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Abstract 

 

Volumetric fracture intensity (P32) is a parameter that plays a major role in the mechanical and 

hydraulic behaviour of rock masses. Although it is not possible to measure P32 directly using 

current technologies, P32 can be estimated from borehole and surface data using either simulation 

or analytical solutions. 

 

In this thesis we use Discrete Fracture Network (DFN) models to addresses the problem of 

estimating P32 using information from boreholes (1D data), and we also investigate the problem of 

quantify the uncertainty range of the calculated P32. Based on the comparison between actual P32 

and the intensity sampled using synthetic boreholes, we propose a new methodology to estimate 

P32 variability from linear intensity. This methodology can be useful to quantify and understand 

the expected variability of P32 values of a project when linear intensity is the only information 

available. 

 

It is common practice, when calculating P32 based on Terzaghi Weight  (1965), to use drill run 

lengths, and limit the minimum angle between the borehole and the intersected fractures. The 

analysis presented in this thesis indicated that limiting the minimum angle of intersection would 

result in an underestimation of the calculated P32. Additionally, the size of the interval has a great 

impact on the variability of the calculated P32. To account for that we propose a methodology to 

calculate P32 using variable lengths, depending on the angle between the fractures and the borehole. 

This methodology allows to capture the spatial variation in intensity and at the same time it avoids 
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the artificial increasing or decreasing of the intensity sampled along borehole intervals. This can 

be useful when the interval intensity is used as input for interpolating P32 values in block models. 

 

Finally, the research has addressed another fundamental issue, that is the impact of boundary 

effects in DFN models. The results confirmed that DFN models do present boundary effects with 

respect to the modelled fracture intensity and that these boundary effects are dependent on the size 

of the generation box in relation to the volume of interest and the size of the fractures.   
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Lay Summary 

Volumetric fracture intensity, defined as the area of fractures per unit of volume, is an important 

parameter that plays a major role in the mechanical and hydraulic properties of rock masses. The 

main problem with determining the volumetric intensity is that this can not be measured directly 

from the rock mass.  In practice, volumetric intensity is calculated from borehole data or surface 

mapping, using either simulation or mathematical solutions. 

Using Discrete Fracture Network (DFN) models, this thesis investigates the relationship between 

volumetric intensity and borehole intensity and then proposes a methodology to mitigate DFN 

boundary effects, a methodology to quantify the intensity variability, and finally a methodology to 

calculate volumetric intensity from borehole data. The main advantage of the methodology 

proposed to calculate volumetric intensity, is that it is possible to capture the spatial variation in 

intensity without increasing artificially the variability of the intensity calculated in the borehole 

intervals. 
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Chapter 1: Introduction 

1.1 Background 

A key component of understanding the behaviour of a rock mass is the characterization of 

discontinuities (i.e., structural features such as joints, bedding planes, faults, shear zones, etc.). 

Discontinuities in a rock mass are usually described as an assemblage rather than individually 

(Dershowitz, 1988), using specific properties, namely discontinuity orientation, size, shape, spatial 

location, and intensity.  

 

The necessity of modelling discontinuities explicitly, for different engineering and geological 

applications, has led to an increasing use of the Discrete Fracture Network (DFN) approach, both 

as a stand-alone tool or integrated within more complex geomechanical models (Elmo, 2014). Note 

that the term fracture is herein applied in a broad context to refer to a variety of discontinuities at 

different scales (faults, joints, veins, etc.). 

 

The advantage of DFN models is that is possible to generate realistic assemblages of fractures in 

three-dimension by using statistical distributions. The quality of a DFN and its representativity of 

the actual structural conditions depend both on the quality of the field data and on the techniques 

used to transform the field data into input for the DFN models. 

 

One of the most important inputs for DFN analysis is fracture intensity, which can be expressed in 

various ways: i) the total sum of fracture surface area per unit of volume, P32; ii) the total sum of 

fracture length per unit area, P21; and iii) the total number of fractures per unit length, P10. 
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In recent years DFN models have been used to demonstrate the role that P32 intensity plays on 

controlling a number of rock mass properties critical to caving operations (Rogers et al., 2015). 

Although it is not possible to measure P32 directly using current technologies, P32 can be estimated 

from borehole and surface data using either simulation or analytical solutions.  

 

1.2 Research Objectives 

In this thesis we use Discrete Fracture Network (DFN) models to addresses the problem of 

estimating P32 using information from boreholes (1D data), and we also investigate the problem of 

quantify the uncertainty range of the calculated P32. Based on the comparison between actual P32 

and the intensity sampled using synthetic boreholes, we propose a new methodology to estimate 

P32 variability from linear intensity. This methodology can be useful to quantify and understand 

the expected variability of P32 values of a project when linear intensity is the only information 

available. 

 

The research has addressed the following research objectives: 

1. Investigating possible boundary effects of DFN models and proposing a methodology to 

mitigate boundary effects on target volumetric intensity. 

2. Investigating the relationship between borehole fracture intensity and volumetric fracture 

intensity and proposing a methodology to quantify the reliability of the volumetric fracture 

intensity derived from borehole fracture intensity. 

3. Proposing a methodology to estimate the volumetric fracture intensity from borehole 

fracture intensity, avoiding increasing or decreasing artificially the volumetric fracture 

intensity calculated in the borehole intervals. 
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1.3 Thesis Organization 

This thesis is organized into six chapters including the current introductory Chapter.  

 

Chapter 2 provides a literature review of the main concepts and methods used in the development 

of this thesis. It includes a brief introduction to Discrete Fracture Network (DFN) modelling and 

different methodologies to calculate volumetric fracture intensity from the linear fracture intensity. 

 

Chapter 3 investigates the effect of the generation box size on the target fracture intensity within 

a defined volume of interest, by comparing input intensity with target intensity for a series of DFN 

models. Then based on the results of the analyses performed, a methodology to minimize and 

correct the effect of boundary effects on DFN models’ intensity is presented. 

 

Chapter 4 investigates the variability in borehole fracture intensity and its relationship with the 

volumetric fracture intensity using DFN models.  A methodology to quantify the reliability of the 

volumetric fracture intensity based on a given borehole fracture intensity is presented. 

 

Chapter 5 investigates, using DFN models, the effects of the minimum bias angle and the length 

of the borehole intervals in the calculated volumetric fracture intensity. Based on the results of the 

analysis performed, a methodology to estimate the volumetric fracture intensity from borehole 

fracture intensity is presented. The main purpose of the methodology proposed is to capture the 

spatial variation in volumetric fracture intensity, while at the same time avoiding increasing or 

decreasing artificially the volumetric fracture intensity calculated in the borehole intervals.  
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Chapter 6 summarizes the research, describe its limitations, presents the key findings and 

conclusions, and provides recommendations for future work. 
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Chapter 2: Literature Review 

2.1 Introduction 

Chapter 2 provides a literature review of the main concepts and methods used in the development 

of this thesis. An introduction to Discrete Fracture Network (DFN) modelling is presented, 

including the key input parameters required to generate a basic DFN model. Different 

methodologies to obtain volumetric intensity from linear intensity are also discussed.  

 

2.2 Discrete Fracture Network (DFN) Modelling 

The Discrete Fracture Network (DFN) approach allows the characterization of discontinuities 

using statistical distributions to describe variables such as orientation, persistence and spatial 

location of discontinuities (Elmo et al., 2008). DFN modelling has become increasingly popular 

in recent years amongst geotechnical practitioners and engineers, including the generation of 

synthetic rock mass properties (Elmo and Stead, 2010), geomechanical simulation of open pits 

(Rogers et al., 2009; Rogers et al., 2016),  quantification of rock mass pre-conditioning (Brzovic 

et al., 2015), estimation of rock bridge percentage for stability analysis  (Dershowitz et al., 2017) 

and rock mass fragmentation and calculation of fragmentation distribution at cave mine scale 

(Rogers et al., 2015).  

The main primary characteristic (Dershowit, 1984) of fracture orientation, fracture intensity and 

fracture size, required to generate a simple DFN model are described in the following sub-sections. 

 

2.2.1 Fracture Orientation 

It is possible to generate DFN models by applying separate statistical orientation distribution for 

each fracture set. This method is known as the disaggregate approach (Elmo, 2014) because 
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independent DFN models are generated for each set. Then, it is possible to obtain the overall 

representation of the fracture orientation by combining the set generated individually. 

Alternatively, the data can be analyzed using a bootstrap approach, in which a pseudo-replicated 

sample of fracture orientations is generated by multiple random sampling with replacement from 

an original sample.  This is very useful when the original sample data is characterized by a highly 

disperse scatter, and when the data does not follow any clear statistical distribution. 

 

2.2.2 Fracture Size 

For DFN modelling applications, fracture size is typically described in terms of fracture radius, 

and therefore it becomes important to understand the difference between fracture trace length 

(mapped information) and fracture radius (simulated data). The first corresponds to the observed 

length of the trace that a fracture makes with a surface, while the former corresponds to the radius 

of a circle of equivalent area to a polygonal fracture (Figure 2.1). 

 

 

Figure 2.1: Circle of Equivalent Area for a Polygonal Fracture with n Sides and n > 3 (Elmo, 2014). 
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Although with the current technologies is impossible to measure fracture radius directly, fracture 

length can be obtained by mapping rock exposures. Then, using analytical methods (Mauldon, 

1998; Zhang and Einstein, 1998 and Zhang and Einstein, 2000), the distribution of fracture radius 

can be derived from the distribution of trace length. 

 

2.2.3 Fracture Intensity 

Fracture intensity can have different interpretations. To avoid ambiguity and improve consistency, 

intensity measurements are classified based upon the dimension of the measurement region and 

the dimension of the fracture (Dershowitz, 1992), using an intensity notation based on the 

designation Pij,  in which the subscripts (i) represent the dimension of the feature and the subscript 

(j) correspond to the dimension of the sampling region (Figure 2.2). For example, a borehole 

intensity of fractures per metre is expressed as P10, while the volumetric intensity of fracture area 

per sampling volume is expressed as P32. 
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Figure 2.2: Pij Intensity Notation (based on Golder Associates (2021b)). 

