixing affected LMA and LDMC inconsistently as 

the number of species included in the mix increased (Table 5). LMA was significantly affected when 
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target species dropped below 30% for 2-species mixes and 40% for 4-species mixes, yet prediction 

accuracy of 3-species mixes was only affected below 10% (Table 5). Even when mixing significantly 

affected LMA, predicted vales were only slightly outside the 95% confidence interval when target 

species presence was 20% or higher (Figure 7). Visualizations similar to Figure 7 for the other seven 

functional traits evaluated in this research are available in the appendices (Figure A3a – g).  LDMC 

demonstrated prediction inaccuracies below 30% and 50% for 2- and 3-sepcies mixes, respectively, 

while 4-species mixes were unaffected by mixing (Table 5). 

Table 5. Mean predicted trait value for the target species endmember, or baseline trait value, and lowest 
percent target species at which the predicted trait value remains within 95% confidence interval (CI) for 
each accepted trait. Percent of target species when mean trait invariant refers to the percent of target 
species (V. sativa) in the mix when the mean predicted trait remains within the 95% CI. All mixes 
containing target species presence lower than the displayed values result in significantly different trait 
predictions. “Within 95% CI” denotes that the predicted trait values for this trait at a given mixing level is 
not significantly affected by spectral mixing when target species presence is less than 20%. 

  Percent of target species when mean trait invariant  

Trait Baseline mean (95% CI) 2-species mix 3-species mix 4- species mix 

Chlorophyll a 11.69 (10.48, 12.90) 20%  10%  20%  

Chlorophyll b 3.84 (3.41, 4.27) Within 95% CI Within 95% CI Within 95% CI 

%N 3.60 (3.40, 3.79) 70%  70%  80%  

C:N 12.79 (11.77, 13.82) 80%  80%  80%  

LMA 36.91 (33.9, 39.90) 30%  10%  40%  

LDMC 235.86 (225.11, 246.61) 30%  50% (226.37) Within 95% CI 

EWT 0.010 (0.0096, 0.011) 80%  80%  80%  

Cellulose 15.00 (14.27, 15.74) Within 95% CI Within 95% CI  20%  
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Figure 7. Changes in the predicted leaf mass per area (LMA g/m2) for four levels of percent target species 
presence  (20, 40, 60 and 80%). 2- (n = 22), 3- (n = 110) and 4-species (n = 409) mixes refer to the total 
number of species included in the mix. The horizontal red line represented the predicted trait value for the 
target species endmember. Horizontal black lines within each box indicate the median predicted trait 
value and the whiskers of each box represent the largest value equal to or within 1.5 times the inter-
quantile range. Mean trait values outside the 95% confidence interval (horizontal dotted lines) are 
significantly affected by spectral mixing. 

Further comparison of species mixing with 50% target species presence at 2-, 3- and 4-

species mixing levels indicated that the effects of spectral mixing vary. The average percent changes 

of the predicted trait values for each accepted trait demonstrated that some traits are more affected 

when additional species contribute to the spectral profile analysed (Figure 8a). For example, the 

average predicted values of C:N and EWT decrease substantially due to mixing, while LMA and 

cellulose decrease slightly, but remain relatively unaffected (Figure 8a). The predicted values of %N, 

chl a and chl b increase slightly due to mixing, while LDMC is relatively unchanged (Figure 8a).  

Cumulative percent changes were greatest in C:N and increased by a factor of four for each 

additional species (Figure 8b). Cellulose and LDMC demonstrated the lowest cumulative change due 
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to an increase in the number of species, with cumulative change from 4-species mixes being at least 

half of all other traits (Figure 8b). Like C:N, the remaining five traits demonstrated a 4-fold increase 

in cumulative percent change for each additional species, however their maximum cumulative 

change value was 4000 (Figure 8b).  

 

(a) 

 

(b) 

Figure 8. The (a) average and (b) cumulative percent change of trait prediction for eight traits using a 
mixed spectra with 50% of the target species (Vicia sativa). A value of 0 (black line) is equivalent to the 
predicted trait value using the target species endmember. 

Unique lifeforms reacted in different ways when combined with the target species at the 2-

species mixing level, and these effects varied by trait. Median LMA values for tree mixes at all ratios 

are above 95% CI (Figure 9a). Median LMA values for all non-tree species remain within 95% CI 

until target species presence drops below 30% (Figure 9a). Shrub and graminoid median LMA values 

exceed 95% CI when target species is equal to 20% (Figure 9a). 

The predicted value of %N, for example, increased with target species presence (Figure 9b). 

This relationship was observed in all four lifeforms, with the only exception to this trend being the 

shrub C. scoparius. Predicted %N of tree and graminoid lifeforms are significantly affected by spectral 
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mixing when target species presence is lower than 80% in a 2-species mix (Figure 9b). Predicted %N 

of forb and shrub lifeforms are significantly affected by spectral mixing when target species presence 

is lower than 60% (Figure 9b). 

 

Figure 9. Predicted trait values of (a) nitrogen percent (%N) and (b) leaf mass per area ((LMA g.m-2) of 
graminoid (light grey), forb (grey), shrubs (dark grey) and trees (black) mixtures for four levels of target 
species (Vicia sativa) presence (20, 40, 60, and 80 %). The red line represents the predicted trait value 
for the  target species endmember (%N = 3.56%; LMA = 36.91 g/m-2) and dotted lines indicate (95% CI 
from the baseline trait mean (%N = 3.40%, 3.79%; LMA = 33.92 g/m-2, 39.90 g/m-2). Horizontal black 
lines within each box indicate the median predicted trait value and the whiskers of each box represent the 
largest value equal to or within 1.5 times the inter-quantile range. 
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3.4 Discussion 

This research determined that the prediction accuracy of leaf functional traits using PLSR 

and leaf spectra changes as the number of species present in a pixel increases, suggesting that 

spectral mixing should be taken into consideration when mapping prairie-oak plant species or leaf 

traits at spatial scales larger than the footprint of the smallest species. It is also the case that some 

traits are more affected by spectral mixing than others and that the selection of a specific trait for 

analyses should take this into account. The introduction of different lifeforms also alters the capacity 

of PLSR models to predict leaf functional traits, which presents both opportunities and 

complications when evaluating leaf functional traits in prairie-oak ecosystems. 

3.4.1 PLSR Modelling  

This study suggests that five leaf functional traits (EWT, C:N, %N, LDMC and LMA)  are 

well predicted using leaf spectroscopy and PLSR modelling, while three others (cellulose, chl a and 

chl a) are relatively accurate, meaning eight traits were deemed to have acceptable prediction 

accuracies. The capacity for PLSR to accurately model these eight accepted traits is likely due to their 

strong association with absorption features in the EMS and the large amount of spectral information 

captured by the sensor (350 nm – 2500 nm). This latter justification enables the accurate prediction 

of traits that have influence in multiple regions of the EMS, rather than one. Carotenoids, 

hemicellulose, lignin, solubles and recalcitrants were deemed to have unacceptably low predictive 

accuracies and were not included in further analyses. Each accepted trait was considered for site-

wide analyses following methods similar to other studies that employed spectroscopy to evaluate leaf 

functional traits or diversity (Asner and Martin, 2009; Van Cleemput et al., 2018). However, 

evaluation of spectral mixing on the prediction of these traits shows that some models are more 

affected than others by the inclusion of multiple species within a single pixel. For example, predicted 
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LMA does not vary significantly from the pure prediction value until the presence of the target 

species was below 30%, while EWT is significantly changed when target presence is lower than 80%. 

These effects suggest that models with relatively high prediction accuracy can still be subject to the 

effects of mixing, and that mixing must be taken into consideration when deciding which trait(s) to 

analyse. 

3.4.2 Spectral mixing increases the prediction error of functional trait estimation 

Although the presence of more than one species within a single pixel has the capacity to 

affect trait prediction, the inclusion of additional species does not have a large effect on the capacity 

to predict functional traits. Overall, the resilience in predictive accuracy varies depending on the 

trait. This suggests that the trait being evaluated and percent of the target species present are key 

drivers of changes in predictive capacity, highlighting findings from other studies that suggest the 

selection of pixel size, and in turn flight altitude and speed, is of great importance during study 

design (Melville et al., 2018; Wang et al., 2018). 

3.4.3 Specific traits vary due to spectral mixing more than others 

Examination of how the eight accepted traits are predicted as the number of species 

observed increases suggests that some traits are affected uniquely. The average percent change in 

predicted values does not vary due to increased mixing for each of the eight traits evaluated, 

suggesting that the effects of mixing with one additional species are offset by the effects of a 

different additional species. This is interesting as it implies that each trait is relatively well suited for 

prediction despite mixing, which is in fact untrue. 

Despite the average change of predicted trait values remaining relatively constant, the 

absolute cumulative change of predicted values does increase as the level of mixing increases for all 

traits, with some predicted values quadrupling. This proves that even traits which are accurately 
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predicted, such as LMA, chl a and EWT, may experience large variations in predicted values 

depending on both how many and which species contribute to reflectance. This is consistent with 

previous literature suggesting that practical management applications utilizing imaging spectroscopy 

should select a pixel size smaller than that of the smallest expected plant footprint in ecosystems 

with high likelihood of spectral mixing, regardless of the trait being analyzed (Feilhauer et al., 2017; 

Gholizadeh et al., 2019).  

3.4.4 Certain lifeforms alter predicted trait values more than others 

Spectral mixing of different lifeforms affects the accuracy of functional trait prediction in a 

variety of ways. For example, mixes that included graminoid species tended to have a lower 

predicted %N than the three other lifeforms. Such knowledge could make trait selection more 

straightforward for grassland managers attempting to evaluate changes in diversity or community 

composition over time. This analyses of the spectral mixing on predicted %N also isolated a species 

with significantly higher %N values than all other species when only 20% present. C. scoparius is a 

highly invasive shrub introduced to North America from Europe (Brandes et al., 2019). This species 

is a nitrogen-fixing legume and has the capacity to alter the soil chemistry and biodiversity of its 

environment, presenting a threat to traditional ecosystem processes in many North American 

prairie-oak ecosystems (Carter et al., 2018; Shaben and Myers, 2010). The fact that the analyses of a 

single functional trait, %N, could potentially provide coverage estimates for graminoids and isolate 

an invasive shrub promote its selection as the focal trait for future analyses, and is consistent with 

other literature highlighting the capacity of foliar N concentration to identify nitrogen-fixing 

invaders (Asner et al., 2008b).  

Another interesting management opportunity comes in the isolation of Q. garryana, the 

dominant tree species found in Garry oak savannas, when evaluating the effects of its inclusion in 



49 
 

the prediction of LMA using a mixed spectra. Compared to all other species, Q. garryana has much 

higher measured and predicted LMA values, even when mixed. This could be due to a variety of 

factors, including the evolution of a defence mechanism against local predators and parasites (Fuchs 

et al., 2000) or to improve the capacity for leaves withstand changes in the thermal environment 

(higher LMA leads to slower responses to extreme heat, enabling the avoidance of lethal 

temperatures during fire or drought) (Michaletz et al., 2016).   

The capability of predicted leaf LMA to identify Q. garryana individuals presents an 

opportunity to distinguish grassland boundaries, highlight the location of young seedlings and enable 

more accurate analyses of the distribution of trees across the landscape, which are all important 

considerations when managing structural diversity in an ecosystem with relatively low  (Larue et al., 

2019). Interestingly, the identification of any species exhibiting a significantly different predicted trait 

value, especially when only 20% of said species is present within a pixel, suggests that pixel size may 

not need to be equivalent to the smallest expected footprint and that the acquisition of imaging 

spectroscopy may remain accurate at larger spatial resolutions, depending on which species and trait 

are being evaluated.  

The overarching issue of spectral mixing is on the capacity for airborne sensors to accurately 

predict functional traits. In prairie-oak savannas it is possible to have as many as 26 unique species 

present in a single 1 m2, meaning that imagery with spatial resolution smaller than this would be 

required to accurately detect a single species or generate an accurate map of functional traits. 

Currently, there are a variety of airborne sensors that can capture imagery at sub-meter spatial 

resolution. 

Airborne sensors mounted aboard aircraft, e.g., Compact Airborne Spectrographic Imager 

(CASI) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), could provide accurate 
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functional trait mapping if a single plant species covered more than 60 cm2 of the landscape, but 

would likely be more useful in forested ecosystems, rather than prairie-oak savannas. Sensors 

deployed on drone platforms, however, are much more likely to collect imagery with the requisite 

spatial and spectral resolutions to capture reflectance values from a single plant species. Specifically, 

the ease at which drone pilots can manipulate altitude and flight speed to alter the spatial resolution 

of the images they capture presents an opportunity more suitable for prairie-oak savannas. 

3.5 Conclusion 

The framework presented in the paper provides a general method from which to consider 

the effects of spectral mixing on leaf functional trait prediction in any biome. In prairie-oak 

ecosystems, such as those found on North America’s west coast, this framework demonstrated that 

the inclusion of leaf optical reflectance from more than one plant species in a spectral signature 

spanning 400 – 2400 nm can lead to changes in the predictive capacity of subsequent models and 

that these changes vary by trait. LMA demonstrates the greatest capacity to withstand spectral 

mixing, suggesting it is a useful trait for mapping functional trait variation in prairie-oak ecosystems 

where the probability of mixing is high. Nitrogen % presents an opportunity to isolate a key invader, 

C. scoparius, and has the potential to quantify the presence of graminoids within a pixel, but is less 

accurately predicted by a general site model when spectral mixing is high. The mixing of unique 

lifeforms also affects the prediction of individual functional traits differently and highlights the 

capacity for spectroscopic data to capture underlying differences in ecological strategies between 

some lifeforms. These differences provide opportunities to streamline components of data 

acquisition, including trait selection and flight parameters. 

