
Machine Learning Techniques for Routability-driven
Routing in Application-specific Integrated Circuits Design

by

Yuxuan Pan

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

August 2022

© Yuxuan Pan, 2022



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Machine Learning Techniques for Routability-driven Routing in Application-
specific Integrated Circuits Design

submitted by Yuxuan Pan in partial fulfillment of the requirements for the degree
of Master of Applied Science in Electrical and Computer Engineering.

Examining Committee:

André Ivanov, Professor, Department of Electrical and Computer Engineering,
UBC
Supervisor

Konrad Walus, Associate Professor, Department of Electrical and Computer Engi-
neering, UBC
Supervisory Committee Member

Guy Lemieux, Professor, Department of Electrical and Computer Engineering,
UBC
Supervisory Committee Member

ii



Abstract

Routing is a challenging stage of the Integrated Circuit (IC) design process. A

routing algorithm often adopts the two-stage approach of global routing followed

by detailed routing. One of the routing objectives is the routability, which requires

completing all the required connections without causing routing overflows or wire-

shorts. Otherwise, the chip would not function well and may even fail. Moreover,

detours need to be taken to avoid overflows and wire-shorts, which may increase

the wire length and number of vias in the physical design, affecting the overall

performance of the circuit. Predicting the existence and locations of routing over-

flows and wire-shorts before routing takes place helps the router to improve the

routability and circuit performance. Here, we present two Machine Learning (ML)

techniques that improve the routability of routing by predicting the number and

locations of overflows and wire-shorts.

First, we design and develop GlobalNet, a Fully Convolutional Network (FCN)

based global routing congestion predictor that estimates the density of wires and

vias of global routing in 3-Dimensional (3D) from a placed netlist. The locations

of overflows are derived from the prediction result. A global router is also imple-

mented to utilize the congestion estimation result to improve the performance of

global routing.

Second, a Convolutional Neural Network (CNN) based wire-short predictor,

VioNet, is developed. VioNet replaces the global router with global routing con-

gestion estimation (GlobalNet) so that the runtime is significantly reduced. To

improve the prediction accuracy, we adopt a top-down iterative strategy where a

low-resolution prediction first gives the approximate locations of wire-shorts, fol-

lowed by a high-resolution prediction which determines the precise wire-shorts’

iii



locations.

Experimental results show that both GlobalNet and VioNet achieve high accu-

racy on ISPD 2018 and ISPD 2019 benchmarks. Moreover, UBC-GR increases the

routability of global routing by reducing the number of overflows.

iv



Lay Summary

Routing is a vital stage in the process of IC design, where a router connects the

components in a design using wires, with certain rules to follow. Routability,

which refers to the ability of a design being routed by a specific router without

violating routing rules, is one of the most important objectives to optimize in the

routing stage. This thesis presents two ML frameworks that predict the result of

routing before routing takes place. The predicted rule violations can be avoided in

the routing stage, and the routability of a design can be improved. Experimental

results show that our prediction is faster and more accurate than previous works,

and improvements are achieved in terms of routability.

v



Preface

Chapter 3. A version of this material has been published as Pan Y, Zhou Z, Ivanov

A. Routability-driven Global Routing with 3D Congestion Estimation Using a Cus-

tomized Neural Network. In 2022 23rd International Symposium on Quality Elec-

tronic Design (ISQED) 2022 Apr 6 (pp. 1-6). IEEE. I am the first author, re-

sponsible for the code implementation, parameter tuning, data gathering and re-

sult analysis with the assistance of Zhonghua Zhou. I performed the experiments.

Zhonghua Zhou and I conceived the experiments and I wrote the majority of the

manuscript for the published paper under the supervision of my supervisor, Prof.

André Ivanov. Prof. André Ivanov also provided research methodology guidance.

Chapter 4. Zhonghua Zhou provided the idea of iterative structure of the

VioNet. I designed the rest of the VioNet and finished the code implementa-

tion, parameter tuning, data gathering and result analysis with the assistance of

Zhonghua Zhou. The experiments were conducted by me. I wrote the majority of

the manuscript under the supervision of my supervisor, Prof. André Ivanov. Prof.

André Ivanov also provided research methodology guidance.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Electronic Design Automation (EDA) of Physical Design . . . . . 1

1.1.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Floorplanning . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Approaches and Contributions . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 7

vii



2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Two-step Approach . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Routability . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Routing Congestion Estimation . . . . . . . . . . . . . . . . . . . 12

2.2.1 RUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Probabilistic-Based Estimation . . . . . . . . . . . . . . . 16

2.2.3 ML-Based Estimation . . . . . . . . . . . . . . . . . . . 17

2.3 Wire-short Prediction . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Summary of Previous Routability Prediction Approaches . . . . . 20

3 Routability-driven Global Routing with 3D Congestion Estimation
Using a Customized Neural Network . . . . . . . . . . . . . . . . . . 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Proposed Global Routing Methodology . . . . . . . . . . . . . . 25

3.3.1 GlobalNet . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 UBC-GR . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 GlobalNet Performance . . . . . . . . . . . . . . . . . . 37

3.4.3 UBC-GR Performance . . . . . . . . . . . . . . . . . . . 39

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 VioNet: An Iterative Detailed Routing Wire-short Violation Predic-
tor Based on a Convolutional Neural Network . . . . . . . . . . . . 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Convolutional Neural Network (CNN) . . . . . . . . . . . . . . . 47

4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . 48

4.3.2 GlobalNet . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . 50

viii



4.3.4 Iterative Prediction . . . . . . . . . . . . . . . . . . . . . 51

4.3.5 Neural Network Structure . . . . . . . . . . . . . . . . . 53

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . 54

4.4.3 Result of the Low-resolution Prediction Stage . . . . . . . 56

4.4.4 Result of the High-resolution Prediction Stage . . . . . . 57

4.4.5 Comparison with the Non-iterative Prediction . . . . . . . 59

4.5 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ix



List of Tables

Table 3.1 Neural Network Architecture of GlobalNet . . . . . . . . . . . 30

Table 3.2 PCC and NMSE between the Predicted Congestion Heatmaps

(GlobalNet) and the Ground truths (CU-GR) . . . . . . . . . . 35

Table 3.3 Runtime of GlobalNet (unit: second) . . . . . . . . . . . . . . 36

Table 3.4 Impact of Different Features on Congestion Estimation using PCC 37

Table 3.5 Comparison of Global Routing Wire Length (CU-GR vs UBC-

GR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 3.6 Comparison of Number of Vias (CU-GR vs UBC-GR) . . . . . 41

Table 3.7 Comparison of Number of Global Routing Overflows (CU-GR

vs UBC-GR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 3.8 Comparison of Global Routing Score (CU-GR vs UBC-GR) . . 43

Table 4.1 Neural Network Architecture of VioNet . . . . . . . . . . . . . 53

Table 4.2 An Explanation of TP, TN, FP and FN. . . . . . . . . . . . . . 55

Table 4.3 Results with low-resolution stage of Setting 1 (w′
l1 × l′l1 = 64×

64). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.4 Results with low-resolution stage of Setting 2 (w′
l2 × l′l2 = 32×

32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.5 Results with low-resolution stage of Setting 3 (w′
l3 × l′l3 = 16×

16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.6 AC, TPR, and TNR of iterative prediction with Setting 1 (w′
l1×

l′l1 = 64×64) . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 4.7 AC, TPR, and TNR of iterative prediction with Setting 2 (w′
l2×

l′l2 = 32×32). . . . . . . . . . . . . . . . . . . . . . . . . . . 61

x



Table 4.8 AC, TPR, and TNR of iterative prediction with Setting 3 (w′
l3×

l′l3 = 16×16). . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4.9 AC, TPR, and TNR of non-iterative prediction. . . . . . . . . . 62

Table 4.10 Detailed prediction results of iterative prediction with Setting 1

(w′
l1 × l′l1 = 64×64) . . . . . . . . . . . . . . . . . . . . . . . 63

Table 4.11 Detailed prediction results of iterative prediction with Setting 2

(w′
l2 × l′l2 = 32×32). . . . . . . . . . . . . . . . . . . . . . . 63

Table 4.12 Detailed prediction results of iterative prediction with Setting 3

(w′
l3 × l′l3 = 16×16). . . . . . . . . . . . . . . . . . . . . . . 64

Table 4.13 Detailed prediction results of non-iterative prediction. . . . . . 64

Table 4.14 The runtime comparison of VioNet and Dr. CU (unit: second). 65

xi



List of Figures

Figure 1.1 Workflow of EDA. . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Workflow of GlobalNet. . . . . . . . . . . . . . . . . . . . . 6

Figure 1.3 Workflow of VioNet. . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1 An example of pins, vias, wires and a net. . . . . . . . . . . . 9

Figure 2.2 An explanation of global routing and detailed routing. . . . . 10

Figure 2.3 The coordinate system of RUDY. . . . . . . . . . . . . . . . . 13

Figure 2.4 A five-pin net and the estimation of RUDY algorithm. . . . . 15

Figure 2.5 The coordinate system of probabilistic-based estimation. . . . 16

Figure 3.1 Workflow of GlobalNet. . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2 An example of transition from physical design to grid graph. . 23

Figure 3.3 Grid graph of a 3D physical design with 4 layers. . . . . . . . 24

Figure 3.4 Flowchart for our GR methodology based on GlobalNet and

UBC-GR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.5 An example of pin and net: the red points are pins; the blue

line is a local net; and the orange line is a global net. . . . . . 27

Figure 3.6 An example of how features are transformed from a design

(left) to a Hyper-image (right). . . . . . . . . . . . . . . . . . 28

Figure 3.7 An example of windowing, the blue tiles is the output window

and the orange tiles is the corresponding input window with

zero padding. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.8 A demonstration of logistic function. . . . . . . . . . . . . . 33

Figure 3.9 Congestion prediction result of design “9t9”. . . . . . . . . . 38

xii



Figure 4.1 A comparison of three wire-short prediction approaches. . . . 46

Figure 4.2 Basic structure of a convolutional neural network (CNN). . . . 48

Figure 4.3 An example of an input-output pair for model learning. . . . . 49

Figure 4.4 Flowchart of iterative prediction. . . . . . . . . . . . . . . . . 50

Figure 4.5 Description of feature extraction. . . . . . . . . . . . . . . . . 51

xiii



List of Acronyms

2D 2-Dimensional

3D 3-Dimensional

ASIC Application-Specific Integrated Circuit

CNN Convolutional Neural Network

DRV Design Rule Violation

EDA Electronic Design Automation

FCN Fully Convolutional Network

FPGA Field-programmable Gate Array

GAN Generative Adversarial Network

HPWL Half Perimeter Wirelength

IC Integrated Circuit

MARS Multivariate Adaptive Regression Splines

ML Machine Learning

MLP Multilayer Perceptron

NMSE Normalized Mean Square Error)

NN Neural Network

PCC Pearson Correlation Coefficient

RUDY Rectangular Uniform wire DensitY

RL Reinforcement Learning

xiv



RSMT Rectilinear Steiner Minimal Tree

VLSI Very-Large-Scale Integration

xv



Acknowledgments

Words cannot express my gratitude to my supervisor, Prof. André Ivanov for

his expert advice and encouragement throughout this challenging project. Also,

I could not have undertaken this journey without Dr. Zhonghua Zhou, who gen-

erously guided me in doing this project. I also would like to express my deepest

appreciation to Prof. Guy Lemieux and Prof. Konrad Walus for being my com-

mittee members. Special thanks to UBC, NSERC and Huawei for the financial

support. Lastly, I’d like to mention my family, especially my mom. Their belief in

me has kept my spirits and motivation high during this process.

xvi



Chapter 1

Introduction

Routing is an essential stage in the design of Integrated Circuits (ICs) [15, 33].

The design of modern Application-Specific Integrated Circuits (ASICs) usually

adopts a standard cell methodology, where a low-level Very-Large-Scale Integra-

tion (VLSI) layout is represented by standard cells, which are groups of transistors

and interconnect structures that provide boolean logic functions (e.g., NAND, OR,

inverters) or storage functions [32]. The routing process determines the precise

paths required for metal wires on the chip layouts interconnecting the standard

cells under certain constraints. Objectives, such as routability, wire length, area,

power consumption, are optimized in the process of routing. Some constraints

need to be obeyed in the process of routing, such as two wires cannot be to close

to each other, wires cannot overlap, etc. [15, 69]. Here, we define routability as an

attribute that describes the ability of a placed netlist to be routed by a specific router

without violating the constraints of routing. This thesis focuses on improving the

routability of a placed netlist by predicting the existence and locations of routing

congestion and wire-short to improve the performance of a router.

1.1 Electronic Design Automation (EDA) of Physical
Design

Physical design of ICs is the process of turning a IC design into manufacturable

geometries [14, 33]. Most of the work of physical design was done “by hand”

1



until the late 1960s [32, 48, 66], when the complexity of IC increased, and manual

design became inefficient. The concept of EDA is to use automatic tools to improve

the efficiency and the quality of physical design. It was first introduced in the

1970s for automatic circuit simulation and routing [3, 9, 53, 60]. After decades

of development, the workflow of physical design has become very modular, and

EDA is an essential part of all the stages of the physical design process. Figure 1.1

shows the workflow of EDA. The EDA of physical design comprises a number of

stages, including synthesis, floorplanning, placement, and routing [38].

1.1.1 Synthesis

As shown in block (1) in Figure 1.1, in synthesis stage, a physical design written

in hardware description languages, such as Verilog, is compiled and mapped into

a netlist. A netlist is a description of the gate-level connectivity of an electronic

circuit.

1.1.2 Floorplanning

The block (2) in Figure 1.1 shows the progress of floorplanning. A floorplan-

ner takes the netlist as the input and partitions the design into multiple functional

blocks [58]. The size of the chip region, called die area, is also determined in

floorplanning. Figure 1.1 (c) shows an example of floorplanning result.

1.1.3 Placement

The placement stage is demonstrated in block (3) in Figure 1.1, a placer is used

which assigns exact locations for various circuit components within the chip’s core

area after floorplanning. The output of the placer is called a “placed netlist”.

1.1.4 Routing

Shown in block (4) in Figure 1.1 is the routing stage, which determines the loca-

tion for metal wires on the chip area to interconnect the pins of standard cells. In

modern VLSI design, billions of wires are to routed. For example, the Apple’s

ARM-based dual-die M1 Ultra system on a chip contains more than 114 billion

transistors [5]. Due to the complexity of routing, it is usually divided into two

2



Figure 1.1: Workflow of EDA.

cascaded steps: global routing and detailed routing [15]. The global routing de-

termines the approximate location of each wire, while the detailed routing sets the

final and precise path for each wire based on the result of global routing stage.