 

P32 is a nondirectional intrinsic measure of fracture intensity, these characteristics made P32 the 

preferred measure of fracture intensity in DFN modelling (Rogers et al., 2015). While P32 cannot 

be directly measured, it can be obtained from P10 or P21 using analytical solutions or by simulation 

(see Section 2.5). 

 

2.2.4 Boundary Effects in DFN Models 

DFN models may present boundary effects, and their impact can be significant when the volume 

used to generate the DFN model is not large enough compared to the rock mass volume under 

consideration. To minimize these boundary effects, Priest (1993) recommended generating 

fractures in a volume region much larger than the volume of interest. Samaniego and Priest (1984) 

indicated that a generation volume of four times the volume of interest would be sufficient to 
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minimize boundary effects. Note that depending on the model size this increase in the size of the 

generation volume may significantly increase the computation time. On the other hand, Junkin et 

al. (2019) indicate that it could be possible to mitigate boundary effects by including mapped traces 

or fracture seeds on the exterior boundaries of a DFN region. They proposed to sample the DFN 

model using planes to estimate P21 intensity in areas where the boundary effect does not exist, and 

then use this intensity to stochastically seed traces on the boundary of the DFN.  

 

2.3 Fracture Intensity and Terzaghi Correction 

When estimating fracture intensity from a linear or planar survey, fractures that are parallel to the 

survey are easily observed while oblique fractures are harder to observe. The relative difference 

between the orientation of the sampling borehole and the orientation of the intersecting fractures 

introduces a bias in favour of those fractures that are perpendicular to the borehole. This orientation 

bias is illustrated in Figure 2.3, in which α represents the acute angle between the scanline and the 

fracture. The ratio of the apparent spacing (D’) to the true spacing (D) is 1/sinα. In other words, 

fractures at an acute angle α are underrepresented by a factor of “sinα”, this factor being known as 

the Terzaghi Weight (Terzaghi, 1965). 
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Figure 2.3: Apparent Spacing D' Associated with True Spacing D when the Fractures (direction θ) Form 

an Angle α With the Scanline (direction β). Adapted from (Chilès et al., 2008). 

 

Terzaghi (1965) proposed correction for spacing (Equation 2.1), in which d represents the spacing, 

N the number of fractures intersected by the survey and L the length of the survey. Note that the 

Terzaghi Correction assumes a zero-thickness sampling survey. 

 

 𝑑𝑑 =
𝑁𝑁

𝐿𝐿 sin𝛼𝛼
 Equation 2.1 

   

2.3.1 Minimum Bias Angle 

Since the weighting factor tends to infinity as α approaches zero (Figure 2.4), it is common to 

apply a maximum limit to α. Yow et al. (1987) approached this problem by considering the error 

associated with taking orientation measurements and linked that error (E) with the angle between 

the fracture and the sampling line (α), to produce an expression for the normalized maximum 

weighting factor error: 

β
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 𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �
sin𝛼𝛼

sin(𝛼𝛼 − 𝐸𝐸)
�  𝑥𝑥 100% Equation 2.2 

 

Based on Equation 2.2 and assuming an acceptable normalized maximum weighting factor error, 

it is possible to define the maximum weighting factor required to avoiding degrade the quality of 

the data. The proportional errors of the Terzaghi correction factor and the influence of the blind 

zone have been mathematically derived by Wang and Mauldon (2006). Priest (1993) suggests 

using a maximum weighting of 10, this weight corresponds to an α value of approximately 6°, 

while other authors recommend an α angle between 5° and 20° (Rocsience, 2022). In practice, a 

limit of 15° is often used, this improves the robustness of the estimator but has the inconvenience 

of introducing some bias by discarding valid data (Chilès et al., 2008). 

 

  

Figure 2.4: Terzaghi (1965) Weighting Factor for Different α Angles. 
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2.4 Mauldon Generalized Terzaghi Correction 

Mauldon and Mauldon (1997) provided an improvement to the Terzaghi (1965) Correction, by 

calculating the probability of intersection between a fracture of known radius R and cylindrical 

object of radius r, thus generalizing the Terzaghi correction to the sampling by a borehole with 

nonzero diameter. The advantage of this method is that the correction always remains finite. The 

result is very useful when the fractures have a size comparable with the diameter of the survey 

line. However, when the fractures are much larger than the survey line the correction can be very 

large (Chilès et al., 2008). 

 

2.5 Volumetric Intensity from Linear Intensity 

This Section presents different methodologies to estimate volumetric intensity (P32) from linear 

intensity (P10), including the Chilès’s method. 

 

2.5.1 Chilès’ Method 

Chilès (Chilès et al., 2008) developed a method in which Equation 2.1 is rewritten in terms of the 

volumetric intensity P32 (Equation 2.3), and presented a generalization for the case in which 

fractures are sampled along a line with varying orientation or along several lines with total length 

L (Equation 2.4). Note that in 3D, β and 𝜔𝜔𝑖𝑖 are unit vectors and the factor equal to the cosine of 

the angle formed by the unit vectors β and 𝜔𝜔𝑖𝑖 corresponds to the absolute value of the inner product 

< 𝜔𝜔𝑖𝑖 ,β,>.  
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 𝑃𝑃32� =
1
𝐿𝐿
�

1
|cos(𝜔𝜔𝑖𝑖 −  𝛽𝛽)|

𝑁𝑁

𝑖𝑖=1

 Equation 2.3 

 

 𝑃𝑃32� =
1
𝐿𝐿
�

1
|cos(𝜔𝜔𝑖𝑖 −  𝛽𝛽𝑖𝑖)|

𝑁𝑁

𝑖𝑖=1

  Equation 2.4 

 

Where L is the length of the scanline, β is its direction, 𝛽𝛽𝑖𝑖 is the local orientation of the scanline at 

the location of fracture i, N is the number of fractures and  𝜔𝜔𝑖𝑖 the pole of fracture i.  

Based on Equation 2.4, Chilès (Chilès et al., 2008) presented an estimator of the directional 

fracture density, in which the fracture intensity for polar direction ω is: 

 

 𝑃𝑃32� (𝑑𝑑𝜔𝜔) =
1
𝐿𝐿
�

1𝜔𝜔𝑖𝑖∈𝑑𝑑𝜔𝜔
|cos(𝜔𝜔𝑖𝑖 −  𝛽𝛽𝑖𝑖)|

𝑁𝑁

𝑖𝑖=1

  Equation 2.5 

 

The advantages of this method are that it allows calculating the volumetric intensity directly from 

borehole intensity and that do not require knowing the fracture size or making assumptions about 

its distribution. 

 

2.5.2 Chilès’ Improved Terzaghi Correction 

Chilès (2008) proposed an improvement to the Terzaghi correction when several surveys of length 

L1,…, Ln  and direction β1, …, βn are available. This method does not limit the minimum α angle 

and assumes that a fracture with a pole 𝜔𝜔, a survey length Ls and direction β provided neither more 
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nor less information than a survey orthogonal to the fracture with length 𝐿𝐿𝑠𝑠|cos𝜔𝜔 − 𝛽𝛽|.  Then the 

fracture density for polar direction ω is: 

 

 𝑃𝑃32� (𝑑𝑑𝜔𝜔) =
𝑁𝑁(𝑑𝑑𝜔𝜔)
𝐿𝐿(𝜔𝜔) =

∑ 1𝜔𝜔𝑖𝑖∈𝑑𝑑𝜔𝜔
𝑁𝑁
𝑖𝑖=1

∑ 𝐿𝐿𝑗𝑗𝑛𝑛
𝑗𝑗=1 |cos(𝜔𝜔𝑖𝑖 −  𝛽𝛽𝑖𝑖)|  Equation 2.6 

 

where N(dω) are fractures with poles in the solid angle dω around ω, observed in n surveys. 

In practice, when considering planar fractures, linear surveys and measurement errors, N(dω) and 

L(ω) are replaced by weighted averages. This approach is similar to the one proposed by Kiràly 

(1969) in which directional intensity is calculated relative to the orientation of three eigenvectors 

(�⃑�𝑋,𝑌𝑌�⃑  and �⃑�𝑍). The angles between the normal of the fracture plane and each of the eigenvector 

directions are restricted to a maximum of 89°. Note that if the intensity is calculated with respect 

to one plane or scanline, this is equivalent to restricting the minimum angle between the fracture 

and the sampling line (α) to a minimum of 1°. 

The methodology proposed by Chilès provides an intensity average, based on the orientation of 

the survey lines. Therefore, if there is bias in the orientation of the survey lines, this average may 

not necessarily correctly represent the average of the area of study. On the other hand, since it is 

an average, this methodology does not capture local variations in intensity. 
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2.5.3 Intensity Conversion C13 

Wang (2005) proposed a numerical approximation between P10 and P32: 

 

 𝑃𝑃32 =  𝐶𝐶13𝑃𝑃10 Equation 2.7 

 

 𝐶𝐶13 =  �� |cos 𝛾𝛾|𝑓𝑓𝐴𝐴(𝛾𝛾)𝑑𝑑𝛾𝛾
𝜋𝜋

0
�
−1

 Equation 2.8 

 

Where α is the solid angle between the survey line and the fracture normal (not to be confused 

with the α angle used in previous equations and that corresponds to the complement of this angle).  