In this chapter, I’ve provided evidence that spectral mixing can have a variety of effects on 

the accuracy of leaf functional trait prediction. This knowledge addresses the knowledge gap relating 
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to the impact of spectral mixing and provides information relevant for researchers using imaging 

spectroscopy to estimate functional traits in heterogenous ecosystems similar to prairie-oak 

savannas. In the following chapters, I shift from the exploration of a theoretical knowledge gap to 

analyses that use predicted leaf functional traits to address the fundamental ecosystem characteristics 

of prairie-oak ecosystem that Environment Canada have deemed to be at risk (Fuchs, 2001). 
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Chapter 4: Distribution of leaf economic strategies across a prairie-oak ecosystem 

4.1 Background and Motivation 

The research in this chapter addresses two knowledge gaps highlighted by Fuchs et al. 2001 

regarding the impact of habitat fragmentation and fire suppression on prairie-oak ecosystems. 

Specifically, I explore the impact of anthropogenic activities on the spatial distribution of leaf 

functional traits. A variety of studies have demonstrated that plant nutrient investment strategies are 

coupled with leaf functional traits and can be evaluated remotely by observing leaf reflectance across 

many narrow wavelengths (Asner and Martin, 2009). The combination of leaf and imaging 

spectroscopy enable the accurate prediction of functional traits and has proven to be accurate across 

multiple biomes (Asner et al., 2016; Wang et al., 2020). At the site-level, however, it is important to 

evaluate the influence of specific environmental factors on leaf functional traits and the underlying 

leaf economics as climatic variation is negligible.  

Site-level analyses of high-value ecosystems can provide vital information for land managers in 

relation to external pressures, including anthropogenic land use change and fire suppression 

(Wyborn and Evans, 2021). In Canada, prairie-oak savanna ecosystems on the south-east coast of 

Vancouver Island are endangered, covering less than 5% of their historic area (Fuchs, 2001). These 

ecosystems are highly biodiverse and provide habitat for some of red-listed plant, bird and insect 

species, as well as represent refuge for a variety of native bird and insect populations (Bjorkman and 

Vellend, 2010; Fuchs, 2001; House et al., 2003). Recent advances in imaging spectrometers and 

RPAS provide an opportunity to quantitatively evaluate the distribution of FTs in across a landscape 

using imagery with high spatial and spectral resolution (Arroyo-Mora et al., 2021). 
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In this study, I will explore the spatial relationship of leaf economics and anthropogenic 

activities in a prairie-oak ecosystem using leaf and imaging spectroscopy. First, I use PLSR to 

generate predictive models for 14 leaf FTs spanning 23 species and four plant lifeforms. Second, I  

determine correlations between FTs that can be accurately predicted using PLSR. Third, I apply our 

PLSR models to reflectance data collected using imaging spectroscopy to assign relative FT values to 

each pixel. Principal component analysis will determine if these spatially explicit FT layers present 

similar correlation to leaf economic strategies identified at the leaf level, as well as in the literature. 

Finally, I  will explore the association of leaf economic, or functional, strategies with both 

anthropogenic and ecological variables. Three research questions are addressed to determine the 

significance of these influences on leaf FT distribution and leaf economics: 

1. Can leaf economic strategies be identified from FTs using leaf spectroscopy? 

2. Do leaf economic strategies scale between leaf level measurements and predicted FTs 

using RPAS imaging spectroscopy? 

3. Are leaf economic strategies spatially autocorrelated (clustered) across a prairie-oak 

savanna with anthropogenic activities? 

4. Are leaf economic strategies spatially associated with anthropogenic activities? 
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4.2 Materials and Methods 

4.2.1 Data Overview and surface modelling 

The data used for this research was collected during the May 2019 field campaign. Leaf 

spectroscopy and chemical results from 23 plant species were used as input spectra for the body of 

this analysis, as well as to generate 14 leaf functional trait PLSR models. Specifics regarding leaf and 

chemical data curation from the May 2019 campaign are outlined in Sections 2.3 and 2.4 

respectively, while the details of the PLSR models are presented in Section 3.2.1. The imaging 

spectroscopy data used for this research was also collected during the May 2019 field campaign, 

details of which have already been presented in Section 2.5.  

A point cloud collected using ALS by the Municipality of North Cowichan on May 29, 2017 

was used to generate surface models relevant for calculating canopy cover and creating digital terrain 

(DTM) and surface (DSM) models. The DTM was created using a Kriging method with 10-k nearest 

neighbours at a 50 cm2 resolution and used as input to calculate a site-wide topographic wetness 

index (TWI). The DSM was generated using a pit-free algorithm at a resolution of 10 cm2 and 

provide information relevant to the light regime and distance from trees of each pixel. The DSM 

also enabled the determination of subsite canopy cover, and the identification of Low, Medium and 

High cover subsites) by comparing the number of pixels above 2 m in height with the total number 

of pixels (Table A3). 

4.2.3 Leaf trait and economic mapping 

Spatially explicit trait maps were generated by applying the FT PLSR models to each pixel in 

the RPAS imaging spectroscopy data collected in May 2019. A final outlier mask was applied to 

remove the highest and lowest 2.5% of each trait value and all traits layers were normalized. Leaf 

economic strategies present in the imagery were evaluated by conducting principal component 
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analysis (PCA) on the eight accepted trait layers, which enabled a comparison of leaf economic 

strategies present in the chemical data with those in the imagery. PCA also allowed the mapping of 

leaf economic strategies and the evaluation of spatial autocorrelation using Global Moran’s I 

(Moran, 1950).  

4.2.4 Association with anthropogenic activities 

Three anthropogenic variables were identified as having direct impact on the landscape due 

to their influence on fire suppression and land cover change. The distance of each pixel to the 

nearest road was calculated using open-source spatial data accessed via the BC Data Catalogue 

(www.catalogue.data.gov.bc.ca). A total of 10 strata with equal widths were calculated for each 

subsite before the random sampling of 30 pixels/ strata was conducted.  Distance to the nearest tree 

crown was determined using pixels in the DSM that were greater than or equal to 2 m. A total of 9 

strata of 1 m width were created before 30 pixels/strata were sampled randomly.  

The annual light regime of each pixel in an image was estimated by determining the hourly 

shadow value for each pixel between 7 am and 7 pm on the 15th day of each month for the entire 

2019 growing season (May 1 – October 17). A total of 78 rasters were summed to determine the 

number of hours each pixel spent in the shade. Pixels experiencing 0 – 26 hours of shade were 

considered to be sunlit, while pixels shaded for over 56 hours were considered shaded. A summed 

shadow value between 26 and 52 representing partially shaded pixels. A topographic wetness index 

(TWI) was generated for the entire site using the slope and flow accumulation products derived 

from the DTM. TWI products for each subsite were generated and classified as wet, damp or dry. 

4.2.5 Software 

 Image pre-processing, specifically manual feature removal, was conducted using ENVI 5.6 

(Exelis Visual Information Solutions, Boulder, Colorado) and Atmospheric and Topographic 

http://www.catalogue.data.gov.bc.ca/
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Correction (ATCOR) (Arroyo-Mora et al., 2021), while image analyses were conducted in R using 

the ‘terra’ and ‘sf’ packages (Core et al., 2021; Hijmans, 2022; Pebesma, 2018). Statistical analyses, 

including sampling, were conducted in R using ‘terra’ and ‘sgsR’(Goodbody and Coops, 2021). Data 

manipulation relating to model derivation and plotting utilized the R packages ‘tidyerverse’, 

‘ggplot2’, ‘ggfortify’, ‘ggpubr’ and ‘ggpmisc’ (Aphalo, 2021; Horikoshi and Tang, 2018; Kassambara, 

2020; Wickham et al., 2021, 2019). Shadow masks spanning the 2019 growing season were created in 

R using the ‘rayshader’ package (Morgan-Wall, 2021). The topographic wetness index was created in 

R using the “Whitebox’ and ‘rgdal’ packages (Bivand et al., 2021; Lindsay, 2016).  

4.3 Results 

4.3.1 Trait Modelling and Prediction 

Of the 14 leaf FTs modelled, only 8 were considered acceptable for use in further analyses 

(Table A2). The accuracy of the accepted trait models varied, with R2 and NRMSEP values ranging 

from 0.54 – 0.85 and 16  - 33%, respectively. EWT demonstrated the highest R2 (0.85), while LMA 

(0.69) and LDMC (0.67) were also considered good. Overall, the accuracies of our accepted models 

fall are within the range of other PLSR models conducted on grassland plant species presented in 

the literature (Wang et al., 2019).  
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4.3.2 Site-level PCA 

The first three components generated from a site-wide PCA of the predicted FTs explained 

91.71% of trait variance (Table 6, Figure A4). The loading values of PC1 represent a trade-off 

between high leaf growth (Chl a and b) and overall leaf functioning (LMA), which follows the global 

‘fast-slow’ growth strategy highlighted by the leaf economic spectrum (Table 6, Figure A4a). A trade 

off between leaf water content (EWT) and leaf structure (Cellulose) is identified by the loading 

values of PC2, while PC3 represents the strategy to invest in leaves with high %N and all other traits 

(Table 6, Figure A4b). PC1 therefore represents an axis of resource allocation along a leaf growth – 

defence (GR-DU) economic spectrum, while PC2 highlights investment in either leaf water content 

or structural defences (H20-ST). PC3 is indicative of high levels of investment in leaf %N (N-n). 

4.3.3 Subsite PCA 

The first three PCs of each subsite explained at least 93.78% of trait variation and followed 

the same trade-offs highlighted at the site level (Table 7, Tables A4 – 6, Figure A5). As cover 

increased, the association of all traits along GR-DU and H20-ST spectrums remained relatively 

constant (Table 7). The amount of variation explained along GR-DU at the low cover subsite was 

less than that of the Medium and High subsites (Table 7). Explained variance of H20-ST increased 

an average of 7.31% with cover, while N-n decreased by 5.75% (Table 7). The N-n spectrum 

became less important as cover increased.  

4.3.4 Principal Component Prediction 

The predicted values of PCs 1 – 3 for all pixels across the three subsites were mapped, 

enabling analysis of various spatial relationships. Each of PC1 – 3 are spatially autocorrelated (Table 

A7). PC1 (GR-DU) and PC2 (H20-ST) become more spatially autocorrelated as cover increases, 

while PC3 (N-n) becomes less spatially autocorrelated as cover increases (Table A7). The capacity to 
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map principal components enables the evaluation of spatial relationships between leaf economics 

and anthropogenic activities (Figure 10).  

Table 6. Loading and proportion of variance values for each principal component derived from analyses 
of eight functional trait layers at the CGOP. 

Site PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Proportion of 
Variance (%) 55.91 24.40 11.4 4.58 2.07 1.03 0.56 0.05 

Chl a -0.45 0.17 -0.08 0.08 -0.04 0.3 0.3 0.76 
Chl b -0.4 0.24 -0.27 0.3 0.65 -0.42 0.02 -0.16 
C:N -0.36 -0.4 -0.23 0.07 0.05 0.37 -0.71 -0.02 
%N -0.18 0.3 0.86 -0.04 0.22 0.08 -0.3 0.02 

EWT 0.34 0.43 -0.22 -0.02 0.36 0.69 0.04 -0.18 
LDMC -0.37 -0.33 0.08 -0.64 0.25 0.17 0.4 -0.28 
LMA 0.43 -0.2 -0.05 -0.39 0.49 -0.22 -0.22 0.54 

Cellulose 0.19 -0.57 0.28 0.58 0.3 0.2 0.31 0.02 
 

Table 7. Explained variance of the first three principal components at low, medium and high cover 
subsites. 

Proportion of Variation (%) PC1 PC2 PC3 

Low 61.36 19.34 13.08 

Medium 64.59 25.79 8.06 

High 64.06 33.95 1.59 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 10. Values of (a) principal component 1, (b) 2 and (c) 3 in a 10 m2 subsection of the CGOP. Each 
component represents a spectrum along which plants invest resources in pursuit of a specific leaf 
economic strategy. 
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4.3.5 Relation to anthropogenic activities 

There was significant shift from a growth economic strategy to one of leaf durability as 

distance to the nearest tree increased at Low and Medium cover subsites (Table 8, Figure A6). Shifts 

along H20-ST were significant as the distance from the nearest tree increased at all cover levels. At 

the Low cover subsite, plants grew leaves favouring structural defence over water content as the 

distance from trees increased, while the opposite economic strategies occurred at Medium and High 

cover subsites. Leaf %N increased and decreased in relation to distance from the nearest tree at Low 

and Medium cover subsites, respectively. The manifestation of leaves with high %N at High cover 

sites was not associated with anthropogenic or environmental variables. 

The distance of a pixel to the nearest road influenced values of each economic strategy in 

various ways across all cover levels (Table 8, Figure A7). At the High cover subsite fast-growth was 

favoured as distance from the nearest road increased. PC2 values decreased with distance to the 

nearest road at all cover levels. The values of PC3 were not influenced by distance to the nearest 

road at the Low cover site, but increased with distance when cover was Medium. The High cover 

subsite demonstrated a decrease in PC3 values with increased distance from roads. 

Variations in light regime over the course of the growing season influenced PCs 1 -3 in different 

ways across cover levels (Table 9, Figure A8). PC1 was unaffected by the light regime at Low and 

High cover subsites, but had a positive correlation at Medium cover. The relationship of PC2 values 

and light was negative when cover was Low, but positive at the Medium and High cover subsites. 

