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Abstract

Graph alignment aims at recovering the vertex correspondence between two
correlated graphs, which is a task that frequently occurs in graph mining
applications such as social network analysis, computational biology, etc. Ex-
isting studies on graph alignment mostly identify the vertex correspondence
by exploiting the graph structure similarity. However, in many real-world
applications, additional information attached to individual vertices, such as
the user profiles in social networks, might be publicly available. In this the-
sis, we consider the attributed graph alignment problem, where additional
information attached to individuals, referred to as attributes, is incorpo-
rated to assist graph alignment. We establish both the achievability and
converse results on recovering vertex correspondence exactly, where the con-
ditions match for a wide range of practical regimes. Our results span the
full spectrum between models that only consider graph structure similarity
and models where only attribute information is available.
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Lay summary

Graphs, as the mathematical abstraction of entities and their relationships,
widely appear in data science studies, such as social network analysis, com-
putational biology, etc. In many of these applications, one may observe
graph data about the same group of entities from multiple sources. For
example, in social networks, individuals often maintain accounts on differ-
ent platforms. The social networks obtained from different platforms often
share some structural similarities, because they reflect the same underly-
ing friendship network. Given a pair of such correlated graphs, a natural
question to ask is: can we find the vertex correspondence between them?

In this thesis, we study the graph alignment method, a technique for
finding the vertex correspondence between two correlated graphs. We pro-
pose a random graph model that generates correlated graph pairs with side
information attributed to each vertex. Under our model, we characterize
the information-theoretic limits of exactly aligning those graph pairs.
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Preface

This thesis is a result of the joint work with Dr. Weina Wang and Dr. Lele
Wang. Most of the contents come from the preprint [29]. A shorter version
of this work is published in the 2021 IEEE International Symposium on
Information Theory.

Dr. Weina Wang and Dr. Lele Wang initially proposed the attributed
graph alignment problem and formulated the attributed Erdős–Rényi pair
model. They provided precious guidance on research directions as well as
academic writing. My contribution to this work includes (1) establishing the
parameter regime where exact attributed graph alignment can be achieved
by the MAP estimator; (2) establishing the parameter regime where no
algorithm guarantees exact alignment; and (3) specializing these regions in
three closely related models: the Erdős–Rényi model, the bipartite model,
and the seeded graph model.
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Notation

Bin(n, p) Binomial distribution with parameter n ∈ N and p ∈ [0, 1]
Eu Set of user-user vertex pairs
Ea Set of user-attribute vertex pairs

f(n) = ω(g(n)) lim
n→∞

|f(n)|
g(n) = ∞

f(n) = o(g(n)) lim
n→∞

|f(n)|
g(n) = 0

f(n) = O(g(n)) lim sup
n→∞

|f(n)|
g(n) <∞

f(n) = Ω(g(n)) lim inf
n→∞

|f(n)|
g(n) > 0

f(n) = Θ(g(n)) f(n) = O(g(n)) and f(n) = Ω(g(n))
Hyp(n,N,K) Hypergeometric distribution with parameter n,N,K ∈ N
log(·) Logarithm to the base of e
N Set of natural numbers
[n] {1,2,. . . ,n}
n! Factorial of the integer n
R Set of real numbers
R Number of edges in the intersection graph
Sn Set of all permutations on n distinct elements
Sn,ñ Set of all permutations on n distinct elements with ñ fixed points
Vu User vertex set of a graph
Va Attribute vertex set of a graph
∆u(g1, g2) The number of user-user edge disagreements between graph g1 and g2
∆a(g1, g2) The number of user-attribute edge disagreements between graph g1 and g2
Π∗ The underlying true permutation on the set [n]
πid The identity permutation
ρ Correlation coefficient
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Chapter 1

Introduction

1.1 Motivation

The graph alignment problem, also known as the graph matching problem or
the noisy graph isomorphism problem, has received growing attention in re-
cent years, brought into prominence by applications in a wide range of areas
[1, 13, 25]. For instance, in social network de-anonymization [15, 21], one is
given two graphs, each of which represents the user relationship in a social
network (e.g., Twitter, Facebook, Flickr, etc). One graph is anonymized
and the other graph has user identities as public information. Then the
graph alignment problem, whose goal is to find the best correspondence of
two graphs with respect to a certain criterion, can be used to de-anonymize
users in the anonymous graph by finding the correspondence between them
and the users with public identities in the other graph.

The graph alignment problem has been studied under various random
graph models, among which the most popular one is the Erdős–Rényi graph
pair model (see, e.g., [4, 23, 27]). In particular, two Erdős–Rényi graphs
on the same vertex set, G1 and G2, are generated in a way such that their
edges are correlated. Then G1 and an anonymous version of G2, denoted
as G′

2, are made public, where G′
2 is modeled as a vertex-permuted G2 with

an unknown permutation. Under this model, typically the goal is to achieve
the so-called exact alignment, i.e., recovering the unknown permutation and
thus revealing the correspondence for all vertices exactly.

A fundamental question in the graph alignment problem is: when is
exact alignment possible? More specifically, what conditions on the statisti-
cal properties of the graphs are required for achieving exact alignment when
given unbounded computational resources? Such conditions, usually referred
to as information-theoretic limits, have been established for the Erdős–Rényi
graph pair in a line of work [4, 5, 23, 27]. The best known information-
theoretic limits are proved in [5, 27], where the authors establish nearly
matching achievability and converse bounds.

In many real-world applications, additional information about the anonymized
vertices might be available. For example, Facebook has user profiles on
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1.1. Motivation

their website about each user’s age, birthplace, hobbies, etc. Such associ-
ated information is referred to as attributes (or features), which, unlike user
identities, are often publicly available. Then a natural question to ask is:
Can the attribute information help recover the vertex correspondence? If so,
can we quantify the amount of benefit brought by the attribute information?
The value of attribute information has been demonstrated in the work of
aligning Netflix and IMDb users by [22]. They successfully recovered some
of the user identities in the anonymized Netflix dataset based only on users’
ratings of movies, without any information on the relationship among users.
In this thesis, we incorporate attribute information to generalize the graph
alignment problem. We call this problem the attributed graph alignment
problem.

To investigate the attributed graph alignment problem, we extend the
current Erdős–Rényi graph pair model and we refer to this new random
graph model as the attributed Erdős–Rényi pair model G(n,p;m, q). For a
pair of graphs, G1 and G2, generated from the attributed Erdős–Rényi pair
model, each graph contains n user vertices and m attribute vertices (see
Figure 1.1). Here, the user vertices represent the entities that need to be
aligned; while the attribute vertices are all pre-aligned, reflecting the public
availability of the attribute information. There are two types of edges in
each graph, i.e., edges between user vertices and edges between user ver-
tices and attribute vertices. Here, edges between user vertices represent the
relationship between users (e.g., friendship relations in a social network);
edges between user vertices and attribute vertices encode the side informa-
tion attached to each user (e.g., user profiles in a social network). These
two types of edges are correlatedly generated in the following way: for a
user-user vertex pair (i, j), the edges connecting them follow a distribution
p = (p11, p10, p01, p00), where p11 is the probability that i and j are con-
nected in both G1 and G2, and p10, p01, p00 represent the three remaining
cases respectively: i, j are only connected in G1, only connected in G2, and
not connected in neither G1 nor G2; for a user-attribute vertex pair, the
edges connecting them are generated in a similar way following a distri-
bution q = (q11, q10, q01, q00). This random process creates an identically
labeled graph pair (G1, G2) with similarity in both the graph topology part
(user-user edges) and the attribute part (user-attribute edges). The graph
G2 is then anonymized by applying a random permutation on its user ver-
tices and the anonymized graph is denoted as G′

2. Under this formulation,
our goal of attributed graph alignment is to recover this unknown permuta-
tion from G1 and G′

2 by exploring both the topology similarity and attribute
similarity.

2



1.2. Results Overview
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Figure 1.1: An example of the attributed Erdős–Rényi graph pair. Graph G1 and
G2 are generated on the same set of vertices. The anonymized graph G′

2 is obtained by
applying Π∗ = (1)(2, 3) only on Va of G2 (permutation Π∗ is written in cycle notation).

1.2 Results Overview

Under our attributed Erdős–Rényi pair model, we use the maximum a pos-
terior (MAP) estimator for aligning (G1, G

′
2), and establish the achievability

and converse results for exact alignment. To get an intuitive understand-
ing of how the existence of attribute information contributes to exact graph
alignment, we present a simplified result by considering a special case that is
typical and interesting in practice. We defer the general result to Section 2.1.
In most social networks, the degree of a vertex is much smaller than the total
number of users. Based on this observation, we assume that the marginal
edge probabilities are bound away from 1, i.e., 1 − (p11 + p10) = Θ(1) and
1 − (p11 + p01) = Θ(1). In addition, two social networks on the same set
of users are normally highly correlated. Based on this, we assume that the
correlation coefficient of user-user edges, denoted as ρu, is not vanishing,
i.e., ρu = Θ(1). Moreover, we assume that the number of attributes satisfies
m = Ω((log n)3). Under these three assumptions, we establish the following
asymptotically matching achievability and converse result as n→ ∞.

• Achievability: If

np11 +mq11 − log n→ ∞, (1.1)

then there exists an algorithm that achieves exact alignment with high
probability (w.h.p.)

3



1.2. Results Overview

• Converse: If

np11 +mq11 − log n→ −∞, (1.2)

then no algorithm guarantees exact alignment w.h.p.

Here np11 is the average number of common users between G1 and G2 that
are connected to a identical user vertex, and mq11 is the average number
of common attributes. Intuitively, the key quantity np11 + mq11 (average
common vertex degree) quantifies the topology and attribute similarity be-
tween G1 and G2. The above results simply show that if this similarity
measure is large enough, then exact alignment is achievable, or otherwise no
algorithm can exactly recover the true alignment. It is also worth noticing
that the average common vertex degree in attribute, i.e., mq11 out of the
overall average common vertex degree highlights the extra benefit from at-
tribute information. The achievability and converse results are illustrated
in Figure 1.2.

From the information-theoretic limits we derive for the attributed graph
pair, we could obtain information-theoretic limits on other existing random
graph models as special cases (see Figure 1.2). Here, we highlight how our
results, by comparing with the three specialized settings, help answer some
of the existing problems in the graph alignment literature. We defer a more
detailed comparison to Chapter 2.2.

• Specializing our model by setting q00 = 1, we remove the effect of the
attribute vertices and get the correlated Erdős–Rényi graph pair model.
This specialized result recovers the information-theoretic limits on Erdős–
Rényi graph alignment in [5, 27]. Comparing the specialized and un-
specialized results allows us to quantify the benefit brought by the at-
tribute information.

• Specializing our model by setting p = q, we can then treat the m at-
tribute vertices as pre-aligned user vertices and get the seeded Erdős–
Rényi model. Our specialized results provide information-theoretic limits
on the seeded graph alignment problem.

• Specializing our model by setting p00 = 1, we remove all of the user-user
edges and get the correlated bipartite graph pair model. The specialized
results provide information-theoretic limits on bipartite graph alignment
[3, 24].

4
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log 𝑛 ± 𝜔(1)

log 𝑛 ± 𝜔(1)

𝑚𝑞!!

𝑛𝑝!!

Erdős–Rényi

Seeded

Bipartite

𝑚𝑞!!
𝑛𝑝!!

=
𝑚
𝑛

𝑞"" = 1

𝑝"" = 1

Figure 1.2: Simplified information-theoretic limits on the attributed Erdős–
Rényi graph pair alignment. The green region in the figure is information-theoretically
achievable, which is specified by condition (1.1); the shaded grey region is not achievable
by any algorithm and is specified by condition (1.2). The three lines represent three
specialized settings respectively: (1) the blue line, which corresponds to the correlated
Erdős–Rényi model, is obtained by setting q00 = 1; (2) the yellow line, which corresponds
to the seeded Erdős–Rényi model, is obtained by setting p = q (correspondingly p11 =
q11 in the figure); (3) the red line, which corresponds to the correlated bipartite model,
is obtained by setting p00 = 1 The intersections of the lines with the achievable and
not achievable regions give the information-theoretic limits of the correlated Erdős–Rényi
model, seeded Erdős–Rényi model and the correlated bipartite model respectively.
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1.3. Model Formulation

1.3 Model Formulation

In this section, we describe the attributed Erdős–Rényi graph pair model.
Under this model formulation, we formally define the exact attributed graph
alignment problem. An illustration of the model is given in Figure 1.1.

User vertices and attribute vertices. We first generate two graphs,
G1 and G2, on the same vertex set V. The vertex set V consists of two
disjoint sets of vertices, the user vertex set Vu and the attribute vertex set
Va, i.e., V = Vu ∪ Va. Assume that the user vertex set Vu consists of n
vertices, labeled as [n] ≜ {1, 2, 3, ..., n}. Assume that the attribute vertex
set Va consists of m vertices, and m scales as a function of n.

Correlated edges. To describe the probabilistic model for edges in G1

and G2, we first consider the set of user-user vertex pairs Eu ≜ Vu ×Vu and
the set of user-attribute vertex pairs Ea ≜ Vu × Va. Then for each vertex
pair e ∈ E ≜ Eu∪Ea, we write G1(e) = 1 (resp. G2(e) = 1) if there is an edge
connecting the two vertices in the pair in G1 (resp. G2), and write G1(e) = 0
(resp. G2(e) = 0) otherwise. Since we often consider the same vertex pair in
both G1 and G2, we write (G1, G2)(e) as a shortened form of (G1(e), G2(e)).

The edges of G1 and G2 are then correlatedly generated in the following
way. For each user-user vertex pair e ∈ Eu, (G1, G2)(e) follows the joint
distribution specified by

(G1, G2)(e) =


(1, 1) w.p. p11,

(1, 0) w.p. p10,

(0, 1) w.p. p01,

(0, 0) w.p. p00,

(1.3)

where p11, p10, p01, p00 are probabilities that sum up to 1. For each user-
attribute vertex pair e ∈ Ea, (G1, G2)(e) follows the joint probability distri-
bution specified by

(G1, G2)(e) =


(1, 1) w.p. q11,

(1, 0) w.p. q10,

(0, 1) w.p. q01,

(0, 0) w.p. q00,

(1.4)

where q11, q10, q01, q00 are the probabilities and they sum up to 1. The cor-
relation between G1(e) and G2(e) is measured by the correlation coefficient
defined as

ρ(e) ≜
Cov(G1(e), G2(e))√

Var[G1(e)]
√
Var[G2(e)]

,

6



1.4. Related Work

where Cov(G1(e), G2(e)) is the covariance between G1(e) and G2(e) and
Var[G1(e)] and Var[G2(e)] are the variances. We assume that G1(e) and
G2(e) are positively correlated, i,e., ρ(e) > 0 for every vertex pair e. Across
different vertex pair e’s, the (G1, G2)(e)’s are independent. Finally, remem-
ber that there are no edges between attribute vertices in our model.

For compactness of notation, we represent the joint distributions in
(2.12) and (2.30) in the following matrix form:

p =

(
p11 p10
p01 p00

)
and q =

(
q11 q10
q01 q00

)
.

We refer to the graph pair (G1, G2) as an attributed Erdős–Rényi pair
G(n,p,m, q). Note that this model is equivalent to the subsampling model
in the literature [23].

Anonymization and exact alignment. In the attributed graph align-
ment problem, we are given G1 and an anonymized version of G2, denoted as
G′

2. The anonymized graph G′
2 is generated by applying a random permuta-

tion Π∗ on the user vertex set of G2, where the permutation Π∗ is unknown.
More explicitly, each user vertex i in G2 is re-labeled as Π∗(i) in G′

2. The
permutation Π∗ is chosen uniformly at random from Sn, where Sn is the
set of all permutations on [n]. Since G1 and G′

2 are observable, we refer to
(G1, G

′
2) as the observable pair generated from the attributed Erdős–Rényi

pair G(n,p,m, q).
Then the graph alignment problem, i.e., the problem of recovering the

identities/original labels of user vertices in the anonymized graph G′
2, can be

formulated as a problem of estimating the underlying permutation Π∗. The
goal of graph alignment is to design an estimator π̂(G1, G

′
2) as a function of

G1 and G′
2 to best estimate Π∗. We say π̂(G1, G

′
2) achieves exact alignment

if π̂(G1, G
′
2) = Π∗. The probability of error for exact alignment is defined

as P(π̂(G1, G
′
2) ̸= Π∗). We say that exact alignment is achievable w.h.p. if

there exists π̂ such that limn→∞ P(π̂(G1, G
′
2) ̸= Π∗) = 0.