1.2 Motivation
The routing phase of IC design determines the locations of wires interconnecting

the cell pins under certain constraints, with multiple objectives to be optimized.

3



It has been proven to be an NP-complete problem [61], a class of computational

problems that is the hardest of the problems to which solutions can be verified

quickly. As the semiconductor process keeps advancing, the complexity of routing

also increases. For example, the number of transistors on a microchip has been

increasing tremendously since the 1960s [50]. Unfortunately, the time complexity

of the routing problem increases exponentially as the number of cell pins increases.

The increased number of design rules adds to the problem. Design rules refer to

the constraints that the router must follow in order to create reliable and functional

circuits. If such rules are violated, a rip-up-reroute [20] stage will be performed

where the routed wires are removed and a new round of routing is done. The

rip-up-reroute is done iteratively until the router finds a solution without causing

routing rule violations, and the placed netlist is considered “routable” to the router.

If the router cannot remove all the violations in a feasible time, the placed netlist is

considered “unroutable” and needs to be replaced with a new placement strategy.

Both rip-up-reroute and replacing are time consuming and cannot guarantee a result

without any routing rule violations. Therefore, predicting the existence of routing

rule violations can be used to evaluate the routability of a placed netlist before

routing, preventing the waste of time on unroutable placed netlists.

Moreover, predicting the locations of routing rule violations can improve the

routability of routing. The router routes all the wires sequentially. As the routing

keeps evolving, the die region gets more congested with routed wires. Because two

different wires cannot overlap, the unrouted wires have to take detours due to the

blockages caused by the previously routed wires, resulting in a longer wire length

for the unrouted wires. The longer wires require more space in the die region,

making the die region more congested. Violations are more likely to happen in

congested areas. Suppose the locations of routing rule violations can be predicted

before routing. In that case, the router can avoid routing through the areas that

are prone to routing rule violations in early stages, thus preventing routing rule

violations from happening.

Many research efforts have been put into routing prediction that can predict

the existence and locations of routing rule violations. Traditional prediction ap-

proaches like Rectangular Uniform wire DensitY (RUDY) [59] and probabilistic-

based methods [46, 68] have existed for decades and no longer suit the modern

4



VLSI technology because of their low prediction accuracy and speed. In recent

years, significant improvements have been achieved by applying Machine Learn-

ing (ML) techniques to routing congestion estimation and wire-short prediction.

However, most previous works, for example, [4, 16, 41, 54], on routing conges-

tion estimation are 2-Dimensional (2D), which means that they do not predict on

which metal layer the congestion happens. Also, the relationship between routing

congestion estimation and wire-short prediction has not been investigated. This

thesis aims to improve the routability of placed netlists by predicting routing con-

gestion and wire-shorts fast and accurately before routing takes place using ML

techniques.

1.3 Approaches and Contributions
The goal of this thesis is to predict the existence and locations of routing rule

violations from a placed netlist (i.e., before routing takes place). As technology

nodes get smaller, traditional prediction approaches, such as RUDY and probabilis-

tic based methods, become less effective in terms of both runtime and performance.

Recently, ML has shown its potential to improve routing runtime and routability

in EDA. Many research efforts have been put into ML-based routing congestion

estimation and wire-short prediction. Although the prediction of routing results

is believed to be able to help routers improve routing performance, such applica-

tion of routing congestion prediction is hardly seen. This thesis proposes two ML

frameworks to predict the routing congestion and wire-shorts from a placed netlist.

A global router that can utilize the prediction result to improve the routability is

also proposed.

Chapter 3 presents “GlobalNet”, a 3-Dimensional (3D) routing congestion es-

timation algorithm that uses a Fully Convolutional Network (FCN) [45] to predict

the density of wires and vias of each metal layer from a placed netlist. Via refers to

the physical connection that interconnects wires on different metal layers. Pearson

Correlation Coefficient (PCC) and Normalized Mean Square Error) (NMSE) of the

prediction results and the ground truth are used to evaluate GlobalNet. Experiment

results show a high average PCC (0.8449) and a low NMSE (0.0396) on ISPD 2018

[18] and ISPD 2019 [2] benchmarks, which indicates a high accuracy. Chapter 3

5



Figure 1.2: Workflow of GlobalNet.

also introduces UBC-GR, a global router modified from an open-sourced global

router: CU-GR [42]. UBC-GR is able to use the estimation result of GlobalNet to

guide the router to avoid potential congestion. Experiments of UBC-GR on ISPD

2018 and ISPD 2019 benchmarks show an improvement in terms of the number of

vias and number of overflows. Moreover, two designs that are unroutable to CU-

GR are successfully routed by UBC-GR, meaning that the routability of a placed

netlist is improved, and the risk of routing failure is decreased by UBC-GR. Figure

1.2 summarizes the workflow of the proposed GlobalNet. It is done after the place-

ment stage to predict the routing congestion of global routing. The results, called

“congestion heatmaps”, are used to improve the performance of global routing.

Chapter 4 describes VioNet, a customized Convolutional Neural Network (CNN)

[51] that predicts the locations of detailed routing wire-shorts. As shown in Fig-

ure 1.3, the input of VioNet is the results of global routing congestion estimation

(the congestion heatmap generated by GlobalNet). Different from other wire-short

predictors that do prediction based on global routing results. VioNet utilizes con-

gestion heatmap, which is an estimation of global routing results. Therefore, the

long runtime of global routing can be saved and the wire-short prediction can be

performed in an earlier stage, i.e., after placement. Moreover, to improve the ac-

curacy of prediction, VioNet adopts an iterative strategy where a low-resolution

prediction is done first to determine the approximate locations of wire-shorts, fol-

lowed by a high-resolution prediction that spots the exact locations of wire-shorts.

Experiments on ISPD 2019 benchmarks show that 74% of the wire-shorts are suc-

cessfully predicted by VioNet. Besides the high accuracy, VioNet is also 92 times

faster than Dr. CU, an open sourced detailed router, making it a good tool to eval-

6



Figure 1.3: Workflow of VioNet.

uate the routability of a placed netlist without routing.

1.4 Thesis Organization
The remainder of this thesis is organized as follows: Chapter 1 presents the back-

ground material regarding the routing algorithm and previous efforts on routing

congestion estimation and wire-short prediction. Chapter 3 presents GlobalNet

and UBC-GR, which aims to improve the routability of global routing using ML

based congestion estimation. Based on the work of Chapter 3, Chapter 4 describes

VioNet, a CNN based detailed routing wire-short predictor that utilizes a global

routing congestion estimation result to improve prediction accuracy. Lastly, Chap-

ter 5 concludes the thesis.

7



Chapter 2

Background

2.1 Routing

2.1.1 Problem Formulation

The goal of all routers is the same. They are given some pre-existing pins (also

called terminals) of standard cells, and optionally some pre-existing wiring called

preroutes. Each of these pins is associated with a net, usually by name or number.

The primary objective of the router is the routability, which requires the router

to create geometries such that all pins assigned to the same net are connected by

wires, no pins assigned to different nets are connected, and all design rules are

obeyed [15]. A router can fail by not connecting pins that should be connected (an

open), or by mistakenly connecting two pins that should not be connected (a short).

In 3D IC design, the wires are distributed on different metal layers, and vias are

used to connect the wires on two different metal layers [24, 55].

Figure 2.1 illustrates the relationship between pins, vias, wires and nets. P1 and

P2 are two pins on metal layer 1, w1,w2 and w3 are three metal wires connecting

P1 and P2. w1 and w2 are on metal layer 1, while w3 is on metal layer 2. Therefore,

four vias: v1,v2 on metal layer 1 and v3,v4 on metal layer 2 are used to connect

w1,w2 and w3. All the pins, wires and vias shown in Figure 2.1 form a net as they

are all physically connected.

In addition, to correctly connect the nets, routers may also be expected to make

8



Figure 2.1: An example of pins, vias, wires and a net.

sure the design meets timing [6], has no crosstalk problems [36], meets any metal

density requirements [40, 64], does not suffer from antenna effects [47], and so

on. This long list of often conflicting objectives is what makes routing extremely

difficult.

To conclude, the inputs and output of the general routing problem are listed as

follows:

Inputs:

• A placed layout with fixed locations of standard cells and cell pins on the

chip.

• A netlist, which is a description that consists of a list of the electronic com-

ponents in a circuit and a list of the nodes they are connected to.

• A set of design rules and other constraints for a manufacturing process, such

as resistance, capacitance, and the wire/via width and spacing of each layer.

Output:
A wire connection map for each net presented by actual geometric layout ob-

jects that meet the design rules and optimize the given objective, such as routability,

timing, power, area, wire length, etc., if specified.

9



Figure 2.2: An explanation of global routing and detailed routing.

2.1.2 Two-step Approach

Due to the complexity of routing, a two-step approach of global routing followed

by detailed routing is adopted. Generally [15], global routing first partitions the

routing region into tiles which are called “G-cells” and decides tile-to-tile paths for

all nets while attempting to optimize some given objective function (e.g., total wire

length and circuit timing). Then, guided by the paths obtained in global routing,

detailed routing assigns actual tracks and vias for nets. Figure 2.2 illustrates the

process of global routing and detailed routing. Figure 2.2 (a) shows a placement

result that contains the information about the exact locations of standard cells, pins

of standard cells, and I/O pads at chip boundaries. The placed netlist also describes

a list of connections by indicating which pins should be electrically connected to

form a set of nets. Figure 2.2 (b) shows the result of global routing. The design is

partitioned into multiple G-cells. The global router provides the approximate route

for each connection by finding the tile-to-tile paths to connect pins. Figure 2.2 (c)

illustrates the detailed routing result, which describes the exact route for each net

by searching within the tile-to-tile path obtained in global routing.

2.1.3 Routability

Due to the limitation of foundry technology, certain constraints must be applied

to routing in order to fabricate reliable and functional chips. For example, some

of the constraints set a minimum space between wires and a maximum density of

metal areas. Routability is commonly defined as the ability of a placed netlist to

10



be routed by a specific router without violating the constraints. Routability is es-

sential because any violated constraint may lead to a failure in fabrication or the

malfunctioning of the chip. As a result, the design needs to be rerouted or even

replaced, and the time of the design process is significantly increased. Different

routers adopt different routing strategies. Therefore, the routability of a placed

netlist can be improved by using a better router. The number of constraint viola-

tions is one of the objectives to optimize in routing stage - the goal of all routers

is to achieve a routing solution without violations. Therefore, routability is usually

considered as a continuous metric, which is measured by the number of violations

of routing constraints. Specially, a placed netlist is “routable” if no constraint is

violated after routing, and is considered “unroutable” if any constraints are vio-

lated. In this thesis, two constraint violations, global routing overflow and detailed

routing wire-short, are taken into consideration.

Global Routing Overflow

It is common to use the number of routing overflows to evaluate the routability of

global routing. As discussed in Section 2.1.2, in the process of global routing, a

design layout is partitioned into multiple G-cells. The fabrication technology and

the placement layout determine the maximum number of wires and vias that can

exist in each G-cell. An overflow happens when the actual number of wires and vias

exceeds the maximum limit of that G-cell. Here, we use the number of overflows

to measure the routability of a placed netlist in global routing. A placed netlist with

fewer overflows after global routing is considered to have a better routability than

a placed netlist with more overflows.

Detailed Routing Wire-short

Design rules must be obeyed for detailed routing. Some of the design rules include

minimum space between wires and vias, the width of wires, etc. The number of

Design Rule Violations (DRVs) after detailed routing is commonly used to measure

the routability of a placed netlist in the detailed routing stage. The netlists with

fewer DRVs after detailed routing are considered to have a better routability. In

this thesis, to simplify the problem, only one design rule, wire-short, is taken into

11



consideration. Wire-short happens when two or more wires overlap. It is one of

the most commonly existing DRVs and therefore, one of the most representative

ones among all the DRVs.

2.2 Routing Congestion Estimation
It is essential to predict the routability of a placed netlist before routing takes

place or during the process of routing. A placed netlist that is predicted to have

a low routability can be replaced for a better routability without going through the

lengthy routing stage. Moreover, the prediction of routability can be used to guide

a router to avoid potential wire-shorts or overflows in the process of routing. In in-

dustry, fast trial global routing is often employed for routability prediction at place-

ment or routing stage [67]. Fast trial global routing is a routing stage to estimate

the distribution of wires and vias after global routing. The “fast” here is relative to

the full-fledged global routing that generates solutions for further detailed routing.

Compared to the routing congestion estimation, such as RUDY, probabilistic-based

algorithms, etc., such trial global routing is still too time-consuming.

For a given area on a design layout, routing congestion estimation predicts the

information of wires and vias in an area, such as the wire length, number of vias,

etc.

2.2.1 RUDY

Wires are some metal segments that connects the components in a design. Wires

have certain width and length, and therefore take up space. RUDY estimates the

probability that a point is located within a wire region, which is also referred to as

“wire density”.

Given a design, an x-y plane can be build as shown in Figure 2.3. The lower left

corner O of the design is the origin of the plane. For any point P in the design with

its coordinate being (xp,yp). RUDY (xp,yp) computes the wire density of point P,

which is an estimation of the probability that P is located within a wire region.

With the wire density, we can estimate the wire area of any given region in a

design. As shown in Figure 2.3, the grey area S is a region within the design area,

the area of wires in S can be estimated using the following equation:

12



Figure 2.3: The coordinate system of RUDY.

WAS =
∫∫
S

RUDY (x,y)dS (2.1)

where WAS is the estimated wire area in region S. A large wire area in a region

indicates that the region is congested.

In detail, given a placed netlist containing n nets, RUDY is defined per net. dn

refers to the wire density of a single net n. It is the ratio of the wire area of net n,

which is referred to as WAn, and the net area of net n, which is referred to as NAn:

dn =
WAn

NAn
(2.2)

13



Given a multi-pin net n, algorithms like Half Perimeter Wirelength (HPWL)

[56] or Rectilinear Steiner Minimal Tree (RSMT) [31] are performed to obtain the

locations of wires. Then, the wire area can be computed by the total wire length of

net n, denoted by Ln and the wire width of net n, denoted by pn:

WAn = Ln · pn (2.3)

NAn, the net area of net n, is the area of the enclosing rectangle of the net n,

which is denoted by En, and is a rectangle that includes all the pins of net n. Let

(xn,yn) refer to the coordinate of the lower left corner of En. Let wn refer to the

width of En, hn refer to the height of En. The coordinates of the four corners of

En are (xn,yn),(xn +wn,yn),(xn,yn +hn),(xn +wn,yn +hn), respectively. Suppose

net n has k pins: p1, · · · , pk with coordinates being (xp1 ,yp1), · · · ,(xpk ,ypk), respec-

tively. In this case, the lower left corner of En (xn,yn) is calculated as follows:

xn = min
i=1,··· ,k

xpi (2.4)

yn = min
i=1,··· ,k

ypi (2.5)

The width wn and the height hn of enclosing rectangle can be computed by:

wn = max
i=1,··· ,k

xpi − min
i=1,··· ,k

xpi (2.6)

hn = max
i=1,··· ,k

ypi − min
i=1,··· ,k

ypi (2.7)

Thus the net area NAn is defined by:

NAn = wn ·hn (2.8)

Figure 2.4 gives an example of a five-pin net n. The area within the dash lines

are metal wires that are obtained by RSMT algorithm. The width of the wire is

pn. The total wire length Ln is the total length of the solid black lines. The grey

rectangle that covers the pins and wires is the enclosing rectangle of the net.

