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Abstract

This dissertation consists of two main chapters, each pertaining to the enumerative geometry
of Calabi-Yau manifolds with an action:

In Chapter 2 we study Euler characteristics of the G-invariant Hilbert schemes of points
on an Abelian surface with a symplectic action by finite group G. One can package these
Euler characteristics into generating series, whose reciprocal we prove is a holomorphic
modular form for a particular congruence subgroup. For the standard involution of mul-
tiplication by -1, we prove an analogue of the Yau-Zaslow formula–that is, these Euler
characteristics determine a weighted number of curves invariant under the involution and
with rational quotient.

Motivated by the results of Chapter 2, in Chapter 3 we develop in more generality a
theory counting invariant curves in Calabi-Yau threefolds with an involution. Our theory
conjecturally results in analogues of the Gopakumar-Vafa invariants which count invariant
curves of genus g and with genus h quotient. We prove the conjecture and compute all
invariants in the case of a local Abelian surface with involution multiplication by -1, or a
local Nikulin K3 surface together with the Nikuln involution.
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Lay Summary

Certain geometrical spaces called Calabi-Yau manifolds came into the spotlight in physics
as proposed models for extra-dimensions of spacetime. Given a Calabi-Yau manifold X ,
one interesting avenue is to count curves contained in X . Here, curve essentially means a
closed surface (e.g. a sphere, the surface of a doughnut, or the surface of a pretzel). These
counting invariants have rich mathematical structure, and dictate particle content in a certain
sector of the corresponding physical theory.

Suppose now that our Calabi-Yau manifoldX has certain geometrical symmetries (think,
more exotic versions of symmetry under rotations or reflections). In this thesis, we begin to
develop the more general theory counting curves in X that are themselves preserved by the
symmetries of X . Ignoring any possible symmetries of X , our new theory reduces to the
ordinary one.
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Preface

This dissertation is an original intellectual product of the author, Stephen Pietromonaco,
and, in the case of Chapter 3, collaboration with his coauthor, Jim Bryan.

• Chapter 2 consists entirely of the article “G-invariant Hilbert Schemes on Abelian
Surfaces and Enumerative Geometry of the Orbifold Kummer Surface” which is the
original intellectual product of the author alone. It is published in Research in the
Mathematical Sciences—volume 9, issue 1, pages 1-21, year 2022.

• Chapter 3 consists entirely of the article “Counting invariant curves: a theory of
Gopakumar-Vafa invariants for Calabi-Yau threefolds with an involution” which is
the original intellectual product of the author along with his coauthor, Jim Bryan. The
majority of the sections in this article are the result of mutual collaboration between
the two coauthors. However, the author of this thesis is individually responsible for
the lattice-theoretic results and theta function identities in our formulas, while Jim
Bryan is responsible for our use of Nironi stability and wall-crossing in the ı-MT
theory.
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I learned a lot of mathematics—Javier González Anaya, Elliot Cheung, Nina Morishige,
Toni Analla, Yu-Hsiang Liu, and Oliver Leigh—thank you for all the fun memories and
help over the years. I have particularly fond memories of our adventures, study groups, and
student seminars in Fall 2016 and Spring 2017.

I would also like to thank all the staff in the mathematics department who make our lives
so much easier—I appreciate all the time they graciously spent answering my questions and
helping resolve issues. In particular, Roseann Kinsey, Allen Yang, and Tony Cung Nguyen,
not to mention countless people behind the scenes who help us each and every day.

In particular from Chapter 3 of this thesis, I would like to acknowledge and thank the
following people for helpful discussions: Arend Bayer, John Duncan, Bronson Lim, Davesh
Maulik, Georg Oberdieck, Jorgen Rennemo, Franco Rota, and Junliang Shen.

And last but not least, to Amie. Thank you for all your support, maturity, and encour-
agement throughout this journey. I definitely could not have done it without you, and you’ve
given me some of the best memories during my time in Vancouver.

x



Chapter 1

Introduction

Geometry and physics have been intimately intertwined for centuries. In the past, it was
arguably physicists who benefited more from the relationship, using robust mathematical
frameworks to build theories. But in recent decades, the roles have been reversed and it
is in fact physical insight which creates exiting new ideas and unexpected conjectures in
mathematics.

Nowhere is this more true than with the ancient subject of enumerative geometry, where
one attempts to count certain objects in a fixed ambient space. Enumerative geometry has
undergone a renaissance over the last thirty years, thanks to an influx of ideas and conjec-
tures from string theory and quantum field theory. Here are a few relevant examples:

• Gromov-Witten theory is the formalism defining counting invariants for stable maps
from curves into a fixed target spaceX . This was inspired by the A-model topological
string theory, where a curve represents a closed string worldsheet [15, 35].

• The Donaldson-Thomas and Pandharipande-Thomas theories similarly produce count-
ing invariants for certain stable sheaves or complexes of sheaves on X . In physics,
these sheaves and complexes model certain gauge-theoretic objects called D-branes
[28, 42].

The generating series of these invariants that are so natural to form from a mathematical
perspective, often end up coinciding with a partition function of a corresponding physical
theory. As a consequence, physical insight may shed some light on hidden structure. For
example, there may be reason to expect the generating series to have modular properties, not
a priori obvious mathematically. Or perhaps there is a physically motivated re-packaging of
the generating series in terms of far better invariants.

Broadly speaking, the original results to follow in this thesis represent a step in gener-
alizing some of these well-studied ideas in enumerative geometry to the setting where our
ambient geometry comes with a group action.
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1.1 Background Topics on Enumerative Geometry

In this section we will briefly introduce some well-known topics in enumerative geometry,
all of which will be relevant to the main thesis material of Chapters 2 and 3. Of course,
we only mention a handful of topics, and numerous details are omitted, so we refer the
interested reader to the survey [38].

1.1.1 Hilbert Schemes of Points on a K3 Surface and the Yau-Zaslow
Formula

In one of the landmark early results of modern algebraic geometry, Göttsche computed the
Betti numbers of the Hilbert scheme of points Hilbd(S) for S a smooth quasi-projective
surface [23]. The Hilbert scheme Hilbd(S) should be thought of as a natural compactifica-
tion of the configuration space of d points in S. More specifically, a point Z ∈ Hilbd(S)

represents a zero-dimensional subscheme Z ⊂ S of length d.
When S is a K3 surface, Göttsche found the remarkable formula

∞∑
d=0

e(Hilbd(S))qd−1 = q−1
∞∏
n=1

(1− qn)−24 (1.1)

encoding the topological Euler characteristics of Hilbd(S). The righthand side can be writ-
ten as ∆(q)−1 where ∆(q) = η(q)24 is the unique modular cusp form of weight 12. It is
expressed in terms of the Dedekind eta function

η(q) = q1/24
∞∏
n=1

(1− qn).

Formula (1.1) also appears in the enumerative geometry of rational curves in K3 sur-
faces. Let (S,L) be aK3 surface S together with an ample line bundleL of self-intersection
2d. If the pair (S,L) is generic, then the number n(d) of rational curves in the linear system
|L| is finite, and given explicitly by the Yau-Zaslow formula [4, 12, 49] as

∞∑
d=−1

n(d)qd = q−1
∞∏
n=1

(1− qn)−24.

1.1.2 Pandharipande-Thomas Theory and the Gopakumar-Vafa Invariants

Given a Calabi-Yau threefold X and a curve class β ∈ H2(X,Z) one is interested in defin-
ing numbers that “count” curves in the class β with some fixed discrete data. In the previous

2



subsection, rational curves in a fixed linear system on a K3 surface are isolated and finite
in number, so they can be naı̈vely counted. The situation in general is far more complex, as
curves can move in families. This leads to the notion of virtual counting. Gromov-Witten
theory and Donaldson-Thomas theory first emerged defining virtual counting invariants,
and are conjecturally equivalent [38].

But more relevant for us is an equivalent formulation of virtual counting invariants
known as Pandharipande-Thomas (PT) theory [40]. For curve class β ∈ H2(X,Z) and
n ∈ Z, the central object is the moduli space of PT pairs:

PTβ,n(X) =

{
(F, s)

∣∣∣∣ s ∈ H0(X,F ), [supp(F )] = β, χ(F ) = n

}
where F is a coherent sheaf onX with proper support of pure dimension 1, and the cokernel
of the section s has support of dimension 0. Intuitively, a PT pair models a curve in the class
β along with finitely many points on the curve. From a physics perspective, a PT pair is
a stable D2-D0 brane bound state, where β and n are essentially the D2-brane charge and
D0-brane charge, respectively.

For any scheme S over C, Behrend [6] defined a constructible function νS : S → Z and
we define the virtual Euler characteristic to be the Behrend function weighted topological
Euler characteristic:

evir(S) = e(S, νS) =
∑
k∈Z

k · e
(
ν−1
S (k)

)
.

We then define the PT invariants by

NPT
β,n(X) = evir(PTβ,n(X))

and the PT partition function by

ZPT(X) =
∑
β,n

NPT
β,n(X)Qβ yn.

For a given β 6= 0, there are infinitely many n ∈ Z such that NPT
β,n(X) 6= 0. Therefore,

the enumerative meaning of the PT invariants for curves in the class β isn’t immediately
clear. However, using ideas from string theory, Gopakumar and Vafa [22] essentially con-
jectured that there are far better enumerative invariants encoded into ZPT(X). This inspires
the following definition:

3



Definition 1. The Gopakumar-Vafa invariants (via PT theory) nPT
g (β) are defined via the

following equation:

logZPT(X) =
∑
k>0

∑
β,g

1

k
·Qkβ · nPT

g (β) · ψg−1
−(−y)k

(1.2)

where
ψx = 2 + x+ x−1.

We interpret nPT
g (β) as the virtual count of curves of geometric genus g in the class

β. Though it is not clear from the definition, one expects that for fixed β, the invariants
nPT
g (β) = 0 for all but finitely many g, which makes more enumerative sense.

Remark 2. Writing logZPT(X) in the form given by the righthand side of Equation (1.2)
uses the fact that the coefficient of Qβ in ZPT(X) is the Laurant expansion of a rational
function in y which is invariant under y ↔ y−1 [9, 40, 47].

Notice that the definition of nPT
g (β) is not geometrical—it is given purely via formula

manipulation. Recently, Maulik-Toda [32] have proposed a geometrical definition of the
Gopakumar-Vafa invariants, which we now briefly review. The moduli space Mβ(X) of
Maulik-Toda (MT) sheaves parameterizes Simpson stable one-dimensional coherent sheaves
F such that [supp(F )] = β and χ(F ) = 1 [26]. The MT moduli space is a quasi-projective
scheme and it has a proper morphism to the Chow variety given by the Hilbert-Chow mor-
phism [32]:

π : Mβ(X)→ Chowβ(X)

[F ] 7→ supp(F )

There is a perverse sheaf φ• on Mβ(X) which is locally given by the perverse sheaf
of vanishing cycles associated to the local super-potential (the moduli space is locally the
critical locus of a holomorphic function on a smooth space, the so-called super-potential).
The construction of φ• was done in [7], and requires the choice of “orientation data” : a
squareroot of the virtual canonical line bundle on Mβ(X). Maulik and Toda conjecture
the existence of a canonical choice of orientation data (one that is compatible with the
morphism π). Using that choice, the Maulik-Toda polynomial is defined as follows:

MTβ(y) =
∑
i∈Z

χ( pH i(R•π∗φ
•))yi

4



where pH i(−) is the ith cohomology functor with respect to the perverse t-structure [16].
By self-duality of φ• and Verdier duality, MTβ(y) is an integer coefficient Laurent polyno-
mial in y which is invariant under y ↔ y−1. Noting that {ψgy}g≥0 forms an integral basis
for such polynomials, we may write the MT polynomial as follows:

Definition 3. The GV invariants (via MT theory) nMT
g (β) are defined by the equation

MTβ(y) =
∑
g≥0

nMT
g (β) ψgy .

The main conjecture of Maulik and Toda is

Conjecture 4. nMT
g (β) = nPT

g (β).

Remark 5. Compared to the definition via PT theory, the above definition of GV invariants
is more directly tied to the geometry of curves in the class β and more closely matches
the original physics definition. In particular, the invariants nMT

g (β) only involve the single
moduli space Mβ(X). In contrast, the invariants nPT

g (β) involve a subtle combination of
the PT invariants associated to an infinite number of moduli spaces, namely the spaces
PTβ′,n(X) where β = kβ′ and n is unbounded from above.

1.1.3 The Katz-Klemm-Vafa Formula

A local K3 surface is a non-compact Calabi-Yau threefold X built from a K3 surface S.
The simplest model is to take X = S × C. Consider a curve class βd ∈ H2(S,Z) with
self-intersection β2

d = 2d. In this case, Conjecture 4 holds, and nMT
g (βd) = nPT

g (βd) only
depends on d and g (and not the divisibility of βd). The invariants nPT

g (βd) and nMT
g (βd)

were computed (in full generality) by Pandharipande and Thomas [39] and Shen and Yin
[46, Thm 0.5] respectively. The Gopakumar-Vafa invariants of a local K3 surface are given
by the famous KKV formula first conjectured by Katz, Klemm, and Vafa [27]:

∞∑
d=−1

∞∑
g=0

ng(βd)ψ
g
yq
d = −q−1

∞∏
n=1

(1− qn)−20(1 + yqn)−2(1 + yqn)−2 (1.3)

The right hand side can also be written as ψy · φ10,1(q,−y)−1 where

φ10,1(q, y) = q (y
1
2 − y−

1
2 )2

∞∏
n=1

(1− qn)20(1− yqn)2(1− yqn)2 (1.4)

is the Fourier expansion of the unique Jacobi cusp form of weight 10 and index 1 [17].
The fact that ng(βd) is independent of the divisibility of βd is a deep and unusual feature

of the local K3 geometry.
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1.2 Introduction to Chapters 2 and 3

Having briefly reviewed some relevant background material above, in this section we give
an overview of the original results appearing in the main body of this thesis.

1.2.1 Chapter 2: G-invariant Hilbert Schemes and Hyperelliptic Curves in
Abelian Surfaces

In the case of an Abelian surface A, the analogue of Göttsche’s formula (1.1) is trivial
since e(Hilbd(A)) = 0 for d > 0. Alternatively, we can consider an Abelian surface
A together with a (holomorphic) symplectic action by a finite group G, and define the
analogous generating series

ZA,G(q) :=

∞∑
d=0

e(Hilbd(A)G)qd. (1.5)

Here Hilbd(A)G is the G-invariant Hilbert scheme, parameterizing finite G-invariant sub-
schemes of A with length d. It is equivalently the fixed locus of the induced G action
on Hilbd(A). The G-invariant Hilbert scheme is disconnected, though each component is
a smooth projective holomorphic symplectic variety of K3-type (unless G acts purely by
translations). See also [11] where theG-invariant Hilbert scheme is studied onK3 surfaces.

I prove the following results in Chapter 2 (see Theorem 8, Proposition 10, and Appendix
A for details on the modular forms):

Theorem.

1. The function Z−1
A,G(q) is a holomorphic modular form of weight 1

2e(A/G) with mul-
tiplier system. If G acts without translations, then Z−1

A,G(q) is an explicit eta product
presented in Table 1.1.

2. If T ⊂ G is the subgroup of all elements acting by translations, then

ZA,G(q) = ZA/T,G/T (q|T |).

In particular, the modular form Z−1
A,G(q) in this case is an oldform—it is equal to a

modular form from Table 1.1 with the variable change q 7→ q|T |.

Fujiki [19] classified translation-free symplectic actions on Abelian surfaces (Section
2.2). Each such action which arises corresponds to a row in Table 1.1 (see 2.1.1 for nota-
tion).

6



No. G Singularities of A/G Modular form Z−1
A,G

1
2e(A/G)

1 {e} — 1 0

2 Z2 16A1
η16(q)
η8(q2)

4

3 Z3 9A2
η9(q)
η3(q3)

3

4 Z4 4A3 + 6A1
η6(q2)η4(q)
η4(q4)

3

5 Z6 A5 + 4A2 + 5A1
η5(q3)η4(q2)η(q)

η4(q6)
3

6 Q 2D4 + 3A3 + 2A1
η8(q4)η2(q)
η4(q8)η(q2)

5/2

7 Q 4D4 + 3A1
η15(q4)η4(q)
η6(q8)η8(q2)

5/2

8 Q 6A3 +A1
η(q4)η6(q2)
η2(q8)

5/2

9 D D5 + 3A3 + 2A2 +A1
η3(q6)η3(q4)η3(q3)η(q)

η3(q12)η2(q2)
5/2

10 T E6 +D4 + 4A2 +A1
η5(q12)η6(q8)η(q3)η(q)
η4(q24)η2(q6)η2(q2)

5/2

11 T A5 + 2A3 + 4A2
η4(q8)η2(q6)η(q4)

η2(q24)
5/2

Table 1.1: The modular forms Z−1
A,G(q) for symplectic, translation-free actions.

By analogy with the Yau-Zaslow formula, one might expect the coefficients of ZA,G(q)

in the q-expansion to “count” rational curves in the orbifold [A/G]—or equivalently, G-
invariant curves C ⊂ A whose quotient C/G is rational. We prove enumerative results of
this nature in the case of 〈ı〉 ∼= Z2 where ı : A→ A is the canonical involution a 7→ −a. In
other words, we give an enumerative interpretation of the coefficients of

ZA,〈ı〉(q) =

∞∏
n=1

(1− q2n)8

(1− qn)16
.

from the second row of Table 1.1.
Let A be a generic polarized Abelian surface of type (1, d) with βd ∈ H2(A,Z) the

class of the primitive polarization. As in Section 1.1, consider the moduli space Mβd(A) of
Simpson stable pure one-dimensional sheaves F onA with [supp(F )] = βd and χ(F ) = 1.
The ı action lifts canonically to Mβd(A), and we can restrict to the ı-fixed locus Mβd(A)ı
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which we prove is a disjoint union of holomorphic symplectic varieties of K3-type (Propo-
sition 12 and Corollary 13).

We define quantities
n0(d) = e

(
Mβd(A)ı

)
Because each component of Mβd(A)ı is smooth and even dimensional, the Behrend function
is trivial–therefore by [26, 32], it is natural to expect that n0(d) encodes information about
ı-invariant curves in the class βd with rational quotient.

The following result which we prove in Chapter 2 is the analogue of the Yau-Zaslow
formula in the case of [A/ı] (Theorem 16):

Theorem.

1. The quantities n0(d) are determined from the formula

ZA,〈ı〉(q) =
1

16

∞∑
d=0

n0(d)qd. (1.6)

2. n0(d) is a weighted count of rational curves in [A/ı]. More specifically,

n0(d) =
∑
C∈Π

e(Jac(C)ı) (1.7)

where Π is the finite set of ı-invariant curves in the class βd with rational quotient.
Here Jac(C) is the compactified Jacobian of the integral curve C, see [2, Sec. 6.2.4].

An ı-invariant curve C ⊂ A with rational quotient is an ı-invariant hyperelliptic curve
in A. Our results are consistent with the hyperelliptic counts of [13] (see Subsection 2.1.4).

Remark 6. Our proofs rely on an ı-equivariant deformation equivalence between Hilbd(A)

and Mβd(A), and it is unclear if this extends to other groupsG. In other words, e
(
Mβd(A)G

)
should indeed be a weighted count of G-invariant curves in A with rational quotient, but it
is unclear if these arise as coefficients of ZA,G(q) from Table 1.1.

