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Abstract

This dissertation is a collection of three essays that explore new directions in empirical asset pricing.

The first essay studies the role of textual information in analyst reports. I show that analysts

use the report text to convey soft information that has not yet been incorporated into their numerical

forecasts. A simple tone measure predicts forecast revisions and forecast errors several periods

ahead. Market prices quickly and adequately absorb the soft earnings information in analyst tone

after the report publication. I demonstrate that analyst tone can be used to measure the saliency of

upside or downside risks.

The second essay proposes a novel deep learning approach to identify predictors of announce-

ment returns from text. The method reveals that stock returns on earnings announcement days are

predictable using analyst reports published weeks before the announcements. The identified pre-

dictors perform well for several years out-of-sample but eventually vanish. The predictability arises

from a persistent underreaction to firm-specific news. A portfolio strategy based on out-of-sample

announcement predictions earns large significant alpha. The findings are consistent with biased

expectations and not in line with common risk-based explanations.

The third essay studies the pricing of technological innovators in the stock market. It shows

that technological innovators are priced differently, earning high stock returns controlling for stan-

dard factors, with less punishment for high capital investment and weak profitability. We create the

persistent new firm variable patent intensity (PI), patents received divided by market capitalization,

available from 1926. Aged PI portfolios and standard factors show high alpha and low profitabil-

ity lasting more than a decade past formation for firms with high patenting intensity. Adding an

expected growth factor, alphas become insignificant at most horizons, and loadings show large but

declining growth, aggressive and increasing investment, and weak but improving profitability. The

essay discusses partly unifying interpretations of some important factor models and the essential

role of expected growth.
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Lay Summary

This thesis is a collection of three essays that studies the relationship between information, innova-

tion, and stock returns. The first essay studies how stock market analysts use language to transmit

information about firms’ future earnings to market participants. The second essay develops a novel

machine learning method to extract information about stock returns from text documents and inves-

tigates how markets learn to incorporate this information into stock prices. The last essay demon-

strates that the stock prices of innovative firms behave differently from the prices of non-innovative

firms.
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Chapter 1

Introduction

Market participants continuously collect, process, and evaluate any available information to form

expectations about future earnings and returns of listed firms. Stock prices summarize the mar-

ket’s information about future earnings and returns and constantly move up and down to adjust to

changes in these expectations. Collecting and processing information is costly, and forming the

right expectations about future earnings based on present information is a complex task. Since the

onset of financial research, scholars have studied whether markets perform this task efficiently and

immediately. My thesis is a collection of three essays that each shed new light on the way markets

process information about future earnings and returns.

In the first essay, I study how stock market analysts, an important group of information providers

for institutional investors, transmit information about future earnings to market participants through

text. While analysts also provide numerical estimates about future earnings, I demonstrate that the

tone of the written reports that accompany the numerical estimates contains earnings information

above and beyond the numerical estimates. Analyst tone predicts forecast errors and forecast re-

visions several quarters ahead, suggesting that analysts use language to transmit hard-to-quantify

information. I show that markets react promptly and adequately to the publication of reports with

tonal information. Furthermore, I suggest that analyst tone can be used to measure the salience of

positive versus negative events, which can be used to predict over- and underreaction patterns to

future news.

Motivated by the findings of the first essay, the second essay develops a new methodology to

extract pricing-relevant information from text. I present a deep learning architecture that is able

to extract and quantify mispriced information from any set of text documents associated with an

individual firm. Using the same dataset of analyst reports as in the first essay, I show that markets

underreact to particular types of textual information. The predictable underreaction can be used to

1



form profitable trading strategies on earnings announcement days several weeks after the publication

of the reports. Continuous re-training of the deep learning model reveals that markets eventually

learn to incorporate the particular type of information that has led to mispricing in the past. However,

they only do so slowly over the course of several years.

In the third and last essay, I study a particular set of corporate information and its role in de-

termining stock prices: firms’ innovation activities. I use firms’ patent grants and market prices to

construct a measure of patenting intensity that allows me to study the prices of innovating firms

over a time span of almost 100 years. Technological innovators appear to be priced differently in

the stock market. Firms with high patenting intensity earn high abnormal returns relative to their

no-innovation or low-innovation counterparts. The abnormal return can be explained by an appar-

ent undervaluation of firms with high patenting activity, suggesting that markets do not adequately

incorporate the information contained in firms’ patenting activity into prices. Furthermore, I show

that while innovating firms accounted for more than half of the total market capitalization of the

U.S. stock market for most of the past century, several popular predictors of the cross-section of re-

turns do not work in the sub-sample of innovating firms. Together, the findings in this essay suggest

that innovating firms are priced differently in the market.

Although the topic of information and stock returns is present in all three essays, each essay

investigates a different research question. Therefore, chapters were designed to be self-contained. I

leave a more exhaustive discussion of the research question, methodology, and contribution to the

introduction specific to each chapter.
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Chapter 2

Beyond the Numbers: Earnings
Information in Analyst Tone

2.1 Introduction
Equity research analysts typically publish earnings estimates and stock recommendations in the

form of an analyst report. In addition to the quantitative estimates such as earnings forecasts and

target prices, these reports contain a significant amount of text.1 While an extensive literature ex-

amines the information content in analyst forecasts and other quantitative estimates and opinions

expressed in the analyst reports, little is known about the value of the textual information that typi-

cally accompanies these estimates. Despite the fact that the quantitative estimates are often available

online or through subscription services such as the Bloomberg Terminal, asset managers often pay

high five-digit fees for the access to the equity research platform of a single brokerage house2. This

suggests that the value of analyst reports goes well beyond the quantitative information therein.

This paper explores whether analyst tone contains information about future earnings and affects

information processing in financial markets in two parts. In the first part of the paper, I show

that a simple measure of analyst tone - a dictionary-based sentiment measure - captures earnings

information in analyst reports. Here, I focus on the information content in the report text and its

incremental value for predicting future earnings over the numerical analyst forecasts. In the second

part of the paper, I conjecture that analyst tone does not only represent soft earnings information,

but also the analyst’s attention to particular news, and investigate whether analyst attention impacts

1The median analyst report in the sample contains 682 words of text, excluding tables, figures, imprints, disclaimers,
etc. See Section 2.2.3 for more details.

2https://www.bloomberg.com/professional/blog/put-price-investment-research-2/
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the price reaction to future news in financial markets.

I show that analyst tone conveys valuable information about future earnings. Positive analyst

tone predicts positive earnings surprises relative to the numerical estimates in the same analyst

reports, and negative analyst tone predicts negative earnings surprises. The predictability is partic-

ularly strong for further-ahead periods. My findings are consistent with analysts using the report

text to transmit soft information that is difficult or costly to quantify at the time of the publication.

Furthermore, analyst tone predicts revisions of further-ahead forecasts after the earnings announce-

ment. This suggests that the soft information in the reports will be transformed into hard information

once additional information arrives.

Stock markets react positively to reports with positive tone and negatively to reports with neg-

ative tone3. Pre-publication returns several days before the publication reveal that analysts use the

report text to respond to recent events that are already accounted for in the stock prices. Approx-

imately half of the trailing ten-day cumulative abnormal return on the report publication day is

realized before the publication day itself, suggesting that analyst tone reflects previously publicized

information and new information in roughly equal parts. The lack of a post-publication drift in the

days after the publication suggests that the market quickly incorporates the tonal information into

stock prices. Despite the ability to predict earnings surprises, analyst tone does not predict earnings

announcement reactions, suggesting that markets efficiently incorporate the earnings information in

analyst tone into prices.

In the second part of the paper, I study whether analysts’ attention to positive versus negative

events in their reports directs investor attention in financial markets. Assuming that each analyst

report is not an exhaustive summary of the analysts’ private information, but a subset of the infor-

mation available to the analyst that the analyst decided to present to the readers, analyst tone reveals

the analyst’s choice to direct their own or their readers’ attention to certain soft information.

Analyst tone is low when analysts primarily discuss negative scenarios or events in their report,

and high when they focus on positive events. I argue that analysts’ focus on positive vs negative

scenarios is a useful proxy of directional investor attention. First, the target audience for analyst

reports are institutional investors. To the extent that institutional investors pay attention to analyst

publications, events and scenarios discussed in analyst reports are likely to be salient for a group of

investors that is responsible for the majority of the daily trading volume. Second, analysts are skilled

investment professionals themselves that engage in frequent exchange with institutional investors,

meaning that analyst attention is more likely to be in line with other investment professionals’

attention. Third, the objective of analysts is to provide investors with value-relevant information. As

such, the decision to publish a report about a certain firm and topic is not random: the information

3A similar result has been shown by Huang et al. (2014) in a smaller sample and less general setup.
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displayed in the reports is likely to be the information that analysts think investors should pay

attention to. This paper remains agnostic about the drivers of (in)attention and focuses on the effect

of varying investor attention for information processing in financial markets.

I find that pre-announcement analyst tone predicts post-earnings announcement drift and rever-

sal conditional on the sign of the earnings news. If the news is in line with the pre-announcement

analyst tone, e.g. a negative surprise following a negative consensus tone, stock prices tend to over-

react to the news. Conversely, if the news is not in line with the pre-announcement analyst tone, e.g.

a positive surprise following a negative consensus tone, stock prices tend to underreact. After the

initial announcement reaction, prices show a strong drift or reversal pattern over the next 10-15 trad-

ing days, which in some cases persists for up to 90 days. This suggests that stock markets overreact

to salient events and underreact to non-salient events. The fact that pre-announcement analyst tone

in itself does not predict whether the stock price will drift or reverse after the announcement rules

out explanations related to symmetric informational frictions such as slow information diffusion or

sticky expectations, especially those frictions that can be linked to rather constant firm character-

istics (e.g. firm size). Instead, the findings highlight that announcement drifts are at least partially

determined by an interaction between the realized surprise and the directional attention of investors

before the announcement.

The observed predictable drift and reversal patterns can be exploited by a simple portfolio trad-

ing strategy. Since low analyst tone firms underreact to good news and overreact to bad news,

abnormal returns are always positive after the initial announcement reaction for negative analyst

tone firms, irrespective of the sign of the announcement reaction. Similarly, abnormal returns are

always negative following the initial announcement reaction for positive analyst tone firms. A trad-

ing strategy that buys low analyst tone stocks and sells high analyst tone stocks after an earnings

announcement earns a Fama-French four-factor alpha of 38bps per week. The profits are primarily

generated by the long side of the portfolio, which suggests that such a trading strategy would be

easy to implement and the trading profits are not an artifact of short-selling constraints.

To the best of my knowledge, I collect by far the largest sample of analyst reports that has

been used in the financial literature up to today4. I am able to match the text corpus of 1.6 million

analyst reports for S&P1500 firms published between 1982 and 2019 with quantitative earnings

forecasts from I/B/E/S. The vast sample allows me to conduct a more extensive analysis of the

textual information in these reports than in the previous literature. The literature on analyst reports

is still small, and only recently gained some traction due to the widespread availability of cheap

4Huang et al. (2014) use a sample of 363,952 reports for S&P500 firms, Huang et al. (2017) study 159,210 reports for
S&P500 firms, De Franco et al. (2015) study 356,463 reports, Hsieh et al. (2016) study 2,164 reports, and Gultekin et al.
(2019) study 724,829 reports.
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processing power and general interest in textual information in finance and economics.5

My paper contributes to several strands of the literature on analysts, soft information, and atten-

tion in financial markets. First, I contribute to the literature on soft information in analyst reports.

The information content in analyst reports has first been studied by Huang et al. (2014), who doc-

ument that analyst reports with positive sentiment trigger positive stock market reactions and con-

clude that textual sentiment in analyst reports carries value-relevant information for stock prices.

Huang et al. (2017) attest analysts an important role in interpreting corporate disclosures.

Second, I provide further evidence on the interaction between earnings estimates and soft infor-

mation. Previous studies have shown that the textual sentiment of third-party text corpora such as

newspapers (e.g. Tetlock, 2007; Tetlock et al., 2008) or conference calls (Price et al., 2012) predicts

forecast errors with a positive sign. This has often been interpreted as evidence of the lack of atten-

tion of analysts to new information or irrationally sticky forecast estimates (Bouchaud et al., 2019).

By showing a similar relationship between forecast errors and the sentiment of the forecasters them-

selves, I argue that it is plausible that analysts rationally decide to exclude certain information from

their estimates, and choose to transmit hard-to-quantify information via the report text. An overview

of the literature on soft information in financial markets can be found in Liberti and Petersen (2019)

Third, I contribute to the literature on limited attention of market participants. Dellavigna and

Pollet (2009) and Hirshleifer et al. (2009) suggest that post-earnings announcement drifts can be

attributed to limited investor attention. Directional attention of investors has been studied in an ex-

perimental setting by Kuhnen (2015), who shows that subjects overreact to negative news when they

are in a loss domain. Subjective attention and its impact on information processing have a long his-

tory in the psychology literature. Tversky and Kahneman (1973) show that subjective probabilities

are influenced by the ease with which certain states come to mind. Tversky and Kahneman (1974)

suggest that the subjective probability of an event that is easily retrievable is likely to be overstated.

Fourth, I add to the broader literature on analyst forecasts and analysts’ reaction to news. Exist-

ing literature has largely focused on numerical forecasts provided by analysts. Among others, Bondt

and Thaler (1990) show that analysts overreact to certain types of information while Abarbanell and

Bernard (1992) argue that analysts underreact to other types of information. Bradshaw (2011) pro-

vides a survey of the literature on numerical analyst forecasts. Suggesting that numerical forecasts

are only an incomplete measure of analyst expectations, my paper sheds new light on many of these

findings.

The rest of the paper is organized as follows. Section 2.2 introduces the data and defines the

measure of analyst tone and expectations. Section 2.3 discusses properties of analyst tone. Sec-

5Loughran and Mcdonald (2016) and Gentzkow et al. (2019) provide comprehensive surveys of the use of textual data
in finance, accounting, and economics beyond analyst reports.
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tion 2.4 investigates the information content in analyst tone. Section 2.5 analyzes how analyst tone

shapes the market’s reaction to news. Section 3.8 concludes.