To calculate RUDY, a rectangle function R(x,y;xll,yll,w,h) is needed. Given a

rectangle with the coordinate of its lower left corner being (xll,yll), and its width

14



Figure 2.4: A five-pin net and the estimation of RUDY algorithm.

and height being w and h respectively. R(x,y;xll,yll,w,h) represents whether coor-

dinate (x,y) is in the given rectangle, and can be computed as follows:

R(x,y;xll,yll,w,h) =

1 if 0 ≤ x− xll ≤ w and 0 ≤ y− yll ≤ h

0 else
(2.9)

Finally, the estimation of the wire density of all N nets at (x,y) using RUDY is

calculated by the rectangle functions of all nets, weighted by the wire density dn of

each net:

RUDY (x,y) =
N

∑
n=1

dn ·R(x,y;xn,yn,wn,hn) (2.10)

RUDY is widely used in placers and routers in the past few decades for its fast

speed and low computational resource requirement. However, it is not accurate

because it assumes that all the wires of a net are inside its enclosing rectangle,

which is true only when the wire takes the shortest path between two pins. It is

15



Figure 2.5: The coordinate system of probabilistic-based estimation.

common that detours need to be taken because of the blockage of other pins and

wires. Such detours may go outside the enclosing rectangle and therefore influence

the accuracy of RUDY.

2.2.2 Probabilistic-Based Estimation

Lou et al. [46] proposed a probabilistic-based global routing congestion estimation

algorithm that predicts the number of wires in each G-cell. Given a design with

M ×N G-cells, a coordinate system can be built so that each tile has its unique

coordinate. The coordinate of the lower left G-cell is (1,1), and the coordinate of

16



the upper right G-cell is (M,N). For example, Figure 2.5 shows a design with 8×8

G-cells. There are two pins, P1 and P2, in the design. The coordinates of G-cells

that contains P1 and P2 are (2,6) and (6,2), respectively.

Different from RUDY which determines the exact path of a net, probabilistic-

based estimation first break each net into multiple two-pin nets, and route each

two-pin nets sequentially. For each two-pin net, a pattern routing is performed,

where multiple possible routes connecting the two pins can be chosen from. The

estimator does not choose a specific route but assign equal probability to each

route. Suppose net n has kn possible routes, the probability of each route is 1
kn

. For

example, as shown in Figure 2.5, there are two possible L-shape routes, r1 and r2,

connecting P1 and P2. Therefore, the probability of each of r1 and r2 is 1
2 .

Suppose there are N routes going through a G-cell, of which the coordinate is

(x,y), The estimation of the number of wires in a G-Cell at coordinate (x,y), which

is denoted by U(x,y), can be computed by the sum of probabilities of all N routes

that go through G-cell (x,y).

U(x,y) =
N

∑
n=1

1
kn

(2.11)

where 1
kn

is the possibility of net n.

The drawback of probabilistic-based estimation is that the pattern routing limits

the accuracy of estimation. In pattern routing, the possible routes of a net are

derived from several preset patterns. Although J. Westra et al. [68] considered

more patterns than [46], it is still insufficient to describe all possible routes of a net

in pattern routing.

2.2.3 ML-Based Estimation

Recently, efforts have been put into estimating routing congestion using supervised

ML. In supervised learning, a model is trained using a labeled dataset, attempting

to predict the routing congestion accurately. The labeling of the dataset requires to

route the placed netlists in the dataset using a router. Once the training is finished,

the model is able to predict the congestion of unknown placed netlists without

routing. Usually, a feature extraction algorithm is required to collect useful infor-

17



mation called “features”, such as the locations of pins, design rules, etc., from a

placed netlist. The features are mapped into tensors as the input of the prediction

model.

Qi et al. [54, 74] modeled the congestion estimation problem into a regression

problem and use Multivariate Adaptive Regression Splines (MARS), a commonly-

used ML model, to solve it. In this approach, the layout of placement and global

routing is first divided into multiple tiles, on which a feature extraction algorithm

is applied to convert each tile into a vector. The training data is fed into MARS,

and the routing congestion prediction result, which describes the detailed rout-

ing congestion level of a tile, is obtained from MARS output. The reduction of

wire-shorts and detailed routing runtime can be achieved by applying this model to

global routing. The disadvantage of MARS is that the input vectors only describe

the features of a single tile, and the global information is not included. J-Net [41]

is a customized CNN that predicts the congestion of detailed routing. It abstracts

the pins and macros density in placement results into image data, which is taken

as the input of J-Net (an extension of U-Net [57] architecture). The network out-

put is a heatmap representing the locations where detailed routing congestion may

occur. The image input keeps the global information and the spatial relationship of

different regions in the design. PROS [16] takes advantages of FCN [45] to predict

routing congestion from global placement results. One advantage of FCN is that it

does not have fully-connected layers, where the image input is disarrayed and flat-

tened into vectors, resulting in the loss of spatial information. Alawieh et al. [4]

transfer the routing congestion problem in large-scale Field-programmable Gate

Arrays (FPGAs) to an image-to-image problem, and then uses a conditional Gen-

erative Adversarial Network (GAN) [19, 49] to solve it. This thesis is inspired by

MEDUSA [73], a FCN that predicts the wire congestion of global routing based on

a placed netlist. MEDUSA maps the placed netlist into a multi-channel image and

converts the routing congestion into an image generation problem. The prediction

result is an image that describe the number of wires in each region. The advantage

of MEDUSA is that the congestion prediction is applied to a global router, and

successfully improved the performance of global routing.

Although the Neural Network (NN)-based approaches usually take global in-

formation into consideration, most previous works are 2D, which implies they do

18



not predict on which metal layer the congestion is located. 2D prediction is easier

than 3D prediction, as the prediction location is less precise. However, it would

guide the router better if the prediction tells the 3D locations of congestion.

2.3 Wire-short Prediction
In addition to forecasting routing congestion, it is also important to predict loca-

tions of wire-shorts so that routability optimization engines can be applied to fix

them. Given a physical design, wire-short prediction predicts the number and lo-

cations of wire-shorts before detailed routing. Recent studies have paid attention

to wire-short prediction due to the successful application of ML in EDA. Some

wire-short predictors require global routing results, while others perform predic-

tion directly from a placed netlist.

Some works, e.g., [62, 63], adopt Multilayer Perceptron (MLP) to predict the

locations of wire-shorts from a placed netlist. The layout of a design is divided

into many tiles, to which a feature extraction algorithm is applied to collect the

information of tiles, such as number of pins, area of blockages, etc., and convert

it to a vector for each tile. The vector is the input of a MLP, which produces a

binary output that describes the existence of wire-shorts in that tile. The output

can be either “0”, which corresponds to the non-existence of wire-shorts, or “1”,

which indicates the existence of the wire-shorts in the target tile. Therefore, the

wire-short prediction is cast as a binary classification problem. Such prediction is

fast due to the small size of MLP. However, it lacks global information as each

vector only describes a single tile. RouteNet [69] is the first work to employ a

CNN for wire-short prediction. A feature extraction algorithm is also applied, but

the outputs of feature extraction are images that describe the placement and global

routing information, which will be taken as the input of CNNs. RouteNet consists

of two CNNs, the first CNN takes a placement as input and predicts the number

of wire-shorts in a design, while the second CNN takes the global routing result

as input and predicts the locations of wire-shorts. One disadvantage of RouteNet

is that the global routing needs to be done to obtain the locations of wire-shorts,

significantly increasing the time needed for wire-short prediction. Moreover, it is

also helpful to move the wire-short prediction to an earlier stage (after placement)

19



as global routing is not needed for prediction.

2.4 Summary of Previous Routability Prediction
Approaches

Many efforts have been put into routing congestion prediction. RUDY predicts

the density of wires on the chip layout. Probabilistic-based approaches predict the

number of wires in each G-cell. However, both RUDY and probabilistic-based

approaches are based on assumptions that are not accurate: RUDY assumes that all

wires take the shortest path, while probabilistic-based approaches assume all wires

have certain patterns.

Recently, ML techniques are applied in routing congestion estimation, and

progress has been achieved. However, a common drawback of most previous ef-

forts on congestion estimation is that their predictions are 2D.

In addition, wire-short prediction attracts lots of attention recently. However,

trial global routing fails to predict wire-shorts accurately due to the complexity of

design rules. Some MLP-based approaches are fast but not accurate as the global

information is not considered. While some CNN-based approaches require global

routing result as an input, which requires extra runtime.

In light of the above-mentioned problems, this thesis investigates the feasibility

of ML-based routing congestion and wire-short prediction methods that are fast and

accurate compared to previous approaches, such as trial global routing, RUDY, and

probabilistic-based methods.

20



Chapter 3

Routability-driven Global
Routing with 3D Congestion
Estimation Using a Customized
Neural Network

3.1 Introduction
Placement and Routing (P&R) is a key stage of the physical design of ICs. The

computational complexity of P&R keeps growing exponentially with the continu-

ous scaling up of designs and scaling down of technology nodes. By virtue of the

inherent problem complexity, current P&R methodologies tend to be partitioned

in several sequential stages applied iteratively, with each stage based on advanced

optimization algorithms. For routing, the common methodology is to break down

the task by having a stage of global routing followed by a detail routing. Our work

presented here is focused on global routing algorithm improvements.

Global routing algorithms take a given potential design placement topology as

input and attempt to find a general routing solution given a design’s netlist and a

course grid of potential routing channels with given wire (track) capacities. The

main bottleneck that global routing algorithms face is caused by routing congestion

21



which occurs when a routing solution attempts to route too many nets (overflow)

in a region only able to accommodate fewer nets. Apart from congestion, other

so-called DRVs turn out to nullify potential global routing solutions as well. Aca-

demic routers such as NCTU-gr [44] and NTHU-Route [10] have used heuristic

algorithms [26, 27, 34, 43, 70] to predict or estimate congestion or other DRVs

prior or during the global routing process. On the other hand, so-called proba-

bilistic congestion estimation algorithms have been proposed to bring greater im-

provements, mostly in runtime reduction. Examples include the works reported in

RUDY [59] and CU-GR[42]. These approaches suffer from limitations of scalabil-

ity in that they cannot automatically account for the consistently growing number

of design rules and constraints associated with ever changing technology nodes.

In light of the above mentioned challenges, more recently, some research ef-

forts have turned to machine learning-based approaches to form a basis for conges-

tion or DRVs estimation algorithms. RouteNet [69] uses a CNN for DRV predic-

tion. Other similar works include those reported in [30, 41, 72]. Given that modern

ICs implemented in advanced technology nodes are comprised of a large number

(typically > 10) of metal layers, global routing algorithms able to handle 3D rout-

ing and multiple metal layers with vias forming bridges between layers, would be

able to find global optimal routing solutions faster. However, a common denomina-

tor of these congestion estimation methods is that they address 2D routing, which

assumes that all wires are on the same metal layer. Our work is focused on address-

ing this issue. We propose a 3D global routing congestion estimation methodology

based on a CNN customized for the task at hand. We refer to our novel CNN as

GlobalNet. Figure 3.1 shows the workflow of GlobalNet. After placement stage,

GlobalNet predicts the number of wires and vias in each region. The results, called

congestion heatmaps, are used to improve the performance of our proposed global

router: UBC-GR. A key novel feature of GlobalNet is that it not only identifies a

state of congestion, but also provides a measure of congestion severity. In order

to demonstrate the overall potential impact of using GlobalNet to improve global

routing algorithms, we replaced the CU-GR [42] optimization cost function by a

cost function informed by GlobalNet and refer to the new global routing algorithm

as UBC-GR. We obtained promising results on benchmark circuits and report them

here.

22



Figure 3.1: Workflow of GlobalNet.

Figure 3.2: An example of transition from physical design to grid graph.

The remainder of this chapter is organized as follows. Section 3.2 presents

background and preliminaries for describing our proposed global routing and con-

gestion estimation methodology. Section 3.3 describes our proposed global routing

methodology in detail. This is followed by Section 3.4 where we report experimen-

tal results. Finally, Section 3.5 concludes.

3.2 Preliminary
The usual method used to perform 3D global routing is to break up the IC into

multiple planes (2D layers) and to subdivide each of the planes into a grid of re-

gions denoted as G-cells that result from running virtual horizontal and vertical

lines across the entire surface. Fig. 3.2 shows how the virtual horizontal and verti-

cal lines (black lines) form a grid graph: (a) shows a 2D IC design; the black lines

in (b) are virtual horizontal and vertical lines that partition the design; each tile in

Fig. 3.2 (b) is a G-cell.

Following the creation of such grids for each layer, a graph G(V,E) can be

23



Figure 3.3: Grid graph of a 3D physical design with 4 layers.

constructed where each of the G-cells can be assumed to form a vertex (v ∈V ) and

these vertices can be assumed to be connected through edges (e ∈ E). Fig. 3.2

(d) shows a grid graph of a 2D design, the black points are vertices and the blue

dashed lines are edges interconnecting them. In 3D designs, we refer to vl as a

vertex on the lth metal layer. The edges interconnecting vertices on the same layer

are referred to as wire edges while edges connecting vertices on different adjacent

layers are referred to as via edges. Fig. 3.3 shows a grid graph of a 3D design with

4 layers, where u4 and v4 are two adjacent vertices on layer 4, and u3 is a vertex

adjacent to u4 but on layer 3. Edge eu4,v4 is a wire edge interconnecting u4 and v4,

and edge eu3,u4 is a via edge interconnecting u3 and u4.

We use the following four attributes of a grid graph: capacity, demand, re-

source, and overflow. A brief definition is given next:

• Capacity: Let eul ,vl be the wire edge between two adjacent vertices ul and vl

on the lth layer; and eul ,ul+1 be the via edge between two vertices ul and ul+1

with the same 2D coordinates but on the lth and l + 1th layer respectively.