PC3 values increased with increasing light at Low and High cover subsites, while the decreased in 

Medium cover.  At all subsites PC1 and PC3 were not influenced by topographic wetness (Table 9, 

Figure A9). PC2 values did not change in relation to TWI at Low and High cover subsites. The PC2 

values at the Medium cover demonstrated a positive relationship with wetness. 
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Table 8. Correlation and significance values derived using Pearson’s r for PCs 1 – 3 in relation to their 
distance from the nearest tree (top) and road (bottom) at each subsite. 

 Low Medium High 
Trees R p-value R p-value R p-value 
PC1 0.22 <0.001* 0.23 <0.001* 0.082 0.18 
PC2 -0.13 0.04* 0.27 <0.001* 0.31 <0.001* 
PC3 0.18 0.004* -0.44 4.90E-13* 0.031 0.62 

 Low Medium High 
Roads R p-value R p-value R p-value 
PC1 -0.089 0.12 -0.084 0.15 0.13 0.023* 
PC2 -0.49 < 0.001* -0.17 0.0038 * -0.39 < 0.001* 
PC3 -0.0028 0.96 0.37 < 0.001* -0.22 < 0.001* 

 

Table 9. Relationships and significance values derived by fitting an analysis of variance model for PCs 1 
– 3 in relation to the local light regime (top) and topographic wetness (bottom) at each subsite. 

 Low Medium High 

Light F p-value F p-value F p-value 

PC1 0.22 0.64 6.88 0.01* 0.63 0.43 

PC2 4.59 0.04* 38.91 <0.001* 26.4 <0.001* 

PC3 5.65 0.02* 8.11 0.01* 11.71 <0.001* 
 Low Medium High 

TWI F p-value F p-value F p-value 

PC1 0.27 0.6 0.01 0.92 0.13 0.72 

PC2 1.55 0.22 4.86 0.03* 0.13 0.72 

PC3 0.03 0.85 0.05 0.82 0.07 0.79 
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4.4 Discussion 

In leaf economics, carbon is the common currency and is linked to plant energy budgets as 

these processes govern the rate of carbon assimilation (Michaletz et al., 2015). These energy budgets 

are guided by a variety of environmental and biological variables that ultimately lead to the 

manifestation of leaf FTs that will optimize a plant’s carbon economic balance. The selection of a 

specific leaf FT over another represents a trade-off that can be characterized as a leaf functional 

strategy and generalized based on the correlations inherent in the trade-off (Reich et al., 1998; 

Wright et al., 2004). Evaluation of these functional strategies in space can provide information 

relating to the underlying health of an ecosystem and any differences that occur across a landscape. 

In the case of this research, we have shown that anthropogenic activities that change the 

composition of prairie-oak ecosystems can significantly impact the spatial distribution of leaf 

functional strategies.  

At the site-level, the trade-off between rapid leaf growth and leaf durability explained the 

largest amount of trait variation, which follows the growth – longevity LES presented by Wright et 

al 2004 and could be due to a variety of factors including access to water, key nutrients or solar 

radiation. The second most variation was explained by the relationship between EWT and leaf 

structure, highlighting a trade-off between low and high leaf construction costs, respectively, (Féret 

et al., 2019; Wright et al., 2004). This H20-ST spectrum is likely driven by a combination of a plants 

access to resources and the presence of herbivorous insect species (Fuchs et al., 2000). The third 

principal component isolated leaf %N from all other traits and, although it explained only 11.40 % 

of the total variation, suggests that access to nitrogen may drive trait manifestation across the site. 

Combined, the first three components suggest that plants at this site grow leaves that are either fast-

growing or long-lived, depending on a variety of environmental factors. 
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 The economic trends represented at the site-level scale across all three subsites, although the 

relative influence of PCs 1 – 3 vary with canopy cover (Table 7). At all cover levels, the GR-DU 

spectrum explains between 61 - 65 % of trait variation and highlights the scalability of this leaf 

economic trade-off. Investment in leaf water content or leaf structure explains an increasing amount 

of variation with increased cover (Low  = 19.34 %, High = 33.95 %). This could be associated with 

differences in soil water or temperature due to the influence of tree cover on microclimate (De 

Frenne et al., 2019). Trait variation explained by the N-n spectrum has an inverse relationship with 

canopy cover, decreasing in importance as tree cover increases. This could highlight an allocation of 

resources in leaf productivity and growth in sunlit areas despite the likely higher N content in soil 

closer to the tree canopy (Jackson et al., 1990; Vetaas, 1992). 

  Spatial autocorrelation of all economic spectra occurred at all cover levels, suggesting that 

leaf economic strategies are pursued in relation to environmental conditions. GR-DU and H20-ST 

become more autocorrelated as cover increases, suggesting that the presence of trees is a key driver 

of leaf resource allocation. The N-n spectrum becomes less spatially autocorrelated with increasing 

canopy cover, supporting the notion that increased leaf litter or enhanced nutrient cycling associated 

with overstory trees reduces the limitation of N (Jackson et al., 1990). Overall, the spatial 

autocorrelation of leaf economic strategies and their relationships with tree cover support the 

concept that they are driven by environmental factors, anthropogenic or otherwise.  

 Distance to the nearest tree was a significant driver of at least one economic strategy at all 

cover levels. A positive correlation exists between high growth strategies and the distance to trees at 

Low and Medium cover subsites and suggests that as tree cover increases, plants grow leaves with 

higher LMA at the cost of chlorophyll, perhaps due to decreasing access to solar radiation. The lack 

of a significant correlation in relation GR-DU at High cover could be due to a reduction in variation 
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of soil nutrients, light regime or microclimate. Increasing distance from trees also led to a shift in 

investment strategies along H20-ST at Medium and High cover subsites as leaves further from tree 

cover elect to have relatively high water content. This is indicative of fast-growing leaves and could 

be related to an increase in available solar radiation, increased soil water increased soil N from leaf 

litter or a combination of these three (Féret et al., 2019; Jackson et al., 1990). The inconsistent 

relationship with N-n and the distance to trees at the Low and Medium cover subsites combine with 

the lack of any correlation at the High cover subsite to suggest that, although potentially limiting 

across the site, leaf strategies related to %N are not directly driven by a plant’s distance to the 

nearest tree. 

 Adjacent roadways and their specific distance from a plant significantly influenced GR-DU, 

H20-ST and N-n in at least one subsite. Leaf economic strategies related to GR-DU were impacted 

at the High cover site, while insignificant at Low and Medium cover. At High cover, an increase in 

the distance from a road resulted in greater investment in leaf structural at the cost of growth. This 

could be due differences in nutrient availability associated with roadside inputs, but seems more 

likely to be correlated with the amount leaf litter input and therefore associated with tree canopy 

cover (Forman and Alexander, 1998; Jackson et al., 1990). At all cover levels plants elected to grow 

leaves favouring structure over water content as the distance from a road increased, suggesting that 

the increased soil water content associated with roadway runoff influence leaf economics (Forman 

and Alexander, 1998; Trombulak and Frissell, 2000). The growth of leaves with relatively high %N 

was not affected by the distance from the nearest road at low cover, perhaps indicating again that 

leaf %N is not directly driven by the presence of roads. Plants growing in the Medium and High 

cover subsites demonstrated positive and negative relationships with leaf %N, suggesting that 

although roads drive increases in some soil nutrients, such as salt, they are not driving leaf economic 
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strategies relating to growth or cell structure (Amrheln et al., 1992). Instead, these results support the 

idea that the increased access to water may be driving the growth of water rich-leaves.  

 V regime impacted the GR-DU spectrum at the Medium cover subsite, but not Low or 

High. Such inconsistencies suggest that light regime is not a key driver of the growth-durability 

trade-off. The growth of leaves with either high water content or relatively high structure axis, 

however, seems to be related more strongly to light availability as the H20-ST spectrum was 

significantly influenced at all cover levels. Plants growing in Low cover invest in leaf defensive 

structure as light availability increases. This could potentially be linked with drier soil and a more 

extreme microclimate associated with locations removed from tree cover (De Frenne et al., 2019; 

Vetaas, 1992). This relationship is reversed at the Medium and High cover subsites, supporting the 

idea that variations in soil moisture and microclimate due to the presence of trees impacts the 

availability of water and, in turn, investment in relatively water-rich leaves (Vetaas, 1992). N-n was 

significantly impacted at all cover levels, although demonstrated inconsistent relationships with 

increases in light availability. At Low and High cover, increases in the amount of light led to 

increases in the amount of leaf %N. At Low cover, this relationship signals an intent to create fast-

growing leaves and supports the idea plants select relatively higher leaf %N when water and leaf 

litter are relatively limited.  

Topographic wetness did not consistently impact leaf economic strategy. Neither the GR-

DU nor H20-ST spectrums were influenced at any level of canopy cover. N-n at Low and High 

subsites were also unaffected, while they increased with wetness when cover was Medium. Despite 

this significance, the inconsistent influence of topographic wetness on leaf economics across all 

subsites suggest the wetness is not a key driver of leaf economic strategies. This could be due to the 

small amount of annual precipitation that occurs at the site. This finding, however, can not lead to 
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conclusions relating to soil depth. Variation in soil depth could prove an important factor in the 

availability of soil nutrients and should be evaluated in future studies.  

The exclusion of wetness as a key driver of leaf economic strategies indicates that the key 

drivers of leaf economic strategies at the CGOP are more related to anthropogenic variables than 

ecological ones. Land cover changes, such as the construction of roadways, seem to impact the 

availability of soil nutrients and moisture while fire suppression, which leads to increased canopy 

cover and changes to the local light regime, affects resource allocation relating to leaf structure, 

water content and growth. This evidence presents a clear picture as to how plants elect to invest 

available resources and highlights the influence that humans can have on leaf economics at the site 

level. 

4.5 Conclusion 

Leaf economic trade-offs that exist across biomes also exist within a single site (Wright et al., 

2004). Specifically, the investment in either fast growing or structurally sound leaves explained the 

largest amount of trait variation across subsites regardless of canopy cover. The construction of 

leaves with either high water content or enhanced structure also played a considerable role in 

explaining the variation in trait manifestation, although this economic trade of tended to change in 

relation to the level of surrounding canopy cover. Leaf %N also played an important role in 

explaining the variation in leaf traits throughout space. All three major economic trade-offs were 

spatially autocorrelated, suggesting that immediate environmental factors could be driving leaf 

economic strategies. The distance of a plant from the nearest road or tree crown, as well as the local 

light regime, impacted resource allocation and highlighted the trade-offs of key leaf functional traits 

between to growth and structure.  
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These findings demonstrate that anthropogenic activities which alter traditional land cover 

composition or fire regimes can influence leaf economics. This research provides a methodology 

that can be used to monitor two of the fundamental prairie-oak ecosystem characteristics outlined 

by Fuchs et al. 2001 as critically threatened. In the next chapter, I present a second, unique 

methodology for monitoring the impact of anthropogenic activities on these same ecosystem 

characteristics using continent-wide models to predict leaf traits of Q. garryana. 
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Chapter 5:  Intraspecific trait variation in relation to anthropogenic activities2 

5.1 Background and Motivation 

  Research presented in this chapter continues bridging the first and second knowledge gaps 

presented by Fuchs et al. 2001 by evaluating the impacts of habitat fragmentation and fire 

suppression on prairie-oak ecosystems through the lens of a single species. Intraspecific trait 

variation (ITV) has been largely underrepresented in spectroscopic studies of natural ecosystems as 

many ecological studies assume that interspecific variation is much larger than intraspecific variation 

(Albert et al., 2012). This assumption inherently ignores the variation present between individuals of 

the same species by averaging their trait values into a species mean. Recent studies have shown that 

ITV exists and is an important factor when evaluating plant functional traits at the community-level 

(Albert et al., 2010; Asner and Martin, 2011; Siefert et al., 2015; Zagajewski et al., 2017).  

Correct interpretation of plant health is especially important in fragmented ecosystems that 

contain high-levels of biodiversity, making spectroscopy-based ITV increasingly relevant for the 

management of these areas. The conventional approach for understanding the effects of these 

modifications in the ITV of a species across a single site would include complete soil and vegetation 

sampling over multiple years, as well as long-term plot monitoring (Asner and Martin, 2009; Ustin et 

al., 2009; Zhao et al., 2018). Considering the expense and time associated with these tasks, it is 

unlikely that this approach is feasible for the majority of land managers. It is necessary, then, to 

identify methodologies that are both cost- and time-efficient, while still providing relevant 

information. 

                                                 
2 Content presented in this chapter has been adapted from: 
Hacker, P. W., Coops, N. C., Townsend, P. A., & Wang, Z. (2020). Retrieving foliar traits of Quercus garryana var. 
garryana across a modified landscape using leaf spectroscopy and LiDAR. Remote Sensing, 12(1). 
https://doi.org/10.3390/RS12010026 
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Here I  address ITV using Q. garryana in British Columbia, Canada as a test species. In 

general, functional traits of the genus Quercus vary significantly based on environment, suggesting 

that ITV may be present at the site-level where significant variation in human manipulation of the 

environment is present (Petry et al., 2018; Violle et al., 2009). Q. garryana has considerable 

conservation value and utility to this study as a consequence of its role in biodiversity, known 

variability throughout its range and status as a flagship species for prairie-oak savannas (Fuchs, 

2001).  

In this research, leaf-level spectroscopy, ALS and pre-determined PLSR coefficients are used 

to explore the intraspecific functional trait variation of Q. garryana in association with anthropogenic 

landscape modifications across a single site. Specifically, I explore three research questions: 

1. Does intraspecific functional trait variation exist between Q. garryana experiencing different 

land use regimes 

2. Do Q. garryana experiencing the same land use regime exhibit functional trait variation in 

relation to the spatial distribution of anthropogenic landscape modifications.  

3. How can the analysis of functional trait variation within a single species can be used to 

examine the functional diversity of a site as well as indirectly sense the effects of land use? 