2.2 Data and definitions

2.2.1 Earnings forecasts

Analysts publish forecasts and reports throughout the year, but releases are typically clustered

around scheduled earnings announcements. This makes earnings announcements the ideal setting

for our study because of the wide cross-section of observable pre- and post-announcement expec-

tations. I obtain analyst expectations of quarterly earnings per share from I/B/E/S. I measure an

analyst j’s prior expectations as the latest recorded forecast within 45 days prior to the earnings

announcement date of firm i and time t, and the posterior expectation as the last recorded forecast

within 45 days after the earnings announcement date. I use a 45-day window around the earnings

announcement dates following Bouchaud et al. (2019), who document that 45 days is the median

time across analysts to issue an earnings forecast after an earnings announcement in the I/B/E/S

dataset. Consensus estimates are the average of the individual estimates and denoted by Ei,t− and

Ei,t , where subscript t− indicates prior estimates and t indicates posterior estimates.6

Using Ct+τ

i to denote the earnings per share of firm i in period t + τ , let Ni,t be the consensus

forecast revision scaled by the stock price at the beginning of the 45-day window,

Nt+τ

i,t =
Et [Ct+τ

i ]−Et− [Ct+τ

i ]

Pi,t−
. (2.1)

I use FEt to denote the forecast error relative to time t expectations. In particular, FEt+τ

i,t is the

period t + τ forecast error for firm i at time t,

FEt+τ

i,t =
Ct+τ

i −Et [Ct+τ

i ]

Pi,t−
. (2.2)

Again, the subscript t here refers to expectations measured after the release of period t earnings,

with a delay of up to 45 days. In contrast to the forecast revision, the forecast error compares the

current earnings expectation with the future realized earnings. Therefore, it is forward-looking and

6Unreported robustness checks confirm similar results when using the median instead of the average of individual
expectations.
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can only be observed at t + τ . I also use forecast errors relative to pre-announcement expectations,

FEt+τ

i,t− =
Ct+τ

i −Et− [Ct+τ

i ]

Pi,t−
. (2.3)

Throughout the paper, all revision and error variables are standardized to mean zero and unit

standard deviation. Summary statistics are shown in Table 2.1 Panel A.

2.2.2 Recommendations and target prices

I merge consensus forecast information with buy/sell recommendations and target prices from

I/B/E/S. I convert buy/sell recommendations to a numerical scale by assigning the numbers 1-5

to the recommendations ”strong sell”, ”sell”, ”neutral/hold”, ”buy”, and ”strong buy”, respectively.

The consensus recommendation is obtained by following the aggregation procedure for consensus

expectations: I first measure analyst j’s prior recommendation as the latest recorded recommenda-

tion of analyst j within 45 days prior to the earnings announcement date of firm i and time t. The

consensus recommendation Reci,t− is then given calculated as the average of the individual recom-

mendations.

Target prices are expressed as returns to make them comparable across firms with different price

levels. The target price implied return (TPIR) is the 12-months target price divided by the stock

price at the time of announcement of the target price minus one. As with earnings expectations

and recommendations, I measure analyst j’s prior TPIR as the latest recorded TPIR within 45 days

prior to the earnings announcement date of firm i and time t. Consensus target price implied returns

T PIRi,t− are the average of the individual TPIRs.

2.2.3 Analyst reports

Data collection and matching

I collect analyst reports for all historic S&P1500 constituents from Thomson One Investext from

April 1982 to June 2019. The raw database contains 3.6 million reports. I remove all reports that

do not contain firm-specific analyst opinions from the database. In particular, I remove reports from

contributors that provide machine-generated reports, or reports that are not equity-focused opinion

pieces (e.g. company descriptions, merger news, drug pipeline reports, debt-focused reports, etc.).

I also remove reports that are associated with multiple firms. This reduces the number of reports to

2.4 million.

The 2.4 million reports are unevenly distributed across the sample period as shown in Figure 2.1.
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The firm coverage grows steadily from approximately 250 firms in 1984 until it plateaus at around

1500 firms in 1999. Both the median number of reports per firm and the median number of con-

tributors per firm increase almost monotonically over the sample period, with a slight drop in the

median number of reports per firm in the mid-2000s. Both the number of reports and the number

of contributors per firm are right-skewed. To avoid overweighting individual firms due to the right-

skewed distribution of reports per firm, most of the paper will focus on firm-level aggregates instead

of individual analyst opinions.

I match analyst reports to the numerical forecasts from I/B/E/S on the estimator level, corre-

sponding to contributor in Thomson One. I obtain the full contributor names from the meta data of

each report. I use a two-step process to match the contributor names to the numeric broker identi-

fiers emaskcd and estimator in I/B/E/S. First, I use a text-search algorithm to extract target prices

from the report texts and then match reports to the I/B/E/S target price database based on the date,

firm, and target price. I use target prices since they are relatively easy to extract from the report text

due to the fact that they are typically preceded by the term ”target price” or ”price target”. Second,

for contributors that cannot be linked through target prices - either because a contributor does not

publish target price estimates, because our algorithm could not find the target prices on their reports,

or because the contributor is not included in the I/B/E/S target price file - I hand-match reports by

manually reading EPS forecasts from the reports and looking for matching entries in the I/B/E/S

details file. The matching procedure is described in more detail in Section A.1.7

I limit the hand-matching to the largest 106 contributors by number of reports, accounting for 92.6%

of the reports. 14 of these contributors could not be matched to I/B/E/S, neither via target price

matching nor hand-matching. Together with 8 small contributors matched via target prices, I obtain

a total of 100 valid contributor links that allow us to link 1.6m reports (75.0%) with estimates from

the I/B/E/S details file.8

Text parsing

I strip the analyst reports of all parts that are unlikely to be economically meaningful, such as

disclaimers and imprints, as well as all non-text information. In particular, I remove disclaimers,

analyst certifications, legal notices, company profiles, report keys, figures, tables, and all other

paragraphs that do not contain structured text. To reduce the size of the vocabulary, all words are

lemmatized. More details on the pre-processing of the report text can be found in Appendix A.2.

7The matching procedure can also be used to match on analyst names. I choose to match on contributors since names
might not be unique, thus matching on analyst names might be less accurate than matching on contributors.

8A report can be without an I/B/E/S link either because its contributor does not have a valid emaskcd link, or because
there does not exist a matching firm-date-emaskcd entry in I/B/E/S.

9



1984 1989 1994 1999 2004 2009 2014 2019
date (quarter)

0

10000

20000

30000

40000

co
un

t

Number of reports per quarter

1984 1989 1994 1999 2004 2009 2014 2019
date (quarter)

0

250

500

750

1000

1250

1500

1750

co
un

t

Number of firms per quarter

1984 1989 1994 1999 2004 2009 2014 2019
date (quarter)

0

5

10

15

20

25

co
un

t

Number of reports per firm (quarterly)
average
median

1984 1989 1994 1999 2004 2009 2014 2019
date (quarter)

2

4

6

8

co
un

t

Number of contributors per firm (quarterly)
average
median

The four panels show the quarterly composition of the cleaned analyst report sample. The sample spans Apr 1982 to Jun

2019 and consists of 2.4 million reports.

Figure 2.1: Analyst report sample composition
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More details can be found in Section A.2.

Measuring tone in analyst reports

In natural language processing, there exists a trade-off between creating a sentiment measure that

captures as much information as possible and creating a sentiment measure that can be easily inter-

preted. To maximize the interpretability of my findings, I use an established yet simple measure of

textual sentiment to quantify the tone of the analyst reports, that is, a dictionary-based word-count

model. Using the Loughran and McDonald (2011) sentiment dictionary for financial applications,

I assign a naive tone score to each report. A report’s tone is the difference between the number of

positive words and negative words scaled by the total number of words in the report

Toneraw =
(number of positive words)− (number of negative words)

(total number of words)
(2.4)

A similar tone measure has been used by Gultekin et al. (2019) for analyst tone, as well as Hillert

et al. (2014) to measure media tone and Schmeling and Wagner (2019) to measure central bank

tone, among others. Toneraw is winsorized at the 1% level on either side. Summary statistics for

Toneraw as well as its components are shown in Table 2.1 Panel B. Reports are on average 922 words

long, with the report length being strongly right-skewed. On average, reports contain 24.68 positive

words and 20.73 negative words, implying an average Toneraw of 0.37. The vast majority of words

in each report are neither labeled positive nor negative, indicating that only a small part of the text

corpus contains polarized information. For the remainder of the paper, I will use the standardized

tone measure Tone, which is obtained by scaling Toneraw to mean zero and unit standard deviation.

Firm-level tone measures are constructed in close resemblance to consensus forecasts. Analysts

frequently publish new reports without revising their estimates. For each analyst, firm, and earnings

announcement, I select all reports within the 45-day window prior to the announcement date that

follows the last revision, including the report on the revision date. The analyst-firm-date tone is

calculated as the average Tone across the reports in the 45-day window. Finally, I average over

analysts to obtain the firm-date tone Tonei,t− . Similarly, the post-announcement tone Tonei,t is

obtained by first averaging the within-analyst tone in all reports linked to the latest forecast within

45 days of the announcement, and then averaging the analyst-firm-date tone across analysts.

2.2.4 Stock returns

Stock return data is from CRSP. Throughout the paper, stock returns are delisting-adjusted returns

for common stock (share codes 10 and 11) traded on NYSE, Amex, and Nasdaq.
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Panel A: Revisions and Errors

count mean sd min p25 p50 p75 max

Nt
t 188436 0.00 1.00 −2.55 −0.45 −0.15 0.62 2.43

Nt+1Q
t 122647 0.00 1.00 −2.55 −0.61 0.09 0.62 2.44

Nt+2Q
t 104872 0.00 1.00 −2.55 −0.61 0.08 0.62 2.43

Nt+3Q
t 90911 0.00 1.00 −2.52 −0.62 0.09 0.62 2.42

Nt+4Q
t 71227 0.00 1.00 −2.38 −0.65 0.03 0.64 2.39

FEt+1Q
t− 169236 0.00 1.00 −2.49 −0.55 −0.01 0.57 2.45

FEt+2Q
t− 153218 0.00 1.00 −2.44 −0.58 0.10 0.56 2.46

FEt+3Q
t− 137810 0.00 1.00 −2.44 −0.59 0.13 0.56 2.46

FEt+4Q
t− 102826 0.00 1.00 −2.39 −0.61 0.12 0.59 2.39

FEt+1Q
t 261437 0.00 1.00 −2.51 −0.50 −0.10 0.61 2.42

FEt+2Q
t 227074 0.00 1.00 −2.41 −0.58 0.01 0.58 2.43

FEt+3Q
t 207172 0.00 1.00 −2.37 −0.61 0.12 0.57 2.43

FEt+4Q
t 186968 0.00 1.00 −2.36 −0.62 0.13 0.58 2.41

Panel B: Tone measure (report level)
count mean sd min p25 p50 p75 max

n(pos) 1587084 24.68 29.87 0.00 9.00 17.00 30.00 2439.00
n(neg) 1587084 20.73 25.53 0.00 8.00 14.00 25.00 1637.00
n(total) 1587084 921.77 1036.03 1.00 411.00 682.00 1068.00 71265.00
Toneraw(%) 1587084 0.37 1.79 −4.47 −0.75 0.35 1.50 5.01
Tone 1587084 0.00 1.00 −2.71 −0.63 −0.01 0.63 2.60

Panel A shows descriptive statistics for earnings surprises, earnings revisions, pre- and post-announcement errors. All

variables have been standardized to mean zero and unit standard deviation. Firm subscripts are omitted for ease of

notation. Panel B shows descriptive statistics for the analyst tone measure Tone and its inputs for the sample of reports

that have been matched with I/B/E/S. n(pos) is the number of positive words in a report, n(neg) the number of negative

words, and n(total) the total number of words. Toneraw is the net number of positive words over the total number of

words multiplied by 100. Tone is equal to Toneraw rescaled to mean zero and unit standard deviation.

Table 2.1: Summary statistics
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The figure shows the distribution of shows the distribution of the firm-level pre-announcement analyst tone Tonei,t− as

defined in Section 2.2.3.

Figure 2.2: Distribution of analyst tone

2.3 Properties of analyst tone
To gain first insights into the dynamics of analyst tone, I first investigate the evolution of quarterly

analyst tone over the time. Figure Fig. 2.3 plots the across-firm mean, across and within-firm stan-

dard deviation from 1982 to 2019. Average analyst tone appears to be stationary with a high value

during the dot-com bubble in the late 1990s and a low value during the 2008-09 financial crisis. The

across firm standard deviation has been trending downward throughout the sample, from above 0.8

in the mid-1990s to below above 0.6 in 2019. Within-firm standard deviation has been relatively

constant.

Next, I study the relationship between analyst tone and other measures of analyst opinion as

well as firm characteristics. To allow for non-linearities, I focus on a non-parametric investigation

of binscatter plots of analyst tone against various other variables. Even though the binscatter plots

reveal that a linear model is clearly misspecified for many of the control variables, linear regression

results can be found in Table A.7.

The top-left plot in Fig. 2.4 investigates the time-series properties of Tonei,t− . Analyst tone appears

to be relatively short-lived, with the Pearson correlation between pre-announcement analyst tone

from one quarter to the next one being 34%. The slope coefficient is around 2, suggesting that

firm-level analyst tone decays by approximately half from quarter to quarter.

The top-right plot plots analyst tone against revisions of near-term earnings forecast between the

current and the previous period. In particular, the horizontal axis plots Et−1[Ct ]−Et− [C
t ]

Pt−1
, the revision
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This plot shows the evolution of the average analyst tone over time. Analyst tone is the textual measure Tone as defined

in Eq. (2.4), standardized to mean zero and unit standard deviation. For each quarter, I first compute the average tone for

each analyst-firm pair. For the across-firm mean, I average over analysts and then average over firms. For the across-firm

standard deviation, I average over analysts and then take the standard deviation across firms. For the within-firm standard

deviation, I take the standard deviation over analysts and then average across firms. Within-firm standard deviation is

missing for the first two quarters in the sample since it requires at least two observations per firm, thus having higher

coverage requirements than the other two measures.