1.4 Related Work

The exact graph alignment problem has been studied under various random
graph models. One of the most popular models is the correlated Erdős–
Rényi pair model G(n,p), which generates simple graph pairs without any
side information. Under this model, the optimal alignment strategy, derived
from the MAP estimator, is enumerating all possible permutations in or-
der to make the two graph achieve the maximum edge overlap. While the

7



1.5. Summary of Contributions

optimal strategy is NP-hard, numerous studies have proposed polynomial-
time approaches that exactly solve the graph alignment problem with high
probability [7–9, 19]. Here, we do not attempt to provide further detailed
discussions on efficient algorithms, but focus on surveying the information-
theoretic limits of exact alignment. Currently, the best-known information-
theoretic limits on Erdős–Rényi graph alignment are shown in [5] and [27]
by analyzing error event of the MAP estimator. In particular, both [5] and
[27] prove achievability in the regime n(

√
p11p00 −

√
p10p01)

2 ≥ (2 + ϵ) log n
using a combinatorial method called cycle decomposition. In [5], the au-
thors further prove that under some sparsity assumptions, the achievability
result can be improved to np11 ≥ log n + ω(1); in [27], the authors prove
that in the symmetric case where p10 = p01, the achievability result can be
extended to n(

√
p11p00 −

√
p10p01)

2 ≥ (1 + ϵ) log n. Conversely, [5] proves
that exact alignment is not achievable if np11 ≤ log n−ω(1) by showing the
existence of isolated vertices in the intersection graph G1∩G2; [27] expands
the converse region to n(

√
p11p00−

√
p10p01)

2 ≤ (1− ϵ) log n by showing the
existence of permutations that can fail the MAP estimator by swapping two
vertices. From the aforementioned results, we can see that there is a gap
between the achievability and the converse. Closing this gap is still an open
problem in the field.

Recently, there has been a growing interest in studying graph alignment
with side information. For example, in the seeded alignment setting, the
side information appears in the form of a partial observation of the latent
alignment. For the seeded graph alignment problem, there have been a
number of studies concentrating on designing polynomial-time algorithms
with performance guarantees [10, 18, 20]. Some other more general settings
treat any form of side information as vertex attributes and formulate this
as the attribute graph alignment problem [31]. There is a line of empirical
studies on the attributed graph alignment [30–32], yet, to the best of our
knowledge, there is no known result on information-theoretic limits on graph
alignment with attribute information.

1.5 Summary of Contributions

The main contributions of this thesis can be summarized as follows.

1. Model Formulation. We propose the attributed Erdős–Rényi pair
model, which incorporates both the graph topology similarly and the at-
tribute similarity. Such model formulation allows us to align graphs with
the assistance of publicly available side information. Moreover, our model

8
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serves as a unifying formulation in the graph alignment literature and in-
cludes the correlated Erdős–Rényi model, seeded Erdős–Rényi model and
the correlated bipartite model as its special cases.

2. Information theoretic limits. We establish the achievability and con-
verse results on exactly aligning random attributed graphs, which co-
incide under assumptions that are typical and interesting in practice.
Our results span the full spectrum from the traditional Erdős–Rényi pair
model where only the user relationship networks are available to models
where only attribute information is available, unifying the existing results
in each of these settings.

3. Proof techniques. The proof techniques for the achievability results are
mainly inspired by the previous study on Erdős–Rényi graph alignment
[5]. For the converse result, our proof of the converse first studies the
sharp phase-transition phenomenon on the existence of indistinguishable
vertex pairs, which may of independent interest in research about random
graphs [11].

1.6 Thesis Outline

In this Introduction chapter, we give an overview of our problem formulation,
present a simplified version of our results, and summarize our contributions.
The rest of this thesis is organized as follows: our main results are presented
in Chapter 2. In Chapter 2.1 we present both the achievability and converse
results on the exact attributed graph alignment. Then, in Chapter 2.2, we
specialize our results into three closely related random graph models, and
compare our specialized results with the best-known results in the literature.
In Chapter 3, we present the detailed proof of the achievability results. In
particular, we derive the general achievability result in Chapter 3.1 and
prove the achievability of the sparse region in Chapter 3.2. In Chapter 4 ,
we prove the converse result. In Chapter 5, we summarize several extensions
and potential future directions of our work.

9



Chapter 2

Main Result

In Chapter 2.1, we present the achievability and the converse results. Our
achievability results characterize the parameter regime of the attributed
Erdős–Rényi model, under which there exists an algorithm that guaran-
tees exact alignment with high probability; while the converse result shows
the parameter regime, under which no algorithm achieves exact alignment
with high probability. Here, our analysis of both the achievability and the
converse is based on the assumption that we have access to unbounded
computational power and do not require the algorithms to be computa-
tionally efficient. In Chapter 2.2, we compare our specialized results with
the best-known results on three well-studied models in the graph alignment
literature.

2.1 Achievability and Converse

In this section, we state the general achievability results (Theorem 1 and
Theorem 2) and the converse results (Theorem 3). To better demonstrate
the benefit from attribute information, we also present a simplified version
of the result under some mild and practical assumptions as Corollary 1.

For compactness when present our results, here we define ψu ≜ (
√
p11p00−√

p10p01)
2 and ψa ≜ (

√
q11q00 − √

q10q01)
2. We will use these notations

throughout the thesis.

Theorem 1 (General achievability). Consider the attributed Erdős–Rényi
pair G(n,p;m, q). If

nψu

2 +mψa − log n = ω(1), (2.1)

then the MAP estimator achieves exact alignment w.h.p.

Theorem 2 (Achievability in sparse region). Consider the attributed Erdős–
Rényi pair G(n,p;m, q). If

p11 = O
(
logn
n

)
, (2.2)

10



2.1. Achievability and Converse

p10 + p01 = O
(

1
logn

)
, (2.3)

p10p01
p11p00

= O
(

1
(logn)3

)
, (2.4)

np11 +mψa − log n = ω(1), (2.5)

then the MAP estimator achieves exact alignment w.h.p.

Theorem 3 (Converse). Consider the attributed Erdős–Rényi pair G(n,p,m, q).
If

np11 +mq11 − log n→ −∞, (2.6)

then no algorithm guarantees exact alignment w.h.p.

To better illustrate the benefit of attribute information in the graph
alignment problem, we present in Corollary 1 a simplified version of our
achievability result by adding mild assumptions on user-user edges moti-
vated by practical applications. This simplified result also makes it easier to
compare the achievability result to the converse result in Theorem 3, which
will be illustrated in Figure 1.2.Note that these additional assumptions are
not needed for technical proofs.

In a typical social network, the degree of a vertex is much smaller than
the total number of users. Based on this observation, we assume that the
marginal probabilities of an edge in both G1 and G2 are not going to 1, i.e.,

1 − (p11 + p10) = Θ(1), 1 − (p11 + p01) = Θ(1). (2.7)

In addition, two social networks on the same set of users are typically highly
correlated. Based on this, we assume that the correlation coefficient of user-
user and user-attribute edges, denoted as ρu and ρa , are not vanishing, i.e.,

ρu = Θ(1), ρa = Θ(1). (2.8)

Corollary 1 (Simplified achievability). Consider the attributed Erdős–
Rényi pair G(n,p;m, q) under conditions (2.7) and (2.8). If

np11 +mψa − log n→ ∞ (2.9)

then there exists an algorithm that achieves exact alignment w.h.p.
If we further have m = Ω((log n)3), then the above condition (2.9) becomes

np11 +mq11 − log n→ ∞, (2.10)
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log 𝑛 ± 𝜔(1)

log 𝑛 − 𝜔(1)

𝑚𝑞++

𝑛𝑝++

O(𝑚𝑞!!
"/$)

Figure 2.1: Simplified information-theoretic limits on the attributed Erdős–
Rényi graph pair alignment. The green region is information theoretically achievable
and is specified by condition (2.11); the shaded grey region in not achievable according the

Theorem 3. The gap between the achievability and converse represent q11−ψa = O(q
3/2
11 ).

In particular, this gap is negligible up to ±ω(1) when m = Ω((log n)3), which is the other
simplified case presented in Figure 1.2.

If m = o((log n)3), the above condition (2.9) becomes the following.

np11 +mq11 −man − log n→ ∞, (2.11)

where an = q11 − ψa = O(q
3/2
11 ).

This simplified achievability and the converse results are visualized in
Figure 2.1. The gap between the achievability and the converse comes from
the difference between mq11 and mψa. This gap is negligible up to ±ω(1)
when m = Ω((log n)3) (Figure 1.2). Closing the gap for the m = o((log n)3)
case remains an open problem.

2.2 Specialization and Comparison

In this section, we specialize our main results (Theorem 1, Theorem 2 and
Theorem 3) on exact alignment of attributed Erdős–Rényi pair model and
compare them with the best-known results from three closely related graph
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2.2. Specialization and Comparison

alignment topics: the Erdős–Rényi graph alignment, the seeded Erdős–
Rényi graph alignment and the bipartite graph alignment.

2.2.1 Erdős–Rényi graph pair

The correlated Erdős–Rényi pair model G(n,p) is the most commonly stud-
ied setting for graph alignment tasks that consider only graph topology
similarity [4, 5, 7, 23, 27]. This model generates graph pairs that contain
user vertices only. For a pair of graphs G1, G2 obtained from this model
G(n,p), we use Vu to denote their vertex set and |Vu| = n. The edges in
G1 and G2 are jointly generated in the following way: for a pair of users
e ∈

(Vu

2

)
, we have

(G1, G2)(e) =


(1, 1) w.p. p11,

(1, 0) w.p. p10,

(0, 1) w.p. p01,

(0, 0) w.p. p00.

(2.12)

The anonymized graph G′
2 is obtained by applying a random permutation

Π∗ on the vertices of G2 directly. This model can be specialized from the
attributed graph pair model by setting the number of attributes m = 0.
For aligning such correlated Erdős–Rényi pair, the best-known information-
theoretic limits are established in [5, 27] and we state the combined results
here for ease of comparison.

Theorem 4 ([5, 27]). Consider the correlated Erdős–Rényi pair G(n, q).
Achievability:
If

n(
√
p11p00 −

√
p10p01)

2 ≥ 2 log n+ ω(1), (2.13)

or

p11 = O
(
logn
n

)
, (2.14)

p10 + p01 = O
(

1
logn

)
, (2.15)

p10p01
p11p00

= O
(

1
(logn)3

)
, (2.16)

np11 ≥ log n+ ω(1), (2.17)
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2.2. Specialization and Comparison

then the MAP estimator achieves exact alignment w.h.p.
Converse:
If there exists a constant ϵ such that

n(
√
p11p00 −

√
p10p01)

2 ≤ (1 − ϵ) log n,

or

np11 ≤ log n− ω(1),

then no algorithm guarantees exact alignment w.h.p.

To compare our results with the best-known information-theoretic limits
on Erdős–Rényi graph alignment, we first specialize our model to fit the set-
ting in the correlated Erdős–Rényi pair model. The attributed Erdős–Rényi
pair model G(n,p;m, q) degenerate to the Erdős–Rényi pair model G(n,p)
by removing the attributed vertices. As a consequence of the specializa-
tion, we directly obtain the following achievability and converse result from
Theorem 1, Theorem 2 and Theorem 3. Comparing the specialized results
(Theorem 5) and the best-known results (Theorem 4), we can see that the
specialized achievability is the same as the best-known achievability, while
the specialized converse is strictly contained by the best-known results in
Theorem 4.

Theorem 5 (Specialization to the correlated Erdős–Rényi pair model).
Consider the attributed Erdős–Rényi pair G(n,p; 0, q).
Achievability: If

n(
√
p11p00 −

√
p10p01)

2 ≥ 2 log n+ ω(1), (2.18)

or

p11 = O
(
logn
n

)
, (2.19)

p10 + p01 = O
(

1
logn

)
, (2.20)

p10p01
p11p00

= O
(

1
(logn)3

)
, (2.21)

np11 = log n+ ω(1), (2.22)

then the MAP estimator achieves exact alignment w.h.p.
Converse: If

np11 ≤ log n− ω(1),

then no algorithm guarantees exact alignment w.h.p.
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2.2.2 Seeded Erdős–Rényi pair

In the seeded graph model G(n,m,p), a pair of graphs G1, G2 are gener-
ated from the correlated Erdős–Rényi pair model G(n + m,p). Then the
anonymized graph G′

2 is obtained by applying a random permutation on
the vertices of G2. In addition to knowing G1 and G′

2, in the seeded graph
setting, we are also given the true alignment on part of the user vertices,
which is known as the seed set Vs. The number of aligned pairs in Vs
is a fixed number m. The seeded alignment problem has been studied
by [15, 17, 18, 20, 28]1. To the best of our knowledge, the best information-
theoretic limits of the seeded alignment problem are given by [20, 26].

Theorem 6 (Best-known information-theoretic limits [20, 26]). Consider
the seeded Erdős–Rényi graph pair G(n,m,p).
Achievability from [20]: Assume that p10 = p01,

p11
p11+p10

= Θ(1) and (n +
m)p11 − log(n+m) → ∞.

1. Suppose that for a fixed constant ϵ > 0, we have

(n+m)
(p11 + p10)

2

p11
≤ (n+m)1/2−ϵ,

m

m+ n
≥ (n+m)−1/2+3ϵ.

Then Algorithm 1 in [20] achieves exact alignment with probability at
least 1 − o(1).

2. Here, we define the constants a, b ∈ (0, 1] as

(n+m)
(p11 + p10)

2

p11
= b(n+m)a.

Let d =
⌊
1
a

⌋
+ 1 and s = p11

p11+p00
. Suppose that

b ≤ s

16(2 − s)2
and

m

m+ n
≥ 300 log (n+m)

((n+m)p11)d−1
.

Then Algorithm 2 in [20] achieves exact alignment with probability at
least 1 − 4(n+m)−1.

1In the literature, both random [15] and deterministic [28] seed sets are considered.
Here, we focus on the deterministic seed set setting which is closely related to our at-
tributed Erdős–Rényi pair model.
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3. Suppose for a fixed constant ϵ < 1/6, we have

(n+m)
(p11 + p10)

2

p11
≤ (n+m)ϵ,

m

m+ n
≥ (n+m)−1+3ϵ.

Then Algorithm 3 in [20] achieves exact alignment with probability at
least 1 − o(1).

Achievability from [26] Assume that p10 = p01,
p11

p11+p10
= Θ(1), and (p11+p10)2

p11
=

o(1).

1. In the regime where mp11 = Ω(log n), if for a constant ϵ > 0, we have

(n+m)p11 ≥ (1 + ϵ) log n,

then the ATTRRICH algorithm in [26] achieves exact alignment w.h.p.

2. In the regime where mp11 = o(log n), if for a constant τ > 0, we have

np11 − log n = ω(1),

mp11 ≥
2 log n

τ log(p11/(p11 + p10)2)
,

then the ATTRSPARSE algorithm in [26] achieves exact alignment w.h.p.

Converse from [20] Consider the seeded Erdős–Rényi graph pair G(n,m,p).
If

(n+m)p11 ≤ log (n+m) +O(1), and m = O(n),

then any algorithm fails with probability at least Θ(1).

To compare the best-known information-theoretic limits of the seeded
Erdős–Rényi alignment with our results, we specialize the attributed Erdős–
Rényi pair model by setting p = q, where m attribute vertices are pre-
aligned seeds. Notice that a small difference between the G(n,p;m,p) model
and the seeded model G(n,m,p) is that there are no edges between the seeds
in the specialized model but those edges exist in the seeded model. Such
distinction may lead to a difference in the design of seeded graph alignment
algorithms (e.g. algorithms from [20] used seed-seed edges). It turns out
that such seed-seed edges have no influence on the optimal MAP estimators
for the two models, which leads to the next lemma.
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Lemma 1. The information-theoretic limits on aligning the seeded Erdős–
Rényi pair model G(n,m,p) and the information-theoretic limits on aligning
the specialized attributed Erdős–Rényi pair model G(n,p;m,p) are identical.

Proof. See Lemma 6in the Appendix.

Based on Lemma 1, we directly obtain the achievability and converse
results on seeded graph alignment from Theorems 1, 2, and 3 by setting
p = q. The specialized achievability and converse results strictly improve
the best known achievability and converse in the literature for seeded graph
alignment.

Theorem 7 (Specialization to the seeded Erdős–Rényi pair model). Con-
sider the attributed Erdős–Rényi pair G(n,p;m,p).
Achievability: If

(n+m)(
√
p11p00 −

√
p10p01)

2 ≥ 2 log n+ ω(1), (2.23)

or

p11 = O
(
logn
n

)
, (2.24)

p10 + p01 = O
(

1
logn

)
, (2.25)

p10p01
p11p00

= O
(

1
(logn)3

)
, (2.26)

np11 +m(
√
p11p00 −

√
p10p01)

2 = log n+ ω(1), (2.27)

then the MAP estimator achieves exact alignment w.h.p.
Converse: If

(n+m)p11 ≤ log n− ω(1),

then no algorithm guarantees exact alignment w.h.p.

In particular, for seeded graph pairs that satisfy the two assumptions on
typical social networks (condition 2.7 and (2.8) in Chapter 2.1), we have the
following achievability and converse results.

Corollary 2. Consider the seeded Erdős–Rényi pair model G(n,m,p) under
conditions (2.7) and (2.8).
Achievability: If

(n+m)p11 ≥ log n+ ω(1), (2.28)
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then the MAP estimator achieves exact alignment w.h.p.
Converse: If

(n+m)p11 ≤ log n− ω(1), (2.29)

then no algorithm guarantees exact alignment w.h.p.

Remark 1. In Corollary 2, we obtain asymptotically tight achievability and
converse results under conditions (2.7) and (2.8).
Comparison between the achievability results: The achievability result in Corol-
lary 2 strictly improve the best-known achievability results for seeded align-
ment [20, 26]. In the following, we provide a comparison between the achiev-
ability results in Corollary 2 and Theorem 6.

• For algorithms in [20], they all require

(n+m)p11 ≥ log(n+m) + ω(1),

which is strictly contained by achievability condition (2.28)

(n+m)p11 ≥ log n+ ω(1).