5.2 Materials and Methods 

5.2.1 Data Overview and ALS processing 

 The data used to conduct the analyses for this research was collected in the July 2018 field 

campaign. A DSM was created from the ALS point cloud using the CanopyModel function in 

FUSION (Forest Service of the U.S. Department of Agriculture, Seattle, WA, USA, 2014). The 

DSM was used to select 30 individual Q. garryana trees for sampling with five additional individuals 

selected from both the agricultural and natural meadow sub-sites to enable comparison between the 
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agriculture and meadow sites (n = 40). Lifeform metrics of height, maximum crown width and 

height to crown base were calculated from the DSM using the ‘lascanopy’ tool provided by 

LAStools (rapidlasso GmbH, Gilching, DE, 2018) in ArcGIS Pro (ESRI, Redlands, CA, USA, 

2018). The ‘lascanopy’ tool uses the values of each cell with the DSM raster to derive the 

aforementioned lifeform traits and presents them in a single attribute table (rapidlasso GmbH, 

Gilching, DE, 2018). Diameter at breast height (DBH) was measured in the field.   

5.2.2 Leaf spectroscopy and PLSR 

 Spectroscopy of leaves from 40 Q. garryana individuals was conducted during the 2018 field 

campaign. The specifics of this data acquisition are highlighted in Section 2.3. This study utilizes 

PLSR leaf models and coefficients derived by Serbin 2012 using a dataset of various genera, 

including Quercus, from across the northern United States (Serbin, 2012; Wang et al., 2020) (Serbin, 

2012; Wang et al., 2020). Chemical analysis of the sampled leaves was completed in order to validate 

the model (Serbin, 2012; Wang et al., 2020). The model was created using a similar fashion to those 

of other PLSR models designed for functional trait identification (Python, 2018) (Wang et al., 2020, 

2016).  PLSR models for eleven functional traits were developed. The PLSR models were then 

applied to our spectra to provide trait estimates. This model was selected in favor of the index -

based method as it employs the entire spectral signature of each sample and encompasses many 

genera, making it applicable for non-Quercus studies. This latter point is important as it enables the 

transference of methodologies employed in this study. 

5.2.3 Principal component analyses 

Functional traits of interest were separated into three categories based on their functional 

role: lifeform, leaf growth and leaf structure. Traits in the leaf growth and leaf structure categories 

were derived solely using coefficients from pre-existing, validated PLSR models (Table 10) (Serbin, 
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2012). Deriving functional traits in this manner highlights the ability of spectroscopy to provide 

information relating to a multitude of relevant plant traits. The functional traits in the lifeform 

category were measured principally using ALS (Table 10), again demonstrating the power of 

advanced remote sensing techniques.  The PCA of each group enabled the trait with the highest 

amount of variation to be identified and its relationship with the other traits in the group to be 

extracted and analyzed. In total, 14 plant functional traits were evaluated in this study (Table 10). 

Table 10. Categories of functional morphological traits used to analyze the variance between leaf 
samples and the agricultural, CDF and road anthropogenic landscape modifications. 

Leaf Growth Leaf Structure Lifeform 
Carbon (%) Cellulose (%) DBH (cm)  

Carotenoid area (mmol/m2) Fiber (%) Height (m)  
Carotenoid mass (ng/mg) Lignin (%) Max Crown Width (m)  

Chlorophyll ab area (mmol/m2) LMA (g m2) Height to Crown base (m)  
Chlorophyll ab mass (ng/mg)   

Nitrogen (%)   

 

The values of each PC were extracted for all leaf samples in this study in order to enable 

their use as input values for statistical analysis. Normality and equal variance tests were completed in 

R using base functions of the software (R Core Team, 2018). Independence was achieved as the Q. 

garryana individuals in this study were not sampled more than once. 

5.2.4 Statistical analyses 

 Statistical assumptions were completed to determine if the functional trait estimation data 

were parametric. Upon finding the data were parametric the Kruskal-Wallis rank sums test was used 

to evaluate ITV between the agricultural and meadow sites. ITV in spatial relation to the road and 

CDF anthropogenic landscape modifications was evaluated using Kendall’s Tau rank correlation 

coefficient test. To ensure that ITV was not spatially significant at random within the meadow a 

randomization test was completed. Each sample was given a random distance before Kendall’s Tau 
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was completed. This was iterated 1000 times and the means of the resulting Tau estimates, z-

statistics and p-values were recorded (Table 11). It was determined that the samples used in this 

study did not have spatially significant ITV in comparison to the samples evaluated at random 

distances. 

Table 11. Mean z- and p-values resulting from the randomization test. The insignificant p-values suggest 
that intraspecific trait variation (ITV) does not exist at random within the meadow. 

Group z p-value 
Lifeform 0.01 0.497 

Leaf growth −0.045 0.512 
Leaf Structure −0.013 0.508 

 

5.2.5 Software 

Road, RGB and ALS data were all processed in ArcGIS Pro (ESRI, Redlands, CA, 2018). 

ALS data were manipulated using the LAStools ArcGIS toolbox (rapidlasso GmbH, Gilching, DE, 

2018). Spectroscopic data were analyzed using a combination of ASD’s ViewSpecPro software and 

R (Analytical Spectral Devices Inc., Boulder, CO, USA; R Core Team, 2018). Statistical analysis was 

completed using the R package ‘prcomp’ (R Core Team, 2018). 

5.3 Results 

5.3.1 Leaf-level spectroscopy 

Mean spectral signatures were created for the agricultural, meadow and sample population 

leaf samples. Clear differences in the reflectance values are observed in association with various 

absorption features, and therefore functional traits (Figure 11). Spectral variation is especially 

notable from 500–650nm (Figure 11a), wavelengths dominated by pigments, and 1400nm to 

1700nm (Figure 11b), wavelengths dominated by water absorption as well as leaf structural 

compounds and proteins (Curran, 1989). 
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(a) (b) 

Figure 11. Mean spectral signatures of Agricultural (n = 5), Meadow (n = 5) and Sample (n = 30) 
population from (a) 500–650nm and (b) 1400–1700nm. Dotted lines signify the range of variation in the 
spectral signature evaluated. 

5.3.2 Model performance 

 PLSR model evaluation indicated that 10 of the 11 functional traits evaluated were well 

estimated by the PLSR model with predictive accuracies ranging (R2 = 0.30 to 0.95; Table 12) 

(Serbin, 2012; Wang et al., 2020). Upon evaluation of the PLSR results, five meadow trees were 

removed from the analysis as the range of at least one of their functional trait estimations was 

outside the valid range of the model. The final sample population used for the analysis was 27 

sample, 3 natural meadow and 5 agricultural Q. garryana individuals (n = 35). 
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Table 12. Mean and Standard deviation of the 10 functional traits calculated using partial least squares 
regression (PLSR). 

Trait Mean Value Standard Deviation 

Carbon (%) 50.082 0.219 
Carotenoid Area (mmol/m2) 181.786 3.383 

Carotenoid Mass (ng/mg) 1266.166 38.087 
Cellulose (%) 15.916 0.972 

Chlorophyll ab Area (mmol/m2) 589.166 24.965 
Chlorophyll ab Mass (ng/mg) 7529.724 251.585 

Fiber (%) 48.806 2.032 
Lignin (%) 24.252 1.320 

Nitrogen (%) 2.209 0.086 
LMA (g/m2) 139.895 13.114 

 

5.3.3 PCA: ITV between agricultural and meadow sub-sites 

The loadings of PC1 from each functional trait category were determined for the analysis of 

variation between the agricultural sub-site and the rest of the CGOP (Table 13). From the lifeform 

group, DBH had the largest influence (-0.989) on PC1, which explained 99% of the variation. This 

suggests that DBH has the largest amount of variation between samples. Chlorophyll ab Mass (-

0.989, 99% of variation) and LMA (0.995, 68% of variation) had the largest influence on the leaf 

growth and leaf structure functional categories respectively. All variables in the lifeform and 

structure PC1s are negatively correlated, while all variables in leaf growth’s PC1 are positively 

correlated (Table 13). 
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Table 13. PCA 1 completed using all leaf samples (agricultural and natural meadow sub-sites) collected 
at the CGOP in July 2018. The loadings from the first principal component for each functional trait 
category are shown as it accounted for ≥ 68% of the variations in the analysis. Variations are presented in 
brackets. 

PCA 1      

Lifeform PC1 
(>0.99) Leaf growth  PC1 

(>0.99) 
Leaf 

Structure 
PC1 

(0.68) 
DBH -0.995 Chlorophyll ab mass 0.989 LMA -0.995 

Height -0.086 Carotenoid mass 0.137 Lignin -0.068 
Height to crown base -0.043 Chlorophyll ab area 0.053 Fiber -0.068 

Max crown width -0.031 Carotenoid area 0.005 Cellulose -0.027 
  Nitrogen <0.0001   
  Carbon -<0.0001   

 

The Kruskal-Wallis test yielded significant results (alpha = 0.05) for the lifeform (<0.001), 

leaf growth (p = 0.05) and structure (p = 0.01) functional categories (Table 14). This indicates 

significant variation between functional traits of individuals at the two land use sites. The large Chi-

square (χ2) value associated with the lifeform group indicates that there is large variation between 

the agricultural and non-agricultural individuals. Leaf growth has a χ2 of 3.80, which is ten times less 

than that of the lifeform group, indicating that although significant, the variation in leaf growth traits 

between sub-sites is considerably lower (Table 14). The χ2 of structure is 6.25, suggesting that leaf 

structure is more variable between sub-sites than leaf growth, but less variable than lifeform (Table 

14). 

Table 14. Results of the Kruskal-Wallis test evaluating the differences between agricultural and non-
agricultural leaf samples. 

 Chi-Square (χ2) p-Value 
Lifeform 38.24 <0.001 

Leaf Growth 3.80 0.05 
Leaf Structure 6.25 0.01 
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Due to the nature of the Kruskal-Wallis test, it is not possible to identify how each 

functional trait category differs between land-use from this analysis alone. To determine this, the 

statistical mean of the functional trait with the highest loading in each of the functional trait 

categories must be examined. Table 15 shows that DBH, chlorophyll ab mass and LMA are lower in 

the meadow sub-site compared to the agricultural sub-site. 

Table 15. Statistical means of the trait with the largest loading value in the PC1 of each functional trait 
category for the agricultural and meadow sub-sites of the CGOP. 

Trait Functional Trait 
Category 

Agricultural 
(n = 5) 

Meadow 
(n = 30) 

DBH (cm) Lifeform 125.14 32.12 
Chlorophyll ab mass 

(mmol/m2) Leaf growth 9463.48 7207.43 

LMA (g/m2) Leaf Structure 170.85 134.74 
 

5.3.4 PCA 2: ITV in spatial relation to anthropogenic landscape modifications 

 PCA 2 (Table 16), which did not include the Q. garryana leaf samples from the agricultural 

site, differed from the PC1 values of PCA 1 (Table 16). DBH (-0.987, 98% of variation), chlorophyll 

ab mass (-0.989, 99% of variation) and LMA (-0.999, 90% of variation) still accounted for the largest 

amount of variation in the lifeform, leaf growth and leaf structure functional categories respectively. 

The fact that the same functional traits were dominant in the PC1s of both PCA 1 and PCA 2 

indicates that they are more variable than other traits across the species, regardless of context. 
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Table 16. PCA 2 completed using only non-agricultural leaf samples collected at the CGOP in July 2018. 
The loadings from the first principal component for each functional trait category are shown as it 
accounted for ≥ 90% of the variations in the analysis. Variations are presented in brackets. 

PCA 2      

Lifeform PC1 
(0.98) Leaf growth  PC1 

(>0.99) 
Leaf 

Structure 
PC1 

(0.90) 
DBH −0.987 Chlorophyll ab mass −0.989 LMA −0.999 
Height −0.138 Carotenoid mass −0.139 Fiber 0.013 

Height to crown base −0.069 Chlorophyll ab area −0.045 Lignin 0.018 
Max crown width −0.033 Carotenoid area −0.007 Cellulose <−0.001 

  Nitrogen <−0.001   
    Carbon <−0.001   

 

 A significant correlation was identified between the PC1 loadings of lifeform and leaf growth 

functional categories and the distance to both the CDF and road anthropogenic landscape 

modifications using Kendall’s Tau (Table 17). The leaf structure functional category showed a 

suggestive relationship association with the CDF anthropogenic landscape modification, but not the 

road (Table 17). Leaf growth’s relationship with CDF is the strongest in comparison with lifeform, 

while leaf structure has a suggestive rather than significant relationship (Table 17). When associated 

with the road, lifeform has a less significant relationship compared to leaf growth, with leaf 

structure’s relationship being insignificant (Table 17). For both the road and CDF anthropogenic 

landscape modifications the leaf growth functional category has the largest significant association 

(Table 17). 
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Table 17. Associations between the functional traits with the largest loading in PC1 of each functional trait 
category and the distance to CDF and road for all non-agricultural Q. garryana individuals (n = 30). The 
dataset of each trait is arranged based on the individual’s distance to the (a) CDF and (b) road 
anthropogenic landscape modifications, starting at 0 m. Quartiles are the median value of the first quartile 
(25%), the median (50%) and the third quartile (75%) of each dataset. Significance was calculated using 
Kendall’s Tau. 