Figure 2.3: Evolution of average analyst tone over time

of period-t earnings expectations from shortly after the period-t-1 announcement to shortly before

the period-t announcement. The plot reveals that there is no clear linear relationship between an-

alyst tone and revisions of near-term earnings forecasts since the previous quarter. While negative

revisions tend to be followed by negative analyst tone and positive revisions tend to be followed by

positive analyst tone, tone is highest for marginally positive revisions. This suggests that analyst

use the report text to describe or justify recent changes in their earnings estimates. An alternative

reading of the plot is that analyst tone tends to be lower following larger revisions, an that this effect

is stronger for negative than for positive revisions. The observed non-linear relationship between
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revisions and tone as well as the low R2 of 2.7% suggest that analyst tone is likely to capture infor-

mation beyond forecast revisions.

In addition to earnings forecasts, analysts frequently express their view on a firm via buy/sell rec-

ommendations and target prices. The two panels in the second row of Fig. 2.4 investigate the rela-

tionship between tone and these two opinion measures. The first panel reveals a linear relationship

between analyst tone and buy/sell recommendations, which confirms that analyst tone is a meaning-

ful measure of analyst opinions. An increase of Reci,t− by one, which translates into an upgrade of

the buy/sell rating by one category, predicts an increase of Tonei,t− by approximately 0.5 standard

deviations. However, the R2 of this regression is just below 8%, suggesting that only a small fraction

of analyst report tone can be explained by the buy/sell recommendation. The second panel shows an

inverted-U shaped relationship between target price implied returns and analyst tone, with a peak at

around 20%. There is no consensus in the literature as to whether high target price implied returns

represent high expected risk premia or mispricing (Engelberg et al., 2019). While the interpretation

of TPIR is beyond the scope of the paper, it is useful to note that there does not exist a clear linear

relationship between TPIR and analyst tone.

Next, I study the relationship between analyst tone and firm characteristics. The third row of Fig. 2.4

plots analyst tone against size and the book-to-market equity ratio. Analyst tone appears to be fairly

independent of size. However, I observe a strong linear relationship between book-to-market ratios

and analyst tone: on average, analyst tone is substantially higher for growth firms. Firms with a

book-to-market ratio below 0.5 tend to have positive analyst tone while firms with a book-to-market

ratio above 0.5 tend to have negative analyst tone. The R2 of a linear regression of analyst tone on

book-to-market is 8.9%, suggesting that only a small fraction of analyst tone can be explained by

the book-to-market ratio.

The fourth and last row of Fig. 2.4 plots analyst tone against the volatility and total return within the

pre-announcement measurement window [t-45, t-1]. Average analyst tone is approximately constant

across low to medium volatility firms, it is notably lower for firms in the 80th volatility percentile.

This finding is in line with the observation that analyst tone is lower following large revisions in

earnings forecasts, as new, publicly available information should trigger both forecast revisions and

price changes.

Lastly, I observe a positive relationship between returns and analyst tone. Firms that had a positive

return during the pre-announcement measurement window [t-45, t-1] tend to have positive analyst

tone and returns that had a negative return negative analyst tone. I further investigate the causal

relationship between analyst tone and stock prices in Section 2.4.1.
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For each panel, the variable on the horizontal axis is sorted into 20 equally-sized bins. Each dot represents the mean

analyst tone Tonet− and the mean of the binned variable for one bin. The red line and the R2 represent a linear fit of the

underlying data. Firm subscripts are omitted for ease of notation. The first row plots analyst tone against one-quarter

lagged analyst tone and revisions of current-quarter earnings expectation. The second row plots analyst tone against

analyst recommendations and 12-months TPIR. The third row plots analyst tone against market capitalization and B/M.

The last row plots analyst tone against the volatility and sum of daily returns during the tone measurement window.

Figure 2.4: Pre-announcement analyst tone and control variables
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2.4 Earnings information in analyst reports
In this section, I investigate whether analyst tone contains information about future earnings. Huang

et al. (2014) suggest that stock markets react positively upon the publication of analyst reports with

positive textual opinion and vice versa controlling for revisions in near-term earnings forecasts.

Here, I take an alternative approach and focus on analyst report publications that do not coincide

with an update in earnings forecasts of any horizon, which allows us to isolate the reaction to analyst

tone without imposing a functional form on the relationship between forecast revisions of various

horizons and the associated market reaction. Figure 2.5 shows stock returns around the publication

date of analyst reports that do come with a revision in earnings forecasts. Several observations stand

out: First, I observe a positive market reaction to positive reports and a negative market reaction to

the most negative reports. Interestingly, announcement returns are negative only for the lowest tone

quintile. A possible explanation for this phenomenon is that analysts might be hesitant to publish

negative opinions, for example in order to preserve banking relationships with their clients, which

leads to an over-representation of positive reports in the sample. Such a publication bias would

also explain the positive bias in analyst report tone documented in Section 2.2.3. Second, I observe

a significant pre-publication drift for both positive and negative tone publications. Approximately

half of the trailing 10-day cumulative abnormal return on the publication day is realized before

the publication day. This observation suggests that analyst tone partially reflects information that

has already been disseminated to the public and has been incorporated into stock prices before the

publication of the report. The significant return on the publication date indicates that the report itself

is informative: on average, reports in the highest tone quintile coincide with a 48bps increase in the

stock price, while reports in the lowest tone quintile coincide with an 18bps decrease in the stock

price. Third, I do not observe a significant post-publication drift. Stock prices seem to drift slightly

on the first day after publication, however, this might be explained by the fact that some reports are

published after regular trading hours on day 0. The lack of post-publication drift suggests that the

earnings information transmitted through analyst tone is quickly incorporated into prices.

The announcement reactions suggest that analyst tone is either negatively correlated with dis-

count rates or positively correlated with earnings expectations. If analyst tone contains no infor-

mation about earnings expectations beyond the expectations disclosed in the numerical forecasts,

earnings surprises should not be predictable by the analyst tone. To test this hypothesis, I regress

realized forecast errors in period t on pre-announcement tone,

FEt
i,t− = β1Tonei,t−+ γControlsi,t + εi,t− (2.5)

where Controlsi,t is a matrix of fixed effects. Results are shown in Table 2.2 Column (1). I can
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confidently reject the hypothesis that analyst tone does not contain earnings information beyond

the numerical earnings forecasts. A one standard deviation increase in analyst tone predicts a 0.04

standard deviations increase in period-t error. The effect is economically small, but of a similar

magnitude as other predictors of forecast errors (see e.g. Bouchaud et al., 2019).

Next, I investigate whether analyst tone contains information about further-ahead earnings. Earnings

tend to be autoregressive, so we expect some degree of predictability to follow mechanically from

the predictability of current-period errors. To abstract from this mechanic correlation, I regress

revisions of 4Q-ahead forecast errors on analyst tone while controlling for realized current-period

earnings surprises,

FEt+4Q
i,t− = β1Tonei,t−+β2FEt

i,t−+ γControlsi,t + εi,t− . (2.6)

Controlling for realized current-period earnings allows us to disentangle longer-term forecast er-

rors from the permanent component of near-term forecast errors. The results are shown in Table 2.2

Columns (4) to (7). Pre-announcement analyst tone strongly predicts revisions of 4Q-ahead fore-

casts. Controlling for near-term errors in the long-term predictive regression does not significantly

change the coefficient on analyst tone, suggesting that analyst tone is most informative about future

cash flows that do not result from permanent near-term shocks. Again, while the magnitude ap-

pears small - a one standard deviation increase in Tonet− predicts a 0.09 standard deviation error in

the forecast for the next quarter - it is reasonably large compared to other predictor variables. The

coefficient on Tonet− ranges between 49% and 82% of the coefficient on FEt
t− , suggesting that a

one standard deviation increase in analyst tone Tonet− has about half the economic significance as a

one standard deviation increase in the current period error FEt
t− , despite the fact that current-period

error contains forward-looking information from the perspective of an analyst prior to the earnings

announcement.

The evidence presented in this section suggests that analysts use the report text to convey informa-

tion that has not yet been incorporated into their numerical forecasts, in particular about further-

ahead fiscal periods. This is consistent with a model in which processing soft information is costly.

In such a model, analysts might rationally choose not to update their estimates upon arrival of new

information. If the processing of less precise signals is more costly, less precise information is less

likely to be incorporated in the estimates. This is in line with the finding that analyst tone is par-

ticularly powerful in predicting revisions of further-ahead forecasts, as the signal-to-noise ratio of

information about further-ahead earnings is likely to be lower than for current-period earnings.

I further explore this channel by studying revisions of long-term earnings forecasts around an-

nouncement dates. If analysts choose to transmit information about further-ahead earnings through
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FEt
t− FEt

t− FEt
t− FEt+4Q

t− FEt+4Q
t− FEt+4Q

t− FEt+4Q
t−

Tonet− 0.057∗∗∗ 0.058∗∗∗ 0.104∗∗∗ 0.109∗∗∗ 0.102∗∗∗

(10.20) (10.22) (11.96) (13.07) (12.42)
Rect− 0.025∗ -0.006 0.002 -0.053∗∗ -0.048∗∗

(1.90) (-0.46) (0.12) (-2.60) (-2.48)
FEt

t− 0.150∗∗∗

(21.94)

Fixed Effects (f,t) (f,t) (f,t) (f,t) (f,t) (f,t) (f,t)
N 66,531 66,531 66,531 34,359 34,359 34,359 34,359
R2 0.131 0.129 0.131 0.188 0.182 0.188 0.208
Within R2 0.002 0.000 0.002 0.008 0.000 0.008 0.032

This table reports regressions of pre-announcement forecast errors onto pre-announcement analyst tone. All variables are

measured at the firm level, therefore, firm subscripts are omitted for ease of notation. Pre-announcement forecast errors

FEt+τ

t− are realized actuals for period t+τ (shown in the superscript) minus consensus expectations measured prior to the

earnings announcement in period t scaled by the stock price 46 days prior to the announcement. Pre-announcement con-

sensus expectations are the average of individual analyst expectations measured within 45 days prior to the announcement.

Pre-announcement analyst tone Tonet− is the average tone of the reports published along with the selected individual ex-

pectations. See Section 2.2.3 for details on the measurement and aggregation of analyst tone. Regressions include firm

(f) and year-quarter (t) fixed effects. Standard errors are clustered by firm and year-quarter. T-statistics are shown in

parenthesis. *,**, and *** indicate p-values of less than 10%, 5%, and 1%, respectively.

Table 2.2: Pre-announcement tone and forecast errors

analyst tone instead of updating their numerical estimates due to the high uncertainty around the

earnings in further-ahead periods, we expect the information in analyst tone to be gradually incor-

porated into the numerical estimates while we move closer to the earnings announcement day. To

test this hypothesis, I test regress revision of long-term earnings forecasts onto analyst tone,

Nt+τ

i,t = β1Tonei,t−+β2FEt
i,t + γControlsi,t + εi,t (2.7)

where τ again ranges from one to four quarters and Controlsi,t is a matrix of fixed effects. Similar

to Equation 2.4, I control for revisions in current-period forecasts (i.e. realized errors) to distin-

guish between the predictability of the permanent component in current-period earnings and the

predictability of long-term earnings. Results are shown in Table 2.3. Pre-announcement analyst

tone strongly predicts revisions in long-term earnings forecasts with a positive sign. As in the

forecast error regressions, controlling for current-period revisions has virtually no impact on the
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coefficient estimate on longer-term revisions, lending further evidence to the hypothesis that analyst

tone carries information about long-term earnings that is orthogonal to short-term earnings news.

This information is at least partially incorporated into the numerical earnings forecasts upon arrival

of new hard information on earnings announcement dates.

Nt+1Q
t Nt+2Q

t Nt+3Q
t Nt+4Q

t

Tonet− 0.112∗∗∗ 0.091∗∗∗ 0.079∗∗∗ 0.111∗∗∗

(15.86) (12.27) (11.14) (12.53)
FEt

t− 0.191∗∗∗ 0.096∗∗∗ 0.085∗∗∗ 0.286∗∗∗

(23.53) (11.26) (7.48) (27.08)

Fixed Effects (f,t) (f,t) (f,t) (f,t)
N 48,157 42,536 37,090 31,694
R2 0.145 0.099 0.095 0.172
Within R2 0.041 0.013 0.010 0.072

This table reports regressions of forecast revisions onto pre-announcement analyst tone. All variables are measured at

the firm level, therefore, firm subscripts are omitted for ease of notation. Forecast revisions Nt+τ
t are changes in the

consensus forecast for period t + τ (shown in the superscript) around the period t earnings announcement, measured as

post-announcement consensus expectations minus pre-announcement consensus expectations scaled by the stock price

46 days prior to the announcement. Pre-announcement consensus expectations are the average of individual analyst

expectations measured within 45 days prior to the announcement, and post-announcement consensus expectations are

the average of individual analyst expectations measured within 45 days after the announcement. Pre-announcement

analyst tone Tonet− is the average tone of the reports published along with the selected individual pre-announcement

expectations. See Section 2.2.3 for details on the measurement and aggregation of analyst tone. Regressions include firm

(f) and year-quarter (t) fixed effects. Standard errors are clustered by firm and year-quarter. T-statistics are shown in

parenthesis. *,**, and *** indicate p-values of less than 10%, 5%, and 1%, respectively. All variables are measured at

the firm level, firm subscripts are omitted for ease of notation.

Table 2.3: Pre-announcement tone and forecast revisions

2.4.1 Is analyst tone priced?

Having shown that analyst tone contains information about future earnings, I now turn my attention

to whether this information is reflected in market prices. Since analyst opinions are available to

most institutional investors, any information in these reports should be quickly incorporated into

market prices. The lack of post-publication drift shown in Section 2.5 suggests that markets quickly

incorporate textual information. However, this observation by itself does not tell us whether markets
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do so in an unbiased way. If the market reaction to analyst tone is unbiased, earnings announcement

returns should not be predictable by pre-announcement analyst tone. To test this hypothesis, I

estimate

BHARi,t [0,2] = βTonei,t−+ γControlsi,t + εi,t (2.8)

where BHARi,t[0,2] is the abnormal buy-and-hold return starting on the day of the announcement

of period t earnings until the second trading day after the announcement. Abnormal returns are

measured relative to a Fama-French three-factor model, with factor loadings calculated based on 90

daily returns in the window [-135,-46] prior to the publication. I do not consider firms with less than

45 valid returns in this window. Controlsi,t is a matrix of fixed effects. Results are shown in Ta-

ble 2.4 Column (1). I do not find a statistically significant relationship between pre-announcement

analyst tone and announcement day returns.