To illustrate the strict inclusion, consider the case where

p11 =
log (n+m)

n+m
, p10 = p01 = 0, and m = n2.

Then we have (n+m)p11 = log(n+m) < log(n+m)+ω(1), which is not
feasible using algorithms from [20]. However, for such choices of p11
and m, we have (n+m)p11 = log(n+m) = log (n+ n2) ≥ log n+ω(1),
which is feasible according to condition (2.28). Moreover, we have

1−(p11+p01) = 1−(p11+p10) = 1− log (n+m)
n+m = Θ(1) and ρu = ρa = 1,

satisfying conditions (2.7) and (2.8). For later examples illustrating
the strict inclusion, they all satisfy conditions (2.7) and (2.8), which
can be checked following the same verification procedure. In those
examples, we do not repeat such verification steps for compactness.

• For algorithms in [26], the ATTRRICH algorithm requires that

(n+m)p11 ≥ (1 + ϵ) log n,

which is a strict subset of condition (2.28). To illustrate the strict
inclusion, consider the case where

p11 =
log n+ log log n

n+m
and p10 = p01 = 0.
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Then we have (n + m)p11 = log n + log log n < (1 + ϵ) log n, which is
not feasible using the ATTRRICH algorithm. However, for such choice
of p11, we have (n+m)p11 = log n+ log log n ≥ log n+ ω(1), which is
feasible according to condition (2.28).
The ATTRSPARSE algorithm requires that

mp11 − log n ≥ ω(1),

which is also strictly covered by our condition (2.28). To illustrate the
strict inclusion, consider the case where

p11 =
2 log n

n+m
, p10 = p01 = 0, and m = n.

Then we have mp11 = log n < log n+ω(1), which is not feasible using
the ATTRSPARSE algorithm. However, for such choice of p11 and m,
we have (n+m)p11 = 2 log n ≥ log n+ω(1), which is feasible according
to condition (2.28).

Comparison between the converse results: Our converse result in Corollary 2
further improves the best-known converse result in [20]. To see this, here
we first simplify the converse result from Theorem 6. Note that under the
condition m = O(n), we have log (n+m) = log n + O(1). Therefore, the
converse condition in Theorem 6 is equivalent to

(n+m)p11 ≤ log n+O(1), and m = O(n).

Then we can directly see that in the regime m = O(n), our specialized con-
verse condition (n+m)p11 ≤ log n−ω(1) implies the converse in Theorem 6.
However, in the m = ω(n) regime, Theorem 6 does not provide a condition
for converse, while our converse condition is still valid when m = ω(n).

2.2.3 Bipartite graph pair

In the bipartite graph pair model G(n,m, q), each graph contains two disjoint
and independent sets of vertices, i.e., the user vertex set Vu and the attribute
vertex set Va. Edges between the two sets of vertices are generated in the
following way: for e ∈ Vu × Va

(G1, G2)(e) =


(1, 1) w.p. q11,

(1, 0) w.p. q10,

(0, 1) w.p. q01,

(0, 0) w.p. q00.

(2.30)
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The anonymized graph G′
2 is obtained by applying a random permutation

Π∗ only on the user vertex set of G2. The task of aligning such correlated
bipartite graphs can be viewed as a special case of the database alignment
problem, where the entries of the database are assumed to be independently
drawn from the same Bernoulli distribution. [6] provides the best-known
information-theoretic limits. Here, we state in Theorem 8 their results of
this special case.

Theorem 8 (Specialization of Theorems 1 and 2 in [6] to bipartite graphs).
Consider the bipartite graph pair model G(n,m, q).
Achievability:
If

−m
2

log
(
1 − 2(

√
q11q00 −

√
q10q01)

2
)
≥ log n+ ω(1), (2.31)

then there exists an estimator that achieves exact alignment w.h.p.
Converse:
If

−m
2

log
(
1 − 2(

√
q11q00 −

√
q10q01)

2
)
≤ (1 − Ω(1)) log n (2.32)

then any estimator achieves exact alignment with probability o(1).

To compare our results with the best-known database alignment information-
theoretic limits, we specialize the attributed Erdős–Rényi pair model to the
bipartite graph pair by removing all of the edges between user vertices, i.e.,
setting p00 = 1. Correspondingly, we obtain the following achievability and
converse results on bipartite graph alignment.

Theorem 9 (Specialization to bipartite graph pair model). Consider the
attributed Erdős–Rényi pair G(n,p;m, q) with p00 = 1.
Achievability:
If

m(
√
q11q00 −

√
q10q01)

2 ≥ log n+ ω(1), (2.33)

then the MAP estimator achieves exact alignment w.h.p.
Converse:
If

mq11 ≤ log n− ω(1), (2.34)

then no algorithm guarantees exact alignment w.h.p.
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Remark 2. The achievability result from [3] (2.31) contains our specialized
achievability result (2.33). To see this, recall that log(1 + x) ≤ x for all x >
−1. Therefore we have − log

(
1 − 2(

√
q11q00 −

√
q10q01)

2
)
≥ 2(

√
q11q00 −√

q10q01)
2, and condition (2.33) implies condition (2.31).

Remark 3. Our specialized converse result (2.34) can slightly expand the
best-known converse regime in (2.32). To give an example of the newly
covered region, consider the case where q11 = qs2, q01 = q10 = qs(1 − s)
and q00 = 1 − q11 − q01 − q10 for some q = o(1) and s = Θ(1). Here
we show that in this regime (2.32) implies (2.34). By our assumptions on
q, we have (

√
q11q00 − √

q10q01)
2 = (1 − o(1))qs2 = o(1). For (2.32) we

have that −m
2 log(1 − 2(

√
q11q00 −

√
q10q01)

2) = mqs2 − o(mqs2) + q2s4(1 −
o(1)) ≤ (1 − Ω(1)) log n. Thus condition (2.32) implies that mqs2 ≤ (1 −
Ω(1)) log n + o(mqs2). Here we also get that mqs2 = O(log n) and then
we have o(mqs2) = o(log n). Finally, from condition (2.32), we can derive
mqs2 ≤ (1 − Ω(1)) log n+ o(mqs2) ≤ log n− ω(1) which is exactly (2.34).
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Chapter 3

Proof of the Achievability

In this chapter, we give detailed proof of the general achievability result
(Theorem 1) and the achievability in the sparse region (Theorem 2). For
both results, we prove by showing that the error probability of the MAP
estimator converges to 0 as the number of users n goes to infinity. For
Theorem 2, we focus on a regime where the edge density is relatively small,
which allows us to obtain a tighter upper bound on the error event, and thus
enlarge the achievable region from Theorem 1.

3.1 General Achievability (Theorem 1)

Here in this proof of the general achievability result, we begin by solving the
exact alignment as an inference problem. To be more specific, the observed
graph pair (G1, G

′
2) are aligned using the MAP estimator, which further

simplifies to a minimum weighted distance estimator (see Lemma 2). This
minimum weighted distance estimator is optimal in the sense that it achieves
the minimum probability of error. Along this line, in Chapter 3.1.2 we prove
our general achievability result by showing that under some conditions on the
attributed graph pairs G(n,p;m, q), the error probability of the minimum
weighted distance estimator goes to 0 as n goes to infinity. To elaborate
on this, in Chapter 3.1.4 we obtain a closed-form upper bound of this error
probability using tools from enumerative combinatorics in Lemma 3, which
are inspired by [4, 5]. From the obtained upper bound of error probability,
we finally prove the general achievability result by figuring out sufficient
conditions under which the closed-form upper bounds converge to 0 as n
goes to infinity.

3.1.1 MAP estimation

In this section, we state a simple algorithm derived from MAP estimator,
which is optimal for aligning graphs generated from G(n,p;m, q), and we
defer the proof to Appendix A. Here we first introduce some basic notation
for graph statistics needed in stating the MAP estimator. For any attributed
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g on the vertex set Vu ∪ Va and any permutation π over the user vertex set
Vu, we use π(g) to denoted the graph given by applying π to g. For any two
attributed graphs g1 and g2 on Vu ∪ Va, we consider the Hamming distance
between their edges restricted to the user-user vertex pairs in Eu, denoted
as

∆u(g1, g2) =
∑

(i,j)∈Eu

1{g1((i, j)) ̸= g2((i, j))}; (3.1)

and the Hamming distance between their edges restricted to the user-attribute
vertex pairs in Ea, denoted as

∆a(g1, g2) =
∑

(i,v)∈Ea

1{g1((i, v)) ̸= g2((i, v))}. (3.2)

Lemma 2 (MAP estimator). Let (G1, G
′
2) be an observable pair generated

from the attributed Erdős–Rényi pair G(n,p;m, q). The MAP estimator of
the permutation Π∗ based on (G1, G

′
2) simplifies to

π̂MAP(G1, G
′
2)

= argmin
π∈Sn

{w1∆
u(G1, π

−1(G′
2)) + w2∆

a(G1, π
−1(G′

2))},

where w1 = log
(
p11p00
p10p01

)
, w2 = log

(
q11q00
q10q01

)
, and

∆u(G1, π
−1(G′

2)) =
∑

(i,j)∈Eu

1{G1((i, j)) ̸= G′
2((π(i), π(j)))},

∆a(G1, π
−1(G′

2)) =
∑

(i,v)∈Ea

1{G1((i, v)) ̸= G′
2((π(i), v))}.

3.1.2 Proof of the general achievability (Theorem 1)

Theorem 1 (General achievability). Consider the attributed Erdős–Rényi
pair G(n,p;m, q). If

nψu

2 +mψa − log n = ω(1), (2.1)

then the MAP estimator achieves exact alignment w.h.p.

Proof of Theorem 1. Given the observable pair (G1, G
′
2), the error probabil-

ity of MAP estimator can be upper-bounded as

P(π̂MAP(G1, G
′
2) ̸= Π∗)
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=
∑
π∗∈Sn

P(π̂MAP(G1, G
′
2) ̸= π∗|Π∗ = π∗)P(Π∗ = π∗)

=
1

|Sn|
∑
π∗∈Sn

P(π̂MAP(G1, G
′
2) ̸= π∗|Π∗ = π∗) (3.3)

= P (π̂MAP(G1, G2) ̸= πid|Π∗ = πid) (3.4)

= P(π̂MAP(G1, G2) ̸= πid) (3.5)

≤ P(∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0), (3.6)

where πid denotes the identity permutation, and

δπ(G1, G2) ≜ w1(∆
u(G1, π(G2)) − ∆u(G1, G2))

+ w2(∆
a(G1, π(G2)) − ∆a(G1, G2)). (3.7)

Here (3.3) follows from the fact that Π∗ is uniformly drawn from Sn,
which implies P(Π∗ = π∗) = 1/|Sn| for all π∗; (3.4) is due to the symmetry
among user vertices in G1 and G2; (3.5) is due to the independence between
Π∗ and (G1, G2); (3.6) is true because by Lemma 2, πMAP(G1, G2) minimizes
the weighted distance, and πMAP ̸= πid only if there exists a permutation π
such that π ̸= πid and δπ(G1, G2) ≤ 0.

Now to prove that (2.1) implies that the error probability in (3.6) con-
verges to 0 as n → ∞, we further upper-bound the error probability as
follows

P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0)

≤
∑

π∈Sn\{πid}

P(δπ(G1, G2) ≤ 0) (3.8)

=
n∑
ñ=2

∑
π∈Sn,ñ

P(δπ(G1, G2) ≤ 0) (3.9)

≤
n∑
ñ=2

|Sn,ñ| max
π∈Sn,ñ

{P(δπ(G1, G2) ≤ 0)}

≤
n∑
ñ=2

nñ max
π∈Sn,ñ

{P(δπ(G1, G2) ≤ 0)}.

Here (3.8) follows from directly applying the union bound. In (3.9), we
use Sn,ñ to denote the set of permutations on [n] that contains exactly
(n − ñ) fixed points. In the example of Figure 1.1, the given permutation
Π∗ = (1)(23) has 1 fixed point and (1)(23) ∈ S3,2. Furthermore, we have
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|Sn,ñ| =
(
n
ñ

)
(!ñ) ≤ nñ, where !ñ, known as the number of derangements,

represents the number of permutations on a set of size ñ such that no element
appears in its original position.

Now, we apply Lemma 3 to obtain a closed-form upper bound on the
term maxπ∈Sn,ñ {P(δπ(G1, G2) ≤ 0)}. Lemma 3 is stated after this proof and
its proof is presented in Chapter 3.1.4. With the upper bound in Lemma 3,
we have

P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0)

≤
n∑
ñ=2

nñ(1 − 2ψu)
ñ(n−2)

4 (1 − 2ψa)
ñm
2

=
n∑
ñ=2

(
n(1 − 2ψu)

n−2
4 (1 − 2ψa)

m
2

)ñ
. (3.10)

For this geometry series, the negative logarithm of its common ratio is

− log n− n− 2

4
log (1 − 2ψu) − m

2
log (1 − 2ψa)

≥ − log n+
n− 2

2
ψu +mψa (3.11)

= ω(1). (3.12)

Here we have ψu = (
√
p11p00 − √

p10p01)
2 ≤ 1/4 and ψu = (

√
q11q00 −√

q10q01)
2 ≤ 1/4. Therefore, (3.11) follows from the inequality log (1 + x) ≤

x for x > −1. Equation (3.12) follows from condition (2.1) by noting that
ψu is no larger than 1. Therefore, the geometry series in (3.10) converge to
0 as n → ∞. This completes the proof that MAP estimator achieves exact
alignment w.h.p. under condition (2.1).

Lemma 3. Let (G1, G2) be an attributed Erdős–Rényi pair G(n,p;m, q).
For any permutation π, let

δπ(G1, G2) ≜ w1(∆
u(G1, π(G2)) − ∆u(G1, G2))

+ w2(∆
a(G1, π(G2)) − ∆a(G1, G2)).

Then when π has n− ñ fixed points, we have

P (δπ(G1, G2) ≤ 0) ≤ (1 − 2ψu)
ñ(n−2)

4 (1 − 2ψa)
ñm
2 .
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3.1.3 An interlude of generating functions

To prove the upper bound on P(δπ(G1, G2) ≤ 0) in Lemma 3, we will use
the method of generating functions. In this section, we first introduce our
construction of a generating function and how it can be used to bound
P(δπ(G1, G2) ≤ 0). We then present several properties of generating func-
tions (Facts 1, 2, and 3), which will be needed in the proof of Lemma 3.

A generating function for the attributed Erdős–Rényi pair. For
any graph pair (g, h) that is a realization of an attributed Erdős–Rényi pair,
we define a 2 × 2 matrix µ(g, h) as follows for user-user edges:

µ(g, h) =

(
µ11 µ10
µ01 µ00

)
,

where µij =
∑

e∈Eu 1{g(e) = i, h(e) = j}. Similarly, we define ν(g, h) as
follows for user-attribute edges:

ν(g, h) =

(
ν11 ν10
ν01 ν00

)
,

where νij =
∑

e∈Ea 1{g(e) = i, h(e) = j}.
Now we define a generating function for attributed graph pairs, which

encodes information in a formal power series. Let z be a single formal
variable and x and y be 2 × 2 matrices of formal variables where

x =

(
x00 x01
x10 x11

)
and y =

(
y00 y01
y10 y11

)
.

Then for each permutation π, we construct the following generating function:

A(x,y, z) =
∑

g∈{0,1}E

∑
h∈{0,1}E

zδπ(g,h)xµ(g,h)yν(g,h), (3.13)

where
xµ(g,h) ≜ xµ0000 · xµ0101 · xµ1010 · xµ1111 ,

yν(g,h) ≜ yν0000 · yν0101 · yν1010 · yν1111 .

Note that in the above expression of A(x,y, z), we enumerate all possi-
ble attributed graph pairs (g, h) as realizations of the random graph pair
(G1, G2). For each realization, we encode the corresponding µ(g, h),ν(g, h)
and δπ(g, h) in the powers of formal variables x,y and z. By summing over
all possible realizations (g, h), the terms having the same powers are merged
as one term. Therefore, the coefficient of a term zδπxµyν represents the
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number of graph pairs that have the same graph statics represented in the
powers of formal variables.

Bounding P(δπ(G1, G2) ≤ 0) in terms of the generating function.
We first argue that when we set x = p and y = q, the generating function
A(p, q, z) becomes the probability generating function of δπ(G1, G2) for the
attributed Erdős–Rényi pair (G1, G2) ∼ G(n,p;m, q). To see this, note
that the joint distribution of G1 and G2 can be written as P((G1, G2) =
(g, h)) = pµ(g,h)qν(g,h). Then by combining terms in A(p, q, z), we have
P(δπ(G1, G2) = d) = [zd]A(p, q, z), where [zd]A(p, q, z) denotes the coeffi-
cient of zd with [zd] being the coefficient extraction operator. We comment
that the probability generating function here is defined in the sense that
A(p, q, z) = E

[
zδπ(G1,G2)

]
. Since δπ(G1, G2) takes real values, this is slightly

different from the standard probability generating function for random vari-
ables with nonnegative integer values. But this distinction does not affect
our analysis in a significant way since δπ(G1, G2) takes values from a finite
set.

Now it is easy to see that

P(δπ(G1, G2) ≤ 0) =
∑
d≤0

[zd]A(p, q, z). (3.14)

Cycle decomposition. We will use the cycle decomposition of permu-
tations to simply the form of the generating function A(x,y, z).