Assuming that P10 sampled distributed according to a Univariate Fisher hemispherical probability 

distribution, the theoretical probability density function fΑ(α) is given by: 

 

 𝑓𝑓𝐴𝐴(𝛼𝛼) =
1
𝜋𝜋
�

sin𝛼𝛼
�sin2 𝛿𝛿 sin2 𝜌𝜌 − (cos𝛼𝛼 − cos𝛿𝛿 cos 𝜌𝜌 )2

𝑘𝑘𝑒𝑒𝑘𝑘 cos𝛿𝛿 sin 𝛿𝛿
𝑒𝑒𝑘𝑘 − 𝑒𝑒−𝑘𝑘

𝑑𝑑𝛿𝛿
𝑅𝑅𝛿𝛿

 Equation 2.9 

 

where k represents the Fisher concentration parameter; α is the solid angle between the survey line 

and the fracture normal; 𝛿𝛿 is the solid angle between the fracture normal and the Fisher distribution 

mean pole vector and 𝜌𝜌 is the solid angle between the Fisher distribution mean pole vector and the 

sampling line (survey). 
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For α in the range |𝛿𝛿 − 𝜌𝜌| ≤ 𝛼𝛼 ≤ 𝛿𝛿 + 𝜌𝜌, where the range of integration 𝑅𝑅𝛿𝛿 is given by: 

 

 

𝑅𝑅𝛿𝛿 =  [𝜌𝜌 − 𝛼𝛼, 𝜌𝜌 + 𝛼𝛼], 𝑖𝑖𝑓𝑓 𝛼𝛼 ≤  𝜌𝜌, 𝑜𝑜𝑜𝑜
𝑅𝑅𝛿𝛿 =  [0, 2𝛼𝛼 − 𝜌𝜌], 𝑖𝑖𝑓𝑓 𝛼𝛼 >  𝜌𝜌

 

 

Equation 2.10 

Note that this method assumes that the fracture population in a single set follows a Univariate 

Fisher hemispherical probability distribution, and the method is not suitable for use with other 

types of probability distributions (Golder Associates, 2021b). 

No closed-form solution for Equation 2.10 exits, and the correction factor can be obtained from a 

table as a function of the angle between the mean pole and the survey centerline and Fisher 

concentration parameter. Alternatively, numerical simulation can be used to compute the full 

integration for a given set of fractures. 

 

2.5.4 Volumetric Intensity Obtained from Borehole Intensity Using Simulation 

The relationship between P32 and P10 can be obtained by sampling equiprobable DFN models with 

simulated wells with different orientations (Dershowitz, 1992), as presented in Figure 2.5.  A 

similar process can be used to obtain P32 from sampled P21, in which planes are used instead of 

simulated wells, to obtain the trace length per area. As stated by Elmo (2014)  and also 

corroborated by Munkhchuluun (2017), P32 follows a linear relationship with both P10 and P21, this 

linear relationship can be expressed as:  

 

 
𝑃𝑃32 =  𝐶𝐶31𝑃𝑃10
𝑃𝑃32 =  𝐶𝐶32𝑃𝑃10

 Equation 2.11 
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where the constant C31 and C32 depend on the relative orientation of the fractures to the orientation 

of the survey line or plane and the fracture size distribution (Elmo, 2014).  

 

Figure 2.5: Process of Determining P32 by Simulation Using P10 (Elmo, 2014). 

 

The main limitations of this method are that it is needed to know beforehand the fracture size 

distribution and orientation to generate the simulated DFN models and that the proportionality 

constants C31 and C32 depend on the relative orientation of the fractures to the orientation of the 

survey line or planes. 
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2.5.5 Volumetric Intensity Obtained by Combined Data Sampled on Rock Face and in 

Boreholes  

Zhang and Einstein (2000) proposed a methodology to estimate the volumetric intensity of 

discontinuities by combining the data sampled on boreholes with the data sampled on exposed 

rock faces. This method requires estimating the discontinuity size distribution from the trace data 

sampled in windows.  

To estimate the fracture size, Zhang and Einstein proposed a methodology to infer the fracture 

diameter distribution from the estimation of the true trace length distribution. The true trace length 

distribution can be estimated by considering circular windows and the bias associated with a 

circular window (Figure 2.6).  

 

 

Figure 2.6: Circular Sampling Window and the Three Types of Intersection between Discontinuities and a 

Circular Sampling Widow, Zhang and Einstein (2000). 
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The stereological relationship between the true trace length distribution and the discontinuity 

diameter is defined as: 

 

 𝑓𝑓(𝑙𝑙) =
1
𝜇𝜇𝐷𝐷

�
𝑔𝑔(𝐷𝐷)𝑑𝑑𝐷𝐷
√𝐷𝐷2 − 𝑙𝑙2

∞

1
  Equation 2.12 

 

where D is the diameter of the discontinuities; 𝑙𝑙 is the trace length of discontinuities on a planar 

exposure of infinite size; 𝑔𝑔(𝐷𝐷) is the probability density function of the diameter of discontinuities; 

𝑓𝑓(𝑙𝑙) is the probability density function of true trace lengths and 𝜇𝜇𝐷𝐷 is the mean diameter of 

discontinuities. 

Zhang and Einstein (2000) assume that 𝑓𝑓(𝑙𝑙) present the same distribution form as the probability 

density function of the measured trace lengths on a finite exposure 𝑔𝑔(𝑙𝑙), then by calculating its 

mean (𝜇𝜇1) and standard deviation (𝜎𝜎1) it is possible to completely determine 𝑓𝑓(𝑙𝑙). 

The corrected mean 𝜇𝜇1 of 𝑓𝑓(𝑙𝑙) can be obtained from the observed trace length in a finite circular 

window (Figure 2.6) as: 

 

 𝜇𝜇1  ≈ �̂�𝜇 =
𝜋𝜋(𝑁𝑁� + 𝑁𝑁0� − 𝑁𝑁2�)
2(𝑁𝑁� − 𝑁𝑁0� + 𝑁𝑁2�)

 𝑐𝑐 Equation 2.13 

 

where 𝑁𝑁� is the total number of traces intersecting the sampling window; 𝑁𝑁0 is the total number of 

traces with both ends censored; 𝑁𝑁2is the total number of traces with both ends observable;  �̂�𝜇 is the 

predicted mean trace length from 𝑁𝑁�,𝑁𝑁0 and  𝑁𝑁2 and 𝑐𝑐 is the radius of the sampling window. 
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Note that in Equation 2.14 when 𝑁𝑁� = 𝑁𝑁0� , then �̂�𝜇 → ∞, and when 𝑁𝑁� = 𝑁𝑁2� , then �̂�𝜇 → 0. These two 

special cases can be addressed by changing the sampling widow location and/or increasing the 

window radius. 

Assuming that 𝑓𝑓(𝑙𝑙) and g(𝑙𝑙) present the same coefficient of variation (COV), the standard 

deviation (𝜎𝜎1) of 𝑓𝑓(𝑙𝑙) can be obtained as: 

 

 𝜎𝜎1 = 𝜇𝜇1 (COV𝑙𝑙)𝐸𝐸  Equation 2.15 

 

were (COV𝑙𝑙)𝐸𝐸 is the coefficient of variation of the measured trace lengths. 

 

Once 𝑓𝑓(𝑙𝑙) is completely determined, the probability density function of the diameter of 

discontinuities 𝑔𝑔(𝐷𝐷) can be obtained assuming its distribution form. Zhang and Einstein (2000)  

provide equations describing the calculation of the Lognormal, Negative Exponential, and Gamma 

fit curves, based on the values of 𝑢𝑢1and 𝜎𝜎1 (Table 2.1). Zhang and Einstein also provide 

expressions to check the quality of the distribution form assumed (Table 2.2), based on the mean 

(𝜇𝜇𝐷𝐷) and standard deviation (𝜎𝜎) of 𝑔𝑔(𝐷𝐷)and the first (E(𝑙𝑙)) and third (𝐸𝐸(𝑙𝑙3)) moments of the true 

trace length distribution 𝑓𝑓(𝑙𝑙). 
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Table 2.1: Expressions for Determining mean (𝝁𝝁𝝁𝝁) and standard deviation (𝝈𝝈𝝁𝝁) of 𝒈𝒈(𝝁𝝁) from 𝝁𝝁𝟏𝟏and 𝝈𝝈𝝁𝝁, 

Zhang and Einstein (2000). 

Distribution 

form of 𝑔𝑔(𝐷𝐷) 

Mean 𝜇𝜇𝐷𝐷 (𝜎𝜎𝐷𝐷)2  

Lognormal 128(𝜇𝜇1)3

3𝜋𝜋3[(𝜇𝜇1)2 + (𝜎𝜎1)2] 
1536𝜋𝜋[(𝜇𝜇1)2 + (𝜎𝜎1)2](𝜇𝜇1)4 − 1822(𝜇𝜇1)6

9𝜋𝜋6[(𝜇𝜇1)2 + (𝜎𝜎1)2]2  

Negative 

Exponential 

2𝜇𝜇1
𝜋𝜋

 �
2𝜇𝜇1
𝜋𝜋
�
2

 

Gamma 64(𝜇𝜇1)2 − 3𝜋𝜋2[(𝜇𝜇1)2 + (𝜎𝜎1)2]
8𝜋𝜋3𝜇𝜇1

 
{64(𝜇𝜇1)2 − 3𝜋𝜋2[(𝜇𝜇1)2 + (𝜎𝜎1)2]}{3𝜋𝜋2[(𝜇𝜇1)2 + (𝜎𝜎1)2] − 32(𝜇𝜇1)2}

64𝜋𝜋2(𝜇𝜇1)2  

 

 

Table 2.2: Expressions for Checking the Quality of the Distribution Form Assumed, Zhang and Einstein 

(2000). 

Distribution 

form of 𝑔𝑔(𝐷𝐷) 

Expression  𝑁𝑁𝑜𝑜𝑁𝑁𝑒𝑒  

Lognormal [(𝜇𝜇𝐷𝐷)2 + (𝜎𝜎𝐷𝐷)2]5

(𝜇𝜇𝐷𝐷)8 =  
4𝐸𝐸(𝑙𝑙3)
3𝐸𝐸(𝑙𝑙)

 
The best distribution form of 

𝑔𝑔(𝐷𝐷) is the form which the left 

and right sides of the expression 

are closest to each other. 

