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Abstract

In this thesis we study how to design accurate, efficient and structure-preserving numer-
ical schemes for phase field models including the Allen—Cahn equation, the Cahn—Hilliard
equation and the molecular beam epitaxy equation. These numerical schemes include the
explicit Runge-Kutta methods, exponential time differencing (ETD) Runge-Kutta meth-
ods and implicit-explicit (IMEX) Runge-Kutta methods. Note that the phase field models
under consideration are gradient flows whose energy functionals decrease with time. For
the Allen—Cahn equation, it is well known that the solution satisfies the maximum prin-
ciple; for the Cahn—Hilliard equation, although its solution does not satisfy the maximum
principle, the solution is also bounded in time. When designing numerical schemes, we wish
to preserve certain stabilities satisfied by the physical solutions. We first make use of strong
stability preserving (SSP) Runge-Kutta methods and apply some detailed analysis to derive
a class of high-order (up to 4) explicit Runge-Kutta methods which not only decrease the
discrete energy but also preserve the maximum principle for the Allen—Cahn equation. Sec-
ondly, we prove that the second-order exponential time differencing Runge-Kutta methods

decrease the discrete energy for the phase field equations under investigation. Moreover,
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it can be shown that the ETDRK methods can also preserve the the maximum bound
property for the Allen—Cahn equation. What is more important is that both properties
are preserved unconditionally, in the sense that the stability conditions do not depend on
the size of time steps. Although the proof is only valid for second-order schemes and still
open for higher-order methods, its numerical efficiency has been well observed in compu-
tations. The third approach is the implicit-explicit (IMEX) Runge-Kutta (RK) schemes,
i.e. taking the linear part in the equation implicitly and the nonlinear part explicitly. A
class of high-order IMEX-RK schemes are studied carefully. We demonstrate that some of
the IMEX-RK schemes can preserve the energy decreasing property unconditionally for all

the phase-field models under investigation.
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Lay Summary

Computational simulations can be used to inexpensively understand complex systems
such as the stock market prediction and airplane design. The underlying phenomena must
be described accurately by mathematical equations in a process called modelling. Then,
the mathematical equations are approximated using computational algorithms. The al-
gorithms should be accurate and efficient and also preserve important properties of the
solutions of the equations (which are also significant properties inherited from the appli-
cation). This thesis is dealing with algorithms part with particular attention to preserve
properties of the solution. Our special target of complex systems is so-called phase-field
models which are useful in modelling interfacial phenomena such as micro-structure evo-
lution and phase transition. As the different equations from the phase-field models are
strongly nonlinear, great efforts have to be made to design and analyze the relevant com-
putational methods. This thesis proves rigorously that several proposed methods preserve

the important properties of three typical equations in phase-field models.
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Chapter 1

Introduction

Partial differential equations (PDEs) are widely used to describe mathematical models
including physical, biological and financial phenomena. To understand PDEs better helps
us to understand the world better.

In the study of PDEs, the main goal is to derive the solution of these equations
and properties that they satisfy. The PDEs which describe corresponding physical or
mathematical models are the basis of simulations that allow inexpensive virtual experiments
and helps understand the behavior of the system. We are often interested in the solutions of
PDEs in some specific domain with certain initial conditions and boundary conditions. For
example, in the study of lift characteristics of an airplane, the domain is the air around it,
the initial condition is the data of the airplane and air (like wind velocity) at the starting
time and the boundary condition describes how the air interacts with the body of the
airplane. In general, more information about the solutions help the model to be better
understood.

For most PDEs used to describe complicated systems, it is difficult to derive explicit

solutions, thus there are usually two different approaches to understand them. The first is



to focus on the pure mathematical properties of the solutions like existence, uniqueness,
regularity and so on. These results are often investigated with analytic methods and
theorems such as fixed point theorems and variation techniques. Some of the basic ideas in
this approach are introduced in Chapter 2. The other is to approximate the solutions by
using computational methods. As long as the numerical approximation is accurate enough,
it could help us understand the analytic solution. Therefore, we are also interested in
designing accurate and efficient schemes to approximate solutions.

Our main research object of this thesis is in this spirit of accurate numerical approxi-
mation. We are mainly concerned with phase field models such as the Allen—Cahn equation
and the Cahn—Hilliard equation, which were first introduced in [@]. They correspond to
the research area of material science, which are very popular topics in the study of partial
differential equations, see e.g. [B5, 23, 25, 6, IR, 24, B3, B, 48]. The phase field models we

are concerned with usually have such a general form,

Ou = Lu + G(u),

where J;u means the rate of change of the quantity u with respect to time, £ represents
a linear operator such as the Laplacian and biharmonic operator, and G is a nonlinear
one like a scalar function. Phase field methods are popular in modeling nowadays and are
often used for describing interfacial phenomena. In phase-field models, each phase takes
different constant values, connected by smooth transitions around anti-phase boundaries

between them. The phase-field models were originally introduced to describe the micro-



structure evolution [B, O8] and phase transition [24, B3, BY, AX]|, while these years, they
are also applied to many other physical phenomena, including phase separation of block

copolymers, solid-solid transitions and infiltration of water into a porous medium, see, e.g.

For example, the Allen—-Cahn equation usually reads

du = EAu+ (u —u?).

Thus, for the Allen—Cahn equation, the linear operator is the Laplacian operator, which
indicates a diffusion term, and the nonlinear term is usually taken as f(u) = u —u®, which
represents a reaction term and may have different contexts in different equations. In this
work we will use different numerical methods to discretize these quantities in the equation,
approximate the solutions and study how numerical solutions behave. The Allen—Cahn
equation was originally introduced by Allen and Cahn to describe the motion of anti-
phase boundaries in crystalline solids. The solution u(x,t) describes the concentration
of two crystal orientations of the same material. In this phase model, u = 1 represents
one orientation and u = —1 represents the other. The parameter € here is the width of
the interface between two phases, which is positive and small. Since then, the Allen—
Cahn equation has been widely applied to many complicated moving interface problems in
materials science and fluid dynamics through a phase-field approach.

In this thesis, we focus on structure-preserving numerical schemes for phase field mod-

els including the Allen—Cahn equation, Cahn—Hilliard equation and the Molecular Beam



equation, see e.g [, 8, I8, A, [1]. Unknowns in PDEs represent certain physically meaning-
ful quantities and satisfy specific structures. For example, if u represents the concentration
of oxygen and satisfies some PDEs in the reaction process, then there is no doubt that we do
not want u to be negative. Such structures come from the physical background and become
mathematical restrictions which our solutions should not violate. The essential features of
these phase field models are the maximum bound property for the Allen—-Cahn equation
and the energy dissipation law for all of three phase field models mentioned above. There-
fore, it is important to design numerical schemes satisfying these properties. In Chapter
3-5, we consider three different schemes to numerically solve these phase field models.

The first of them is a particular explicit Runge-Kutta (RK) method which satisfies
the discrete maximum bound property and the energy dissipation law for the Allen—Cahn
equation. We make use of the Strong Stability Preserving (SSP) RK scheme to preserve
the maximum bound property, prove the energy dissipation by detailed analysis and finally
derive high-order explicit Runge—Kutta schemes which preserve both structures. Since it
is explicit and requires small time steps, it is more of a theoretical result.

The second scheme considered is the second-order exponential time differencing Runge—
Kutta (ETDRK2) method which unconditionally satisfies both structures for the AC and
the energy dissipation law for all of phase field models. Here “unconditionally” means that
the time step can be arbitrarily large without disturbing the discrete structures. Besides
this scheme makes use of the Duhamel’s principle and is still linear to solve, so it is very

stable, efficient and useful in application.



The third scheme is the implicit-explicit (IMEX) Runge-Kutta method, which is also
known as the semi-implicit RK scheme. It takes the linear part implicitly and the nonlinear
part explicitly to get the numerical solution. In this way, high order solutions which
decreases the original energy for a family of phase field models can be derived by a class of
IMEX RK methods satisfying certain conditions. This work gives the first scheme which is
one-step, high-order, linear to solve and also preserves the original energy dissipation law
for a wide class of phase field models.

The structure of the thesis is organized as follows. Chapter 2 introduces notations
and preliminaries that will be used in the thesis. The following Chapters 3, 4 and 5
present results related to the explicit Runge-Kutta method, the exponential time differ-
encing Runge-Kutta method and the implicit-explicit Runge-Kutta methods respectively.

Conclusions and remarks for future work could be found in Chapter 6.



Chapter 2

Notation and preliminaries

2.1 Notation and definitions

2.1.1 O(g(x)) and o(g(z))

For functions f(x) and g(z), if there exists a positive constant C' such that |f(z)| <

Clg(z)|,Vx, then f(z) is O(g(x)). If ILm % = 0, Vo where xy depends on the context,
a—wo g(x

then we say f(z) is o(g(z)).

2.1.2 < and <

For two quantities A and B, if there exists a positive constant C' such that A < CB,
then we denote A < B. Similarly if there exists a positive constant ¢ such that A > ¢B,
we have A 2 B. If A< B and A 2 B, we say A~ B.

We say A < B if A/B is very small, which is clear from the context.



2.1. NOTATION AND DEFINITIONS

2.1.3 L? Space

On the given domain 2, for 1 < p < oo (in the rest of the thesis we always assume this
condition unless otherwise stated), the space LP(£2) consists of all measurable functions

which satisfy
[ 1f@Prds <.
Q

For f € LP(Q2), we define the LP norm by
1/p
ey = ([ f@Pde)

2.1.4 Weak Derivatives and Sobolev Space

We use the following notations:
x = (x1,x2,...,T5) € R",

o= (051,042, ...,an) S Z?_,

aa1+---+an

Ogt...0an

o°f = f.

1
loc

We define the weak derivative in the following sense: given u € L; (), we say a

function v is the weak derivative of u if V¢ € C§°(Q2),

[ wl@oro@ids = (vt [ @ola)da,
Q

Q
and also we denote v(z) = 0%u(z). It is a direct conclusion from the definition that if u
is a smooth function, then its classic derivative is also its weak derivative and the above

equation is simply repeated integration by parts.



2.1. NOTATION AND DEFINITIONS

Suppose u € LP(Q) and all weak derivatives 0%u exist for || = a1 + ... + o, < k for
some constant k, i.e. 9% € LP(Q) for all |a| < k, then we say u € W*P(Q), and such spaces

are named Sobolev space. The norm equipped to the Sobolev space is defined as
1/p

lullwrsy = > [ 10%ulPdx
laj<k

When p = 2, we use the convention H2(Q) = W*2(Q).

2.1.5 Fourier Transform

Throughout the thesis we use the following convention for the Fourier expansion on

T = (R/(2m))%

) = R eikx r _ z efikx o~
f(x) S fk)e, fk) /Qf( e ey,

1
dj2
(27r) kezd

where ¢ = 4/—1 is the imaginary unit. Based on the Fourier expansion we define the

equivalent H® norm and H?2 norm by

1/2
1 R
[ fll s = (2m)i2 22(17L|k|25)|j‘"(lc)|2 ,
kezd
1/2
1 .
1N s = e > EPIf (k)P
kezd

The equivalence of these two norms are well-known.



2.1. NOTATION AND DEFINITIONS

2.1.6 Convergence of Fourier Series in Periodic Domains

Given a periodic function f € LP(T¢), we denote the Dirichlet partial sum

Dt = Gz 3 Fkje™,

[k|<N

and we have the following convergence result

IDnf = fllzp(ray = 0,

and Dy f — f, pointwise almost everywhere.

2.1.7 Duhamul’s Formula

Assume a function u(z,t) defined on 2 x (0,400) satisfies a linear inhomogeneous

evolution equation

up = Lu+ f(z,t),

u(z,0) = uo(z),
where L is a linear differential operator which involves no time derivatives and the equation
is equipped with certain boundary conditions. Then the solution of the system can be
written as

t
u(z,t) = eltug(z) +/ eHt=3) f(z, 5)ds,
0

L

where e*tuq is equivalent to solving to time ¢ a homogeneous equation u; = Lu with the

initial data ug.