Our analysis of forecast errors showed that analyst forecasts are understated for high analyst tone

firms and overstated for low analyst tone firms. Since tone does not predict market reactions, this

implies that Nt is misspecified as a measure of earnings surprise from the perspective of the market.

Put differently, announcement day returns should appear too small relative to the observed revision

in earnings expectations for high Tonet− firms. This is confirmed in Table 2.4 Column (3). Con-

trolling for the observed forecast revision, the sign on Tonet− is negative, and the coefficient on the

forecast revision itself increases when controlling for Tonet− .

Together, the findings in this section suggest that analyst tone contains information about fu-

ture earnings above and beyond the information embedded in the same analysts’ numerical earnings

forecasts. Analyst tone appears to be particularly informative about further-ahead quarterly earn-

ings. Stock returns on report publication days confirm this finding. However, analyst tone does

not predict returns on earnings announcement days, suggesting that the information transmitted by

analyst tone is adequately incorporated into prices upon publication of the reports.

2.5 Reaction to news
In this section, I investigate how the soft-processing of information prior to an announcement im-

pacts the processing of new information arriving on the announcement date. In a model with costly

information acquisition (e.g. Grossman and Stiglitz, 1980) or information processing constraints

(e.g. Sims, 2003), the existence of directional soft-processed information can be informative in

itself. If the net soft information is negative, it reveals that the analyst chose to acquire and soft-

process more negative than positive information. This implies that analyst tone can be used as a

measure of relative attention to negative versus positive events. For example, if analyst tone is nega-

21



BHARt [0,2] BHARt [0,2] BHARt [0,2]

Tonet− 0.053 -0.253∗∗∗

(1.61) (-6.54)
Nt+1Q

t 1.748∗∗∗ 1.776∗∗∗

(34.41) (34.70)

Fixed Effects (t) (f,t) (f,t)
N 61,745 39,308 39,308
R2 0.055 0.134 0.135
Within R2 0.000 0.064 0.065

This table reports regressions of earnings announcement returns onto pre-announcement analyst tone. All variables are

measured at the firm level, therefore, firm subscripts are omitted for ease of notation. BHARt [0,2] is the abnormal

buy-and-hold return starting on the day of the announcement of period t earnings until the second trading day after

the announcement. Abnormal returns are measured relative to a Fama-French three-factor model, with factor loadings

calculated based on 90 daily returns in the window [-135,-46] prior to the publication. I do not consider firms with

less than 45 valid returns in this window. Nt+1Q
t is the revision in 1Q-ahead earnings forecasts, measured as post-

announcement consensus expectations minus pre-announcement consensus expectations scaled by the stock price 46 days

prior to the announcement. Pre-announcement consensus expectations are the average of individual analyst expectations

measured within 45 days prior to the announcement, and post-announcement consensus expectations are the average

of individual analyst expectations measured within 45 days after the announcement. Pre-announcement analyst tone

Tonet− is the average tone of the reports published along with the selected individual pre-announcement expectations.

See Section 2.2.3 for details on the measurement and aggregation of analyst tone. Regressions include firm (f) and year-

quarter (t) fixed effects. Standard errors are clustered by firm and year-quarter. T-statistics are shown in parenthesis. *,**,

and *** indicate p-values of less than 10%, 5%, and 1%, respectively. All variables are measured at the firm level, firm

subscripts are omitted for ease of notation.

Table 2.4: Pre-announcement tone and announcement returns

tive, negative events are more salient than positive events. Moreover, the existence of soft-processed

information reveals that the analyst chose to transmit this information in its soft form, rather than

converting it into hard information. If converting soft to hard information is costly, this implies that

this information is difficult or expensive to process relative to its usefulness for investors.

To establish a benchmark for the analysis in this section, suppose prices were following a mar-

tingale. The martingale hypothesis implies that the slope coefficient in a regression of long-run

announcement returns onto short-run announcement returns is equal to one, i.e. β = 1 in

BHARi,t [0,90] = βBHARi,t [0,2]+ γControlsi,t + εi,t (2.9)
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The figures show the daily (left panel) and cumulative (right panel) abnormal returns around the publication of analyst

reports. Analyst reports are split into five equally sized groups based on their tone according to Eq. (2.4), where group

1 has the most negative tone and group 5 has the most positive tone. Day 0 is the date of publication. Abnormal returns

are measured relative to a Fama-French three-factor model, with factor loadings calculated based on 90 daily returns in

the window [-135,-46] prior to the publication. I do not consider firms with less than 45 valid returns in this window. To

disentangle forecast revisions from analyst tone, I only consider reports that do not revise earnings forecasts and that are

published at least 10 days and at most 90 days after the last earnings forecast revision of the same estimator. The sample

consists of 342,485 reports. Shaded regions show 95% confidence intervals.

Figure 2.5: Stock market reaction to analyst reports

where BHARi,t [0,T ] is the abnormal buy and hold return of security i from t to T with respect to a

Fama-French three-factor model. In contrast to the martingale hypothesis, a β above one indicates

slow reaction to news, while a β below one indicates overreaction to news. In our sample of firms

with valid pre-announcement tone Tonet− , the average β coefficient estimate after controlling for

firm and time fixed effects is almost exactly equal to 1 as documented in Table 2.6 Column (1).

In a similar setting, Martineau (2019) documents a β1 of 1.1-1.2 for S&P 1500 firms in the post-

2000 period, where most of our observations are located. I attribute the smaller slope coefficient

estimate to the fact that firms with frequent analyst coverage tend to be larger firms with higher

trading volume, where limits to arbitrage tend to be small and market efficiency tends to be high.

Table 2.6 Column (2) estimates separate slope coefficients for firms with low, medium, or high

pre-announcement analyst tone. None of the slope coefficients are statistically different from one.

In the previous section, I document that pre-announcement tone contains directional informa-

tion about future earnings, and that this information is, on average, efficiently incorporated into
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BHAR[-10,10] BHAR[-10,-1] BHAR[0,10]

Tone 0.801∗∗∗ 0.435∗∗∗ 0.369∗∗∗

(16.00) (14.27) (13.68)

Constant Yes Yes Yes
N 342,485 342,485 342,485
R2 0.004 0.003 0.002

This table reports regressions of abnormal returns around analyst report publication on the analyst tone in a single report.

BHAR[a,b] is the abnormal buy-and-hold return starting a days prior to the publication day and ending b after. Abnormal

returns are measured relative to a Fama-French three-factor model, with factor loadings calculated based on 90 daily

returns in the window [-135,-46] prior to the publication. I do not consider firms with less than 45 valid returns in this

window. Analyst tone Tone is the analyst tone in the given report as defined in Section 2.2.3. Returns are shown in

percent. Standard errors are clustered by firm and year-quarter. T-statistics are shown in parenthesis. *,**, and ***

indicate p-values of less than 10%, 5%, and 1%, respectively.

Table 2.5: Stock market reaction to analyst report publication
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The figure shows binscatter plots of current (left panel) and four quarter ahead (right panel) forecast errors against analyst

tone. Forecast errors are relative to expectations measured in a 45-day window prior to the period-t announcement.

Analyst tone is measured in the same time period. Forecast errors and analyst tone are defined in Section 2.2.1 and

Eq. (2.4), respectively. For each panel, the analyst tone is sorted into 20 equally-sized bins. Each dot represents the

mean analyst tone and the mean forecast error for one bin. The red line represents a linear fit of the underlying data. All

variables are measured at the firm level, firm subscripts are omitted for ease of notation.

Figure 2.6: Analyst tone forecast errors
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pre-announcement prices. Here, I investigate whether hard information about future earnings arriv-

ing on earnings announcement dates is processed differently conditional on whether or not it is in

line with the information in analyst tone.

To start off, I conduct a graphical analysis of the post-earnings announcement drift conditional on

the sign of the news and analyst tone tercile. The left panel of Figure 2.7 shows that following posi-

tive news, stocks with a low pre-announcement tone show significant drift in the 90 days following

the announcement. The right panel of the same figure shows that following negative news, stocks

with a low pre-announcement tone show significant overreaction that reverses within the first 15

days following the announcement.

To further quantify these results, I modify Equation 2.9 to estimate different slope coefficients con-

ditional on the interaction between analyst tone and the sign of the news arriving on the earnings

announcement date:

BHARi,t [0,90] = βNewsSigni,t ×ToneTercilei,t ×BHARi,t [0,2]

+ γControlsi,t + εi,t

(2.10)

where NewsSign is a vector of dummy variables for the sign of the news and ToneTercilei,t is a

vector of dummy variables that indicates the tercile of the pre-announcement analyst tone. Here, I

directly use the announcement return BHARi,t [0,2] as the measure of news rather than the earnings

surprise. This allows us to abstract from any measurement error in earnings news caused by the

predictability of earnings news via analyst tone that I documented in the previous section. In addi-

tion, the announcement day return captures both short-term and long-term earnings news without

restricting our sample to firms for which I observe a revision in long-term earnings forecasts. This

is particularly important given the evidence of the previous section that analyst tone is a stronger

predictor of long-term earnings news than short-term earnings news. Results are shown in Table 2.6

Column (3). I find that markets overreact to news that is in line with pre-announcement analyst

tone, e.g. negative news following a negative pre-announcement tone or positive news following

a positive pre-announcement tone. In contrast, markets underreact to news that is not in line with

pre-announcement analyst tone, e.g. positive news following a negative pre-announcement tone or

negative news following a positive pre-announcement tone. The effect is slightly stronger for neg-

ative news than for positive news. The effect is economically large: for example, the coefficient

estimate of 0.82 for negative news and low analyst tone suggests that markets on average overreact

by about 18%. The coefficient estimate of 1.14 for negative news and high analyst tone suggests

that markets on average underreact by about 14%.
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BHAR[0,90] BHAR[0,90] BHAR[0,90]

BHAR[0,2] 1.0000
(0.0229)

1{Tonet− low} × BHAR[0,2] 0.9745
(0.0304)

1{Tonet− med} × BHAR[0,2] 1.0316
(0.0285)

1{Tonet− high} × BHAR[0,2] 0.9967
(0.0296)

1{BHAR[0,2] < 0} × 1{Tonet− low} × BHAR[0,2] 0.8214∗∗∗

(0.0540)
1{BHAR[0,2] < 0} × 1{Tonet− med} × BHAR[0,2] 1.0798∗

(0.0410)
1{BHAR[0,2] < 0} × 1{Tonet− high} × BHAR[0,2] 1.1355∗∗∗

(0.0396)
1{BHAR[0,2] > 0} × 1{Tonet− low} × BHAR[0,2] 1.1085∗∗∗

(0.0393)
1{BHAR[0,2] > 0} × 1{Tonet− med} × BHAR[0,2] 0.9920

(0.0425)
1{BHAR[0,2] > 0} × 1{Tonet− high} × BHAR[0,2] 0.8867∗∗∗

(0.0427)

Fixed Effects (f,t) (f,t) (f,t)
N 61,028 61,028 61,028
R2 0.184 0.184 0.185
Within R2 0.113 0.113 0.115

The table reports coefficient estimates for variants of the following regression model:

BHARi,t [0,90] = βNewsSigni,t ×ToneTercilei,t ×BHARi,t [0,2]+ γControlsi,t + εi,t

where BHAR[0,T] is the abnormal buy-and-hold return starting on day of the announcement of period t earnings un-

til the T th trading day after the announcement. NewsSign is a vector of two dummy variables indicating the sign of

BHAR[0,2]: 1{BHAR[0,2] < 0} is a dummy variable that is equal to one if BHAR[0,2] is smaller than 0, and zero

otherwise. 1{BHAR[0,2] > 0} is defined respectively. ToneTercile is a vector of dummy variables indicating the tercile

of the pre-announcement sentiment: 1{Tonet− low } is a dummy variable that is equal to one if pre-announcement senti-

ment Tonet− is in the lowest tercile across the entire sample, and zero otherwise. Similarly, Tonet− med and Tonet− high

denote the middle and highest tercile. Pre-announcement analyst tone Tonet− is the average tone of the reports published

along with the selected individual pre-announcement expectations. Controls are firm (f) and year-quarter (t) fixed effects.

Standard errors are clustered by firm and year-quarter and are shown in parentheses. *,**, and *** indicate p-values of

less than 10%, 5%, and 1%, respectively, testing the null hypothesis that the coefficients are equal to one. All variables

are measured at the firm level, firm subscripts are omitted for ease of notation.

Table 2.6: PEAD conditional on news sign and sentiment
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The left panel shows the post-earnings announcement drift of stock with a positive abnormal announcement day return,

i.e. BHARi,t [0,2] > 0. The right panel shows the post-earnings announcement drift of stock with a negative abnormal

announcement day return, i.e. BHARi,t [0,2]< 0. Day 0 is the date of the earnings announcement. Abnormal returns are

measured relative to a Fama-French three-factor model, with factor loadings calculated based on 90 daily returns in the

window [-135,-46] prior to the publication. I do not consider firms with less than 45 valid returns in this window. Stocks

are sorted into three groups based on their pre-announcement analyst tone Tonet− , with group 1 being the group with the

most negative tone and group 3 being the group with the most positive tone. The pre-announcement tone is the average

tone across analysts prior to the earnings announcement for each firm. Details on the firm-level aggregation of the tone

measure can be found in Section 2.2.3. Shaded regions show 95% confidence intervals.

Figure 2.7: Post earnings announcement drift and reversal

2.5.1 Trading strategy

The over- and underreaction results suggest that a simple trading strategy that buys firms with neg-

ative pre-announcement analyst tone is profitable shortly after earnings announcements. For both

positive and negative news, firms with low analyst tone show abnormally high returns. Figure 2.7

suggests that these abnormal returns are concentrated in the first two weeks after the announcement,

in particular for negative news. Therefore, a trading strategy must be implemented at a sub-monthly

level. To reduce the number of portfolio rebalancing dates, I implement a comparatively conser-

vative weekly trading strategy. At the end of every week t, I form three equal-weighted portfolios

of firms that announced earnings between Thursday of week t−1 and Wednesday of week t based

on their pre-announcement analyst tone. The two-day gap between the latest earnings announce-

ment and the end of the week ensures that the portfolios do not capture any of the initial earnings
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announcement reaction. I then hold the portfolios for a full week until the end of Friday of week

t+1. Earnings announcements are clustered in certain weeks of the year, leading to empty or poorly

diversified portfolios in some weeks. To reduce the impact of idiosyncratic noise in the portfolios, I

require at least five firms in each portfolio.9 Table 2.7 shows the results. A trading strategy that buys

low pre-announcement analyst tone stocks and sells high pre-announcement analyst tone stocks in

the week after the announcement delivers an abnormal return of 38bps per week. Virtually all of

the profits come from the long side of the portfolio. From June 1996 to Feb 2019, 522 weeks (42%)

had valid low-high portfolio returns, i.e. at least five stocks in both the long and the short portfolio.