 

Negative 

Exponential 
12(𝜇𝜇𝐷𝐷)2 =  

4𝐸𝐸(𝑙𝑙3)
3𝐸𝐸(𝑙𝑙)

 

Gamma [(𝜇𝜇𝐷𝐷)2 + 2(𝜎𝜎𝐷𝐷)2][(𝜇𝜇𝐷𝐷)2 + 3(𝜎𝜎𝐷𝐷)2]
(𝜇𝜇𝐷𝐷)2 =  

4𝐸𝐸(𝑙𝑙3)
3𝐸𝐸(𝑙𝑙)
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The total number of fractures in an objective volume can be estimated using the discontinuity 

diameter distribution 𝑔𝑔(𝐷𝐷) and the probability that a discontinuity with its centroid in the objective 

volume will intersect a borehole. Then the volumetric fracture intensity can be calculated as: 

 

 𝑃𝑃32 =
1
𝑉𝑉
� 𝑆𝑆(𝑘𝑘)
𝐸𝐸(𝑉𝑉)

𝑘𝑘=1

  Equation 2.16 

where 𝑉𝑉 is the volume considered; 𝑆𝑆(𝑘𝑘)is the entire area of the 𝑘𝑘th discontinuity and 𝑚𝑚(𝑉𝑉) is the 

number of discontinuities in the volume 𝑉𝑉. 

  

The problem with this methodology is that it requires exposed rock faces, something that is not 

always available, particularly in the initial stages of a project. Also, even if surface data is available 

this may not be representative of the underground conditions. 

 

2.6 Chapter 2 Summary 

In this chapter, an introduction to DFN modelling was presented, including the main properties of 

orientation, size and intensity needed to generate a basic DFN model. Fracture intensity is one of 

the key properties in DFN modelling, the nondirectional characteristics of P32, made it the 

preferred measure of fracture when generating DFN models. Since P32 cannot be measured 

directly, different methodologies to calculate P32 from P10 were presented. Of the methodologies 

presented, Chilès’ (2008) methodology, consistent with the Terzaghi Weight (1965), provides the 

best alternative when only borehole data is available, because it allows the direct calculation of 

volumetric intensity from borehole data, without the need for knowing the distributions of sizes of 

the fractures. Note that even though the size is not needed to define the intensity when using Chilès’ 
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methodology, the size and orientation of fractures are required to build a DFN model. In Chapter 

4 the relationship between P32 and P10 will be investigated using simulation for different fracture 

sizes, while in Chapter 5 the methodology proposed by Chilès (2008) will be assessed using 

different minimum bias angles. 
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Chapter 3: DFN model boundary effects 

3.1 Introduction 

Boundary effects are often disregarded by the engineering community when generating DFN 

models. This Chapter is dedicated to the study of the boundary effects that may influence the 

intensity of DFN models. A series of DFN models were generated using Fracman Software 

Version 8.1 (Golder Associates, 2021a), and a new methodology is then proposed to minimize and 

correct the effect of boundary effects on DFN models’ intensity. 

 

3.2 DFN Modeling to Investigate Possible Boundary Effects on Intensity 

In order to determine and quantify the impact of boundary effects on volumetric fracture intensity 

(P32), a set of DFN models were generated within a box of 150 m per side. P32 values were then 

calculated using progressively smaller boxes (Figure 3.1). The input P32 values were compared 

with the P32 obtained for the different volumes. The goal of this modelling exercise was to quantify 

the effect of the generation box on the target intensity of the models.  
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Figure 3.1: Generation Box (in Colour Red) and Sampling Boxes Used to Calculate P32 (in Colour Grey). Note 

that for Illustrative Purposes Only Some of the Sampling Boxes are Shown. 

 

Fracture locations were generated using both points and surface centres. For points, the generation 

point is the centre of the fracture, while in surface point, the generation point of the fracture is a 

random point within the fracture. According to the Fracman Manual (Golder Associates, 2021b), 

this option can reduce boundary effects when generating P32 values. Table 3.1 summarizes the 

properties used in the initial models. 
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Table 3.1: Input Parameter Used in the Models to Investigate Boundary Effects. 

Property Note 

Orientation Bootstrapped using a concentration parameter of 80 and the 

orientations presented on Figure 3.2 

Spatial model Enhanced Baecher with generation locations at fracture 

centre and surface point 

Intensity P32 (m-1) value 2  

Size: Lognormal Distribution Radius Mean (Xmean): 2-5-10-15-20-25 (m) and Standard 

Deviation (SD) of 40 % of the mean radius size 

Fracture Shape Hexagon with a constant aspect ratio of 1 

Number of equiprobable realizations 100 per scenario (1,200 realizations) 

 

 

 

Figure 3.2: Stereonet with Orientation Used for Bootstrapping, 563 Poles Including Terzaghi Weight. 
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3.3 Results 

Figure 3.3 summarizes the results for a mean fracture radius size of 20 m and a P32 input of 2 m-1. 

The results show a difference up to approximately 30% between the input intensity and the target 

intensity, thus demonstrating that the intensity can be highly affected by boundary effects.  

 

 

Figure 3.3: Boundary Effect and Effect of the Sampling Box in Sampled P32. Figure 3.3a: Using Fractures 

Generated in Centres. Figure 3.3b: Using Fractures Generated in Surface Points. 
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As shown in Figure 3.3, P32 sampled at a scale corresponding to the generation box yields the input 

P32, but as the volume of the sampling region is progressively reduced (assuming the coordinates 

of the center of every generation volumes remain the same), the average P32 value increases 

showing an asymptotic behaviour. Contrary to what may be expected, the models with fractures 

generated using its centre as reference present a better agreement with the input P32, and the 

average curve stabilizes faster than the one for the models in which fractures are generated using 

the surface points option.  

The variability increases as the sampling box size decrease, meaning that the ratio between 

sampling box size and fracture size influences the variability. For the case in which fractures are 

generated at the centre point, there is a marker change in the slope of the curves for the maximum 

and minimum values when the edge length of the generation volume is twice the fracture radius. 

The difference between input P32 and sampled P32 can be explained if one considers that the 

Baecher model (Baecher et al., 1978) - used as a standard spatial model by many engineers and 

practitioners – assumes that fractures are located uniformly in space, meaning that the fractures 

with generation points located outside the generation box and at a distance from the boundary 

smaller than a fracture diameter are not generated. In a hypothetical infinite generation space, those 

fractures would extend back into the original boundary box, but in a constrained model this results 

in a lower intensity near the boundary, this boundary effect was already described by Priest (1993), 

who recommended to analyzing a volume of interest that is smaller than, and at the centre of, the 

generation volume. Note that the size of the generation box will depend on the fracture size 

distribution. Samaniego and Priest (1984) indicated that using a sampling area located at the central 

quarter of the generation volume minimizes the boundary effects. Depending on the model size 
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this may significantly increase the computation time, and since the boundary effect is related to 

the fracture size, this may not reduce the boundary effect completely.  

The asymptotic behaviour observed in Figure 3.3, indicates that it is possible to define a correction 

factor for the input P32. This factor will be dependent on the size of the volume of interest, the size 

of the generation box, the fracture size distribution, and the fracture orientation. As an example, 

let us consider a model with a mean fracture size of 20 m and fractures generated at the centre 

point. For this model, DFNs were generated considering a target intensity P32 of 2 m-1, a volume 

of interest of 100 m per side and an input intensity, applied at the generation box of 150 m per 

side, calculated as 84% of the target intensity within the volume of interest. This reduction of 84% 

corresponds to the factor in which the average curve of P32 stabilizes (2.00
2.38

 = 84% of average 

sampled P32 presented on Figure 3.3a). The results of this exercise are presented in Figure 3.4.  

 

 

Figure 3.4: Effect of Correction Factor in Target intensity. 
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It can be observed in Figure 3.4 that using this methodology it is possible to obtain the target P32 

of 2 m-1 on the volume of interest and that the curve stabilizes approximately at a distance of 50 m 

from the border of the generation box. This distance is slightly lower than 3 times the mean fracture 

radius (60 m). Based on these results, models were generated for a range of fracture sizes (Table 

3.1), using a generation box size of 100 m plus 3 times the mean fracture radius, this assuming that 

the volume of interest corresponds to a box of 100 m per side. The results of this exercise are 

presented in Figure 3.5 and show that for the assumed fracture orientation and size, it is possible 

to avoid the boundary effects when using a generation box size of 100 m plus 3 times the mean 

fracture size.  

 

 

Figure 3.5: Effect of Box Size on Intensity, Using Generation Box Sizes Depending on Fracture Mean Radius. 
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To investigate the number of realizations required to obtain a meaningful sampled average P32 in 

the volume of interest, the cumulative average of the sampled P32 was plotted against the number 

of realizations (Figure 3.6). This provides a graphical representation that allows determining 

whether or not the number of realizations are converging to a constant sampled P32. 

As shown in Figure 3.6, the number of realizations required will depend on the size of the fractures. 

When fractures are small the plot converges quickly meaning that just a small number of 

realizations are needed to obtain a meaningful average P32. Conversely, when the fracture size 

increases a greater number of realizations are required for the results to converge. The analysis 

shows that for a mean fracture radius of 25 m, approximately 30 to 50 realizations are required, 

while for a mean fracture radius of 2 m, as few as 10 realizations may be sufficient to obtain a 

representative mean P32. Note that if the plots do not converge, then the number of realizations 

should be increased. 
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Figure 3.6: Cumulative Average of Sampled P32 for a Box of 100 m per Side (Volume of Interest). 