1.2.2 Chapter 3: A Theory of Gopakumar-Vafa Invariants for Calabi-Yau
Threefolds with an Involution

Our enumerative results summarized in the previous subsection were motivation to build
a more general theory counting invariant curves in a Calabi-Yau threefold with an action.
There are two main drawbacks to our invariants n0(d) in the case of an Abelian surface:
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1. Instead of enumerating the finite number of ı-invariant curves with rational quotient,
each curve contributes to n0(d) with a weighting.

2. We don’t keep track of the (geometric) genus g of the ı-invariant curves with rational
quotient.

With this in mind, let X be a Calabi-Yau threefold with an involution ı : X → X

preserving the holomorphic volume form, and let β ∈ H2(X,Z)ı be an ı-invariant class.

Goal. We want to define integers ng,h(β), called the ı-Gopakumar-Vafa invariants, which
represent a (virtual) count of ı-invariant curves C ⊂ X of genus g in the class β such that
C/ı has genus h.

In particular, ng,0(β) should count ı-invariant hyperelliptic curves of genus g in the class β.
Just as in the ordinary theory reviewed above, we give two definitions of ng,h(β) which

we conjecture are equal:

• Through a version of ı-equivariant Pandharipande-Thomas theory, we define nPT
g,h (β)

in Subsection 3.2.1.

• Through an analog of the Maulik-Toda formalism applied to moduli spaces of Nironi
stable sheaves on the stack [X/ı], we define nMT

g,h (β) in Subsection 3.2.2.

Our main example is that of a local Abelian or Nikulin K3 surface X = S × C. Here
S is either an Abelian surface with ı(a) = −a or a K3 surface together with a symplectic
involution ı (this is known as a NikulinK3 surface). In both cases, the action onX = S×C
acts trivially on the second factor. There are two deformation types of Nikulin K3 surfaces
which we call Type (I) and Type (II), see Definition 74.

Theorem. Let X = S × C be as above, and let β ∈ H2(S) be an effective invariant curve
class with β2 = 2d. Then nPT

g,h (β) = nMT
g,h (β). Moreover:

1. if S is a Type (II) Nikulin surface, nPT
g,h (β) only depends on (g, h, d). In particular, it

doesn’t depend on the divisibility of β.

2. if S is an Abelian surface or a Type (I) Nikulin surface, nPT
g,h (β) only depends on

(g, h, d) as well as the parity of the divisibility of β.

9



We denote these invariants by ng,h(d; type) where type ∈ {Aev,Aodd,Nev
I ,N

odd
I ,NII} distin-

guishes the cases in the obvious way. Then the invariants are determined from the formula:∑
g,h

ng,h(d; type)ψh−1
y ψg+1−2h

w =

[
ΘT (q2, w)

φ10,1(q2,−y)

]
qd

where [· · · ]qd denotes the coefficient of qd in the expression [· · · ]. Here, T is a lattice or
shifted lattice depending on the type, ΘT (q2, w) is an explicitly determined Jacobi theta
function (see Theorem 67), and φ10,1(q, y) is the unique Jacobi cusp form of weight 10 and
index 1. In particular, for types Aodd and Nodd

I we get infinite product formulas:

∑
g,h,d

ng,h(d;Aodd)ψhy ψ
g−1−2h
w qd = −4

∞∏
n=1

(1 + qn)8(1 + wqn)4(1 + w−1qn)4

(1− q2n)4(1 + yq2n)2(1 + y−1q2n)2
,

∑
g,h,d

ng,h(d;Nodd
I )ψhy ψ

g−2h
w qd+1 = −

∞∏
n=1

(1 + qn)4(1 + wqn)2(1 + w−1qn)2

(1− q2n)12(1 + yq2n)2(1 + y−1q2n)2
.

Remark 7. In the case where βd is a primitive polarization of type (1, d) on an Abelian
surface A, the invariants ng,0(d;Aodd) are refinements of n0(d) introduced in Section 1.2.1.
The precise relationship is

n0(d) = −
d+1∑
g=1

22g ng,0(d;Aodd)

where the minus sign is due to the fact that we use A× C to define ng,0(d;Aodd).

In addition to the case of a local Abelian/Nikulin K3 surface, we prove our conjecture
and compute ng,h(β) in the following examples:

• An isolated smooth invariant curve (Section 3.3).

• The fiber class of elliptically fibered Calabi-Yau threefolds with certain involutions
(Subsection 3.6.1).

• Arbitrary classes on the “local football”—a certain global quotient orbifold with two
BZ2 points and coarse space P1 (Section 3.6.2).
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Chapter 2

G-invariant Hilbert Schemes and
Hyperelliptic Curves in Abelian
Surfaces

2.1 Introduction

2.1.1 Göttsche’s Formula on the Orbifold [A/G]

In one of the seminal results of modern algebraic geometry, Göttsche computed the Betti
numbers of the Hilbert scheme of points Hilbd(S) where S is a smooth quasi-projective
surface [23]. When S is a K3 surface, he found the remarkable formula

∞∑
d=0

e(Hilbd(S))qd−1 = q−1
∞∏
n=1

(1− qn)−24. (2.1)

The reciprocal of the righthand side equals the modular cusp form ∆(q) = η(q)24 of weight
12.

However, in the case of an Abelian surface A, the analogue of Göttsche’s formula is
trivial since e(Hilbd(A)) = 0 for d > 0. One can instead consider Abelian surfaces together
with an action by a finite group. By studying the invariant loci—or equivalently, working
on the orbifold—we will find a family of results analogous to (2.1).

Consider a complex Abelian surface A, and a finite group G acting on A preserving
the holomorphic symplectic form. We will call such an action symplectic. The natural
generating function produced from this data is

ZA,G(q) :=

∞∑
d=0

e(Hilbd(A)G)qd (2.2)

where Hilbd(A)G is the G-invariant Hilbert scheme, parameterizing finite G-invariant sub-
schemes of length d. It is equivalently the fixed locus of the induced G action on Hilbd(A).
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The G-invariant Hilbert scheme is disconnected, though each component is a smooth pro-
jective holomorphic symplectic variety of K3-type (unless G acts purely by translations).

By definition of the orbifold [A/G], we have

Hilb(A)G = Hilb([A/G]).

So we regard ZA,G(q) as analogous to the lefthand side of (2.1) for [A/G]. Our following
result can be understood as the analogue of Göttsche’s formula for the orbifold [A/G] (see
Appendix A for details on the modular forms).

Theorem 8. The function Z−1
A,G(q) is a modular form of weight 1

2e(A/G) for the congru-
ence subgroup Γ0(|G|). Moreover, Z−1

A,G is an explicit eta product (see Table 2.1 and Propo-
sition 10 below), and transforms with multiplier system induced from that of the Dedekind
eta function. It is a holomorphic, non-cuspidal form, normalized with leading coefficient 1.

Our proof of Theorem 8 relies on recent methods of Bryan-Gyenge [11] in the case of K3

surfaces.
Fujiki has completely classified symplectic actions by finite groups on Abelian surfaces

[19]. In the case where the subgroup acting by translations is trivial, the only groups which
arise, up to isomorphism, are

Z2, Z3, Z4, Z6, Q, D, T

where we denote by Zn the cyclic group of order n, and by Q,D, T the quaternion group
of order 8, the binary diherdral group of order 12, and the binary tetrahedral group of order
24, respectively. Recall that these groups fall into the ADE classification: Zn has ADE type
An−1 while Q,D, T have types D4, D5, E6, respectively.

First consider actions by group homomorphisms; we call these linear. All Abelian
surfaces carry a unique linear action by 〈ı〉 ∼= Z2 where ı : A → A is the canonical
involution a 7→ −a. Hence, A admits a symplectic linear Z3 action if and only if it does so
for Z6. Then it suffices to study G isomorphic to one of Z4,Z6,Q,D, T .

Remark 9. By the physical arguments of [48, Sec. 4], we understand why precisely these
groups arise. Let G be isomorphic to one of the five groups listed above, and let G = G/〈ı〉
be the quotient by the unique order 2 subgroup. Then the five G are precisely the subgroups
of the even Weyl group W+(E8) of the E8 root lattice which pointwise fix a lattice of rank
at least 4. This is in close analogy with the classification in the case of K3 surfaces.
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Any group G with a symplectic action on A can be written uniquely as an extension

0→ T → G→ G0 → 0

where T ⊆ G is the subgroup of all elements acting by translation, and the quotient G0 acts
linearly and symplectically on A. If T is trivial, we say the G action is translation-free.
Note that T ∼= Za × Zb for some a, b ≥ 1.

In Table 2.1 we present the modular formZ−1
A,G for all equivalence classes of translation-

free actions. For such actions, G and G0 are abstractly isomorphic. However, G might not
act linearly. Notice there are translation-free actions byQ and T without fixed points (Nos.
8 and 11 in the table, respectively), so in particular, they do not preserve the origin.

No. G Singularities of A/G Modular form Z−1
A,G

1
2e(A/G)

1 {e} — 1 0

2 Z2 16A1
η16(q)
η8(q2)

4

3 Z3 9A2
η9(q)
η3(q3)

3

4 Z4 4A3 + 6A1
η6(q2)η4(q)
η4(q4)

3

5 Z6 A5 + 4A2 + 5A1
η5(q3)η4(q2)η(q)

η4(q6)
3

6 Q 2D4 + 3A3 + 2A1
η8(q4)η2(q)
η4(q8)η(q2)

5/2

7 Q 4D4 + 3A1
η15(q4)η4(q)
η6(q8)η8(q2)

5/2

8 Q 6A3 +A1
η(q4)η6(q2)
η2(q8)

5/2

9 D D5 + 3A3 + 2A2 +A1
η3(q6)η3(q4)η3(q3)η(q)

η3(q12)η2(q2)
5/2

10 T E6 +D4 + 4A2 +A1
η5(q12)η6(q8)η(q3)η(q)
η4(q24)η2(q6)η2(q2)

5/2

11 T A5 + 2A3 + 4A2
η4(q8)η2(q6)η(q4)

η2(q24)
5/2

Table 2.1: The modular forms Z−1
A,G(q) for symplectic, translation-free actions. The weight

of the modular form is 1
2e(A/G), which is presented in the last column.

This reduces the problem to computing ZA,G when T is non-trivial. Interpreting T as a
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subgroup of A let A′ = A/T , which is again an Abelian surface. We then get a symplectic
translation-free action ofG′ = G/T on the Abelian surfaceA′. In Section 2.3 we will prove
the following result.1

Proposition 10. With the notation as above, we have

ZA,G(q) = ZA′,G′(q
|T |).

In particular, the modular form Z−1
A,G where G has translations is an oldform: it is equal to

a modular form Z−1
A′,G′ from Table 2.1 with the variable change q 7→ q|T |.

2.1.2 Refinement to χy-genus

We can refine our formulas by replacing the Euler characteristic with a more elaborate
index. For our purposes, we will focus on the (normalized) χy-genus, which for a compact
complex manifold M is defined in terms of the Hodge numbers as

χy(M) = (−y)−
1
2

dim(M)χy(M)

= (−y)−
1
2

dim(M)
∑
p,q

(−1)php,q(M)yq.
(2.3)

Notice that setting y = −1 recovers the Euler characteristic, χ−1(M) = e(M).
Our formulas will involve the function

φ−2,1(q, y) =
(
y

1
2 − y−

1
2
)2 ∞∏

n=1

(1− yqn)2(1− y−1qn)2

(1− qn)4
(2.4)

which is the unique weak Jacobi form of weight −2 and index 1 [17, Thm. 9.3]. We define
the generating function

ZχA,G(q, y) =

∞∑
d=0

χy(Hilbd(A)G)qd.

Proposition 11. For all non-trivial translation-free symplectic actions we have

ZχA,G(q, y) = −
(
y

1
2 + y−

1
2
)2 ZA,G(q)

φ−2,1(q|G|,−y)
.

Following [11], one can give similar formulas for the elliptic genus, the motivic class,
and more generally, the birationality class, but we will not need those here.

1Note that G0 and G′ are abstractly isomorphic. But we distinguish them because they are different groups
acting on different spaces.
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2.1.3 Enumerative Geometry of the Orbifold Kummer Surface

The Katz-Klemm-Vafa (KKV) formula [27] was predicted by string theorists to compute
the BPS states of D-branes moving in a K3 surface S.

In its modern mathematical formulation, the Maulik-Toda proposal [32] is applied to a
(local) K3 surface to define BPS invariants nK3

β (g) for each effective curve class β. These
quantities, which we interpret as virtual counts of curves of geometric genus g in the class
β, only depend on β through the self-intersection β2 = 2d − 2, so we denote them by
nK3
d (g). The KKV formula is then
∞∑
d=0

∞∑
g=0

nK3
d (g)(y

1
2 + y−

1
2 )2gqd−1 = −(y

1
2 + y−

1
2 )2 1

∆(q)φ−2,1(q,−y)

=
1

q

∞∏
n=1

1

(1− qn)20(1 + yqn)2(1 + y−1qn)2
.

(2.5)

The coefficient of qd−1 in the formula is χy(Hilbd(S)), so the KKV formula relates the
χy-genera of Hilb(S) and virtual counts of curves on a K3 surface. It has now been proven
in full [39].

In this chapter we prove an analogue of the KKV formula for the orbifold Kummer
surface [A/ı] by introducing a notion of ı-BPS states. HereA is a polarized Abelian surface
of type (1, d) with βd ∈ H2(A,Z) the class of the primitive polarization2 and

ı : A→ A

is the canonical involution a 7→ −a.
As with ordinary BPS invariants, consider the moduli space Mβd(A) of Simpson stable

pure one-dimensional sheaves F on A with [supp(F )] = βd and χ(F ) = 1. The ı action
lifts canonically to Mβd(A) by pullback.

The following is the Abelian surface-version of the fact that for a K3 surface S, a
moduli space of stable sheaves with primitive Mukai vector and generic polarization is
deformation equivalent to a Hilbert scheme of points on S.

Proposition 12. There exists an ı-equivariant deformation equivalence

Mβd(A)→ Â×Hilbd(A) (2.6)

where ı acts on both sides by pullback, and Â = Pic0(A) is the dual Abelian variety.

2Throughout, we must handle d = 0 separately. In this case, choose the product Abelian surfaceA = E×F ,
with β0 the class of E × {pt}.
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This is essentially a result of Yoshioka [50]. Our observation is simply that his correspon-
dence is ı-equivariant, and we prove this in Section 2.4.3.

An immediate corollary is the following.

Corollary 13. Restricting to the ı-invariant locus, we get a component-wise deformation
equivalence

Mβd(A)ı →
16∐
i=1

Hilbd(A)ı. (2.7)

In particular, each component of Mβd(A)ı is a smooth holomorphic symplectic variety of
K3-type.

The ordinary Hilbert-Chow morphism is ı-equivariant, so we can restrict to the invariant
locus

πd : Mβd(A)ı → Chowβd(A)ı.

which is a disjoint union of Lagrangian fibrations. In Section 2.4 we apply the Maulik-Toda
proposal3 to this map in order to define ı-BPS invariants nh(d) of [A/ı] (see Definition 32).
We interpret nh(d) as the virtual number of ı-invariant curves in the class βd in A, whose
quotient has geometric genus h. Equivalently, nh(d) is a virtual count of genus h curves on
the orbifold.

Remark 14. Our results to follow are coarse in the sense that the invariants nh(d) do not
individually track the geometric genus of the ı-invariant curves in A. This is because we do
not fully probe the K-theory of the orbifold [A/ı]. In work in progress with J. Bryan [14]
we give the refined formula, as well as propose a general framework defining equivariant
BPS invariants on a Calabi-Yau threefold with an involution.

The following is an analogue of the KKV formula for the orbifold Kummer surface.

Theorem 15. The ı-BPS invariants nh(d) (Definition 32) are determined by

1

16

∞∑
d=0

∞∑
h=0

nh(d)
(
y

1
2 + y−

1
2
)2h

qd = −
(
y

1
2 + y−

1
2
)2 ZA,〈ı〉(q)

φ−2,1(q2,−y)

=
∞∏
n=1

(1− q2n)12

(1− qn)16(1 + q2ny)2(1 + q2ny−1)2
.

(2.8)

3The definition of the BPS invariants by Maulik-Toda applies to Calabi-Yau threefolds. But in the case of a
local Calabi-Yau surface, the theory reduces to a theory of sheaves on the surface, see Section 2.4.1. Our results
are therefore intrinsic to [A/ı].
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We prove this in Section 2.4.4 using the work of Shen-Yin [46] on perverse Hodge
numbers of Lagrangian fibrations to relate the Maulik-Toda polynomial to χy(Hilb(A)ı).
We then apply our Proposition 11 which determines the χy-genera.

1
16nh(d) d = 0 1 2 3 4 5 6 7

h = 0 1 16 144 960 5264 25056 106944 418176

1 0 0 -2 -32 -294 -2016 -11400 -56000

2 0 0 0 0 3 48 448 3136

3 0 0 0 0 0 0 -4 -64

4 0 0 0 0 0 0 0 0

Table 2.2: Values of 1
16nh(d) for small d and h.

We now want to specialize to counting rational curves. Making the specialization y =

−1 in the KKV formula (2.5) results in

∞∑
d=0

nK3
d (0)qd−1 =

1

∆(q)
.

This is the Yau-Zaslow formula—one of the earliest and most foundational results in mod-
ern enumerative geometry [49]. It is a relationship between rational curves in K3 surfaces,
modular forms, and Hilbert schemes of points. One remarkable feature of the Yau-Zaslow
formula is that the invariants nK3

d (0) give actual (not virtual) counts of rational curves. For
the mathematical formulation of the theory, see [4, 12, 18].

In this spirit, we give an enumerative interpretation of our partition function ZA,〈ı〉 from
Table 2.1 where G = 〈ı〉 ∼= Z2. Consistent with the perverse sheaf and vanishing cycle
formalism of Maulik-Toda, Katz had previously defined the genus zero BPS invariants as
Behrend-weighted Euler characteristics of the Simpson stable moduli space [26].

In the case of [A/ı], we apply this to the space Mβd(A)ı, which is a disjoint union of
smooth holomorphic symplectic varieties of K3-type. Therefore, the Behrend weighting is
trivial, and

n0(d) = e
(
Mβd(A)ı

)
. (2.9)

The following is an analogue of the Yau-Zaslow formula for [A/ı], which we will prove
in Section 2.4.5.
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Theorem 16. The genus zero ı-BPS invariants n0(d) are determined by

1

16

∞∑
d=0

n0(d)qd = ZA,〈ı〉(q) =
∞∏
n=1

(1− q2n)8

(1− qn)16
. (2.10)

Moreover, ifA is a (1, d)-polarized Abelian surface of Picard rank one and βd is the unique
primitive generator, then n0(d) is a weighted count of rational curves on [A/ı]. Specifically,

n0(d) =
∑
C∈Π

e(Jac(C)ı) (2.11)

where Π is the finite set of ı-invariant curves in the class βd with rational quotient, and
Jac(C) is the compactified Jacobian of the integral curve C.

Just as the Yau-Zaslow formula does for K3 surfaces, this theorem relates rational
curves on the orbifold [A/ı] to the modular form Z−1

A,〈ı〉 and hence, to Hilbert schemes
of points on [A/ı] as well.

We note that in the case of a K3 surface with a symplectic action by a finite cyclic
group, in [51] they are interested in enumerating orbits of curves with rational quotient.
Though the perspective is somewhat different from us: they view Euler characteristics as a
representation, whereas we take ordinary Euler characteristics of the invariant locus.