2.2. IMPORTANT INEQUALITIES

2.2 Important Inequalities

2.2.1 Holder’s Inequality

Given f € LP(Q2) and g € L9(Q2) such that }D + % =1, then
1f9llr) < [1flr@)llgllLa)-

2.2.2 Young’s Inequality

Given a, b, p, q positive real numbers, such that % + % =1, then

aP b
ab < — + —.
p q

2.2.3 Morrey’s Inequality

Assume Q is a bounded Lipschitz domain in R? where d < 3 and f € H?(f2), then

1fllzoe () S I f11m20)-

A stronger estimate could be proven with the help of Holder space.

2.2.4 Gagliardo-Nirenberg Interpolation Inequality

Given the function u : © — R where Q C R? is a bounded Lipschitz domain, 1 <
q,7 < 0o, and a natural number m. Assume there exist a natural number j and a real

number « such that

10



2.2. IMPORTANT INEQUALITIES

and

3 |m.
IN
Q
IN
“P—‘

then we have

1D ul| Lo < CLID™ull |[ulliz® + Collull s,

where s > 0 is arbitrary.

11



Chapter 3

Energy plus maximum bound
preserving Runge—Kutta methods

for the Allen—Cahn equation

3.1 Introduction

Strong stability preserving Runge-Kutta (SSP-RK) methods have been developed for
numerical solution of hyperbolic partial differential equations. Starting with Shu [d4] it was
observed that some Runge-Kutta methods can be decomposed into conver combinations
of forward Euler steps, and so any convex functional property satisfied by forward Euler
will be preserved by these higher-order time discretizations, generally under a different
time-step restriction. This approach was used to develop second- and third-order Runge—
Kutta methods that preserve the strong stability properties of the spatial discretizations
developed in that work. In fact, this approach also guarantees that the intermediate stages
in a Runge-Kutta method satisfy the strong stability property as well. More references in

12



3.1. INTRODUCTION

this direction can be found in [29, BO, B4, BY, B7] and a useful survey article of Gottlieb,
Shu and Tadmor [28].

The aim of this work is to extend this SSP theory to deal with the nonlinear phase field
equation of the Allen-Cahn type. To this end, we consider the numerical approximation of

the Allen—Cahn equation
1
ut:eAu—sz(u), xeQ, te (0,7, (3.1.1)

with the initial condition

’LL(l‘,O) = UO(x)v T €,

and the homogeneous Neumann boundary condition or periodic boundary condition, where
Q is a bounded domain in R? (d = 1,2,3). Notice that the equation (BZIT) is slightly dif-
ferent from the Allen—Cahn equation in Chapter 1, which has been scaled by the parameter
€. This scaling does not affect the intrinsic properties of the system but only means we are
concerned with a different time scale. Since the explicit Runge-Kutta methods must have
certain restrictions for time steps and we want to point out the relationship between the
restrictions and the parameter ¢, in this chapter we take the Allen—Cahn equation in the
form (BIT).

In this work, we consider the polynomial double-well potential
1 22
F(u) = 1(1 —u”) (3.1.2)
and correspondingly,

flu) = —F'(u) = u—u?. (3.1.3)

13



3.1. INTRODUCTION

The solution u(x,t) describes the concentration of two crystal orientations of the same
material. In this phase model, u = 1 represents one orientation and u = —1 represents the
other. The parameter € here is the width of the interface between two phases, which is
positive and small.

The Allen-Cahn equation can be viewed as the L? gradient flow of the Ginzburg-

Landau free energy
€ 9 1
E(u) = =|Vul* + =F(u) ) dz. (3.1.4)
Q 2 €
The L? gradient flow structure corresponds to an energy dissipation law. This means that

the energy is decreasing as a function of time,

€ 1 2
— = —/ <6Au + —f(u)> dz <0. (3.1.5)
dt QO €

Another significant feature of the Allen—Cahn equation is its maximum bound preserving

(MBP) property in the sense

[u(- )]loo < 1 (3.1.6)

provided that the initial and boundary values are bounded by 1.

The present work seems to be the first effort to study high-order time discretizations
aiming to preserve both (31H) and (816). By applying Shu’s SSP-RK theory [24], i.e.,
using the property of the forward Euler method repetitively, we will first obtain a sufficient
condition to verify whether a Runge-Kutta method is MBP, and also give a necessary and
sufficient condition for s-stage s-th order MBP-RK methods. Both results will be estab-
lished by using the so-called Butcher Tableau so the results are easy to verify. Moreover,

14



3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

we will provide a necessary condition to judge whether the MBP-RK solutions preserve
the energy dissipation law. Finally, we will provide some RK2, RK3 and RK4 methods
which satisfy both both (83325) and (818). A special RK3 method violating the energy
dissipation law will be also reported.

This chapter is organized as follows. Section B2 contains some preliminaries and
notations. Section B33 analyzes high-order MBP-RK methods to the Allen—-Cahn equation
by using Shu’s theory. We build up the relationship between the Butcher Tableau and the
so-called Shu-Osher form [45]. Section B4 studies how to preserve the energy dissipation law
(B13) for the relevant Runge-Kutta methods. Section B3 applies the theory of Sections

and B3 to some typical Runge—Kutta schemes for the Allen—Cahn equation.

3.2 Interplay between the Butcher Tableau and Shu-Osher

form

The Runge—Kutta methods are a family of implicit and explicit iterative methods used
in temporal discretization for the approximate solutions of ordinary differential equations

(ODEs). Consider an ODE system in time v’ = G(u). An explicit Runge-Kutta method

15



3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

is commonly written in the form:

Vo = Un,
i—1
Vi = Up + TZaijG(vj), 1<i<s—1 (3.2.1)
j=0
s—1
Upt1 = Up + TijG(Uj).
j=0

In other words, to specify a particular method, one needs to provide the integer s (the
number of stages), and the coefficients a;; (for 1 < j < i <'s), b; (for j =1,---,s) and
¢j (for j=1,---,s—1). The matrix (a;;) is called the Runge-Kutta matrix, while the b;
and c; are known as the weights and the nodes [#]. These data are usually arranged in a

mnemonic device, known as a Butcher tableau (after John C. Butcher):

C1 ai,o 0

Co a2,0 az,1 0
(3.2.2)
0
Cs—1 | Qs—1,0 Gs—11 - Gs—15-2 0
bo b1 bs—1
where
1—1
c; = Zai]‘, 1> 1. (3.2.3)
j=0
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3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

If we define as; = b; for all j > 0, then the scheme (B=Z1) becomes

Unp = Vo,
i—1

V; = Up + TZCLZ‘]‘G(U]'), 1<1<s (3.2.4)
=0

Un+1 = Vg.

We further define a strictly lower-triangular matrix Ay, as

0
a1,0 0

A = asp asy O . (3.2.5)
as0 Gs1 ... Ggs5-1 0

On the other hand, the Runge-Kutta method can be written in the Shu-Osher form [45]:

Vo = Un,
i—1

v; = <Ozikvk + TﬁikG(UIs)>, I<i<s (3.2.6)
k=0

Unp41 = Vs,

where consistency condition requires

i—1
ap=1, 1<i<s. (3.2.7)
k=0

It is observed in Shu [d4, @45] if all coefficients are positive, i.e., a;x > 0 and S;; > 0, then

the solution can be viewed as convex combinations of forward Euler solutions. Based on
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3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

this theory, the consistency condition (B=27) and the positivity conditions a;; > 0 and

Bir > 0 can ensure the Strong Stability Preserving (SSP) properties.
Proposition 2.1. ([44, 43]) If the following so-called RK-SSP condition is satisfied
=1, 1<i<s; air >0, Bin >0, 0<k<i<s, (3.2.8)
(when c, = 0 then By, = 0), then the Runge—Kutta type method of type (ZZ4) satisfies
the SSP condition in the sense that
[t ]l < [unl],
where || - || is the maximum norm or in the TV semi-norm.

Below we explore the relationship between the original form (8221) and the Shu—Osher

form (B2). We rewrite the Butcher form with the help of the consistency condition (87271):

i—1 i—1 i—1

Vi =v9+T Z aijG(Uj) = Qoo + Z Qijvg + T Z aijG(vj). (3.2.9)

j=0 j=1 7=0

We further use (821 for the above result to obtain

i—1 j—1 i—1
vi = aypuo + Z Qij (vj -7 Z ajkG(vk)> + 7 Z a;xG(vg)
=1 k=0 k=0

i1 i—1
= QipVk + T | Gik — Z agiazr | G(ug) |, 1<i<s.
k=0 j=k+1
By defining
i—1
Bik = aik — Z Qi Ak, 0<k<i—-1, (3.2.10)
j=k+1

the relationship between the original form (B=211) and the Shu-Osher form (B221) is estab-
lished.
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3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

Theorem 2.1. If all elements in the strictly lower-triangular matriz Ar, in (B2Z3) are
positive, i.e. a;;, > 0 for all 0 < k < i <'s, then there exist coefficients oyj, B;j > 0 such

that the corresponding explicit Runge—Kutta scheme (@21) satisfies the RK-SSP condition.

Proof. We need to use the given positive elements a;; (0 < j < i < s) to construct positive

coefficient pairs (ouk, Bik). Let

. Qif
d= min ———,
<h<i< - .
O<k<i<s Zj:k:—H Ajk

and let

fs 1 | o
aij:mln{g,m}, V1§1§371§]<Z’

aip=1—(i—1)-a;p, 1<i<s.

It is easy to check that a;; > 0 for all 0 < k < i < s. Using the relation (82210) and the

fact a;; < & gives

1—1
Bik = aip— Z Qg

j=k+1
i—1
> Qi — Z 5ajk
j=k+1
i—1 W
j=k+1 ijk—i—l Ajk
Finally, it is easy to observe that
i—1 i—1
Zaik:aio—kZail:1—(i—1)-ai1+(i—1)~ai1 =1.
k=0 k=1
This completes the proof of the theorem. O
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3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

The above theorem gives a simple sufficient condition which can convert a Runge—
Kutta method to be of Shu—Osher type satisfying the RK-SSP condition (8=21). Below we

derive a sufficient and necessary condition for a wide class of Runge—Kutta method.

Theorem 2.2. An explicit Runge—Kutta method with non-zero sub-diagonal elements satis-

fies the RK-SSP condition (B238) if and only if all elements in the strictly lower-triangular

part of Ap, in (@Z3) are positive.

Proof. The sufficient condition is proved in Theorem EZI. We now prove the necessary
condition. In this case, the explicit Runge-Kutta method with non-zero sub-diagonal
elements satisfies the RK-SSP condition (832R). Define order(a;;) = (i — 1) s+ k, 0 <
k <1 < s. If there exist non-positive elements in A, we take the first of them in the sense

of order, ap, < 0. Since the RK scheme satisfies (B228), we have

i—1
ajp >0, Bip = aix — Z ajjajy >0, 0<k<i-1
j=k+1
In particular, we have
p—1
apg — Y pjajg > 0. (3.2.11)
J=q+1

As ay, is the first non-positive element in the sense of order, all a4 in the summation above

are all positive. We then have two cases.
o If apy < 0, then it is easy to see a contradiction to (B=ZLI).

o If ayq = 0, as the other ajq is positive then it follows from (B=21M) that all ay; in
(B=Z) are 0, and in particular, o, ,—1 = 0, which leads to 3,,-1 = 0. Note that by
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3.2. INTERPLAY BETWEEN THE BUTCHER TABLEAU AND SHU-OSHER FORM

(BZ10) we have 3, ,—1 = app—1. Consequently, we have a,,—1 = 0 which contradicts

the non-zero sub-diagonal element assumption.
This completes the proof of the theorem. U
One direct result is the following proposition.