 

3.4 Effect of Input Intensity on Target Intensity  

The effect of the input intensity was investigated by generating models with different intensities 

and comparing the variation in percentage between the input P32 and the P32 sampled in region 

volumes of different sizes. For this exercise, fractures were generated in a generation volume with 

side length of 125 m, using the properties presented in Table 3.1. Table 3.2 shows the results of 

this exercise for a mean fracture radius of 25 m.  
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Table 3.2:  Percentage Variation Between Input P32 and Sampled P32 for Fractures with a Mean Radius of 25 m.  

Length of 

Box Side (m) 

Input P32  

1 (m-1) 2 (m-1) 3 (m-1) 4 (m-1) 5 (m-1) 

25 27.6% 24.2% 23.9% 23.9% 23.7% 

50 25.0% 24.0% 23.9% 24.0% 24.1% 

75 23.8% 23.4% 23.3% 23.3% 23.4% 

100 18.4% 18.3% 18.3% 18.3% 18.4% 

125  0.0% 0.0% 0.0% 0.0% 0.0% 

 

 

It can be observed in Table 3.2 that for a defined box size, the variation in percentage, with respect 

to the input intensity, is relatively constant. This suggests that if the other properties are maintained 

constant, the correction factor is independent of the fracture intensity; therefore, the same 

correction factor can be applied to models with different intensity values.  This will be useful in 

Chapter 4, in which the relationship between linear intensity and volumetric intensity will be 

investigated for a range of intensities. 

 

3.5 Methodology Proposed to Avoid Boundary Effect on Intensity  

Based on the results presented in this Chapter, a methodology is proposed to mitigate the impact 

of boundary effects on intensity when using DFN models generated in regions with different sizes.  

1. Define a Volume of Interest, this volume corresponds to the volume in which we want to 

define the target P32. 
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2. Generate fractures in a region bigger than the volume of interest. The size of the generation 

volume depends on the mean fracture size and its standard deviation.  A sensitivity analysis 

could be performed to estimate the size of the generation volume. 

3. Run an adequate number of realizations with an initial P32 close to the target P32. The 

number of realizations to perform will depend on the fracture size distribution. Cumulative 

average plots can be used to estimate the appropriate number of realizations. If the plots do 

not converge, then the number of realizations should be increased. Conversely, if the curves 

converge quickly to the average sampled P32, then it is possible to decrease the number of 

realizations, this will decrease the total computation time, obtaining similar results. 

4. Calculate P32 in the volume of interest and other smaller volumes to check that the curve 

of average sampled P32 has stabilized for the volume of interest. If the curve has not 

stabilized, it is necessary to increase the size of the generation region (go back to step 2). 

5. If for the volume of interest, the curve is in the asymptotic stretch, calculate the average 

P32 in the volume of interest and the ratio between input P32 and the average P32. 

6. Rerun the model using the initial P32 multiplied by the correction factor. 

7. Check that the P32 in the volume of interest corresponds to the target P32 within an 

acceptable margin of error. If the error is greater than the acceptable error, go back to step 6. 

Note that to avoid going back to Step 6, it is possible to generate several DFN models and 

keep only the ones that comply with the acceptable margin of error. For the purpose of this 

Thesis, a difference of ± 1% of the target intensity has been adopted. 

Figure 3.7 presents a flowchart with the methodology proposed to avoid boundary effect on 

intensity. 
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Figure 3.7: Flowchart with the Methodology Proposed to Avoid Boundary Effect on Intensity. 

 

 

1. Define a volume of interest (VOI)

2. Generate fractures in a region bigger than the VOI

3. Run adequate number of realizations and generate cumulative average plots of 
sampled P32 in the VOI 

Does cumulative average plots converge?

No: Increase the 
number of realizations

Yes: Number of 
realizations is adequate

4. Calculate P32 in the VOI and other smaller volumes to check that the average sampled 
P32 curve has stabilized in the VOI. Has the average sampled P32 curve stabilized in 
the VOI?

No: Increase the size of the 
generation region

Yes: The size of the generation 
region is adequate

5. Calculate the ratio between input P32 and the average P32 sampled in the VOI 

6. Rerun the model using the initial P32 multiplied by the correction factor  

7. Check that the P32 in the VOI corresponds to the target P32 within an acceptable 
margin of error.

Error of sampled P32 in the VOI is 
greater than acceptable margin of 
error: Model is considered inadequate

Error of sampled P32 in the VOI is within 
acceptable margin of error: Model is 
considered adequate
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3.6 Chapter 3 Summary 

Boundary effects are often ignored when building DFN models. In this Chapter we have discussed 

the impact of boundary effects in DFN models and proposed a method to address it. The proposed 

method considers both fracture size and the dimensions of the volume of interest. When applied, 

the method allows to generate models that honour the target intensity within the volume of interest. 
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Chapter 4: Variability and Borehole Intensity and Its Relationship with 

Volumetric Intensity 

4.1 Introduction 

The goal of the of the Chapter is to better characterise the relationship between the volumetric 

intensity (P32) and the linear fracture intensity (P10), and to quantify the reliability of the intensity 

parameters and its variation. As part of this study, we have considered DFN models in which we 

changed key input parameters, namely P32 and fracture size. A methodology to estimate P32 using 

simulation and its variability for a given P10 is then presented. 

 

4.2  DFN Model Definition and Input Parameters  

48 DFN models were generated in Fracman Software Version 8.1 (Golder Associates, 2021a) 

using as volume of interest a 100 m x 100 m x 100 m box region (centred in the origin) and the 

properties presented in Table 4.1. To avoid boundary effects, fractures were generated using the 

methodology proposed in Chapter 3. Fractures were generated within a region volume with a 

variable side length, equal to 100 m plus 3 times the mean fracture ratio. Once the DFN models 

were generated, the intensity P32 was sampled in the volume of interest and only models with a 

difference smaller than 1% of the target intensity were considered. 

 

 

 

 

 

 



  

38 

 

Table 4.1: Input Parameter Used in the Models to Investigate the Reliability of Borehole Derived Intensity 

Property Note 

Orientation Bootstrapped using a concentration parameter of 80 and the 

orientations presented on Figure 4.2 

Spatial model Enhanced Baecher with generation locations at fracture centre  

Intensity P32 (m-1) values 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8  

Size: Lognormal 

Distribution 

Radius Mean (Xmean): 2-5-10-15-20-25 (m) and Standard 

Deviation (SD) of 40 % of the mean radius size 

Fracture Shape Hexagon with a constant aspect ratio of 1 

Number of equiprobable 

realizations 

100 realizations with sampled intensity ± 1% of target intensity 

per scenario (4,800 valid realizations in total) 

 

The DFN models were sampled using 10 synthetic wells (Figure 4.1), and the orientations of the 

wells (boreholes) were defined trying to cover the whole stereonet area. Table 4.2 presents the 

coordinates and orientations of the wells used, while Figure 4.2 shows the fracture orientations 

used as input and blue lines representing the blind zones of each well. Terzaghi (1965) introduced 

the term blind zone of a drill hole to describe the locus of the poles of joints that are parallel to the 

drill hole and are less likely to be observed. Note that for illustrative purposes the blind zones of 

each well are presented only as a line, but all poles near that line (normally ±20° from the line) are 

less likely to be observed in that particular well. 
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Figure 4.1: Location of Synthetic Wells, Oblique View from the Southwest. 

 

 

Figure 4.2: Stereonet with Orientation Used for Bootstrapping. Blind Zones of each Well are presented as blue 

lines. 
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Table 4.2: Synthetic Wells Coordinates and Orientations. 

Well East (m) Nort (m) Elevation (m) Length (m) Trend (°) Plunge (°) 

Well 1 0 -45 0 90 000 0 

Well 2 0 0 45 90 000 90 

Well 3 0 -45 0 90 000 30 

Well 4 -45 -45 45 90 045 60 

Well 5 -45 0 0 90 090 30 

Well 6 -45 45 45 90 135 60 

Well 7 0 45 0 90 180 30 

Well 8 45 45 45 90 225 60 

Well 9 45 0 0 90 270 30 

Well 10 0 -45 0 90 315 0 

 

4.3 Model Results 

When sampling the DFN models with the synthetic wells, a linear relationship between input P32 

and sampled P10 was observed, this linear relationship was already demonstrated using DFN 

modelling by Dershowitz (1992) and Elmo (2014).  When the models are generated using the 

methodology proposed in Chapter 3 to mitigate the boundary effects, the relationship between P32 

and P10 is independent of the fracture size used, note that the fracture size is a parameter that is not 

possible to quantify directly in boreholes. The most important consequence of this is that P32 can 

be estimated directly from borehole intensity. Figure 4.3 shows the linear relationship observed 

between input P32 and P10 sampled for different input intensities and fracture sizes.  As expected, 

greater sampled P10 dispersion is observed for greater values of input P32. 
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Figure 4.3: Sampled P10 in Wells for a Given Input P32. 
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Table 4.3 presents the calculated ratio between input P32 and sampled P10. As expected, the wells 

that present more fractures near their blind zone, present the greatest ratios. While the wells that 

present few fractures near their blind zone present the lower ratios. In this case, the well that 

presents the higher ratio corresponds to Well 5, whose blind zone intersects two pole 

concentrations (Figure 4.2). For this well, P32 is on average 2.3 times the average P10. 

 

Table 4.3: Ratio Between Input P32 and Sampled P10 per Well. 

Well Number of 

Realizations 

Minimum 

Ratio 

Maximum 

Ratio 

Average 

Ratio 

SD  

Ratio 

Well 1 4,800 1.41 3.10 1.90 0.16 

Well 2 4,800 1.25 3.10 1.87 0.16 

Well 3 4,800 1.38 3.33 1.96 0.17 

Well 4 4,800 1.29 3.60 2.05 0.18 

Well 5 4,800 1.61 3.91 2.34 0.22 

Well 6 4,800 1.30 2.90 1.88 0.15 

Well 7 4,800 1.22 2.90 1.83 0.14 

Well 8 4,800 1.22 3.21 1.96 0.17 

Well 9 4,800 1.38 3.75 2.07 0.18 

Well 10 4,800 1.20 3.00 1.82 0.15 

 

When plotting the probability density of the sampled P10, it is observed that P10 values are normally 

distributed, and when considering changes in fracture intensity, the mean and standard deviations 

show a linear relationship. Figure 4.4 presents an example of the probability distribution obtained 
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for an input intensity of 2 m-1, and the linear relationship obtained between the mean and standard 

deviation of sampled P10, for a range of input P32 modelled. 