2.1.4 Hyperelliptic Curve Counting Invariants

Our formula can equivalently be interpreted as a weighted count of hyperelliptic curves. A
study of the enumerative geometry of hyperelliptic curves in Abelian surfaces was initiated
in [45], and fully solved in [13].

Definition 17. For a polarized Abelian surface A of type (1, d), let hg(d) be the finite
number of geometric genus g hyperelliptic curves in the class of the polarization such that
all Weierstrass points occur at a 2-torsion point of A.

Remark 18. Every hyperelliptic curve in A can be translated so that all Weierstrass points
lie at 2-torsion points, in which case the curve becomes ı-invariant. Therefore, hg(d) are
actual (not virtual) counts of ı-invariant curves with rational quotient.

By [13, Prop. 4], the hg(d) are computed from the formula4

∞∑
d=0

∞∑
g=1

hg(d)(w
1
2 + w−

1
2 )2g+2qd = 4φ2

−2,1(q,−w) (2.12)

4In [13, Sec. 5.4] what we are calling hg(d) was denoted hA,Hilb
g,β .

18



where φ−2,1 is the weak Jacobi form defined in (2.4). In [13], it is tacitly assumed that
d > 0, but the formula correctly encodes the remaining invariant. If d = 0, the only
non-vanishing invariant obtained from the formula is h0(1) = 4 which represents the four
invariant genus one curves in the surfaceA = E×F in the class ofE×{pt}, each of which
have rational quotient.

The relationship between ZA,〈ı〉 and the formula (2.12) arises by making the specializa-
tion w = 1. We have the straightforward identity of infinite products

η(q2)8

η(q)16
=

1

16
φ2
−2,1(q,−1)

and note that the lefthand side is precisely ZA,〈ı〉. This along with (2.12) and the first claim
of Theorem 16 immediately implies the following result.

Proposition 19. For all d ≥ 0, we have

n0(d) =
d+1∑
g=1

hg(d)22g.

The invariants n0(d) are therefore less refined, as they do not individually track the geomet-
ric genus g (see Remark 14).

If A has Picard rank one (except for the case of d = 0) then by (2.11) we have

∑
C∈Π

e(Jac(C)ı) =

d+1∑
g=1

hg(d)22g

But |Π| =
∑

g hg(d), so we regard this as strong evidence for the following conjecture.

Conjecture 20. If A is an Abelian surface of Picard rank one, and C ⊂ A is an integral
ı-invariant curve of geometric genus g with rational quotient, then

e(Jac(C)ı) = 22g.

In Section 2.4.6 we will prove that the conjecture holds in the case of smooth curves.

Remark 21. One should ask if there are similar enumerative interpretations of e(Hilbd(A)G)

for the remaining groups in Table 2.1. To our knowledge, this breaks down outside of
G ∼= Z2 because the key deformation equivalence (2.6) is not G-equivariant. Of course,
one can directly study e(Mβd(A)G) for the remaining G, but we do not pursue that here.
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2.2 Symplectic Actions on Abelian Surfaces

2.2.1 Preliminaries

Let X be a complex torus of arbitrary dimension, with 0 ∈ X the origin. The group of
biholomorphisms from X to itself is denoted Aut(X), while the subgroup of linear maps
(automorphisms of X as a complex Lie group) is denoted Aut0(X) ⊂ Aut(X). Given any
x ∈ X , let tx : X → X be the biholomorphism translating by x.

Given any holomorphic map f : X → X ′ between complex tori, using that f is equiva-
lent to a map between the corresponding universal covers, one can show that h := t−f(0)◦f
is linear. Therefore, holomorphic maps between complex tori can be uniquely factored as a
linear map composed with a translation

f = tf(0) ◦ h.

This factorization induces a canonical surjective group homomorphism

σ : Aut(X)→ Aut0(X)

mapping f to h, which restricts to the identity on Aut0(X) ⊂ Aut(X) and whose kernel is
the subgroup of all translations of X . This proves the following.

Proposition 22. The biholomorphism group of a complex torusX decomposes as Aut(X) =

Aut0(X) oX , where X is identified with the subgroup of translations.

Given a subgroup G ⊆ Aut(X), we get an action of G on X by biholomorphisms. We
will consider actions up to the following equivalence condition.

Definition 23. Consider pairs (Xi, Gi) for i = 1, 2 with Gi ⊆ Aut(Xi). We say the
two pairs are equivalent if there exists a biholomorphism w : X1 → X2 such that G2 =

wG1w
−1 in Aut(X2).

We specialize to the case where X is a 2-dimensional complex torus. A non-zero class
α ∈ H2,0(X) is called a holomorphic symplectic form. Since h2,0(X) = 1, a holomorphic
symplectic form is unique up to scale.

Definition 24. An automorphism f ∈ Aut(X) is holomorphic symplectic, or just symplec-
tic, if f preserves a holomorphic symplectic form α. That is, if f∗α = α. An action by a
group G on X is symplectic if each element of G defines a symplectic automorphism.
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Lemma 25. A group G with a symplectic action on X can be written uniquely as the
(possibly non-split) extension

0→ T → G→ σ(G)→ 0 (2.13)

where T ⊆ G is the subgroup of all elements acting by translation, and the induced action
by σ(G) is symplectic and linear.

Proof. The existence of the short exact sequence is clear from the definition of σ. Given
f ∈ G we can write f = tf(0) ◦ h, and then σ(f) = h, which acts linearly. The kernel
is precisely elements of G acting by translation. Since the symplectic form can be taken
to be constant—induced from dz1dz2 on the universal cover—it is clearly invariant under
translations. Therefore, h = t−f(0) ◦ f is symplectic.

This proof illustrates the obstruction to the splitting of the extension. We have the
unique factorization f = tf(0) ◦ h, but notice tf(0) might not be an element of G. The
extension splits if and only if tf(0) ∈ G for all f ∈ G.

When T is trivial, we say the action is translation-free. Note that a translation-free
action is not necessarily linear: if T is trivial, G and σ(G) are abstractly isomorphic, but
may act differently on X . We say that a translation-free action by G is maximal if there
does not exist a translation-free group H ⊂ Aut(X) with G ( H such that the G action is
the restriction of the H action.

2.2.2 Fujiki’s Classification

Fujiki has given a complete classification of symplectic actions by finite groups on two-
dimensional complex tori [19]5. The goal of this section is to condense the relevant results
of Fujiki into a brief survey. Below, all actions are assumed to be symplectic, and we will
narrow our focus to Abelian surfaces, even though the results apply also to non-algebraic
tori.

By Lemma 3.3 of [19], the only groups with non-trivial linear actions on an Abelian
surface A are (see Introduction for definitions) isomorphic to one of

Z2, Z3, Z4, Z6, Q, D, T .

5This was equivalently carried out from a physics perspective in [48] by studying symmetry groups of
certain non-linear sigma models on the underlying real torus T 4.
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All Abelian surfaces carry a unique linear action by 〈ı〉 ∼= Z2 where ı : A → A is the
canonical involution a 7→ −a. Hence, A admits a symplectic linear Z3 action if and only if
it does so for Z6. Then it suffices to study G isomorphic to one of Z4,Z6,Q,D, T . If we
let G = G/〈ı〉, then we know from [48, Sec. 4] that the five isomorphism classes of G are
precisely all subgroups of W+(E8) which pointwise fix a lattice of rank at least 4.

One should understand which Abelian surfaces carry a linear action by a particular
group. For the two cyclic groups Z4 and Z6, the full description of which tori admit such
actions is given in [19, Prop. 3.7]. In particular, for all elliptic curves E, the product E ×E
admits an action by Z4 and Z6. These linear actions by cyclic groups, including Z2 and Z3,
correspond to Nos. 2−5 in Table 2.1.

We now discuss the non-cyclic case. Let H ∼= R4 denote the real quaternions. The
space of complex structures on H is

M =
{
J ∈ H

∣∣ J2 = −1
} ∼= P1

and can be identified with the imaginary unit quaternions. Fujiki associates toG ∼= Q,D, T
a lattice ΛG ⊂ H and forms the real torus TG = H/ΛG. The space M parameterizes
complex structures on TG such that the group of units Λ×G

∼= G induces a holomorphic
linear G action on the complex torus. The lattices and their groups of units can be found in
(and just above) Lemma 2.6 of Fujiki.

By Theorem 3.11 of Fujiki, all maximal linear actions by each G arise in this way,
up to equivalence. These correspond to Nos. 6, 9, and 10 in Table 2.1. There is a non-
maximal linear Q action corresponding to the restriction of the maximal T action to the
unique normal subgroup Q ⊂ T . This is No. 7 in the Table.

In a very similar manner, Section 3.4 of Fujiki describes and classifies all non-linear
translation-free actions. Only T can act maximally as such, which corresponds to No. 11 in
the Table. But we can restrict toQ ⊂ T giving a non-maximal non-linear action ofQ. This
is No. 8 in the Table.

In all cases, the complex tori admitting a translation-free action by a non-cyclic group
are parameterized by M . Those that are algebraic are of a special form.

Definition 26. A singular Abelian surface is an Abelian surface A whose Neron-Severi
lattice NS(A) has rank 4, its largest possible value. Equivalently, A is a product E × F of
isogenous elliptic curves with complex multiplication.

The following result combines Lemma 5.6 and Proposition 5.7 of Fujiki.
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Proposition 27. If A admits a translation-free action by G ∼= Q,D, T then A is a singular
Abelian surface. Moreover, A corresponds to a complex structure J ∈ M such that µJ ∈
ΛG for some real number µ 6= 0, which depends on J .

Because J must have unit norm, the set of J ∈ M satisfying the second condition
of Proposition 27 is countable and dense in M . Therefore, Abelian surfaces carrying an
action by Q,D, and T are rigid—there are no infinitesimal deformations of the surface on
which the group acts. In Theorems 7.2 and 7.4 of Fujiki, necessary and sufficient conditions
are given for a singular Abelian surface to admit an action by one of the three non-cyclic
groups.

2.2.3 Singularity Type

Let G be a finite group with a symplectic translation-free action on an Abelian surface A.
The singularities of A/G are all of ADE type—that is, the stabilizer of an arbitrary point
in A is a finite subgroup of SL2(C). Recall that Zn has ADE type An−1 while Q,D, T
have types D4, D5, E6, respectively. For a given action, let ak denote the number of Ak
singularities in A/G, let dk denote the number of Dk singularities, and let ek denote the
number of Ek singularities. In the present case, we present the singularity type of an action
as

a1A1 + a2A2 + a3A3 + a5A5 + d4D4 + d5D5 + e6E6.

Proposition 28. The singularity type of a symplectic translation-free action of G on A is
precisely one of those listed in Table 2.1, with the corresponding value of 1

2e(A/G) listed
in the final column.

We will sketch the proof of this proposition, but see also Lemma 3.19 in [19]6. Let
Sing(A/G) and (A/G)◦ = A/G − Sing(A/G) be the singular locus and smooth locus of
A/G, respectively. If π : Y → A/G is the minimal resolution of singularities, then by
standard properties of the Euler characteristic, we have

e(Y ) = e
(
(A/G)◦

)
+ e
(
π−1(Sing(A/G))

)
.

The first term is computed by noting that G acts freely on A away from points with stabi-
lizers

e
(
(A/G)◦

)
= −

(
a1

2
+
a2

3
+
a3

4
+
a5

6
+
d4

8
+
d5

12
+
e6

24

)
(2.14)

6We claim there are a few minor but relevant typos in Lemma 3.19 and equation (19) of [19]. Nonetheless,
the ten actions described in Lemma 3.19 are precisely the ten non-trivial actions in our Table 2.1.
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and since the exceptional locus of π : Y → A/G is a disjoint union of ADE configurations
of smooth rational curves, the second term is

e
(
π−1(Sing(A/G))

)
= 2a1 + 3a2 + 4a3 + 6a5 + 5d4 + 6d5 + 7e6.

Finally, since Y is a smooth K3 surface, e(Y ) = 24. We therefore get a strong numerical
constraint on the numbers of singular points of each type. For a given G, using that all
subgroups define symplectic translation-free actions, one can systematically use this con-
straint to determine all allowed singularity types. The possible solutions correspond to the
11 columns in Table 2.1.

Given a singularity type, let r be the total number of singular points in A/G. From
(2.14) and the obvious formula

e(A/G) = e((A/G)◦) + r,

we can easily verify the values in the final column of Table 2.1.

2.3 Computation of the Partition Functions ZA,G

The goal of this section is to compute the partition functions

ZA,G(q) :=
∞∑
d=0

e(Hilbd(A)G)qd

explicitly as an eta product, thereby proving Theorem 8. First, we handle the more elemen-
tary Proposition 10 on how translations affect the partition function.

Proof of Proposition 10. If G is a finite group acting symplectically on an Abelian surface
A, and T ⊂ G is the subgroup of translations, then G′ = G/T acts symplectically on
A′ = A/T without translations. Since T acts freely, a G-invariant subscheme of A must
have length dividing |T |. So Hilbd(A)G = ∅ unless d = m|T | for some integer m ≥ 0, in
which case Hilbm|T |(A)G ∼= Hilbm(A′)G

′
. Hence,

ZA,G(q) =

∞∑
d=0

e(Hilbd(A)G)qd =

∞∑
m=0

e(Hilbm|T |(A)G)qm|T |

=
∞∑
m=0

e(Hilbm(A′)G
′
)qm|T | = ZA′,G′(q

|T |).
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Therefore, the problem is reduced to translation-free actions. Our proof of Theorem 8
is based on a computation of Bryan-Gyenge [11], so we briefly review the relevant results.
For a finite subgroup G∆ ⊂ SU(2) with associated ADE root system ∆, we can consider
the natural action of G∆ on C2, and define the local G∆-fixed partition function

Z∆(q) =
∞∑
n=0

e(Hilbn(C2)G∆)qn−
1
24 ,

which Bryan-Gyenge compute for each allowed ∆.

Theorem 29 ([11, Thm. 1.2]). For ∆ of type An, the local partition function is given by

ZAn(q) =
1

η(q)

while for type Dn and En, it is

Z∆(q) =
η2(q2)η(q4E)

η(q)η(q2E)η(q2F )η(q2V )

with (E,F, V ) presented explicitly in each case in [11, Thm. 1.2].

With this, we are ready to prove our main result.

Proof of Theorem 8. Suppose first that A is an Abelian surface with a translation-free sym-
plectic action by a finite group G. To set notation, let p1, . . . , pr ∈ A/G be the singular
points, each with stabilizer subgroup Gi ⊂ G and corresponding ADE root system ∆i.
With k = |G| and ki = |Gi|, let {x1

i , . . . , x
k/ki
i } be the orbit in A corresponding to singular

point pi. The smooth locus of the quotient is

(A/G)◦ = A/G− {p1, . . . , pr}.

The same method from [11, Section 2] of stratifying the Hilbert scheme applies here, and
gives the relation

∞∑
d=0

e(Hilbd(A)G)qd =

( ∞∑
d=0

e(Hilbd((A/G)◦))qkd
)

·
r∏
i=1

( ∞∑
d=0

e(Hilbd(C2)Gi)q
dk
ki

) (2.15)

By removing the singular points fromA/G as well as their preimages inA, the restricted
quotient map is unramified of degree k, which means

e(A)−
r∑
i=1

#{x1
i , . . . , x

k/ki
i } = k · e((A/G)◦).
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With a := e((A/G)◦), and using that e(A) = 0, we get

a = −
r∑
i=1

1

ki
.

Since (A/G)◦ is a smooth quasi-projective surface, by Göttsche’s formula [23]

∞∑
d=0

e(Hilbd((A/G)◦))qkd =
∞∏
n=1

(1− qkn)−a.

Hence, using the definition of the local partition functions, as well as (2.15), we get

ZA,G(q) =

∞∏
n=1

(1− qkn)−a ·
r∏
i=1

q
k

24kiZ∆i

(
q
k
ki

)
= q

( ka
24

+
∑
i

k
24ki

)
η−a(qk) ·

r∏
i=1

Z∆i

(
q
k
ki

)
.

From the relation a +
∑

i
1
ki

= 0, we see the exponent of the overall power of q vanishes.
With the substitution a = e(A/G)− r we see

ZA,G(q) = η(qk)r−e(A/G) ·
r∏
i=1

Z∆i

(
q
k
ki

)
. (2.16)

By Proposition 28, the ADE singularity type and Euler characteristic e(A/G) can be
read off of Table 2.1. Recall that Zn has ADE type An−1 while Q,D, T have types
D4, D5, E6, respectively. This determines the value of ki for each ∆i. From (2.16), we
can use Theorem 29 to compute the function Z−1

A,G(q) as an eta product, which we record
in the third column of Table 2.1. By Theorem 29, Z−1

∆i
transforms as a modular form of

weight 1
2 for all ∆i. By (2.16), the weight of Z−1

A,G is therefore 1
2e(A/G). It is clear that the

leading coefficient of Z−1
A,G is 1. Applying Proposition 93 case by case, we see that Z−1

A,G is
a holomorphic modular form of level k = |G|.

In case G acts on A with translations, we apply Proposition 10. Since the G′ action
on A′ is symplectic and translation-free, Z−1

A′,G′ is a holomorphic modular form of weight
1
2e(A

′/G′), with level |G′|, and normalized with leading coefficient 1. The weight, holo-
morphy, and normalization are invariant under the variable change q 7→ q|T |, but the new
level is |G′| · |T | = |G|.

Proof of Proposition 11. The proof of the much more general Theorem 1.10 in [11, Sec.
5] goes through nearly verbatim in the case of Abelian surfaces, with the following minor
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adjustments. Let Y → A/G be the minimal resolution. We would use the definition
Zbir
A,G(q) =

∑∞
d=0[Hilbd(A)G]bir q

d. But since Y is a K3 surface, we define Zbir
Y (q) just as

in [11] with the extra power of q. In particular, this implies the result for the normalized
χy-genera.

2.4 Enumerative Geometry of the Orbifold Kummer Surface

The purpose of this section is to prove the remaining results from Section 2.1.3 of the
Introduction.

2.4.1 Review of Ordinary BPS Invariants

Let X be a Calabi-Yau threefold with curve class β ∈ H2(X,Z). The central quantity
in the Maulik-Toda proposal defining the ordinary BPS states [32], is the Hilbert-Chow
morphism7

π : Mβ(X)→ Chowβ(X)

along with the perverse sheaf of vanishing cycles φ on Mβ(X). We then define the Maulik-
Toda polynomial

MT(π) =
∑
i,j∈Z

(−1)iyj dimHi
(

Chowβ(X), pHj(Rπ∗φ)
)

(2.17)

where H denotes hypercohomology, and pH(·) are the cohomology sheaves with respect to
the perverse t-structure. For further details, see [16, 32]. By Verdier duality, MT(π) is a
Laurent polynomial in y invariant under y ↔ y−1. Therefore, we can write

MT(π) =
∑
g≥0

nβ(g)
(
y

1
2 + y−

1
2
)2g (2.18)

for uniquely determined integers nβ(g), which we call the (ordinary) BPS invariants.
The example relevant to us is when the threefold X is a local K3 or Abelian surface S

with effective class β ∈ H2(S,Z). In this case, one can define X as the total space of a
fibration f : X → (∆, 0) by K3 or Abelian surfaces over a pointed disk (∆, 0) such that:

1. All fibers of f are projective

7Here Mβ(X) is the moduli space of Simpson stable one-dimensional sheaves F onX with [supp(F )] = β

and χ(F ) = 1. Moreover, Chowβ(X) is the Chow variety of effective curves in the class β.
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2. f−1(0) = S

3. The class β ∈ H2(S,Z) does not deform algebraically off the central fiber to any
order.

Because curves in the class β do not deform even scheme-theoretically off the central
fiber, the theory localizes to studying sheaves on the surface S. Let Mβ(S) be the moduli
space of stable one-dimensional sheaves F with [supp(F )] = β and χ(F ) = 1. We know
Mβ(S) is a smooth projective holomorphic symplectic variety, and we additionally assume
that it is of K3-type (this is not true when S is an Abelian surface, but by Corollary 13, the
fixed locus under the standard involution is a disjoint union of varieties of this type).