While the weekly abnormal return of 38bps annualizes to 21.68%, an investor who invests in this

trading strategy only earns 8.59% per year due to the large number of non-trading weeks.

Consistent with my observations regarding pre-publication returns in Figure 2.5, I find that

firms with rather pessimistic tone have a low loading on the momentum factor and vice versa. It is

worth noting that while the momentum factor is important to explain the variation in the low-high

portfolio, excluding it from the regression decreases the estimate for the intercept by less than 5bps

(see Table A.2 in the appendix).

The rightmost column of Table 2.7 documents returns for portfolios sorted on analyst tone

throughout the entire sample, not restricting the universe of firms to companies with earnings an-

nouncements in week t−1. I find that there is no significant abnormal return related to analyst tone

using the full sample. This finding is consistent with the hypothesis that analyst tone only enters

realized returns through the processing of additional, material earnings information, as in a model

of limited investor attention.

Table 2.8 shows the return of low minus high analyst tone portfolios for different firm sizes.

Firms in the lower two size terciles earn a weekly alpha of 33-35bps, close to the full-sample alpha

of 38bps. The alpha decreases significantly for firms in the highest size tercile to 20bps per week.

This finding supports the hypothesis that the abnormal returns documented in this section are due to

limited attention or limits to arbitrage, which are likely to be more severe for small firms.

9The results remain virtually unchanged for a larger minimum requirement of firms, e.g. 10 or 20. Setting the
threshold to 5 maximizes the number of weekly observations while keeping the idiosyncratic portfolio risk moderate.
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post-announcement weeks all weeks

low med high low-high low-high

Intercept 0.354∗∗∗ 0.159∗∗∗ -0.046 0.378∗∗∗ -0.024
(5.16) (2.63) (-0.86) (4.58) (-1.19)

Mkt-RF 1.014∗∗∗ 1.010∗∗∗ 1.056∗∗∗ -0.053 0.004
(34.68) (36.20) (42.71) (-1.43) (0.45)

SMB 0.502∗∗∗ 0.296∗∗∗ 0.386∗∗∗ 0.168∗∗∗ 0.007
(9.58) (6.60) (9.19) (2.64) (0.49)

HML 0.277∗∗∗ 0.232∗∗∗ 0.143∗∗∗ 0.111∗ 0.203∗∗∗

(5.25) (5.00) (3.37) (1.73) (13.39)
Mom -0.285∗∗∗ -0.037 0.094∗∗∗ -0.388∗∗∗ -0.316∗∗∗

(-8.45) (-1.20) (3.36) (-9.40) (-32.28)

N 591 585 662 544 973
Ad j.R2 0.78 0.75 0.77 0.18 0.65

The table shows weekly risk-adjusted returns from an analyst tone-based trading strategy. The regressions use the Fama-

French (1993) and Carhart (1997) four-factor model. The first four columns restrict the universe of stocks to firms that had

an earnings announcement in the previous week. Every week, I form portfolios of stocks that announced earnings in the

previous week based on their pre-announcement analyst tone. The low, med, and high portfolios contain firms with a pre-

announcement analyst tone in the lowest, middle, and highest tercile relative to the entire sample of pre-announcement

analyst tone, respectively. See Section 2.2.3 for details on the measurement of firm-level analyst tone. Firms have equal

weights within each portfolio. I exclude weekly observations in which less than five firms were allocated to each portfolio.

low-high is a zero-cost portfolio that buys the low portfolio and sells the high portfolio in weeks where both the low and

the high portfolio have a valid return observation. N shows the number of trading weeks. The rightmost column shows

the returns of a similar strategy that is not limited to firms that announced earnings in the previous week. The sample

period is Feb 1985-Feb 2019, however, 95% of observations are after Jun 1996. Alphas are shown as weekly percent

returns. T-statistics are shown in parentheses. *,**, and *** indicate p-values of less than 10%, 5%, and 1%, respectively.

Table 2.7: Risk-adjusted returns of an analyst tone-based trading strategy
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small medium big

Intercept 0.346∗∗ 0.333∗∗ 0.197∗∗

(2.13) (2.48) (2.38)
Mkt-RF 0.015 -0.018 -0.043

(0.19) (-0.29) (-1.17)
SMB -0.023 0.168 -0.058

(-0.16) (1.58) (-0.93)
HML 0.162 0.213∗∗ 0.066

(1.14) (2.10) (1.01)
Mom -0.352∗∗∗ -0.388∗∗∗ -0.401∗∗∗

(-4.06) (-5.79) (-9.75)

N 237 289 370
Ad j.R2 0.14 0.17 0.25

This table shows returns of the low-high portfolio returns of a tone-based trading strategy similar to the post-

announcement strategy in Table 2.7. Firms are split into terciles based on their market capitalization using NYSE break-

points, labeled small, medium, and big.

Table 2.8: FF4 risk-adjusted returns of an analyst tone-based trading strategy, double-sorted on size

2.6 Conclusion
This chapter shows that analyst report texts contain valuable information about future earnings.

A simple dictionary-based analyst tone measure predicts earnings several periods ahead above and

beyond the numerical estimates issued by the same analysts. Analyst tone is particularly informative

about longer-term earnings. Forecast revisions between the publication of an analyst report and

the announcement of the actual earnings reveal that analysts partially incorporate the information

previously transmitted through the report text into their numerical estimates over time. Stock prices

react quickly to incorporate the earnings information in analyst tone into prices.

Pre-announcement analyst tone predicts post-earnings announcement drift patterns. If analyst

tone is low, i.e. analyst reports focus on negative rather than positive information, markets overreact

to negative news and underreact to positive news. I suggest that analyst attention to positive versus

negative news can be used as a proxy for investor attention.
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Chapter 3

Learning (from) the Market’s Mistakes

3.1 Introduction
Do market prices efficiently incorporate all publicly available information? Since Fama (1965)

formulated the efficient market hypothesis, a vast number of studies have attempted to test the semi-

strong market efficiency hypothesis with mixed results. Empirical tests of this hypothesis face three

main challenges. 1) How can we identify the information that is potentially not fully priced in? 2)

How can we mitigate data mining concerns and ensure the out-of-sample validity of our findings? 3)

How can we distinguish the unraveling of biased expectations from heterogeneous discount rates?

In this paper, I develop a hierarchical attention-based neural network (HAN) that allows me

to identify and quantify textual information that is not reflected in asset prices. I train the HAN

model to predict price changes on earnings announcement dates using sell-side analyst reports that

were published in the preceding quarter. I demonstrate that earnings announcement returns are

predictable ex-ante, i.e. before the release of the earnings numbers, using information that has been

published weeks before the announcement. I show that capturing contextual information is crucial to

extracting the pricing-relevant information from text. Furthermore, I propose a method to optimally

aggregate information from multiple text documents to form a single asset return prediction.

The time sequence of report publications and announcements allows me to separate initial reac-

tions to the publication of news, gradual information diffusion, and reaction to the announcement

of the actual earnings. I document that markets initially react insufficiently to certain information

in analyst reports. Prices show no sign of convergence after the initial reaction as one would expect

from a model of gradual information diffusion. Instead, the insufficient initial reaction is persistent

and is only corrected on the next earnings announcement date, giving rise to strong predictability of

earnings announcement returns.
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In the absence of risk premiums, returns on announcement days reflect cash flow news to the

investor. If cash flow expectations are unbiased, cash flow news should be unpredictable given

the information set of the investor. On the other hand, if cash flow expectations are biased, these

biases are likely to be unraveled on the earnings announcement day when investors learn the true

cash flow to equity holders. This unraveling of biases then generates predictability in announce-

ment day returns. I conduct a series of tests to rule out that the announcement predictions capture

announcement-day specific risk factors instead of biased cash flow expectations. I show that high

announcement prediction stocks tend to have slightly lower market beta on both announcement and

non-announcement days and I do not find that the announcement return predictions predict changes

in factor betas. I am ruling out a learning-based channel as suggested by Savor and Wilson (2016)

by showing that both firms with a positive and firms with a negative announcement return predic-

tions have a positive correlation with future earnings growth. Instead, analyst forecasts are too low

for announcements with a positive announcement return prediction and too high for announcements

with a negative return prediction, which lends further support to a biased expectations explanation.

The large sample allows for effective cross-validation and out-of-sample testing of the identified

prediction patterns. Randomly sampled historical time periods appear to be sufficiently independent

to serve as a validation set for hyperparameter tuning. Not only does this allow me to increase the

length of the out-of-sample period, but also to use very recent data for training and to study the

stability of predictive relationships over time. I show that the predictors identified by the neural

network persist several years out-of-sample but that the predictive power eventually subsides. This

finding is in line with the idea that investors learn over time and that arbitrage opportunities gradu-

ally disappear. However, learning does not happen instantaneously, but over the course of several

years.

The predictability of announcement day returns is connected to the cross-sectional predictability

of returns at lower frequency. A portfolio sorted on out-of-sample announcement return predictions

earns a CAPM alpha of 93bps per month, with the majority of the alpha being realized on earnings

announcement days. The announcement prediction-sorted portfolio loads significantly on several

well-known risk factors, such as value, momentum, and profitability. A six-factor model (Fama

and French, 2015, plus momentum) leaves 49bps of the monthly alpha unexplained. It is worth

emphasizing that the prediction model is not supplied with any form of numerical information about

the firms. Nonetheless, the model picks up cross-sectional factors that are typically constructed

from numerical firm characteristics such as past returns or accounting data. Alpha and most risk

factor loadings increase monotonically with the predicted return for the next month. In particular,

the factor model regressions reveal a strong relationship between the announcement predictions

and the profitability factor. While the profitability factor can explain less than half of the alpha of
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the announcement prediction-sorted portfolio and the remaining alpha stays highly significant, the

announcement prediction-sorted portfolio can explain two-thirds of the alpha on the profitability-

sorted portfolio in the 2004-2019 period, with the remainder being statistically insignificant at the

10% level. This finding suggests that biases in cash flow expectations play an important role in

explaining the returns on the profitability factor.

The neural network presented in this paper is inspired by similar networks that have been used

in various machine learning applications, in particular Yang et al. (2016), who use a hierarchical

attention network for document classification. The neural architecture is motivated by the sequential

and hierarchical flow of textual data. Each earnings announcement return is matched with a set of

documents (i.e. analyst reports), each of which contains a sequence of words. The HAN processes

a set of documents in a series of annotation and aggregation steps. In annotation steps, data points

are enriched by contextual information of the surrounding data points. Here, data points refer to

either individual words or entire text documents. Annotation steps only impose a minimal amount

of structure on the interactions between input variables and are largely motivated by our general

understanding of linguistics and optimization intricacies of neural networks. In aggregation steps,

the dimensionality of the input space is reduced by aggregating over a set of data points. The

attention mechanism used in the aggregation steps allows us to aggregate parts of the text by using

very flexible yet affine combinations. In addition to the potential performance gains1, the affine

structure allows us to derive economic insights from an otherwise opaque empirical model.

I benchmark the HAN against popular bag-of-words prediction approaches, most notably an

Elastic Net. The HAN outperforms the Elastic Net by a factor of four. The key difference between

the HAN and any bag-of-word approach is the HAN’s ability to model interactions. In linguistics,

interactions between words or text segments are often referred to as context. While a human reader

would have immense difficulties comprehending a document article if it was presented as an un-

ordered list of the words that comprise the document, much of the existing finance literature that

utilizes textual analysis uses such a bag-of-words approach to extract the information content of the

text. Bag-of-word methods remain the method of choice in economic research due to their rela-

tively low computational needs and seemingly better interpretability. However, interpretability in

bag-of-words models is largely by assumption. The interpretation that the authors typically attach

to individual words in such an analysis is only valid as long as the context that we abstracted from

in the analysis does not have a first-order impact on the word meaning, just as the interpretation

of an OLS coefficient is only valid as long as the true underlying model is approximately linear.

Therefore, I argue that the merits of the methodology presented in this paper easily outweigh its

1Attention mechanisms were initially developed as a tool to improve the performance of neural machine translation
algorithms.
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higher computational costs and slightly more difficult inference. In addition, I demonstrate how we

can obtain interpretable explanations for the predictions of more complex prediction models such

as the HAN under the assumption of local linearity.

My work contributes to the empirical literature on market efficiency and stock return predictabil-

ity in the cross-section. Several papers have suggested that cross-sectional differences in expected

returns can be attributed to biased cash flow expectations. Nagel (2005) shows that cross-sectional

anomalies tend to be strongest among short-sale constrained stocks, suggesting that anomalies origi-

nate from mispricings that are hard to arbitrage. Lochstoer and Tetlock (2020) suggest that anomaly

returns are driven by cash flow news. Engelberg et al. (2018) show that anomaly returns are six

times higher on earnings announcement days compared to non-announcement days. Bouchaud

et al. (2019) find that the profitability anomaly is concentrated among firms with sticky analyst ex-

pectations.

I also add to the broader literature on how market participants form earnings expectations. Ball

and Brown (1968) and Bernard and Thomas (1989, 1990) show that markets underreact to earnings

news. More recently, Chang et al. (2017) provide evidence that markets fail to price information in

seasonal earnings patterns, leading to predictable market reactions to seasonal earnings.

In addition, I contribute to the emerging literature on machine learning in finance. A growing

number of papers use machine learning techniques to capture non-linear relationships in the data

and to tackle dimensionality reduction tasks in asset pricing. Bryzgalova et al. (2019) and Feng

et al. (2020a) use machine learning tools to select factors and asset pricing models. Heaton et al.

(2017), Feng et al. (2020b), and Gu et al. (2020) use feedforward networks to construct optimal

cross-sectional return predictions. Chen et al. (2020) use a general adversarial network to learn the

stochastic discount factor. All of the aforementioned papers differ from my work in two key aspects.