 

 

Figure 4.4: Left: Sampled P10 Probability Distribution for an Input P32 of 2 m-1, Black Dashed Lines Correspond 

to Normal Distributions Using the Mean and SD of Each Data Set. Right: Mean (μ) and Standard Deviation 

(σ) of Sampled P10 Follow a Linear Relationship. 

 

The results show that the mean and standard deviation of the sampled P10 follow a linear 

relationship. Therefore, for a given fracture orientation it is possible to estimate the P10 variability 

for any given P32 using a normal probability function. Since P10 and P32 follow a linear relationship, 

using probability functions and interpolation, it is then possible to estimate the variability of P32 

for any given P10.  

As an example, Figure 4.5 shows the P32 variability obtained for a P10 of 2.5 m-1. Note that the 

purpose of this exercise was to show that for a given P10 it is possible to obtain a range of P32 

values with a certain degree of confidence. The limitation of this methodology is that to know the 



  

44 

 

variability of P32 for a given P10, it is necessary first to obtain the relationship between P32 and P10 

by simulation. 

 

 

Figure 4.5: Left: Estimated P32 Variability for a P10 Value of 2.5 m-1. Right: Estimated P32 Probability 

Distribution. 

 

4.4 Recommended Methodology to Estimate Volumetric Intensity Using Simulation 

If we consider that the intensity is not affected by fracture size, and that follows a linear 

relationship between P10 and P32, we can estimate the volumetric intensity using DFN modelling. 

Another advantage of using DFN modelling is that it is possible to run several realizations and 

quantify the variability and distribution of the volumetric intensity for a given linear intensity. The 

following methodology is recommended: 

1. Define a volume of interest and follow the methodology proposed in  

Chapter 3 to reduce boundary effects. 

2. Since the relationship between P10 and P32, is dependent of the orientation of the fracture 

with respect to the sampling survey (borehole), it is recommended to use the same 
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orientation as the actual boreholes in which the intensity was measured. Synthetic 

boreholes can be generated in a relatively small model (size will depend on the fracture 

size) using the orientations of the actual boreholes or a reduced number of boreholes that 

follow a proportion of the total orientations.   

3. Define a range of P32 values of interest and generate the line that describes the relationship 

between P32 and P10. Since the relationship is linear, if enough realizations are generated 

only a point greater than the interval of interest would be needed. Based on the result 

obtained it is considered that 100 realizations results are appropriate.  Note that since the 

intercept of the linear relationship between the mean and standard deviation of the sampled 

P10 is nonzero, at least two points are needed to calculate the linear relationship between 

the mean and standard deviation.  

4. Calculate P10 in actual boreholes and compare this value with the P10 sampled in the 

synthetic boreholes. P10 can be obtained as the number of fractures registered per metre 

during core logging or calculated using televiewer data. Then using the linear relationship 

between P32 and P10 (obtained in Step 4) it is possible to convert actual P10 to an equivalent 

P32 (Equation 2.11). Using probability functions and interpolations it is possible to estimate 

the P32 variability and probability density for the actual P10 (as presented in Figure 4.5). 

 

4.5 Chapter 4 Summary 

The main conclusion that can be drawn from this Chapter is that when the boundary effects are 

mitigated, the relationship between P10 and P32 is independent of fracture size. Therefore, it is 

possible to estimate volumetric intensity directly from borehole data. Note that this result should 
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not be construed to suggest that fracture size is not an important parameter; indeed, fracture size 

remains a required input for the generation of a DFN model. 

The second conclusion is that P32 and P10 follow a linear relationship, and the results are a further 

demonstration of the work by Dershowitz (1992) and Elmo (2014). The implication of this is that 

through simulation it is possible to obtain a relationship between P32 and P10 even if the borehole 

data is not oriented.  A methodology to estimate P32 from P10 using DFN modelling was presented, 

which makes it possible to estimate the P32 variability and the probability density for a given P10.  
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Chapter 5: Volumetric Intensity Derived from Borehole Intensity 

5.1 Introduction 

It is common practice in the DFN community to calculate linear intensity using drill run lengths 

and restrict the minimum bias angle to 15° when calculating volumetric intensity (Chilès et al., 

2008).  This Chapter is dedicated to studying the impact of changing interval length and the 

minimum bias angle in the calculated P32. Based on the result of the analysis performed, a 

methodology to calculate P32 from borehole intensity is then presented. The main purpose of this 

methodology is to capture the spatial variation in intensity, while avoiding artificially increasing 

or decreasing the intensity of the intervals.  

 

5.2 Effect of the Minimum Bias Angle Considered to Estimate P32 from P10 

Using the DFN model presented in Chapter 4, we calculated the volumetric intensity (P32) from 

the linear intensity (P10), using the correction proposed by Chilès (2008) presented in Equation 

2.4. Note that P32 was calculated using the whole well length and the analyses focused on 

evaluating the effect of the minimum bias angle α (Section 2.3.1) in the estimation of P32. Three 

cases were considered: 

• Minimum α of 15°. 

• Minimum α of 5°. 

• Minimum α of 1°. 

where α represents the acute angle between the scanline and the fracture (see Figure 2.3). 
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5.2.1 Results of the Effect of the Minimum Bias Angle  

Table 5.1 below presents a summary of the ratios between input P32 and the P32 calculated from 

linear intensity along the borehole. It can be observed that when limiting the alpha angle to a 

minimum of 15°, P32 is underestimated, especially in boreholes parallel to the fractures (up to 24% 

for Well 5). On the other hand, when the minimum bias angle decreases, the ratio starts to get 

closer to one. It is also worth noticing that the standard deviation increases when the minimum 

angle decreases, suggesting that the dispersion of the data increase for low angles. This effect can 

be observed in Figure 5.1, in which the input P32 is compared with the sampled P32 in Well 5, using 

a minimum angle of 15° and 1°, respectively. Figure 5.1 shows that a good agreement between the 

input P32 and the calculated P32 is obtained when using a minimum angle of 1°.  These results are 

in line with Chilès’ (2008) recommendations of not discarding data by introducing a minimum 

bias angle.  

The problem with this approach is that is limited to calculate average P32 when several boreholes 

or scanlines with different orientations are available, but it does not allow for calculating the spatial 

variability of intensity along the wells. Because there is the tendency to calculate linear intensity 

using run lengths, using smaller angles will result in intervals with high artificial variability in the 

calculated intensity. Note that the practice of using run lengths as reference intervals has not 

scientific basis, and is largely dictated by a sort of empirical field practices which are difficult to 

change. We would suggest to use linear intensity values determined for geotechnical domains, 

which may include several adjacent core-runs. The effects of using different sampling interval 

length on the calculated P32 will be discussed in Section 5.3.1. 
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Table 5.1: Ratio Between Input P32 and Calculated P32 from Borehole Intensity. 

Well Minimum α of 15° Minimum α of 5° Minimum α of 1° 

Average 

Ratio 

SD of 

Ratio 

Average 

Ratio 

SD of 

Ratio 

Average 

Ratio 

SD of 

Ratio 

Well 1 1.12 0.10 1.04 0.11 1.02 0.12 

Well 2 1.15 0.11 1.05 0.12 1.02 0.13 

Well 3 1.19 0.11 1.07 0.12 1.03 0.14 

Well 4 1.14 0.11 1.05 0.12 1.03 0.13 

Well 5 1.24 0.13 1.08 0.14 1.03 0.16 

Well 6 1.11 0.10 1.04 0.10 1.01 0.11 

Well 7 1.11 0.10 1.04 0.10 1.02 0.12 

Well 8 1.16 0.12 1.05 0.12 1.02 0.13 

Well 9 1.15 0.11 1.05 0.12 1.02 0.13 

Well 10 1.13 0.10 1.05 0.11 1.03 0.12 

Total 1.15 0.12 1.05 0.12 1.02 0.13 
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Figure 5.1: Input P32 compared to Calculated P32 for Well 5. Left Chart: Using a Minimum Angle of 15°. Right 

Chart: Using a Minimum Angle of 1°. 

 

5.3 Effect of Interval Length in Calculated P32 from P10 

The effects of varying the interval length on the calculated P32 were investigated using simple DFN 

models with constant fracture orientations. When the fracture orientation and the sampling length 

are constant, Equation 2.4 can be expressed as: 

 

 𝑃𝑃�32 =
1
𝐿𝐿
�

1
sin𝛼𝛼

𝑁𝑁

𝑖𝑖=1

=  
𝑁𝑁

𝐿𝐿 sin𝛼𝛼
=  

𝑃𝑃10
sin𝛼𝛼

  Equation 5.1 

 

where α represents the acute angle between the scanline and the fracture (see Figure 2.3). 
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A volume of interest was defined in a box of 100 m per side, and DFN models were generated 

using a box size according to the recommendations presented in Chapter 3. DFN models were 

sampled with a 100 m long vertical well, thus the α angle is equal to the input plunge of the fracture 

and the results are independent of the fracture trend. Table 5.2 summarizes the properties used in 

the models to investigate the effects of the interval length in the calculated P32. 

 

Table 5.2: Input Parameter Used in the Models to Investigate the Effects of Interval Length in Calculated P32. 