Under the above assumptions, the Hilbert-Chow morphism

π : Mβ(S)→ Chowβ(S)

has Chowβ(S) ∼= Pn where dim(Mβ(S)) = 2n, by [24]. Hence, π is a Lagrangian fibra-
tion. Since Mβ(S) is smooth, φ = Q[2n]. For all 0 ≤ p, q ≤ 2n, the perverse Hodge
numbers of π are defined to be

php,q(π) := dimHq−n(Pn, pHp−n(Rπ∗Q[2n])
)
. (2.19)

Theorem 30 ([46, Thm. 0.2]). Under the above hypotheses, the perverse Hodge numbers
of π equal the ordinary Hodge numbers of Mβ(S)

php,q(π) = hp,q(Mβ(S)).

Using (2.17) and (2.3), the following is then a small computation.

Corollary 31. The Maulik-Toda polynomial associated to π can be expressed as the nor-
malized χy-genus of Mβ(S)

MT(π) = χy(Mβ(S)).

2.4.2 ı-BPS Invariants of the Orbifold Kummer Surface

There does not currently exist a definition of BPS invariants for orbifolds. We give here a
coarse8 definition in the case of the orbifold Kummer surface.

8See Remark 14
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Let A be a polarized Abelian surface of type (1, d) with βd ∈ H2(A,Z) the class of
the polarization. The orbifold Kummer surface is defined as the stack quotient [A/ı] where
ı : A→ A is the canonical involution a 7→ −a.

By the same argument as in Section 2.4.1, the Maulik-Toda proposal applied to a local
orbifold Kummer surface will localize to a theory of sheaves on the surface itself. A natural
guess to define orbifold BPS states is to use the proper map

πd : Mβd(A)ı → Chowβd(A)ı (2.20)

where the superscript ı denotes the fixed locus of the induced ı action.
By Corollary 13, the space Mβd(A)ı is a disjoint union of smooth holomorphic sym-

plectic varieties of K3-type. We can decompose it, along with the invariant Chow variety,
into connected components

Mβd(A)ı =
∐
k,l

Mk,l Chowβd(A)ı =
∐
l

Bl.

Restricting πd to Mk,l, we get surjective maps πk,l : Mk,l → Bl. Since each Bl is smooth,
by [24] each πk,l is a connected Lagrangian fibration over a projective space Bl = Pdl

where dim(Mk,l) = 2dl.
Associated to each πk,l with φ = Q

Mk,l
[2dl] we get the Maulik-Toda polynomial

MT(πk,l) as in (2.17). The Maulik-Toda polynomial associated to the map in (2.20) is
then

MT(πd) =
∑
k,l

MT(πk,l).

Definition 32. The ı-BPS invariants of the orbifold Kummer surface [A/ı] are integers
nh(d) defined for all d ≥ 0 by

MT(πd) =
∞∑
h=0

nh(d)(y
1
2 + y−

1
2 )2h. (2.21)

2.4.3 Proof of Proposition 12

For all d ≥ 0, we denote by M(A) = MA(1, 0,−d) the moduli space of torsion-free sheaves
on A with Chern character (1, 0,−d) ∈ H2∗(A,Z).

Lemma 33. There exists a canonical ı-equivariant isomorphism

M(A)→ Â×Hilbd(A).
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Proof. A sheaf F ∈ M(A) can be uniquely expressed as F = L0 ⊗ Id where L0 ∈ Â is a
degree-zero line bundle and Id is the ideal sheaf of a zero-dimensional subscheme of length
d. The ı-equivariance is immediate.

LetA0 = E×F be a product Abelian surface withE and F two elliptic curves. Denote
by σ the class of E × {pt}, and by f the class of {pt} ×F . Lemma 33 reduces the proof of
the proposition to constructing a ı-equivariant deformation equivalence

M(A)→ Mβd(A). (2.22)

We do so by deforming to A0, as summarized in the diagram

M(A) Mβd(A)

M(A0) Mσ+df (A0)∼

(2.23)

Here, as we will explain, the vertical arrows are ı-equivariant deformation equivalences and
the horizontal arrow is a ı-equivariant isomorphism induced from the relative Fourier-Mukai
functor applied to the natural projection A0 → E.

Lemma 34. The vertical arrows in diagram (2.23) are ı-equivariant deformation equiva-
lences.

Proof. By Proposition 4.12 of [50], we have a deformation equivalence

M(A)→ M(A0).

The proof involves a family of polarized Abelian surfaces. But clearly we have a fiberwise
action on the family using the standard involution on each Abelian surface. It is in this
sense that the deformation equivalence is ı-equivariant. Precisely the same argument holds
for Mσ+df (A0)→ Mβd(A).

Consider the following diagram

A0 ×E A0

A0 A0

qp (2.24)
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where p, q are the two canonical projections. Let P denote the universal Poincaré line
bundle on A0 ×E A0, and define the relative Fourier-Mukai functor

ΦP : Db(A0)→ Db(A0)

by E 7→ Rq∗
(
P ⊗ p∗E

)
. For more details on relative Fourier-Mukai in more generality, see

Section 3.2 of [50] or Chapter 6 of [2].

Lemma 35. The relative Fourier-Mukai functor ΦP is ı-equivariant. More speecifically,
for all E ∈ Db(A0)

ı∗
(
ΦP (E)

) ∼= ΦP

(
ı∗(E)

)
.

Proof. The key is that the Poincaré bundle is ı∆-equivariant; that is, we can choose an
isomorphism P → ı∗∆P where ı∆ is the induced diagonal action on A0 ×E A0. This is
because (see Definition 6.14 of [2])

P = OA0×EA0

(
D +D′ −∆

)
where D = A0 × {0}, D′ = {0} × A0 and ∆ is the diagonal divisor in A0 ×E A0.
All three of these divisors are ı∆-invariant. The remainder of the argument follows from
straightforward functorial properties of ı, p, and q.

Corollary 36. The relative Fourier-Mukai functor ΦP induces a ı-equivariant isomorphism

M(A0)→ Mσ+df (A0).

Proof. The isomorphism is a particular example of Theorem 3.15 in [50], noting that be-
cause our Chern character is primitive, there are no strictly semistable sheaves. The ı-
equivariance follows from the previous lemma.

This completes the proof of Proposition 12.

2.4.4 Proof of Theorem 15

By Corollary 31 we have

MT(πd) =
∑
k,l

χy(Mk,l) = χy
(
Mβd(A)ı

)
(2.25)
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where the latter equality holds because the ordinary Hodge numbers are additive under
disjoint unions. By Corollary 13, we have

χy
(
Mβd(A)ı

)
= 16χy

(
Hilbd(A)ı

)
since the χy-genus is a deformation invariant. Therefore

1
16MT(πd) = χy

(
Hilbd(A)ı

)
.

The result then follows using Proposition 11 along with the expression for Z−1
A,〈ı〉 from Table

2.1.

2.4.5 Proof of Theorem 16

In this section we will prove Theorem 16 on the Yau-Zaslow formula for the orbifold Kum-
mer surface. We first need to establish a few lemmas.

Lemma 37. Let C be an integral curve with an involution ı : C → C. If the quotient C/ı
is not rational, then e(Jac(C)ı) = 0.

Proof. Let η : C̃ → C and δ : C̃/ı → C/ı be the corresponding normalization maps, and
α : C → C/ı the quotient. We get a commuting diagram

C̃ C

C̃/ı C/ı

η

α̃ α

δ

where the map α̃ is defined by the universal property of normalizations: since α is surjective
and C/ı is integral, α factors uniquely via a map C → C̃/ı. We get α̃ by composing with
η. By pullback we get a short exact sequence of Abelian groups

0→ Jac(C̃/τ)→ Jac(C̃)→ Prym(α̃)→ 0

where Prym(α̃) is the Prym variety associated to α̃. Since α̃ is ı-equivariant with the trivial
action on C̃/ı, by restricting to the fixed locus we get an inclusion

Jac(C̃/ı) ⊂ Jac(C̃)ı. (2.26)

Pulling back via η, we get a short exact sequence

0→ G→ Jac(C)→ Jac(C̃)→ 0
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where G is a product of additive and multiplicative groups. By [4, Prop.2.2], this sequence
splits canonically so that Jac(C̃) ⊂ Jac(C) corresponds to the subgroup of line bundles on
C pushed forward from line bundles on C̃. Because η is ı-equivariant, this descends to an
inclusion

Jac(C̃)ı ⊂ Jac(C)ı.

By [4, Lem.2.1] we thereby get a free action of Jac(C̃)ı on the invariant compactified
Jacobian Jac(C)ı. But if C/ı is not rational, we know by (2.26) that a positive-dimensional
Abelian variety therefore acts freely on Jac(C)ı. If a finite group of order n acts freely
on Jac(C)ı, then n must divide e(Jac(C)ı). Because an abelian variety contains cyclic
subgroups of all orders, e(Jac(C)ı) = 0.

Lemma 38. If f : X → Y is a surjective morphism of projective algebraic varieties and
all fibers have vanishing Euler characteristic, then e(X) = 0.

Proof. Consider first the case that f is a topological locally-trivial fibration with fiber F . A
well-known result is that e(X) = e(F ) · e(Y ) from which the lemma follows. In the more
general case, take a stratification of Y such that f is a topological locally-trivial fibration
over each strata. The excision property of the Euler characteristic then reduces the problem
to the previous case.

Proof of Theorem 16. The genus h = 0 specialization of the Maulik-Toda polynomial is
y = −1, as we see from (2.21). By the proof of Theorem 15,

n0(d) = MT−1(πd)

= e
(
Mβd(A)ı

)
= 16 e

(
Hilbd(A)ı

)
.

(2.27)

This proves the first assertion, noting the expression for ZA,〈ı〉 (see Table 2.1).
For the final claim we assume A is a (1, d)-polarized Abelian surface with Picard rank

one, and βd the unique primitive generator. In this case,

Mβd(A) ∼= J ac d+1
βd

(A)

where J ac d+1
βd

(A) → Chowβd(A) is the relative compactified Jacobian of degree d + 1,
which is the arithmetic genus of the class βd. The fiber over a curve C ∈ Chowβd(A) is
Jac

d+1
(C) parameterizing rank 1 torsion-free sheaves of degree d+ 1 on C. We define

Π ⊂ Chowβd(A)ı
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to be the set of ı-invariant curves in the class βd with rational quotient. The set Π is finite
because if it were not, the singular K3 surface A/ı would contain a positive-dimensional
family of rational curves, which cannot occur. Let Y be the open subvariety of the invariant
Chow variety parameterizing ı-invariant curves with non-rational quotient.

Y = Chowβh(A)ı −Π.

Given the map πd : J ac d+1
βd

(A)ı → Chowβd(A)ı, we get the following decomposition of
the total space

J ac d+1
βd

(A)ı = π−1
d (Y ) ∪ π−1

d (Π).

Since Π is finite, π−1
d (Π) is a closed subvariety of J ac d+1

βd
(A)ı whose compliment is

π−1
d (Y ). Thus, by the excision property of the Euler characteristic

e(J ac d+1
βd

(A)ı) = e(π−1
d (Y )) + e(π−1

d (Π)).

The fiber of πd over an invariant curve C is Jac(C)ı ∼= Jac
d+1

(C)ı, where the isomor-
phism is twisting by a fixed ı-invariant line bundle of degree d+ 1. Therefore, all fibers of
the restricted family π−1

d (Y ) → Y have vanishing Euler characteristic by Lemma 37, and
e(π−1

d (Y )) = 0 by Lemma 38. Finally, we have

π−1
d (Π) =

∐
C∈Π

Jac(C)ı,

from which it now follows that

e(J ac d+1
βd

(A)ı) =
∑
C∈Π

e(Jac(C)ı).

Because n0(d) = e(J ac d+1
βd

(A)ı), this completes the proof.

2.4.6 Proof of Conjecture 20 for Smooth Curves

Let C be a smooth curve of genus g with an involution ı : C → C. Let α : C → C/ı be
the quotient map, and let h be the genus of the smooth curve C/ı. Just as in the proof of
Lemma 37, we get a short exact sequence

0→ Jac(C/ı)→ Jac(C)→ Prym(α)→ 0

where Prym(α) is an Abelian variety of dimension g − h called the Prym variety. There
is a canonical lift of the ı action to Jac(C) by pullback which acts trivially on Jac(C/ı).
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Moreover, the induced action on Prym(α) is by the canonical involution a 7→ −a, which
has 22g−2h isolated fixed points. Therefore

Jac(C)ı =

22g−2h∐
i=1

Jac(C/ı)

If C/ı is a rational curve, then h = 0 and Jac(C/ı) is a point, which proves the conjecture
in this case.
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Chapter 3

A Theory of Gopakumar-Vafa
Invariants for Calabi-Yau Threefolds
with an Involution

3.1 Ordinary GV invariants

LetX be a Calabi-Yau threefold (CY3) by which we mean a smooth quasi-projective variety
over C of dimension three with KX

∼= OX . In 1998 [22], Gopakumar and Vafa (GV)
defined via physics integer invariants ng(β) which give a virtual count of curves C ⊂ X of
genus g and class [C] ∈ H2(X).

Mathematically, there are two conjecturally equivalent sheaf theoretic approaches to
defining ng(β), one by Pandharipande-Thomas (PT) via their stable pair invariants [41],
and one more recently given by Maulik and Toda (MT) using perverse sheaves [32]. We
begin by reviewing ordinary GV theory, and then we develop in a parallel fashion a theory
of GV invariants for CY3s with an involution.

3.1.1 GV invariants via PT theory

Let PTβ,n(X) be the moduli space of PT pairs [40]:

PTβ,n(X) =

{
(F, s)

∣∣∣∣ s ∈ H0(X,F ), [supp(F )] = β, χ(F ) = n

}
where F is a coherent sheaf on X with proper support of pure dimension 1, and coker(s)

has support of dimension 0.
For any scheme S over C, Behrend [6] defined a constructible function νS : S → Z and

we define the virtual Euler characteristic to be the Behrend function weighted topological
Euler characteristic:
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evir(S) = e(S, νS) =
∑
k∈Z

k · e
(
ν−1
S (k)

)
.

We then define the PT invariants by

NPT
β,n(X) = evir(PTβ,n(X))

and the PT partition function by

ZPT(X) =
∑
β,n

NPT
β,n(X)Qβ yn.

Definition 39. The Gopakumar-Vafa invariants (via PT theory) nPT
g (β) are defined via the

following equation:

logZPT(X) =
∑
k>0

∑
β,g

1

k
·Qkβ · nPT

g (β) · ψg−1
−(−y)k

(3.1)

where
ψx = 2 + x+ x−1

Remark 40. Writing logZPT(X) in the form given by the righthand side of Equation (3.1)
uses the fact that the coefficient of Qβ in ZPT(X) is the Laurant expansion of a rational
function in y which is invariant under y ↔ y−1 [9, 40, 47]. Although it isn’t clear from the
definition, one expects that nPT

g (β) = 0 if g < 0.

Remark 41. Gopakumar and Vafa gave a formula relating their invariants to the Gromov-
Witten (GW) invariants. Equation (3.1) is equivalent to the Gopakumar-Vafa formula after
using the expected relationship between PT and GW invariants.

3.1.2 GV invariants via MT theory

We define the moduli space of Maulik-Toda (MT) sheaves to be

Mβ(X) =

{
F

∣∣∣∣ [supp(F )] = β, χ(F ) = 1

}
where F is a coherent sheaf on X with proper sheaf theoretic support of pure dimension
1 and where F is Simpson stable, which in this case is equivalent to the condition that if
F ′ ( F , then χ(F ′) ≤ 0.
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The MT moduli space is a quasi-projective scheme and it has a proper morphism to the
Chow variety given by the Hilbert-Chow morphism:

π : Mβ(X)→ Chowβ(X)

[F ] 7→ supp(F )

There is a perverse sheaf φ• on Mβ(X) which is locally given by the perverse sheaf
of vanishing cycles associated to the local super-potential (the moduli space is locally the
critical locus of a holomorphic function on a smooth space, the so-called super-potential).
The construction of φ• was done in [7], and requires the choice of “orientation data” : a
squareroot of the virtual canonical line bundle on Mβ(X). Maulik and Toda conjecture
the existence of a canonical choice of orientation data (one that is compatible with the
morphism π). Using that choice, the Maulik-Toda polynomial is defined as follows:

MTβ(y) =
∑
i∈Z

χ( pH i(R•π∗φ
•))yi

where pH i(−) is the ith cohomology functor with respect to the perverse t-structure. By
self-duality of φ• and Verdier duality, MTβ(y) is an integer coefficient Laurent polynomial
in y which is invariant under y ↔ y−1. Noting that {ψgy}g≥0 forms an integral basis for
such polynomials, we may write the MT polynomial as follows:

Definition 42. The GV invariants (via MT theory) nMT
g (β) are defined by the equation

MTβ(y) =
∑
g≥0

nMT
g (β) ψgy .

The main conjecture of Maulik and Toda is

Conjecture 43. nMT
g (β) = nPT

g (β).

Remark 44. Compared to the definition via PT theory, the above definition of GV invariants
is more directly tied to the geometry of curves in the class β and more closely matches the
original physics definition. In particular, the invariants nMT

g (β) only involve the single
moduli space Mβ(X). In contrast, the invariants nPT

g (β) involve a subtle combination of
the PT invariants associated to an infinite number of moduli spaces, namely the spaces
PTβ′,n(X) where β = kβ′ and n is unbounded from above.
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3.1.3 The local K3 surface: the Katz-Klemm-Vafa (KKV) formula.

Suppose that S is a K3 surface and βd ∈ H2(S) is a curve class with β2
d = 2d. The CY3

X = S×C is sometimes called the local K3 surface. In this case, Conjecture 43 holds and
nMT
g (βd) = nPT

g (βd) only depends on d and g (and not the divisibility of βd). The invariants
nPT
g (βd) and nMT

g (βd) were computed (in full generality) by Pandharipande and Thomas
[39] and Shen and Yin [46, Thm 0.5] respectively. The MT polynomials are given by the
famous KKV formula first conjectured by Katz, Klemm, and Vafa [27]:

∞∑
d=−1

MTβd(y)qd = −q−1
∞∏
n=1

(1− qn)−20(1 + yqn)−2(1 + yqn)−2 (3.2)

The right hand side can also be written as ψy ·φ10,1(q,−y)−1 where φ10,1(q, y) is the Fourier
expansion of the unique Jacobi cusp form of weight 10 and index 1.

The fact that ng(βd) is independent of the divisibility of βd is a deep and unusual feature
of the local K3 geometry.

3.2 GV invariants for CY3s with an involution

Let X be a CY3 equipped with an involution

ı : X → X

such that the induced action on KX is trivial. The purpose of this article is to develop a
theory of GV invariants which count ı-invariant curves on X . Namely, we seek to define
integers ng,h(β) which give a virtual count of genus g, ı-invariant curves C ⊂ X with
[C] = β ∈ H2(X), and such that the genus of the quotient C/ı is h.