Proposition 2.2. An s-stage sth-order explicit Runge—Kutta method satisfies the RK-SSP
condition (B238) if and only if all elements in the strictly lower-triangular part of Ap are

positive.

Proof. For the s-order RK scheme, in order to match the highest order term in the Taylor

expansion, we must have

1
o a1,002,1 " Gs,s—1
S!

which guarantees all sub-diagonal elements a; ;1 are non-zero. 1

The following proposition is given in [d, B4], while Theorem 22 provides a different

perspective.

Proposition 2.3. There does not exist any 4-stage 4th-order explicit Runge—Kutta method

satisfying the RK-SSP condition ([323).

Proof. The only 4th-order RK whose coefficients are all non-negative is the classic RK4
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3.3. MBP-RK METHODS FOR THE ALLEN-CAHN EQUATION

[@], whose Butcher tableau reads

0] o0
1/2 | 1/2
/2] 0 1/2 (3.2.12)

12 0 0 1/2

1/6 1/3 1/3 1/6

Note that ae1 = asp = az1 = 0, i.e., they are not positive. Consequently, the classical RK4

does not satisfy the RK-SSP condition (B=2S). O

Proposition 2.4. Any irreducible RK method whose elements in the strictly lower-triangular

part are all positive can not have order greater than 4.

Proof. 1t is known that there is no irreducible SSP-RK method which has order greater
than 4 [B4, B9]. If an explicit irreducible Runge-Kutta method has positive strictly lower-
triangular part, then based on Theorem P it must satisfy the RK-SSP condition, which

contradicts the existing theory of [34, B9]. O

Remark 3.2.1. Theorems in this section could also be derived by the contractivity theory

[54, 22], although the approaches and illustrations are different.

3.3 MBP-RK methods for the Allen-Cahn equation

We will use the central finite difference discretization to the Allen—Cahn equation in
space. Without loss of generality, we consider the computational domain [0, 27] with the
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3.3. MBP-RK METHODS FOR THE ALLEN-CAHN EQUATION

periodic boundary condition and let the space mesh size h = 27 /N. Denote the grid points

as {z; = jh,j =0,1,..., N — 1} and the forward finite difference matrix of d, by Dy

1 -1

-1 1

Sl

Dy (3.3.1)

-1 1
L 4 NxN

Thus we have the central difference discretization operator D = —D{ D; for the Laplacian
A. It is well-known that the discrete operator D is of second-order accuracy to approximate

the Laplacian operator.

Lemma 3.1. Given any vector v and scalar o > 2, the following inequality holds:

H (I + éh2D> v

Proof. When o > 2, ol + h?D is a tri-diagonal matrix whose elements are all positive.

< [V]]oo- (3.3.2)

o0

Besides, note that the sum of each row of D is zero. Consequently, the sum of every row
of aI + h?D equals to constant . Observe that

(@I + h? D)Vl = max[lajvj—i + bjvj + ¢;Viilloo
! (3.3.3)

< (lagl + [bj[ + le;|) max [[vjlloo = &|Vlloo,
where aj,bj, c; are corresponding coefficients in the matrix. This completes the proof. [

Lemma 3.2 ([27]). Denote the discrete Fourier transform as Fy and the conjugate trans-

pose as (-)H, then it holds that

D =FHAFy, A= diag([o, -, An_1]), (3.3.4)
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3.3. MBP-RK METHODS FOR THE ALLEN-CAHN EQUATION

where \j = —(2 — 2cos(jh))/h? are eigenvalues of D.

One direct result of this lemma is the following inverse inequality: Given any vector
u, it holds that

4
0<—ulDu< ﬁuTu. (3.3.5)

Note that the above property holds for more general boundary conditions and domains,
and in these situations the coefficient 4 in (BZ3H) will be replaced by a positive constant C'
depending only on the boundary conditions and the domain.

For simplicity and for ease of demonstrating the main ideas, in this chapter we only
consider the 1D case. For multi-dimension cases, by using the tensor product for the
discrete Laplacian operator in 2D and 3D, results similar to the 1D case can be obtained.

The semi-discrete finite difference discretization of the Allen—Cahn equation reads

d 1
FTh eDu + Ef(u) =: G(u). (3.3.6)

We list following two properties for system (B=38) resulting from the so-called method-

of-lines approach.

o If the initial value satisfies ||ug||oo < 1, then the solution u(t) given by (BZ3H) satisfies

the maximum bound preserving (MBP) property:
Ju(t)fleo <1, Vt2>0. (3.3.7)
o Let

€ 1
Ep(u) = 5[ Drulliz + [T = w2 (3.3.8)
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3.3. MBP-RK METHODS FOR THE ALLEN-CAHN EQUATION

Then the solutions of system (B=38) satisfy the semi-discrete energy dissipation law

2
<0. (3.3.9)

2

d

B = —
" '

du
dt

Note that the first result can be found in, e.g., [62], and the second result can be obtained
by taking the L? inner product of (B238) with $u.

In this section, we are concerned about MBP Runge-Kutta method for the Allen—
Cahn equation. The main strategy is to extend the Shu-Osher theory for the hyperbolic

conservation laws to deal with the Allen-Cahn solutions.

3.3.1 Forward Euler solution

In this section we discretize the semi-discrete system in the time direction by applying
forward Euler method.
Before providing a useful theorem, we need the following simple results, which can be

obtained by an elementary proof.

Lemma 3.3. For any positive number a, if —4a < ¢ < a/2, then the function g(z) =
ax + c(x — 23) satisfies

lg(z)| <a, Vzel|-1,1]. (3.3.10)
The following theorem characterizes the Euler property for the system (B=38).

Theorem 3.1. Consider the ODE system (ZZ4). If T < 79 := min{h?/4e, e/4}, then for

any vector u satisfying ||[ul|oo < 1, we have

[u+ 7G(u)o0 < 1. (3.3.11)
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3.3. MBP-RK METHODS FOR THE ALLEN-CAHN EQUATION

Proof. Note that

Ja+ G = u—i—T(eDu—i—%f(u))H

_ (%u—i-TeDu) + (%u—i— Ef(u)) H

e}

1 1
< ||lzu+r71eDu| + —u—i—zf(u)
2 o 2 € o
Using Lemma B0 and the assumption 7 < h?/4e gives
1 1
—u+ 7eDu < —.
2 o 2
Using Lemma, and the assumption 7 < €/4 yields
1 T 1
Z Z < Z.
H 5 + - (u) =3
Combining the above three results gives the desired result. UJ

Remark 3.3.1. The relationship between the time step and € comes from here and is

inevitable if one wants to solve (3.3.6) with explicit methods directly.

3.3.2 MBP-RK methods

Theorem 3.2. Consider the Runge—Kutta scheme (8Z4) with G defined by (Z=34). If

the SSP-RK property (3Z38)is satisfied, then
[u" oo €1 = [[u" o <1 (3.3.12)

under the time-step restriction

h2
7o, with 7o = min {— f}. (3.3.13)

7 < Tgsp := min
SS 46’4

i
0<k<i<s B
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3.4. THE DISCRETE ENERGY DISSIPATION LAW

Note that the ratio above is understood as infinity whenever B;;, = 0.

Proof. The proof is based on the original SSP machinery, see, e.g., [28, B0]. In particular,

note that for each 7, we have

i—1

Z ik (vk + Tﬁ—?G(U@)

k=0 k

[villoo = < (3.3.14)

i1
> (cirve + TBirG (vi))
k=0

o0 [e.9]

Under the assumption (B3313), we have 75 /a;r < 79. Then using Theorem BTl gives

i—1 i—1
i
[villoo <D v |[vr + ra—:G(vk) <> an-1=1 (3.3.15)
k=0 o0 k=0
This yields the desired result (8=312). O

3.4 The discrete energy dissipation law

The discrete energy is defined as follows
. 1
— _ 4T - )
E(u) = —gu Du + - jg_l F(uj). (3.4.1)

For ease of our derivation, we will consider a special class of Runge—Kutta schemes.

Lemma 4.1. Given a Butcher tableau (3Z3) and the corresponding RK scheme ([3.24).
By suitably arranging coefficients {c;x }, we can obtain a class of RK scheme of the following
form:

i—1

v; = Zpikvk + diTG(vi_1), 1<i<s. (3.4.2)
k=0
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3.4. THE DISCRETE ENERGY DISSIPATION LAW

Proof. We wish to convert the RK formula (B224) into the Shu-Osher format. It follows

from (B=Z10) that

i—1 i—1
v; = [aikvk + (aik — Z alkail> TG (vg,)

l=k+1

o i1 (3.4.3)
= QUL + Z (aik — Z alkail> TG(Uk) + am'_lTG(UZ‘_l).

k=0 k=0 I=k+1

By forcing the second last term in (823) to 0, a set of values of {«a; } can be determined
by {ait}. This will leave only the last G-term in (83223). Therefore, we derive p;r =

and d; = a;,;—1 and thus the scheme has the unique form (832-2). O

Note that the consistency condition requires Z;;lo pi = 1, but now the coefficients in
(BZ2) may be negative.
Before we present the main result of this section, we state the following result whose

proof is quite straightforward:

[(a® — 1) — (b* = 1)?] < (0® = b)(a — D) + (a — b)?, Va,be[-1,1]. (3.4.4)

o

Theorem 4.1. For a given SSP-RK solution which has the form ([FZ-3), we define an

upper triangular matriz ® given by

1—1
by =3 HE i<y (3.4.5)
k=0
and the energy discriminant
1
AE:§@+¢H. (3.4.6)
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3.4. THE DISCRETE ENERGY DISSIPATION LAW

If AR is positive-definite, then the energy is non-increasing under the time step restriction

. A
T S min {m, TSSP} 5 (347)
e ' h?

where Tgsp is the SSP-RK time-restriction given by (82313), and X is the smallest eigen-

value of Ag.

Proof. Rewrite (B272) by using the form of G (for simplicity we drop the € scale in this

proof and notice that here v; are vectors) and the consistency condition:

1 7
fvi) = dip1T (Vz‘+1 - Zpl”rl,kvk) — Dv;

k=0

Vi1 —
p E Pit1,k(Vi — Vi) — Dv;.
i+1T H—lT

By using the definition of the potential F' and by using (BZ), we obtain

N s—1 N
D F((ani1);) = F((wa);) = D> F((vis1);) = F((vi);)
j=1 =0 j=1

(3.4.8)

—_

S—

< Z ~ (Vi1 = V)T f(vi) + (Vigr —vi)2 = J1 + Jo + T3,
—0

(2

where

s—1

1
Jl = Z (1 - di+1T> (V’i+1 - Vi)2> J2 = Z(Vprl — VZ‘)TDVl',

1=0

Z Zk opz—I—lk Vi _Vk) (

z+17—

Vigl — Vi).