Property Note 

Orientation Constant Plunge of 90° – 45° – 30° – 15° – 5° – 2 – 1° 

Spatial model Enhanced Baecher with generation locations at fracture centre  

Intensity P32 (m-1) values 1 – 2 – 4 – 8  

Size: Lognormal 

Distribution 

Radius Mean (Xmean): 2 – 10 – 20 (m) and Standard Deviation 

(SD) of 40 % of the mean radius size 

Fracture Shape Hexagon with a constant aspect ratio of 1 

Number of equiprobable 

realizations 

10 realizations per model (840 realizations in total from the 

combinations of intensity, size and α) 

 

 

The well was discretized in regular intervals of 2 m, 5 m, 10 m, 20 m, 50 m, and 100 m. At the 

same time, boxes centred in each interval, and with the same side length as the intervals were used 

to calculate the actual P32 per interval (sampled P32). The actual P32 per interval was then compared 

with the P32 calculated using Equation 5.1, based on the P10 values sampled per well interval. Note 

that for this exercise it was not necessary to estimate the P32 correction factor, since the actual P32 
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in each box was compared with P32 calculated in each interval, for the same reason the actual and 

sample P32 values are higher than the input P32 values presented in Table 5.2.  

 

5.3.1 Results of the Model to Investigate the Effect of the Interval Length 

Figure 5.2 presents the results of the comparison between actual P32 and calculated P32 for different 

interval sizes. For small α angles the dispersion increase significantly for small size intervals, with 

many values out of the graph scale. On the other hand, for 50 m and 100 m intervals, the values 

tend to follow the line that defines the linear fit of the data. Note that the slope of the line is close 

to one for all cases, even for those with great dispersion.  This effect can be explained since for 

small α angles the probability to intersect a small interval is low, therefore many of the small 

intervals present P32 values of zero. Contrastingly, the intensity for those intervals that do intersect 

a fracture is extremely high. Those artificial low and high intensities diverge from the actual 

intensity, but when they are averaged, they result in P32 values close to the actual intensity, as is 

presented in Table 5.3. This effect was already discussed by (Hekmatnejad et al., 2017), who found 

that on a composite scale (interval scale), fluctuations in calculated P32 are large and there may be 

a significant deviation between the calculated and the actual value of P32, although in average the 

values tend to the actual P32. 

It can be observed in Table 5.3 that even when the P32 calculated in small intervals present a high 

dispersion, their mean tent to represent the actual P32. This is an interesting result, that suggests 

that it would be possible to reduce the dispersion by using longer intervals for small α angles and 

smaller intervals for greater α angles. 

 

 



  

53 

 

 

Figure 5.2: Actual P32 Compared to Calculated P32 Using Different Interval Sizes and α Angles. Black Line Correspond to the Linear Fit of the Data. 



  

54 

 

Table 5.3: All Cases Combined (α =1,2,5,15,30, 45 and 90°), Using a Minimum α of 1°, Equivalent to a 

Maximum Factor of 57.3. 

Input 

P32 

(m-1) 

Average Actual P32 (m-1) Calculated P32 (m-1) 

Box Size Per Side Well interval 

2m 5m 10m 20m 50m 100m 2m 5m 10m 20m 50m 100m 

1 1.2 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 

2 2.3 2.3 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 

4 4.5 4.5 4.4 4.4 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 

8 8.9 8.9 8.9 8.8 8.8 8.8 8.9 8.9 8.9 8.9 8.9 8.9 

1 1.2 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 

2 2.3 2.3 2.2 2.2 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 

 

To investigate the appropriate length to use for each α angle, the maximum calculated P32 was 

plotted for each interval length.  Figure 5.3 shows the maximum calculated P32 per interval for 

input intensities of 1 m-1 and 8 m-1.  The data presented in Figure 5.3 suggests that for α angles 

greater than 15 °, intervals with lengths ranging from 10 m to 15 m can be used. While for α angles 

between 2° and 15 °, intervals with a length between 20 to 50 m need to be used, finally for α 

angles between 1° and 2°, an interval length greater than 50 m is required. 
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Figure 5.3: Maximum Calculated P32 per Interval Length for Input Intensities of 1 m-1 and 8 m-1.  
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5.4 Proposed Methodology to Calculate P32 from Borehole Intensity  

Based on the analyses performed, a methodology to calculate P32 from borehole intensity is 

proposed. This methodology can be easily implemented using code, and the idea behind this is to 

allow the calculation of P32 in intervals small enough to capture the spatial variation in intensity, 

but at the same time without artificially increasing or decreasing the intensity of the interval. This 

is very useful when the interval intensity is used as input in block models, in which artificial 

changes in intensity may affect the result of the interpolation values in the block model. Block 

models of P32 can be built directly from the borehole composite (borehole interval) data to predict 

larger supports (blocks), via spatial interpolation or geostatistical techniques (Hekmatnejad et al., 

2017). 

The following methodology is proposed to calculate P32 from borehole intensity: 

• Since P32 is an additive variable, it is possible to discretize a borehole in different 

overlapping intervals and calculate P32 as the addition of the P32 calculated in each interval, 

as long as the fractures belonging to each interval are not double-counted.  

• Based on the previous, it is possible to calculate P32 using the correction proposed by Chilès 

(2008) (Equation 2.4),  using regular intervals whose length depends on the magnitude of 

the acute angle (α) between the scanline and the fracture. Table 5.4 presents the 

recommended length intervals for each angle. 

• Add the P32 values calculated using the smallest intervals, this addition corresponds to the 

total P32.  

Note that if only the average intensity is required, it is recommended to calculate P32 using the 

whole length of the borehole or the length within the structural domain of interest. It is still 
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recommended to limit the minimum α angle to 1°, to avoid extreme high weighting factors or 

division by zero.  

 

Table 5.4: Recommended Interval Length to Calculate P32. 

α Angle (°) Interval Length to Calculate P32 Notes 

15 ≤ α 10 m to 20 m Use a length similar to the size of the block 

model cells. 

2 ≤ α < 15 20 m to 50 m P32 must be calculated within the same Structural 

Domain 

1 ≤ α < 2 50 m to total borehole length It can be extended at the full well length. P32 must 

be calculated within the same Structural Domain 

 

 

5.5 Validation of Proposed Methodology 

The proposed methodology was tested using the DFN model and synthetic wells presented in 

Section 4.2. The interval lengths used, depending on the acute angle between the well and the 

fracture, are presented in Table 5.5. 
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Table 5.5: Intervals Used to Test the Methodology Proposed to Calculate P32 Depending on α Angle. 

α Angle (°) Interval Length to Calculate P32 Maximum Weighing Factor per Fracture 

15 ≤ α 15 m  3.9 

2 ≤ α < 15 30 m 28.7 

1 ≤ α < 2 90 m (well total length) 57.3 

 

5.5.1 Results Using the Methodology Proposed 

Figure 5.4 shows P32 values calculated for a range of input P32 for each of the synthetic well 

considered. Independent of the borehole direction, a good agreement is observed between the input 

P32 and the median (Percentile 50%) of calculated P32. Figure 5.5 presents a comparison between 

the proposed methodology and the P32 values calculated in Well 5 using different interval sizes 

and minimum α angles, while Table 5.6 presents the main finding for each one of the cases 

analyzed.  

As shown in Figure 5.5 and Table 5.6, the methodology herein proposed is the one that provides 

the best result in terms of a good agreement between input P32 and calculated P32, and at the same 

time maintaining a relatively low variability.  

Note that when a minimum angle of 15° is considered the mean P32 values calculated are 

underestimate. This is especially relevant considering that it is common practice to use a minimum 

angle of 15° (Chilès et al., 2008) to restrict the maximum weighting factor. 

An interval of 3 m corresponds to the typical length of a drill run. It is common practice (but not 

necessarily best practice) to calculate linear intensity on a run basis and then estimate P32 using the 

same length of the run. The analyses performed show that using a length of 3 m, even when 

restringing the minimum angle to 15 °, produces a high variability on the calculated P32, meaning 
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that in many cases the calculated P32 will be under or overestimated. Note that, in practice, 

depending on the drilling operation and quality of the rock, the actual drilling run lengths are 

variable and they may be significantly smaller than 3 m. This means that if P32 is calculated using 

those shorter intervals, the P32 variability may be much higher than the one calculated using 3 m 

intervals. These results agree with the work by Elmo and Stead (2021) and Yang et al. (2020) on 

the problems of using run lengths to calculate RQD (rock quality designation, Deere, 1967), which 

is an empirical rock mass quality parameter linked to fracture frequency (i.e., linear intensity). 
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Table 5.6: Summary of Main Finding for Each One of the Cases Analyzed 

Case Min. α 

Angle (°) 

Interval 

Length (m) 

Main findings 

Case 1 1  3  • Linear fit and mean calculated values present a good 

agreement with input values. 

• The calculated values present high variability. 

• Mean values differ from median values (not normally 

distributed). 

Case 2 15 3 • Median P32 values calculated are underestimated. 

• Mean slightly higher than median values. 

• The calculated values present high variability. 

Case 3 1 15 • The linear fit and mean calculated values present a 

good agreement with the input values. 

• Mean slightly higher than median values. 

• The calculated values present high variability. 

Case 4 15 15 • Median P32 values calculated are underestimated. 

• The calculated Mean and median values are similar. 

• Relatively small variability. 

Proposed 

Methodology 

Variable 

as per 

Table 5.5 

Variable as 

per Table 

5.5 

• The linear fit and mean calculated values present a 

good agreement with input values. 

• The calculated Mean and median values are similar. 

• Relatively small variability. 
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Figure 5.4: P32 Calculated per Well Using the Methodology Proposed. 
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Figure 5.5: P32 Values Calculated in Well 5 Using Different Interval Sizes and Minimum α Angles. 
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As another method of validation, P32 values were calculated using a grid with a total volume and 

location equal to the volume of interest, using cells of 10 m per side. In the cells, P32 is calculated 

as the area of fractures within the grid cell divided by the volume of the grid cell.  