  Distance from CDF (m)   

Trait First Quartile  
(25%) 

Median Value  
(50%) 

Third 
Quartile  

(75%) 
p-value 

DBH (cm) 30.50 27.70 22.0 <0.001 
Chlorophyll ab mass 

(ng/mg) 6674.25 6777.98 7035.07 <0.001 

LMA (g/m2) 135.14 131.35 130.38 0.069 
  Distance from Road (m)  

Trait First Quartile  
(25%) 

Median Value 
(50%) 

Third 
Quartile  

(75%) 
p-value 

DBH (cm) 22.00 27.70 29.00 0.004 
Chlorophyll ab mass 

(ng/mg) 7608.99 7208.69 7028.97 0.002 

LMA (g/m2) 131.22 131.35 131.48 0.243 
 

5.4 Discussion 

5.4.1 Remote sensing of intraspecific trait variation 

The accurate use of remote sensing technologies to estimate plant functional traits has been 

well documented (Asner and Martin, 2016; Kerr and Ostrovsky, 2003). Physiological traits, such as 

leaf pigment content, can be derived from spectroscopy, while morphological traits, such as plant 

height, can be measured from ALS (Asner and Martin, 2009; Sibona et al., 2017). This research uses 

a combination of these two methodologies to derive 14 functional traits from 40 individual tress of 

the same species. Spectroscopy at the leaf level provided the spectral information required to apply 

PLSR coefficients acquired from open-source, pre-validated models (Table 12) (Serbin, 2012). The 

functional trait estimations resulting from this analysis were within the acceptable range of the 

validated model, demonstrating that validated PLSR models are transferable (Table 12) (Serbin, 



79 
 

2012). This is significant as the cost and time required to collect and validate PLSR models is 

considerable.  

The ALS data used to estimate morphological functional traits in this study was obtained 

freely from the Municipality of North Cowichan. With a density of 16 points/m2, this dataset 

provides excellent representation of tree crowns and allows for the accurate derivation of traits like 

tree height (Sibona et al., 2017). Due to the open-source nature of this ALS data considerable time 

and cost were avoided when compared to measuring these attributes in the field.  

The efficiency of acquiring remotely sensed and open-source data makes it possible to derive 

accurate functional traits within weeks of collecting leaf level spectral information. This reality 

means that land managers could have access to quantifiable information about functional traits 

across their site within a timeframe appropriate to undertake meaningful action. To make use of this 

potential, the focus of our research was on a relatively underrepresented area of functional trait 

analysis: intraspecific variation. This research demonstrates the ability of remotely sensed 

technologies to enable the analysis of intraspecific functional trait variation with respect to 

anthropogenic landscape modifications and identify the main drivers of functional diversity across 

the site. 

Visual examination of the mean spectral signatures of the meadow, agriculture and sample 

populations indicates that the agricultural and meadow trees vary in multiple areas of the 

electromagnetic spectrum between 350 nm and 2500 nm. Separation between the signatures in 

Figure 11a from 500 nm to 600 nm suggests that there are differences in the pigments associated 

with leaf growth, such a chlorophyll and anthocyanin, between individuals living in the two land use 

types  (Curran, 1989; Curran et al., 2001).  Variation in structural components, such as cellulose or 

lignin, and possibly proteins, is suggested by differences in the reflectance values between 1400nm 
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and 1700nm in Figure 11b (Asner and Martin, 2009; Curran et al., 2001). This simple examination of 

the mean spectral signatures from two sub-population in relation to the mean signature of the 

sample population supports further examination of the intraspecific variation of Q. garryana through 

the two hypotheses of this study. The use of leaf-based spectroscopy and derivation of traits is 

replicable and can be applied across species, enabling an efficient exploration of variance for 

managers interested in evaluating the ITV in a species of concern. 

5.4.2 Model performance 

In order to derive traits, I utilized a large North American database of plant spectral, 

pigment and chemical traits, including samples from a range of oaks, the key genus in this study. 

These coefficients are derived from PLSR models with validation R2 ranged from 0.30–0.95, while 

validation nRMSE ranged from 4.6–19.15% (Serbin, 2012; Wang et al., 2020).Only δ15N was 

removed from the analysis due to low validation R2 (<0.30). The ten traits determined through 

PLSR demonstrated reasonable mean values and standard deviations (Table 12). By using this 

model, this study demonstrates that a multi-species, pre-validated dataset can be used to explore 

intraspecific variation within a single population. This is important as it suggests a single, multi-

genera dataset can be used to estimate plant functional traits within a population and across a variety 

of landscapes.  

5.4.3 Functional trait categories 

The results of both PCA 1 and PCA 2 determined that the greatest variation in lifeform, leaf 

growth and leaf structural functional trait categories was found in each of their PC1s, with DBH, 

chlorophyll ab mass and LMA having the highest influence respectively. The PC1 of each functional 

category explained over 68% of the variation between samples, so it was used exclusively in the 

statistical analysis. However, it is also possible to evaluate the presence of ITV for a desired trait by 
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using the values of the principal component in which said trait explains the highest proportion of 

the variance. This could prove useful for managing the drivers of a specific trait across a landscape. 

5.4.4 Functional trait variation due to land use 

Results support the hypothesis that functional trait variation exists in Q. garryana of the same 

population experiencing different land use pressures. These results are consistent with other studies 

exploring intraspecific variation through spectroscopy (Albert et al., 2010; Curran et al., 2001). The 

Kruskal-Wallis rank sums test found a significant level of variation when comparing each of the 

functional trait groups of individuals persisting in an agricultural environment with those living 

throughout the rest of the CGOP. Specifically, traits related to lifeform (p = <0.001) and leaf 

structure (p = 0.01), such as DBH and LMA respectively, had higher values in the agricultural sub-

site, while individuals from the meadow had higher values for leaf growth (p = 0.05) (Figure 12). 

Increased LMA values for individuals in the agricultural sub-site could indicate that these trees are 

growing thicker leaves to increase their resistance to stress, such as management practices that 

include the removal of competitors, the addition of fertilizers and irrigation.  

Lifeform functional traits proved to be the most variant between sites (p < 0.001, χ2 of 

38.24), with mean DBH being significantly lower in the meadow (32.12 cm) compared to the 

agricultural (125.14 cm) sub-site (Table 14). Management practices such as the removal of 

competitors could be a possible reason for this. These findings suggest that it is important to 

acknowledge the impacts of land use change on the functional strategies related to overall tree size 

and shape. The leaf growth functional trait category also showed significant differences between the 

agricultural and meadow sub-sties (p= 0.05, χ2 = 3.80), with Q. garryana individuals in the meadow 

(7207.43 ng/mg) exhibiting lower chlorophyll ab mass values that those in the agricultural (9463.48 

ng/mg) sub-site (Table 15). These variations could be due to the consistent addition of fertilizers to 

the soil over the last century. ITV related to leaf structure was also proven significant (p < 0.001, χ2 
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= 6.25), with LMA in the agricultural sub-site (170.85 g/m2) being larger than LMA in the meadow 

(134.74 g/m2) sub-site. This suggests that functional traits such as LMA can vary based on land use 

techniques, recognizing that LMA is indicative of overall plant health and a leaf’s investment in 

photosynthesis versus longevity (Dechant et al., 2017). 

 

Figure 12. Schematic depicting the relative increase or decrease in values for the traits with the highest 
PCA loadings from lifeform (DBH, purple), leaf growth (Chlorophyll ab mass, green) and leaf structure 
(LMA, blue) functional categories in relation to each anthropogenic landscape modification. Arrows are 
arranged in accordance with Table 15 for the agricultural vs. meadow analysis and on the Tau values in 
Table 17 for the CDF and road analyses. Coastal Douglas-fir forest (CDF) and Road values are 
measured on a continuous scale of distance (m) starting at the anthropogenic landscape modification 
border (0 m) and ending at 248 m and 273 m respectively. Values associated with the Agriculture 
anthropogenic landscape modification are Boolean. 
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5.4.5 Functional trait variation in relation to landscape modifications 

Significant correlations of ITV were found with respect to the spatial relationship of Q. 

garryana individuals and both CDF and road anthropogenic landscape modifications, supporting the 

second hypothesis of this study (Table 17). Kendall’s tau rank sum test also found that functional 

trait categories are affected differently by each of the anthropogenic landscape modifications and 

suggests that each modification invokes unique environmental changes. This supports the findings 

of other studies that anthropogenic landscape features can alter the functional strategies of plants 

(Johnson et al., 2017). 

Lifeform traits changed significantly depending on an individual’s distance to the CDF (p = 

<0.001) (Table 17). DBH, for example, decreased as distance to the CDF increased, suggesting that 

individuals are shifting their lifeform strategies based on the association with this competing 

ecosystem (Figure 12). The growth functional trait category (p < 0.001) also shows a significant 

relationship to the distance of an individual Q. garryana from the CDF and suggests that leaf 

chlorophyll increases as distance from the CDF increases. Correlation between the leaf structure (p 

= 0.069) functional trait category and the CDF is suggestive, implying that Q. garryana individuals 

may also change their leaf structure based on proximity to competitors, with leaf structural values 

associated with stress tolerance decreasing with distance (Figure 12) (Bjorkman and Vellend, 2010; 

Fuchs, 2001). This is interesting as leaf structure is related to a leaf’s defensive capabilities and 

longevity (Asner et al., 2014; Aubin et al., 2016; Kitajima et al., 2016). These findings suggest that 

individuals closer to the CDF have a higher stress tolerance, which could be caused by a more 

favorable microclimate compared to individuals living in the open meadow. 

Similar correlations were found between the functional trait category of each sample and 

their distance to the main road (Table 17), supporting the hypotheses that intraspecific functional 
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trait variation exists in relation to the spatial distribution of various anthropogenic landscape 

modifications. Lifeform (p = 0.004) values decreased as distance from the road increased, while leaf 

growth (p = 0.002) values increased (Figure 12). This could be due to changes in the nutrient 

composition of the soil closer to roads, with runoff and de-icing agents like sodium chloride (NaCl) 

affecting leaf growth (Amrheln et al., 1992; Forman and Alexander, 1998). The relationship between 

the leaf structure functional trait category (p = 0.243) and the road anthropogenic landscape 

modification was found to be insignificant. The associations between the three functional trait 

categories and the road anthropogenic landscape modification was inverse to the relationship of 

those groups with the CDF. This suggests that the influence of the road and CDF affect the 

lifeform, leaf growth and leaf structure strategies of Q. garryana in different manners. If this is the 

case, managers should deploy mitigation efforts for each anthropogenic influence separately, such as 

salt loading in the winter or excess ground water due to runoff from the road, rather than 

prescribing a site-wide plan (Forman and Alexander, 1998). The presence of significant intraspecific 

variation also suggests that Quercus trees should be considered individually when using functional 

traits to determine biodiversity metrics as the values of many traits vary in association with different 

anthropogenic landscape modifications. 

In a biodiversity management context, where this project has key implications, our results 

imply that functional traits of Q. garryana should be considered on an individual-plant basis. When 

mapping functional traits across a site, for example, intraspecific variations among trees may provide 

insight relating to the relative functional diversity of one sub-site in relation to another. This 

information could be used to determine which treatment is necessary at specific locations as well as 

provide general, site-level context to other biodiversity metrics such as species diversity and species 

composition across sub-sites. 
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5.5 Conclusions 

Overall, the results presented in this study support the hypotheses that intraspecific 

functional trait variation exists within a population experiencing different land uses and in relation to 

various anthropogenic landscape modifications. This study also successfully begins to bridge the 

knowledge gap between intraspecific functional trait variations at the landscape- and site-levels. The 

methodology presented in this research provides a simple, replicable and relatively inexpensive 

baseline on which future studies examining functional trait variation can expand. For example, the 

coefficients used to estimate each of the leaf growth and leaf structure functional traits were 

determined by conducting PLSR on a spectral database containing various different genera, rather 

than Quercus alone. This variety suggests that examination of intraspecific trait variation is possible 

for the other genera, or species, represented in the database. For many land managers, this could 

improve efficiency as they would not be required to create and validate their own spectral datasets. 

The findings of this chapter confirm that anthropogenic activities influence the spatial 

distribution of leaf functional traits across prairie-oak ecosystems. In combination with Chapter 4, 

research presented in this chapter adds valuable information relating to the ability of remotely 

sensed leaf functional traits to evaluate the impact of fundamental threats to the health of these 

ecosystems, namely habitat fragmentation and fire suppression. In the following chapter, I explore 

the potential for leaf functional traits to address the third, and final, threatened primary ecosystem 

characteristic outlined by Environment Canada in 2001: biotic integrity.  
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Chapter 6: Identification of invasive plant species using functional traits3 

6.1 Background and Motivation 

The focus of this chapter is to explore the ability of predicted leaf functional traits to 

evaluate the presence of invasive plant species. Presented by Fuchs et al. (2001) as the third 

fundamental ecosystem characteristic of prairie-oak ecosystems under significant threat from 

anthropogenic activities, research relating to the identification of invasive plant individuals is of high 

importance as their introduction to an ecosystem can drastically alter diversity and threaten 

ecosystem processes, such as soil water dynamics and nutrient availability  (Albert et al., 2012; Carter 

et al., 2018; Shaben and Myers, 2010; Slesak et al., 2016). In the past 200 years, humans have 

expanded across the planet and enhanced the capacity of plant species to migrate (Olivares et al., 

2019; Zerega et al., 2004). Some species have transited oceans for agricultural production, while 

others simply provide ornamental value (Bossard and Rejmanek, 1994; Hawkes and Francisco-

Ortega, 1993).  

Cytisus scoparius (L.) Link, or Scotch broom, is one such transplant. A nitrogen-fixing legume 

introduced to numerous countries around the globe, C. scoparius has proven adept at establishing in 

climatically temperate regions of North America, Australia and New Zealand (Downey and Smith, 

2000; Odom et al., 2003; Richardson et al., 2000; Slesak et al., 2016). Initially transported from its 

native range in northern Africa and Europe, C. scoparius was a preferred decorative shrub of New 

World colonists due to its low-maintenance and striking yellow flowers (Fuchs, 2001). The nitrogen-

rich leaves of nitrogen-fixing plant species, such as C. scoparius, are relatively more productive than 

                                                 
3 Content presented in this chapter has been adapted from: 
Hacker, P. W., & Coops, N. C. (2022). Using leaf functional traits to remotely detect Cytisus scoparius ( Linnaeus ) Link 
in endangered savannahs. 71, 149–164. https://doi.org/10.3897/neobiota.71.76573 
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non-nitrogen-fixing species and make them adept at invading ecosystems with favourable 

environmental conditions (McKey, 1994; Richardson et al., 2000). 