We develop this theory parallel to the presentation of the ordinary GV invariants given
in Section 3.1. Namely we define invariants nPT

g,h (β) and nMT
g,h (β) in terms of a version of

PT and MT theory respectively and we conjecture that they are equal.
We do not currently know how to include curves that are fixed by ı (as opposed to merely

invariant) and so we make the following general assumption:

Assumption 45. Throughout, we assume that the curve classes β ∈ H2(X) that we con-
sider do not admit an effective decomposition β =

∑
i diCi containing an ı-fixed curve

Ci.
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3.2.1 ı-GV invariants via PT theory.

We denote by R+ and R− the trivial and the nontrivial irreducible representation of the
group of order 2 and we let Rreg = R+ ⊕R− denote the regular representation.

Recall that a sheaf F on X is ı-invariant if ı∗F ∼= F and that an ı-equivariant sheaf is
an ı-invariant sheaf F along with a choice of a lift of ı to an isomorphism ı̃ : ı∗F → F .

If F is an ı-equivariant sheaf then

χ(F ) =
∑
k

(−1)kHk(X,F )

is naturally a virtual representation and so can be written in the form

χ(F ) = nRreg + εR−

for some n, ε ∈ Z.
We define the space of ı-equivariant PT pairs

PTβ,n,ε(X, ı) =

{
(F, s)

∣∣∣∣ s ∈ H0(X,F ), [supp(F )] = β, χ(F ) = nRreg + εR−

}
where (F, s) is a PT pair such that F is an ı-equivariant sheaf and s is an equivariant section.
We note that

PTβ,d(X)ı =
⊔

2n+ε=d

PTβ,n,ε(X, ı) (3.3)

since the points of the ı-fixed locus PTβ,n(X)ı corresponds to ı-invariant PT pairs, but each
ı-invariant PT pair has a unique ı-equivariant structure making the section equivariant.

Definition 46. We define the ı-PT invariants and the ı-PT partition function by

NPT
β,n,ε(X, ı) = evir(PTβ,n,ε(X, ı))

ZPT(X, ı) =
∑
β,n,ε

NPT
β,n,ε(X, ı)Q

β ynwε

where in the sum, β is summed over the semi-group of classes satisfying Assumption 45.

These invariants are not new: they can be recovered from the orbifold PT invariants of
the stack quotient [X/ı] studied for example in [5]. It follows from [5, Prop 7.19], that the
coefficient of Qβ in ZPT(X, ı) is a Laurent expansion of a rational function in y and w
which is invariant under y ↔ y−1 and w ↔ w−1. This allows us to make the following
definition:
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Definition 47. The ı-GV invariants (via PT theory) nPT
g,h (β) (for classes β satisfying As-

sumption 45) are defined by the formula

log(ZPT(X, ı)) =
∑
k>0

∑
β,g,h

1

k
Qkβ · nPT

g,h (β) · ψh−1
−(−y)k

· ψg+1−2h
wk

where as before ψx = 2 + x+ x−1.

Remark 48. The number g + 1− 2h is half the number of fixed points on a smooth genus
g curve with an involution having a quotient of genus h.

Remark 49. Although it is not apparent from this definition, we expect nPT
g,h (β) to have

good finiteness properties, namely that for fixed β we expect nPT
g,h (β) to be non-zero for only

a finite number of values of (g, h) and that those values should have h ≥ 0 and g ≥ −1. The
possible occurence of non-zero counts for g = −1 is due to (for example) the possibility
of invariant curves C = C1 ∪ C2 consisting of a disjoint ı-orbit of rational curves. Such a
curve should be interpreted as having genus −1 via the formula χ(OC) = 1− g.

3.2.2 ı-GV invariants via MT theory.

We define the moduli space of ı-MT sheaves to be

Mε
β(X, ı) =

{
F

∣∣∣∣ [supp(F )] = β, χ(F ) = Rreg + εR−

}
(3.4)

where F is an ı-equivariant coherent sheaf onX with proper sheaf theoretic support of pure
dimension one and where F is ı-stable:

Definition 50. We say an ı-equivariant sheaf F on X of pure dimension one with χ(F ) =

Rreg + εR− is ı-stable if all ı-equivariant subsheaves F ′ ( F , with χ(F ′) = kRreg + γR−

satisfy k ≤ 1 and if k = 1, then γ < ε and [supp(F ′)] = [supp(F )] ∈ H2(X).

Remark 51. We will show in Proposition 84 that ı-stability can be reformulated in terms
of Nironi stability for the corresponding sheaf on the stack quotient [X/ı]. A consequence
is that Mε

β(X, ı) is a scheme and it is proper over Chowβ(X).

Let
πε : Mε

β(X, ı)→ Chowβ(X) (3.5)

be the Hilbert-Chow morphism. Since Mε
β(X, ı) parameterizes objects in the CY3 category

of ı-equivariant coherent sheaves onX , there exists a perverse sheaf of vanishing cycles9 φ•

9As in [32, Defn 2.7], we assume that our orientation is strictly Calabi-Yau.
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on Mε
β(X, ı) and we can define the ı-MT polynomial in a fashion analogous to the ordinary

MT polynomial:
MTβ(y, w) =

∑
i,ε∈Z

χ( pH i(R•πε∗φ
•)) yiwε. (3.6)

As before, self-duality and Verdier duality imply that MTβ(y, w) is a Laurent polynomial
in y invariant under y ↔ y−1. We conjecture that in general MTβ(y, w) is also a Laurent
invariant polynomial in w invariant under w ↔ w−1. Assuming this conjecture, we can
write MTβ(y, w) as a polynomial in ψy and ψw and make the following definition.

Definition 52. The ı-GV invariants (via MT theory) nMT
g,h (β) (for classes satisfying As-

sumption 45) are defined by the formula:

MTβ(y, w) =
∑
g,h

nMT
g,h (β) ψhy ψ

g+1−2h
w .

Our main conjecture is that our two definitions of ı-GV invariants are equivalent.

Conjecture 53. nPT
g,h (β) = nMT

g,h (β).

3.2.3 Examples: local Abelian surfaces and local Nikulin K3 surfaces.

One of the main results of this paper are various ı-equivariant versions of the KKV formula.
Namely, we compute our invariants and prove our conjecture for the caseX = S×C where
S is either an Abelian or K3 surface and where ı acts trivially on C and symplectically on
S.

For the case of an Abelian surface, the involution is the natural one arising from the
group structure: ı(a) = −a. A K3 surface equipped with a symplectic involution is called
a Nikulin surface and there are two distinct deformation types which we call Type (I) and
Type (II) (see Definition 74).

As with the ordinary GV invariants of a localK3 surface, our invariants admit a surpris-
ing lack of dependency on the divisibility of the curve class and they are given by formulas
involving Jacobi modular forms:

Theorem 54. Let X = S ×C where S is an Abelian surface or a Nikulin K3 surface, and
let β ∈ H2(S) be an effective invariant curve class with β2 = 2d. Then:

1. if S is a Type (II) Nikulin surface, nPT
g,h (β) only depends on (g, h, d). In particular, it

doesn’t depend on the divisibility of β.
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2. if S is an Abelian surface or a Type (I) Nikulin surface, nPT
g,h (β) only depends on

(g, h, d) as well as the parity of the divisibility of β.

We denote these invariants by ng,h(d; type) where type ∈ {Aev,Aodd,Nev
I ,N

odd
I ,NII} distin-

guishes the cases in the obvious way. Then the invariants are determined from the formula:∑
g,h

ng,h(d; type)ψh−1
y ψg+1−2h

w =

[
ΘT (q2, w)

φ10,1(q2,−y)

]
qd

where [· · · ]qd denotes the coefficient of qd in the expression [· · · ].
Moreover, T is a lattice or shifted lattice depending on the type, ΘT (q2, w) is an explic-

itly determined Jacobi theta function (see Theorem 67), and φ10,1(q, y) is the unique Jacobi
cusp form of weight 10 and index 1. In particular, for types Aodd and Nodd

I we get infinite
product formulas:

∑
g,h,d

ng,h(d;Aodd)ψhy ψ
g−1−2h
w qd = −4

∞∏
n=1

(1 + qn)8(1 + wqn)4(1 + w−1qn)4

(1− q2n)4(1 + yq2n)2(1 + y−1q2n)2
,

∑
g,h,d

ng,h(d;Nodd
I )ψhy ψ

g−2h
w qd+1 = −

∞∏
n=1

(1 + qn)4(1 + wqn)2(1 + w−1qn)2

(1− q2n)12(1 + yq2n)2(1 + y−1q2n)2
.

Remark 55. The specialization of the invariants ng,h(β) to h = 0 count ı-invariant hyperel-
liptic curves. The problem of counting the number of genus g hyperelliptic curves in a prim-
itive class βd on an Abelian surface A was first considered by Rose [45] and then solved by
Bryan-Oberdieck-Pandharipande-Yin [13]. We may specialize our invariants nPT

g,h

(
d;Aodd

)
to h = 0 by setting y = −1. The above formula then becomes

∞∑
d=0

∑
g>0

ng,0(d;Aodd)ψg−1
w qd = −4

∞∏
n=1

(1 + wqn)4(1 + w−1qn)4

(1− qn)8

We note that the invariant ng,0(d;Aodd) is equal to hHilbg,A,βd
in the notation of [13] and the

above formula is equivalent to the equation in Proposition 4 of [13].

Remark 56. For the case where βd is the primitive class on an Abelian surface, our invari-
ants ng,h(d;Aodd) are refinements of the invariants nd(h) considered in [43]. The relation-
ship is given by

nh(d) = −
∑
g

4g−2h · ng,h(d,Aodd).
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Our main technique to prove Theorem 54 / Theorem 67 is to use the Donaldson-Thomas
Crepant Resolution Conjecture (DT-CRC) [5,10] to compute orbifold PT invariants in terms
of the crepant resolution which in this case is a local K3 surface. We can then apply the
KKV formula making crucial use of the description of the Picard lattice of Kummer K3

surfaces and Nikulin resolutions given by Garbagnati-Sarti [20, 21]. This is carried out in
Section 3.4.

In Section 3.5, we use the derived McKay correspondence to compute the MT versions
of our invariants nMT

g,h (β) for X = S × C. The final result is

Theorem 57. The two definitions of ı-GV invariants coincide for X = S × C for S an
Abelian surface or a Nikulin K3 surface:

nPT
g,h (β) = nMT

g,h (β) .

3.2.4 Further examples

In Section 3.6, we give two other examples illustrating our theory and providing evidence of
our conjecture. For the case where X → B is an elliptically fibered CY3 over a surface B
with integral fibers and ı : X → X is the composition of an involution on B and fiberwise
multiplication by −1, we compute both nPT

g,h (β) and nMT
g,h (β) completely for β = [F ], the

class of the fiber. Let C ⊂ B be the fixed locus of the involution on the base and let
S = X

∣∣
C

be the restriction of X → B to C. The result is the following:

Theorem 58. Let (X, ı) be an elliptically fibered CY3 with notation as above. Then for all
g and h, nPT

g,h ([F ]) = nMT
g,h ([F ]) and they are given by

ng,h([F ]) =


−e(C) if (g, h) = (1, 0),

e (S) if (g, h) = (0, 0),

0 otherwise.

We also consider the case whereX = Tot(O(−1)⊕O(−1)) is the conifold, ı : X → X

is the Calabi-Yau involution which acts non-trivially on the base, and C ⊂ X is the zero
section. We use the orbifold topological vertex to compute nPT

g,h (d[C]) and we use stability
considerations to compute nMT

g,h (d[C]). The result is
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Proposition 59. For X the conifold with ı as above,

nPT
g,h (d[C]) = nMT

g,h (d[C]) =

1 if (g, h, d) = (0, 0, 1),

0 otherwise.

We remark that despite the simplicity of the answer, the above proposition is the result
of rather involved orbifold topological vertex computation which was done in [10] and it
gives a non-trivial instance of our conjecture.

3.3 Motivating example of an isolated smooth invariant curve.

The simplest evidence of our conjecture is the case of a rigid local curve in the primitive
class of the curve. Let C be a non-singular curve of genus g. Suppose there exists an
involution ı : C → C with fixed points

Cı = {p1, . . . , p2m}.

If h is the genus of the quotient C/ı, then by Riemann-Hurwitz we have

m = g + 1− 2h.

Let N be an ı-equivariant line bundle on C such that H0(N) = H1(N) = 0. Then

X = Tot(N ⊕KCN
−1)

is a CY3 with an induced involution (also denoted ı) acting trivially on KX . Let [C] be the
class of the zero section C ↪→ X which we note is rigid.

The moduli spaces for the class [C] can be determined explicitly:

Proposition 60. The ı-PT and ı-MT moduli spaces in the class [C] are given by

PT[C],n,ε(X, ı) =
∐

T⊆{1,...,2m}
|T |=ε+m

Symn+h−1
(
C/ı
)
,

Mε
[C](X, ı) =

∐
T⊆{1,...,2m}
|T |=ε+m

Pich
(
C/ı
)
.

As a consequence, we find there is a single non-zero ı-GV invariant in the class [C]:
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Corollary 61.

nPT
g′,h′ ([C]) = nMT

g′,h′ ([C]) =

1 if (g′, h′) = (g, h),

0 if (g′, h′) 6= (g, h).

Remark 62. We expect the invariants ng′,h′(d[C]) to be complicated for d > 1 and g > 0.
For the related case of X = Tot(KC ⊕O), Conjecture 43 is equivalent to the well known
P = W conjecture for the GLd Hitchin system on C [32, § 9.3]. We expect that for
ı : X → X , the natural lift of an involution on C, our Conjecture 53 should be equivalent
to an orbifold version of P = W for the orbifold curve [C/ı].

To prove Proposition 60 and Corollary 61, we need the following lemma.

Lemma 63. Let L = O(D) be an ı-equivariant line bundle on C admitting an ı-invariant
section OC → L vanishing on an ı-invariant effective divisor D. Then D can be written

D =
∑
j

dj(xj + ı(xj)) +
∑
i∈T

pi

where T ⊆ {1 · · · 2m}, xj ∈ C, and

χ(L) = nRreg + εR−

with
n = 1− h+

∑
j

dj , ε = |T | −m.

Moreover, the above formula still holds for L = O(D) with D ı-invariant, but not neces-
sarily effective.

Proof. Since the support of D is ı-invariant, it must consist of free orbits and fixed points.
Absorbing multiplicities which are not zero or one on the pi’s into the first term using
2pi = pi + ı(pi) we see D may be written in the given form. Assuming D is effective, we
then get sequence

0→ OC → L→ OD(D)→ 0

and consequently we find

χ(L) = χ(OC) + (
∑
j

dj)Rreg +
∑
i∈T

χ(Opi(pi)).
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Using a local coordinate about pi, it is easy to determine that χ(Opi(pi)) = R−. We also
observe that

χ(OC) = (1− h)R+ + (h− g)R− = (1− h)Rreg −mR−

and the formula for χ(L) follows. The general case is then obtained by writing D =

D′ −D′′ with D′ and D′′ effective and using the sequence

0→ O(D′ −D′′)→ O(D′)→ OD′′(D′)→ 0.

Proof of Proposition 60. An ı-PT pair on X in the class [C] must be supported on C and
hence be an ı-equivariant line bundle with a non-zero invariant section OC → L. Such
ı-PT pairs are determined up to isomorphism by the associated invariant divisor D which
by Lemma 63 is determined by the subset T ⊆ {1, . . . , 2m} and

∑
j dj = n+h−1 ı-orbits

on C or equivalently, n+h−1 points on C/ı. The first equation in the proposition follows.
For the same reasons, an ı-MT sheaf on X in the class [C] must be an ı-equivariant

line bundle L → C, or equivalently, a line bundle on the stack quotient [C/ı]. Since
χ(L) = Rreg + εR−, L admits a non-zero ı-invariant section and hence is of the form
L ∼= OC(D) where D is an invariant divisor given as in Lemma 63 with

∑
j dj = h.

The Picard group of an orbifold is given in general in [44, § B]. In particular for [C/ı]

we have

Pic([C/ı]) ∼= Pic0(C/ı)⊕H2
orb([C/ı])

∼= Pic0(C/ı)⊕ Z⊕ (Z/2)2m

∼= Pic(C/ı)⊕ (Z/2)2m.

Under the above isomorphism, the line bundle OC(D) with D as in the lemma goes to
(OC/ı(

∑
j djxj), 1T ) where xj ∈ C/ı is the point corresponding to the orbit xj + ı(xj)

and 1T = (t1, . . . , t2m) where ti = 1 if i ∈ T and 0 otherwise. The second equation of
Proposition 60 follows.

Proof of Corollary 61. Since [C] is a primitive class, we have[
ZPT(X, ı)

]
q[C]

=
[
logZPT(X, ı)

]
q[C]

=
∑
g′,h′

nPT
g′,h′ ([C])ψh

′−1
y ψg

′+1−2h′
w .
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On the other hand, by Proposition 60 and using the fact that the Behrend function is (−1)d

on a smooth scheme of dimension d we get[
ZPT(X, ı)

]
q[C]

=
∑

T⊆{1,...,2m}

∑
n

(−1)n+h−1e
(

Symn+h−1(C/ı)
)
ynw|T |−m

=

(
2m∑
k=0

(
2m

k

)
wk−m

)
y1−h

∞∑
d=0

e
(

Symd(C/ı)
)

(−y)d

= ψmw y
1−h(1 + y)2h−2

= ψh−1
y ψg+1−2h

w

where we used MacDonald’s formula [31] for the penultimate equality. The formula for
nPT
g′,h′ ([C]) then follows.

To compute nMT
g′,h′ ([C]) we observe that Chow[C](X) is a point and that Mε

[C](X, ı) is
smooth. Consequently, the Maulik-Toda polynomial is given by the (symmetrized) Poincare
polynomial:

MT[C](y, w) =
∑

T⊆{1,...2m}

w|T |−m P̃y

(
Pich(C/ı)

)
.

Since Pich(C/ı) is an Abelian variety of dimension h, its symmetrized Poincare polynomial
is given by y−h(1 + y)2h = ψhy . Thus MT[C](y, w) = ψhy ψ

g+1−2h
w and the formula for

nMT
g′,h′ ([C]) is proved.

3.4 Local Abelian and Nikulin Surfaces (PT theory)

3.4.1 Overview

In this section we compute ZPT(X, ı), and thus determine all the invariants nPT
g,h (β) for the

case ofX = S×C, where S is an Abelian surface with its symplectic involution ı(a) = −a
or a Nikulin K3 surface which by definition comes with a symplectic involution (in both
cases, ı acts trivially on the second factor). The main theorem is given by Theorem 67.

Our basic tool for computing the ı-PT invariants of S × C is the Donaldson-Thomas
Crepant Resolution Conjecture (DT-CRC) which was conjectured in [10] and recently proven
by Beentjes, Calabrese, and Rennemo in [5]. The idea is the following. Our ı-PT partition
functionZPT(X, ı) can be written in terms of the orbifold PT partition functionZPT([X/ı])

and then the DT-CRC asserts that

ZPT([X/ı]) =
ZPT(Y )

ZPT
exc(Y )

(3.7)
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where Y → X/ı is the crepant resolution, ZPT(Y ) is the ordinary PT partition function
of Y , and ZPT

exc(Y ) is the partition function for curve classes supported on the exceptional
fibers. The variables in the above equality are identified via the Fourier-Mukai isomorphism
in numerical K-theory. In the case of X = S × C,

Y = Ŝ × C

where Ŝ → S/ı is the minimal resolution. In the case where S is an Abelian surface, Ŝ is
the associated Kummer K3 surface, and in the case where S is a Nikulin K3 surface, Ŝ is
a special kind of K3 surface which we call a Nikulin resolution.