First, they typically focus on the prediction of monthly stock returns while I focus on the prediction

of returns on earnings announcement days. Second, their input space typically consists of a rela-

tively small number of pre-defined covariates such as firm characteristics and past returns. Many

of these covariates have been identified as predictors of the cross-section of returns by traditional

research.2 This means their neural networks face a substantially easier task than my network: while

my network finds predictors from a relatively unstructured dataset from scratch, a network that is

supplied with pre-defined predictor variables only needs to find optimal combinations of these vari-

ables. Moreover, when using pre-defined covariates that were only recently identified as predictors

of returns, for example operating profitability, researchers introduce a look-ahead bias which in-

flates the out-of-sample R2 values as they are no longer truly out-of-sample.

2Most papers use around 100 covariates or less. To put this number in perspective, consider that Hou et al. (2020a)
document 452 anomalies and that Compustat alone has 974 variables.
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Other applications of machine learning in asset pricing include Bali et al. (2020), who take the

methodology of Gu et al. (2020) to the cross-section of corporate bond returns and Bianchi et al.

(2021), who use machine learning tools to predict treasury bond returns from macroeconomic vari-

ables. van Binsbergen et al. (2020) use machine learning to de-bias analyst expectations.

Lastly, my paper extends the literature on natural language processing in finance. Previous research

has documented the information content of various textual data sources. Antweiler and Frank (2004)

and Tetlock (2007) provide evidence of the information content of internet stock message boards

and news paper articles. Ke et al. (2020) show that newspaper sentiment predicts stock returns.

Jiang et al. (2019) and Azimi and Agrawal (2021) show that the sentiment in corporate disclosures

predicts stock returns. Huang et al. (2014) document the information content of analyst report texts.

Gentzkow et al. (2019) provide an excellent overview of additional NLP applications in finance.

The rest of the paper is organized as follows. Section 3.2 introduces the methodology and

reports in-sample results. Section 3.3 discusses out-of-sample results. Section 3.4 discusses slow

information diffusion and investigates how investors learn from their past mistakes. Section 3.5

relates the results to the broader cross-section of stock returns. Section 3.6 discusses risk-based

explanations for the findings. Section 3.7 offers some insights into the inner workings of the neural

network and the underlying drivers of the return predictability. Section 3.8 concludes.

3.2 Methodology

3.2.1 Data

I obtain analyst reports from Thomson One. The sample contains 3.5 million reports and covers

the period from 1982 to 2019. Due to low coverage and survivorship bias concerns for the first

part of the sample, I only use the 2004-2019 sample for out-of-sample return predictions. I remove

all tables, figures, footnotes, and disclaimers from the reports. Stock price data is from CRSP, and

earnings announcement dates are from Compustat.

3.2.2 Preliminary considerations

Predicting returns from textual data means finding a mapping from a very large multidimensional

space to a scalar. While any prediction task can be formalized as finding a mapping between inputs

and outputs, it is particularly useful to think about a prediction task with textual inputs as finding

a mapping between inputs and outputs due to the complexity of the input space. The algorithm

that finds this mapping has to fulfill multiple criteria. First, it has to be able to process a high-
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dimensional and sparse input space (approximately 250,000 unique words). Second, it needs to

capture interactions and dependencies between two or more words to stand a chance to capture a

meaningful fraction of the information content in the report texts. Third, it has to be highly scalable

to be able to process a large amount of data. Fourth, in order to provide economic insights beyond

pure return predictability, it has to generate a mapping that is interpretable.

Textual data differs from the numerical panel data that is commonly used in finance and eco-

nomics for two key reasons. First, text is sequential. While we can look up individual word mean-

ings in a dictionary, the full information content of a word is only revealed when the word is con-

sidered in conjunction with the surrounding words. Second, text is hierarchical. For example, an

academic journal is divided into papers, papers are divided into sections, sections are divided into

sentences, and sentences are divided into words. In the context of analyst reports and earnings

announcements, the textual data for a given firm-announcement can be divided into individual doc-

uments (i.e. the reports). The structure of each individual document varies, but the documents can

always be divided into words.

Neural networks are a powerful tool to model complex functional mappings between complex

input and output spaces. In fact, a standard feedforward network can approximate any continuous

functional mapping between two Euclidian spaces (Hornik et al., 1989). In computational linguis-

tics, the class of recurrent neural networks has emerged as the go-to tool to model the sequential

structure of text. In contrast to a feedforward network, nodes in a recurrent neural network form

a directed graph, which mirrors the way a human reader reads a text document. In this paper, I

propose to use a deep recurrent neural network to estimate a functional mapping between analyst

reports and announcement day returns.

To formalize the dimensionality reduction problem for a single announcement, let M be the

number of reports, N be the number of words in each report, and V be the size of the vocabulary.

The input space is of size M×N×V . Note that the last dimension is extremely sparse as it represents

a one-hot encoded vector that identifies the word in the vocabulary. The inherent hierarchy of the

data gives us a natural structure to approach this dimensionality reduction problem. First, I reduce

the last dimension to a much smaller, dense representation M×N×E where E is small, in particular,

E≪V . Next, I summarize or encode the information of an entire report in a single vector, resulting

in a feature space of dimensions M×D. D is chosen such that D≪N ·E, so that the report encoding

is significantly smaller than the previous representation. Next, I encode the information across

reports in a single firm vector, resulting in a feature space of dimensions F×1. Finally, this vector

is transformed into a scalar which represents the return prediction.
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3.2.3 Neural architecture

The hierarchical structure of the neural network is visualized in Fig. 3.1 and discussed in detail in the

following. To ease notation, I describe the algorithm in vector notation for a single announcement

example and leave out firm-time subscripts. Let a given announcement be associated with M reports

of length Ni, where i ∈ [1,M] denotes a report. The algorithm in this paper ignores the temporal

order of the reports. In other words, the order of the reports is treated as arbitrary. ωit with t ∈ [1,Ni]

represents the tth word in the ith report. Word order is kept intact and will be taken into account by

the algorithm. Each word ωit is a one-hot encoded vector of length V , the size of the vocabulary.

ℎ21 ℎ22 ℎ2𝑁𝑖⋯

𝑤21 𝑤22 𝑤2𝑁𝑖⋯

ℎ21 ℎ22 ℎ2𝑁𝑖⋯

𝑑2𝑑1 𝑑𝑀⋯

𝑣

E[r]

word embedding

word encoder

report encoder

report aggregator

predictive regression

The figure visualizes the architecture of the neural network for a single example. An example is a single firm-month,

consisting of M reports of length Ni. Boxes represent vectors and arrows represent algebraic operations. In particular,

w21 is the word vector (embedding) of the first word in the second report. h21 is the hidden state of the word encoder

at the same position and is comprised of the forward hidden state
−→
h 21 and the backward hidden state

←−
h 21. d2 is the

report vector of the second report. v summarizes the information of all reports for the given firm-month. E[r] is a scalar

representing the predicted return.

Figure 3.1: Hierarchical network architecture
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Embedding
Given a report i with words ωi1, . . . ,ωiNi , I first embed the words to low-dimensional vectors using

an embedding matrix We. Word embeddings have increasingly been used in the finance literature

to generate low dimensional word representations (see e.g. Gentzkow et al., 2019). These vector

representations can be either learned jointly with the rest of the model or in a separate procedure

that we call pre-training. For the task at hand, pre-trained fasttext embeddings turn out to be the

most promising representation. See Section 3.2.4 for a further discussion. The embedded words are

represented by vectors wit ,

wit
E×1

=Weωit
V×1

.

Word encoder
The next step is to annotate words with contextual information from the rest of the report. Simpler

NLP approaches often model context by augmenting the feature representation by word combi-

nations. This approach is either very restrictive with respect to the distance between words, i.e.

by restricting the context to neighboring words as in the n-gram approach, or results in an expo-

nentially growing feature space when considering interactions between all words in the document.

In this paper, I take a different approach that utilizes the chain-like structure of textual data. The

HAN reads the text sequentially, i.e. word-by-word, and maintains an internal state vector at ev-

ery step. The state vector summarizes the contextual information of all previous words. At each

step, the algorithm combines the current word vector with the internal state vector to produce a

new, context-enriched word representation, which also serves as the updated state vector for the

next word. This type of recurrent neural architecture has been proven to be highly successful in

many natural language processing applications from classification (Schuster and Paliwal, 1997) to

machine translation (Cho et al., 2014b).

In particular, I use a bidirectional gated recurrent unit (GRU, Cho et al., 2014a,b) to summarize

information of both the preceding and succeeding words and to incorporate this information into the

word annotations. Like any recurrent neural network, the GRU reads examples (reports) sequen-

tially during the training process. At each step (that is, at each word) the network combines the

information in the current word (represented by its word embedding) with the contextual informa-

tion of all previous words in the same example. The contextual information is captured in a single

hidden state vector that is updated at each step. A detailed description of the GRU including its

algebraic representation can be found in Appendix B.1.2.

The bidirectional GRU walks through the report text twice, once in the natural order and once in
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reverse order. Using a bidirectional architecture has been shown to generate better representations

of the linguistic context in a wide range of applications (Schuster and Paliwal, 1997). Letting
−−→
GRU

and
←−−
GRU denote the vector-valued transformation functions of the forward and backward pass,

respectively, the hidden states are given by

−→
hit
H×1

=
−−→
GRU(wit ,wit−1, . . . ,wi1)

←−
hit
H×1

=
←−−
GRU(wit ,wit+1, . . . ,wiNi)

The total word annotation for a given word ωit is obtained by concatenating the forward and back-

ward hidden states

hit
2H×1

= [
−→
hit ,
←−
hit ].

These concatenated hidden states can be interpreted as word embeddings that have been augmented

by the contextual information of the entire document. Importantly, the hidden state takes into ac-

count positional information, allowing a recurring term to be represented by completely different

vectors within a single report.

Report encoder
The next step is to aggregate the information of the word encodings hi1, . . . ,hit of a given report into

a single document vector di.

RNNs are often set up to simply pass the last hidden state of the recurrent layer to subsequent

layers, effectively treating the last hidden state as a summary of the entire document. In this paper,

I use a self-attention mechanism (Bahdanau et al., 2014; Luong et al., 2015) stacked on top of the

recurrent layer to obtain optimal document representations. The attention mechanism constructs the

document vector as a weighted sum of the hidden states of the recurrent layer. The attention weights

are a function of the input data which is learned together with the rest of the model. Importantly,

the weight of a single word is a function of all words in the document and its position within

the document. This means any given term can receive vastly different weights even with a single

document depending on the context of each instance of the term.

The implementation of the attention mechanism in this paper follows Yang et al. (2016). I first

obtain a hidden representation uit of the report content by feeding the hidden states hit through a
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single-layer multi-layer perceptron,

uit
2H×1

= tanh(Wwhit +bw).

Throughout the paper, I use the letter W to denote weight matrices and the letter b to denote bias vec-

tors.3 Weights are then calculated by comparing each transformed hidden state uit with a trainable

context vector uw. Specifically, each hidden state’s weight is calculated by measuring the alignment

of the transformed hidden state with the context vector via the dot product and converting it to a

non-negative weight with the softmax function,

αit =
exp(u⊤it uw)

∑t ′ exp(u⊤it ′uw)
.

The context vector uw can be thought of as the embedding of a fictitious word that is informative for

return prediction and is learned in the training process. Word-level hidden states that are similar to

this fictitious word tend to be more informative for return prediction, therefore they receive a higher

weight in the report encoding.

The affine structure of the attention layer allows us to investigate which part of an input sequence

drives the model prediction. Fig. 3.2 visualizes the attention weights αit for a randomly selected

analyst report. The neural network attends to various parts of the text, in particular forward-looking

statements as well as discussions of prices and valuations.

After obtaining the attention weights we can calculate the aggregate hidden state as

h̃i
2H×1

= sh
i ∑

t
αithit .

where

sh
i = 1+δh(Ni−1)

is a scaling factor that is proportional to the number of words in the report N. The scaling factor

allows the network to learn adjusted weights sh
i αit that do not add up to one. For example, δh = 1

implies that the information within a report is additive, while δh = 0 implies that the information

in the report is best represented by the weighted average of the word-level vectors. Training the

weights and the scaling factor separately, rather than directly learning weights that do not need to

add up to one, allows me to directly observe the optimal scaling in the trained model. To obtain the

3In machine learning, a vector of constants is typically referred to as bias vector in analogy to biasing in electronics.
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we are resuming research coverage of altera corporation with a strong buy recommendation . as the semicon-
ductor industry recovers from a three year downturn , altera is benefiting from a favorable pricing environment
, strength in the communications sector and an improving cost profile that is allowing gross margins to expand
. altera continues to impress us with the scope and breadth of its new product initiatives . it is apparent that
the company is firing on all cylinders and laying the foundation necessary to maintain and extend a leading
position in the programmable logic device ( pld ) marketplace . new products continue to firmly drive growth
at the company while strong end markets and a greater mix of products and reduced pricing pressure are
accelerating altera ’s top line growth . we expect continued focus on cost reductions should provide ample
opportunity for margin expansion . we anticipate that the pld industry should grow NUM in NUM and NUM
. this exceeds consensus expectations of another NUM NUM in the year NUM , following a NUM increase in
NUM . our eps estimates for NUM and NUM are NUM and NUM , respectively . we have assigned a NUM
month stock price target of NUM based on a multiple of NUM times our NUM estimate .

Sample report for semiconductor manufacturer Altera issued by Deutsche Bank on Feb 25th, 2000. Darker shading

indicates higher attention weight. The model predicts a market excess return of 0.73% on the next earnings announcement

date. Note that the report has been pre-cleaned. Most notably, numbers have been replaced by the “NUM” token.

Figure 3.2: Attention weights

report encoding di, I apply two dense transformations to the attentional hidden state,

d̃i
D1×1

= selu
(
Wh1h̃i +bh1

)
di

D2×1

= selu
(
Wh2d̃i +bh2

)
,

where selu is the Scaled Exponential Linear Unit activation functions from Klambauer et al. (2017).4

The choice of the selu activation function here is motivated by two reasons. First, it can be con-

sidered a smooth approximation of a rectifier function, selus,a(x) ≈ max(−sa,sx), that allows the

network to learn piecewise-linear transformation functions. As such, it is closely related to the relu

activation function that can be frequently found in neural networks but has some unattractive opti-

mization properties such as being prone to suffer from vanishing or exploding gradients. Second,

with the given parameters a and s, selu tends to normalize the input variables which facilitates the

training of the network.