One such ecosystem exists along the west coast of North America. Defined as a mixed 

grassland-woodland, prairie-oak savannas provide habitat for several endangered plant and animal 

species (Bjorkman and Vellend, 2010). Increased anthropogenic interaction has also introduced a 

variety of invasive plant species that could destabilize traditional plant assemblages (Fuchs, 2001).  

 C. scoparius presents a variety of challenges to native plant species (Shaben and Myers, 2010). 

As a nitrogen-fixing species, it can alter soil chemistry, an unseen change that has the potential to 

disturb nutrient cycling (Carter et al., 2018; Fogarty and Facelli, 1999). Prairie-oak ecosystems, the 

fast-growing nature of C. scoparius competes well against native shrubs, forbs and graminoids that 

maintain relatively slower growth strategies (Shaben and Myers, 2010). Over time, this can result in a 

shift in species diversity and further uproot traditional ecosystem processes (Carter et al., 2018). The 

dense soil seed bank created by reproducing C. scoparius individuals, which begins approximately 4 

years post-establishment, virtually ensures perpetual species presence and renders removal of 

reproducing individuals irrelevant (Downey and Smith, 2000). 

 Despite its damage to natural ecosystems, programs monitoring the spread of this species are 

not common. Initial analysis of multispectral satellite and airborne imagery has confirmed that large, 

dense C. scoparius patches can be observed during spring bloom, however a more reliable method of 

year-round identification at finer spatial scales is needed for realistic removal efforts (Hill et al., 2016; 

Odom et al., 2003). A common issue faced by previous studies relates to the availability of relevant 

imagery. Odom et al. (2003) used high-spatial resolution airborne imagery and manually delineated 

C. scoparius, which was both cost and time intensive. In contrast, Hill et al. (2016) used satellite 

imagery with a relatively coarse spatial resolution (Landsat Thematic Mapper, 25m after resampling) 
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and automated classification of reflectance. Unfortunately for prairie-oak ecosystems, such mapping 

techniques may only prove relevant upon the large-scale establishment of C. scoparius, at which point 

removal efforts are redundant.  

 Continuing improvements in both the platforms and sensors used for remote landscape 

classification present a variety of options for monitoring C. scoparius presence. The estimation of 

foliar functional traits across a site using remote sensing techniques presents an opportunity to 

identify invasive species like, C. scoparius, in prairie-oak ecosystems and has yielded success in a 

variety of other ecosystems (Asner et al., 2008a; Große-Stoltenberg et al., 2018; Niphadkar and 

Nagendra, 2016)  Essentially, spectral information is acquired across several narrow bands and 

modelled with a measured plant functional trait, such as leaf %N, to generate a predicted trait value 

for each pixel in an image. This methodology has proven successful at remotely identifying unique 

plant species in both tropical and temperate climates and lends well to analyses conducted at a range 

of spatial scales (Asner and Martin, 2009; Wang et al., 2019). The continued improvement of 

hyperspectral imaging sensors on RPAS, or drones, and airplanes presents another opportunity to 

estimate plant functional traits at relatively small spatial scales over large areas (Asner et al., 2016; 

Van Cleemput et al., 2018).   

Before air- or spaceborne analyses can be conducted, however, significant differences in 

both foliar functional traits and spectral reflectance between C. scoparius and other common prairie-

oak plant species should be demonstrated at the leaf- and canopy-level. The aim of this research is to 

identify leaf functional traits of C. scoparius that are significantly different from other prairie-oak 

species at the leaf- and canopy-levels through four research questions: 

1.  Is the measured value of at least one leaf functional trait of C. scoparius is significantly 

different than that of the 22 other site species sampled (henceforth referred to as ‘Site’)? 
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2. Do significant differences of predicted leaf-level functional trait values remain between C. 

scoparius and Site species? 

3. Do significant differences of predicted canopy-level functional trait values remain between 

C. scoparius and Site species? 

4. How do alterations in illumination conditions do not impact the significance of predicted 

canopy-level trait differences? 

6.2 Materials and Methods 

6.2.1. Data and Target Species 

 The data used in this research was collected during the May 2019 field campaign. I use leaf 

reflectance and chemical data collected for 23 common prairie-oak plant species to generate models 

capable of predicting leaf functional traits. The PROSAIL radiative transfer model (RTM) is also 

used to scale trait predictions of all 23-plant species to the canopy level and test whether predicted 

trait values of C. scoparius differ from 22 other plant species of varying lifeform. 

C. scoparius presents a unique challenge to Garry oak ecosystems due to its ecology. Labelled  

“invasive” due to profuse seed production and capacity for year round growth, this shrub faces 

limited competition from native plant species and is capable of altering soil chemistry through 

nitrogen fixation (Shaben and Myers, 2010; Slesak et al., 2016). Upon establishment in a non-native 

environment, the spread of C. scoparius can be limited by a lack of compatible pollinators, but in 

general has shown strong capacity to alter plant diversity through native species exclusion and non-

native recruitment (Carter et al., 2018; Parker, 1997). Growing quickly and reaching heights 

exceeding three meters, this invasive shrub faces few barriers upon introduction (Parker, 1997). 
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6.2.2 Leaf trait evaluation 

Chemical and spectral measurements 

A total of 14 traits were measured across 23 unique plant species and four plant lifeforms. 

All leaf samples taken are considered to be from sunlit positions. Chemical evaluation of chlorophyll 

a+b (Chlab), Car, LDMC, EWT and %N were conducted following CABO protocols (Ayotte et al., 

2019; Girard et al., 2019; Laliberté, 2018). Due to a lack of normality in the distribution of measured 

trait values for multiple species the Mann-Whitney (Wilcoxon) test was used to determine if C. 

scoparius exhibits significantly different trait values from the other 22 plant species sampled (Milton, 

1964). Leaf spectroscopy was conducted using a SVC DC-R/T integrating sphere and on 6 leaves 

from each individual plant samples (n = 201), with the number of samples ranging from 3- 10 per 

species, and followed CABO standards (Laliberté and Soffer, 2018). Reflectance values from 400 – 

2400 nm were used in analyses after undergoing vector normalization and a Savitzky-Golay filter to 

enhance differences in spectral shape and reduce noise, respectively. All leaf sample underwent 

spectroscopy within 6 hours of collection and bulk leaf samples were chilled until chemical analyses 

began. 

Modelling functional traits 

Individual leaf traits were modelled using PLSR. The data were split into training (70%) and 

test (30%) sets. A Shapiro-Wilks test found the leaf-level chemical data to be non-parametric, so an 

independent 2-group Mann-Whitney test was used to determine if significant differences existed 

between the leaf functional traits of C. scoparius and the 22 Site species evaluated at the measured and 

predicted leaf-level. 
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Canopy-level modelling 

Radiative transfer models are important methods of simulating the spectral reflectance of 

vegetation (Asner et al., 2011; Féret et al., 2017). There are generally two spatial scales at which 

models are designed: leaf and canopy. I employed the canopy-level RTM PROSAIL to simulate 

canopy spectra from an airborne imaging spectrometer using four measured chemical values 

obtained from 201 plant samples of all 23 species (Jacquemoud et al., 2009). The PLSR models 

developed using leaf-level spectra and chemical values were applied to the simulated spectra created 

by PROSAIL to predict relative trait values at the canopy-level.  

The four traits used as input arguments for the PROSAIL algorithm were Chlab, Car, 

LDMC and EWT. To determine the if  canopy-level predicted traits react to changes in illumination 

geometry, such as different flight dates and latitudes, PROSAIL simulations were conducted at a 

variety of solar zenith angles spanning 20 – 70° at 1-degree intervals. The functional trait models 

derived from PLSR were then applied to these spectra to generate predicted trait values at the 

canopy-level. An independent 2-group Mann-Whitney test was used to determine if the predicted 

trait values of C. scoparius were significantly different from predicted trait values of the Site species.  

Software 

All data manipulation was conducted in R (R Core Team 2021). The package ‘spectrolab’ 

was used to organize and manipulate data obtained through leaf spectroscopy (Meireles and 

Schweiger, 2021). The ‘pls’ package (Liland et al., 2021) was used conduct partial least squares 

regression and ‘hsdar’ (Lehnert, 2020) enabled the use of PROSAIL.  

6.3 Results 

An independent 2-group Mann-Whitney test determined that 11 of the 14 measured traits 

exhibited a significant difference between C. scoparius and the 22 Site species (Table A8, Figure 13). 
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Of these,  %N (W = 1908, p-value = 1.08e-07 ) and carbon-nitrogen ratio (C:N; W = 15, p-value = 

1.61e-07) demonstrated the largest differences (Table A8). The mean measured %N value for C. 

scoparius and Site species were 2.93% and 5.37%, respectively. Mean measured C:N values for C. 

scoparius and Site were 8.94 and 16.66, respectively. Due to the overlap in measured C:N values 

between C. scoparius and Site species, as well as the complexities introduced by measuring two traits 

compared to one, only %N was used in this study. Leaf-level %N was accurately predicted using 

PLSR (R2 = 0.70, NRMESP = 17%) (Table 2, Figure 14). This is within the acceptable range of 

model accuracy presented in the literature and confirms its suitability for analyses (Asner and Martin, 

2016; Wang et al., 2019).  

 

Figure 13. Comparisons of 14 functional traits between C. scoparius and Site species. Boxplots depicting 
the differences between C. scoparius (yellow) and 22 other “Site” plants (green) for 14 leaf functional 
traits using a Mann-Whitney test, 11/14 of which are significantly different. The level of significance is 
denoted in the banner of each facet (* <= 0.05, ** <= 0.01, *** <= 0.001). 
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Figure 14. PLSR prediction plot. Comparison of the measured and predicted leaf nitrogen percent (%N) 
for 23 plant species at the Cowichan Garry Oak Preserve. 

The use of the %N PLSR model to predict foliar %N from leaf spectral signatures 

determined that the leaf-level predicted %N values of C. scoparius and the 22 Site species were 

significantly different (W = 1910, p-value = 1.02e-07) (Figure 15). The significant functional 

difference displayed by C. scoparius at the leaf-level remained at the canopy-level as testing 

determined that relative %N of C. scoparius at the canopy-level was different than that of the 22 Site 

species (W = 1653, p-value = 1.003e-04) (Figure 16). Alterations in viewing geometry did not 

compromise the significant differences found between canopy predicted relative %N of C. scoparius 

and Site species (20°: W = 1653, p-value = 0.0001; 45°: W = 1653, p-value = .0001; 70°: W = 1652, 

p-value = .0001026) (Figure 17). 
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Figure 15. Measured and predicted leaf %N. Comparison of measured and predicted leaf N% of C. 
scoparius (yellow) and 22 Site species of various lifeforms (Site; green) sampled at CGOP. 

 

 

Figure 16. Measured leaf %N and predicted canopy N%. Comparison of the measured leaf-level and 
predicted canopy-level %N for C. scoparius (yellow) and 22 other plant species (Site; green) sampled at 
the CGOP in May 2019. Note the that y-axis scale varies, with the relative %N values predicted by 
PROSAIL being negative. This occurs as a result of using the relatively lower reflectance values 
generated by PROSAIL with a PLSR model developed using leaf-level spectra. 
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Figure 17. Predicted relative %N compared between C. scoparius and Site species using various solar 
zeniths. Boxplots demonstrating the difference between the PROSAIL predicted relative %N for C. 
scoparius (yellow) and Site species (green) using different solar zeniths (20 degrees, 45 degrees and 70 
degrees). 

6.4 Discussion 

 Mapping the spatial extent of invasive plant species is a key component of managing 

biodiversity at any scale. In North America, the invasion of C. scoparius populations are destabilizing 

the traditional species composition of plant communities, especially in prairie-oak ecosystems 

(Fuchs, 2001; Shaben and Myers, 2010). Previous monitoring efforts have mapped C. scoparius 

through observing yellow inflorescence from multi-spectral satellite imagery and, although effective 

at mapping well established populations, precludes removal efforts of young, unestablished 

individuals (Hill et al., 2016; Odom et al., 2003).  

This research demonstrated that C. scoparius is distinguishable from other common prairie-oak 

plants based on leaf functional traits, rather than bloom color. Multiple C. scoparius leaf traits were 

significantly different from those of 22 other plant species evaluated, with %N proving the most 

different. This is unsurprising as C. scoparius is a nitrogen-fixing legume and is likely to have leaves 

that are relatively nitrogen-rich (Große-Stoltenberg et al., 2018; McKey, 1994). Such differences can 
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lead to competitive advantages in photosynthetic capacity for nitrogen-fixers, which may in part 

explain the success C. scoparius has experienced at establishing beyond its traditional range in the 

Mediterranean (Große-Stoltenberg et al., 2018; Shaben and Myers, 2010). These findings are 

consistent with research in tropical and dune ecosystems, and strengthen the idea of using leaf %N 

to detect invasive plant species in a variety of environments (Asner et al., 2008a; Große-Stoltenberg 

et al., 2018). It should be noted, however, that the use of leaf %N to map nitrogen-fixers is 

dependent on the absence of other nitrogen-fixing species that present similar leaf %N to the target 

species. 