We then can compute the right hand side of Equation (3.7) using the KKV formula (see
Section 3.1.3). Doing this requires an explicit description of the Picard lattice of Ŝ, which
was given by Garbagnati-Sarti [20, 21]. Finally, to complete the computation, we will need
some theta function identities which we prove in Section 3.4.4.

3.4.2 Using the DT-CRC

To use Equation (3.7), we will need to be explicit with our choice of variables. Let X =

S×C and let βd be an effective, ı-invariant, primitive curve class on S with β2
d = 2d which

we identify with the corresponding class on X . To determine our invariants nPT
g,h (mβd), we

need to compute the partition function

ZPT(X, ı) =
∑
m≥0

∑
n,ε

NPT
mβd,n,ε

(X, ı)Qmynwε.

Remark 64. Strictly speaking, when the rank of the invariant Picard group Pic(S)ı is
greater than 1, the above is a restricted partition function: we don’t sum over all invariant
curve classes, but only over the semi-group generated by βd. This suffices for determining
the invariants nPT

g,h (mβd). A few of the statements made in this section require minor ad-
justments in the case where the invariant Picard rank is greater than 1. Note that for d ≤ 0,
the invariant Picard rank is necessarily greater than 1.

Our partition function ZPT(X, ı) can be determined from the PT partition function of
the orbifold [X/ı]. By definition (see [5]),

ZPT([X/ı]) =
∑

α∈N≤1([X/ı])

NPT
α ([X/ı])Qα

where the sum ranges over the numerical K-theory of Coh≤1([X/ı]), the category of co-
herent sheaves on [X/ı] having proper support of dimension less than or equal to one.
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We need to choose generators for the free Z-modules

N≤1([X/ı]) ∼= N≤1([S/ı])

and
N≤1(Y ) ∼= N≤1(Ŝ) ∼= H0(Ŝ)⊕ Pic(Ŝ)

in a way that is compatible with the Fourier-Mukai isomorphism

N≤1([S/ı]) ∼= N≤1(Ŝ).

It will be convenient to choose generators over Q. Determining which linear combi-
nations of our generators are integral classes is somewhat subtle and is addressed in Sec-
tion 3.4.3. The generators, and their corresponding variables in the partition functions, are
given in the following table:

Class in N≤1([S/ı]) Class in H0(Ŝ)⊕ Pic(Ŝ) Variable

[Opt] [pt] y

[Oxi ⊗R−] [Ei] wi

αd γd Q

Table 3.1: Dictionary between K-theory classes on the stack [S/ı] and the minimal resolu-
tion Ŝ, along with the corresponding variable choice.

Here Opt is the structure sheaf of a generic point on [S/ı], Oxi ⊗ R− is the structure
sheaf of the i-th orbifold point xi equipped with the non-trivial action of its stabilizer group,
and

αd =
1

2
t∗(ch

−1(βd))

where t : S → [S/ı] and ch−1(βd) is the class in N≤1(S) corresponding to βd ∈ Pic(S)

under the Chern character isomorphism. The generators of H0(Ŝ) and Pic(Ŝ) are given by
the point class [pt], the classes of the exceptional divisors Ei, and

γd = c1(FM(αd)),
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the divisor class associated to the image of αd under the Fourier-Mukai isomorphism.
The fact that the above choices are compatible with the Fourier-Mukai isomorphism

uses the well-known fact that the isomorphism takes Oxi ⊗R− to OEi(−1).
With these variables, Equation (3.7) can be viewed as an equality of formal series10 in

the variables y, wi, Q.

Lemma 65. ZPT(X, ı) = ZPT([X/ı])
∣∣
wi=w

Proof. Our ı-PT pairs onX are equivalent to PT pairs on the stack quotient [X/ı]. However,
keeping track of theK-theory class of the sheaf on [X/ı] is a refinement of the discrete data
used for ı-PT pairs. The lemma follows from observing that a sheaf on [X/ı] in the K-
theory class

mαd + n[Opt] +
∑
i

vi[Oxi ⊗R−]

corresponds to an ı-equivariant sheaf F with [supp(F )] = mβd and

χ(F ) = nRreg + (
∑
i

vi)R−.

Next we define the exceptional lattice

Λ = ⊕iZ 〈Ei〉 ⊂ Pic(Ŝ)

and we define

Γm,d =
{
v ∈ Λ⊗Q : mγd + v is a non-zero integral class in Pic(Ŝ)

}
.

For v =
∑

i viEi we will use the following notation

l(v) =
∑
i

vi, v2 = −2
∑
i

v2
i . (3.8)

We can write the log of the partition function on Y in terms of the Gopakumar-Vafa
invariants of Y using Equation (3.1). We then specialize wi to w to get:

logZPT(Y )
∣∣
wi=w

=
∑
k>0

∑
m≥0

∑
v∈Γm,d

∑
h≥0

1

k
nPT
h (mγd + v)Qkmwkl(v)ψh−1

−(−y)k
.

10In general, the statement of the DT-CRC requires viewing the partition functions as rational functions in
certain variables and the equality as an equality of rational functions. This issue does not arise in this case.
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On the other hand, the invariants nPT
g,h (mβd) on X are by definition given by

logZPT(X, ı) =
∑
k,m>0

∑
g,h

1

k
QkmnPT

g,h (mβd)ψ
h−1
−(−y)k

ψg+1−2h
wk

.

Taking the log of Equation (3.7), observing that ZPT
exc(Y ) = ZPT(Y )

∣∣
Q=0

, and applying
Lemma 65, we get

logZPT(X, ı) = logZPT(Y )
∣∣
wi=w

− logZPT(Y )
∣∣
wi=w,Q=0

.

Combining this with the previous two equations, we arrive at

∑
k,m>0

Qkm

k

∑
g,h

nPT
g,h (mβd)ψ

h−1
−(−y)k

ψg+1−2h
wk


=
∑
k,m>0

Qkm

k

∑
h≥0

∑
v∈Γm,d

nPT
h (mγd + v)wkl(v)ψh−1

−(−y)k

 .

By Möbius inversion (or a simple induction argument), the quantities in the parenthesis
in the above equation must be equal for all k and m. In particular, by setting k = 1 we’ve
proved ∑

g,h

nPT
g,h (mβd)ψ

h−1
y ψg+1−2h

w =
∑
h≥0

∑
v∈Γm,d

nPT
h (mγd + v)wl(v)ψh−1

y . (3.9)

The invariants nPT
h (mγd + v) are determined by the KKV formula since Y = Ŝ×C is a

localK3 surface. One formulation of the KKV formula from Section 3.1.3 is the following.
For any effective curve class C, nh(C) is given by∑

h≥0

nh(C)ψh−1
y =

[
1

φ10,1(q,−y)

]
q
C2
2

where

φ10,1(q,−y) = −ψy · q
∞∏
n=1

(1 + yqn)2(1 + y−1qn)2(1− qn)20

and where [· · · ]qa denotes the coefficient of qa in the expression [· · · ] . Applying this to
Equation (3.9) and using the facts that γ2

d = d and γd ∈ Λ⊥ we get

(mγd + v)2 = m2d+ v2
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and so ∑
g,h

nPT
g,h (mβd)ψ

h−1
y ψg+1−2h

w =
∑

v∈Γm,d

[
wl(v)

φ10,1(q,−y)

]
q

1
2 (m2d+v2)

=

[
ΘΓm,d(q, w)

φ10,1(q,−y)

]
q

1
2m

2d

where for any subset T ⊂ Λ⊗Q we’ve defined

ΘT (q, w) =
∑
v∈T

q−
v2

2 wl(v).

In Section 3.4.3 we compute Γm,d. The results are:

Proposition 66. The subset Γm,d ⊂ Λ⊗Q is given as follows:

• If S is an Abelian surface, or a Type (I) Nikulin surface, then

Γm,d =


L if m is even

L+ r0 if m is odd and d is even

L+ r1 if m is odd and d is odd

where in the Abelian surface case L = K, the so-called Kummer lattice, an even,
negative definite rank 16 lattice, and in the Type (I) Nikulin case, L = N is the so-
called Nikulin lattice, an even, negative definite rank 8 lattice. The vectors r0 and
r1 are particular vectors we will define in Section 3.4.3. See Section 3.4.3 for the
definition of K and N .

• If S is a Type (II) Nikulin surface, then d is even and

Γm,d = N

where N is the Nikulin lattice.

The shifted lattices L + ri have the property that all their vectors have squares which
are congruent to i modulo 2. It follows that we may write

ΘL+r0(q, w) + ΘL+r1(q, w) = ΘLsh
(q, w)

where
Lsh = (L+ r0) ∪ (L+ r1).
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In summary, we’ve shown that∑
g,h

nPT
g,h (mβd)ψ

h−1
y ψg+1−2h

w =

[
ΘT (q, w)

φ10,1(q,−y)

]
q

1
2m

2d

(3.10)

where

T =



N if S is Type (II) Nikulin, (NII)

N if S is Type (I) Nikulin and m is even, (Nev
I )

Nsh if S is Type (I) Nikulin and m is odd, (Nodd
I )

K if S is Abelian and m is even, (Aev)

Ksh if S is Abelian and m is odd. (Aodd)

(3.11)

We now make the crucial observation that the right hand side of the Equation (3.10)
only depends on the curve class mβd through its square (mβd)

2 = 2m2d and (possibly) its
divisibility modulo 2 (i.e. mmod 2). This leads to the main theorem of this section:

Theorem 67. Let β be any effective ı-invariant curve class (not necessarily primitive) on
an Abelian or Nikulin surface S with β2 = 2d. Then the invariants nPT

g,h (β) of S × C only
depend on (g, h, d) in the case where S is a Type (II) Nikulin surface and on (g, h, d) and
whether the divisibility of β is odd or even in the other cases. Denoting these invariants as
nPT
g,h (d; type) where type ∈ {Aodd,Aev,Nodd

I ,Nev
I ,NII}. Then∑

g,h

nPT
g,h (d; type)ψh−1

y ψg+1−2h
w =

[
ΘT (q2, w)

φ10,1(q2,−y)

]
qd
.

Moreover ΘT (q2, w) is given explicitly by

ΘT (q2, w) =



θ16
0 + 30θ8

0θ
8
1 + θ16

1 if T = K, (type Aev ),

θ8
0 + θ8

1 if T = N , (types Nev
I and NII),

4 · ∆(q2)
∆(q)2 · φ2

10,1(q,−w) if T = Ksh, (type Aodd),

−∆(q2)
1
2

∆(q) · φ10,1(q,−w) if T = Nsh, (type Nodd
I ),

(3.12)

where

∆(q) = q
∞∏
n=1

(1− qn)24
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is the unique modular cusp form of weight 12,

φ10,1(q, y) = −ψ−y · q
∞∏
n=1

(1− yqn)2(1− y−1qn)2(1− qn)20

is the unique Jacobi cusp form of weight 10 and index 1, and

θi = θi(q
2, w) =

∑
k∈Z+ i

2

q2k2
wk

are the standard rank 1 theta functions.
We note that for nPT

g,h (d;Aev) and nPT
g,h (d;Nev

I ), d is necessarily divisible by 4, and for
nPT
g,h (d;NII), d is necessarily even.

Remark 68. It is straightforward to see that the above formulas for the case of Aodd and
Nodd
I lead to the product formulation given in Theorem 54 in the Introduction.

Remark 69. The theta functions ΘK(q2, w) and ΘKsh
(q2,−w) are Jacobi forms of weight

8 and index 2 (for some congruence subgroup), while the theta functions ΘN (q2, w) and
ΘNsh

(q2,−w) are Jacobi forms of weight 4 and index 1 (for some congruence subgroup).
It would be nice to have a direct, lattice theoretic explination of the identity ΘKsh

= 4Θ2
Nsh

.

To complete the proof of Theorem 67, we must prove Proposition 66 and we must prove
the formulas for ΘT (q2, w) given by Equation (3.12). This is carried out in the next two
subsections.

3.4.3 The Picard lattice of Ŝ.

Recall that S is an Abelian or Nikulin surface and Ŝ → S/ı is the associated Kummer
K3 or Nikulin resolution respectively. In this section we describe Pic(Ŝ) and in particular
prove Proposition 66. Recall also that we defined the exceptional lattice:

Λ = ⊕iZ 〈Ei〉 ⊂ Pic(Ŝ).

Definition 70. Let L ⊂ Pic(Ŝ) be the saturation of Λ in Pic(Ŝ), i.e. the smallest primitive
sublattice containing Λ such that Λ generates L over Q. If Ŝ is a Kummer surface, then L
is by definition K, the Kummer lattice. If Ŝ is a Nikulin resolution, then L is by definition
N , the Nikulin lattice.
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We note that by construction, we have the inclusions

Λ ⊂ L ⊂ L∨ ⊂ Λ∨ =
1

2
Λ.

Explicit descriptions of K and N are given in the following lemmas. The first is due to
Nikulin, see for example [34, Lemma 5.2] .

Lemma 71. The Nikulin latticeN is the overlattice of Λ generated by Λ and Ê = 1
2

∑
iEi.

While the above shows that the Nikulin lattice is obtained from the exceptional lattice
by adding a single vector, the situation for the Kummer lattice is more complicated. The
pithiest way to state the result is as follows (see [1, § VIII.5])

Lemma 72. Under the natural identification

Λ∨/Λ ∼= Maps(F4
2,F2),

the Kummer lattice K is the overlattice of Λ such that the inclusion

K/Λ ⊂ Λ∨/Λ

corresponds to the inclusion

Aff(F4
2,F2) ⊂ Maps(F4

2,F2)

of affine linear maps (including the two constant maps) into all maps.

We next describe Pic(Ŝ) which will allow us to prove Proposition 66. The class γd
might not be an integral class, but it turns out that the embedding

Z 〈2γd〉 ⊕ L ⊂ Pic(Ŝ)

is always index two. Depending on the parity of d and the type of the surface S, the order
two quotient group is generated either by γd, or by γd + rd where rd is a certain vector only
depending on dmod 2.

In the case where S is Abelian and Ŝ is a Kummer K3, we quote Garbagnati-Sarti
[21, Theorem 2.7] adapted to our notation.

Proposition 73. The Picard lattice of the Kummer surface Ŝ is the index 2 overlattice of
Z 〈2γd〉 ⊕K generated by Z 〈2γd〉 ⊕K and γd + rd where
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• rd ∈ K∨ −K, 2rd ∈ K,

• r2
d = dmod 2.

The class [rd] ∈ Λ∨/Λ ∼= Maps(F4
2,F2) only depends on dmod 2 and is unique up to

isometries of K. For d even, the corresponding map F4
2 → F2 is the characteristic function

of a fixed linear 2 plane P1 ⊂ F4
2. For d odd, the corresponding map is the characteristic

function of P1∆P2 ⊂ F4
2 where P1 and P2 are transversely intersecting 2 planes, and ∆

denotes symmetric difference.

There are two families of NikulinK3 surfaces determined as follows. Let S be a Nikulin
surface and recall that βd ∈ Pic(S) is a primitive ı-invariant effective class with β2

d = 2d.
The existence of the Nikulin involution implies there is an inclusion

Z 〈βd〉 ⊕ E8(−2) ⊂ Pic(S).

The above is either (I) an isomorphism, or (II) an index 2 sublattice11.

Definition 74. We say that S is Nikulin of Type (I) in the first case and of Type (II) in the
second case. The latter can occur only when d is even.

Proposition 75. The Picard lattice of a Type (II) Nikulin resolution Ŝ is Z 〈γd〉 ⊕ N . The
Picard lattice of a Type (I) Nikulin resolution Ŝ is the index 2 over lattice of Z 〈2γd〉 ⊕ N
generated by Z 〈2γd〉 ⊕N and γd + rd where

• rd ∈ N∨ −N , 2rd ∈ N ,

• r2
d = dmod 2.

The class [rd] ∈ Λ∨/Λ only depends on dmod 2 and is unique up to isometries of N and
is given by

rd =

1
2(E1 + E2) if d is odd
1
2(E1 + E2 + E3 + E4) if d is even

for a suitable numbering of the exceptional divisors E1, . . . , E8.

Proof. See Proposition 2.1 and Corollary 2.2 of [20].
Propositions 73 and 75 then prove Proposition 66.

11This statement must be modified if the invariant Picard rank of S is greater than 1. c.f. Remark 64 .
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3.4.4 Theta function identities

To finish the proof of Theorem 67, we must prove the formulas given in Equation (3.12).
Recall that

Λ ⊂ L ⊂ L∨ ⊂ Λ∨ =
1

2
Λ

where Λ = ⊕iZ 〈Ei〉 is the exceptional lattice and L is either K or N . Since any element
ρ ∈ Λ∨/Λ may be uniquely written as

ρ =
1

2

∑
i

ρiEi, ρi ∈ {0, 1}

we may define
c1(ρ) =

∑
i

ρi, c0(ρ) = rk(Λ)− c1(ρ),

i.e. the number of ρi’s which are 1 or 0 respectively. The following lemma is our basic tool
for computing theta functions12

Lemma 76. Let π be the projection Λ∨ → Λ∨/Λ and suppose that T ⊂ Λ∨ is a union of
cosets: T = ∪ρ∈π(T )(Λ + ρ). Then

ΘT (q2, w) =
∑

ρ∈π(T )

θ
c0(ρ)
0 θ

c1(ρ)
1

where
θi = θi(q

2, w) =
∑

k∈Z+ i
2

q2k2
wk.

Proof. Since the cosets Λ + ρ are disjoint we have

ΘT (q2, w) =
∑

ρ∈π(T )

ΘΛ+ρ(q
2, w)

and then we observe that

Λ + ρ ∼= Z 〈E〉⊕c0(ρ) ⊕
(
Z 〈E〉+

E

2

)⊕c1(ρ)

from which it follows that ΘΛ+ρ = θ
c0(ρ)
0 θ

c1(ρ)
1 .

12The authors are very grateful to John Duncan who explained this to us.
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Proposition 77. The theta functions of the Nikulin lattice N and the shifted Nikulin lattice
Nsh are given by

ΘN (q2, w) = θ8
0 + θ8

1

ΘNsh
(q2, w) = θ2

0θ
6
1 + 2θ4

0θ
4
1 + θ6

0θ
2
1

Proof. It follows from Lemma 71 and Proposition 75 that

π(N) =
{

0, 1
2(E1 + · · ·+ E8)

}
and that

π(Nsh) = π
(
N + 1

2(E1 + E2)
)
∪ π

(
N + 1

2(E1 + · · ·+ E4)
)

=
{

1
2(E1 + E2), 1

2(E3 + · · ·+ E8), 1
2(E1 + · · ·+ E4), 1

2(E5 + · · ·+ E8)
}
.

The value of c1 on the above 4 elements is 2, 6, 4, and 4 respectively. The proposition then
follows from Lemma 76.