It can be easily seen that J; is simply quadratic, which will be negative for sufficiently
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3.4. THE DISCRETE ENERGY DISSIPATION LAW

small 7. By denoting w; = v; — v;_1, we have

s—1

T (Vitl T Vi Vigl — V5
Jy = (Vig1 — Vi)' D ( —

; 2 2

=0

s—1 1

T T T
= 3 (Vz‘+1DVi+1 —v; Dv; — WZ»+1DWZ'+1)

=0

and also

N
Eny1 — En = ZF((un+1)]) F((un)]) _(u£+1Dun+1 - ugDun)
j=1
s 1 s 1 i—1 m—1 1 s
<) (- E)W'L —2_ - Z Pik W Wi — 3 w, Dw; (3.4.9)
i=1 ’ i=1 " m=1 k=0 i=1
S 1 S 1 S
= ZW? 72 w%@miwz 3 Zwl Dw;,
i=1 m,i=1 i=1

where we have defined an upper triangle matrix ® by (notice that ZZ_:IO pik = 1)

i—1

®ij = ijk/dja i< (3.4.10)
k=0

Consider the energy discriminant Ag defined by (824). Recall that we dropped the € scale

in the very beginning. If we keep € in the derivation, the change of the energy becomes

s s 2 8

€ €

En+1 - En S wa - ; Z W;-F(I)Z'jo - 5 ZW?DWz (3411)
=1 i,j=1 i=1
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3.5. SOME ENERGY PLUS MBP RK METHODS

If Ag is positive-definite and A is the smallest eigenvalue of Ag, then we have

S S S
Z wl®w; = Z WlTAEijo > )\ZW%. (3.4.12)
=1

ij=1 ij=1

It follows from (B=33) that

S S
— z w! Dw; < 4h™? Z w2, (3.4.13)
i=1 i=1

Thus, by (8210), to make sure the energy dissipation we only need

ex 26
1-—+—=<0 3.4.14
r T s ( )
which is true under the assumption (BZ7). O

3.5 Some energy plus MBP RK methods

In this section we present some RK2, RK3 and RK4 methods which are maximum
bound preserving and energy dissipation. We will also give an RK3 method which is MBP
but does not satisfy our condition for the energy dissipation law. All examples in this

section are existing schemes, and the special 5-stage 4th-order example comes from [30].

3.5.1 An RK2 satisfying energy-dissipation and MBP

The Butcher Tableau is as follows:

N[
D=
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3.5. SOME ENERGY PLUS MBP RK METHODS

The corresponding (B24) form is given by

Vo = Up,
Vi =vVvg+ TG(V()),
= vo+ ZG(vo) + ZG(v1) = 2vo + 2vi 4+ 2G(v1)
Vo = Vo 9 Vo 9 V1) = 2V0 2V1 9 V).
It follows from the theory in Section B=3 the scheme is MBP.

The energy form coincides with (823) and the energy discriminant is

—_
N[

o= . Ap=(o+a”) =

N =
T

Note that Ag is positive-definite and the smallest eigenvalue of Ag is (3 — v/2). Hence

with suitably small time-step, this MBP-RK2 scheme preserves both maximum bound and

the energy dissipation law.

3.5.2 An RKS3 satisfying energy-dissipation and MBP

Consider the Butcher tableau:

0

1]1
11 1
2112 1

=
=
win
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3.5. SOME ENERGY PLUS MBP RK METHODS

The corresponding (B24) form is given by

Vo = Up,
vi = v + 7G(vp),

3 1
Vo = —vg+ -vy + iG(vl),

4 4
V3 = %vo + §V2 + %G(Vg).
The energy discriminant reads
Ls ) R
o=|0 4 1| AE:%((I)—F‘I’T): 8 4 1
00 ] Ll

Note that Apg is positive-definite and the smallest eigenvalue of Ap is about 0.362228.
Again based on the theory in Section B4, with sufficiently small time-step, this MBP-RK3

scheme preserves both maximum bound and the energy dissipation law.

3.5.3 An RKS3 satisfying MBP but not sure energy-dissipation

Consider the Butcher tableau:

0
111
211 1

wIiN
(NI
=
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3.5. SOME ENERGY PLUS MBP RK METHODS

The corresponding (B24) form is given by

Vo = Up,

vy =vg+ TG(VQ),

vy =vi +7G(v1),
1

1 1
V3 = gV() + §V1 + EVQ + %G(Vg).

However, It can be shown that the energy discriminant is not positive-definite in this case.

Note
10 2 101
1 T
=101 5 ,AE=§(<I>+<I>)= 01 3
006 1 56

The smallest eigenvalue of Ap is %(7—3\/6) ~ —0.174. Thus, this scheme is not guaranteed

to decrease the energy by our approach.

3.5.4 An 5-stage RK4 satisfying MBP and energy-dissipation

It is well known that there is no 4-stage 4th-order SSP-RK4. We then just consider

the following 5-stage RK scheme:

Vo = Up,
vi = vo + di7G(vo),
Vo = paoVo + p21vi + doTG(v1),

V3 = P30V + p32va + d3TG(va),
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3.5. SOME ENERGY PLUS MBP RK METHODS

V4 = paoVo + pazvs + dsTG(v3),

Vs = P5aV2 + D533 + ds3TG(V3) 4 psava + dsamG(vy),

where

dy = 0.391752226571890, poo = 0.444370493651235,
p21 = 0.555629506348765, dz = 0.368410593050371,

p3o = 0.620101851488403, p3p = 0.379898148511597,
d3 = 0.251891774271694, p4o = 0.178079954393132,
pa3 = 0.821920045606868, ds = 0.544974750228521,

ps2 = 0.517231671970585, ps3 = 0.096059710526147,
ds3 = 0.063692468666290, p54 = 0.386708617503269,

dsq = 0.226007483236906.

Using the theory of Section BZ3, it is known that this scheme satisfies MBP. In order to

obtain the energy form, we rewrite the last line as

V4 — P40V0 — P43V3
dy

ds3pa0 ds3p d
g Vo + ps2ve + | P53 — 52 B ) va + (psa+ —;3 V4 + dsatG(vy).
4 4 4

Vs = pPsaVa + D53V3 + ds3

+ p5ava + dsaTG(vy)
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3.5. SOME ENERGY PLUS MBP RK METHODS

Thus the energy discriminant is

1  p  p3a P4 _ ds3pao
d1 dg d3 d4 d4
0 L B P _ ds3pa0
d2 d3 d4 d4
d 1 p ds3p A 1 (<I> + <I>T)
= 40 __ 4as53P40 = — .
0 0 - ' P52 ds ) E 2

ds3

0 0 0 g ps2t+ps3—73

0 0 0 O T
The smallest eigenvalue of Ag is about 1.706. Hence, based on the theory of Section B4,
then with sufficiently small time-step this 5-stage RK4 preserves both maximum bound

and energy dissipation law.
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Chapter 4

Energy-decreasing Exponential
Time Differencing Runge—Kutta

methods for phase-field models

4.1 Introduction

In this work, we will restrict our concentration on three of the most popular phase-field

models, namely the Allen—-Cahn equation,

% =Au— f(u), z€Q,te (0,7, (4.1.1)
the Cahn—Hilliard equation,
ou 9
5 = A-€Aut fu), xeQ te(0T], (4.1.2)

and the thin film model, which is also named the molecular beam epitaxy (MBE) model,

g—z = AU+ V- f(Vu), 2€Q,te(0,T], (4.1.3)
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4.1. INTRODUCTION

with the initial value

u(z,0) =up(z), =z €.

Here Q is a bounded domain in R? (d=1,2,3) and T is a finite time. For simplicity, we
impose periodic boundary conditions or homogeneous Neumann boundary conditions for
all these equations. In the Allen-Cahn model (EI0) and the Cahn-Hilliard model (E122),
the solution u(z,t) describes the concentration of two crystal orientations of the same
material. In the phase model, u = 1 represents one orientation and © = —1 represents the
other and the parameter € measures the interfacial width, which is small compared to the
characteristic length of the laboratory scale. In the thin film model (E213), the function u
is the scaled height of epitaxial growth thin films in a co-moving frame. It is well-known
that these models satisfy the energy dissipation law, since all of them can be viewed as the

gradient flows with the following energy functionals respectively:

E(u) = /Q (;‘VUP + F(u)) dx (4.1.4)

in L? for the Allen-Cahn equation,

E(u) = /Q (;Vuy? + F(u)) dx (4.1.5)

in H~! for the Cahn-Hilliard equation, and

E(u) = /Q <§\Au|2 +F(Vu)) da (4.1.6)
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for the thin film model both with and without slope selection, where F'(u) is a given energy

potential satisfying F”’(u) = f(u). The nonlinear term can be taken as
(u? — 1), flu) =u®—u, (4.1.7)

for the Allen—Cahn equation and the Cahn—Hilliard equation as in most of the literature.

For the MBE model with slope selection,

F(Vu) = —(|Vu|?* = 1)%,  f(Vu) = (|Vu|? — 1)Vu, (4.1.8)

o |

and for the MBE model without slope selection,

Vu

1
F =—=1 211 = 4.1.9
(Vu) = =3 W(Val + 1), [(V0) = e (11.9)
These gradient flows share the following general form:
up = G(—e2Du+ f(u)), (z,t) € Qx[0,T] (4.1.10)

where G and D are negative and dissipative operators, and the eigenvalues of D are also
eigenvalues of G. (Notice that in the MBE model without slope selection, the nonlinear

term f(u) is different from f above). It is easy to see that
o for the Allen-Cahn equation, G = —1,D = A, f(u) = u® — u;
o for the Cahn-Hilliard equation, G = A, D = A, f(u) = u® — u;

o for the MBE model without slope selection, G = —1, D = —A2, f(u) = —V-(H‘Vﬁuu').
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As these equations involve the perturbed (i.e., the scaling coefficient €2 < 1) Lapla-
cian or biharmonic operators and strong nonlinearities, it is difficult to design an efficient
time discretization scheme which is able to resolve dynamics and steady states of the
corresponding phase-field models. In addition, it is also a challenging issue to guarantee
the energy dissipation which is intrinsic to all these models for numerical approximations.
Numerical evidence has shown that non-physical oscillations may happen when the non-
linear energy stability is violated. Consequently, a satisfactory numerical strategy needs
to balance accuracy, efficiency and nonlinear stability of the solution.

In our work, we prove the energy dissipation law unconditionally guaranteed by the
ETDRK2 scheme for a class of gradient flows. Thus, the ETDRK2 method becomes the
first second-order linear scheme which decreases the original energy of the gradient flows.
For the Allen—Cahn equation specially, it is already known that the ETDRK2 preserves
the maximum bound principle (MBP), thus the ETDRK2 becomes the first second-order
scheme proven to unconditionally preserve both the MBP and energy dissipation properties.

This chapter is organized as follows. In Section EZ, we provide the detailed proof
of the main theorem, as well as some discussions on assumptions. Section presents
some numerical experiments to illustrate the behavior of ETDRK2 solutions for different

gradient flows and its properties.
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4.2 Exponential time differencing Runge-Kutta methods

In this section we first introduce the second-order exponential time differencing Runge—
Kutta methods (ETDRK2) and then prove that the discrete energy decreases. We consider

the general form of gradient flows
up = G(—2Du + f(u)), (x,t) € Qx[0,T] (4.2.1)

where G and D are negative and dissipative operators, the eigenvalues of D are also eigen-
values of GG, and the function f satisfies the Lipschitz condition with the Lipschitz constant
B, i.e. Yu,v, we have |f(u) — f(v)| < Blu —v|.
The energy of the gradient flow is
2
E(u) = /Q (§|D1 oul® + F(u)) dz, (4.2.2)

where D1/2DT/2 = D{/2D1/2 = —D and F’ = f. Consider the natural splitting of the
energy E(u) = E; — E,, with

Bt = [ (G0l + 5

E,(u) = /Q <—§F(u) + g\u|2> dx.

In the ETDRK, FEj is treated implicitly and F,, is treated explicitly, which leads to a linearly

implicit scheme. From this perspective, the gradient flow can also be written as
up = G(Lu — g(u)), (4.2.3)

where L = BI — €D and g = 31 — f.
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The key idea of ETDRK is to consider Duhamel’s principle for the gradient flow

t
u(x,t) = eCLEt0y (2, 1) — eGL(t_to)/ e~ CLE=0) Qg (u(x, 5))ds (4.2.4)

to
and approximate the function g(u) in the integral to get enough accuracy. For example,
assuming that we have discretized the time and want to solve uy,y1 from u,, the easiest
way is to approximate the function by a constant g(u,) which leads to the first-order ETD
(ETD1) scheme:

Unt1 = € “uy, + (I — eTGL) L Yg(uy). (4.2.5)

The energy dissipation law and MBP for the Allen—-Cahn equation specially have been
proved, see, e.g. [[3]. Hence, by linearly approximating g(u) based on u, and the solution

of ETD, for the gradient flow (E-I—10), the second order ETDRK (ETDRK?2) reads

v = €TGL'LLn + (I . eTGL) L_lg(un>,
(4.2.6)
1
Un41 =0 = — (eTGL —1I- TGL) (GL)"%(Gg(v) — Gg(un)),

where 7 is the time step, L = 31 — €D and g = 81 — f.