The leaf-level PLSR model used to predict leaf %N explained 70% of the total variance between 

measured and predicted values while demonstrating a normalized error of 17%. The use of only four 

components suggests that this model is well fit. Differences in measured and predicted leaf %N 

between C. scoparius and Site species promoted testing whether leaf %N was scalable from the leaf- 

to canopy-level. It is interesting to note that similar differences existed for C:N, suggesting that this 

trait could potentially be used to differentiate C. scoparius from Site species. This would, however, 

require the measurement of two traits, rather than one.  

The RTM canopy model PROSAIL was used to simulate canopy reflectance of C. scoparius and 

Site species, and determined that significant differences in %N scale from the leaf to canopy. This 

scalability suggests that this method could be used for the detection of individuals that have recently 

been introduced. There are currently no civilian satellite programs capable of providing this type of 

data at the required spectral and spatial resolution, meaning that the imagery must be acquired from 

airborne sensors. Some studies have demonstrated that imagery collected from drone-based sensors 

can accurately map shrubland vegetation (Prošek and Šímová, 2019) or predict functional traits in 

the arctic (Thomson et al., 2021), but questions remain surrounding the capacity of these methods to 
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differentiate small individuals in species-rich ecosystems (>20 species per 1 m2), such as prairie-oak 

ecosystems.  It may be possible, however, to generate a new nitrogen-index by selecting only bands 

common in multi-spectral sensors (Heim et al., 2019) or correlate pre-existing multispectral remote 

sensing indices with the measured leaf %N values, eliminating the need for hyperspectral data 

collection and reducing the cost of both data acquisition and processing.  

6.5 Conclusion 

The significant differences in measured and predicted leaf %N between C. scoparius and 22 other 

plant species common in Canadian prairie-oak savannas suggest that remote detection of C. scoparius 

is possible. This concept is supported by the up-scaling of leaf traits using the radiative transfer 

model PROSAIL, which demonstrated that the aforementioned differences in leaf %N scale from 

the leaf- to the canopy-level. Successful scaling, in turn, proves that C. scoparius could be detected 

based on its relatively high leaf %N, given that remote sensing technologies have the required 

spectral and spatial resolutions to small, individual plants. 

Technological advances have made RPAS more affordable, allowing them to become a common 

platform used for the collection of imagery with fine spatial resolution in a variety of ecosystems 

(Arroyo-Mora et al., 2019; Sankey et al., 2018). The recent development of RPAS-based imaging 

spectrometers compliments the findings of this study and suggests that land managers could deploy 

these sensors prior to the bloom period of C. scoparius across prairie-oak ecosystems in order to 

identify areas that may contain young individuals. Considering the capacity for C. scoparius to alter 

soil chemistry, encourage establishment of other invasive plant species and outcompete native 

species, the ability to detect unestablished populations through leaf functional traits presents an 

interesting monitoring opportunity that could prove effective in a variety of ecosystems across the 

globe.  
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Chapter 7: Conclusions 

7.1 Dissertation Objectives 

The objectives of this dissertation were to address knowledge gaps relating to the capacity for 

remote sensing technologies to monitor prairie-oak ecosystems by: 

- Evaluating the accuracy of remotely sensed leaf functional trait predictions using 

spectroscopy 

- Mapping leaf functional traits and assessing the impact of anthropogenic activities, including 

land use change and the subsequent habitat fragmentation, as well fire suppression, on their 

spatial distribution 

- Using leaf functional traits to identify invasive plant species  

These objectives were achieved by answering the following research questions. 

How are the predictions of plant functional traits affected by the inclusion of reflectance from multiple species in a single 

reflectance curve? 

 Chapter 3 presents evidence that spectral mixing can significantly affect the prediction 

accurate of leaf functional traits depending on the number of species contributing leaf reflectance 

information and the composition of those species leaves. The impact of spectral mixing can also be 

negligible, further complicating analyses of spectrally mixed datasets. These results suggest that the 

spatial resolution of imagery used for leaf trait prediction should be no larger than the footprint of 

the smallest plant individual expected in the dataset. In prairie-oak ecosystems, such a pixel size 

should be 3 cm2 or less. Although possible using RPAS, such imagery often covers relatively small 

areas of the landscape and can limit the size of the study area. The intrinsic challenges of mapping 

leaf traits in highly biodiverse savannas demonstrated by this research imply that spectral mixing 

should be considered during study design and support further research related to this issue. 
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How do anthropogenic activities influence the spatial distribution of intraspecific plant functional traits? 

  Research presented in Chapter 4 demonstrates that anthropogenic activities can 

impact the spatial distribution of plant functional traits. The effects of habitat fragmentation and fire 

suppression include land use change and the encroachment of closed-canopy Coastal Douglas-fir 

forests, both of which have been correlated to the distribution of leaf traits across the landscape. 

These results provide land managers with quantitative evidence supporting the reintroduction of 

prescribed burning and cessation of land use change in and around prairie-oak ecosystems. This 

research also promotes further investigation into the impacts of anthropogenic activities on non-

plant species reliant on these ecosystems. 

How are the functional traits of a single plant species affected by anthropogenic activities? 

 The evaluation of intraspecific functional traits on Q. garryana leaves presented in Chapter 5 

identifies the impact that anthropogenic land use change, namely the creation of roadways and 

transitions to agriculture, as well as the removal of prescribed burning can have on a single plant 

species. This research builds on the findings in Chapter 4 to underscore the need to mitigate further 

anthropogenic activities in prairie-oak savannas and emphasizes the potential for intraspecific leaf 

traits to be used to monitor their impact. 
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What is the capacity for plant functional traits to distinguish invasive plant species? 

 The establishment of invasive species within prairie-oak ecosystems is a key threat to 

established plant communities and the ecosystem characteristics, including soil nutrient and moisture 

content, that underpin them. Chapter 7 provides evidence that leaf functional traits could be used 

for the identification of C. scoparius, a Mediterranean shrub that has invaded multiple continents. 

Leaf nitrogen content, specifically, is significantly higher in C. scoparius than the leaves of 22 other 

common plant species found in prairie-oak savannas and could enabled the detection and removal 

of young individuals before they are able to establish. The implications of this research span beyond 

the open spaces characterizing oak/prairies and encourage further research into the capacity to use 

leaf functional traits to detect C. scoparius in other ecosystems.  

7.2 Innovations 

 This dissertation provides several innovations relevant to the prediction and spatial 

evaluation of leaf functional traits in prairie-oak savannas: 

• The consequences of spectral mixing presented in Chapter 3 have implications for any study 

using imaging spectroscopy in an environment in which the leaves of multiple plant species 

may be observed in a single data point. This work addresses a fundamental challenge of leaf 

trait prediction that has hitherto been uninvestigated.  

• Chapter 4 presents a novel methodology with which to evaluate the impact of 

anthropogenic activities on the spatial distribution of leaf functional traits and shows the 

strong influence these activities exert on prairie-oak ecosystems. 

• Chapter 5 introduces a methodology for evaluating variation in leaf functional traits within a 

single species using PLSR models generated at the continent scale, again highlighting the role 

of humans in the spatial distribution of functional traits.  
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• The capacity for remote sensing to distinguish C. scoparius, an invasive shrub, from 22 other 

common prairie-oak savanna plants species is presented in Chapter 6. These findings are 

globally relevant as C. scoparius continues to expand across the planet.  

• Overall, this dissertation directly addresses the knowledge gaps stated by Fuchs et al. (2001) 

and reiterated by Dunwiddie and Bakker (2011) through the creation of methodologies and 

analyses capable of evaluating the impacts of habitat fragmentation and fire suppression on 

plant function, as well as monitoring the presence of invasive species in prairie-oak savannas. 
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7.3 Limitations 

7.3.1 Study area and data curation 

 The use of a single prairie-oak savanna site is one limitation of this study. The lack of 

replication beyond the boundaries of this site precludes the scaling of my findings beyond the 

CGOP, which must be taken into consideration by land mangers using these results to guide actions 

at other sites. I acknowledge that scalability is a valuable component of any scientific pursuit and 

that the inclusion of multiple, comparable sites would have been useful. However, due to cost and 

time, such analyses were not undertaken and I believe that the lack of scalability does not reduce the 

importance of the findings presented herein.  

7.3.2 Imaging spectroscopy 

 The use of imagery in this research introduces a variety of well documented challenges, 

including variations in atmospheric effects and solar illumination, to data collection and use. 

Multiple pre-processing protocols have been applied to minimize the impact of these challenges, but  

I acknowledge that it is impossible to fully remove the impact of these challenges (Arroyo-Mora et 

al., 2021). 

7.3.3 Leaf functional trait prediction 

 The prediction of leaf functional traits from imaging spectroscopy in prairie-oak savannas 

faces the complications of spectral mixing presented in Chapter 3. The potential for multiple species 

to contribute reflectance information to the single spectral signature captured in an image pixel can 

render the predicted value of a trait inaccurate when the models used for prediction are generated 

using spectral signatures from a single species. However, this inaccuracy relative to the true value of 

a functional trait does not preclude the use of this information in an evaluation of other, similarly 

affected pixels. Rather, it highlights the necessity to pursue the evaluation of functional traits relative 



103 
 

to one another. This fundamental truth has been considered in the study design of research 

presented in Chapters 3, 4 and 5 and therefore does not reduce the significance of the findings 

within.  

7.4 Future Directions 

7.4.1 Scalability 

• Incorporate a variety of prairie-oak savannas sites into a single analysis 

• Ground-truth species presence at a spatial resolution equal to or less than that of the imagery 

• Generate functional trait models including all associated plant species from multiple site 

Considering the immediate threats faced by prairie-oak ecosystems it is vital that research 

relating to plant and ecosystem health are undertaken at a variety of scales. Although important, 

the findings presented in this dissertation represent a single site and therefore neglect the larger 

mosaic of prairie-oak ecosystems on the west coast of North America. Multi-site studies of leaf 

functional traits would provide information relating to the impact of various anthropogenic 

activities on ecosystem health and enable a broader understanding of the effects of climate on 

the distribution of plant species and function.  

At the site level, future research should ensure that each pixel generated from imaging 

spectroscopy can be matched with the species present, at least  for small portions of the site 

(such as vegetation plots). The ability to confirm the species that compose a single pixel would 

enable a better understanding of the effects of spectral mixing. It could also enhance the 

accuracy of functional trait predictions by linking leaf chemistry of a single species with the 

spectral signature stored in a pixel, enabling PLSR models to be generated from the spectra 

captured by imaging, rather than leaf, spectroscopy 
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7.4.2 Data Curation 

• Compile leaf-level spectral and chemical datasets including all associated plant species from 

multiple sites 

• Collect imagery of prairie-oak savannas at various spatial resolutions across seasons from 

multiple sites 

The evaluation of 23 common prairie-oak plant species, although useful for the analyses in 

this dissertation, represents only a small portion of the plant species associated with these 

ecosystems. Future scientific pursuits should aim to collect leaf-level spectral and chemical data 

for each relevant species. Not only would this information enhance the capacity to prediction 

leaf functional traits and species diversity across the landscape, it will also add substantial 

knowledge about an underrepresented ecosystem to the current global trait databases. 

Collection of imagery at all scales, including airborne and spaceborne, across a broad variety 

of sensors and seasons will be vital to future research undertaking monitor the health and range 

of prairie-oak ecosystems. The survival of these ecosystems will rely on evidence of their 

continued demise at large-spatial scales and their revival will rely on the capacity to identify 

future sites. The identification of invasive species and the discernment of ideal planting and 

burning schedules are also reliant on the ability to evaluate plant species and functional metrics, 

guiding management activities.  
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7.4.3 Computation  

• Incorporate advanced computation methods, such as cloud computing, to complete large-

scale analyses 

The large amount of data that is required to conduct research in prairie-oak ecosystems 

poses a challenge to future analyses. Output from one imaging spectroscopy flight can contain 

millions of relevant pixels, suggesting that the analyses of numerous images from multiple sites 

will require the use of cloud computing. Google Earth Engine has demonstrated that satellite 

imagery can be used to monitor the state and change of Earth’s forest over time and has the 

potential to enable the large-scale analyses required in future prairie-oak analyses (Gorelick et al., 

2017; Hansen et al., 2013).  

In the context of this dissertation, which focuses on a single site, the call to evaluate multiple 

sites may seem obvious, but is in fact complimentary. I have demonstrated here that 

anthropogenic activities are key drivers of leaf function, and therefore ecosystem function, but 

this is not new information. For decades scholars have published opinions suggesting that 

human activities are undermining the health of a vital ecosystem and have been ignored. This 

research adds quantitative and novel approaches to monitoring the health of prairie-oak 

ecosystems using remote sensing and directly implies that such studies are possible at much 

larger scales.  