Proposition 78. The theta functions of the Kummer latticeK and the shifted Kummer lattice
Ksh are given by

ΘK(q2, w) = θ16
0 + 30θ8

0θ
8
1 + θ16

1

ΘKsh
(q2, w) = 4θ4

0θ
12
1 + 16θ6

0θ
10
1 + 24θ8

0θ
8
1 + 16θ10

0 θ
6
1 + 4θ12

0 θ
4
1

Proof. As in the Nikulin case, we must determine the value of c1 on all the elements of
π(K) and π(Ksh). By Lemma 72, π(K) is given by the 32 elements 1

2

∑
i ρiEi where the

corresponding map F4
2 → F2 given by i 7→ ρi is an affine linear function. The value of c1 on

the two constant functions is 0 and 16 respectively, while the value of c1 on the remaining 30
non-constant affine linear functions is 8. The formula for ΘK then follows from Lemma 76.
A simple but tedious way to determine the elements of π(Ksh) = π(K + r0) ∪ π(K + r1)

is to choose coordinates for F4
2 and write down all 64 elements explicitly. Doing so and

reading the off the value of c1 on each element we find that π(K + r0) has 4 elements with
c1 = 4, 24 elements with c1 = 8, and 4 elements with c1 = 12 and that π(K + r1) has 16
elements with c1 = 6 and 16 elements with c1 = 10. The formula for ΘKsh

then follows
from Lemma 76. There is a more coordinate free approach to the same calculation using
the affine geometry of F4

2. It requires analyzing the various symmetric differences of the
affine hyperplanes and the two dimensional planes P1 and P2 appearing in Proposition 73.
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Unfortunately, the case by case analysis in this approach is not particularly less tedious than
the direct enumeration.

To complete the proof of Theorem 67, it only remains to prove the following identities

ΘNsh
(q2, w) = −∆(q2)

1
2

∆(q)
· φ10,1(q,−w)

= ψw · q ·
∞∏
n=1

(1 + qn)12(1− qn)8(1 + wqn)2(1 + w−1qn)2

and

ΘKsh
(q2, w) = 4

∆(q2)

∆(q)2
· φ2

10,1(q,−w)

= 4ψ2
w · q2 ·

∞∏
n=1

(1 + qn)24(1− qn)16(1 + wqn)4(1 + w−1qn)4.

Since the equations for ΘNsh
(q2, w) and ΘKsh

(q2, w) given in Propositions 77 and 78
can be factored as

ΘNsh
(q2, w) = θ2

0θ
2
1(θ2

0 + θ2
1)2

ΘKsh
(q2, w) = 4θ4

0θ
4
1(θ2

0 + θ2
1)4

(3.13)

we see that it suffices to prove the identity:

θ2
0θ

2
1(θ2

0 + θ2
1)2 = ψw · q ·

∞∏
n=1

(1 + qn)12(1− qn)8(1 + wqn)2(1 + w−1qn)2. (3.14)

By the Jacobi triple product identity, we may write

θ0(q2, w) =
∞∏
n=1

(1− q4n)(1 + wq4n−2)(1 + w−1q4n−2) (3.15)

θ1(q2, w) = q
1
2 · (w

1
2 + w−

1
2 ) ·

∞∏
n=1

(1− q4n)(1 + wq4n)(1 + w−1q4n). (3.16)

We also have the following

Lemma 79.

θ0(q2, w)2 + θ1(q2, w)2 =

∞∏
n=1

(1− q2n)2(1 + q2n−1)2(1 + wq2n−1)(1 + w−1q2n−1).
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Proof. The left hand side of the above equation is given by

∑
n,m∈Z

q2m2+2n2
wn+m + q

2
(
m+

1
2

)2
+2
(
n+

1
2

)2

wn+m+1.

Letting n = 1
2(a− b) and m = 1

2(a+ b) the sum rearranges to∑
a,b∈Z

a≡b mod 2

qb
2
(
qa

2
wa + q(a+1)2

wa+1
)

=
∑
a,b∈Z

qb
2
qa

2
wa = θ0(q, 1)θ0(q, w).

Then applying the Jacobi triple product identity to the right hand side of the above proves
the lemma.

Now applying Lemma 79 and Equations (3.15) to the left hand side of Equation (3.14),
we get

θ2
0θ

2
1(θ2

0 + θ2
1)2 =q · ψw ·

∞∏
n=1

(1− q4n)2(1 + wq4n)2(1 + w−1q4n)2

· (1− q4n)2(1 + wq4n−2)2(1 + w−1q4n−2)2

· (1− q2n)4(1 + q2n−1)4(1 + wq2n−1)2(1 + w−1q2n−1)2

=q · ψw ·
∞∏
n=1

(1 + qn)12(1− qn)8(1 + wqn)2(1 + w−1qn)2

where in the last equality we have used the fact that

∞∏
n=1

(1 + wq4n)(1 + wq4n−2)(1 + wq2n−1) =

∞∏
n=1

(1 + wqn)

and similar considerations.
This completes the proof of Theorem 67.

3.5 Local Abelian and Nikulin Surfaces (MT theory)

3.5.1 Overview.

In this section we prove some basic results about ı-stability and we prove Conjecture 53 for
local Abelian and Nikulin surfaces.

In Subsection 3.5.2 we show ı-stability is equivalent to a certain kind of Nironi stability
on the stack quotient [X/ı]. In Subsection 3.5.3 we prove Conjecture 53 for X = S × C
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where S is an Abelian or Nikulin surface. The basic idea is the following. Using the results
of Subsection 3.5.2 and the projection X → C we show that all ı-stable MT sheaves on
X are given by Nironi δ-stable sheaves on [S/ı] × {t} for some t ∈ C. We then show
that Nironi δ-stability on [S/ı] is the large volume limit of a certain Bridgeland stability
condition on [S/ı] constructed by Lim and Rota [30]. We then apply the derived Fourier-
Mukai correspondence to show that our moduli spaces are given by, up to a factor of C,
moduli spaces of objects in the derived category of Ŝ which are stable with respect to
the large volume limit of one of the stability conditions on K3 surfaces constructed by
Bridgeland [8]. Finally, we use the results of Bayer and Macri [3] to show these moduli
spaces are deformation equvalent to moduli spaces of MT sheaves on Ŝ. This then allows
us to apply Conjecture 43, which is known to hold for Ŝ ×C by [39,46]. The upshot is that
we prove that Equation (3.9) holds with MT GV invariants replacing PT GV invariants on
both sides and then the subsequent arguments of Section 3.4 apply word for word.

3.5.2 Nironi Stability

The category of ı-equivariant sheaves on X and the category of sheaves on the stack [X/ı]

are canonically equivalent and in this section we will not notationally differentiate between
a sheaf on the stack and the corresponding ı-equivariant sheaf.

In [36], Nironi developed a theory of slope stability for Deligne-Mumford stacks analougous
to Simpson stability for schemes. Nironi stability for the stack [X/ı] involves a choice of an
ample divisor H on the coarse space X/ı and the choice of a “generating bundle” V which
we may take to be (see [36, Def. 2.2, Prop. 2.7])

V = (OX ⊗R+)⊕a ⊕ (OX ⊗R−)⊕b

for any a, b ∈ N.
Nironi’s slope function is obtained from the generalized Hilbert polynomial of a sheaf F

(i.e. the ı-invariant part of χ(F⊗V (mH))) by dividing the second coefficient by the leading
coefficient. For 1-dimensional sheaves F with [supp(F )] = β, χ(F ) = nRreg + εR−, and
our choice of V , Nironi’s slope function is given by

µ(F ) =
(a+ b)n+ bε

(a+ b)H · β
.

The slope function only depends on a and b through the number

δ =
b

a+ b
∈ Q ∩ (0, 1)
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so we write
µδ(F ) =

n+ δε

H · β
.

Definition 80. Let F be an ı-equivariant sheaf on X with pure 1-dimensional support,
[supp(F )] = β, and χ(F ) = nRreg + εR−. Then F is Nironi δ (semi-)stable if for all
ı-equivariant subsheaves F ′ ( F , µδ(F ′) < µδ(F ) (resp. µδ(F ′) ≤ µδ(F )).

Let Mδ-s
β,n,ε([X/ı]) (resp. Mδ-ss

β,n,ε([X/ı])) be the moduli stack of Nironi δ (semi-)stable
sheaves with β, n, ε as above. Nironi proves that the usual properties enjoyed by moduli
stacks of Simpson (semi-)stable sheaves hold for moduli stacks of Nironi (semi-)stable
sheaves [36, Theorems 6.21, 6.22]. In particular we have:

Theorem 81. The stack Mδ-s
β,n,ε([X/ı]) is a C∗-gerbe over its coarse moduli space. In

particular, any Nironi δ stable sheaf is simple.

Theorem 82. Assume X is projective, then Mδ-ss
β,n,ε([X/ı]) has a projective coarse moduli

space.

The following corollary is then standard.

Corollary 83. For X quasi-projective, the Hilbert-Chow morphism

Mδ-ss
β,n,ε([X/ı])→ Chowβ(X)ı

given by F 7→ [supp(F )] is proper.

Proposition 84. Let F be an ı-equivariant sheaf on X having proper pure 1-dimensional
support and with [supp(F )] = β and χ(F ) = Rreg +εR−. Let δ > 0 be a sufficiently small
rational number. Then the following conditions are equivalent

1. F is Nironi δ semistable.

2. F is Nironi δ stable.

3. F is ı-stable (see Definition 50).

Proof. LetF ′ ( F be an ı-equivariant subsheaf with χ(F ′) = kRreg+γR− and [supp(F ′)] =

β′.
Suppose that F is Nironi δ semistable. Then the inequality

k + δγ

H · β′
≤ 1 + δε

H · β
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holds and is equivalent to

k ≤
(
H · β′

H · β

)
(1 + δε)− δγ. (3.17)

Since supp(F ′) ⊆ supp(F ) and dim supp(F ′) 6= 0, we have

0 <
H · β′

H · β
≤ 1.

If H·β′
H·β < 1, then for sufficiently small δ we have k < 1. If H·β′

H·β = 1, then β′ = β and
k ≤ 1 + δ(ε− γ). Thus we see that either k < 1 or k = 1 and β′ = β and γ ≤ ε. Finally,
if k = 1, β′ = β, and γ = ε, then χ(Q) = 0 where

0→ F ′ → F → Q→ 0.

But since β′ = β, dimQ = 0 and so χ(Q) = 0 implies that Q = 0 which implies that
F ′ = F . Thus we’ve shown that (1) implies that either k < 1 or k = 1 and β′ = β and
γ < ε which by Definition 50 means that F is ı-stable. Thus (1) implies (3). Moreover,
we’ve shown that the inequality (3.17) must be strict so that (1) implies (2). And of course
(2) implies (1) so it remains to show that (3) implies (2).

To that end, suppose that F is ı-stable, i.e. k ≤ 1 and if k = 1 then γ < ε and β′ = β.
We need to prove that the inequality (3.17) holds. Since dim supp(F ′) > 0, H·β′

H·β > 0

which means the right hand side of (3.17) is positive for sufficiently small δ, and so if
k < 1, (3.17) is true. If k = 1, then by hypothesis, γ < ε and β′ = β so (3.17) becomes
1 ≤ 1 + δε− δγ which is true.

3.5.3 Proof of Conjecture 53 for Local Abelian and Nikulin surfaces

We now consider X = S × C with S an Abelian or Nikulin surface and we adopt the
notation of Section 3.4.

By Proposition 84 we may identify the moduli space of ı-stable MT sheaves with the
moduli space of Nironi δ stable sheaves:

Mε
mβd

(X, ı) = Mδ-ss
mαd,1,ε

([X/ı]) = Mδ-s
mαd,1,ε

([X/ı]).

Lemma 85. Let F be an ı-stable MT sheaf onX . Then F is scheme theoretically supported
on S × {t} for some t ∈ C.
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Proof. First suppose that the image of the support of F under the map S × C→ C is not a
single point. Then F can be written as F1 ⊕ F2 which violates stability since both factors
are equivariant subsheaves. Thus we may suppose that F is set theoretically supported on
some St = S × {t}. Consider the short exact sequence of ı-equivariant sheaves:

0→ OX(−St)→ OX → OSt → 0.

Noting that OX(−St) ∼= OX and tensoring with F , we get the right exact sequence:

F → F → F ⊗OSt → 0.

By Theorem 81, F is simple and hence the first map is either 0 or an isomorphism. Since
F ⊗ OSt is non-zero by construction, the first map must be zero and thus the second map
induces an isomorphism F ∼= F ⊗OSt by exactness.

By the lemma, every ı-stable MT sheaf on X can be identified with a Nironi δ stable
sheaf on [S/ı]× {t} for some t ∈ C. We let Mδ-s

η ([S/ı]) denote the moduli space of Nironi
δ stable sheaves on [S/ı] in the K-theory class η. Then applying the above discussion and
the analysis of K-theory classes done in Section 3.4 (and using the same notation) we get

Mε
mβd

(X, ı) =
⊔

v∈Γm,d
l(v)=ε

Mδ-s
η(mαd,v)([S/ı])× C (3.18)

where
η(mαd, v) = mαd + [Opt] +

∑
i

vi[Oxi ⊗R−].

The following proposition is key:

Proposition 86. The moduli space Mδ-s
η(mαd,v)([S/ı]) is deformation equivalent to Ms

(0,mγd+v,1)(Ŝ),

the moduli space of Simpson sheaves on Ŝ with Mukai vector (0,mγd + v, 1). Moreover,
the deformation equivalence is compatible with the Hilbert-Chow morphism.

Assuming the above Proposition and noting that

Mmγd+v(Ŝ × C) = Ms
(0,mγd+v,1)(Ŝ)× C,

we may compute the Maulik-Toda polynomial of (X, ı) as follows. We use the definition,
Equation (3.18), and the above Proposition to get

MTmβd(y, w) =
∑

v∈Γm,d

MTmγd+v(y)wl(v)
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where MTmβd(y, w) is the Maulik-Toda polynomial of (X, ı) in the classmβd and MTmγd+v(y)

is the Maulik-Toda polynomial of Ŝ × C in the class mγd + v.
It then follows immediately from the above equation that the MT analog of Equa-

tion (3.9) holds:∑
g,h

nMT
g,h (mβd)ψ

h−1
y ψg+1−2h

w =
∑
h≥0

∑
v∈Γm,d

nMT
h (mγd + v)wl(v)ψh−1

y .

All the analysis in Section 3.4 subsequent to Equation (3.9) then goes through word for
word with the MT versions of the invariants and we see that they are given by the same
formulas (in Theorem 67) as the PT versions of the invariants. We thus conclude that

nPT
g,h (mβd) = nMT

g,h (mβd)

holds and thus Conjecture 53 holds for (X, ı).
It remains only to prove Proposition 86.

Proof of Proposition 86. We remark that although we don’t directly use it, these moduli
spaces are all hyperkahler manifolds of K3[n] type and the map to Chow is a Lagrangian
fibration.

In [30], Lim and Rota construct Bridgeland stability conditions on orbifold surfaces
with Kleinian orbifold points. For notational simplicity, they assume that their orbifold
surface has a single orbifold point, but their method easily applies to orbifold surfaces with
multiple Kleinian orbifold points such as [S/ı].

Their stability condition depends (in the case of [S/ı]) on parameters γ ∈ (0, 1
2) and

w ∈ C and has a central charge Zw,γ which in our situation takes values

Zw,γ

(
mαd + n[Opt] +

∑
i

vi[Oxi ⊗R−]

)
= −n− 1

2
γ
∑
i

vi + iH · (mαd).

The parameter w must be choosen satisfying two inequalities which in our situation
read

<(w) > −(=(w))2

H2
+ 3− γ2

2<(w) >
=(w)

H2
− 3γ > 0

and the corresponding heart of the derived category is given by a certain tilt Coh−=(w)([S/ı])

(see [30, § 4.2]).
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Recalling that ε =
∑

i vi, we see that the slope function associated to the central charge
is exactly the Nironi slope function µδ with γ = 2δ. Consequently, in any limit with
=(w)→∞ (and satisfying the necessary inequalities), the Lim-Rota stable objects become
Nironi stable sheaves. Thus we may identify Mδ-s

η(mαd,v)([S/ı]) with the moduli space of
Lim-Rota stable objects for γ = 2δ and a choice of w with appropriately large =(w).

We may now consider the derived Fourier-Mukai equivalence

FM : Db([S/ı])→ Db(Ŝ).

This equivalence will take the Lim and Rota’s stability conditions on [S/ı] to some Bridge-
land stability condition on the K3 surface Ŝ. We claim these stability conditions are in
fact the stability conditions on K3 constructed by Bridgeland in [8]. These stability condi-
tions are characterized by lying in the connected component of the stability conditions on
Ŝ where Opt is stable. In [30, § 5], Lim and Rota analyze the stability of Opt and show that
for generic deformations of their stability conditions, it is stable. Our claim follows.

We thus can make the identification

Mδ-s
η(mαd,v)([S/ı]) = MBridgeland

(0,mγd+v,1)(Ŝ)

where the moduli space on the right is the moduli space of objects on Ŝ with Mukai vector
(0,mγd + v, 1) which are stable with respect to the Bridgeland stability condition which is
Fourier-Mukai equivalent to our choosen Lim-Rota condition on [S/ı].

We may now apply the results of Bayer and Macri [3], who analyze in great detail all
of the moduli spaces of Bridgeland semistable objects on a K3 surface. They show that all
moduli spaces of objects semistable with respect to one of Bridgeland’s constructed stabil-
ity conditions are deformation equivalent hyperkahler manifolds, provided that the moduli
space has no strictly semistable objects. In particular, the moduli space MBridgeland

(0,mγd+v,1)(Ŝ) is

deformation equivalent to Ms
(0,mγd+v,1)(Ŝ) which proves the main assertion of the Propo-

sition. Moreover, Bayer-Macri analyze the Hilbert-Chow morphism which they show to be
a Lagrangian fibration (whenever it is well-defined) and compatible with the deformation
equivalence.

3.6 Additional Examples

3.6.1 Elliptically Fibered Calabi-Yau Threefold

Let π : X → B be an elliptically fibered Calabi-Yau threefold with section B ↪→ X and
with integral fibers. We additionally require the following conditions:
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1. There is an involution ı : B → B whose fixed point locus is a smooth curve C ⊂ B.

2. π|S : S → C is a smooth elliptic surface, where S = π−1(C).

3. ı lifts to a Calabi-Yau involution ı : X → X which restricts to a fiberwise action by
−1 on S over C.

Let [F ] ∈ H2(X) be the class of a fiber F of π : X → B. The following is our main
result for this example:

Theorem 87. Conjecture 53 holds for the class [F ] and the invariants are given by

nPTg,h([F ]) = nMT
g,h ([F ]) =


−e(C) (g, h) = (1, 0),

e(S) (g, h) = (0, 0),

0 otherwise

We prove this theorem below by directly computing both the ı-PT and ı-MT invariants in
the class [F ].

The ı-fixed locus X ı is given by S[2], the 2-torsion points of the elliptic fibration S →
C. It admits a decomposition

X ı = C0 t C1

where C0
∼= C is the zero section, and C1 is the locus of non-trivial 2-torsion points. It

is a degree 3 cover C1 → C which is simply ramified at the nodes of the nodal fibers and
doubly ramified at the cusps of the cuspidal fibers.

The compactified Jacobian Jacd(X/B) of the family of elliptic curves X → B can
be identified with the moduli space of pure dimension 1 stable sheaves E with ch(E) =

(0, 0, [F ], d).
The following facts are standard for this situation13

• Jacd(X/B) ∼= X .

• There is a rank d bundle Vd → Jacd(X/B) whose fiber over E is H0(E).

• The map PT[F ],d(X) → Jacd(X/B) given by [OX
s−→ E ] 7→ E induces an isomor-

phism PT[F ],d(X) ∼= P(Vd).