Each permutation π induces a permutation on the vertex-pair set. We
denote this induced permutation as πE , where πE : E → E and πE((u, v)) =
(π(u), π(v)) for u, v ∈ V. A cycle of the induced permutation πE is a list of
vertex pairs such that each vertex pair is mapped to the vertex pair next to
it in the list (with the last mapped to the first one). The cycles naturally
partition the set of vertex pairs, E , into disjoint subsets where each subset
consists of the vertex pairs from a cycle. We refer to each of these subsets
as an orbit. For the example given in Figure 1.1, the induced permutation
on E can divide it into 4 orbits of size 1 (1-orbit): {(2, 3)}, {(1, a)}, {(1, b)},
{(1, c)}, and 4 orbits of length 2 (2-orbit): {(1, 2), (1, 3)}, {(2, a), (3, a)},
{(2, b), (3, b)}, {(2, c), (3, c)}.

We write this partition of E based on the cycle decomposition as E =
∪k≥1Ok, where Ok denotes the kth orbit. Note that each cycle consists of
either only user-user vertex pairs or only user-attribute vertex pairs. If a
single orbit Ok contains only user-user vertex pairs, we define its generating
function on formal variables z and x as

AOk
(x, z) =

∑
g∈{0,1}Ok

∑
h∈{0,1}Ok

zδπ(g,h)xµ(g,h).
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If Ok contains only user-attribute vertex pairs, we define its generating func-
tion on formal variables z and y as

AOk
(y, z) =

∑
g∈{0,1}Ok

∑
h∈{0,1}Ok

zδπ(g,h)yν(g,h).

Here, we extend the previous definitions of δπ, µ and ν on attributed graphs
to any set of vertex pairs. Let E ′ be an arbitrary set of vertex pairs. Then
we define δπ for any g, h ∈ {0, 1}E ′

as

δπ(g, h) =w1

∑
e∈E ′∩Eu

(
1{g(e) ̸= h(πE(e))} − 1{g(e) ̸= h(e)}

)
+ w2

∑
e∈E ′∩Ea

(
1{g(e) ̸= h(πE(e))} − 1{g(e) ̸= h(e)}

)
. (3.15)

For g, h ∈ {0, 1}E ′
, we keep µ(g, h) and ν(g, h) as 2 × 2 matrices as follows:

µ(g, h) =

(
µ11, µ10
µ01, µ00

)
and ν(g, h) =

(
ν11, ν10
ν01, ν00

)
,

where

µij = µij(g, h) ≜
∑

e∈E ′∩Eu

1{g(e) = i, h(e) = j}, (3.16)

νij = νij(g, h) ≜
∑

e∈E ′∩Ea

1{g(e) = i, h(e) = j}. (3.17)

We remind the reader that by setting the set of vertex pairs E ′ to be E these
extended definitions on δπ, µ and ν agree with the previous definition where
g, h are attributed graphs.

Now, we consider the generating functions for two orbits Ok and Ok′ . If
the size of Ok equals to the size of Ok′ and both orbits consist of user-user
vertex pairs, then we claim that AOk

(x, z) = AOk′ (x, z). This is because
to obtain AOk

(x, z), we sum over all realizations g, h ∈ {0, 1}Ok , which is
equivalent to summing over g, h ∈ {0, 1}Ok′ . Similarly, if the size of Ok

equals to the size of Ok′ and both orbits consist of user-attribute vertex
pairs, we have AOk

(y, z) = AOk′ (y, z). To make the notation compact,
we define a generating function Al(x, z) for size l user-user orbits and a
generating function Al(y, z) for size l user-attribute orbits. Let Eu

l denote a
general user-user orbit of size l and Ea

l denote a general user-attribute orbit
of size l. Then

Al(x, z) ≜
∑

g∈{0,1}E
u
l

∑
h∈{0,1}E

u
l

zδπ(g,h)xµ(g,h), (3.18)
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Al(y, z) ≜
∑

g∈{0,1}E
a
l

∑
h∈{0,1}E

a
l

zδπ(g,h)yν(g,h). (3.19)

Properties of generating functions. Here we provide some proper-
ties of the generating functions defined above. These properties are mainly
used for upper bounding error probability of the MAP estimator through
probability generating functions.

Fact 1. The generating function A(x,y, z) of permutation π can be decom-
posed into

A(x,y, z) =
∏
l≥1

Al(x, z)
tul Al(y, z)

tal ,

where tul is the number of user-user orbits of size l, tal is the number of
user-attribute orbits of size l.

Fact 2. Let x ∈ R2×2 and z ̸= 0. Then for all l ≥ 2, we have Al(x, z) ≤
A2(x, z)

l
2 and Al(x, z) ≤ A2(x, z)

l
2 .

We refer the readers to Appendix C for the proof of Fact 1, and Theo-
rem 4 in [5] for the proof of Fact 2. Combining these two facts, we get

A(x,y, z) ≤A1(x, z)
tu1A1(y, z)

ta1

A2(x, z)
tu−tu1

2 A2(x, z)
nm−ta1

2 . (3.20)

Here, in (3.20), we use tu to denote the total number of user-user pairs and
tu =

∑
l≥1 t

u
l l =

(
n
2

)
. We have the closed-form expressions for A1 and A2

following from their definition in (3.18) and (3.19)

A1(x, z) = x00 + x10 + x01 + x11, (3.21)

A1(y, z) = y00 + y10 + y01 + y11, (3.22)

A2(x, z) = (x00 + x10 + x01 + x11)
2

+ 2x00x11(z
2w1 − 1) + 2x10x01(z

−2w1 − 1), (3.23)

A2(y, z) = (y00 + y10 + y01 + y11)
2

+ 2y00y11(z
2w2 − 1) + 2y10y01(z

−2w2 − 1). (3.24)

Moreover, we have Fact 3 which gives explicit upper bounds on the coeffi-
cients of a generating function
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Fact 3. For a discrete random variable X defined over a finite set X , let

Φ(z) ≜ E[zX ] =
∑
i∈X

P(X = i)zi (3.25)

be the probability generating function of X. Then, for any j ∈ X and z > 0,

[zj ]Φ(z) ≤ z−jΦ(z). (3.26)

For any j ∈ X and z ∈ (0, 1],∑
i≤j
i∈X

[zi]Φ(z) ≤ z−jΦ(z). (3.27)

For any j ∈ X and z ≥ 1,∑
i≥j
i∈X

[zi]Φ(z) ≤ z−jΦ(z). (3.28)

Proof. We write pi ≜ P(X = i) in this proof. For any j ∈ X and z > 0, we
have

z−jΦ(z) − [zj ]Φ(z) =
∑
i∈X

piz
i−j − pj =

∑
i ̸=j
i∈X

piz
i−j ≥ 0,

which establishes (3.26).
For any j ∈ X and z ∈ (0, 1), we have

∑
i≤j pi ≤

∑
i≤j piz

i−j . Therefore,
we have ∑

i≤j
i∈X

[zi]Φ(z) =
∑
i≤j
i∈X

pi ≤
∑
i≤j
i∈X

piz
i−j ≤

∑
i∈X

piz
i−j = z−jΦ(z),

which establishes (3.27).
For any z > 1 and j ∈ X , we have

∑
i≥j pi ≤

∑
i≥j piz

i−j . Therefore, we
have ∑

i≥j
i∈X

[zi]Φ(z) =
∑
i≥j
i∈X

pi ≤
∑
i≥j
i∈X

piz
i−j ≤

∑
i∈X

piz
i−j = z−jΦ(z),

which establishes (3.28).
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3.1.4 Upper bound on the error event of MAP (Lemma 3)

Now with techniques about generating functions from last section, we are
ready to prove Lemma 3.

Lemma 3. Let (G1, G2) be an attributed Erdős–Rényi pair G(n,p;m, q).
For any permutation π, let

δπ(G1, G2) ≜ w1(∆
u(G1, π(G2)) − ∆u(G1, G2))

+ w2(∆
a(G1, π(G2)) − ∆a(G1, G2)).

Then when π has n− ñ fixed points, we have

P (δπ(G1, G2) ≤ 0) ≤ (1 − 2ψu)
ñ(n−2)

4 (1 − 2ψa)
ñm
2 .

Proof. For any π ∈ Sn,ñ and any z1 ∈ (0, 1), we have

P (δπ(G1, G2) ≤ 0)

=
∑
d≤0

[zd]A(p, q, z)

≤ A(p, q, z1) (3.29)

≤ A1(p, z)
tu1A1(q, z)

ta1

A2(p, z)
tu−tu1

2 A2(q, z)
nm−ta1

2 (3.30)

≤ A2(p, z)
tu−tu1

2 A2(q, z)
nm−ta1

2 . (3.31)

In (3.29), we set z ∈ (0, 1), and this upper bound follows from Fact 3. (3.30)
follows from the decomposition on A(p, q, z) stated in Fact 1. Equation
(3.31) follows since A1(p, z) = A1(q, z) = 1 according to their expression in
(3.21) and (3.22). To obtain a tight bound, we then search for z ∈ (0, 1)
that achieves the minimum of (3.31). Following the definition of A2(p, z) in
(3.23) and using the inequality a/x+ bx ≥ 2

√
ab, we have

A2(p, z) = 1 + 2p00p11(z
2w1 − 1) + 2p10p01(z

−2w1 − 1)

≥ 1 − 2p00p11 − 2p10p01 + 4
√
p00p11p10p01

= 1 − 2(
√
p00p11 −

√
p10p01)

2 ≜ 1 − 2ψu. (3.32)

Here the equality holds if and only if z2w1 =
√

p10p01
p00p11

. Recall that w1 =

log
(
p11p00
p10p01

)
. Therefore, A1(p, z) achieves the minimum when z = e−1/4.

Similarly, we have

A2(q, z) = 1 + 2q00q11(z
2w2 − 1) + 2q10q01(z

−2w2 − 1)
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≥ 1 − 2q00q11 − 2q10q01 + 4
√
q00q11q10q01

= 1 − 2(
√
q00q11 −

√
q10q01)

2 ≜ 1 − 2ψa. (3.33)

Here the equality holds if and only if z2w2 =
√

q10q01
q00q11

. With w2 = log
(
q11q00
q10q01

)
,

we have that A2(q, z) achieves the minimum when z = e−1/4. Therefore,
z = e−1/4 minimizes (3.31) and we have

P (δπ(G1, G2) ≤ 0)

≤ (1 − 2ψu)
tu−tu1

2 (1 − 2ψa)
mn−ta1

2

≤ (1 − 2ψu)
ñ(2n−ñ−2)

4 (1 − 2ψa)
ñm
2 (3.34)

≤ (1 − 2ψu)
ñ(n−2)

4 (1 − 2ψa)
ñm
2 . (3.35)

In (3.34), we use the following relations between the number of fixed vertex
pairs tu1 , ta1 and number of fixed vertices ñ(

n− ñ

2

)
≤ tu1 ≤

(
n− ñ

2

)
+
ñ

2
, (3.36)

ta1 = (n− ñ)m.

In the given upper bound of tu1 ,
(
n−ñ
2

)
corresponds to the number of user-

user vertex pairs whose two vertices are both fixed under π, and ñ
2 is the

upper bound of user-user vertex pairs whose two vertices are swapped under
π. In (3.35), we use the fact that ñ ≤ n.

3.2 Achievability in Sparse Region (Theorem 2)

In this section, we prove Theorem 2, which characterizes the achievable re-
gion when the user-user connection is sparse in the sense that p11 = O( lognn ).
We use R to denote the number of user-user edges in the intersection graph
and it follows a binomial distribution Bin(tu, p11). In the sparse regime
where p11 = O( lognn ), the achievability proof here is different from what
we did in Chapter 3.1. The reason for applying a different proof technique
is that, in this sparse regime, the union bound we applied in Chapter 3.1
on P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0) becomes very loose. To elaborate on
this point, notice that the error of union bound comes from counting the
intersection events multiple times. Therefore, if the probability of such in-
tersection events becomes larger, then the union bound will be looser. In our
problem, our event space contains sets of possible realizations on (G1, G2)
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and an example of the aforementioned intersection events is {R = 0} which
lays in the intersection of {δπ(G1, G2) ≤ 0} for all π ∈ Sn. Moreover, other
events where R is small are also in the intersection of {δπ(G1, G2) ≤ 0} for
some π ∈ Sn and the number of such permutations (equivalently the times
of repenting when apply union bound) increases as R gets smaller. As a
result, if p11 becomes relatively small, then the probability that R is small
will be large and thus union bound will be loose.

To overcome the problem of the loose union bound in the sparse regime,
we apply a truncated union bound. We first expand the probability we want
to bound as follows

P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0)

=
∑
r≥0

P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0|R = r)P(R = r).

We then apply the union bound on the conditional probability on the error
event P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0|R = r) . As we discussed before, the
error of applying union bound directly should be a function on r. Therefore,
for some small r, the union bound on P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0|R = r)
is very loose while for the other r, the union bound is relatively tight. There-
fore, we truncate the union bound on the conditional probability by taking
the minimum with 1, which is an upper bound for any probability

P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0|R = r)

= min{1,
∑

π∈Sn\{πid}

P (δπ(G1, G2) ≤ 0|R = r)}.

Through such truncating, we avoid adopting the union bound when it is too
loose and obtain a tighter bound. For example, given that R = 0, we have
P (δπ(G1, G2) ≤ 0|R = 0) = 1 for all π ∈ Sn. Thus, by using the truncated
union bound, we obtain 1 as a the upper bound instead of (n!− 1). Overall,
the key idea of our proof is first derive P (δπ(G1, G2) ≤ 0|R = r) as a function
of r and then apply the truncated union bound according to how large this
conditional probability is. This idea is inspired by [5] and is extended to
the attributed Erdős–Rényi pair model. We restate the lemma to prove as
follows.

Theorem 2 (Achievability in sparse region). Consider the attributed Erdős–
Rényi pair G(n,p;m, q). If

p11 = O
(
logn
n

)
, (2.2)
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3.2. Achievability in Sparse Region (Theorem 2)

p10 + p01 = O
(

1
logn

)
, (2.3)

p10p01
p11p00

= O
(

1
(logn)3

)
, (2.4)

np11 +mψa − log n = ω(1), (2.5)

then the MAP estimator achieves exact alignment w.h.p.

Proof of Theorem 2. We discuss two regimes p11 = O( 1
n) and ω( 1

n) ≤ p11 ≤
Θ( lognn ) .

When p11 = O( 1
n), we have nψu ≤ np11 = O(1). Thus, the sufficient

condition (2.1) for exact alignment in Theorem 1

nψu

2 +mψa − log n = ω(1)

is satisfied when condition (2.5)

np11 +mψa − log n = ω(1)

is satisfied. By Theorem 1 , exact alignment is achievable w.h.p.
Now suppose ω( 1

n) ≤ p11 ≤ Θ( lognn ). Note that the number of edges in
the intersection graph of G1 and G2 has the following equivalent represen-
tation

R = µ11(G1, G2) =
∑
e∈Eu

1{G1(e) = 1, G2(e) = 1}.

Then, R ∼ Bin(tu, p11) and E[R] = tup11 =
(
n
2

)
p11 = ω(n). By the Cheby-

shev’s inequality, for any constant ϵ > 0,

P(|R− E[R]| ≥ ϵE[R]) ≤ Var(R)

ϵ2E[R]2
=

1 − p11
ϵ2

1

E[R]
= o

(
1

n

)
.

In the following, we upper bound the probability of error by discussing two
cases: when R ≤ (1 + ϵ)E[R] and when R > (1 + ϵ)E[R]. We have

P (∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0)

=

tu∑
r=0

P (∃π ∈ Sn\{πid}, δπ(G1, G2) ≤ 0|R = r)P(R = r)

≤
∑

r≤(1+ϵ)E[R]

P (∃π ∈ Sn\{πid}, δπ(G1, G2) ≤ 0|R = r)P(R = r) + P (|R− E[R]| > ϵE[R])

=
∑

r≤(1+ϵ)E[R]

P (∃π ∈ Sn\{πid}, δπ(G1, G2) ≤ 0|R = r)P(R = r) + o(1) (3.37)
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≤
∑

r≤(1+ϵ)E[R]

3n2z26P(R = r) + o(1) (3.38)

=
∑

r≤(1+ϵ)E[R]

3n2z26

(
tu

r

)
pr11(1 − p11)

tu−r + o(1)

= 3n2(1 − 2ψa)
m

tu∑
r=0

(
tu

r

)
pr11e

− 4r
n (1 − p11)

tu−r + o(1)

= 3n2(1 − 2ψa)
m
(
p11e

− 4
n + 1 − p11

)tu
+ o(1) (3.39)

≤ 3n2(1 − 2ψa)
m
(
1 − 4

np11
)tu

+ o(1). (3.40)

Here (3.37) follows from the Chebyshev’s inequality above. In (3.38), z6 =
exp{−2r

n + m
2 log (1 − 2ψa) +O(1)}. This step will be justified by Lemma 4,

which is the major technical step in establishing the error bound. To apply
Lemma 4, we need the conditions (2.2) (2.3) (2.4) and r = O(E[R]) =
O(n log n) to hold and we will explain the reason in the proof of Lemma 4.
Equation (3.39) follows from the binomial formula and (3.40) follows from
the inequality ex − 1 ≤ x. Taking the negative logarithm of the first term
in (3.40), we have

− log
(

3n2(1 − 2ψa)
m
(
1 − 4

np11
)tu)

= −2 log n−m log (1 − 2ψa) − tu log
(

1 − 4p11
n

)
+O(1)

≥ −2 log n+ 2mψa + tu
4p11
n

+O(1) (3.41)

= −2 log n+ 2mψa + 2np11 +O(1) (3.42)

= ω(1). (3.43)

Here, we have (3.41) follows from the inequality log (1 + x) ≤ x for x > −1.
We get equation (3.42) by plugging in tu =

(
n
2

)
. Equation (3.43) follows from

the assumption (2.5) in Theorem 2. Therefore, we have (3.40) converges to
0 and so does the error probability.