7.5 Closing statement 

 This dissertation addresses the fundamental knowledge gaps presented by Fuchs et al. (2001) 

in relation to prairie-oak savannas in British Columbia, Canada. I provide evidence that leaf 

functional traits can be predicted and mapped in highly diverse plant communities indicative of 

prairie-oak savannas using leaf and imaging spectroscopy. A major challenge relating to the accuracy 
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of leaf trait prediction in these ecosystems is also quantitatively explored, the result of which can 

provide fundamental guidance for sampling strategies in similar environments. This research also 

confirms that anthropogenic activities influence the spatial distribution of leaf functional trait both 

within and among plant species. It is my hope that the knowledge gained from this dissertation will 

improve the capacity to monitor and manage these valuable systems, as well as promote further 

research.  
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Appendix  

Table A1. Produced by Curran (1989), this table described the wavelengths at which specific chemicals 
drive absorption. The interaction between photons and molecules that produce the absorption is 
explained in the second column, while considerations of potential challenges to measurement accuracy 
are presented in the fourth. (Continued on page133) 

Wavelength 
(µ) 

Electron Transition or 
Bond Vibration Chemicals Considerations 

0.43 Electron transition Chlorophyll a Atmospheric scattering 
0.46 Electron transition Chlorophyll b Atmospheric scattering 
0.64 Electron transition Chlorophyll b  

0.66 Electron transition Chlorophyll a  

0.91 C-H stretch, 3rd overtone Protein  

0.93 C-H stretch, 3rd overtone Oil  

0.97 O-H bend, 1st overtone Water, starch  

0.99 O-H bend, 2nd overtone Starch  

1.02 N-H stretch Protein  

1.04 C-H stretch, C-H 
deformation Oil  

1.12 C-H stretch, 2nd overtone Lignin  

1.20 O-H bend, 1st overtone Water, cellulose, starch, 
lignin 

 

1.40 O-H bend, 1st overtone Water  

1.42 C-H stretch, C-H 
deformation Lignin  

1.45 
O-H bend, 1st overtone, 

C-H stretch, C-H 
deformation 

Starch, sugar, lignin, water Atmospheric absorption 

1.49 O-H bend, 1st overtone Cellulose, sugar  

1.51 N-H stretch,  1st overtone Protein, nitrogen  

1.53 O-H bend, 1st overtone Starch  

1.54 O-H bend, 1st overtone Starch, cellulose  

1.58 O-H bend, 1st overtone Starch, sugar  

1.69 C-H stretch, 1st overtone Lignin, starch, protein, 
nitrogen 

 

1.78 C-H stretch, 1st overtone Cellulose, sugar, starch  

1.82 O-H stretch/C-O stretch, 
2nd overtone Cellulose  

1.90 O-H stretch/C-O stretch Starch  

1.94 O-H stretch, O-H 
deformation 

Water, lignin, protein, 
nitrogen, starch, cellulose Atmospheric absorption 

1.96 O-H stretch/O-H bend Sugar, starch Rapid decrease in signal -
to-noise ratio of sensors 1.98 N-H asymmetry Protein 
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2.00 O-H deformation, C-O 
deformation Starch 

2.06 
N=H bend, 2nd 

overtone/N=H bend/N-
H stretch 

Protein, nitrogen 

2.08 O-H stretch/O-H 
deformation Sugar, starch 

2.10 
O=H bend/C-O 

stretch/C-O-C stretch, 3rd 
overtone 

Starch, cellulose 

2.13 N-H stretch Protein 

2.18 

N-H bend, 2nd 
overtone/C-H stretch/C-

O stretch/C=O stretch/C-
N stretch 

Protein, nitrogen 

2.24 C-H stretch Protein 

2.25 O-H stretch, O-H 
deformation Starch 

2.27 C-H stretch/O-H stretch, 
CH2 bend/CH2 stretch Cellulose, sugar, starch 

2.28 C-H stretch/CH2 
deformation Starch, cellulose 

2.30 N-H stretch, C=O stretch, 
C-H bend, 2nd overtone Protein, nitrogen 

2.31 C-H stretch, 2nd overtone Oil 

2.32 C-H stretch, CH2 
deformation Starch 

2.34 
C-H stretch/O-H 
deformation/C-H 

deformation/O-H stretch 
Cellulose 

2.35 
CH2 bend, 2nd overtone, 

C-H deformation, 2nd 
overtone 

Cellulose, protein, nitrogen 
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Table A2. Partial Least Squares Regression model evaluation. Functional traits selected for hypothesis 
testing and their associated model performance metrics (R2, Root mean squared error of the predictor 
(RMSEP) and normalized-RMSEP (NRMSEP) and the number of components, or latent variables). 

Trait Components R2 RMSEP (NRMSEP) 

Chlorophyll a (mg/g)* 7 0.54 3.25 (31%) 

Chlorophyll b (mg/g)* 8 0.56 1.16 (33%) 

Nitrogen (%)* 4 0.70 0.5(17%) 

C:N* 4 0.71 2.98 (18%) 

Leaf mass per area (g/m2)* 6 0.67 10.34 (25%) 

Leaf dry matter content (mg/g)* 7 0.69 48.64 (22%) 

EWT* 4 0.85 0.002 (16%) 

Cellulose* 4 0.59 3.96 (27%) 

Carotenoids (mg/g) 4 0.36 0.68 (31%) 

Carbon (%) 6 0.48 0.99 (2%) 

Hemicellulose 4 0.36 6.43 (40%) 

Lignin 4 0.46 3.64 (55%) 

Solubles (%) 4 0.41 9.78 (16%) 

Recalcitrants 4 0.28 0.12 (56%) 
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Table A3. Percent of tree cover at each subsite calculated from the number of returns above 2m in the 
airborne laser scanning point cloud. 

 Low Medium High 

Tree cover (%) 39.99 42.86 47.16 
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Table A4. Loading and proportion of variance values for each principal component derived from analyses 
of eight functional trait layers at the Low cover subsite of CGOP. 

Low Cover PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Proportion of 

Variance (%) 
61.36 19.34 13.08 4.48 1.43 0.22 0.07 0.00 

Chl a 0.44 0.18 -0.01 0.14 -0.03 0.45 0.70 0.24 

Chl b 0.32 0.43 0.22 0.63 0.21 -0.36 -0.24 0.16 

C:N 0.41 -0.32 -0.15 0.04 0.12 0.53 -0.60 0.23 

%N 0.18 -0.07 0.85 -0.42 0.25 0.03 -0.01 0.00 

EWT -0.39 0.34 0.13 0.25 0.30 0.57 -0.08 -0.48 

LDMC 0.39 -0.32 -0.24 0.03 0.53 -0.22 0.19 -0.56 

LMA -0.42 -0.21 -0.08 0.07 0.66 -0.04 0.16 0.55 

Cellulose -0.15 -0.64 0.35 0.58 -0.28 0.04 0.14 -0.09 
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Table A5. Loading and proportion of variance values for each principal component derived from analyses 
of eight functional trait layers at the Medium cover subsite of CGOP. 

Medium Cover PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Proportion of 

Variance (%) 
64.59 25.79 8.06 0.75 0.61 0.15 0.03 0.01 

Chl a 0.42 0.16 -0.11 0.07 -0.16 0.21 0.78 -0.31 

Chl b 0.38 0.32 -0.11 -0.40 -0.58 -0.27 -0.37 -0.18 

C:N 0.38 -0.35 -0.05 -0.06 0.07 0.73 -0.39 -0.18 

%N 0.27 0.22 0.89 -0.17 0.25 -0.01 0.00 0.01 

EWT -0.33 0.45 -0.01 -0.31 -0.22 0.55 0.11 0.47 

LDMC 0.36 -0.38 -0.18 -0.53 0.20 -0.20 0.22 0.54 

LMA -0.43 -0.13 0.00 -0.66 0.19 0.01 0.13 -0.57 

Cellulose -0.20 -0.57 0.39 0.02 -0.67 0.02 0.16 0.06 
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Table A6. Loading and proportion of variance values for each principal component derived from analyses 
of eight functional trait layers at the High cover subsite of CGOP. 

High Cover PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Proportion of 

Variance (%) 
64.06 33.95 1.6 0.24 0.12 0.03 0.01 0 

Chl a -0.42 -0.19 0.06 0.09 -0.32 -0.22 0.39 0.68 

Chl b -0.42 -0.17 0.02 0.16 -0.30 -0.15 0.36 -0.73 

C:N -0.29 0.46 0.12 -0.24 0.08 0.69 0.38 0.02 

%N -0.40 -0.22 -0.71 -0.39 0.37 -0.04 -0.07 0.00 

EWT 0.26 -0.49 -0.12 -0.35 -0.59 0.45 -0.09 -0.01 

LDMC -0.36 0.35 0.25 -0.49 -0.34 -0.28 -0.51 -0.04 

LMA 0.43 0.12 0.02 -0.57 0.03 -0.41 0.55 -0.06 

Cellulose 0.16 0.55 -0.63 0.26 -0.45 -0.06 0.02 0.03 
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Table A7. Global Moran’s I value for PCs 1 – 3 at low, medium and high cover subsites. 

Spatial Autocorrelation PC1 PC2 PC3 

Low 0.89 1.07 0.94 

Medium 0.98 1.16 0.84 

High 1.10 1.22 0.82 
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Table A8. Resulting p-values from Mann-Whitney tests comparing measured Cytisus scoparius nitrogen 
percent with the 22 Site species. The difference in %N between C. scoparius and each of the 22 other 
species is significantly different (p < 0.05). The number of individuals sampled per species is included in 
parentheses under their names. 

Species Nitrogen (%) Species Nitrogen (%) 

Berberis aquifolium Pursh 
(10) 1.08E-05 

Lomatium utriculatum 
(Nuttall ex Torrey & 
A. Gray) J.J. Coulter 

& Rose 
(10) 

1.08E-05 

Bromus sitchensis var. carinatus 
(Hooker & Arnott) R.E. 

Brainerd & Otting 
(10) 

1.08E-05 

Oemleria cerasiformis 
(Torrey & A. Gray 

ex Hooker & 
Arnott) J.W. 

Landon 
(10) 

1.08E-05 

Bromus sterilis Linnaeus 
(6) 2.50E-04 

Plectritis congesta 
(Lindley) de 

Candolle (10) 
1.08E-05 

Camassia leichtlinii (Baker) S. 
Watson 

(10) 
5.67E-06 Poa pratensis 

Linnaeus (10) 2.50E-04 

Camassia quamash (Pursh) 
Greene 

(10) 
1.08E-05 

Polystichum munitum 
(Kaulfuss) C. Presl 

(7) 
1.03E-04 

Claytonia perfoliata  Donn ex 
Willdenow 

(10) 
 

1.08E-05 
Quercus garryana 

Douglas ex Hooker 
(10) 

1.08E-05 

Crataegus monogyna Jacquin 
(10) 2.50E-04 Rosa nutkana C. 

Presl (10) 1.08E-05 

Dactylis glomerata Linnaeus (10) 1.08E-05 

Sanicula crassicaulis 
Poeppig ex de 

Candolle 
(10) 

1.08E-05 

Festuca idahoensis Elmer 
(6) 2.50E-04 

Sericocarpus rigidus 
Lindley 

(3) 
0.007 

Holodiscus discolor (Pursh) 
Maximowicz 

(10) 
1.08E-05 

Symphoricarpos albus 
Poeppig ex de 

Candolle 
(10) 

1.08E-05 

Lathyrus sphaericus Retzius (6) 2.50E-04 Vicia sativa Linnaeus 
(10) 4.33E-05 
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Figure A1. Fractionated spectral signature of Vicia sativa at 25% (dark blue), 50% (light blue), 75% (light 
green) and 100% (dark green). These spectra are created by multiplying the pure spectral reflectance, or 
endmember, of V. sativa by a specific percent. The spectra “25% V. Sativa” was generated by multiplying 
the endmember values of all spectral bands by 0.25.  
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Figure A2. Boxplots presenting the differences in 14 trait values between grass (salmon), herb (green), 
shrub (blue) and tree (purple) lifeforms. Kruskal-Wallis one-way analysis of variance was used to evaluate 
the significance of trait variation between lifeforms. A pairwise Wilcox test was used to determine which 
specific lifeforms were different and highlighted that all lifeforms were significantly different from each 
other for all traits, except for two (carotenoid values for graminoid and tree species and leaf mass per 
area g m-2 values between graminoids and shrubs were not significantly different).  
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(a)  

(b)  
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(c)  

(d)  



145 
 

(e)  

(f)  
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(g)  

Figure A3. Changes in the predicted (a) chlorophyll a,(b) chlorophyll b, (c) nitrogen %, (d) carbon: 
nitrogen (C:N), (e) leaf dry matter content (LDMC), (f) equivalent water thickness (EWT) and (g) cellulose 
for four levels of percent target species presence  (20, 40, 60 and 80%). 2- (n = 22), 3- (n = 110) and 4-
species (n = 409) mixes refer to the total number of species included in the mix. The horizontal red line 
represented the predicted trait value for the target species endmember. Horizontal black lines within each 
box indicate the median predicted trait value and the whiskers of each box represent the largest value 
equal to or within 1.5 times the inter-quantile .range. Mean trait values outside the 95% confidence 
interval (horizontal dotted lines) are significantly affected by spectral mixing.   
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(a)  

                  (b)  

Figure A4. Biplots of (a) PC1 and PC2 and (b) PC2 and PC3 of trait rasters for all subsites within the 
CGOP. Subsites are divided by cover (red = low, green = medium, blue = high). 
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(a) 

 

(b) 

  

(c) 

 

(d) 

  

(e)  (f)  

  

Figure A5. Biplots of PCs 1 and 2 (a, c, e),as well as PCs 2 and 3 (b, d, f) for low (green), medium (blue) 
and high (red) cover subsites at CGOP. 
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Figure A6. Boxplots depicting the changes in values of PCs 1 – 3 at the Low, Medium and High Cover 
subsites in relation to the distance from the nearest tree. Values were sampled randomly within 1 m of the 
associated distance and binned. Regression lines (reg) are based on the linear model (lm) function in R 
using median values of each boxplot.   
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Figure A7. Boxplots depicting the changes in values of PCs 1 – 3 at the Low, Medium and High Cover 
subsites in relation to the distance from the nearest road. Regression lines (reg) are based on the linear 
model (lm) function in R using median values of each boxplot.  
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Figure A8. Boxplots depicting the changes in values of PCs 1 – 3 at the Low, Medium and High Cover 
subsites in relation to the amount of incoming solar radiation that a pixel is exposed to. Regression lines 
(reg) are based on the linear model (lm) function in R using median values of each boxplot. 
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Figure A9. Boxplots depicting the changes in values of PCs 1 – 3 at the Low, Medium and High Cover 
subsites in relation to topographic wetness. Regression lines (reg) are based on the linear model (lm) 
function in R using median values of each boxplot. 
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