13See for example [33, bottom of page 2] combined with the fact that the moduli space of stable pairs
supported on a family of integral plane curves is isomorphic to the relative Hilbert scheme of points [33, top of
page 3] and [40, Prop. 1.8].
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The above constructions are ı-equivariant and exhibit PT[F ],d(X) as a projective bundle
over X so that we may identify the fixed locus as follows:

PT[F ],d(X)ı = P(V +
d )|Xı t P(V −d )|Xı

where
Vd|Xı ∼= V +

d |Xı ⊕ V −d |Xı

is the eigenbundle decomposition for the ı action. Since X ı = C0 t C1, we see

PT[F ],d(X)ı = P+
d,0 t P+

d,1 t P−d,0 t P−d,1

where we have abbreviated P(V ±d )|Ci as P±d,i.
Then since P±d,i is a smooth projective bundle over a curve we have

evir

(
P±d,i
)

= (−1)dimV ±d · dimV ±d · e (Ci) .

Using the decomposition given in Equation (3.3) :

PT[F ],d(X)ı =
⊔

d=2n+ε

PT[F ],n,ε(X, ı)

we see that we need only compute dimV ±d and ε for each component. To do so, we pick
[s : OF → E ] ∈ P±d,i where E is an ı-invariant sheaf supported on a smooth fiber F and
s ∈ H0(E)±. Let p0 = F ∩ C0 and {p1, p2, p3} = F ∩ C1 be the origin and non-trivial
two torsion points of F respectively. Up to renumbering, we may assume E 7→ pi under the
map P±d,i → Ci. The corresponding ı-PT pair is [s : OF → E ⊗R±] and so by definition

H0(E ⊗R±) = nRreg + εR−

= nR+ + (n+ ε)R−.

On the other hand,

H0(E ⊗R±) = H0(E)⊗R± = (V +
d ⊕ V

−
d )⊗R±

and so
dimV ±d = n =

1

2
(d− ε).

Moreover, since s is an invariant section of E⊗R±, it determines an isomorphism E⊗R± ∼=
OF (D) where D is an ı-invariant effective divisor. Such divisors are in the form given by
Lemma 63 which by the same lemma shows

ε = |T | − 2
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where T ⊂ {0, 1, 2, 3}. Finally, the map P±d,i → Ci which sends E 7→ pi is given by
summing the points in the divisor D in the group law of F . In particular we must have∑

j∈T
pj = pi

in the group law. For pi = p0 the only possible subsets are

T = ∅, {0}, {1, 2, 3}, {0, 1, 2, 3} with ε = −2,−1, 1, 2 respectively,

and for pi = p1 the only possible subsets are

T = {1}, {0, 1}, {2, 3}, {0, 2, 3} with ε = −1, 0, 0, 1 respectively.

We then can compute the Q[F ] coefficient of ZPT(X, ı) by taking evir of the components of
PT[F ],d(X)ı, multiplying by the appropriate ynwε, and then summing over n and ε:

[
ZPT(X, ı)

]
Q[F ]

=
∞∑
n=1

(−1)nn yn
(
(w−2 + w−1 + w + w2)e(C0) + (w−1 + 2 + w1)e(C1)

)
=

−y
(1 + y)2

(
(ψ2

w − 3ψw)e(C0) + ψwe(C1)
)

= −e(C0)ψ−1
y ψ2

w + (3e(C0)− e(C1))ψ−1
y ψw.

Noting that [logZPT(X, ı)]Q[F ] = [ZPT(X, ı)]Q[F ] since [F ] is primitive, the formula
for nPT

g,h ([F ]) in Theorem 87 then follows from the fact that

e(S) = 3e(C0)− e(C1).

The above formula is easily proved by observing that the equality holds when restricted to
any fiber of S → C (smooth or singular).

To compute the ı-MT invariants, we use the following

Lemma 88. Mε
[F ](X, ı)

∼= PT[F ],1,ε(X, ı).

Proof. It suffices to show that for all E ∈ Mε
[F ](X, ı) there is a unique (up to scale) ı-

invariant section s. Then the isomorphism in the lemma is given by

E 7→ [s : OX → E ].
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Any ı-MT sheaf E admits some ı-invariant section s since χ(E) = Rreg + εR−. We then
get an ı-equivariant short exact sequence

0→ OF
s−→ E → Q→ 0

where F = supp(E) is some fiber of S → C and Q is necessarily 0 dimensional since
F is integral. Moreover, χ(OF ) = R+ − R− for any fiber F and so χ(Q) = H0(Q) =

(2 + ε)R−. Taking the long exact sequence associated to the above short exact sequence,
and then restricting to the ı-invariant part yields an isomorphism

H0(OF ) ∼= H0(E)ı

so that H0(E)ı is 1 dimensional and hence generated by s.

The lemma then allows us to apply our previous analysis of the components of PT[F ],d,ε(X, ı)

specialized to the case d = 1 where P±1,i ∼= Ci. As before, the components and the corre-
sponding ε is determined by the subset T ⊂ {0, 1, 2, 3}. The result is

Mε
[F ](X, ı)

∼=


C0 if ε = ±2,

C0 t C1 if ε = ±1,

C1 t C1 if ε = 0.

Since Mε
[F ](X, ı) is a smooth curve, the perverse sheaf of vanishing cycles is the shifted

constant sheaf, φ• = Q[1]. Furthermore, Chow[F ](X)ı here is C with πε : Mε
[F ](X, ı)→ C

given by projection Ci → C on each component.
In general, if

π : C ′′ → C ′

is a proper surjective morphism of smooth curves, then π is semi-small and consequently
R•π∗Q[1] is a perverse sheaf on C ′ [16, Theorem 4.2.7] and so

pH i(R•π∗Q[1]) =

R•π∗Q[1] i = 0,

0 i 6= 0.

Consequently we have ∑
i

χ(pH i(R•π∗Q[1]))yi = χ(R•π∗Q[1])

= −e(C ′′)
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where the last equality follows from the perverse Leray spectral sequence.
Applying this to πε : Mε

[F ](X, ı) → C we can then compute the Maulik-Toda polyno-
mial:

MT[F ](y, w) = −e(C0)(w−2 + w−1 + w1 + w2)− e(C1)(w−1 + 2 + w1)

= −e(C)ψ2
w + e(S)ψw

and the formula for nMT
g,h ([F ]) follows. The proof of Theorem 87 is then complete.

3.6.2 The Local Football

Let ı be an involution of C ∼= P1 fixing two points z0 and z∞. The line bundles OC(−z0)

and OC(−z∞) are naturally ı-equivariant and consequently the CY3

X = Tot(OC(−z0)⊕OC(−z∞))

has a natural involution which we also call ı.
The global stack quotient [X/ı] is called a local football, though here we use this term

to mean the pair (X, ı). The purpose of this section is to give a proof of Proposition 59
which we restate here:

Proposition 89. For all d > 0, we have

nPTg,h(d[C]) = nMT
g,h (d[C]) =

1 (d, g, h) = (1, 0, 0)

0 otherwise

We start with ı-PT theory. As we did in Lemma 65, we may compute the ı-PT invariants
of (X, ı) by computing orbifold PT invariants of the stack quotient [X/ı]. Since [X/ı] is
toric, we may use the orbifold topological vertex [10]. The partition function ZPT([X/ı])

is computed in Section 4.2 of [10] where it is given by DT ′(X2,2) in the notation of [10].
Here we are using [5, Theorem 6.12] which states that the reduced Donaldson-Thomas
partition function is equal to the Pandharipande-Thomas partition function. By the formula
just below [10, Prop. 3] we have

ZPT([X/ı]) =
∏

u∈{v,vp0,vr0,vp0r0}

M(u,−q)−1 (3.19)

where

M(x, q) =
∞∏
n=1

(1− xqn)−n.
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The variables v, p0, r0, and q track classes in theK-theory of sheaves on [X/ı] which we can
equivalently regard as ı-equivariant sheaves on X . Recall that the variables in ZPT(X, ı)

track the curve class and χ of the sheaf. Thus to specialize ZPT([X/ı]) to ZPT(X, ı), we
must compute the curve class and χ of each of these classes. The results are given in the
following table:

ZPT([X/ı]) Class in [X/ı] Equivariant class (χ, β) ZPT(X, ı)

variable (see [10, § 3.3]) on X of class variable

p0 [Oz0 ⊗R−] [Oz0 ⊗R−] (R−, 0) w

r0 [Oz∞ ⊗R−] [Oz∞ ⊗R−] (R−, 0) w

q [Op] [Op ⊕Oı(p)] (Rreg, 0) y

v [O[C/ı](−p)] [OC(−p− ı(p))] (−R−, [C]) Qw−1

Table 3.2: Change of variables between those of ZPT(X, ı) to those of ZPT([X/ı]) in [10].

In the above table, p ∈ [C/ı] is a generic point corresponding to the ı-orbit {p, ı(p)} ⊂
C and the formula χ(OC(−p− ı(p))) = −R− is obtained by applying Lemma 63.

Equation (3.19) then specializes to

ZPT(X, ı) = M(Qw−1,−y)−1M(Q,−y)−2M(Qw,−y)−1.

It is straightforward to show that

logM(x,−y)−1 =
∞∑
k=1

xk

k
ψ−1
−(−y)k

.

and so

logZPT(X, ı) =
∞∑
k=1

1

k
Qk ·

(
w−k + 2 + wk

)
· ψ−1
−(−y)k

=

∞∑
k=1

1

k
Qk · ψ−1

−(−y)k
· ψwk
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and the formula for nPT
g,h (d[C]) then follows.

Turning now to the ı-MT theory, we begin with the following key result.

Lemma 90. Mε
d[C](X, ı) is empty for d > 1.

Proof. Since Mε
d[C](X, ı) is proper over Chowd[C](X) which is a point, if it is non-empty,

it admits a fixed point for the torus action induced from the action onX . In order to obtain a
contradiction, we suppose there exists a torus invariant ı-MT sheaf E in the class d[C] with
d > 1.

Then the scheme-theoretic support of E is the thickened curve Cλ determined from a
2-dimensional partition λ. Since χ(E) = Rreg + εR−, there is a ı-invariant section

0→ OCλ
s−→ E → Q→ 0,

and then since E is ı-stable, χ(OCλ) = kRreg +mR− with k ≤ 1.
Let π : X → C be the projection, then χ(OCλ) = χ(π∗OCλ). We have

π∗OCλ =
⊕

(i,j)∈λ

OC(z0)i ⊗OC(z∞)j =
⊕

(i,j)∈λ

OC(iz0 + jz∞).

Writing i = 2a+ i′ and j = 2b+j′ with a, b ≥ 0 and (i′, j′) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
and applying Lemma 63, we get

χ(OC(iz0 + jz∞)) = (1 + a+ b)Rreg + (i′ + j′ − 1)R−.

Since we are taking sums of these terms, the only way to guarantee k ≤ 1 as above, is if
λ = � is the unique partition of length 1.

Thus E is scheme-theoretically supported on C, and hence it must a torus invariant,
ı-equivariant, rank d vector bundle on C. Such vector bundles split as a direct sum of
ı-equivariant line bundles which then contradicts the ı-stability of E .

It follows from the lemma that nMT
g,h (d[C]) = 0 for d > 1 and for d = 1 we apply

Corollary 61 which then finishes the proof of Proposition 59.
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Appendix A

Modular Forms and Eta Products

This appendix will be devoted to giving a brief overview of the modular objects relevant
to our results. An excellent reference is Chapters 1 and 2 of [29]. We are interested in
modular forms of integral or half-integral weight with multiplier system for the congruence
subgroup

Γ0(N) :=

{a b

c d

 ∈ SL2(Z)
∣∣ c ≡ 0 (mod N)

}
⊂ SL2(Z)

for an integer N ≥ 1. A multiplier system on Γ0(N) is a function v : Γ0(N) → C∗

satisfying some consistency conditions. We will not need the details, so we refer the reader
to [25, Sec. 2.6].

Let H = {z ∈ C | =(z) > 0} be the upper-half plane in C.

Definition 91. A holomorphic function f : H → C is called a modular form of weight
k ∈ R and multiplier system v on Γ0(N) if f is holomorphic at all cusps Q ∪ {∞}, and if
for all L ∈ Γ0(N), f transforms as

f(Lτ) = f

(
aτ + b

cτ + d

)
= v(L)(cτ + d)kf(τ), L =

a b

c d

 . (A.1)

We call f a cusp form if additionally, f vanishes at all cusps.

We employ the change of variables q = exp(2πiτ) and with it, the abuse of notation
writing f(τ) and f(q) interchangeably. The fundamental building block of a large class of
modular forms is the Dedekind eta function (or just eta function)

η(q) = q
1
24

∞∏
n=1

(1− qn),
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which is a modular form of weight 1
2 and multiplier system vη on SL2(Z); see [25, Sec. 2.8]

where vη is given explicitly.14

Definition 92. An eta product of level N ≥ 1 is a function f : H→ C of the form

f(q) =
∏
m|N

η(qm)am

such that am ∈ Z (possibly negative, or zero) for all m|N , and where the product is over
positive divisors of N .

From the modular properties of the Dedekind eta function, one can show that an eta
product f of level N transforms as a modular form on Γ0(N) of weight

k =
1

2

∑
m|N

am ∈ 1
2Z,

and with multiplier system

vf (L) =
∏
m|N

(
vη

 a mb

c/m d

)am , L =

a b

c d


When we say “transforms as” we mean that f satisfies (A.1) for all L ∈ Γ0(N). An eta
product f is automatically holomorphic on H. This is because the form of η(q) indicates
that any poles of f must occur at q = 0 or |q| = 1. All that is left to consider is when
an eta product is holomorphic at the cusps. The following proposition gives necessary and
sufficient conditions.

Proposition 93 ([29, Cor. 2.3]). An eta product f of level N is holomorphic at the cusps if
and only if the following holds for all positive divisors c of N∑

m|N

(gcd(c,m))2)

m
am ≥ 0.

Moreover, f vanishes at all cusps if and only if each inequality is strict. An eta product is
therefore a modular form of weight k for Γ0(N) if and only if each inequality is satisfied,
and it is a cusp form if and only if each is strictly satisfied.

14Equivalently, η(q) is a modular form of weight 1
2

on the metaplectic double cover Mp2(Z) of SL2(Z).
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Appendix B

Tables of Values for ng,h(d,Aodd)

In this appendix, we list explicitly the values of ng,h(d,Aodd) for d ≤ 7. This case includes
the primitive class βd on a Picard rank one Abelian surface S where these numbers have
some enumerative significance. The h = 0 numbers are (up to the minus sign due to
the second factor in X = S × C) actual counts of ı-invariant hyperelliptic curves on S;
they coincide with the counts computed in [13]. For each d, the highest genus occuring is
g = d+ 1, the arithmetic genus of the class βd. Let

Chowβd(X)h ⊂ Chowβd(X)ı

be the dimension h components of the ı-fixed point locus. Then one can show that

nd+1,h(d,Aodd) = evir (Chowβd(X)h) .

The right hand side can be computed directly since Chowβd(X)ı = Chowβd(S)ı × C
and that the first factor here is the disjoint union of the ı-invariant linear systems of the
ı-invariant line bundles in the class βd.

For d ≤ 1, the only non-zero values of ng,h(d,Aodd) are given by

n1,0(0,Aodd) = −4, n2,0(1,Aodd) = −16.

For 2 ≤ d ≤ 7, see the table below:
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Table B.1: Non-zero values of ng,h(d,Aodd) for 2 ≤ d ≤ 7.

d = 2 d = 3

h = 0 h = 1 h = 0 h = 1

g = 2 -48 -64

g = 3 -24 8 -160

g = 4 -16 32

d = 4 d = 5

h = 0 h = 1 h = 2 h = 0 h = 1 h = 2

g = 2 -112 -96

g = 3 -456 24 -1056

g = 4 -192 96 -912 224

g = 5 -4 48 -12 -96 320

g = 6 32 -48

d = 6 d = 7

h = 0 h = 1 h = 2 h = 3 h = 0 h = 1 h = 2 h = 3

g = 2 -192 -128

g = 3 -1920 32 -3264

g = 4 -2992 512 -7776 704

g = 5 -736 1056 -64 -3424 3072

g = 6 -16 384 -144 -240 1920 -448

g = 7 8 -72 16 192 -480

g = 8 -48 64
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Appendix C

Shifted Nikulin and Kummer lattices
in terms of a shifted D4 lattice

Let Λ = ⊕ni=1Z〈ei〉 be the trivial lattice with inner-product ei · ej = δij . We define the Dn

lattice by
Dn =

{
v ∈ Λ

∣∣ l(v) ≡ 0 mod 2
}
,

recalling the definition of l(v) in (3.8). It is straightforward to show that the dual lattice is
given by

D∨n = Λ ∪
(

Λ + 1
2

n∑
i=1

ei

)
.

In the case of n = 8, the following observation about the Nikulin lattice N follows imme-
diately from Lemma 71:

Proposition 94. N ∼= D∨8 (−2).

Let λ be any root in the D4 root system. Define the shifted D4 lattice D4,sh = D4 + 1
2λ

along with the corresponding Jacobi theta function

ΘD4,sh
(q, w) =

∑
v∈D4,sh

qv
2
wl(v)

which we can explicitly evaluate:

Proposition 95.

ΘD4,sh
(q2, w) = (q ψw)

1
2 ·

∞∏
n=1

(1 + qn)6(1− qn)4(1 + wqn)(1 + w−1qn)

We note that this formula also essentially appeared in [37, Ch. 2, Prop. 3].
The above proposition explains an interesting connection we observed between the

shifted Nikulin lattice Nsh and shifted Kummer lattice Ksh:
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Corollary 96.

ΘNsh
(q2, w) = ΘD4,sh

(q2, w)2

ΘKsh
(q2, w) = 4 ΘD4,sh

(q2, w)4

Proof. Equations (3.13) and (3.14) reduce the above claims to Proposition 95.

Proof of Proposition 95. Without loss of generality, suppose the root of D4 we specify is
λ = e1 + e2. We define the lattice isomorphism f : D∨4 (2)→ D4 by

f(e1) = λ f(e3) = e3 + e4

f(e2) = e1 − e2 f(e4) = e3 − e4

and observe that f identifies the two shifted lattices D4,sh and D∨4,sh = D∨4 (2) + 1
2e1.

Therefore defining the theta function

ΘD∨4,sh
(q, w) =

∑
v∈D∨4,sh

q
1
2
v2
wl(v)

we have the formula
ΘD4,sh

(q, w) = ΘD∨4,sh
(q, w)

By the same methods as in Subsection 3.4.4, the description

D∨4,sh =
(
Λ + 1

2e1

)
∪
(
Λ + 1

2(e2 + e3 + e4)
)

allows us to compute the theta function explicitly to be

ΘD4,sh
(q2, w) = θ3

0θ1 + θ0θ
3
1 = θ0θ1(θ2

0 + θ2
1).

By (3.15) and Lemma 79, this completes the proof.

Remark 97. Alternatively, one can give formulas for Nsh and Ksh in terms of shifts of the
D4 lattice, from which Corollary 96 follows. Let λk = f(ek) denote the four roots from
the proof of Proposition 95 and define the shifted lattices D4,k = D4 + 1

2λk. One can show
that via the isomorphism f

Nsh
∼= D4,1(−1)⊕D′4,1(−1)

Ksh
∼=

4∐
k=1

D4,k(−1)⊕D′4,k(−1)⊕D′′4,k(−1)⊕D′′′4,k(−1)
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where the primes signify that the different D4 summands have different generators, e.g.
D′4 ⊂ ⊕iZ〈e′i〉 and D′′4 ⊂ ⊕iZ〈e′′i 〉, etc. In terms of the two-variable theta functions

ΘD4,k
(q, w) = ΘD4,sh

(q, w)

for all 1 ≤ k ≤ 4. One can then show that the above lattice formulas imply Corollary 96.
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