The wire capacity of eul ,vl denoted by cw(ul,vl) is the maximum number of

nets that can utilize this edge. Similarly, the via capacity of eul ,ul+1 denoted

by cv(ul,ul+1) is the maximum number of vias that can go through this edge.

24



• Demand: The wire demand, denoted by dw(ul,vl), is the number of wires

that are routed through wire edge eul ,vl , while the via demand, denoted by

dv(ul,ul+1), is the number of vias that utilize via edge eul ,ul+1 .

• Resource: The resource of a wire edge eul ,vl , denoted by rw(ul,vl), is:

rw(ul,vl) = cw(ul,vl)−dw(ul,vl) (3.1)

The resource of a via edge eul ,ul+1 denoted by rv(ul,ul+1) is similar to that

of wire edge, except that the variable pair consists of adjacent vertices from

different layers:

rv(ul,ul+1) = cv(ul,ul+1)−dv(ul,vl+1) (3.2)

• Overflow: The overflow is used as one of the metrics to evaluate the routing

results. The overflow of a wire edge eul ,vl denoted by ow(ul,vl) is computed

as follows:

ow(ul,vl) =


dw(ul,vl)

−cw(ul,vl) if dw(ul,vl)> cw(ul,vl)

0 otherwise

(3.3)

The overflow of a via edge eul ,ul+1 , denoted by ov(ul,ul+1) is computed by:

ov(ul,ul+1) =


dv(ul,ul+1) if dv(ul,ul+1)>

−cv(ul,ul+1) cv(ul,ul+1)

0 otherwise

(3.4)

3.3 Proposed Global Routing Methodology
Fig. 3.4 shows our proposed methodology based on GlobalNet, UBC-GR, and a

design feature extraction algorithm that forms hyper-images from the placement

information. The output of the GlobalNet block is a congestion heatmap, which

25



Hyper-
image

GlobalNet
Heatmap

UBC-
GRPlacement 

information

Result

Hyper-
image

generator

Figure 3.4: Flowchart for our GR methodology based on GlobalNet and
UBC-GR.

describes the estimated wire and via demand of each edge of the graph G. The

congestion heatmap together with the placement information are used as inputs to

UBC-GR.

Different features are used to describe each G-cell of a design. We refer to

pins as inputs and outputs of standard cells (such as gates and flip-flops) within

a design. A net is defined as a set of connections between pins that should be

electrically connected. If all pins that a net connects are in the same G-cell, this

net is referred to as a local net. If a net connects at least two pins that are located

in different G-cells, it is referred to as a global net. As shown in Fig. 3.5, the blue

line represents a local net while the orange line represents a global net.

We use the following feature definitions:

• NP: number of pins in a G-cell.

• NNP: number of neighborhood pins, the average of the number of pins in a

G-cell and its 8 surrounding G-cells.

• ND: net density, which is equal to the area of wires in a tile. . It is computed

by RUDY algorithm [59] as described in Section 2.2.1.

26



Figure 3.5: An example of pin and net: the red points are pins; the blue line
is a local net; and the orange line is a global net.

• NLN: number of local nets. A local net is a net that have all its pins in a

G-cell. An example of a local net is shown in Figure 3.5.

• NGN: number of global nets. A global net is a net that has at least one pin in

a G-cell and at least one pin outside that G-cell. An example of a global net

is shown in Figure 3.5.

• WC: wire capacity, which refers to the maximum number of wires that can

be routed through a wire edge without causing an overflow.

• VC: via capacity, which refers to the maximum number of vias that can be

used in a via edge without causing an overflow.

Unlike standard images which have three channels reserved for the colors red,

27



Figure 3.6: An example of how features are transformed from a design (left)
to a Hyper-image (right).

green, and blue, we propose hyper-images which have no upper limit in terms of

the number of channels. Fig. 4.5 shows how a design is transformed to a hyper-

image. Each channel of a hyper-image corresponds to a feature, and each pixel

in a hyper-image represents the value of a feature of a vertex (G-cell) or an edge.

Therefore, the resolution of the hyper-image is the same as the resolution of the

graph. Features such as wire capacity and via capacity are categorized as layer

features. Each metal layer has its own layer features. For example, a design with

nine layers has nine wire capacity channels with one for each layer. Other features,

e.g., pin density, net density, and neighborhood pin density are called design fea-

tures. Each design has one specific channel for each design feature regardless of

the number of metal layers.

From 3.4, a design’s hyper-image is fed into GlobalNet which produces a con-

gestion heatmap (also in the form of a hyper-image), with the same resolution as the

graph of the design. The congestion heatmap has two kinds of information stored

in separate channels for each layer: wire congestion heatmap; and via congestion

heatmap. The value of each pixel in a wire/via congestion heatmap represents the

predicted number of wires/vias demand of the corresponding edge.

28



3.3.1 GlobalNet

The network architecture of the GlobalNet is shown in Table 3.1. GlobalNet has

11 layers. The input window size of GlobalNet is 64x64xn, where n is the number

of channels of the hyper-image. Inputs are passed down to 4 convolution-and-

pooling-layer combinations. After the last pooling layer, the hyper-image resolu-

tion is downscaled to 4x4 with 256 channels. Another 4 convolution layers is added

at the end to converge the 256 channels back to m, the number of channels used for

storing congestion information in our case m = 16, because there are 8 channels

for estimated wire demand and 8 channels for estimated via demand.

The output of GlobalNet forms a congestion heatmap that describes the esti-

mated demand of wires and vias of each edge. Differing from previous works that

produce a binary DRV output, GlobalNet produces continuous values, allowing for

treating congestion as a regression problem.

The GlobalNet consists of a set of CNNs, which have specific requirements for

input and output sizes. The input size of GlobalNet is 64x64 and its output size is

4x4. However, the sizes of physical designs vary from each other, and the sizes of

hyper-images and congestion heatmaps also vary. Therefore, there is no guarantee

that the length or width of the hyper-image of a random design can be evenly di-

vided by integers 64 and 4. This causes a problem that prevents GlobalNet from

predicting all regions of design because the remaining part of the hyper-image can-

not be fed into GlobalNet. To overcome this problem, GlobalNet adopts a strategy

which we refer to as “windowing”, which gives the model the flexibility when

dealing with designs of different layout sizes. A windowing example is shown in

Fig. 3.7, where each tile represents a pixel in a channel of a hyper-image. As

an example, assume the sizes of inputs and outputs are 6x6 and 2x2, respectively.

The prediction begins from the top left corner of the design, where the 2x2 blue

output window is shown, and a corresponding 6x6 orange input window is formed.

If the input window goes out of the boundary, it will still be created with extra

padding tiles and the values in those additional tiles are always 0. This is known as

zero padding. GlobalNet takes the pixels from the input window and predicts the

heatmap values in the output window. Once the prediction of one input window

has gone through the model and the output values are obtained, GlobalNet slides

29



the input and output window by a certain step to a new position until the entire

congestion heatmap is covered by output windows. In other words, the windowing

technique continues until the predicted congestion values are stored in every pixel

of the output congestion heatmap. If the step of sliding is smaller than the output

window size, some pixels in the output congestion heatmap may be computed mul-

tiple times. GlobalNet takes the average of these repeated computed values as the

final output.

Table 3.1: Neural Network Architecture of GlobalNet

input (64 x 64 x n hyper-image)

conv5 - 32 output size: 64 x 64 x 32

maxpool output size: 32 x 32 x 32

conv5 - 64 output size: 32 x 32 x 64

maxpool output size: 16 x 16 x 64

conv5 - 128 output size: 16 x 16 x 128

maxpool output size: 8 x 8 x 128

conv5 - 256 output size: 8 x 8 x 256

maxpool output size: 4 x 4 x 256

conv5 - 128 output size: 4 x 4 x 128

conv5 - 64 output size: 4 x 4 x 64

conv5 - 32 output size: 4 x 4 x 32

conv5 - m output size: 4 x 4 x m

3.3.2 UBC-GR

CU-GR [42] is a state-of-the-art open-source global router which outperformed

all other routers in ICCAD19’s global routing contest [21]. CU-GR uses a cost

function in initial routing stage to drive the search of a global routing solution for a

given design. A path of a net is formed by a set P of wire edges and vias edges, and

the total cost of the path, cost(P), will be the sum of the costs of all those edges,

i.e., as follow:

30



Figure 3.7: An example of windowing, the blue tiles is the output win-
dow and the orange tiles is the corresponding input window with zero
padding.

cost(P) = ∑
eul ,vl∈P

costw(ul,vl)+ ∑
eul ,ul+1∈P

costv(ul,ul+1) (3.5)

where costw(ul,vl) is the wire cost of a wire edge eul ,vl , costv(ul,ul+1) is the via

cost of a via edge eul ,ul+1 . The wire edge cost is comprised of two parts - wire

length cost and expected overflow cost, and is computed as follows:

costw(ul,vl) = wl(ul,vl)+ eo(ul,vl)× lg(ul,vl) (3.6)

where wl(ul,vl) is the wire length cost, and eo(ul,vl) is the expected overflow cost.

eo(ul,vl) is expressed as:

eo(ul,vl) = wl(ul,vl)×
dw(ul,vl)

cw(ul,vl)
×uoc (3.7)

where uoc is a constant that represents a unit overflow cost, and cw(ul,vl) is the

wire capacity of the edge between a vertex ul on lth layer and a vertex vl on lth

layer.

Note that eo(ul,vl) is linearly proportional to dw(ul,vl). However, in reality,

the relationship between eo(ul,vl) and dw(ul,vl) is usually not linear. When the re-

31



sources are still abundant, there is almost no congestion cost, but the cost increases

rapidly as the resources are used up. Therefore, a logistic function, lg(ul,vl), is

introduced to make the eo(ul,vl) non-linear. As illustrated in Figure 3.8, the x-

axis is the resource rw(ul,vl). Before multiplying by logistic function lg(ul,vl),

the estimated overflow eo(ul,vl) is linear. Multiplying by lg(ul,vl) makes the re-

sult non-linear: there is almost no congestion cost when resource is sufficient, but

the cost will increase rapidly as the resources are being used up and will keep in-

creasing almost linearly after all the resources are used (rw(ul,vl) < 0). This is

because when the resources are used up, the expected overflow cost will dominate

the congestion cost. The logistic function lg(ul,vl) can be computed as follows:

lg(ul,vl) = (1.0+ exp(α × rw(ul,vl)))
−1 (3.8)

where α is an adjustable parameter that determines the global router’s sensitivity

to overflow.

Given two vertical G-cells ul and ul+1 in metal layer l and l+1, the via cost of

eul ,ul+1 in CU-GR is computed as follows:

costv(ul,ul+1) = uvc× (1+ lg(ul,ul+1)) (3.9)

where uvc is a constant that represents a unit via cost. The logistic function

lg(ul,ul+1) is the same as in Eq. 3.8, introducing non-linearity to via overflow.

The estimated overflow of a wire edge, eo(ul,vl), is based on its actual de-

mand, dw(ul,vl), which is determined by the number of routed nets. Therefore

eo(ul,vl) cannot account for future overflow arising from yet unrouted nets. This

makes CU-GR “shorted-sighted”: it always chooses the shortest path that does not

cause overflow in current situation but does not consider the potential congestion

that may exist in the future. UBC-GR aims to improve the routing performance by

taking the future congestion into consideration. The congestion prediction results

can be regarded as an estimation of the future congestion. Therefore, UBC-GR

addresses this issue by modifying the cost function costw(ul,vl). The cost func-

tion of UBC-GR is designed such that the areas with high congestion prediction

results have a higher cost. Therefore, instead of simply choosing the shortest path,

32



Figure 3.8: A demonstration of logistic function.

UBC-GR can take detours to avoid routing through the congested areas so that

the probability of causing overflows is reduced. In detail, the proposed wire cost

function cost ′w(ul,vl) can be computed as follows:

cost ′w(ul,vl) =wl(ul,vl)+(eo(ul,vl) (3.10)

+β × edw(ul,vl)

cw(ul,vl)
)× lg(ul,vl)

where wl(ul,vl), eo(ul,vl) and lg(ul,vl) are respectively wire length cost, estimated

overflow, and logistic function adopted from CU-GR, uoc is constant representing

the unit overflow cost and edw(ul,vl) is the estimated demand of wire of edge

eul ,vl , coming from the proposed GlobalNet. β is is an adjustable parameter that

determines the global router’s sensitivity to estimated demand.

Also in UBC-GR, the via cost cost ′v(ul,ul+1) of via edge e′ul ,ul+1
is computed as

follows:

cost ′v(ul,ul+1) =(uvc+β
edv(ul,ul+1)

cv(ul,ul+1)
) (3.11)

× (1+ lg(ul,ul+1))

where ul and ul+1 are two vertical G-cells in two different contiguous metal layers.

edv(ul,ul+1) is the estimated via demand of edge eul ,ul+1 coming from GlobalNet,

β is the same parameter used in Eq. 3.10, and uvc is the unit via cost. The lo-

gistic function lg(ul,ul+1) is the same as Eq. 3.8, introducing non-linearity to via

overflow calculation.

33



3.4 Experimental Results
To compare our proposed algorithm with CU-GR [42], the same benchmarks ISPD

2018 [18] and ISPD 2019 [21] were used. Only benchmarks with 9 metal layers

were used while others (benchmark “9t4” and “9t5”) were deprecated since a de-

sign with a different number of layers requires a structural change to GlobalNet.

All benchmarks have the same preferred routing direction assignments for layers.

Therefore, GlobalNet is able to handle the layer directions in the experiments.

We implemented GlobalNet using Python and the TensorFlow framework. The

proposed UBC-GR was developed based on the open-sourced CU-GR, which was

implemented in C++ with the boost library [1]. We used Rsyn [22] to parse

LEF/DEF [8] formats. The original CU-GR was used to route all benchmarks

as a training set, and the number of wires and vias was recorded to generate con-

gestion heatmaps. The congestion heatmaps generated by CU-GR are the ground

truths of the congestion prediction and are used to train and test GlobalNet. Due

to the scarcity of benchmark data, we used only one benchmark as a test set and

all other benchmarks as a training set. The advantage of such approach was that

every benchmark could be tested by re-splitting training and test data, and a better

prediction could be obtained because a larger training set was used.

3.4.1 Evaluation Metrics

PCC and NMSE are used to evaluate the accuracy of GlobalNet quantitatively.

PCC is a measure of linear correlation between two sets of data. Given a pair of

random variables (X ,Y ), where X and Y are two sets of numbers containing N

numbers: X = (x1,x2, · · · ,xN), Y = (y1,y2, · · · ,yN). The formula for PCC is:

PCCX ,Y =
cov(X ,Y )

σX σY
(3.12)

where cov(X ,Y ) is the covariance of X and Y , σx is the standard deviation of X , σY

is the standard deviation of Y .