Lemma 4. Let (G1, G2) ∼ G(n,p;m, q) and R =
∑

e∈Eu 1{G1(e) = 1, G2(e) =
1}. If p satisfies constraints (2.2) (2.3) (2.4), and r = O(n log n), then

P(∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0 | R = r) ≤ 3n2z26 ,

where z6 = exp{−2r
n + m

2 log (1 − 2ψa) +O(1)}.
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Proof. We will establish the above upper bound in three steps. We denote
the set of vertex pairs that are moving under permutation πE as Em = {e ∈
E : πE(e) ̸= e}. Let

R̃ =
∑

e∈Em∩Eu

1{G1(e) = 1, G2(e) = 1}

represent the number of co-occurred user-user edges in Em of G1 ∧ G2. In
Step 1, we apply the method of generating functions to get an upper bound
on P(δπ(G1, G2) ≤ 0 | R̃ = r̃). The reason for conditioning on R̃ first is
that the corresponding generating function only involves cycles of length
l ≥ 2 and its upper bound is easier to derive compared with the probability
conditioned on R. In Step 2, we upper bound P(δπ(G1, G2) ≤ 0 | R = r)
using result from Step 1 and properties of the Hypergeometric distribution.
In Step 3, we upper bound P(∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0 | R = r) using
the truncated union bound.

Step 1. We prove that for any π ∈ Sn,ñ, r̃ = O( t̃
u logn
n ), and z3 =

(1 − 2ψa)
m
2 ,

P
(
δπ(G1, G2) ≤ 0 | R̃ = r̃

)
≤ zñ3 z

r̃
4z
ñ
5 (3.44)

for some z4 = O( 1
logn) and some z5 = O(1).

For the induced subgraph pair on Em×Em, define the generating function
as

Ã(x,y, z) =
∑

g∈{0,1}Em

∑
h∈{0,1}Em

zδπ(g,h)xµ(g,h)yν(g,h). (3.45)

Recall for g, h ∈ {0, 1}Em , the expression for the extended δπ(g, h), µ(g, h)
and ν(g, h) in (3.15), (3.16) and (3.17). We have

δπ(g, h) = w1

∑
e∈Em∩Eu

(
1{g(e) ̸= h(πE(e))} − 1{g(e) ̸= h(e)}

)
+ w2

∑
e∈Em∩Ea

(
1{g(e) ̸= h(πE(e))} − 1{g(e) ̸= h(e)}

)
.

For the 2 × 2 matrices µ(g, h) and ν(g, h), their entries µi,j and νi,j are

µij = µij(g, h) =
∑

e∈Em∩Eu

1{g(e) = i, h(e) = j},

νij = νij(g, h) =
∑

e∈Em∩Ea

1{g(e) = i, h(e) = j}.
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3.2. Achievability in Sparse Region (Theorem 2)

Moreover, according to the decomposition of generating function in Fact 1
and using the fact that Em only contains orbits of size larger than 1, we
obtain

Ã(x,y, z) =
∏
l≥2

Al(x, z)
tul
∏
l≥2

Al(y, z)
tal .

where tul is the number of user-user orbits of size l and tal is the number of
user-attribute orbits of size l.

Now, by setting

x = x11 ≜

(
p00 p01
p10 x11p11

)
and y = q, the generating function Ã(x11, q, z) contains only two formal
variables x11 and z. Recall the expression of Ã in (3.45). For each g, h ∈
{0, 1}Em , the term in the summation of Ã(x11, q, z) can be written as

zδπ(g,h)x
µ(g,h)
11 qν(g,h)

= zδπ(g,h)x
µ11(g,h)
11 pµ(g,h)qν(g,h)

= P((GEm
1 , GEm

2 ) = (g, h)) zδπ(g,h)x
µ11(g,h)
11 ,

where we use GEm
1 to denote the component of G1 that only concerns the

vertex pair set Em and thus the support of GEm
1 is {0, 1}Em . The event

{(GEm
1 , GEm

2 ) = (g, h)} is a collection of attributed graph pairs (g1, g2) each
of which have exactly the same edges in the vertex pair set Em as (g, h).

Notice that the fixed vertex pairs E \ Em do not have a influence on
δ(G1, G2). The event {R̃ = r̃, δπ(G1, G2) = d} is a collection of attributed
graph pairs (g1, g2) such that µ11(g

Em
1 , gEm2 ) = r̃ and δπ(gEm1 , gEm2 ) = d. Then

by summing over all possible g, h ∈ {0, 1}Em , we have

P(δπ(G1, G2) = d, R̃ = r̃) = [zdxr̃11]Ã(x11,y, z).

Thus, we can write

P
(
δπ(G1, G2) ≤ 0, R̃ = r̃

)
=
∑
d≤0

[zdxr̃11]Ã(x11, q, z)

=
∑
d≤0

[zdxr̃11]
∏
l≥2

Al(x11, z)
tul Al(q, z)

tal
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3.2. Achievability in Sparse Region (Theorem 2)

≤ (x11)
−r̃
∑
d≤0

[zd]
∏
l≥2

Al(x11, z)
tul Al(q, z)

tal (3.46)

≤ (x11)
−r̃
∏
l≥2

Al(x11, z)
tul Al(q, z)

tal (3.47)

≤ (x11)
−r̃A2(x11, z)

t̃u

2 A2(q, z)
mñ
2 . (3.48)

In (3.46), we set x11 > 0 and the inequality follows from (3.26) in Fact 3.
In (3.47), we set z ∈ (0, 1) and this inequality follows from (3.27) Fact 3.
Inequality in (3.48) follows from Fact 2, where

t̃u =
∑
l≥2

tul l = |Em ∩ Eu|

is the number of moving user-user pairs and

t̃a =
∑
l≥2

tal l = |Em ∩ Ea| = ñm

is the number of moving user-attribute pairs.
Next, let us lower bound P(R̃ = r̃). Note that R̃ ∼ Bin(t̃u, p11). We

have

P(R̃ = r̃) =

(
t̃u

r̃

)
pr̃11(1 − p11)

t̃u−r̃

≥
(

t̃up11
r̃(1 − p11)

)r̃
(1 − p11)

t̃u , (3.49)

where equation (3.49) follows since
(
n
k

)
≥ (n/k)k for any nonnegative inte-

gers k ≤ n.
Now we combine the bounds the term in (3.48) and (3.49) to upper

bound P
(
δπ(G1, G2) ≤ 0 | R̃ = r̃

)
. Define p′ij ≜

pij
1−p11 for i, j ∈ {0, 1}. We

have

P
(
δπ(G1, G2) ≤ 0 | R̃ = r̃

)
=

P(δπ(G1, G2) ≤ 0, R̃ = r̃)

P(R̃ = r̃)

≤ A2(q, z)
mñ
2

(
r̃

x11p′11t̃
u

)r̃ (A2(x11, z)

(1 − p11)2

)t̃u/2
. (3.50)

For the first term, similar to what we did in (3.33), we set z = e−1/4, which
satisfies the condition z ∈ (0, 1) in Fact 3. Recall the expression of A2(y, z)
in (3.24), we have

A2(q, z)
mñ
2
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3.2. Achievability in Sparse Region (Theorem 2)

=
(
1 + 2q00q11(z

2w2 − 1) + 2q10q01(z
−2w2 + 1)

)mñ
2 (3.51)

= (1 − 2q00q11 − 2q10q01 + 4
√
q00q11q10q01)

mñ
2 (3.52)

=
(
1 − 2(

√
q11q00 −

√
q10q01)

2
)mñ

2

= (1 − 2ψa)
mñ
2

≜ zñ3 . (3.53)

where (3.51) follows since q00 + q01 + q10 + q11 = 1 and (3.52) follows by

plugging in z = e−1/4 and w2 = log
(
q11q00
q10q01

)
. For the second term in (3.50),

we set

x11 =
r̃ log n+ p11t̃

u

p′11t̃
u

, (3.54)

which is positive. Then, we have(
r̃

x11p′11t̃
u

)r̃
=

(
r̃

r̃ log n+ p11t̃u

)r̃
≤
(

1

log n

)r̃
. (3.55)

For the third term in (3.50), using equation (3.23) with z = e−1/4, we have

A2(x11, z)

(1 − p11)2

=
(1 − p11 + x11p11)

2

(1 − p11)2
+

2x11p11p00(
√

p10p01
p11p00

− 1)

(1 − p11)2
+

2p10p01(
√

p00p11
p10p01

− 1)

(1 − p11)2

= (1 + p′11x11)
2 − 2x11p

′
11p

′
00 − 2p′10p

′
01 + 2(x11 + 1)

√
p′11p

′
00p

′
10p

′
01

≤ 1 + (p′11x11)
2 + 2p′11x11(p

′
10 + p′01) + 2(x11 + 1)

√
p′11p

′
00p

′
10p

′
01,

where the last inequality follows since 1−p′00 = p′10 +p′01 and −2p′10p
′
01 ≤ 0.

Taking logarithm of
(
A2(x11,z)
(1−p11)2

)t̃u/2
, we get

t̃u

2
log

(
A2(x11, z)

(1 − p11)2

)
(3.56)

≤ 1

2
t̃u(p′11x11)

2 + t̃up′11x11(p
′
10 + p′01) + t̃u(x11 + 1)

√
p′11p

′
00p

′
10p

′
01, (3.57)

where (3.57) follows from the inequality log(1 + x) ≤ x. Let us now bound
the three terms in (3.57).
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• For the first term, we have

t̃u(p′11x11)
2

= t̃u
(
r̃ log n

t̃u
+ p11

)2

=
r̃2(log n)2

t̃u
+ 2r̃(log n)p11 + t̃up211

= O

(
r̃(log n)3

n

)
+ 2r̃(log n)p11 + t̃up211 (3.58)

= O

(
r̃(log n)3

n
+
r̃(log n)2

n
+
ñ(log n)2

n

)
(3.59)

= o(r̃ + ñ),

where (3.58) follows from the assumption r̃ = O( t̃
u logn
n ) in (3.44)

and (3.59) follows since p11 = O( lognn ) and t̃u ≤ ñn.

• For the second term in (3.57), we have

t̃up′11x11(p
′
10 + p′01)

= (r̃ log n+ t̃up11)(p
′
10 + p′01)

≤ r̃(p10 + p01) log n+ ñnp11(p10 + p01)

1 − p11
(3.60)

= O(r̃ + ñ), (3.61)

where (3.60) follows from t̃u ≤ ñn and (3.61) follows since p01 + p10 =
O( 1

logn), p11 = O( lognn ), and 1 − p11 = Θ(1).

• For the third term in (3.57), we have

t̃u(x11 + 1)
√
p′11p

′
00p

′
10p

′
01

= t̃u
(
r̃ log n+ p11t̃

u

p′11t̃
u

+ 1

)√
p′11p

′
00p

′
10p

′
01

= (r̃ log n+ p11t̃
u + p′11t̃

u)p′00

√
p10p01
p11p00

≤ (r̃ log n+ p11nñ+ p′11nñ)p′00

√
p10p01
p11p00

(3.62)

= o(r̃ + ñ). (3.63)
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Here (3.62) follows since t̃u ≤ ñn. (3.63) follows since p′11 = O(p11) =

O
(
logn
n

)
, p′00 = O(1), and p10p01

p11p00
= O

(
1

(logn)3

)
.

In summary, the third term of (3.50) is upper bounded as(
A2(x11, z)

(1 − p11)2

)t̃u/2
≤ exp{O(r̃ + ñ)}. (3.64)

Finally, combining (3.53) (3.55) (3.64), we have

P
(
δπ(G1, G2) ≤ 0 | R̃ = r̃

)
≤ (1 − 2ψa)

mñ
2

(
1

log n

)r̃
exp{O(r̃ + ñ)}

≤ (1 − 2ψa)
mñ
2

(
eO(1)

log n

)r̃ (
eO(1)

)ñ
= zñ3 z

r̃
4z
ñ
5

for some z4 = O( 1
logn) and z5 = O(1).

Step 2. We will prove that for any π ∈ Sn,ñ and r = O(n log n),

P(δπ(G1, G2) ≤ 0 | R = r) ≤ zñ6 (3.65)

for some z6 = exp{−2r
n + m

2 log(1 − 2ψa) +O(1)}.

In this step, we will compute P(δπ(G1, G2) ≤ 0|R = r) through P(δπ(G1, G2) ≤
0|R̃ = r̃), which involves using properties of a Hypergeometric distribution.

Recall a Hypergeometric distribution, denoted as Hyp(n,N,K), is the
probability distribution of the number of marked elements out of the n ele-
ments we draw without replacement from a set of size N with K marked ele-
ments. Let ΦHyp(z) be the probability generating function for Hyp(n,N,K)
and ΦBin(z) be the probability generating function for a binomial distri-
bution Bin(n, KN ). A few useful properties of the two distributions are as
follows.

• The mean of Hyp(n,N,K) is nK/N .

• For all n,N,K ∈ N and z > 0, we have ΦHyp(z) ≤ ΦBin(z) [2].

• ΦBin(z) =
(
1 + K

N (z − 1)
)n

.
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In our problem, we are interested in the random variable R̃|R = r. We
treat the set of moving user-user vertex pairs Eu ∩ Em as a group of marked
elements in Eu. From Eu, we consider drawing r vertex pairs and creating
co-occurred edges for each chosen vertex pair. Along this line, the random
variable R̃|R = r, which is the number of co-occurred edges in Em ∩ Eu,
represents the number of marked elements out of the r chosen elements
and it follows a Hypergeometric distribution Hyp(r, tu, t̃u). From this point
and on, we always consider generating functions ΦHyp(z) and ΦBin(z) with
parameters n = r, N = tu, K = t̃u. Moreover, from [5, Lemma IV.5], we
have the following upper bound on ΦHyp(z) for any z ∈ (0, 1)

ΦHyp(z) ≤ exp
{
rñ
n (−2 + e

n−1 + 2ez)
}
. (3.66)

Now, we are ready for proving (3.65). We first write

P(δπ(G1, G2) ≤ 0 | R = r)

= P(δπ(G1, G2) ≤ 0, R̃ ≤ r̃∗ | R = r)

+ P(δπ(G1, G2) ≤ 0, R̃ > r̃∗ | R = r). (3.67)

Here we set r̃∗ = CE[R̃ | R = r] = C rt̃u

tu , where C > 0 is some positive
constant to be specified later. Note that tu =

(
n
2

)
and r = O(n log n) from

the assumption, then we have r̃∗ = O( t̃
u logn
n ).

• For the first term in (3.67), we have

P(δπ(G1, G2) ≤ 0, R̃ ≤ r̃∗ | R = r)

=
∑
r̃≤r̃∗

P(R̃ = r̃ | R = r) P(δπ(G1, G2) ≤ 0 | R̃ = r̃) (3.68)

≤
∑
r̃≤r̃∗

P(R̃ = r̃ | R = r)zñ3 z
r̃
4z
ñ
5 (3.69)

≤ zñ3 z
ñ
5

n∑
r̃=0

P(R̃ = r̃ | R = r)zr̃4

= zñ3 z
ñ
5 ΦHyp(z4) (3.70)

≤ zñ3 z
ñ
5 exp

{
ñr
n (−2 + e

n−1 + 2ez4)
}

(3.71)

= zñ3 (eO(1))ñ exp
{
−2ñr

n + eñr
n(n−1) +O( 1

logn) ñrn

}
(3.72)

≤ zñ3 exp
{
ñ
(
−2r

n +O(1)
)}

(3.73)
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In (3.68), we use the conditional independence of R and δπ(G1, G2)
given R̃, which can be proved as follows

P(δπ(G1, G2) ≤ 0|R̃ = r̃, R = r)

=
P(δπ(G1, G2) ≤ 0, R̃ = r̃, R = r)

P(R̃ = r̃, R = r)

=
P(δπ(G1, G2) ≤ 0, R̃ = r̃, R− R̃ = r − r̃)

P(R̃ = r̃, R− R̃ = r − r̃)

=
P(δπ(G1, G2) ≤ 0, R̃ = r̃)P(R− R̃ = r − r̃)

P(R̃ = r̃)P(R− R̃ = r − r̃)
(3.74)

= P((δπ(G1, G2) ≤ 0|R̃ = r̃),

where (3.74) follows from the fact that δπ(G1, G2) and R̃ are deter-
mined by Em while R − R̃ is determined by those fixed vertex pairs.