Remark 4.2.1. Here, B serves as a stabilization to enhance the dissipation of linear part,
so as to bound the Lipschitz growing nonlinear term and derive a monotonic function in
the analysis. As in [12], this stabilization is necessary to guarantee the MBP for Allen—
Cahn equations. [41] provides a numerical evidence to illustrate that this stabilization can

improve the numerical performance significantly.
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4.2.1 Main theorem

Before we introduce the theorem and its proof, we start with a useful lemma.

Lemma 2.1. Consider the positive-definite operator L = I — €A and let f be an analytic
function defined on the spectrum of L, i.e. the values {f(\;)}ien exist, where {\;}ien are
the eigenvalues of L. Then, the eigenvalues of f(L) are {f(\;)}ien-

Furthermore, if f is a positive function, then f(L) is also a positive-definite operator.

Theorem 2.1. For the gradient flow
uy = G(—e2Du + f(u)), (x,t) € Qx[0,T] (4.2.7)

where G and D are negative and dissipative operators, the eigenvalues of D are also eigen-
values of G, and the function f satisfies the Lipschitz condition, the second-order ETDRK

(ETDRK2) unconditionally decreases the energy.

Proof. We only need to calculate the difference of the energy and prove that it is non-
positive. For simplicity we denote (u,v) = [, uv dz.
Since the function f is Lipschitz continuous, for the nonlinear part in the energy we

have

(F(0) = F(un). 1) < (0~ (1)) + 20 = 0~ )
(4.2.8)

= —(v —Up, g(upn)) + B(v — up, up) + g(v — Up, U — Up).
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For the first part in the energy we have

62 62
: (/Q 1Dy javf? ~ 1Dyjgtnl?d) = 5 (0, Dv) ~ (atn, Dug)

2
= —62(11 — Uy, Dv) + 65(1} — Up, D(v — uy,))

2
= (v — up, Lv) — B(v — up,v) + 5(1} — Up, D(v — uy)),
(4.2.9)

where we use the identity
[a,a] — [b,b] = 2][a — b,a] — [a — b,a — b]

for all a,b and inner products [-,:]. Therefore, combining these two parts we derive

2
E(v) — E(uy) < (v — up, Lv — g(uy,)) — g(v — Up, U — Up) + 5(1} — Up, D(v — uy))

< (v = Up, Lv — g(up)).

(4.2.10)
According to the scheme we obtain
E(v) — E(uy) < (v —up, Lv — g(uy))
rGL\ ! TGL
= v — up, Lv — (I—e ) (v—e un))
(4.2.11)

(
(v [ (=) 7 0 w)
= (v —tup, A1(v—uy)),

where Ay := L — L (I — eTGL)_l

L+ is non-negative for all 2 and TGA; = y1(TGL), we

Since the function y; = r — =

derive that the operator A is non-positive, i.e. the energy is decreasing from wu, to v.
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Similarly, we compute the energy difference between other two stages:
E(un+1) — E(v) < (uny1 — v, Lupt1 — g(v))

-1
Unt1 — U, Lupy1 — g(uy) + rGL? (eTGL —I— TGL) (Upt1 — v))

I
/N /N

Unt1 — 0, A1 (v — up) + [L +7GL? (eTGL —— TGL)_1:| (Ups1 — v))

= (Un41 — v, A1(0 — up)) + (tns1 — v, Ao(untr — ),
(4.2.12)

where Ay = L+ 7GL? ("L — [ — 7GL) ™.

In conclusion,
E(uny1) — E(uy)
< (v = tup, A1 (v —up)) + (Upt1 — v, A1(v — up)) + (Upt1 — v, Ag(Upt1 — v))
1 1
<50 = un, Ar(v = up)) + (uns1 = v, (A2 = SA1) (un41 = v))
1
+ 5 (0= un, Ar(v = un)) + 2ups1 = v, A1 (v = un)) + (uns1 — v, A (Ung1 —v)))

1 1 1
:i(v — Unp, AI(U - un)) + (Un—i—l -, (A2 - EAI)(un—&—l - U)) + §(U7L+1 — Un, A1(un—&—l - un))
(4.2.13)

Among these three terms above, the first and third terms are non-positive since A; is

negative-definite. For the second one we only need to consider the function

x? 1

y2=x+em_1_x—§y1

562 X

1
a7 * e* —1—x + 2(1—e®) (4.2.14)
z(e"(e” +x—3)+2)

(e —1)(e* —1—x)

Since the functions %5 and (e” —1—x) are both always non-negative and %(e“” (e +
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r—3+2e %)) = e¥(2e”+x—2) = 0 only happens at z = 0, where (e”(e*+x—3)+2) reaches
its minimum 0, i.e. it is always non-negative. Notice that 7G(Ay — $A1) = y2(TGL), so
we can derive that (Ag — %Al) is negative-definite, which indicates that the second term
is also negative so that the energy is decreasing from u, to u,11.

Thus, we prove that

E(tupi1) — E(uy) < 0.
O

Remark 4.2.2. The convergence of ETD1 and ETDRK?2 for Allen—Cahn equations has

been well studied, see, e.g. [12].

Remark 4.2.3. Notice that we have not considered the spatial discretization. If we consider
the finite difference method, then the proof also holds as long as we re-define the inner

product as (u,v) = ulv.

Remark 4.2.4. For the MBE model without slope selection we may notice that the nonlin-
ear term does not directly satisfy the Lipschitz condition as a function of u. However, it is
Lipschitz continuous as a function of Vu, and meanwhile the convex splitting of the energy
is also different (see [32] for more details), but all analysis in the proof can be carried out

in the similar way. To keep the presentation short, we omit the proof.
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4.2.2 Discussions on assumptions

As we have put our main theorem in a very general framework, including extensive
phase field gradient flows, it is necessary to supplement extra discussions when we apply
it to a specific phase field model. In this section we discuss the restrictions of the theorem
and illustrate that such assumptions are reasonable.

For many gradient flows, it is not difficult to satisfy the restriction that the eigenvalues
of D are also eigenvalues of G. Both of them are usually some power of the Laplacian
operator and G is a lower one. Besides, as long as these two operators are dissipative and
satisfy the assumption, the conclusion still holds. In fact, we did not make use of more
information about the Laplacian operator in the proof. Hence, our framework can also
works for nonlocal models [I4].

As for the Lipschitz condition, it is satisfied by many physically relevant potentials by
restricting them to be quadratic for |u| > M, given some constant M big enough. This
assumption is automatically satisfied for the Allen-Cahn equation because of the maximum
principle. For the numerical approach, the finite difference method (second-order accuracy
in space) applied to the spatial direction guarantees the discrete maximal bound principle
(see [M3]). For the Cahn-Hilliard equation, it has not been proven that the numerical
solution has the maximal bound so that the nonlinear term does not satisfy the Lipschitz
condition directly. One common practice is to modify the potential by cutting off it in

|z| > M and replacing it with a quadratic function smoothly connected to the inner part
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for some M big enough

BME—L2 _ oMBu+ L(3MA 4+ 1), u>M

Flu)=9q Lw?-1)? lu| <M (4.2.15)

—3M22_1u2 + 2M3u + i(3M4 +1), u<-M

\

and the corresponding f(u) is replaced by

(BM? — Vu —2M3, u> M

flw)=F(u)=q (- 1), lu| < M (4.2.16)

(BM? — u+2M3, u<-M
Other methods can also be found in [T, 1, A0].

For the MBE model without slope selection, the Lipschitz condition is automatically
satisfied when the nonlinear term is viewed as a function of Vu. For the original functions

f and F in 2179, we have

1

0%, F = ———=<1

(2.1)

(i.e. the eigenvalues of the matrix are smaller than 1), so the energy of the nonlinear term

still satisfies the following inequality

(WVW—JWVM%DS(VW—uMJGMw)+gﬁﬂv—mwi—u@) (4.2.17)

All other steps can be carried out in the same way.
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4.3 Numerical Experiments

In this section we carry out some numerical experiments to illustrate the convergence
and energy decay property of ETDRK2 for different phase-field models. We first verify the
temporal convergence rates of spectral collocation methods with a smooth initial data for
the Allen—Cahn and Cahn—Hilliard equations. Next we check the energy dissipation law
for all these examples. Finally we present an adaptive time stepping example which makes
full use of the unconditional energy stability and serves as a good application. The 2D

domain © = (0,27) x (0, 27) will be used in all following examples.

4.3.1 Convergence tests

We consider the Allen-Cahn (1) and Cahn-Hilliard (B12) equations with the
smooth initial data wyp = 0.5sinzsiny and the periodic boundary condition. To compute
the errors and the convergence rate, we set the number of grid points N = 256, the
interfacial parameter ¢ = 0.1 and the terminal time T = 0.5. With these settings we
calculate the numerical solutions with various time steps dt = 0.01/27% with k =0, 1,...,6
and calculate the relative errors to get the convergence rate. Since we are applying the
spectral method, fast algorithms (FFT) can be used.

First we solve the Allen-Cahn equation. The maximum and L? norms are considered

to calculate the convergence rates.
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dt=0.01 | L*° err rate L? err rate
dt 2.060e-05 - 1.156e-06 -
dt/2 5.206e-06 | 1.9846 | 2.915e-07 | 1.9846
dt/4 1.309e-06 | 1.9923 | 7.326e-08 | 1.9923
dt/8 3.280e-07 | 1.9961 | 1.836e-08 | 1.9961
dt/16 8.212e-08 | 1.9981 | 4.597e-09 | 1.9981
dt/32 2.054e-08 | 1.9991 | 1.150e-09 | 1.9991

Table 4.1: ETDRK2 solution errors and convergence

rates for the Allen—Cahn equation

Next we solve the Cahn-Hilliard equation with the same initial data and settings. The

maximum and L? norms are also considered to calculate the convergence rates.
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dt=0.01 | L*° err rate L? err rate

dt 4.363e-01 - 7.736e-03 -
dt/2 1.211e-01 | 1.8498 | 2.206e-03 | 1.8104
dt/4 3.441e-02 | 1.8147 | 6.333e-04 | 1.8002
dt/8 9.450e-03 | 1.8644 | 1.745e-04 | 1.8595

dt/16 2.507e-03 | 1.9145 | 4.635e-05 | 1.9127

dt/32 6.488e-04 | 1.9499 | 1.201e-05 | 1.9490

Table 4.2: ETDRK2 solution errors and convergence

rates for the Cahn—Hilliard equation

It can be observed in both cases that the convergence rate approaches the theoretical

value 2 as the time step becomes smaller.

4.3.2 Dynamics and energy evolution of gradient flows

In this section we present some numerical examples to show the dynamics and energy
evolution of gradient flows starting with specific and random initial data. For the Allen—
Cahn equation we set § = 1 and for the Cahn—Hilliard equation g = 2.