4The Scaled Exponential Linear Unit is defined as

selu(x) =

{
s · x if x≥ 0
s ·a · (exp(x)−1) if x < 0.

The parameters a = 1.67326324 and s = 1.05070098 are chosen such that the output of the selu function has mean zero
and unit standard deviation under certain assumption as discussed in Klambauer et al. (2017).
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The two-layer specification allows the network to learn more complex non-linear transformation

of h̃t compared to a network that transforms h̃t to dt with a single layer. In unreported empirical

tests, I find that the two-layer specification used here significantly improves the validation loss.

This suggests that non-linear transformations play an important role in finding the optimal mapping

between analyst reports and announcement returns.

Report aggregator
To obtain announcement-level stock return predictions, the individual report vectors need to be ag-

gregated into a single announcement encoding that represents all the analyst information for the

given firm and month. Firm-month encodings are constructed as a weighted average of individual

report encodings using an attention mechanism similar to the one used to obtain the report encod-

ings.

To keep things simple, I ignore the sequential nature of analyst reports publications and treat the

report encodings for a given firm-month as an unordered collection. The aggregation procedure for

reports closely follows the aggregation procedure that was used to aggregate words. I first obtain a

hidden representation ui of the report content by feeding the document vector di through a single-

layer multi-layer perceptron. This hidden representation is compared to a trainable context vector

ud using the dot product. Similar to the word context vector, the document context vector can be

interpreted as the encoding of a fictitious informative report and is learned in the training process.

I again transform the alignment score to non-negative weights through with the softmax function.

The final firm-announcement vector v is the weighted average of the report encodings multiplied by

a scaling factor sd .

ui
D×1

= tanh(Wddi +bd)

αi =
exp(u⊤i ud)

∑i′ exp(u⊤i′ ud)

sd = 1+δd(M−1)

v
D×1

= sd
∑

i
αidi

Together with the attention weights, the scaling parameter δd allows the network to learn whether

information across different reports is should be summed up or averaged across. For δd = 0, the

firm-announcement vector v is a simple weighted average of the report vectors di with weights αi

that add up to 1. For δ > 0, v can be interpreted as a weighted average of report vectors where the

sum of weights sdαi is larger than 1.

Note that the report weighting exclusively depends on the content of the reports. An extension
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of the mechanism could take into account additional information such as the author of the report

or the distance between the report publication and the earnings announcement. Such a mechanism

could be easily added to the model by introducing a contributor-specific scaling vector that is either

added to or multiplied with ui before calculating the alignment score. In addition, one could take a

more direct approach in trying to capture interactions between reports by adding a recurrent layer

on top of the report encoder. This approach has the downside that it breaks up the additive structure

of the firm encoder, which makes it harder to analyze the market reaction to a report publication

with a certain return prediction. I leave the exploration of these ideas for future research.

Predictive regression
Lastly, I use the firm-announcement vector to form predictions of announcement returns. The firm-

announcement vector can be thought of as a compressed summary of all return-relevant information

that was conveyed by the analysts for a given firm and announcement. This vector is used in a

simple linear regression model to form predictions of future returns

r̂ =Wvv+bv (3.1)

where r̂ is a scalar. The affine structure of the report aggregator allows us to express the return

prediction r̂ as the weighted sum of report-level return predictions r̂i,

r̂ = ∑
i

αi (Wvdi +bv)︸ ︷︷ ︸
r̂i

. (3.2)

Eq. (3.2) highlights that the algorithm can only learn interactions between two analyst reports in

a fairly limited way. In particular, the algorithm might over- or underweight a particular report

based on the presence of another report, since the weight αi depends on all reports for the given

announcement. αi can be interpreted as a measure of relative signal strength.

The model is solved by minimizing the sum of squared prediction errors over all examples.

Using boldface letters to represent vectors of observed and predicted returns for all examples, we

can write the optimization problem as

argmin
{−−→GRU ,

←−−
GRU ,Ww,bw,uw,Wh,bh,Wd ,bd ,ud ,Wv,bv}

(r̂− r)⊤Ω(r̂− r)+Regularization (3.3)

where r and r̂ are vectors of the observed and predicted returns, respectively, with their length

being equal to the number of examples in the dataset. Ω is a diagonal sample weight matrix and

Regularization is a penalty term that restricts the weight matrices. Both are explained in detail in
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Section 3.2.5.

3.2.4 Pre-training

Pre-trained word embeddings have been proven to significantly improve NLP tasks such as sentence

classification (Kim, 2014). Instead of starting the model with a randomly initialized embedding

matrix We that is then trained together with the remaining neural network, the embeddings are

learned separately from the main task, often using a secondary data source. In the general NLP

literature, the secondary data source is typically a very large text corpus such as a Wikipedia Dump

or a Common Crawl. While this approach has been shown to yield superior embedding matrices that

are able to reflect small nuances in word meanings and provide meaningful linguistic representations

even of rare words, it cannot be used for the analysis of financial data. The use of current, general-

purpose encyclopedias can easily introduce a look-ahead bias, in particular when used for return

prediction. To see this, consider the word “Enron”. In today’s Wikipedia, the word “Enron” will

be found in close proximity to terms such as “bankruptcy” or “fraud”, which will impact the word

embedding for “Enron” beyond its linguistic meaning. Therefore, I pre-train word embeddings

using the analyst report corpus itself using fasttext (Joulin et al., 2017; Bojanowski et al., 2017)

in regular intervals. Fasttext is an extension of Word2Vec (Mikolov et al., 2013a,b) that considers

subwords during the training process, i.e. it treats each word as the sum of fixed-length subwords.

This is particularly helpful for report texts that were extracted using optical character recognition

(OCR), which tend to be noisy. For example, the fasttext algorithm generates an embedding for the

word “earningsat” - an instance of the phrase “earnings at” for which the OCR algorithm failed

to recognize the blank space between the two words - that is almost identical to the embeddding for

the word “earnings” without seeing a large number of instances of “earningsat”.

I estimate the word embeddings with a skipgram model and negative sampling. The skipgram

model predicts each word token based on its neighboring word tokens using a simple linear trans-

formation of the word embeddings of the neighboring words. The algorithm is summarized in Ap-

pendix B.1.1. An in-depth discussion of the skipgram model and negative sampling can be found in

Mikolov et al. (2013a,b).

Pre-training the word embeddings has two additional advantages beyond improved prediction

performance. First, it guarantees that word embeddings are linguistically meaningful, which im-

proves the interpretability of the results. Second, it allows us to fix the embedding matrix in the

training process of the downstream network, which significantly reduces the dimensionality of the

training task. The vocabulary size for the full sample is approximately 250,000 after pruning words

that occur less than five times. With an embedding size of 128, the resulting embedding matrix has

over 30 million free parameters, which compares to 20,611 free parameters of the rest of the model.
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Reducing the number of free parameters in the training process reduces the risk of overfitting and

significantly speeds up the training process.

3.2.5 Training

Optimization
I estimate the model using stochastic gradient descent with adaptive moment estimation (Adam,

Kingma and Ba, 2014) and decaying learning rate on mini-batches of size 64. The model is consid-

ered converged if the validation loss does not improve over the course of ten epochs.

Regularization
All matrix transformations outside the GRU layer are restricted by penalizing the l2-norm of the

weight matrices. The regularization term in the loss function Eq. (3.3) can be written as

Regularization = ∑
j={w,h1,h2,d,v}

λWjWj + ∑
j={w,d}

λu j u j

where the regularization parameters λ are hyperparameters. The GRU layer is not regularized

since regularization would restrict its ability to learn long-term dependencies (Pascanu et al., 2013).

Instead, I employ dropout after both attention layers (Hinton et al., 2012).

Model instances
Ideally, we would re-train the model every month using the data available at each point in time.

However, the training procedure is computationally expensive.5 To balance computational limita-

tions and the statistical power of a larger and more recent dataset, I re-train the model in coarse

intervals. For the first iteration, I use earnings announcements and associated analyst reports up to

December 2003. I refer to this model instance as the “2003 model” in the rest of the paper. After

that, I retrain the model every two years. For example, for the second iteration, I use announcements

up to December 2005, and so on.

Train/validation split and cross-validation
Stock returns exhibit a strong correlation at a given point in time. Therefore, training and validation

data must be sampled from distinct time periods. Previous literature (e.g. Gu et al., 2020) suggests

splitting the available sample along a single point in time and using the most recent period for

validation. I argue that because the time-series correlation of stock returns at monthly frequency is

5For example, the 2017 model converged after training for approximately 10h (Nvidia Tesla V100 GPU) plus 4h for
pre-training the embeddings (Intel Xeon Platinum 8175, 8 vCPU cores).
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fairly weak, a better approach is to randomly select a subset of months from the available sample

and use observations from the selected months for validation. This allows me to use more recent

data for training. In addition, to the extent that infrequent events such as recessions might dominate

stock returns over the period of several months which will be split across the training and validation

set in my approach, the randomly sampled validation set might be a better representation of the

distribution of returns than a hold-out sample that consists of a number of consecutive months. In

particular, I randomly select 10% of the months to form the validation set and use the remaining

90% for training. The validation set is used to fine-tune the hyperparameters and determine the

stopping point during the training process.

To maximize the statistical power of the model, I estimate the model using ten-fold cross-

validation. Each month of data will be in exactly one validation set of the ten folds, and in the

training set of the remaining nine folds. The predictions used in the out-of-sample analysis are the

average prediction across the ten folds.

Sample weights
Analyst coverage gradually increased from the beginning of the sample until the mid-2000s. To

ensure that the neural network does not overfit the later part of the dataset, I weight examples (firm-

announcements) by the inverse of the number of firms in the given quarter in the loss function. The

weight is capped at 1/500, which is approximately equal to the 90th percentile of the inverse number

of firm-announcements per quarter.

Returns
I use two-day market-adjusted returns to measure the market’s reaction to an earnings announce-

ment. The market-adjusted return is calculated as the cumulative stock return from the end of the

day before the announcement to the end of the day after the announcement, minus the cumulative

return on the value-weighted market portfolio over the same time period. Removing the common

market component from the outcome variable reduces the correlation between the examples and

makes the algorithm less likely to pick up a common time-series component of returns instead of

cross-sectional predictors.

The stochastic optimization procedure is sensitive to large outliers in the data. In addition, large

stock price movements are more likely to reflect random noise rather than large expected returns.

Keeping large outliers in the dataset is likely to be detrimental to the algorithm’s ability to pick up

systematic patterns in expected returns. Therefore, I clip the stock returns in the training process

at [-0.06,0.06], which is approximately equal to winsorizing at 16% on either side or clipping the

variable at ±1 standard deviations.
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Report selection
Each analyst report is assigned to the next earnings announcement following the report publication

date. To rule out that the results are diluted by market reactions to the report publication, reports

that are published less than three trading days prior to the next earnings announcement are assigned

to the subsequent earnings announcement. Reports that are older than 365 days are discarded, as

these tend to be assigned to the wrong announcement date due to missing announcement date data.

The number of reports assigned to each firm announcement is heavily right-skewed. To reduce

the influence of these observations, I cap the number of reports for each announcement at 100. If

the dataset contains more than 100 reports for a particular announcement, I rank the reports by

contributor and age and discard the lowest ranking reports until the number of reports is no more

than 100.6

To reduce the size of the dataset and filter out noise, I focus on the first page of each analyst

report. Analysts typically summarize their key insights on the first page of the report. While some

information on later pages might be relevant for return prediction, these pages are more likely to

contain irrelevant text such as generic text blocks or extensive company descriptions. In addition,

the substantial reduction of the document size allows for substantially faster training.

Pre-training
Embeddings are pre-trained using a skipgram model with context window size 5. Words that occur

less than five times are excluded from the dictionary for computational efficiency. The number

of epochs is 5 for a sample of 3 million reports and more, 15 for a sample of 1 million reports and

below, and a linear interpolation between [3, 15] for the range of report numbers in between. Bounds

are chosen based on the observation that fasttext embeddings tend to under- or overfit outside the

[5,15] range and that fewer epochs are required when more i.i.d. samples are available.7 Embedding

vectors are normalized to unit length.

3.2.6 Hyperparameter optimization

The model has 13 hyperparameters, including four parameters that govern the model size and nine

regularization parameters. The larger number of parameters and costly training of the model make

an exhaustive grid-search approach infeasible. Therefore, I use a Bayesian optimization procedure

to choose the hyperparameters as well as the initial learning rate. In particular, I follow Srinivas et al.

(2012) and model the hyperparameter choice as a multi-armed bandit problem where the payoff

6In other words, the oldest reports of the contributor(s) with the highest number of reports are discarded until there
are no more than 100 reports. This approach favors using a more diverse set of reports at the cost of using slightly older
reports for stocks with a high analyst coverage.

7see e.g. https://fasttext.cc/docs/en/unsupervised-tutorial.html
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function is sampled from a Gaussian Process (GP-UCB). The payoff function in this setting is the

validation R2 of the trained model and the inputs are the hyperparameters. At every iteration step,

the algorithm estimates an upper confidence bound of the payoff function for all hyperparameter

combinations from a grid of the 13 hyperparameters. The algorithm then evaluates the function at

the maximum upper confidence bound. In other words, the algorithm trains the model with the most

promising set of hyperparameters and records the validation R2. I run this Bayesian optimization for

60 iterations. 60 iterations are likely to result in a set of parameters that is within close proximity

to the optimal parameter set. To set a lower bound on the expected accuracy after 60 iterations,

suppose that parameter combinations were sampled at random as in a random search optimization.

After 60 trials, the probability that the best randomly sampled parameter combination lies within

5% of the global optimum is 1− (1−0.05)60 = 95.4%. Of course, the Bayesian optimization does

not sample parameter combinations at random. If the payoff function is fairly well described by

the Gaussian Process, the expected distance of the obtained parameter combination from the true

optimum will be substantially lower.