 Figure 5.6 presents an example of the P32 values calculated in the grid for one realization using an 

input P32 of 6 m-1 and a mean fracture radius of 20 m, while Figure 5.7 shows a cross-section with 

a comparison between the grid values and the values calculated in the wells.  

 

 

Figure 5.6: P32 values calculated in Grid for One Realization Using an Input P32 of 6m-1 and Mean Fracture 

Radius of 20 m. 

 

As shown in Figure 5.7, when applied, the proposed methodology captures the spatial variation of 

P32 at the same time a good agreement is obtained between the actual P32 (P32 values calculates in 

the grid) and the calculated P32 in the wells. On the other hand, when P32 is calculated in 3 m 

intervals, high variability is observed, with values that are artificially low or high and that do not 

Min.: 4.05 m-1

Max.: 8.07 m-1

Mean:6.00 m-1

SD: 0.66 m-1
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agree with the actual values calculated on the grid cells. Figure 5.8 presents the result of 100 

realizations as cumulative frequency curves of actual P32 in the grid cells and the calculated P32 in 

wells. It can be observed, that of the cases analyzed, the methodology proposed is the one that 

produces the best results, especially when compared with the common practice of limiting the 

minimum angle to 15° and calculating P32 using the drill run length (3 m). 
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Figure 5.7: P32 Values Calculated in Grid for One Realization- Cross-Sections and Comparison with Calculated P32 Values in Wells. 

Cross-Section View from SW - Min α to 1° in 3 m Intervals

Cross-Section View from SW – Proposed MethodologyCross-Section View from SW – Min. α to 15° in 3 m Intervals

Actual P32 m-1 In Cells

Calculated P32 m-1 in Wells

Plan View – Cros-Section Location and Wells

Cros Section Location  Presented in Colour Red
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Figure 5.8: Cumulative Frequency Curves for Actual P32 in Grid Cells and Calculated P32 in Wells for an Input 

P32 of 6 m-1 and a Mean Fracture Radius of 20 m. Values Presented Correspond to the Result of 100 

Realizations. 

 

5.6 Chapter 5 Summary 

This Chapter was dedicated to the study of the effects of the minimum bias angle and the interval 

length on P32 values calculated from linear intensity. The result of the analysis performed showed 

that when using a minimum angle of 15°, corresponding to the value commonly used by the DFN 

community, the mean P32 values calculated are underestimated. On the other hand, when the drill 

run lengths are used to calculate P32, an artificial variability in the data is introduced. Based on the 

previous observations, a methodology to calculate P32 using variable lengths, depending on the 

angle between the fractures and the sampling line (borehole) was proposed. The main purpose of 

this methodology is to capture the spatial variation in intensity and at the same time avoid 
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increasing or decreasing artificially the intensity of the intervals. This is very useful when the 

interval intensity is used as input for interpolating P32 values in block models.  

The proposed methodology was compared with current practices of constraining the minimum bias 

angle to 15° and calculating P32 using small intervals (drill run lengths), showing that when the 

proposed methodology is used a better agreement is observed between actual and calculated P32. 
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Chapter 6: Conclusion 

6.1 Research Summary 

A main component of the rock mass characterization is the characterization of discontinuities, 

which play a major role in the mechanical and hydraulic properties of rock masses. This thesis 

focused on volumetric fracture intensity, which is one of the key properties of fracture 

characterization for DFN modelling and that is not possible to measure directly on rock masses.  

 

The problem of estimating volumetric fracture intensity from information observed along 

boreholes was addressed by generating a series of DFN models and then comparing the volumetric 

intensity of those models with the volumetric intensity calculated from borehole intensity, using a 

methodology based on the methodology proposed by Chilès (2008).  

 

During the development of this research the following activities were performed: 

• The boundary effects on DFN models were investigated and a methodology to mitigate the 

boundary effects on intensity was proposed. 

• The relationship between borehole fracture intensity and volumetric fracture intensity was 

investigated and a methodology to quantify the reliability of the volumetric fracture 

intensity derived from borehole fracture intensity was proposed. 

• A methodology to calculate P32 from borehole P10 was proposed. This methodology allows 

capturing the spatial variation in intensity while at the same time avoiding increasing or 

decreasing artificially P32 calculated in borehole intervals. This is very useful when the 

interval intensity is used as input for block modelling of P32 values. 
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6.2 Main Finding and Conclusions 

The main findings of this research can be summarized as follows: 

• The analyses performed confirmed that DFN models do present boundary effects on 

intensity, something that was already discussed by Priest (1993), but that it is often 

disregarded when building DFN models.  

• The boundary effect on the fracture intensity and other derived analyses may be 

considerable. It is necessary the evaluation and quantification of the boundary effects 

before considering the application of any DFN. 

• It is possible to minimize the boundary effect for DFN models when the generation box is 

defined as a function of the fracture size and the dimensions of the volume of interest. A 

correction factor for the input P32 can be defined to correct the intensity generated in the 

volume of interest. This factor will be dependent on the size of the volume of interest, the 

size of the generation box, the fracture size distribution, and the fracture orientations. 

• The analysis showed that when the boundary effects are mitigated, the relationship between 

P10 and P32 is linear and independent of the fracture size. This implies that it is possible to 

estimate volumetric intensity directly from borehole data. Note that this result should not 

be construed to suggest that fracture size is not an important parameter; indeed, fracture 

size remains a required input for the generation of a DFN model. 

• Since the rock mass behaviour is controlled by fracture connectivity and intensity is 

independent of the fracture size, it demonstrates that P32 is not the ideal parameter to define 

by itself, rock strength or rock mass quality.  

• The analysis showed that using simulation it is possible to quantify the variability and 

distribution of the volumetric intensity for a given linear intensity.  Note that more than a 
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unique P32 value can be obtained for a given P10 value, but whit this methodology is 

possible to quantify the probability to obtain a certain P32 for a given P10. 

• The general practice of constraining the minimum bias angle to 15° and calculating P32 

using small intervals (drill run lengths), results in underestimation and high variability of 

the calculated P32. When using the methodology proposed by Chilès (2008) to calculate 

P32, the size of the interval has a great impact on the variability of the calculated P32. Using 

small intervals will increase artificially the variability of the calculated P32, even when the 

average P32 tends to be close to the actual P32. On the other hand, when limiting the 

minimum angle between the fracture and the borehole to a minimum of 15°, the mean 

calculate P32 values are underestimated.  

• The proposed methodology to calculate P32 using variable lengths, depending on the angle 

between the fractures and the borehole, allows to capture the spatial variation in intensity 

and at the same time avoid increasing or decreasing artificially the intensity of the intervals. 

This is very useful when the interval intensity is used as input for interpolating P32 values 

in block models. 

• When only the average volumetric intensity is required, it is recommended to calculate P32 

using the total length of the borehole or the length within the structural domain of interest. 

In this case, it is recommended to limit the minimum α angle to 1°, to avoid extreme high 

weighting factors or division by zero. 

 

 

 



  

71 

 

6.3 Limitations and Assumptions 

The research described previously is subject to the following limitations and assumptions: 

• The main limitation of this study is that the analyzes presented are purely simulated and 

have not yet been applied to real data. However, we need to consider that is impossible to 

measure P32 directly in the field, and therefore we will always have to rely on simulations 

to determine P32. The concept of validating modelling results with field data does not apply 

to P32 values since it is not possible to directly compare calculated P32 with the actual P32 

of the rock mass (unknown). 

• All fractures have been assumed planar and extremely thin. Although fractures in nature 

can be curved and present thickness, it is common practice to assume that discontinuities 

are planar (Warburton, 1988; Zhang and Einstein, 1998).  

• It was assumed that the fractures present a hexagonal shape with a constant aspect ratio 

of 1. Although the assumption that fractures are equidimensional is commonly used, some 

investigators indicate that fractures are in reality not equidimensional (Zhang and Einstein, 

1998). 

• It was assumed in the models that fractures are randomly and independently distributed in 

space. In reality, fracture intensity may be depended on geological features, for example, a 

common geological observation is that fracture intensity is controlled by the distance to 

major faults (McCaffrey et al., 2003).  

• The analysis performed assumed that all fractures intersected by the synthetic wells are 

identified. In practice, there are biases when gathering fracture intensity from boreholes. 

For example, besides the orientation bias, it is common that during borehole logging not 

all-natural discontinuities are counted and some artificial fractures (e.g., mechanical breaks 
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generated during drilling and handling of the core samples) are counted as natural fractures. 

Even if the fracture intensity is calculated from televiewer data (i.e., data obtained with 

equipment that captures images of the borehole wall), the quality of the data depends on 

the quality of the images and the interpretation performed of each discontinuity.  

• The methodology proposed to avoid boundary effects may be impracticable when the 

fractures are too big. For big fractures it would be necessary to generate an extremely big 

generation box, that may require extensive computation time.  

 

6.4 Recommendations for Future Works 

The following recommendations for future works are made: 

• We would recommend to further study the application of the proposed methodology to 

calculate P32 using variable lengths depending on the angle between the fractures and the 

borehole, to an actual project. 

• We would recommend to further quantify the error of P32 values interpolated in a block 

model from borehole data, and compare the results obtained using the proposed 

methodology with the results obtained using the common practice of calculating P32 using 

drill run lengths and limiting the minimum angle between the borehole and the fracture to 

15°. This can be done by generating a DFN model of known P32, then the actual P32 can be 

estimated in each block, and those values can be compared to the interpolated values from 

the borehole intervals. This will allow quantifying the benefits of using the methodology 

proposed in block modelling of P32. 

• We would recommend to further test the validity of the methodology proposed to calculate 

P32, using a geocellular generated DFN model, in which the intensity of the DFN in each 
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cell (block) can vary.  Then compare the sampled volumetric intensity of each cell with the 

volumetric intensity calculated from the borehole intersections with the DFN. This will 

allow quantifying the ability of the proposed methodology to capture the spatial variation 

in intensity. 
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