In (3.69), we have r̃ = O( t̃
u logn
n ) and this inequality follows from

(3.44) from Step 1. Equation (3.70) follows from the definition of the
probability generating function for Hyp(r, tu, t̃u). (3.71) follows form
the conclusion about probability generating function of the hyperge-
ometric distribution in (3.66) with z4 ∈ (0, 1). (3.72) is true since

z4 = O
(

1
logn

)
and z5 = O(1). (3.73) is true since r = O (nlog n).

• For the second term of (3.67), we have

P(δπ(G1, G2) ≤ 0, R̃ > r̃∗ | R = r)

=
∑
r̃>r̃∗

P(δπ(G1, G2) ≤ 0, R̃ = r̃ | R = r)

=
∑
r̃>r̃∗

P(δπ(G1, G2) ≤ 0 | R̃ = r̃)P(R̃ = r̃ | R = r) (3.75)

≤ max
0≤r̃≤n

{P(δπ(G1, G2) ≤ 0|R̃ = r̃)}P(R̃ > r̃∗|R = r).

Here (3.75) follows from the conditional independence of δπ(G1, G2)
and R given R̃. To find this maximum probability, we consider the
extreme case. Recall that δπ = w1(∆

u(G1, π(G2)) − ∆u(G1, G2)) +
w2(∆

a(G1, π(G2)) − ∆a(G1, G2)). We have that w2(∆
a(G1, π(G2)) −

∆a(G1, G2)) is independent of R̃. From the upper bound on generating
function in (3.48), we consider πE consisting of only 2-cycles. Since
∆u(G1, π(G2)) − ∆u(G1, G2) > 0 only if there exist user-user vertex
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pairs such that (G1(e), G2(e)) = (1, 1) and (G1(π
E(e))G2(π

E(e))) =
(0, 0), we have ∆u(G1, π(G2)) − ∆u(G1, G2) ≤ 0 with probability 1
given R̃ = 0. Therefore, given R̃ = 0 the probability that δπ ≤ 0 is
maximized. We have

max
0≤r̃≤n

{P(δπ(G1, G2) ≤ 0 | R̃ = r̃)}

≤ P(δπ(G1, G2) ≤ 0 | R̃ = 0)

≤ zñ3 z
ñ
5 , (3.76)

where (3.76) follows from (3.44) in Step 1 with r̃ = 0. Now we get

P(δπ(G1, G2) ≤ 0, R̃ > r̃∗ | R = r)

≤ zñ3 z
ñ
5P(R̃ > r̃∗ | R = r)

= zñ3 z
ñ
5

∑
i>r̃∗

[zi]ΦHyp(z) (3.77)

≤ zñ3 z
ñ
5 z

−r̃∗ΦHyp(z) (3.78)

≤ zñ3 z
ñ
5 z

−r̃∗ΦBin(z) (3.79)

= zñ3 z
ñ
5 z

−r̃∗
(

1 + t̃u

tu (z − 1)
)r

(3.80)

≤ zñ3 z
ñ
5 z

−r̃∗ exp
{
rt̃u

tu (z − 1)
}

(3.81)

= zñ3 z
ñ
5 exp

{
−r̃∗ + rt̃u

tu (e− 1)
}

(3.82)

= zñ3 z
ñ
5 exp

{
rt̃u

tu (−C − 1 + e)
}

(3.83)

≤ zñ3 z
ñ
5 exp

{
rñ(n−2)
n(n−1) (−C − 1 + e)

}
(3.84)

≤ zñ3 exp
{
ñ
(
r
n(−C − 1 + e) +O(1)

)}
(3.85)

= o
(
zñ3 exp

{
ñ
(
−2r

n +O(1)
)})

(3.86)

In (3.77), ΦHyp(z) is a probability generating function for Hyp(r, tu, t̃u).
In (3.78), we set z > 1 and the inequality follows from (3.28) in Fact 3.

In (3.79), ΦBin(z) is a probability generating function for Bin(r, t̃
u

tu ) and
this inequality follows from the property of a Hypergeometric distri-
bution. (3.80) follows from the definition of ΦBin(z). (3.81) follows
form the inequality 1 + x ≤ ex. In (3.82), we set z = e. In (3.83), we

plug in r̃∗ = C rt̃u

tu where C is larger than (e− 1). In (3.84), we use the

relation t̃u ≥ ñ(n−2)
2 from (3.35) and tu =

(
n
2

)
. In (3.85), we plug in

z5 = O(1). (3.86) is true because we can always find C > e + 1 such
that (3.85) is exponentially smaller than (3.73).
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We conclude that the second term of (3.67) is negligible compared with
the upper bound of the first term given in (3.73). Combining the two
terms, (3.67) can be bounded as

P(δπ(G1, G2) ≤ 0 | R = r)

≤ exp
{
ñ
(
−2r

n + m
2 log(1 − 2ψa) +O(1)

)}
= zñ6 .

Step 3. We now establish the desired error bound

P(∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0 | R = r) ≤ 3n2z26 ,

where z6 = exp{−2r
n + m

2 log(1 − 2ψa) +O(1)}.

When nz6 > 2/3, we have

P(∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0 | R = r) ≤ 1 ≤ 3n2z26 .

Now assume that nz6 ≤ 2/3. We can bound

P(∃π ∈ Sn \ {πid}, δπ(G1, G2) ≤ 0 | R = r)

≤
n∑
ñ=2

∑
π∈Sn,ñ

P(δπ(G1, G2) ≤ 0 | R = r) (3.87)

≤
n∑
ñ=2

|Sn,ñ| max
π∈Sn,ñ

{P(δπ(G1, G2) ≤ 0 | R = r)}

≤
n∑
ñ=2

|Sn,ñ|zñ6 (3.88)

≤
n∑
ñ=2

nñzñ6 (3.89)

≤ (nz6)
2

1 − nz6
≤ 3n2z26 , (3.90)

where (3.87) follows from the union bound, (3.88) follows from inequality
(3.65) proved in Step 2, (3.89) follows since |Sn,ñ| ≤ nñ, and (3.90) holds
since nz6 ≤ 2/3.

In summary, 3n2z26 is always an upper bound on the conditional proba-
bility. This completes the proof of Lemma 4.
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Chapter 4

Proof of the Converse

In this chapter, we give a detailed proof for Theorem 3. Let (G1, G2) be
an attributed graph pair generated from G(n,p;m, q). In this proof, we
focus on the intersection graph of G1 and G2, which is denoted as G1 ∧G2.
The intersection graph has vertex set V = Vu ∪ Va and its edge set is the
intersection of the edge sets of G1 and G2. We say a permutation π on the
vertex set V is an automorphism of G1 ∧ G2 if π is edge-preserving, i.e., a
vertex pair (i, j) is in the edge set of G1 ∧ G2 if and only if (π(i), π(j)) is
in the edge set of G1 ∧G2. Note that the identity permutation is always an
automorphism. We use Aut(G1 ∧ G2) to denote the set of automorphisms
of G1 ∧G2. By Lemma 5 below, we can further argue that exact alignment
cannot be achieved w.h.p. if Aut(G1∧G2) contains permutations other than
the identity permutation. Along this line, we establish the condition for not
achieving exact alignment w.h.p. by analyzing automorphisms of G1 ∧G2.

Lemma 5 ([4]). Let (G1, G2) be an attributed Erdős–Rényi pair G(n,p;m, q).
Given |Aut(G1∧G2)|, the probability that MAP estimator succeeds is at most

1
|Aut(G1∧G2)| .

In the proof of Theorem 3, we focus on the automorphisms given by
swapping two user vertices. To this end, we first define the following equiv-
alence relation between a pair of user vertices. We say two user vertices i
and j (i ̸= j) are indistinguishable in G1 ∧ G2, denoted as i ≡ j, if (G1 ∧
G2)((i, v)) = (G1 ∧G2)((j, v)) for all v ∈ V. It is not hard to see that swap-
ping two indistinguishable vertices is an automorphism of G1∧G2, and thus
|Aut(G1∧G2)\{identity permutation}| ≥ |{indistinguishable vertex pairs}|.
Therefore, in the proof below, we show that the number of such indistin-
guishable vertex pairs is positive with a large probability, which further
implies that |Aut(G1 ∧ G2)| ≥ 2 with a large probability and eventually
proves Theorem 3.

Theorem 3 (Converse). Consider the attributed Erdős–Rényi pair G(n,p,m, q).
If

np11 +mq11 − log n→ −∞, (2.6)
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then no algorithm guarantees exact alignment w.h.p.

Proof of Theorem 3. Let G1 and G2 be an attributed Erdős–Rényi pair
G(n,p;m, q) and let G = G1 ∧ G2. Let X denote the number of indis-
tinguishable user vertex pairs in G, i.e.,

X =
∑

i<j : i,j∈Vu

1{i ≡ j}.

We will show that P(X = 0) → 0 as n → ∞ if the condition (2.6) in
Theorem 3 is satisfied.

We start by upper-bounding P(X = 0) using Chebyshev’s inequality

P(X = 0) ≤ Var(X)

E[X]2
=

E[X2] − E[X]2

E[X]2
. (4.1)

For the first moment term E[X], we have

E[X] =
∑
i<j

P(i ≡ j) =

(
n

2

)
P(i ≡ j). (4.2)

For the second moment term E[X2], we expand the sum as

E[X2] = E

[∑
i<j

1{i ≡ j} ·
∑
k<l

1{k ≡ l}

]

= E

[∑
i<j

1{i ≡ j} +
∑

i,j,k,l : i<j,k<l
i,j,k,l are distinct

1{i ≡ j} · 1{k ≡ l}

+
∑

i,j,k,l : i<j,k<l
{i, j} and {k, l} share one element

1{i ≡ j ≡ k ≡ l}

]

=

(
n

2

)
P(i ≡ j) +

(
n

4

)(
4

2

)
P(i ≡ j and k ≡ l) + 6

(
n

3

)
P(i ≡ j ≡ k),

(4.3)

where i, j, k, l are distinct in (4.3). With (4.2) and (4.3), the upper bound
given by Chebyshev’s inequality in (4.1) can be written as

Var(X)

E[X]2
=

2

n(n− 1)P(i ≡ j)
+

4(n− 2)

n(n− 1)

P(i ≡ j ≡ k)

P(i ≡ j)2
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+
(n− 2)(n− 3)

n(n− 1)

P(i ≡ j and k ≡ l)

P(i ≡ j)2
− 1. (4.4)

To compute P(i ≡ j), we look into the event {i ≡ j} which is the intersection
of A1 and A2, where A1 = {∀v ∈ Vu \ {i, j}, G((i, v)) = G((j, v))}, and
A2 = {∀u ∈ Va, G((i, u)) = G((j, u))}. Recall that in the intersection graph
G = G1 ∧ G2, the edge probability is p11 for user-user pairs and q11 for
user-attribute pairs. Therefore,

P(A1) =
n−2∑
i=0

(
n− 2

i

)
p2i11(1 − p11)

2(n−2−i)

=
(
p211 + (1 − p11)

2
)n−2

,

P(A2) =
m∑
i=0

(
m

i

)
p2i11(1 − p11)

2(m−i)

=
(
q211 + (1 − q11)

2
)m

.

Since A1 and A2 are independent, we have

P(i ≡ j) (4.5)

= P(A1)P(A2)

=
(
p211 + (1 − p11)

2
)n−2 (

q211 + (1 − q11)
2
)m

=
(
1 − 2p11 + 2p211

)n−2 (
1 − 2q11 + 2q211

)m
. (4.6)

Similarly, to compute P(i ≡ j ≡ k), we look into the event {i ≡ j ≡ k}
which is the intersection of events B0, B1 and B2, where B0 = {G((i, j)) =
G((j, k)) = G((i, k))}, B1 = {∀v ∈ Vu \ {i, j, k}, G((i, v)) = G((j, v)) =
G((k, v))}, and B2 = {∀u ∈ Va, G((i, u)) = G((j, u)) = G((k, u))}. Then,
the probabilities of those three events are

P(B0) = p311 + (1 − p11)
3,

P(B1) =
(
p311 + (1 − p11)

3
)n−3

,

P(B2) =
(
q311 + (1 − q11)

3
)m

.

Since the events B0, B1 and B2 are independent, we have

P(i ≡ j ≡ k)

= P(B0)P(B1)P(B2)

=
(
p311 + (1 − p11)

3
)n−2 (

q311 + (1 − q11)
3
)m
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= (1 − 3p11 + 3p211)
n−2(1 − 3q11 + 3q211)

m.

To compute P(i ≡ j and k ≡ l), we look into the event {i ≡ j and k ≡ l}
which is the intersection of C0, C1, C

′
1, C2 and C ′

2, where C0 = {G(i, k) =
G(j, k) = G(i, l) = G(j, l)}, C1 = {∀v ∈ Vu \ {i, j, k, l}, G(i, v) = G(j, v)},
C ′
1 = {∀v ∈ Vu \ {i, j, k, l}, G(k, v) = G(l, v)}, C2 = {∀u ∈ Va, G(i, u) =

G(j, u)} and C ′
2 = {∀u ∈ Va, G(k, u) = G(l, u)}. The probabilities of those

events are

P(C0) = p611 + p411(1 − p11)
2 + p211(1 − p11)

4 + (1 − p11)
6,

P(C1) = P(C ′
1) = (p211 + (1 − p11)

2)n−4,

P(C2) = P(C ′
2) = (q211 + (1 − q11)

2)m.

Since C0, C1, C
′
1, C2 and C ′

2 are independent, we have

P(i ≡ j and k ≡ l)

= P(C0)P(C1)P(C ′
1)P(C2)P(C ′

2)

= P(C0)(p
2
11 + (1 − p11)

2)2n−8(q211 + (1 − q11)
2)2m.

Now we are ready to analyze the terms in (4.4). For the last two terms,

note that (n−2)(n−3)
n(n−1) → 1 and P(i≡j and k≡l)

P(i≡j)2 → 1 because p11 <
logn
n from

the condition (2.6). Therefore, we have (n−2)(n−3)
n(n−1)

P(i≡j and k≡l)
P(i≡j)2 − 1 → 0 as

n → ∞. Then we just need to bound the first two terms in (4.4). For the
first term 2

n(n−1)P(i≡j) , plugging in the expression in (4.6) gives

− log
2

n(n− 1)P(i ≡ j)

= 2 log n+ (n− 2) log (1 − 2p11 + 2p211) +m log (1 − 2q11 + 2q211) +O(1)

≥ 2 log n− 2np11 − 2mq11 +O(1) (4.7)

= ω(1). (4.8)

Here (4.7) follows from the inequality log (1 − 2x+ 2x2) ≥ −2x for any x ∈
[0, 1], which can be verified by showing that function f1(x) = log (1 − 2x+ 2x2)+
2x is monotone increasing in [0,1] and thus f1(x) ≥ f1(0) = 0. Equation
(4.8) follows from the condition (2.6) in Theorem 3. Therefore, the first
term in (4.4) 2

n(n−1)P(i≡j) → 0 as n→ ∞.

Next, for the second term 4(n−2)
n(n−1)

P(i≡j≡k)
P(i≡j)2 in (4.4), we have

− log

(
4(n− 2)

n(n− 1)

P(i ≡ j ≡ k)

P(i ≡ j)2

)
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= log n− (n− 2) log

(
1 − 3p11 + 3p211

(1 − 2p11 + 2p211)
2

)
−m log

(
1 − 3q11 + 3q211

(1 − 2q11 + 2q211)
2

)
+O(1)

≥ log n− np11 −mq11 +O(1) (4.9)

=ω(1). (4.10)

Here (4.9) follows from the inequality log
(

1−3x+3x2

(1−2x+2x2)2

)
≤ x for any x ∈

[0, 1], which can be verified by showing that the function f2(x) = log
(

1−3x+3x2

(1−2x+2x2)2

)
−

x is monotone decreasing in [0, 1] and thus f2(x) ≤ f2(0) = 0. Equation
(4.10) follows from the condition (2.6) in Theorem 3. Hence, the second
term in (4.4) also converges to 0 as n → ∞, which completes the proof for
P(X = 0) → 0 as n→ ∞.

Now we derive an upper bound on the probability of exact alignment
under the MAP estimator, which is also an upper bound for any estimator
since MAP minimizes the probability of error. Note that by Lemma 5,
P(πMAP = Π∗|X = x) ≤ 1

x+1 , which is at most 1/2 when x ≥ 1. Therefore,

P(πMAP = Π∗) = P(πMAP = Π∗|X = 0)P(X = 0)

+ P(πMAP = Π∗|X ≥ 1)P(X ≥ 1)

≤ P(X = 0) +
1

2
P(X ≥ 1)

=
1

2
+

1

2
P(X = 0),

which goes to 1/2 as n → ∞ and thus is bounded away from 1. This
completes the proof that no algorithm can guarantee exact alignment w.h.p.
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Chapter 5

Concluding Remarks

In this thesis, we focus on studying the attributed graph alignment prob-
lem. We contribute mainly from three perspectives: propose the attributed
Erdős–Rényi pair model, characterize the information-theoretic limits on
exact alignment, and specialize our results for understanding three other
well-studied graph alignment models. The current limitation is that there
is still a gap between our achievability results and the converse result. In
this chapter, we highlight several extensions and potential future directions
for our work.