We first consider the Allen-Cahn and Cahn-Hilliard equation with f(u) = u? —u and

€ = 0.1 with the smooth initial condition

up = 0.05sin(z) sin(y)
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and the periodic boundary condition. We take the numerical solutions on a 512 x 512 mesh,
the uniform step 7 = 0.001 and T' = 8. The energy curves of these two solutions are also

given in Fig 2, which indicate the decreasing energy.

ol
L

Figure 1: Numerical solutions for the Allen—Cahn (left) and Cahn—Hilliard (right) equations

at T'=2,4,6,8
10, AIIgn-Cahn equatjon 10 Cahn-HiIIia!‘d equajion
8 8
6 6
4 4
2O 2 4 6 8 2O 2 4 6 8

Figure 2: Energy of solutions for the Allen-Cahn and Cahn—Hilliard equations
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Next we simulate the thin film models without slope selection. We take the same
smooth initial condition, boundary condition and the same physical parameters as the
previous example. We also use the same computational grids in space and take the uniform
time step 7 = 0.001, but the parameter 5 in the numerical scheme is set to be 1/8. The

snapshots of the numerical solution and the corresponding energy curve are presented in

T=0 T=0.5

T=1.5 T=2 .
5
-10
-15
20

Figure 3: Numerical solutions and energy curve for the MBE model without slope selection

Fig 3.

Energy
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T=25

T=125 T=25

|
P’t 4
. B
T=37.5 T=50 T=375 T=50

vV, 'V
B

.

Figure 4: Numerical solutions for the Allen—Cahn (left) and Cahn—Hilliard (right) equations

with random initial data

Then we simulate the Allen—-Cahn and Cahn-Hilliard equations with a random initial
data ranging from —1 to 1 with the same basic setting N = 512 and € = 0.1. To see the
long-time energy evolution, we take T = 50 the time step dt = 0.01. The dynamics of the

numerical solutions and the energy curves are shown in Fig 4 and 5.
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Allen-Cahn equation Cahn-Hilliard equation

15 10
8

10
6
4

5
2
0 0

0 10 20 30 40 50 0 10 20 30 40 50

Figure 5: Energy of the Allen—-Cahn and Cahn—Hilliard solutions with random initial data

Finally we test the thin film model without slope selection with a random initial data.
For this case, we set the parameter ¢ = 0.1, the scheme constant 8 = 0.5 and also use
N = 512. The initial data now is ranging from —0.001 to 0.001 and the boundary condition
is also periodic. We take the time step dt = 0.01 and T" = 50 to see the development of
the energy. It can be observed from the snapshots of the solution that the number of hills

and valleys is decreasing, which is the long time feature of the thin film model.

4.3.3 Adaptive time stepping

As we have presented above, the solution of gradient flows can vary sharply during a
very short time, but only slightly elsewhere. One major advantage of unconditional energy
stable schemes is that they can be easily used to construct an adaptive time stepping
algorithm, in which the time step is only dictated by accuracy rather than by stability as
with conditionally stable schemes.

55



4.3. NUMERICAL EXPERIMENTS

T=2 T=4

Energy

] .

Figure 6: Numerical solutions and energy curve for the thin film model without slope

selection with random initial data

For gradient flows, there are several adaptive time stepping strategies. Here we follow
the strategy in [d0] summarized in the following Algorithm 1, which has been shown to be
effective for Allen-Cahn equations. In Step 4 and 6, the time step size which needs to be

updated is given by the formula

tol\ /2
Adp(e T)_p<e> T,

along with the restriction of the minimum and maximum time steps. In the above formula,
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p is a default safety coefficient, tol is a reference tolerance to be set, and e is the relative

error computed at each time level in Step 3. In our numerical example, we set p = 0.9 and

tol = 1073, and the minimum and maximum time steps are chosen to be 10~° and 1072,

respectively. The initial time step is taken as the minimum time step.

Algorithm 1 Adaptive time stepping procedure

Given: U™, 1,

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.

Step 7.

Compute Uanrl by the first-order ETD scheme with ,.

Compute UQ”Jrl by the second-order ETDRK scheme with 7.

1 1
(Lol

Calculate ej,+1 = T
oz

If e, 41 > tol, recalculate the time step 7, <= max{7min, min{Ag,(€nt1, ), Tmaz }
goto Step 1.
else, update the time step 7,41 < max{7Tmin, min{Agy(€nt1, Tn), Tmaz } }-

endif

o7



4.3. NUMERICAL EXPERIMENTS

We take the two-dimensional Cahn—Hilliard equation as our example to demonstrate
the performance of the adaptive time stepping algorithm. We consider the Cahn-Hilliard
equation with the periodic boundary condition and random initial data and take ¢ = 0.1,
N = 512 and 8 = 2. As comparison, we compute two ETDRK2 solutions with a small

uniform time step 7 = 1075 and a large uniform time step 7 = 102 as reference.

Energy evolutions P Time steps
10 10
—Small | |
Adaptive

8 \ —=Large ||
107
10

0 ‘ ‘ ‘ 107 ‘ ‘ ‘

0 5 10 15 20 0 5 10 15 20

Figure 7: Energy curves among small time steps, adaptive time steps and large time steps

and the size of time steps in the adaptive procedure
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T=1
- K

dt=0.00001 '

T=20

A red Vv o

T=1.0011 - T=4.0004 T=20.0062

-

Figure 8: Numerical solutions for the Cahn-Hilliard equation among small time steps,

adaptive time steps and large time steps

In the Fig.7 and Fig.8 we show the energy development, the size of time steps and
snapshots of phase evolution in the adaptive experiment. It can be observed that the

topology of the large time step solution is very different from the topology of the small

59



4.3. NUMERICAL EXPERIMENTS

time step one, while the adaptive time solution is in good agreement with the reference
solution. This is also indicated by the energy evolution. Note also that adaptive time
steps change accordingly with the energy evolution. In addition it can be noticed that the
adaptive time steps basically lie in the interval [1073,1072], but the result of the adaptive
time stepping strategy is rather close to the small step reference solution, which indicates

a fast and efficient computation.
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Chapter 5

Unconditionally energy-decreasing
high-order Implicit-Explicit
Runge-Kutta methods for
phase-field models with Lipschitz

nonlinearity

5.1 Introduction

In this chapter, we also fix our concentration on the following general form for phase-
field models:

ur = G(—Du+ f(u)), (x,t)€Qx][0,T] (5.1.1)
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where Q is a bounded domain in R? (d = 1,2,3), T is a finite time, both G and D are
negative definite and dissipative operators, and the eigenvectors of D are also eigenvectors
of G (both of them are usually related to the Laplacian operator). As we have mentioned,

for some well-known phase-field equations, we have

o for the Allen-Cahn equation, G = —1, D = €2A, f(u) = u® — u;

ou _
E—EAU—']"(’U,),

o for the Cahn-Hilliard equation, G = A, D = €2A, f(u) = u® — u;

W AEu ()
« for the MBE model without slope selection, G = —1,D = —¢?A?, f(u) = -V -
Vu
(Trvar)
ou 212 Vu
T A (Y
g~ ATV

We consider the equation with certain initial value
u(to,x) = up(z), =€Q,

and impose periodic boundary conditions or homogeneous Neumann boundary conditions
for simplicity. It is well-known that these models satisfy the energy dissipation law, since
all of them can be viewed as the gradient flows with the following energy functionals
respectively:
€2
E(u) = / <§\Vu|2 + F(u)> da (5.1.2)
Q
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in L? for the Allen-Cahn equation, in H~! for the Cahn-Hilliard equation, and

E(u)z/ﬂ(%\AuF—i—F(VU)) do (5.1.3)

for the thin film model, where F'(u) is a given energy potential satisfying F'(u) = f(u).

Due to the perturbed (i.e., the scaling coefficient €2 < 1) Laplacian or biharmonic
operators and strong nonlinearities involved in the equations, it is difficult to design an
efficient and accurate time discretization scheme which resolve dynamics and steady states
of the corresponding phase-field models. Moreover, another challenging issue for numerical
approximations is to preserve the energy dissipation law which intrinsically holds for all
these models. Numerical evidence has shown that non-physical oscillations may happen
when the energy stability is violated. Therefore, a satisfactory numerical strategy needs to
balance accuracy, efficiency and nonlinear stability of the solution.

There have been a wide range of studies for the construction of various numerical
schemes preserving the energy dissipation law at a discrete level. Some popular and signifi-
cant implicit time stepping work includes convex splitting methods [20] and Crank-Nicolson
type schemes [16, I'J]. The deficiency of these methods is the expense of solving a nonlinear
system of equations at each time step. While in contrast to fully implicit schemes, implicit-
explicit (also named semi-implicit) methods treats the nonlinear term explicitly and the
linear term implicitly, and to solve these linearly implicit problems, it only requires solving
a linear system of equations at every time step. Such methods may date back to the work

of Chen and Shen [[7] in the phase-field context, and so far there have been developed many
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et al. [, &1] proposed the scalar auxiliary variable (SAV) method, which can easily render
the unconditional energy decay property. However, the energy considered in these methods
is modified and different from the exact original energy. In another direction, exponen-
tial time differencing (ETD) methods for the Allen-Cahn equation and other semilinear
parabolic equations have attracted much attention. Du et al. [2] has shown that ETD and
ETDRK2 schemes unconditionally preserve maximum bound property (MBP) and energy
stability (but not the dissipation law). For the thin film model (or MBE model), authors of
, B6] offer nice results concerning stability analysis and error estimates of the ETD
schemes. For more information, stability analysis and more applications of ETD schemes
can be found in [9, 0F].

In this chapter, we prove the energy dissipation law unconditionally guaranteed by a
class of high-order IMEX-RK schemes for gradient flows with Lipschitz nonlinearity. We
make use of convex splitting and as long as the conditions for the RK method is satisfied,
the scheme unconditionally decreases the original energy of the phase-field equation. In
addition, we also give detailed analysis and derive inequalities which constrains the co-
efficients of splitting and the time step for the Allen—-Cahn and Cahn-Hilliard equation
respectively. Thus, the IMEX-RK method becomes the first high-order linear one-step

scheme which unconditionally decreases the original energy of the gradient flows. Fur-

thermore, we estimate the error and prove the error analysis theoretically which indicates
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the accuracy.

This chapter is organized as follows. In Section b3, we introduce some preliminaries
concerning convex splitting and IMEX-RK schemes. Section 63 presents our main theorem
and several theorems related to Allen—Cahn and Cahn—Hilliard equation and their proof.
In Section B we give the error analysis, to show the accuracy of the method. Section BA

offers some IMEX-RK examples to help illustrate the requirements of the theorems.

5.2 Preliminaries: Convex splitting and IMEX-RK

In this section we introduce some preliminaries concerning operator splitting and
implicit-explicit (IMEX) Runge-Kutta (RK) schemes. We consider the general form of

gradient flows

ur = G(—Du+ f(u)), (x,t)€Qx][0,T] (5.2.1)

where G and D are negative and dissipative operators, the eigenvalues of D are also eigen-
values of GG, and the function f satisfies the Lipschitz condition with the Lipschitz constant

L, i.e. given any v, u, we want
L
(F(v) = F(u),1) < (v —u, f(u)) + 5 (v = w0 —u). (5.2.2)
for the Allen—Cahn and Cahn—Hilliard equations and
L
(F(Vo) = F(Vu),1) < (V(0 = w), f(Vu)) + 2 (Vv = ), V(v = u)). (5.2.3)

for the MBE model without slope selection, where (-, -) represents the spatial inner product.
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The energy of the gradient flow is

1
E(U):/ <§\D1/2U’2+F(U)> dz, (5.2.4)
Q
where D1/2D1‘/2 = D’{/ZDI/Q = D and F' = f. Consider the splitting of the energy

E(u) = E; — E,, with

1 Q@ I5;
Ei(w) = [ (51Dyul + 31Dyl + Sjul)
Q
@
Q
where both E; and F,, are convex funcationals. In the computation, Fj is treated implicitly

and F, is treated explicitly, which leads to an implicit scheme but still linear to solve. From

this perspective, the gradient flow can be equivalently written as
Ut = G(Dsu - fs(u))a (5'2'5)

where Dy = —(1+a)D + I and fs = —f —aD + 1.