The NMSE of X and Y can be computed as follows:

NMSEX ,Y =
N ∑

N
i=1(xi − yi)

2

∑
N
i=1(xi)∑

N
i=1(yi)

(3.13)

34



Table 3.2: PCC and NMSE between the Predicted Congestion Heatmaps
(GlobalNet) and the Ground truths (CU-GR)

Design PCC NMSE

8t1 0.8779 0.0328

8t2 0.9027 0.0444

8t3 0.9117 0.0302

8t4 0.8385 0.0349

8t5 0.8396 0.0358

8t6 0.8435 0.0532

8t7 0.8490 0.0334

8t8 0.8419 0.0379

8t9 0.8264 0.0547

8t10 0.8278 0.0561

Avg. of 8t 0.8559 0.0413

9t1 0.7998 0.0367

9t2 0.8140 0.0395

9t3 0.8546 0.0345

9t6 0.8208 0.0311

9t7 0.8557 0.0309

9t8 0.8287 0.0419

9t9 0.8298 0.0461

9t10 0.8451 0.0390

Avg. of 9t 0.8311 0.0375

Avg. of All 0.8449 0.0396

35



Table 3.3: Runtime of GlobalNet (unit: second)

Design Runtime

8t1 10.21

8t2 7.93

8t3 49.75

8t4 132.30

8t5 152.71

8t6 136.24

8t7 176.43

8t8 310.62

8t9 324.74

8t10 316.32

9t1 8.78

9t2 25.06

9t3 6.48

9t6 257.41

9t7 366.27

9t8 298.14

9t9 687.09

9t10 679.42

Avg. 219.22

36



Table 3.4: Impact of Different Features on Congestion Estimation using PCC

Features PCC Norm.

NP + NNP + ND + LN + GN + WC + VC 0.8377 1

NP + NNP + LN + GN + WC + VC 0.8405 1.0033

NP + NNP + ND + WC + VC 0.8118 0.9691

NP + ND + LN + GN + WC + VC 0.8331 0.9945

PCC describes the correlations of two variables, and NMSE describes the dif-

ference of two variables. Therefore, PCC and NMSE together can be used to de-

scribe the similarity of two variables X and Y . In our experiments, PCC and NMSE

are used to evaluate the similarity of the GlobalNet results and the CU-GR results.

Because the CU-GR results are considered as the ground truth, the similarity in-

dicts the prediction accuracy of GlobalNet.

3.4.2 GlobalNet Performance

To the best of our knowledge, this work is the first to do 3D congestion estimation

on ISPD benchmarks. Therefore, no baseline algorithms could be found. First,

global routing is performed on all benchmarks using CU-GR. And the ground

truths of congestion heatmaps are obtained from the CU-GR routing results. Then,

GlobalNet is used to get the predicted congestion heatmaps. The heatmaps are

flattened into vectors to compute the PCC and NMSE of the predicted congestion

heatmap compared to the ground truth.

Table 3.2 shows the PCC and normalized mean squared error (NMSE) of all

benchmarks. The high average PCC between the estimated heatmaps and the actual

heatmaps of all designs implies that the predicted values were highly correlated to

the actual values. Also, a low NMSE [7] implies that the predicted values were

close to the actual values. Figure 3.9 shows an example of the prediction result of

GlobalNet. On the left is the predicted congestion heatmap of one of the designs in

ISPD 2019 benchmarks (“9t9”), on the right is the ground truth. The brightness of

each pixel represent the wire usage of a G-Cell on metal layer 1. The two images

37



Figure 3.9: Congestion prediction result of design “9t9”.

have similar overall brightness and patterns, which indicates the high accuracy of

GlobalNet.

We investigated the impact of each feature on overall performance by testing

different combinations of features and compared their PCC. Table 3.4 is a com-

parison between different feature combinations. NP, NNP, ND, LN, GN, WC and

VC are abbreviations for different features, standing for number of pins, number of

neighborhood pins, net density, number of local nets, number of global nets, wire

capacity and via capacity respectively. Among all the feature combinations, the

one with NP, NNP, LN, GN, WC, and VC had the highest accuracy. This was also

the combination used in Table 3.2. The experiment showed that the combination

of features may influence overall accuracy. LN and GN are the most important

because the PCC decreased the most by taking them out of consideration. ND had

some negative impact on the PCC, which implies that having more features does

not always imply a better performance.

Moreover, the runtime of GlobalNet is recorded. The runtime includes the

generation of hyper-image and the runtime of the neural network. As shown in

Table 3.3, GlobalNet can predict most of the benchmarks in 5 minutes, and the

average runtime of all benchmarks is 219.22 seconds.

38



3.4.3 UBC-GR Performance

Three metrics, wire length, number of vias, and number of overflows, were used

to evaluate the routing results. A total score, which was the weighed sum of these

three metrics, was also used. All the metrics are such that lower values imply bet-

ter, more desirable results. Table 3.5, 3.6, 3.7, and 3.8 compares the wire length,

number of vias, number of overflows and total score of UBC-GR and CU-GR. As

shown in Table 3.7, the results of CU-GR were already well optimized with only

three benchmarks having overflows. However, compared with CU-GR, UBC-GR

further decreased the number of global routing overflow by 15.0%. In addition, the

design 9t9 which was unroutable by CU-GR was successfully routed by UBC-GR.

Table 3.6 and 3.5 shows that the number of vias were decreased by 3% while wire

length is maintained at the same level. Normally, decreasing overflow would in-

crease the wire length and number of vias as the wires need to take detours to avoid

congestion. However, in our case, the fact that the wire length did not increase im-

plies that our algorithm successfully predicted the potential congested regions and

UBC-GR leveraged this information.

3.5 Conclusion
We proposed GlobalNet, a global routing congestion estimation algorithm based

on a customized CNN. To the best of our knowledge, GlobalNet is the first 3D

global routing congestion predictor. Based on the CU-GR, we developed UBC-GR

that can utilize the 3D congestion information. Experimental results showed an

incremental improvement in global routing performance by producing one more

routable design and reducing overall number of overflows, total wirelength, and

number of vias when GlobalNet and UBC-GR were used in conjunction. Future

research directions include the extraction of more routing features, such as the

design rule violations (DRVs) in detailed routing, to improve detailed routing.

39



Table 3.5: Comparison of Global Routing Wire Length (CU-GR vs UBC-
GR)

Design
Wire Length

CU-GR UBC-GR

8t1 410620 411227

8t2 7609440 7655090

8t3 8546570 8568780

8t4 25993900 25989600

8t5 27005100 27013400

8t6 34866000 34817300

8t7 63803100 63760500

8t8 64366000 64214200

8t9 53205300 53093400

8t10 66789400 66608300

Avg. of 8t 35259543 35213180

Norm. 1.0000 0.9987

9t1 610418 612818

9t2 24170600 24168900

9t3 780120 780180

9t6 64568800 64532700

9t7 118679000 118670000

9t8 181876000 181868000

9t9 274158000 274100000

9t10 270234000 270242000

Avg. of 9t 116884617 116871825

Norm. 1.0000 0.9999

Avg. of All 71537354 71505911

Norm. 1.0000 0.9996

40



Table 3.6: Comparison of Number of Vias (CU-GR vs UBC-GR)

Design
# Vias

CU-GR UBC-GR

8t1 27186 26670

8t2 299852 291663

8t3 300763 293077

8t4 628530 618962

8t5 855806 807816

8t6 1294330 1221680

8t7 2110090 1995630

8t8 2175140 2035800

8t9 2179710 2034680

8t10 2311180 2167670

Avg. of 8t 1218259 1149365

Norm. 1.0000 0.9434

9t1 33555 32788

9t2 698909 685503

9t3 51158 50748

9t6 1757370 1728260

9t7 3125290 3098860

9t8 5749010 5618190

9t9 9598410 9374090

9t10 8054350 7966460

Avg. of 9t 3633507 3569362

Norm. 1.0000 0.9823

Avg. of All 2291702 2224919

Norm. 1.0000 0.9709(3%↓)

41



Table 3.7: Comparison of Number of Global Routing Overflows (CU-GR vs
UBC-GR)

Design
# Overflows

CU-GR UBC-GR

8t1 0 0

8t2 0 0

8t3 0 0

8t4 0 0

8t5 0 0

8t6 0 0

8t7 0 0

8t8 0 0

8t9 0 0

8t10 0 0

Avg. of 8t 0 0

Norm. 0 0

9t1 0 0

9t2 528 454

9t3 0 0

9t6 0 0

9t7 0 0

9t8 0 0

9t9 99 0

9t10 620 611

Avg. of 9t 156 133

Norm. 1.0000 0.8551

Avg. of All 69.19 59

Norm. 1.0000 0.8551(15%↓)

42



Table 3.8: Comparison of Global Routing Score (CU-GR vs UBC-GR)

Design
Score

CU-GR UBC-GR

8t1 314054 312294

8t2 5004130 4994200

8t3 5476340 5456700

8t4 15511100 15470700

8t5 16925800 16738000

8t6 22610300 22295300

8t7 40341900 39862800

8t8 40883600 40250300

8t9 35321500 34685400

8t10 42639400 41974800

Avg. of 8t 22502812 22204049

Norm. 1.0000 0.9867

9t1 439429 437561

9t2 15144700 15053500

9t3 594692 593082

9t6 39313900 39179400

9t7 71840400 71730700

9t8 113934000 113407000

9t9 175522000 174546000

9t10 167644000 167292000

Avg. of 9t 73054140 72779905

Norm. 1.0000 0.9962

Avg. of All 44970069 44682208

Norm. 1.0000 0.9936

43



Chapter 4

VioNet: An Iterative Detailed
Routing Wire-short Violation
Predictor Based on a
Convolutional Neural Network

4.1 Introduction
Detailed routing is a challenging stage of the System-on-Chip (SoC) physical de-

sign process. The design rule violations (DRVs) that generally occur in the detailed

routing process cause the process to require considerable additional time to com-

plete. Detecting and preventing DRVs early in the detailed routing process has

been the goal of several research efforts in physical design automation. In this

chapter, we describe VioNet, a machine learning framework that predicts detailed

routing DRVs directly from a placed netlist.

As the semiconductor process technology advances, the density of cells and

metal wires per unit area on a chip increases significantly, and the complexity of

physical design grows exponentially due to the increased quantity of pins and lim-

ited routing resource for wires. New technology constraints and design rules add to

the difficulty of physical design. Detailed routing complexity keeps increasing as

44



a result. In addition, the risk of routing failure rises due to the greater likelihood of

violations that make the design invalid, especially wire-short, which, based on our

investigation on ISPD 2019 dataset, is the most common DRV. For the above men-

tioned reasons, detecting and preventing detailed routing wire-shorts has become

a critical issue in physical design as this directly affects the efficiency of detailed

routers.

VioNet is a Deep Neural Network (DNN) [39] that predicts the locations of

wire-shorts from a placed netlist. Figure 4.1 (a) and (b) show the workflows of

two previous wire-short prediction approaches. As shown in Figure 4.1 (a), some

previous works [30, 69] utilize the global routing results to guide the wire-short

predictor. Intuitively, wire-shorts are more likely to happen in the congested areas

after global routing stage. Therefore, global routing results are correlated to wire-

shorts and can improve the accuracy of wire-short prediction. However, the disad-

vantage of such approach is that it has to wait for the global routing to be finished.

As shown in Figure 4.1 (b), some other previous works [16, 29, 35, 62, 63] does

wire-short prediction using the placement information. Such approach is faster as

global routing is not needed. But the prediction may be inaccurate because it does

not have access to the global routing results. Figure 4.1 (c) shows the workflow of

proposed VioNet. Unlike approaches that predict wire-shorts from global routing

results, our proposed VioNet uses a global routing congestion estimation to replace

the global router so that the long runtime of global routing can be saved and the

wire-short prediction can be moved to an earlier stage. Compared to approaches

that does prediction from a placed netlist, VioNet utilizes a congestion heatmap,

which is an estimation of global routing results, to improve the routing accuracy.

In VioNet, a placed netlist is first partitioned into multiple G-cells. A feature

extraction algorithm is applied to convert the placed netlist into image data, so that

the spatial information of a placed netlist can be preserved. However, the imbal-

anced dataset adds to the difficulty of wire-short prediction. The number of G-cells

is typically very large but few of them contain wire-shorts [11, 25]. The ratio of the

number of G-cells without wire-shorts to the number of G-cells with wire-shorts

can be 100 : 1 or even higher. Such mismatch of numbers of positives and negatives

makes it difficult to achieve a balance between being too sensitive (predicting too

many false positives) and too conservative (predicting too many false negatives).

45



Figure 4.1: A comparison of three wire-short prediction approaches.

46



This problem can be alleviated by lowering the resolution of prediction, as the

probability of a tile containing wire-shorts could be increased by making each tile

corresponds to a larger die area. However, in such case, the quality of the predic-

tion would be compromised because the locations of predicted wire-shorts would

become less precise. Also, the size of training data would decrease because there

would be fewer number of tiles in each design. We adopt an iterative strategy [71]

to solve the data imbalance problem. First, a low-resolution wire-short prediction

is performed, to balance the ratio of number of tiles with wire-shorts (positive)

and tiles without wire-shorts (negative). Second, a high-resolution prediction is

applied on tiles that have previously been flagged as positive. The negative tiles in

low-resolution remain negative and are deprecated so that the high-resolution data

prediction can be more balanced by reducing the number of negative tiles.

The rest of this chapter is organized as follows. Section 4.2 briefly introduces

the architecture of CNN. Section 4.3 describes VioNet: wire-short predictor in de-

tail. This is followed by Section 4.4 where we report experimental results. Finally,

Section 4.6 concludes.

4.2 Convolutional Neural Network (CNN)
CNNs are specialized types of multi-layer artificial neural networks. As shown in

Figure 4.2. A typical CNN usually has convolutional layers, pooling layers, and

fully connected layers. The input and output of convolutional layers and pooling

layers are tensors. The convolutional layers use convolution operation, while the

pooling layers reduce the dimensions of data. The tensors are flattened into vectors

before being sent to the fully connected layers, which is the same as a traditional

multi-layer perceptron neural network (MLP). CNNs are specifically designed to

process pixel data and are used in image recognition and processing [37].

Recently, research works [28, 65] have applied CNNs to global routing conges-

tion estimation and detailed routing wire-short prediction. For such applications,

a physical design is first partitioned into multiple tiles with the same size using a

grid. A feature extraction algorithm is then applied to convert the design to an im-

age, where each pixel represents a feature of a tile. A router is used to find routing

solutions as ground truths to train the CNN. The CNN, once trained, is then able to

47



Figure 4.2: Basic structure of a convolutional neural network (CNN).

predict the congestions or wire-shorts without a router.