A potential improvement on the converse: In our proof of the con-
verse result (see Chapter 4), we examine the existence of indistinguishable
vertex pairs, which leads to a failure of the MAP estimator. In a very recent
study [27], the authors consider a different error event, which includes our
error event about the indistinguishable vertex pair as a special case. From
their more general error event, the authors prove the converse of Erdős–
Rényi graph alignment problem. Inspired by this, we tried an easy extension
of their technique and generalized our error event about the indistinguish-
able vertex pair under the attributed Erdős–Rényi setting. As a result, we
are able to demonstrate that when np11p00 + mq11q00 ≤ log n − ω(1), the
MAP estimator cannot achieve exact alignment with high probability. We
defer the detailed proof to Appendix E. This new result extend our converse
region in Theorem 3, and also imply the possibility of further proving an
enlarged converse region by implementing the entire idea of [27].

The interplay between graph alignment and graph clustering:
Alignment and clustering of graphs are both important topics in graph
structure data science research. While graph alignment aims at recovering
the vertex correspondence of multiple graphs, graph clustering is concerned
with recovering the community structure of a single graph. There has re-
cently been a growing interest in combining the two methods. There are two
distinct ways to combine them: using graph alignment to assist graph clus-
tering, or using the graph clustering method to assist graph alignment. For
example, in [12], the authors investigate the problem of community recovery
from two graphs generated from the correlated Stochastic Block Model [16].
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They present an approach that first partially aligns two graphs, and then
performs community recovery for both within and outside the aligned ver-
tex set. The feasible regions of their algorithm include an interesting case
where exact community recovery is not achievable using a single graph but
achievable using a pair of correlated graphs.

Our study on the attributed graph alignment sheds light on the second
idea of combining—using the graph clustering methods to assist graph align-
ment. Let us consider such a setting: a graph pair is generated from the
correlated Stochastic Block Model, where the community labels of the two
graphs ares recovered already using graph cluster method as a pre-processing
step. The community labels provide a natural partition in the graphs, which,
combining with our study of attributed graph model, eventually allows us
to perform graph alignment in a step-by-step manner. For example, we
may consider the following algorithm: out of the several communities, we
first perform graph alignment only on the most strongly correlated commu-
nity. Then we treat vertices in the the aligned community as attributes and
perform attributed alignment on the second strongly correlated community.
This procedure can be repeated iteratively for multiple community graphs.
The intuition behind this is that knowing the community structure enables
us to determine an “easy to hard” order for aligning those subgraphs. More
specifically, strongly correlated subgraphs are easier to align, so we align
them first. The strategy of treating the aligned vertices as attributes allows
us to incorporate side information on less correlated subgraphs, and thus
make the later alignment steps easier.

Correlation between attributes and graph structure: Our at-
tributed Erdős–Rényi model is initially motivated by the existence of side
information associated with individual vertices in real-world networks, such
as user profiles from social networks. In our model formulation, we assumed
that the user-attribute edges are independent of the user-user edges, which
is not necessarily the case in practice. In the social network example, users
studying at the same university are more likely to be friends than users
attending different universities. This observation suggests an improvement
in the random graph models – the correlation between attribute informa-
tion and the graph structure should also be captured. Under such new
model formulations, it would be practically meaningful to investigate both
the information-theoretic limits and design efficient algorithms for graph
alignment. Although there is no existing work on graph alignment under
these models, there are several recently proposed attributed graph models
that capture the correlation between attributes and graph structure. For
example, in [14], the authors proposed a random graph model, named the
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multiplicative attribute graph model, where the probability of a user-user
edge depends on the product of individual attribute-attribute similarity.
Models like this could bring more practical relevance in future graph align-
ment research.
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Appendix A

MAP Estimator

Lemma 2 (MAP estimator). Let (G1, G
′
2) be an observable pair generated

from the attributed Erdős–Rényi pair G(n,p;m, q). The MAP estimator of
the permutation Π∗ based on (G1, G

′
2) simplifies to

π̂MAP(G1, G
′
2)

= argmin
π∈Sn

{w1∆
u(G1, π

−1(G′
2)) + w2∆

a(G1, π
−1(G′

2))},

where w1 = log
(
p11p00
p10p01

)
, w2 = log

(
q11q00
q10q01

)
, and

∆u(G1, π
−1(G′

2)) =
∑

(i,j)∈Eu

1{G1((i, j)) ̸= G′
2((π(i), π(j)))},

∆a(G1, π
−1(G′

2)) =
∑

(i,v)∈Ea

1{G1((i, v)) ̸= G′
2((π(i), v))}.

Proof. Let (g1, g
′
2) be a realization of an observable pair (G1, G

′
2) from

G(n,p;m, q). Then the posterior of the permutation Π∗ can be written
as:

P(Π∗ = π|G1 = g1, G
′
2 = g′2)

=
P(G1 = g1, G

′
2 = g′2|Π∗ = π)P(Π∗ = π)

P (G1 = g1, G′
2 = g′2)

∝ P(G1 = g1, G
′
2 = g′2|Π∗ = π) (A.1)

= P(G1 = g1, G2 = π−1(g′2)) (A.2)

=
∏

(i,j)∈{0,1}2
p
µij(g1,π

−1(g′2))
ij q

νij(g1,π
−1(g′2))

ij . (A.3)

Here equation (A.1) follows from the fact that Π∗ is uniformly drawn from
Sn and P(G1 = g1, G

′
2 = g′2) does not depend on π. Equation (A.2) is due

to the independence between Π∗ and (G1, G2).
To further simplify equation (A.3), note that the total number of edges

in a graph is invariant under any permutation. We define βu(G1) as the
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total number of user-user edges in graph G1 and βu(π−1(G′
2)) for graph

π−1(G′
2). Similarly, we define βa(G1) and βa(π−1(G′

2)) as the total number
of user-attribute edges for graph G1 and π−1(G′

2), respectively. Recall our
definitions on Hamming distance ∆u(G1, π

−1(G′
2)) and µ(G1, π

−1(G′
2)), and

notice that ∆u(G1, π
−1(G′

2)) = µ10 + µ01. Moreover, we have βu(G1) =
µ11 + µ10 and βu(G2) = βu(π−1(G′

2)) = µ11 + µ01. Then, for the user-user
set Eu, we have

µ11 =
βu(G1) + βu(π−1(G′

2))

2
− ∆u(G1, π

−1(G′
2))

2

µ10 =
βu(G1) − βu(π−1(G′

2))

2
+

∆u(G1, π
−1(G′

2))

2

µ01 =
βu(π−1(G′

2)) − βu(G1)

2
+

∆u(G1, π
−1(G′

2))

2

µ00 =

(
n

2

)
−β

u(G1) + βu(π−1(G′
2))

2
−∆u(G1, π

−1(G′
2))

2
.

Similarly, for the user-attribute set Ea, we have ∆a(G1, π
−1(G′

2)) = ν10+ν01,
βa(G1) = ν11 + ν10 and βa(G2) = βa(π−1(G′

2)) = ν11 + ν01. Therefore, we
get

ν11 =
βa(G1) + βa(π−1(G′

2))

2
− ∆a(G1, π

−1(G′
2))

2

ν10 =
βa(G1) − βa(π−1(G′

2))

2
+

∆a(G1, π
−1(G′

2))

2

ν01 =
βa(π−1(G′

2)) − βa(G1)

2
+

∆a(G1, π
−1(G′

2))

2

ν00 = nm− βa(G1) + βa(π−1(G′
2))

2
− ∆a(G1, π

−1(G′
2))

2
.

Since βu(G1), β
u(π−1(G′

2)), β
a(G1), and βa(π−1(G′

2)) do not depend on π,
we can further simplify the posterior as follows

P(Π∗ = π|G1 = G1, G
′
2 = G′

2)

∝
∏

(i,j)∈{0,1}2
p
µij(G1,π−1(G′

2))
ij q

νij(G1,π−1(G′
2))

ij

∝
(
p11p00
p10p01

)−∆u(G1,π
−1(G′

2))

2
(
q11q00
q10q01

)−∆a(G1,π
−1(G′

2))

2

(A.4)

= exp

{
−w1

∆u(G1, π
−1(G′

2))

2
− w2

∆a(G1, π
−1(G′

2))

2

}
, (A.5)
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where w1 ≜ log
(
p11p00
p10p01

)
and w2 ≜ log

(
q11q00
q10q01

)
. Note that w1 > 0 and

w2 > 0 since we assume that the edges inG1 andG2 are positively correlated.
Therefore, of all the permutation in Sn, the one that minimizes the weighted
Hamming distance w1∆

u(G1, π
−1(G′

2)) + w2∆
a(G1, π

−1(G′
2)) achieves the

maximum posterior probability.

Now consider the seeded Erdős–Rényi pair model G(n,m,p). Recall that
when specializing the attributed Erdős–Rényi pair model by setting p = q,
we can treated the m attributes as m seeds. The only difference between
the G(n,p;m,p) model and the seeded model G(n,m,p) is that there are no
edges between seeds in the specialized model, but those edges exist in the
seeded model. Here, we show that this distinction has no influence on the
information-theoretic limit of exact alignment. To see this, we prove that
the optimal estimator – MAP estimator still simplifies to minimizing the
Hamming distance of the user-user edges and user-seed edges.

Lemma 6. Let (G1, G
′
2) be an pair seeded graphs generated from the seeded

Erdős–Rényi pair G(n,m,p). The MAP estimator of the permutation Π∗

based on (G1, G
′
2) simplifies to

π̂MAP(G1, G
′
2) = argmin

π∈Sn

{∆u(G1, π
−1(G′

2)) + ∆a(G1, π
−1(G′

2))},

where

∆u(G1, π
−1(G′

2)) =
∑

(i,j)∈Eu

1{G1((i, j)) ̸= G′
2((π(i), π(j)))},

∆a(G1, π
−1(G′

2)) =
∑

(i,v)∈Ea

1{G1((i, v)) ̸= G′
2((π(i), v))}.

Proof. To start, we have the posterior of the underlying permutation.

P(Π∗ = π|G1 = g1, G
′
2 = g′2)

=
P(G1 = g1, G

′
2 = g′2|Π∗ = π)P(Π∗ = π)

P (G1 = g1, G′
2 = g′2)

∝ P(G1 = g1, G
′
2 = g′2|Π∗ = π) (A.6)

= P(G1 = g1, G2 = π−1(g′2)). (A.7)

Here (A.6) follows since Π∗ is uniformly drawn. (A.7) follows since Π∗ is
independent of G1 and G2. For ease of notation, we use gπ2 to denote π−1(g′2).
Then according to the seeded graph model in Chapter 1.3, we have

P(G1 = g1, G2 = gπ2 )
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=p
µ11(g1,gπ2 )
11 p

µ00(g1,gπ2 )
00 p

µ10(g1,gπ2 )
10 p

µ01(g1,gπ2 )
01 . (A.8)

In (A.8), we define

µ11(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1∼j,i

gπ2∼ j
} +

∑
i,j∈Vs

1{
i
g1∼j,i

gπ2∼ j
}

+
∑

i∈Vu′ ,j∈Vs

1{
i
g1∼j,i

gπ2∼ j
} +

∑
i∈Vs,j∈Vu′

1{
i
g1∼j,i

gπ2∼ j
}

µ10(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1∼j,i

gπ2
̸∼ j

} +
∑
i,j∈Vs

1{
i
g1∼j,i

gπ2
̸∼ j

}

+
∑

i∈Vu′ ,j∈Vs

1{
i
g1∼j,i

gπ2
̸∼ j

} +
∑

i∈Vs,j∈Vu′

1{
i
g1∼j,i

gπ2
̸∼ j

}

µ01(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1
̸∼j,i

gπ2∼ j
} +

∑
i,j∈Vs

1{
i
g1
̸∼j,i

gπ2∼ j
}

+
∑

i∈Vu′ ,j∈Vs

1{
i
g1
̸∼j,i

gπ2∼ j
} +

∑
i∈Vs,j∈Vu′

1{
i
g1
̸∼j,i

gπ2∼ j
}

µ00(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1
̸∼j,i

gπ2
̸∼ j

} +
∑
i,j∈Vs

1{
i
g1
̸∼j,i

gπ2
̸∼ j

}

+
∑

i∈Vu′ ,j∈Vs

1{
i
g1
̸∼j,i

gπ2
̸∼ j

} +
∑

i∈Vs,j∈Vu′

1{
i
g1
̸∼j,i

gπ2
̸∼ j

}.

where Vu′ ≜ Vu \ Vs is the set of unmatched users vertices and Vs is the set
of seed vertices. Notice that the term summing seed-seed edges is always
the same for every π ∈ Su since we only permute user vertices. Here, we
define

µ′11(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1∼j,i

gπ2∼ j
} +

∑
i∈Vu′ ,j∈Vs

1{
i
g1∼j,i

gπ2∼ j
} +

∑
i∈Vs,j∈Vu′

1{
i
g1∼j,i

gπ2∼ j
}

µ′10(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1∼j,i

gπ2
̸∼ j

} +
∑

i∈Vu′ ,j∈Vs

1{
i
g1∼j,i

gπ2
̸∼ j

} +
∑

i∈Vs,j∈Vu′

1{
i
g1∼j,i

gπ2
̸∼ j

}

µ′01(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1
̸∼j,i

gπ2∼ j
} +

∑
i∈Vu′ ,j∈Vs

1{
i
g1
̸∼j,i

gπ2∼ j
} +

∑
i∈Vs,j∈Vu′

1{
i
g1
̸∼j,i

gπ2∼ j
}

µ′00(g1, g
π
2 ) ≜

∑
i,j∈Vu′

1{
i
g1
̸∼j,i

gπ2
̸∼ j

} +
∑

i∈Vu′ ,j∈Vs

1{
i
g1
̸∼j,i

gπ2
̸∼ j

} +
∑

i∈Vs,j∈Vu′

1{
i
g1
̸∼j,i

gπ2
̸∼ j

}.
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We therefore have

P(G1 = g1, G2 = gπ2 ) ∝ p
µ′11(g1,g

π
2 )

11 p
µ′00(g1,g

π
2 )

00 p
µ′10(g1,g

π
2 )

10 p
µ′01(g1,g

π
2 )

01

(A.9)

So far the MAP estimator we derived here is exactly the same as the esti-
mator for attributed graph alignment. Applying Lemma 2, we get

π̂MAP(g1, g
′
2) = argmin

π∈Su

{µ′10(g1, gπ2 ) + µ′01(g1, g
π
2 )},

= argmin
π∈Sn

{∆u(G1, π
−1(G′

2)) + ∆a(G1, π
−1(G′

2))}.
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Appendix B

Proof of Corollary 1

Corollary 1 (Simplified achievability). Consider the attributed Erdős–
Rényi pair G(n,p;m, q) under conditions (2.7) and (2.8). If

np11 +mψa − log n→ ∞ (2.9)

then there exists an algorithm that achieves exact alignment w.h.p.
If we further have m = Ω((log n)3), then the above condition (2.9) becomes

np11 +mq11 − log n→ ∞, (2.10)

If m = o((log n)3), the above condition (2.9) becomes the following.

np11 +mq11 −man − log n→ ∞, (2.11)

where an = q11 − ψa = O(q
3/2
11 ).

Proof of Corollary 1. In this proof, we first show that, under the assump-
tions on the user-user edges in condition (2.7) and (2.8), the achievability
result becomes

np11 +mψa − log n = ω(1)

Next, we apply the assumptions on the user-attribute edges from (2.7)(2.8)
and derive the two cases in this Corollary by approximating ψa.

For the user-user edge part, we check the two regimes p11 = ω( lognn )

and p11 = O( lognn ) separately. If p11 = ω( lognn ), then with the assumption

on the user-user edge density (2.7), we also have ψu = ω( lognn ) because
ψu = Θ(p11) (see Fact 4). Therefore exact alignment is achievable according
to Theorem 1: nψu

2 +mψa− log n = ω(log n) +mψa− log n = ω(1). Now we

check the case when p11 = O( lognn ). Notice that under the assumption on the
edge correlation (2.8), we have p10 = O(p11) and p01 = O(p11) (see Fact 4).
Then it follows that the sparsity constrains in Theorem 2 (2.2) (2.3) (2.4) are
all satisfied. Therefore, we just need np11 +mψa− log n = ω(1) to guarantee
that exact alignment is achievable. Combining the two case, we come the the
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conclusion that, under the assumptions (2.7) (2.8), the achievability result
simplifies to np11 +mψa − log n = ω(1).

From the above discussion, we further simplify the achievability results
so that we can see how it influenced by only on np11 and mq11, which
are the two only parameters in the converse bound, and thus show when the
achievability and converse are tight (up to ±ω(1)). From the achievability in
last step: np11+mψa−log n = ω(1), we then need to determine the difference
between mψa and mq11. If at the boundary of the achievable region (i.e, the
region where np11 +mψa− log n is converging to infinity at constant order),
we have mq11 −mψa ≤ ω(1) for every np11, then np11 +mψa − log n = ω(1)
implies that np11 + mq11 − log n = ω(1), and thus we get the matching
achievability and converse in (2.10); Otherwise we keep the achievability at
the form of (2.11) which is another way of saying np11 +mψa − log n→ ∞.