Here, 8 serves as the enhancement of the dissipation of the linear part, so as to bound
the Lipschitz growing nonlinear term in the analysis. Meanwhile, « is not necessary but in
our framework, for certain Runge-Kutta schemes, this term helps preserve the stability. [d1]
provides a numerical evidence to illustrate that the stabilization can improve the numerical

performance significantly.

5.2.1 Implicit-Explicit Runge-Kutta schemes

For the linear term GD;u in the gradient flow (5223), we consider an s-stage diagonally

implicit Runge-Kutta (DIRK) scheme with coefficients A = (a;5),,., € R**%,¢,b € R?, in

SXS§
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the usual Butcher notation. For the nonlinear term Gfs(u) in (B=2ZH), we make use of
an s-stage explicit scheme with the same abscissae ¢ = ¢ and coefficient A = (Gij) oy s €

R*$ b € RS. Thus, the IMEX-RK scheme can be determined by the following Butcher

notation

0{0 O 0 0] 0 0 0 0

C1 0 all 0 0 61 dll 0 0 0

C2 0 as1 a2 ... 0 62 dgl &22 0 0
(5.2.6)

0 0

Cg 0 g1 Ag2 ... Qgsg és &51 &52 dss 0

0 b by ... by by by bs 0

where ¢; = ¢ = > jaij = > ; @ij. Here we only consider such special IMEX-RK schemes:
bj = asj, l;j = asj,j = 1,..., 5, indicating the implicit scheme is stiffly accurate. Besides, we
require that the coefficient matrix of the implicit scheme begins with a zero column, i.e.
we are considering type ARS (see [2]). In addition, we also require that the matrix Ais

invertible.

Consider a model equation:
ur = Lu + N(u), (5.2.7)

where L represents a linear operator and N indicates a nonlinear one. Applying the IMEX-

RK (6228) to the model equation, we derive the following system of equations: (to solve
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Un+1 starting from uy,)

Vo = Un,
7 i
Vi =09+ T Z aijﬁvj + Z&ijN(Uj—l) , 1< <s, (528)
= =1
Vs = Un+1-

There have been some existing work related to such IMEX-RK schemes, such as asymtotic

behavior, error analysis and studies of different kinds of stability, etc. See, e.g. [2, 3, &, 49].

5.3 Energy decreasing property

In this section we present our main theorem and its proof.

5.3.1 Main Theorem

Theorem 3.1. The IMEX-RK scheme ((522Z8) unconditionally decreases the energy of the

phase field model (E22Z7) if the following three matrices are positive-definite:

Hi(B) = 6Q — 51, (5.3.1)
Hy(a) = aQ + (A)AE, — %El,
where By = 1545, B, = (1i2j)s><s represents the lower triangle matriz full of the element
1, I = (1;=j),,, represents the identity matriz, and the determinant matriz Q) is defined
by
Q=(A)"A-I)E +1. (5.3.2)
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In other words, if both Q and Hy are positive-definite, then we only need to take o and

big enough:
L
B=b6o=c—F
Amin((le)ilfﬁlE’L - %El)
a>oag=—

and thus the scheme unconditionally decreases the energy.

Remark 5.3.1. Here we say a matriz, M is positive-definite when %(M—FMT) 18 positive-

definite.

Remark 5.3.2. In fact the splitting %\Dl/zu\Q 1s evitable for certain Runge—Kutta methods.
We may notice that H2(0) > 0 guarantees the positive-definiteness of Ha(a) when Q is
positive-definite. However, in order to derive unconditional energy dissipation, the splitting
g|u|2 s, in a sense, necessary. This is because the term has to counter the effect of the
Lipschitz nonlinear term. Besides, [41] provides a numerical evidence to illustrate that this

stabilization can improve the numerical performance significantly.

Proof. The system of the IMEX-RK schemes (628) can formally be written as

V1 Vo Evl N(’UO)
V9 V0 ,CUQ R N('Ul)

— +rla + A . (5.3.4)
Vs Vo Lo N(Us—l)

Here we have not done the spatial discretization, if we want to do this with fully discretiza-
tion we could use Kronecker products to get a bigger equation system rigorously.

69



5.3. ENERGY DECREASING PROPERTY

Thus, we have

U1 — Vo Lvg N(UO)
1 Vg — Vg ﬁ’UQ N N(Ul)
Vs — U Lvg N (vs)

For the phase field model, we have Lv = GDsv, N(v) = —Gfs(v), where Dy = —(1 +

a)D + BI and fs = —f —aD + 1, so we can derive the following equation

V1 — Vg GDUl Gf(?)()) GDUl GDU()
1 V9 — Vg GDUQ . Gf(vl) GDUQ R GDUl
— =—A +A —a |A —A
T
Vs — Vg G Dy Gf(vs—1) G Dy GDuvg_q
G'Ul GUO
G'I}Q . G’U1
+5|A —A
Gug Gug_q
) ] (5.3.6)

Then we are going to reformulate the system. For simplicity, we denote the inverse

matrix of A as B € R¥*5,

AB=BA=1. (5.3.7)

Besides, we list some simple lemmas to help the simplification.

70
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Lemma 3.1.

V1 — Vo V1 — Vo
V2 — Vg U2 — V1
= Fy . (5.3.8)
Vs — Vo Vs — Us—1
Lemma 3.2.
(A-A)l,=c—&=0, (5.3.9)

where 15 = (1,1, ..., 1)T e R\, This lemma shows these two matrices share the same

eigenvector 15 and helps much in simplification. Taking the second term on the right hand

side of (B23@) as an example,
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GD’U1

GD’UQ

GDuy

=AE;

GDUl GDUO
GDUQ R GDUO
—(A—A4)
GDuv, G Dy
GDv; — GDuvy G Dy
GDvy — GDuy R G Dy
+A
GDuvgs — GDuyg G Duyg
GD(’Ul — U()) GDUO
GD(’UQ — Ul) . G Dy
+A
GD(vs — vs-1) G Dy

(5.3.10)
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Lemma 3.3.

le GUO G'Ul GUO le le
GUQ R le G'I}Q . G’U1 R GUQ R GUQ
A — A =|A —A —A + A
Gug Gug_q Gug Gug_q Gug Gug
G’Ul le - Gvo
R GUQ . GUQ — GUl
—(A - A) +A
GUS G'Us - G’Us_l
Gur Gy Gv1 — G
A Gy Gug | Gva—Guny
—(A - A) = +A
Gug Gug Gvs — Gus_1

= (A — A)EL(Guw) + A(Gw) = AQ(Gw),
(5.3.11)

where for simplity we denote w = (v1 — vy, ..., vs —vs_1) L and(Pw) = (P (v —vg), ..., P(vs —

05_1))T for all operators P, and Q = ((A)_lA — I) Er+1.
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Therefore, using all these lemmas, (5=38) can be reformulated in the following way

Dy f(vo)
1 ) . | Do f(vr) . A
;EL(G_ w) =—-AEL(Dw)—A —aAQ(Dw) + fAQ(w) (5.3.12)
DU() f(’US_l)
f(v0> D’UQ
f(vl) 1 - 1 R D’UQ
—BEL(G_ U}) + BAEL(DU}> +
-
(5.3.13)
fvs—1) Dy
+aQ(Dw) — Q(w).
Next we focus on the difference of the energy, which reads
1
En+1 — En = —5 ((un+1, Dun+1) — (Un, D’U,n)) —|— (Fn+1 — Fn, 1), (5314)

where (u,v) represents the inner product in space.

Notice that given any a,b € [—1, 1], we have

F(@) = F() < f0)(a~8) + 5 (a—
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where L is the Lipschitz constant of the function f. Thus,

s—1

(Fog1 = Foy 1) = > (F(vi41) = F(v), 1)
i=0
f(vo)
f(v1) L 2
= <Ul — Vo, V2 — V1, ..., Vs — USI) + 5 (Ul — Vo, V2 — V1, ..., Vs — USl)
f(vs—l)
f (o)
_ T flw) n £w2’
2
fvs—1)

(5.3.15)

where u? = w"u for simplicity. Now we substitute (f(vo), f(v1),..., f(vs))T by using

(63313),
D?}()
Lo, r|lz 1 3 Do
(Fry1 — Fn, 1) SEUJ +w' | =BEL(G™'w) + BAEL(Dw) +
T
(5.3.16)
Dvo

+ awTQ(Dw) - BwTQ(w)
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Notice

w! = (vs — vg, Duvp), (5.3.17)

DU()

and combining this term with the other term in the energy difference gives

((vs, Dug) — (vo, Dvg)) + (vs — vo, Do)

1
(vs, Dvg) — 5(110, Duvy) + (vs, Dvg)
(5.3.18)

(vs — vo, D(vs — 1))

N~ NI~ NI~ N

w? By (Dw).

To conclude, the energy difference becomes
1l 7 L 4 ey -1 3
E.i1—E, <-— FW Ei(Dw) + FW +w" | =BEL(G"'w) + BAE(Dw)
T
1

:;wTHO(G_Iw) —wl Hyw + w’ Hy(Dw)
where Hy = BEy,, Hy = fQ — LI, Hy = aQ + BAE;, — 1 E.

If here Hy, Hy and Hs are positive-definite, then the energy difference is negative. In
order to satisfy the condition, the only requirement which is also a must, is that @) and Hy

are positive-definite, and after that we only need to set a and 8 big enough. The energy
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unconditionally decreases as long as

L
5 Z 60 - - y
2Amm(Q} (5.3.20)
Amin(BAEL, — $E1)
o> o) =—

where A,;, represents the smallest eigenvalue, ag and 5y are constants only dependent on

the Runge-Kutta scheme. O

Remark 5.3.3. For the MBE model without slope selection, the proof is slightly different

but shares the same key idea so we omit it here.

Remark 5.3.4. In ((i23713), the matrices Hyo, Hy and Hs can be viewed as coefficients or
some combination of H™*, L? and H' norms of the difference of the solution at different
time steps, where k depends on the operator G. Therefore, we do not have to require all

three terms to be positive-definite, but could use Ho_k, H& terms to cover the L? term.

Theorem 3.2. (For the Allen—Cahn equation) For the IMEX-RK scheme ((5238), if Hy =
(A)7'Ep and Q = ((A)_lA - I) Er + I are both positive-definite, then it decreases the

energy of the Allen—Cahn equation when following inequalities hold:

N

Dmin(Ho) + BAnin(@Q) >

nin(@) > “Amin((A)HABL — S ).

Theorem 3.3. (For the Cahn—Hilliard equation) For the IMEX-RK scheme (2Z3), if

Hy= (A)'Ep and Q = ((/l)_lA - I) Ep + I are both positive-definite, then it decreases
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the energy of the Cahn—Hilliard equation when the following inequality holds:

4¢?

e

where Hy = @) + (A)_lAEL — %El.

5.4 Error Analysis

In this section, we analyze a class of s-stage pth-order IMEX-RK schemes (B228) for
the phase field model (A=2H) with requirements in the Theorem BTl. The error analysis is
straightforward with the energy stability result, although it is still technical to deal with
some details to derive the optimal estimate for smooth solutions. In this section we use C
to represent a generic positive constant which is independent of 7 and € but may depend
on the Runge-Kutta scheme. It may also have a different value in each occurrence.