4.3 Methodology

4.3.1 Problem Formulation

We specifically aim at finding the areas in the physical design that are prone to

the occurrence of wire-shorts of detailed routing before routing takes place. The

design layout is first divided into W × L rectangle tiles using a grid. A feature

extraction algorithm is used to map the tiles into an image of features, which we

call a ”feature map”.

The input and output of VioNet can be expressed as follows:

Input: (X (i),y(i)), where X (i) ∈ Rw×l×F , y(i)∈{0,1}.

Output: ŷ(i) ∈ {0,1}.

Each (X (i),y(i)) pair is an instance of the dataset and i is the index of the in-

stance. X (i) is a tensor, which is obtained by applying an input window containing

w× l,(w <W, l < L) tiles on the feature map. F is the number of channels of the

feature map. As shown in Figure 4.3, the grey rectangle represents a feature map,

while the white block represents an input window. X (i) is the input of the CNN. y(i)

is the ground truth to train the CNN, also known as the target output of CNN. ŷ(i) is

48



Figure 4.3: An example of an input-output pair for model learning.

the output of CNN. It is the prediction result of X (i), which describe the occurrence

of wire-short in the output window containing w′ × l′,(w′ < w, l′ < l) tiles. As

shown in Figure 4.3, the black block in the centre of the input window represents

an output window. ŷ(i) = 0 indicates that the output window does not have wire-

shorts, and we label such sample as a negative instance, while y(i) = 1 indicates the

presence of wire-shorts in the output window, and we label such sample a positive

instance. The input window is larger than the output window so that the CNN can

take the influence of tiles surrounding the output window into consideration.

After a prediction is done, the input and output windows are moved to another

location. This procedure is repeated until the output window has covered the entire

design.

49



Figure 4.4: Flowchart of iterative prediction.

4.3.2 GlobalNet

VioNet is inspired by GlobalNet [52], a Fully Convolutional Network (FCN) based

global routing congestion predictor to estimate the wire and via usage of each tile

from a placement netlist. The result of GlobalNet is used as one of the features

for VioNet. GlobalNet estimation allows VioNet to be aware of the congested

areas in global routing. Compared with other approaches that perform wire-short

predictions from global routing solutions, the long runtime of global routing can

be saved. Another advantage of moving wire-short to an earlier stage is that the

prediction result can be used to improve global routing.

4.3.3 Feature Extraction

We developed a feature extraction algorithm to convert the placement and global

routing congestion information into feature maps. As shown in Figure 4.5, on the

left is a design layout partitioned into W ×L tiles, on the right is its corresponding

feature map. The feature map is essentially a tensor with F channels, where F is

also the number of features. Each channel describes a feature of a design. Each

channel contains W × L elements so that each element represents the value of a

feature within a given tile. The following features are extracted:

• NP: number of pins in a tile.

• NNP: number of neighborhood pins, the average of the number of pins in a

tile and its 8 surrounding tiles.

50



Figure 4.5: Description of feature extraction.

• ND: net density, which is equal to the area of wires in a tile. It is computed

by RUDY algorithm [59].

• NLN: number of local nets. A local net is a net that have all its pins in a tile.

• NGN: number of global nets. A global net is a net that have at least one pin

in a tile and at least one pin outside that tile.

• NT: number of wire tracks in a tile.

• EU: estimated usage of wires and vias in a tile computed by GlobalNet [52].

4.3.4 Iterative Prediction

When a design layout is partitioned into multiple tiles, those that contain wire-

shorts are typically relatively small in quantity compared with those that do not.

Two classes are defined: tiles containing wire-shorts are “positive instances”; and

the tiles that do not contain wire-shorts are “negative instances”. We also define the

ratio of number of positive instances and number of negative instances as “positive

to negative ratio (PNR)”. The PNR is very low in the ISPD 2019 dataset [21] used

in this work. For example, the average PNR is 1 : 342 if designs are partitioned

by the same tile size that the global routing uses. A low PNR can result in a poor

51



prediction performance because most standard machine learning algorithms, such

as CNNs, assume or expect balanced class distributions. Therefore, when these

networks are presented with imbalanced datasets, they fail to properly represent

the distributive characteristics of the data and result in producing unfavorable ac-

curacy across the classes of the data [25]. This implies that a naive application

of a model may focus on learning the characteristics of the abundant observations

(negative instances) only, neglecting the examples from the minority class (positive

instances).

The PNR can be adjusted to become more balanced by lowering the predic-

tion resolution. The larger area on which each prediction is performed, the higher

the possibility that the area contains wire-shorts. For example, for the ISPD 2019

dataset, if each output contains 16× 16 tiles instead of a single one, the PNR re-

duces to 1 : 1.78 from 1 : 342. However, if the resolution is too low, the locations of

predicted wire-shorts would be too vague to provide useful information for routers.

Therefore, a trade-off exists in predicting the wire-short: a high resolution implies

a low accuracy, while a lower resolution produces a better accuracy but loses the

exact locations of predicted wire-shorts.

Here, we propose an iterative solution, as shown in Figure 4.4, to solve the

data imbalance problem without sacrificing the overall prediction resolution. First,

the placement information is divided into multiple large tiles and a low-resolution

prediction is done to identify the large approximate locations of wire-shorts. The

positive instances are then further partitioned into small tiles and sent to a high-

resolution prediction so that the detailed location of the wire-shorts can be pre-

dicted. In the first low-resolution prediction step, the total number of tiles is smaller

and the possibility of each tile containing wire-shorts is larger, resulting in a more

balanced PNR. The negative instances from the low-resolution prediction will not

be further passed to the high-resolution prediction. Therefore, the number of nega-

tive instances in high-resolution prediction is reduced compared with non-iterative

approach, and the number of positive instances stays the same, resulting in a more

balanced PNR.

52



4.3.5 Neural Network Structure

VioNet splits the wire-short prediction into two predictions with different resolu-

tions. Therefore, two different CNNs need to be used. The difference between

the two predictions is that the size of output window of low-resolution prediction

w′
l × l′l is larger than that of the high-resolution prediction w′

h× l′h (w′
l > w′

h, l
′
l > l′h).

Different w′
l and l′l were tested in our experiments to determine the optimal resolu-

tion setups.

Both low-resolution and high-resolution prediction adopt the classical structure

shown in Table 4.1. Because the labels of these two CNNs are different, they have

to be trained separately.

Table 4.1: Neural Network Architecture of VioNet

input (64 x 64 x 7 hyper-image)

conv5 - 16 output size: 64 x 64 x 16

maxpool output size: 32 x 32 x 16

conv5 - 32 output size: 32 x 32 x 32

maxpool output size: 16 x 16 x 32

conv5 - 64 output size: 16 x 16 x 64

maxpool output size: 8 x 8 x 64

conv5 - 64 output size: 8 x 8 x 64

maxpool output size: 4 x 4 x 64

FC500

FC500

sigmoid

4.4 Experimental Results

4.4.1 Experimental Setup

The ISPD 2019 dataset [21] was used in our experiments. The ISPD 2019 dataset

is one of the latest open sourced routing benchmarks in academia, compared with

other benchmarks that were widely used in wire-short prediction, such as ISPD

53



2015 [17] and ISPD 2018 [18]. The ISPD 2019 dataset is more challenging be-

cause it has more complex designs with larger number of nets and pins. Two

designs (’9t4’ and ’9t5’) were deprecated because they have different number of

layers, thus can not be processed by GlobalNet. The ISPD 2019 dataset includes

physical design placements and global routing reports so that both global routers

and detailed routers can use this benchmark set. On average, designs have 368897

nets and 1629403 cell pins. The largest design has 895253 nets and 3957499 pins.

We implemented the VioNet using Python and the TensorFlow framework.

Rsyn [22] was used to parse LEF/DEF [8] formats. An open sourced global router,

CU-GR [42] was used to route the designs to get the real number of wires and vias

so that GlobalNet can be trained. We also adopt Dr. CU [12, 13], an open sourced

detailed router, to perform detailed routing on the ISPD 2019 dataset. The detailed

routing results, including the number and locations of wire-shorts were recorded to

label the training data for the training of VioNet. All the instances in the designs

were randomly divided into a training set and a test set. 80% of the instances were

chosen to form the training set, while the remaining 20% were assigned to the test

set. The size of a tile is the same as the size of a G-cell, which is the tile partitioned

in global routing stage.

To the best of our knowledge, VioNet is the first work that performs wire-short

prediction on ISPD 2019 dataset. The experiments were conducted on a machine

with 2.20GHz CPU and an Nvidia GeForce GTX 1080 Ti graphics card.

4.4.2 Performance Metrics

In wire-short prediction, compared to the influence of false negatives, which may

result in an invalid design because of the omitted wire-shorts, the influence of false

positives is trivial: they usually cause an increase in wire length. Therefore, we

care more about the model’s ability to predict positive instances. The overall ac-

curacy, which is the percentage of number of true predictions in number of all

predictions, is not an effective measure to describe the model’s ability to predict

the minority class (positive) when the dataset is imbalanced, since it does not dis-

tinguish the prediction accuracy of positive instances and the prediction accuracy

of negative instances[23]. For example, a model that predicts all instances in the

54



test set, regardless of the true value, to be the majority instances (negative), will

have a high classification accuracy. But such a result is not useful because none of

the minority instances (positive) are predicted.

Before introducing the performance metrics, the following terminologies need

to be defined:

• True Positive (TP): an instance predicted to be positive when the ground

truth is positive.

• False Positive (FP): an instance predicted to be positive when the ground

truth is negative.

• True Negative (TN): an instance predicted to be negative when the ground

truth is negative.

• False Negative (FN): an instance predicted to be negative when the ground

truth is positive.

Table 4.2 summarizes the definition of TP, FP, TN and FN.

Table 4.2: An Explanation of TP, TN, FP and FN.

Prediction Result

Positive Negative

Ground Truth Positive TP FN

Negative FP TN

The following metrics, which are widely used to evaluate the performance of

imbalanced classification, are used to evaluate the performance of VioNet:

1) True Positive Rate (TPR): refers to the probability of a positive test, condi-

tioned on truly being positive. TPR can be computed as follows:

T PR =
T P

T P+FN
(4.1)

2) True Negative Rate (TNR): refers to the probability of a negative test, con-

55



ditioned on truly being negative. TPR can be computed as follows:

T NR =
T N

T N +FP
(4.2)

3) Accuracy (AC): refers to the percentage of accurate predictions. Accuracy

is computed as follows:

AC =
T N +T P

T N +T P+FN +FP
(4.3)

4.4.3 Result of the Low-resolution Prediction Stage

At the low-resolution prediction stage, as mentioned in Section 4.3.4, the lower

resolution yields a more balanced dataset, and an easier prediction. However, the

low-resolution prediction only reports the approximate locations of wire-shorts,

and the areas predicted to be positive in low-resolution prediction are sent to high-

resolution prediction to determine the more exact locations of the wire-shorts.

Therefore, a relatively small output window at the low-resolution prediction stage

provides more precise information and may improve the accuracy of the high-

resolution prediction.

To investigate the influence of output window size on prediction accuracy, three

experiments with different output window sizes were performed. The size of the

output window at the low-resolution prediction stage was configured in three re-

spective settings: Setting 1 with w′
l1 × l′l1 = 64× 64; Setting 2 with w′

l2 × l′l2 =

32× 32; and Setting 3 with w′
l3 × l′l3 = 16× 16. Table 4.3, 4.4, 4.5 shows the

test results of three settings. As shown in Table 4.3, Setting 1 had the largest out-

put dimension, which implies the lowest resolution and the most balanced dataset.

Therefore, the performance was the best among all three experiments in terms of

AC, TPR, and TNR. All three experiments using three different settings had a TPR

of over 95%, although Setting 3 had a lower AC and TNR due to its relatively small

output dimension. The high performance of the low-resolution prediction implies

that the wire-short prediction can be very accurate when the PNR is close to 1.

However, the good AC of low-resolution prediction is not useful since the loca-

tions of predicted wire-shorts are too vague in that case. Thus, a high-resolution

56



prediction stage needs to be executed based on the low-resolution prediction result

by concatenating a secondary CNN to the first one (Figure 4.4).

Table 4.3: Results with low-resolution stage of Setting 1 (w′
l1× l′l1 = 64×64).

TP TN FP FN AC TPR TNR

9t1 1 0 0 0 1.00 1.00 -

9t2 10 3 0 1 0.93 0.91 1.00

9t3 3 0 0 0 1.00 1.00 -

9t6 22 37 0 1 0.98 0.96 1.00

9t7 49 21 0 1 0.99 0.98 1.00

9t8 49 21 0 1 0.99 0.98 1.00

9t9 68 25 0 0 1.00 1.00 1.00

9t10 69 26 3 1 0.96 0.99 0.90

Avg. 271 133 3 5 0.98 0.98 0.98

4.4.4 Result of the High-resolution Prediction Stage

Three experiments were also performed with the high-resolution prediction stage.

Each of them used as input the corresponding output from the three low-resolution

prediction experiments discussed in Section 4.4.3. The window size of the three

experiments at the high-resolution prediction stage were the same: w′
h× l′h = 4×4.

We also implemented a CNN based wire-short prediction without iteration by ap-

plying a high-resolution prediction directly without low-resolution prediction as

the baseline algorithm. The number of TP, TN, FP, FNs were recorded. AC, TPR

and TNR were used to evaluate the performances of these prediction results. Only

the positive instances of low-resolution prediction are sent to high-resolution pre-

diction. The negative instances in the low-resolution prediction stage are counted

as negative predictions in the high-resolution prediction stage. Therefore, the AC,

TPR and TNR shown in Table 4.6, 4.7, and 4.8 are the final results of the iterative

57



Table 4.4: Results with low-resolution stage of Setting 2 (w′
l2× l′l2 = 32×32).

TP TN FP FN AC TPR TNR

9t1 1 0 0 1 0.50 0.50 -

9t2 31 24 0 1 0.98 0.97 1.00

9t3 1 5 1 0 0.86 1.00 0.83

9t6 72 96 2 3 0.97 0.96 0.98

9t7 94 100 5 1 0.97 0.99 0.95

9t8 49 21 0 1 0.99 0.98 1.00

9t9 158 108 18 4 0.92 0.98 0.86

9t10 247 104 12 6 0.95 0.98 0.90

Avg. 653 458 38 17 0.95 0.97 0.92

Table 4.5: Results with low-resolution stage of Setting 3 (w′
l3× l′l3 = 16×16).