To see when the achievability matches the converse, first note that at the
boundary of achievable region, we havemψa = C+log n−np11 where C → ∞
at constant order. Therefore, mψa at the boundary region attains maximum
when np11 = 0 where mψa = Θ(log n). Further combine the conclusions in

Fact 4 ψa = Θ(q11) and mq11−mψa = O(mq
3/2
11 ), we come the to conclusion

that the gap between mq11 and mψa is of order at most m(log n/m)3/2, and
the gap attains maximum when np11 = 0. Therefore, if m(log n/m)3/2 ≤
ω(1), i.e., m = Ω((log n)3), we have the matching achievability and converse
as (2.10) and (2.6); otherwise, we left the achievability as (2.11) where an
stands for the gap between the achievability and converse which grows to
infinity faster than constant.
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Orbit decomposition

Fact 1. The generating function A(x,y, z) of permutation π can be decom-
posed into

A(x,y, z) =
∏
l≥1

Al(x, z)
tul Al(y, z)

tal ,

where tul is the number of user-user orbits of size l, tal is the number of
user-attribute orbits of size l.

Proof. Recall the definition of A(x,y, z) for a given π

A(x,y, z) =
∑

g∈{0,1}E

∑
h∈{0,1}E

zδπ(g,h)xµ(g,h)yν(g,h).

According to the cycle decomposition on πE , we write E = ∪i≥1Oi, where
use Oi is the ith orbit and there are N orbits in total. Then we have

A(x,y, z) =
∑

g∈{0,1}E

∑
h∈{0,1}E

zδπ(g,h)xµ(g,h)yν(g,h)

=
∑

g∈{0,1}E

∑
h∈{0,1}E

∏
e∈E

zδπ(ge,he)xµ(ge,he)yν(ge,he) (C.1)

=
∑

g∈{0,1}E

∑
h∈{0,1}E

N∏
i=1

f(gOi , hOi) (C.2)

=
∑

gO1
∈{0,1}O1

∑
hO1

∈{0,1}O1

. . .
∑

hON
∈{0,1}ON

N∏
i=1

f(gOi , hOi) (C.3)

=
N∏
i=1

 ∑
gOi

∈{0,1}Oi

∑
hOi

∈{0,1}Oi

f(gOi , hOi)

 (C.4)

=
N∏
i=1

AOi(x,y, z) (C.5)
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=
∏
l≥1

Al(x, z
w1)t

u
l Al(y, z

w2)t
a
l . (C.6)

Here we use gE ′ to denote a subset of g that contains only vertex pairs in
E ′ and hE ′ to denote a subset of h that contains only vertex pairs in E ′,
where E ′ can be any set of vertex pairs. In (C.1), ge (resp. he) represent
a subset of g (resp. h) that contains a single vertex pair e. In (C.2), gOi

(resp. hOi) represents the subset of g (resp. h) that contains only vertex
pairs in orbit Oi. We define f(gOi , hOi) as a function of gOi and hOi where
f(gOi , hOi) =

∏
e∈Oi

zδπ(ge,he)xµ(ge,he) if Oi only contains user-user pairs,

and f(gOi , hOi) =
∏
e∈Oi

zδπ(ge,he)yν(ge,he) if Oi only contains user-attribute
pairs. Equation (C.3) follows because Oi’s are disjoint and their union is
E . Note that f(gOi , hOi) only concerns vertex pairs in the cycle Oi since for
e ∈ Oi we have πE(e) ∈ Oi. Then, (C.4) follows because f(gOi , hGi)’s are
independent functions. In (C.5), we use AOi(x,y, z) to denote the generat-
ing function for the orbit Oi where AOi(x,y, z) = AOi(x, z) if Oi contains
user-user vertex pairs; AOi(x,y, z) = AOi(y, z) if Oi contains user-attribute
vertex pairs. To see this equation follows, note that if Oi contains only user-
user vertex pairs, then∑

gOi
∈{0,1}Oi

∑
hOi

∈{0,1}Oi

f(gOi , hOi)

=
∑

gOi
∈{0,1}Oi

∑
hOi

∈{0,1}Oi

∏
e∈Oi

zδπ(ge,he)xµ(ge,he)

=
∑

gOi
∈{0,1}Oi

∑
hOi

∈{0,1}Oi

zδπ(gOi
,hOi

)xµ(gOi
,hOi

)

= AOi(x, z).

If Oi contains only user-attribute vertex pairs, then∑
gOi

∈{0,1}Oi

∑
hOi

∈{0,1}Oi

f(gOi , hOi)

=
∑

gOi
∈{0,1}Oi

∑
hOi

∈{0,1}Oi

∏
e∈Oi

zδπ(ge,he)yν(ge,he)

=
∑

gOi
∈{0,1}Oi

∑
hOi

∈{0,1}Oi

zδπ(gOi
,hOi

)yν(gOi
,hOi

)

= AOi(y, z).
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In (C.6), we apply the fact that orbits of the same size have the same
generating function.
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Relation to subsampling
model

Fact 4. If
1 − (p11 + p10) = Θ(1),

1 − (p11 + p01) = Θ(1),

ρu = Θ(1),

then we have ψu = Θ(p11),ψu = p11 − Θ(p
3/2
11 ), p10 = O(p11) and p01 =

O(p11). Note that the same statement holds if we change to q and this can
be shown through the same proof.

Proof. To make the notation compact, we consider the equivalent expression
from the subsampling model. We have(

p11 p10
p01 p00

)
=

(
ps1s2 ps1(1 − s2)

p(1 − s1)s2 p(1 − s1)(1 − s2) + 1 − p

)
.

The above three conditions on p can be written as

1 − ps1 = Θ(1), (D.1)

1 − ps2 = Θ(1), (D.2)

ρu =
(1 − p)

√
s1s2√

1 − ps1
√

1 − ps2
= Θ(1). (D.3)

Combining the above three conditions, we have s1 = Θ(1), s2 = Θ(1) and
1−p = Θ(1). Therefore, we can directly get p10 = O(p11) and p01 = O(p11).

To see ψu = Θ(p11), we write ψu using parameter from subsampling
mode and we have

ψu = (
√
p11p00 −

√
p10p01)

2

= (
√
p11((1 − p) + p(1 − s1)(1 − s2))

−
√
p2s1s2(1 − s1)(1 − s2))

2
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= (1 − p)p11

(√
1 + p(1−s1)(1−s2)

1−p −
√

p(1−s1)(1−s2)
1−p

)2

= (1 − p)p11
1(√

1 + p(1−s1)(1−s2)
1−p +

√
p(1−s1)(1−s2)

1−p

)2 . (D.4)

In (D.4), we have that (1 − p) = Θ(1) and 1√
1+

p(1−s1)(1−s2)
1−p

+
√

p(1−s1)(1−s2)
1−p

=

Θ(1). Therefore ψu = Θ(p11).

To see ψu = p11 − Θ(p
3/2
11 ), we take

ψu = (
√
p11p00 −

√
p10p01)

2

= p11p00 + p10p01 − 2
√
p11p00p10p01

= p11((1 − p) + p(1 − s1)(1 − s2))

+ p2s1s2(1 − s1)(1 − s2)

−
√
p211((1 − p) + p(1 − s1)(1 − s2))p(1 − s1)(1 − s2)

= p11 −O(p
3/2
11 ),

where the last step follows from s1 = Θ(1) and s2 = Θ(1).
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Proof of a new converse

Other than considering the existence of indistinguishable user pairs, here
we extend to analysing a more general error event E∗, which represent the
existence of permutations that swap exactly two users and fail the MAP
estimator. Recall that the MAP estimator simplifies to find a permutation
on the n user vertices such that the weighted Hamming distance of the two
graphs is minimized, which is equivalent to find a permutation such that the
weighted edge overlap of the two graphs is maximized.

π̂MAP(G1, G
′
2) = argmin

π∈Sn

{w1∆
u(G1, π

−1(G′
2)) + w2∆

a(G1, π
−1(G′

2))}

= argmax
π∈Sn

{w1µ
u
11(G1, π

−1(G′
2)) + w2µ

a
11(G1, π

−1(G′
2))}

This equivalence comes from the conservation of total number of edges in
each graph, and a more detailed argument can be found in the proof of
Lemma 2 from the Appendix.

To better understand the above objectives and the error event E∗, we
rewrite the the edge overlap of two graph using matrix product. We denote
the adjacency matrix on the user part by Au ∈ {0, 1}n×n and the adjacency
matrix on the attribute part by Aa ∈ {0, 1}n×m. For a permutation π that
swaps two users u and v, we use Pij to denote the corresponding permutation
matrix. Then we can represent the weighted edge overlap difference as

w1µ
u
11(G1, G2) + w2µ

a
11(G1, G2) − w1µ

u
11(G1, π(G2)) − w2µ

a
11(G1, π(G2))

= w1(⟨Au
1 , A

u
2⟩ − ⟨Au

1 , PijA
u
2Pij⟩) + w2(⟨Au

1 , PijA
u
2⟩ − ⟨Au

1 , PijA
u
2⟩)

= w1

∑
k ̸=i,j

((Au
1)ik − (Au

1)jk)((A
u
2)ik − (Au

2)jk))

+ w2

∑
k∈Va

((Aa
1)ik − (Aa

1)jk)((A
a
2)ik − (Aa

2)jk))

= w1

∑
k ̸=i,j

Xij,k + w2

∑
k∈Va

Yij,k,

where we defined

Xij,k ≜ ((Au
1)ik − (Au

1)jk)((A
u
2)ik − (Au

2)jk),
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Yij,k ≜ ((Aa
1)ik − (Aa

1)jk)((A
a
2)ik − (Aa

2)jk),

HereXij,k and Yij,k are discrete random variables taking values from {−1, 0, 1}.
We have Xij,k = 1 with probability 2p11p00, Xij,k = −1 with probability
2p10p01, and Xij,k = 0 with probability 1− 2p11p00 − 2p10p01; Yij,k = 1 with
probability 2q11q00, Yij,k = −1 with probability 2q10q01, and Yij,k = 0 with
probability 1 − 2q11q00 − 2q10q01. For convenience, we define a ≜ 2p11p00,
a′ ≜ 2q11q00, b ≜ 2p10p01 and b′ ≜ 2q10q01.

Correspondingly, the error event

E∗ = {∃i, j ∈ Vu, s.t.w1

∑
k ̸=ij

Xij,k + w2

∑
k∈Va

Yij,k ≤ 0}.

In the following part of this section, we prove the converse statement by
showing the probability of subsets of E∗ is at least a constant. More specif-
ically,

1. In Theorem 3, we have already show with high probability the error
event E∗

1 = {there exist indistinguishable user pairs in the intersection
graph} happens.

2. In Lemma 7, we show that with high probability the error event E∗
2 =

{there exist i, j ∈ Vu such that for all k ̸= i, j Xij,k ≤ 0 and Yij,k ≤ 0}
happens.

Lemma 7. Consider the attributed Erdős–Rényi pair G(n,p,m, q). If there
exists a constant ϵ, such that

na+ma′ ≤ (2 − ϵ) log n, (E.1)

then P(E∗
2 ) = 1 − o(1)

Proof of Lemma 7. In this proof, we show the existence of i, j ∈ Vu such
that for all k ̸= i, j Xij,k ≤ 0 and Yij,k ≤ 0. To this end, for a pair of
users (i, j), we define the event Aij = {∀k ∈ Vu \ {i, j}, Xij,k ≤ 0, and ∀k ∈
Va, Yij,k ≤ 0} and we further use N to represent the total number of user
pairs satisfy the description, i.e., N ≜

∑
i,j∈Va

1{Aij} =
∑

i,j∈Va
Nij . In the

following, we will prove P(N > 0) = 1 − o(1) using the second moment
method.

P(N > 0) ≥ (E[N ])2

E[N2]
. (E.2)
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To compute the first and second moments in this upper bound (E.2), we
first recall our definition of Xij,k and Yij,k,

Xij,k =


1 w.p. a

−1 w.p. b

0 w.p. 1 − a− b,

Yij,k =


1 w.p. a′

−1 w.p. b′

0 w.p. 1 − a′ − b′.

Then, we have the first moment term in equation (E.2)

E[N ] =

(
n

2

)
P(Aij)

=

(
n

2

)
P(∀k ̸= i, j,Xij,k ≤ 0, or Yij,k ≤ 0)

=

(
n

2

) ∏
k ̸=i,j

P(Xij,k ≤ 0)
∏
k∈Va

P(Yij,k ≤ 0) (E.3)

=

(
n

2

)
(1 − a)n−2(1 − a′)m (E.4)

≥ exp{2 log n− (na+ma′) + o(na+ma′)}
≥ exp{ϵ log n+ o(1)}
= nϵ+o(1). (E.5)

Here, equation (E.3) follows because only Xij,k (or Yij,k) is determined by
the edges between ik and jk, and thus Xij,k’s and Yij,k’s are mutually inde-
pendent Equation (E.4) follows from plugging in P(Xij,k ≤ 0) = 1 − a and
P(Yij,k ≤ 0) = 1 − a′.

For the second moment term in equation (E.2), we can write is as

E[N2] = E

 ∑
i,j∈Vu

Nij

2
= E

[∑
i<j

Nij +
∑

i,j,k,l : i<j,k<l
i,j,k,l are distinct

NijNkl +
∑

i,j,k,l : i<j,k<l
{i, j} and {k, l} share one element

NijNkl

]

= E[N ] +

(
n

2

)(
n− 2

2

)
P(Nij = 1, Nkl = 1) + 6

(
n

3

)
P(Nij = 1, Nik = 1).

(E.6)

Here in the last equation, i, j, k, l represent distinct user vertices. Plugging
(E.6) into lower bound (E.2) on the error event from the second moment
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method, we have the following.

(E[N ])2

E[N2]
=

1

1
E[N ] +

6(n3)P(Aij ,Aik)

((n2)P(Aij))
2 +

(n2)(
n−2
2 )P(Aij ,Akl)

((n2)P(Aij))
2

. (E.7)

We then show that the three terms in the denominator of (E.7) are all at
most a constant separately.

(1) For the first term in the denominator of (E.7), we have 1
E[N ] = o(1),

which follows from the lower bound on the first moment (E.5).
(2) For the second term in the denominator of (E.7), we have

P(Nij = 1, Nik = 1) = P(Nkl = 1)P(Nij = 1|Nik = 1)

= P(Akl)P(Aij |Aik)

= P(Akl)
∏

u∈Vu\{i,j}

P(Xij,u ≤ 0|Xik,u ≤ 0)
∏
u∈Va

P(Yij,u ≤ 0|Yik,u ≤ 0) (E.8)

≤ (1 − a)n−2(1 − a′)m
(

1 − 1

2
a

)n−2(
1 − 1

2
a′
)m

. (E.9)

Here (E.8) holds because conditioned on Aik, Xij,u and Yij,u is only func-
tion of the edges between j and u, thus Xij,u’s and Yij,u’s are mutually
independent. In equation (E.9), we plug in P(Akl) = (1 − a)n−2(1 − a′)m

and we use the following upper bounds on P(Xij,u ≤ 0|Xik,u ≤ 0) and
P(Yij,u ≤ 0|Yik,u ≤ 0). We have

P(Xij,u ≤ 0|Xik,u ≤ 0)

=
p11(1 − p200 + p01 + p10 + p00(1 − p11)

2)

1 − 2p00p11

≤ 1 − 3p11p00
1 − 2p11p00

≤ 1 − p11p00 = 1 − 1

2
a

and

P(Yij,u ≤ 0|Yik,u ≤ 0)

=
q11(1 − q200 + q01 + q10 + q00(1 − q11)

2)

1 − 2q00q11

≤ 1 − 3q11q00
1 − 2q11q00
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≤ 1 − q11q00 = 1 − 1

2
a.

Therefore, we get the following.

6
(
n
3

)
P(Aij , Aik)((
n
2

)
P(Aij)

)2
= Θ

(
exp

{
−n
(

log(1 − a) − log
(

1 − a

2

))
(E.10)

−m

(
log(1 − a′) − log

(
1 − a′

2

))
− log n

})
= Θ

(
exp

{
− log n+

na

2
+
ma′

2
+ o(

na

2
+
ma′

2
)

})
≤ exp(−ϵ log n+ o(log n))

= n−Θ(1). (E.11)

(3) For the last term in the the denominator of (E.7) , we have

P(Nij = 1, Nkl = 1) = P(Nij = 1|Nkl = 1)P(Nkl = 1)

= P(Aij |Akl)P(Akl)

≤ P(Akl)P(∀u ̸= ijkl,Xij,u ≤ 0 or Yij,u ≤ 0|Akl)

= P(Akl)
∏

u̸=ijkl,u∈Vu

P(Xij,u ≤ 0)
∏
u∈Va

P(Yij,u ≤ 0) (E.12)

= (1 − a)2n−6(1 − a′)2m. (E.13)

Equation (E.12) follows since Xij,u’s (or Yij,k’s) are mutually independent
and they are independent of Akl. In (E.9), we plug in P(Akl) = (1−a)n−2(1−
a′)m, P(Xij,u ≤ 0) = 1 − a, and P(Yij,u ≤ 0) = 1 − a′. Therefore, we have(

n
2

)(
n−2
2

)
P(Aij , Akl)((

n
2

)
P(Aij)

)2 = Θ

(
(1 − a)−2

)
= Θ(1). (E.14)

Plugging the three terms (E.5), (E.11)and (E.14) into (E.6), we have

(E[N ])2

E[N2]
= Θ(1). (E.15)

Therefore, we show that the error probability is not diminishing using to
the second moment method

P(N > 0) ≥ (E[N ])2

E[N2]
= Θ(1).
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