We denote the exact solution as u(t) and at each stage time step t,; = t,, + ¢;7,1 <

1 < s, we define reference solutions v; by

Vg = u(tn),
1 (0 LUy N(’L_)())
() 7o Ly | N@) (5.4.1)
= +7]A + A ,
Vs o L, N(v5-1)

78



5.4. ERROR ANALYSIS

and the exact solution satisfies the following equation

L1 N(l_)(])
Lo . N(l_)l)

u(tns1) = u(ty) +7 | 07 + b7 + Tpat (5.4.2)
LU N(’(_Jsfl)

Consider the Taylor expansion of (ZI) at ¢ = ¢, and use asymptotic analysis, applying

the order conditions of the IMEX-RK scheme

s ~ T s A _l
bZA{, 160 = ba Agf 180 = bTAJJ € = bU AO’ €s = ]_'1[7 1 S] <,

(e

where 0 = s+1, = (O,C{, c%, e cé)T and b, bAU, AU,AU represent o x 1 vectors and o X o
matrices in (5:25) respectively. Coefficients of u(¥)(t,,)7% on both side are equal up to order
p and thus we derive 1,11 = CrPtL,

In order to obtain error estimates, we define e; = v; —v;,0 < j < s—1 and e; =

w(tpt1) — Upy1 = Vs — Vs — rpp1. The difference of (52) and (B=34) shows

el €p Leq N(T/o) - N(Uo) 0
€2 €0 Les . N(v1) — N(v1) 0

= +7]A +A + . (5.4.3)
e €o Leg N(vs-1) — N(vs—1) Trt1

Using Lv = GDgv, N(v) = =G fs(v), where Dy = —(1+«a)D + I and fs = —f —aD + 81
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and following all steps in the proof of Theorem B, we derive

1 1 1 _
SIVesll3 = S Veoll3 =—p" Ho(G™'p) — Bp" Qp + pT Ha(Dp)

f(wo) = f(vo)
f(v1) = f(v1)

f(@s—l)'_'f(vs—l)

Tn4+1

(5.4.4)

where p = (e — eg,e2 — €1, ...,es — es_1)". According to Theorem B, here Hy, @ and Hj

are all positive-definite, so the first three terms on the right-hand side are all negative. For

the other two terms,

0
*%PT(A)_l : = %pr+ %”ﬁmll%,
Tnt1
f(vo) — f(vo)
—pT f(v1) = f(v1) - %pr n 047263
f(vs-1) = flvs—1)
51

C
< 73pr +Cy7 Y (e —eo) + €o)”

1=0

C3
< TPTP + Cstplp + Cy|leol3-

(5.4.5)

(5.4.6)
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Besides, notice that

1 1 1 1
Sllesld < 5 +Crllleol + (5 + 570 )lles — eoll
(5.4.7)
1 , 1 1 5
= (= =+ —)p Eup.
5+ C)lleoly + (5 + 500" Eup

For the Allen—Cahn equation, adding up four inequalities above leads to the following

result

/

C
lesllz + 1Vesllz < (1 + Cr)(lleollz + Veollz) + —lIrasalls, (5.4.8)

where e; = u(tp1+1) — unt+1 and eg = u(t,) — uy,. For the Cahn—Hilliard equation, we need
one more inequality

(V) pill2l Vpill2 > llpill3, 1<i<s (5.4.9)
which leads to

(pT((—G)_lp)) (pT((—D)p)) > (pr)z, (5.4.10)
to obtain (BZH).

Therefore, by Gronwall’s inequality, we derive the error estimate

[u(tn) = unl|Fn < Ce“T7?,
(5.4.11)

lu(tn) — up|| g1 < CeCTrP,

5.5 Runge-Kutta schemes

In this section we present some Runge-Kutta schemes.
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5.5.1 Example 1: first-order IMEX

This simple one-step case corresponds to the following IMEX scheme whose tableau

reads:

110 1> 1]1 0- (5.5.1)

Here A = A =1, and thus Hy = Q = 1 and Hy(0) = 1/2. Therefore, for the Allen-Cahn
equation, we only need

1
— >1
G Th=

to guarantee the energy dissipation law; while for the Cahn—Hilliard equation, we only need

5.5.2 Example 2: a second-order IMEX

Consider this second-order IMEX-RK scheme with coefficients (see, eg.[2])

) ] (5.5.2)
110 1—v ~ 11 1-6 0

0 1—v v 6 1-6 0

Z=1-4

where vy =1 — %5° 5
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Here

A= , A= , (5.5.3)

and thus

2+v2 0 1 0 /2 —1/2

2 242 0 3-2V2 1/2 5/2—22
(5.5.4)

The corresponding smallest eigenvalues of their symmetrizers are
Amin(Ho) =2 = V3, Anin(Q) =3 = 2V2,  Apin(Ha2(0)) = 5/2 — 2v/2. (5.5.5)

Therefore, we need the «|D; /Qu\Q term in the splitting. For the Allen-Cahn equation, we

need
2—1+/3
f+<3—2x/§>521,
di V3 5o (5.5.6)
a>ap = W25/ 4 9140,
3-2V2
For the Cahn-Hilliar equation, we need
€2 L
42 — \/3)(a+5/2—2\/§)a+(3—2\f2)6 > 5. (5.5.7)

However, since Apin(Q) for this scheme is too small, if we want to get unconditional
energy dissipation we have to set g > m = 3+ 2v/2, which is too large and may cause

unwanted error.
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5.5.3 Third-order schemes

There is no pair of a three-stage, L-stable DIRK (diagonally implicit Runge-Kutta)
and a four-stage ERK (explicit Runge-Kutta) with a combined third-order accuracy (see
[?]), so we have to consider 4-stage schemes. However, as far as we search, no existing 4-
stage third-order ARS Runge—-Kutta scheme satisfies the conditions in Theorem BT and we
construct a new one. Here we list two common 4-stage third-order Runge-Kutta schemes
as examples to illustrate why they fail, and then present our new 4-stage 3rd-order scheme

and introduce our strategy to construct.

Example 3
1/4 0 0 0 1/4 0 0 0
0 1/4 0 0 . 13/4 -3 0 0
A= , A= (5.5.8)
1/24 11/24 1/4 0 /4 0 1/2 0
11/24 1/6 1/8 1/4 0 1/3 1/6 1/2

The corresponding smallest eigenvalues of symmetrizers of the determinants are approxi-

mately

Amin(Ho) = —1.496826,  Apmin(Q) = —0.165679,  Apin(H2(0)) = —0.665679.  (5.5.9)

Since here both Hy and () are negative-definite, this scheme does not satisfy the conditions
of our theorem.
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Example 4
1/2 0 0 0 1/2 0 0 0
1/6  1/2 0 0 ) 11/18 1/18 0 0
A= , A= . (5.5.10)
-1/2 1/2 1/2 0 5/6 —=5/6 1/2 0
3/2 =3/2 1/2 1/2 1/4 7/4  3/4 —=T7/4

The corresponding smallest eigenvalues of symmetrizers of the determinants are approxi-

mately

Amin(Ho) = —15.242727,  Apin(Q) = —7.706226,  Apin (H2(0)) = —8.206226. (5.5.11)

Since here both Hy and @) are also negative-definite, this scheme also does not satisfy the

conditions of our theorem.

Example 5: Energy decreasing 4-stage third-order IMEX-RK scheme

Here we present a 4-stage third-order ARS IMEX-RK scheme which has rational co-

efficients in ¢ which are rational and not too large.

85



5.5.

RUNGE-KUTTA SCHEMES

0 0 0 0 0 0
3/5 |0 0.6 0 0 0
3/2 |0 0.46875 1.03125 0 0
(5.5.12)
19/20 | 0 0.4 —0.5578125 1.1078125 0
1 0 a41 a42 a43 25.75
0 a1 42 a43 25.75
0 0 0 0 0 O
3/5 0.6 0 0 0 O
3/2 0.796875 0.703125 O 0 O
(5.5.13)
19/20 0.4 Q49 ass 0 O
1 41 42 (43 Q44 O
a1 (42 (43 Gga O
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where

ag = 3.736772486772523;

asp = —0.781144781144795;

ass = —27.705627705628103;

an = 0.420225694444444;

a3 = 0.129774305555556; (5.5.14)
a4, = 0.301169590643275;

a2 = 0.330687830687831;

aas = —0.087542087542087;

a4 = 0.455684666210982;

The corresponding smallest eigenvalues of symmetrizers of the determinants are approxi-
mately

Amin (Ho) = 0.087230,  Amin(Q) =1,  Amin(H2(0)) = 0.5, (5.5.15)

which are all positive. Therefore, we only need to set

so that this scheme unconditionally decreases the energy of phase fields with Lipschitz
nonlinear terms.
Here we also simply illustrate our strategy to search coefficients in the tableau. In

order to construct 4-stage third-order IMEX-RK schemes, we only need to solve a linear
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problem. The order condition of IMEX-RK3 is

Aaea = Aaea = Co,

R - 1 - 1
bz;eg = bUTeU =1, bgcg = bchU =35 b?;cg = bUTc?, = 3’ (5.5.16)
N N AT & 1
0L Apcy = by Agcy = bT Ayey = by Ayey = -

There are 16 different equations for 23 variables. Although the whole system seems to
be nonlinear, we could set free parameters to make it a linear problem. First we set

¢s = (0,c2,c3,c4,1), and then let
b =¢, by & =C. (5.5.17)

Combining this condition with (B521H), we could solve b, and b:, in terms of ¢,, where the
linear equation involves the Vandermonde determinant. The last step is to solve A, and
A, where the nonlinear system becomes a linear one.

However, such trick does not work for fourth and higher order situations, since the

corresponding order condition of (651MR) will have such forms

T AP~2c, =1, AP

0._200 = bOTAgp_ch =b, A, cg=— (5.5.18)

where even if we already know all variables in b and ¢ unknowns, a nonlinear problem still

needs to be solved. Therefore, we do not present a fourth-order scheme here.
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Chapter 6

Conclusions and Future work

Throughout the thesis, we studied three different schemes to solve phase field models

with gradient flow structures.

6.1 Explicit Runge-Kutta methods

In Chapter 3, we offer detailed analysis and prove a family of explicit Runge—Kutta
methods which preserve both the maximum bound property and the energy dissipation law
for the Allen—Cahn equation. However, due to the order limit determined by the strong
stability preserving (SSP) Runge-Kutta methods, there do not exist schemes of higher
order than three which could preserve both structures. Explicit methods also suffer from
time step restrictions and can not be efficient for applications.

However, we believe when small time steps have to be taken, these explicit Runge—
Kutta methods are the simplest and also most useful methods to implement. But when
should such situations happen? The answer is the popular adaptive time-stepping methods.

As is shown in Chapter 4, the curve of these phase field models is usually flat and rarely
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turns out to have dramatic variations. When the curve is flat, we only need to use some
efficient and stable numerical methods with large time steps and when it is going to vary
dramatically, we could use explicit Runge—Kutta methods with small time steps. Whether
explicit RK methods can be better than other methods is still an open problem and needs

to be verified.

6.2 Exponential time differencing Runge—Kutta methods

In Chapter 4, we prove that the second-order exponential time differencing Runge—
Kutta (ETDRK) methods unconditionally preserve both MBP and the energy dissipation
law and thus becomes almost the best second-order scheme. Therefore, the main problem
is whether we can derive higher-order ETDRK schemes which still preserve the structures.
This problem, somehow, has intrinsic difficulties. The key idea of ETDRK approaches is
applying discrete integral in the Duhamel’s Formula, and constant and linear interpolations
lead to first and second-order schemes correspondingly. It is also not hard to realize the
constant and linear interpolations do not break the maximum bound property. However,
when we step to third-order schemes and use second-order polynomials (parabolas), the
MBP can be violated. Furthermore, the loss of the MBP could also affect the proof of the
energy dissipation. In conclusion, we need some more techniques and approaches to get

higher-order structure-preserving ETDRK schemes.
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6.3 Implicit-explicit Runge—Kutta methods

In Chaper 5, we prove and find a class of implicit-explicit Runge-Kutta methods
which unconditionally decrease the original energy of phase field models with gradient flow
structures. The techniques used here could also apply to other PDEs with similar structure.

I believe a general result can be shown for a wide class of problems.
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