TP TN FP FN AC TPR TNR

9t1 2 5 2 0 0.78 1.00 0.71

9t2 77 86 6 0 0.96 1.00 0.93

9t3 0 12 2 0 0.86 - 0.86

9t6 216 390 16 5 0.97 0.98 0.96

9t7 240 474 127 6 0.84 0.98 0.79

9t8 301 466 384 11 0.66 0.96 0.55

9t9 589 487 412 8 0.72 0.99 0.54

9t10 555 524 376 34 0.72 0.94 0.58

Avg. 1980 2444 1325 64 0.76 0.97 0.65

58



prediction (low-resolution prediction followed by high-resolution prediction).

As shown in Table 4.6, 4.7, and 4.8, although Setting 1 and 2 had better TPRs

in the low-resolution prediction stage compared with Setting 3, the performance of

these three settings from the high-resolution prediction stage are similar in terms

of AC, TPR and TNR. The reason is that the low-resolution prediction of Setting

3 had a smaller w′
l and l′l . This implies that the locations of identified wire-shorts

are more precise than the other two in the low-resolution prediction stage, which

compensates for the low AC of Setting 3. Table 4.10, 4.11, and 4.12 show the de-

tailed prediction results including the number of TP, TN, FP, and FN. As shown in

the tables, when the number of instances increases, a reduction of AC, TPR, and

TNR can be observed in Setting 2, Setting 3, and non-iterative prediction. This im-

plies that the accuracy of prediction can not be guaranteed in large designs. Setting

1, however, had the most balanced performance for both small and large designs.

Therefore, Setting 1 is recommended although all three settings had similar average

accuracy.

4.4.5 Comparison with the Non-iterative Prediction

The non-iterative prediction is implemented by applying high-resolution prediction

directly, without low-resolution prediction. Table 4.9 shows that all three Settings

of iterative approaches outperformed the non-iterative approach in terms of AC,

TPR and TNR. Compared with Table 4.8, the AC, TPR and TNR were increased

by 11%, 7%, and 11% respectively, when the iterative approach is applied. 4.13

shows the detailed results of non-iterative prediction including the number of TP,

TN, FP, and FN.

4.5 Runtime
The runtime of Dr. CU and the proposed VioNet are recorded. The runtime of the

proposed VioNet consists of two part: the runtime of the low-resolution prediction

and the runtime of the high-resolution prediction. The runtime of GlobalNet is

not included. Results in Table 4.14 show that the average runtime of VioNet is 92

times faster than that of Dr. CU on ISPD 2019 benchmarks. The proposed VioNet

finished the two benchmarks, 9t9 and 9t10, in less than 3 minutes, while Dr. CU

59



requires almost 4 hours. For the simple benchmarks like 9t1 and 9t3, VioNet can

finish them in a few seconds. Compared with detailed routing that sometimes takes

hours, the time needed for VioNet is trivial but the results generated from VioNet

include important information about detailed routing (the locations of wire-shorts).

4.6 Conclusion
We developed VioNet, a CNN based algorithm that can predict the locations of

detailed routing wire-shorts based on a placed netlist. One advantage of VioNet

is that a global routing congestion estimation is used to replace a global router, so

that the global routing results can be obtained to improve the accuracy of VioNet

in a short time. An iterative strategy was also applied to solve the data imbalance

problem. Experimental results showed that compared to the non-iterative approach,

the iterative strategy increased the prediction accuracy, true positive rate, and true

negative rate of VioNet by 11%, 7%, and 11% respectively. Experimental results

showed that VioNet can predict the wire-shorts fast and accurately: on average,

74% of the wire-shorts were predicted, and the runtime of VioNet was 92 times

faster than that of Dr. CU.

60



Table 4.6: AC, TPR, and TNR of iterative prediction with Setting 1 (w′
l1 ×

l′l1 = 64×64)

Design AC TPR TNR

9t1 0.65 0.89 0.63

9t2 0.54 0.90 0.49

9t3 0.98 0.00 1.00

9t6 0.85 0.96 0.85

9t7 0.86 0.77 0.86

9t8 0.75 0.59 0.76

9t9 0.56 0.77 0.55

9t10 0.69 0.62 0.69

Avg. 0.71 0.73 0.71

Table 4.7: AC, TPR, and TNR of iterative prediction with Setting 2 (w′
l2 ×

l′l2 = 32×32).

Design AC TPR TNR

9t1 0.89 0.29 0.93

9t2 0.61 0.99 0.58

9t3 0.98 1.00 0.98

9t6 0.79 0.99 0.79

9t7 0.83 0.70 0.83

9t8 0.85 0.40 0.86

9t9 0.60 0.72 0.59

9t10 0.60 0.74 0.59

Avg. 0.71 0.74 0.70

61



Table 4.8: AC, TPR, and TNR of iterative prediction with Setting 3 (w′
l3 ×

l′l3 = 16×16).

Design AC TPR TNR

9t1 0.70 1.00 0.68

9t2 0.64 0.99 0.61

9t3 0.93 - 0.93

9t6 0.81 0.97 0.80

9t7 0.86 0.60 0.87

9t8 0.90 0.32 0.92

9t9 0.69 0.61 0.70

9t10 0.52 0.90 0.51

Avg. 0.73 0.72 0.73

Table 4.9: AC, TPR, and TNR of non-iterative prediction.

Design AC TPR TNR

9t1 0.72 0.60 0.73

9t2 0.61 0.73 0.60

9t3 0.93 0.50 0.94

9t6 0.68 0.63 0.68

9t7 0.67 0.54 0.67

9t8 0.68 0.65 0.69

9t9 0.55 0.65 0.55

9t10 0.57 0.67 0.57

Avg. 0.62 0.65 0.62

62



Table 4.10: Detailed prediction results of iterative prediction with Setting 1
(w′

l1 × l′l1 = 64×64)

Design # Instances # Positive # Negative TP TN FP FN

9t1 256 19 237 17 150 87 2

9t2 3584 429 3155 386 1540 1615 43

9t3 768 13 755 0 755 0 13

9t6 8704 319 8385 305 7106 1279 14

9t7 15360 224 15136 173 13048 2088 51

9t8 18176 459 17717 271 13450 4267 188

9t9 23808 990 22818 761 12568 10250 229

9t10 25344 992 24352 613 16896 7456 379

Avg. 96000 3445 92555 2526 65513 27042 919

Table 4.11: Detailed prediction results of iterative prediction with Setting 2
(w′

l2 × l′l2 = 32×32).

Design # Instances # Positive # Negative TP TN FP FN

9t1 128 7 121 2 112 9 5

9t2 3584 322 3262 319 1878 1384 3

9t3 448 1 447 1 439 8 0

9t6 11072 479 10593 472 8324 2269 7

9t7 12800 312 12488 217 10426 2062 95

9t8 18432 468 17964 188 15523 2441 280

9t9 23424 1075 22349 779 13213 9136 296

9t10 23616 1003 22613 740 13344 9269 263

Avg. 93504 3667 89837 2718 63259 26578 949

63



Table 4.12: Detailed prediction results of iterative prediction with Setting 3
(w′

l3 × l′l3 = 16×16).

Design # Instances # Positive # Negative TP TN FP FN

9t1 144 9 135 9 92 43 0

9t2 2704 226 2478 224 1512 966 2

9t3 224 0 224 0 208 16 0

9t6 10032 437 9595 424 7707 1888 13

9t7 13552 312 13240 186 11523 1717 126

9t8 18592 479 18113 155 16648 1465 324

9t9 23936 1011 22925 618 15942 6983 393

9t10 23824 971 22853 870 11554 11299 101

Avg. 93008 3445 89563 2486 65186 24377 959

Table 4.13: Detailed prediction results of non-iterative prediction.

Design # Instances # Positive # Negative TP TN FP FN

9t1 118 5 113 3 82 31 2

9t2 2916 284 2632 208 1578 1054 76

9t3 173 2 171 1 160 11 1

9t6 10160 660 9500 413 6481 3019 247

9t7 13247 392 12855 212 8672 4183 180

9t8 17156 426 16730 277 11468 5262 149

9t9 24014 1055 22959 686 12603 10356 369

9t10 24075 1050 23025 705 13070 9955 345

Avg. 91859 3874 87985 2505 54114 33871 1369

64



Table 4.14: The runtime comparison of VioNet and Dr. CU (unit: second).

Design Dr. CU VioNet

9t1 152 5

9t2 1644 16

9t3 61 3

9t6 2853 60

9t7 6822 80

9t8 9532 55

9t9 13353 155

9t10 13983 154

Norm. 91.66667 1

65



Chapter 5

Conclusion

5.1 Contributions
This thesis demonstrated the design and implementation of two ML-based frame-

works that can improve the routability of global routing and detailed routing for

ASICs. The main contributions are as follows:

1. Design and development of GlobalNet, a FCN framework that predicts the

3D routing congestion of global routing. A feature extraction algorithm is

used to convert a design to image data, which is taken as the input of the pro-

posed NN. The output of GlobalNet is a congestion heatmap that describes

the wire and via usage of the design, from which the overflow can be derived.

(a) Experiments on ISPD 2018 and ISPD 2019 benchmarks showed that

GlobalNet achieved a high average PCC (0.84) and a low NMSE (0.04),

which indicated the high accuracy of prediction.

(b) The impacts of different features were investigated. Experiments were

done with different feature combinations. The optimal feature setup

was found. Our findings also suggested that using more features does

not always mean a better prediction accuracy.

(c) Development of UBC-GR, which is a global router improved from an

open-sourced global router, CU-GR. UBC-GR utilized the congestion

66



estimation result from GlobalNet to avoid potential overflows. Two

benchmarks in ISPD 2019 that were unroutable to CU-GR were suc-

cessfully routed by UBC-GR. Moreover, a 3% of reduction in the num-

ber of vias and a 15% of reduction in the number of overflows were

achieved in the ISPD dataset.

2. Investigation of the feasibility of wire-short prediction using CNN. Designed

and implemented VioNet, a customized CNN that predicts the number and

locations of detailed routing wire-shorts from a placed netlist.

(a) We used the global routing congestion estimation result from Global-

Net to improve the performance of wire-short prediction. The advan-

tage was that the wire-short predictor could have access to the global

routing information while the long runtime of global routing could be

avoided, and the wire-short prediction could be moved to an earlier

stage.

(b) A top-down iterative approach was adopted to predict the locations of

wire-shorts. A low-resolution prediction was done first to determine

the approximate locations of wire-shorts. Then, a high-resolution pre-

diction was performed on the regions that were predicted to contain

wire-shorts in the previous low-resolution prediction stage.

(c) Experiments on ISPD 2019 benchmarks showed that, on average, 74%

of the wire short violations were predicted. The top-down iterative

strategy also improved the prediction accuracy, true positive rate, and

true negative rate were improved by 11%, 7%, and 11%, respectively,

compared with the non-iterative approach.

5.2 Future Work

Comparison with Previous Works

Due to the novelty of this work, there is no previous work on 3D global routing con-

gestion estimation or detailed routing wire-short prediction using the ISPD dataset.

67



But it is still meaningful to compare this work to other works that do 2D prediction

on other dataset. In the future, some other neural networks, like MEDUSA [73],

RouteNet [69], CongestionNet [35], will be implemented on the ISPD dataset for

comparison with the proposed GlobalNet and VioNet.

Further Investigation on the Impact of Congestion Estimation on Routing

The proposed UBC-GR successfully reduced the number of overflows in global

routing stage. Some further analyze of the experimental results and investigations

on the mechanism behind this improvement may be helpful for future research. For

example, the prediction result of GlobalNet is a multi-channel congestion heatmap.

But do the predictions on different metal layers have different accuracy? Does pre-

diction of each metal layer have the same contribution to the improvements of

routing performance? The lower metal layers usually contain more wires. Intu-

itively, the prediction of lower metal layers should be more important than that of

the higher layers, but such assumption lacks support from experimental data. Some

more experiments need to be done to compare the prediction accuracy (PCC and

NMSE), and the routing improvement caused by the prediction of each metal layer.

Detailed Routing with Routing Prediction

This thesis proved the feasibility of using congestion estimation to improve the per-

formance of a global router. However, the contributions that congestion estimation

and wire-short prediction could make to a detailed router are still unclear.

Placement with Routing Prediction

The experimental results showed that many of the designs in ISPD 2018 and ISPD

2019 benchmarks were unroutable to CU-GR, UBC-GR, and Dr. CU. It would

be helpful if the placer could be improved by using the congestion estimation or

wire-short prediction results.

Unsupervised Learning based Routing Prediction

This work suffered from the same problem as most previous works on ML in EDA

did, which is the lack of training data. Only 18 benchmarks from ISPD 2018

68



and ISPD 2019 were available. Unsupervised ML can solve this problem as no

training data is needed. Some efforts have been put into Reinforcement Learning

(RL) based placement and routing. However, the most significant disadvantage that

constrains the application of RL is its lengthy runtime. RL would become more

practical if techniques that can speed up the training of RL could be proposed.

69



Bibliography

[1] Boost geometry library. https://www.boost.org/doc/.

[2] I. 20189Contest. Ispd 2019 contest on initial detailed routing., 2019. URL
http://www.ispd.cc/contests/19/.

[3] P. Agnew and M. Kelly. The vms algorithm. IBM System Products Div.
Lab., Endicott, NY, Tech Rep. TR01, 1338, 1970.

[4] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan.
High-definition routing congestion prediction for large-scale fpgas. In 2020
25th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 26–31. IEEE, 2020.

[5] Apple. Apple unveils m1 ultra, the world’s most powerful chip for
a personal computer, 2022. URL https://www.apple.com/newsroom/2022/03/
apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/.

[6] X. Bai, Z. Zhu, P. Li, J. Chen, T. Lan, X. Li, J. Yu, W. Zhu, and Y.-W.
Chang. Timing-aware fill insertions with design-rule and density constraints.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

[7] A. Botchkarev. Performance metrics (error measures) in machine learning
regression, forecasting and prognostics: Properties and typology. arXiv
preprint arXiv:1809.03006, 2018.

[8] Cadence. Lef/def 5.8 language reference, 2016. URL
http://coriolis.lip6.fr/doc/lefdef/lefdefref/LEFSyntax.html.

[9] P. Case, M. Correia, W. Gianopulos, W. Heller, H. Ofek, T. Raymond,
R. Simek, and C. Stieglitz. Design automation in ibm. IBM Journal of
Research and Development, 25(5):631–646, 1981.

70

https://www.boost.org/doc/
http://www.ispd.cc/contests/19/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
http://coriolis.lip6.fr/doc/lefdef/lefdefref/LEFSyntax.html


[10] Y. Chang, Y. Lee, and T. Wang. Nthu-route 2.0: A fast and stable global
router. In IEEE/ACM International Conference on Computer-Aided Design,
pages 338–343, Nov 2008.

[11] N. V. Chawla, N. Japkowicz, and A. Kotcz. Special issue on learning from
imbalanced data sets. ACM SIGKDD explorations newsletter, 6(1):1–6,
2004.

[12] G. Chen, C.-W. Pui, H. Li, J. Chen, B. Jiang, and E. F. Young. Detailed
routing by sparse grid graph and minimum-area-captured path search. In
Proceedings of the 24th Asia and South Pacific Design Automation
Conference, pages 754–760, 2019.

[13] G. Chen, C.-W. Pui, H. Li, and E. F. Young. Dr. cu: Detailed routing by
sparse grid graph and minimum-area-captured path search. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
39(9):1902–1915, 2019.

[14] H.-M. Chen, M. D. F. Wong, H. Zhou, F.-Y. Young, H. H. Yang, and
N. Sherwani. Integrated Floorplanning and Interconnect Planning, pages
1–18. Springer US, Boston, MA, 2001. ISBN 978-1-4757-3415-7.
doi:10.1007/978-1-4757-3415-7 1. URL
https://doi.org/10.1007/978-1-4757-3415-7 1.

[15] H.-Y. Chen and Y.-W. Chang. Global and detailed routing. In Electronic
Design Automation, pages 687–749. Elsevier, 2009.

[16] J. Chen, J. Kuang, G. Zhao, D. J.-H. Huang, and E. F. Young. Pros: A
plug-in for routability optimization applied in the state-of-the-art
commercial eda tool using deep learning. In 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pages 1–8. IEEE, 2020.

[17] I. . Contest. Ispd 2015 blockage-aware detailed routing-driven placement
contest., 2015. URL http://www.ispd.cc/contests/15/web/benchmark.html.

[18] I. . Contest. Ispd 2018 contest on initial detailed routing., 2018. URL
http://www.ispd.cc/contests/18/.

[19] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath. Generative adversarial networks: An overview. IEEE signal
processing magazine, 35(1):53–65, 2018.

[20] W. A. Dees and P. G. Karger. Automated rip-up and reroute techniques. In
19th Design Automation Conference, pages 432–439. IEEE, 1982.

71

http://dx.doi.org/10.1007/978-1-4757-3415-7_1
https://doi.org/10.1007/978-1-4757-3415-7_1
http://www.ispd.cc/contests/15/web/benchmark.html
http://www.ispd.cc/contests/18/


[21] S. Dolgov, A. Volkov, L. Wang, and B. Xu. 2019 cad contest: Lef/def based
global routing. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–4, 2019.
doi:10.1109/ICCAD45719.2019.8942107.

[22] G. Flach, M. Fogaça, J. Monteiro, M. Johann, and R. Reis. Rsyn: An
extensible physical synthesis framework. In Proceedings of the 2017 ACM
on International Symposium on Physical Design, pages 33–40, 2017.

[23] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A
review on ensembles for the class imbalance problem: bagging-, boosting-,
and hybrid-based approaches. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(4):463–484, 2011.

[24] P. Garrou, J. J.-Q. Lu, and P. Ramm. Three-dimensional integration.
Handbook of Wafer Bonding, 2012.

[25] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering, 21(9):1263–1284, 2009.

[26] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y. Young. Ripple: An
effective routability-driven placer by iterative cell movement. In IEEE/ACM
International Conference on Computer-Aided Design, pages 74–79, Nov
2011.

[27] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang. Routability-driven
analytical placement for mixed-size circuit designs. In IEEE/ACM
International Conference on Computer-Aided Design, pages 80–84, Nov
2011.

[28] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, et al. Machine learning for electronic design automation: A
survey. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 26(5):1–46, 2021.

[29] Y.-H. Huang, Z. Xie, G.-Q. Fang, T.-C. Yu, H. Ren, S.-Y. Fang, Y. Chen, and
J. Hu. Routability-driven macro placement with embedded cnn-based
prediction model. In 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 180–185. IEEE, 2019.

[30] W.-T. Hung, J.-Y. Huang, Y.-C. Chou, C.-H. Tsai, and M. Chao.
Transforming global routing report into drc violation map with
convolutional neural network. In Proceedings of the 2020 International

72

http://dx.doi.org/10.1109/ICCAD45719.2019.8942107


Symposium on Physical Design, ISPD ’20, page 57–64, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450370912.
doi:10.1145/3372780.3375557.

[31] F. K. Hwang. On steiner minimal trees with rectilinear distance. SIAM
journal on Applied Mathematics, 30(1):104–114, 1976.

[32] D. Jansen et al. The electronic design automation handbook. Springer, 2003.

[33] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI physical design: from
graph partitioning to timing closure. Springer Nature, 2022.

[34] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov. A SimPLR method for
routability-driven placement. In IEEE/ACM International Conference on
Computer-Aided Design, pages 67–73, 2011. ISBN 978-1-4577-1398-9.

[35] R. Kirby, S. Godil, R. Roy, and B. Catanzaro. Congestionnet: Routing
congestion prediction using deep graph neural networks. In 2019 IFIP/IEEE
27th International Conference on Very Large Scale Integration (VLSI-SoC),
pages 217–222. IEEE, 2019.

[36] C. Kison, O. M. Awad, M. Fyrbiak, and C. Paar. Security implications of
intentional capacitive crosstalk. IEEE Transactions on Information
Forensics and Security, 14(12):3246–3258, 2019.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information
processing systems, 25, 2012.

[38] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer. Electronic design
automation for IC implementation, circuit design, and process technology:
circuit design, and process technology. CRC Press, 2016.

[39] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

[40] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young. Dr. cu 2.0: A scalable
detailed routing framework with correct-by-construction design rule
satisfaction. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–7. IEEE, 2019.

[41] R. Liang, H. Xiang, D. Pandey, L. Reddy, S. Ramji, G.-J. Nam, and J. Hu.
Drc hotspot prediction at sub-10nm process nodes using customized
convolutional network. In Proceedings of the 2020 International Symposium

73

http://dx.doi.org/10.1145/3372780.3375557


on Physical Design, ISPD ’20, page 135–142, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450370912.
doi:10.1145/3372780.3375560.

[42] J. Liu, C.-W. Pui, F. Wang, and E. F. Young. Cugr:
Detailed-routability-driven 3d global routing with probabilistic resource
model. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2020.

[43] W. Liu, Y. Li, and C. Koh. A fast maze-free routing congestion estimator
with hybrid unilateral monotonic routing. In IEEE/ACM International
Conference on Computer-Aided Design, pages 713–719, Nov 2012.

[44] W. Liu, W. Kao, Y. Li, and K. Chao. Nctu-gr 2.0: Multithreaded
collision-aware global routing with bounded-length maze routing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32(5):709–722, May 2013. ISSN 0278-0070.
doi:10.1109/TCAD.2012.2235124.

[45] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3431–3440, 2015.

[46] J. Lou, S. Krishnamoorthy, and H. S. Sheng. Estimating routing congestion
using probabilistic analysis. In Proceedings of the 2001 International
Symposium on Physical Design, ISPD ’01, page 112–117, New York, NY,
USA, 2001. Association for Computing Machinery. ISBN 1581133472.
doi:10.1145/369691.369749. URL https://doi.org/10.1145/369691.369749.

[47] W. Maly, C. Ouyang, S. Ghosh, and S. Maturi. Detection of an antenna
effect in vlsi designs. In Proceedings. 1996 IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, pages 86–94. IEEE, 1996.

[48] E. J. McCluskey. Minimization of boolean functions. The Bell System
Technical Journal, 35(6):1417–1444, 1956.

[49] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

[50] G. Moore. Moore’s law. Electronics Magazine, 38(8):114, 1965.

[51] K. O’Shea and R. Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015.

74

http://dx.doi.org/10.1145/3372780.3375560
http://dx.doi.org/10.1109/TCAD.2012.2235124
http://dx.doi.org/10.1145/369691.369749
https://doi.org/10.1145/369691.369749


[52] Y. Pan, Z. Zhou, and A. Ivanov. Routability-driven global routing with 3d
congestion estimation using a customized neural network. In 2022
International Symposium on Quality Electronic Design (ISQED), 2022.

[53] G. Parasch and R. L. Price. Development and application of a designer
oriented cyclic simulator. In Proceedings of the 13th Design Automation
Conference, pages 48–53, 1976.

[54] Z. Qi, Y. Cai, and Q. Zhou. Accurate prediction of detailed routing
congestion using supervised data learning. In 2014 IEEE 32nd International
Conference on Computer Design (ICCD), pages 97–103. IEEE, 2014.

[55] P. Ramm, A. Klumpp, J. Weber, and M. Taklo. 3d system-on-chip
technologies for more than moore systems. Microsystem technologies, 16
(7):1051–1055, 2010.

[56] B. Ray, A. R. Tripathy, P. Samal, M. Das, and P. Mallik. Half-perimeter
wirelength model for vlsi analytical placement. In 2014 International
Conference on Information Technology, pages 287–292, 2014.
doi:10.1109/ICIT.2014.61.

[57] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[58] R. B. Singh, A. S. Baghel, and A. Agarwal. A review on vlsi floorplanning
optimization using metaheuristic algorithms. In 2016 International
Conference on Electrical, Electronics, and Optimization Techniques
(ICEEOT), pages 4198–4202. IEEE, 2016.

[59] P. Spindler and F. M. Johannes. Fast and accurate routing demand estimation
for efficient routability-driven placement. In Design, Automation Test in
Europe, pages 1–6, April 2007. doi:10.1109/DATE.2007.364463.

[60] S. A. Szygenda. Tegas2—anatomy of a general purpose test generation and
simulation system for digital logic. In Proceedings of the 9th Design
Automation Workshop, pages 116–127, 1972.

[61] T. G. Szymanski. Dogleg channel routing is np-complete. IEEE transactions
on computer-aided design of integrated circuits and systems, 4(1):31–41,
1985.

75

http://dx.doi.org/10.1109/ICIT.2014.61
http://dx.doi.org/10.1109/DATE.2007.364463


[62] A. F. Tabrizi, L. Rakai, N. K. Darav, I. Bustany, L. Behjat, S. Xu, and
A. Kennings. A machine learning framework to identify detailed routing
short violations from a placed netlist. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2018.

[63] A. F. Tabrizi, N. K. Darav, L. Rakai, I. Bustany, A. Kennings, and L. Behjat.
Eh? predictor: A deep learning framework to identify detailed routing short
violations from a placed netlist. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(6):1177–1190, 2019.

[64] G. Taylor and J. Ousterhout. Magic’s incremental design-rule checker. In
21st Design Automation Conference Proceedings, pages 160–165, 1984.
doi:10.1109/DAC.1984.1585790.

[65] L.-C. Wang. Experience of data analytics in eda and test—principles,
promises, and challenges. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 36(6):885–898, 2016.

[66] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng. Electronic design
automation: synthesis, verification, and test. Morgan Kaufmann, 2009.

[67] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. Reddy, A. D. Huber,
G. E. Tellez, D. Keller, and S. S. Sapatnekar. Glare: Global and local wiring
aware routability evaluation. In DAC Design Automation Conference 2012,
pages 768–773, 2012.

[68] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic congestion prediction.
In Proceedings of the 2004 International Symposium on Physical Design,
ISPD ’04, page 204–209, New York, NY, USA, 2004. Association for
Computing Machinery. ISBN 1581138172. doi:10.1145/981066.981110.
URL https://doi.org/10.1145/981066.981110.

[69] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and J. Hu.
Routenet: Routability prediction for mixed-size designs using convolutional
neural network. In 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[70] Y. Xu, Y. Zhang, and C. Chu. Fastroute 4.0: Global router with efficient via
minimization. In Asia and South Pacific Design Automation Conference,
pages 576–581, 2009. ISBN 978-1-4244-2748-2.

[71] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion estimation during
top-down placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21(1):72–80, 2002.

76

http://dx.doi.org/10.1109/DAC.1984.1585790
http://dx.doi.org/10.1145/981066.981110
https://doi.org/10.1145/981066.981110


[72] W. Zeng, A. Davoodi, and Y. H. Hu. Design rule violation hotspot prediction
based on neural network ensembles. arXiv preprint arXiv:1811.04151, 2018.

[73] Z. Zhou. Machine learning based techniques for routing interconnects in
very large scale integrated (VLSI) circuits. PhD thesis, University of British
Columbia, 2022. URL
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0413022.

[74] Z. Zhou, Z. Zhu, J. Chen, Y. Ma, B. Yu, T.-Y. Ho, G. Lemieux, and
A. Ivanov. Congestion-aware global routing using deep convolutional
generative adversarial networks. In 2019 ACM/IEEE 1st Workshop on
Machine Learning for CAD (MLCAD), pages 1–6. IEEE, 2019.

77

https://open.library.ubc.ca/collections/ubctheses/24/items/1.0413022

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	1 Introduction
	1.1 EDA of Physical Design
	1.1.1 Synthesis
	1.1.2 Floorplanning
	1.1.3 Placement
	1.1.4 Routing

	1.2 Motivation
	1.3 Approaches and Contributions
	1.4 Thesis Organization

	2 Background
	2.1 Routing
	2.1.1 Problem Formulation
	2.1.2 Two-step Approach
	2.1.3 Routability

	2.2 Routing Congestion Estimation
	2.2.1 RUDY
	2.2.2 Probabilistic-Based Estimation
	2.2.3 ML-Based Estimation

	2.3 Wire-short Prediction
	2.4 Summary of Previous Routability Prediction Approaches

	3 Routability-driven Global Routing with 3D Congestion Estimation Using a Customized Neural Network
	3.1 Introduction
	3.2 Preliminary
	3.3 Proposed Global Routing Methodology
	3.3.1 GlobalNet
	3.3.2 UBC-GR

	3.4 Experimental Results
	3.4.1 Evaluation Metrics
	3.4.2 GlobalNet Performance
	3.4.3 UBC-GR Performance

	3.5 Conclusion

	4 VioNet: An Iterative Detailed Routing Wire-short Violation Predictor Based on a Convolutional Neural Network
	4.1 Introduction
	4.2 Convolutional Neural Network (CNN)
	4.3 Methodology
	4.3.1 Problem Formulation
	4.3.2 GlobalNet
	4.3.3 Feature Extraction
	4.3.4 Iterative Prediction
	4.3.5 Neural Network Structure

	4.4 Experimental Results
	4.4.1 Experimental Setup
	4.4.2 Performance Metrics
	4.4.3 Result of the Low-resolution Prediction Stage
	4.4.4 Result of the High-resolution Prediction Stage
	4.4.5 Comparison with the Non-iterative Prediction

	4.5 Runtime
	4.6 Conclusion

	5 Conclusion
	5.1 Contributions
	5.2 Future Work

	Bibliography