Due to computational constraints, I optimize the hyperparameters only once using data up to

2003, and use these hyperparameters for the entire sample. The optimal hyperparameters are shown

in Table 3.1. The range of explored hyperparameters is shown in Appendix B.1.3. Separate hy-

perparameter optimization for each model instance would probably improve the performance of the

model in later years.8

8The optimization procedures takes approximately 120h on a Nvidia Tesla V100 GPU using the 2003 sample. The
training time scales approximately linearly with the number of examples. In unreported tests, I experiment with using
Hyperband (Li et al., 2018) for hyperparameter optimization. Hyperband achieves approximately 80% of the reported
validation R2 of the GP-UCB approach in under 48h.
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Parameter Symbol Value

Layer dimensions
Word embedding size E 128
GRU hidden units (combined directions) 2H 16
Report encoder intermediate layer D1 256
Report encoder output dimension D2 32

Regularization parameters
Report encoder word attention Ww l2-regularizer λWw 0
Report encoder word attention uw l2-regularizer λuw 10−3

Report encoder Wh1 l2-regularizer λWh1
10−6

Report encoder Wh2 l2-regularizer λWh2
0

Word attention output dropout 0.1
Report attention Wd l2-regularizer λWd 0
Report attention ud l2-regularizer λud 10−8

Report attention output dropout 0.2
Final prediction Wv l2-regularizer λWv 10−8

Table 3.1: Neural network hyperparameters

3.2.7 In-sample results

Table 3.2 shows the training statistics. The model predictions explain between 0.68% and 1.20% of

the return variation in the training sets and between 0.39% and 0.60% of the return variation in the

validation sets. Despite the steeply increasing sample size between the 2003 and 2017 training in-

stances, the validation R2 does not show a significant time trend. The two rightmost columns report

the accuracy for the training and validation set. Accuracy is defined as the fraction of examples for

which the neural network predicts the correct sign and can be interpreted as the neural network’s

ability to predict beats versus misses (in the absence of announcement day risk premiums). In con-

trast to R2, accuracy is robust to outliers. Just like the validation R2, validation accuracy does not

exhibit a significant time trend. The absence of a clear time trend in the evaluation metrics suggests

that the earlier model instances are not significantly impaired by the smaller sample size.

Validation R2 and accuracy are uniformly lower than their training counterparts, which suggests that

the model has a tendency to overfit the training data. This could potentially be alleviated by further

fine-tuning of the regularization parameters.
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R2 (%) Accuracy (%)

Model year Examples Reports Training Validation Training Validation

2003 120,391 654,717 0.68 0.43 52.78 52.24
2005 140,639 938,604 0.81 0.44 52.99 52.41
2007 162,302 1,167,896 0.95 0.51 53.22 52.29
2009 183,307 1,382,554 0.90 0.39 53.20 52.10
2011 204,007 1,631,805 1.02 0.46 53.32 52.35
2013 224,449 1,936,827 0.92 0.45 53.14 52.49
2015 246,351 2,257,973 1.04 0.60 53.23 52.60
2017 268,255 2,578,304 1.20 0.41 53.54 52.13

Examples is the total number of examples (earnings announcements) available to train each model. Reports is the number

of reports across all examples. Approximately 90% of these examples are used for training, the remainder is used for

validation. R2 is defined in Eq. (3.4). Accuracy is the fraction of examples for which the neural network predicts the

correct sign.

Table 3.2: Training statistics
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3.3 Out-of-sample tests

3.3.1 Out-of-sample predictability

To test the out-of-sample validity of the return predictions, I form predictions for every earnings

announcement in the sample starting in the year 2004 using the latest available HAN model instance

based on the biennial re-training of the model. In particular, predictions for announcements in the

years 2004 to 2005 are based on the 2003 model instance, predictions for the years 2006 to 2007

are based on the 2005 model instance, and so on. Fig. 3.3 plots realized returns against the out-of-

sample return predictions. Visual inspection suggests that realized returns are nearly monotonically

increasing in the neural return predictions. On average, the slope of a linear regression of realized

onto predicted returns is near one. It appears to be slightly lower for positive than for negative

returns, suggesting that there is more attenuation in positive predictions than negative predictions.

In addition, the binscatter plot suggests that the neural return predictions are unbiased: firms with

a positive return prediction tend to have positive announcement day returns, firms with a negative

prediction tend to have negative announcement day returns, and firms with a return prediction near

zero have an average announcement day return of zero.

To evaluate the out-of-sample performance more formally, I calculate the out-of-sample R2 as

R2
oos = 1−

∑(i,t)(rit − r̂it)
2

∑(i,t) r2
it

. (3.4)

In addition, I benchmark the neural return predictions against the historical mean,

R2
oos,mean = 1−

∑(i,t)(rit − r̂it)
2

∑(i,t)(rit − r̄t)2 , (3.5)

where the historical mean r̄t is calculated from the training dataset of the model instance. Ex-

ante, it is unclear whether R2
oos or R2

oos,mean impose a tougher benchmark for the model: As Gu et al.

(2020) point out, the historical mean is measured with noise, and therefore generally poses a weaker

benchmark for out-of-sample return predictions. However, since the unconditional mean return on

announcement days is significantly higher than on non-announcement days (Beaver, 1968), this

might not be the case on announcement days.

Table 3.3 show the out-of-sample R2 for the two years after the training period for each model

instance. For example, the R2
oos of 0.69% of the 2003 model is the out-of-sample R2 of the pre-

dictions from the 2003 model in the years 2004 and 2005. R2
oos,mean in the same column is the

out-of-sample R2 with r̄t equal to the average announcement day return rit in the sample ending at
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Binscatter plot of out-of-sample realized versus predicted announcement day returns. The neural return predictions are

sorted into 20 equally sized bins. The blue dots represent the average predicted return and corresponding realized return

of each bin. The red line is a linear regression fit through the original data points. Returns are in percent.

Figure 3.3: Out-of-sample realized vs. predicted announcement returns

the end of the year 2003. The column All shows the out-of-sample R2 over the entire out-of-sample

period where the predictions are generated by the latest available model instance at each point in

time.

The out-of-sample R2 for the entire sample is 0.44%. R2
oos for the biennial sub-periods varies

between 0.17% and 0.68%. Perhaps unsurprisingly, the highest R2
oos is achieved by the first model

instance that was used for hyperparameter training and is therefore likely to be better fine-tuned to

the data. R2
oos and R2

oos,mean are very similar for the full sample. The results suggest that the neural

network is able to learn persistent predictors of announcement returns. R2
oos is positive in every two-

year subperiod and statistically significant in seven out of eight subperiods, including the financial

crisis.

The out-of-sample R2 for the entire sample of 0.44% is remarkably similar to the average val-
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idation R2 of 0.46% shown in Table 3.2. This confirms that the randomly sampled validation sets

are sufficiently independent of the training data to serve as validation samples for hyperparameter

tuning and early stopping.

Model 2003 2005 2007 2009 2011 2013 2015 2017 latest
OOS period 04-05 06-07 08-09 10-11 12-13 14-15 16-17 18-19 04-19

R2
oos 0.68 0.43 0.36 0.36 0.62 0.46 0.17 0.49 0.44

(5.01) (3.81) (3.45) (3.17) (5.52) (3.98) (1.42) (3.99) (10.57)
R2

oos,mean 0.69 0.47 0.36 0.38 0.63 0.46 0.16 0.49 0.44
(5.14) (4.18) (3.41) (3.31) (5.56) (3.96) (1.38) (3.98) (10.75)

The table shows out-of-sample R2 measures for the two years after the model formation. R2
oos is the out-of-sample R2

with benchmark zero as shown in Eq. (3.4). R2
oos,mean is the out-of-sample R2 with the historical mean benchmark as

shown in Eq. (3.5). Diebold-Mariano test statistics are shown in parentheses. Boldface indicates statistical significance

at the 1% level.

Table 3.3: Out-of-sample R2

3.3.2 On the persistence of predictors

If the predictive patterns present arbitrage opportunities to investors, we expect them to disappear

over time. To study the persistence of the predictors that were identified by the neural network, I

follow Welch and Goyal (2008) and plot the difference in cumulative quarterly mean squared er-

rors between the historical mean model and the neural return predictions in Fig. 3.4. An increasing

line indicates that the neural return predictions outperform the historical mean model. I plot the

mean squared error rather than the sum of squared errors to account for the varying number of

observations across quarters, effectively giving equal weight to each quarter in the out-of-sample

period. The visual analysis suggests that the predictive power of each model lasts for several years

but slowly dissipates. At the end of the sample period, the cumulative MSEs of the eight models

line up almost perfectly with the model years. With the exception of the 2013 model which has a

lower cumulative performance than the 2011 model, newer models always have a higher cumulative

performance than all of the older models.

The 2003 model continues to predict returns for about half a decade and then flattens out signifi-

cantly. This suggests that the return predictors identified by the 2003 model hold for an extended

period of time but eventually vanish. We can observe a similar, albeit less pronounced, flattening of

the cumulative MSE curves of the other models over time. I test the hypothesis that the predictive
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power diminishes over time more formally by testing the hypothesis that the neural network outper-

forms the historical mean model in every two-year period following the training year by conducting

moving-window Diebold-Mariano tests. Results are shown in Table 3.4. The tests confirm that

each model instance is able to produce positive and significant out-of-sample R2 for four to eight

years, with the exception of the 2016-2017 period. The Diebold-Mariano test statistic is highest in

the out-of-sample period that immediately follows the model training for all model instances. The

findings in this section suggest that investors eventually learn from past mistakes when it comes to

forming optimal earnings expectations based on the textual information in the analyst reports, but

only do so very slowly over the course of several years.

2005 2007 2009 2011 2013 2015 2017 2019
Date (Quarter)

0

1

2

3

4

5

Cu
m
ul
at
e 
M
SE

 d
iff
er
en

ce

model
2003
2005
2007
2009
2011
2013
2015
2017

The figure shows the out-of-sample performance of the neural return predictions. In particular, it shows the cumulative

quarterly difference in the mean squared prediction error of the neural network versus the mean squared prediction error

of the prevailing historical mean. For better visualization, each model instance starts with the cumulative mean difference

of the previous model, e.g. the 2005 model starts with the cumulative MSE difference of the 2003 model in 2005Q4. The

first model instance, 2003, starts with a value of 0 in 2003Q4.

Figure 3.4: Quarterly performance of different model instances
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Model 2003 2005 2007 2009 2011 2013 2015 2017
OOS period

04-05 5.14
06-07 2.73 4.18
08-09 1.79 2.68 3.41
10-11 0.04 1.67 2.10 3.31
12-13 0.28 1.23 2.39 3.22 5.56
14-15 1.39 1.52 3.12 2.74 4.83 3.96
16-17 -2.32 -0.68 -1.26 -0.88 1.32 0.32 1.38
18-19 -0.13 0.58 0.03 1.66 2.35 1.70 2.84 3.98

The table shows Diebold-Mariano test statistics for the out-of-sample return predictions benchmarked against the histor-

ical mean model. Columns indicate the model instance and rows indicate the out-of-sample period. Positive DM values

indicate that the R2
oos,mean is larger than zero. Boldface indicates statistical significance at the 1% level of a one-tailed

test.

Table 3.4: Diebold-Mariano test statistics for further-ahead out-of-sample periods

3.4 Information diffusion
One of the most studied empirical artifacts in financial markets is the delayed price response to

publicly available news. A myriad of papers has documented that realized earnings surprises are

not fully reflected in prices immediately, but drift towards the new equilibrium price over the course

of several trading days, known as the post-earnings announcement drift (e.g. Ball and Brown, 1968;

Bernard and Thomas, 1989). The delay is stronger when investor attention is lower and processing

costs are higher (Hirshleifer et al., 2009). Investor attention to analyst reports is likely to be lower

than to earnings announcements, and processing costs of textual information are almost certainly

higher than those for numerical information, so we would expect to see similarly delayed price re-

sponses for analyst reports. To test whether the observed predictability can be explained by gradual

diffusion of the information in the reports, I run an event study on report publication and earnings

announcement days conditional on the neural return predictions. At this point, the affine structure

of the report aggregator demonstrated in Eq. (3.2) comes in handy: while the neural network is

designed to make a single prediction based on a number of reports, we can represent this prediction

by a weighted average of predictions that were made based on a single report. This allows me to

study the market reaction to a single report. Recall that the report predictions were formed to predict

returns on the next earnings announcement day that is at least two trading days after the report pub-
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lication day. To emphasize the difference between the market reaction to the release of the reports

versus the release of the actual earnings, I refer to returns on report publication days as publication

returns and returns on earnings announcement days as announcement returns.

The left panel in Fig. 3.5 shows the abnormal returns around the report publication conditional on

the report-level return prediction r̂i as shown in Eq. (3.2). The plot reveals that the publication

returns are positively correlated with the announcement prediction. Report publications with a neu-

ral return prediction (NRPi) in the highest quintile coincide with an abnormal publication return of

around 1%, and publications with a neural return prediction in the lowest quintile coincide with a

return of around -0.5%. The figure also shows significant drifts leading up to the publication of

both negative and positive NRPi reports. This suggests that the neural return prediction does not

only capture information that was revealed by the report itself but also captures information that

was revealed to at least a subset of investors beforehand and then reiterated in the analyst report.

An example of public information that is frequently reiterated in analyst reports is an earnings call.

Analysts often publish new reports after earnings calls and summarize their takeaways from the

earnings call in these reports.

The post-publication drift appears to be very small. Returns after the publication of low NRP re-

ports are virtually flat, and only marginally positive after the publication of high NRP reports. This

suggests that the neural network does not simply pick up post-publication drifts of reports that are

published close to the earnings announcement.

The right panel in Fig. 3.5 shows the abnormal return around earnings announcements conditional

on the firm-level return prediction r̂. The figure confirms the predictive power of the neural network.

Firms in the highest NRP quintile have a positive abnormal return on the announcement day and

firms in the lowest NRP quintile have a negative abnormal return on the announcement day. To-

gether with the findings from the publication days, this suggests that the neural network on average

predicts underreaction to both negative and positive news. In contrast to the publication reactions,

the magnitude of the abnormal return is higher for negative predictions than for positive predictions,

which suggests that the underreaction to negative news on the publication date is stronger than the

underreaction to positive news.

In contrast to typical earnings announcement event studies, the event study here has two in-

formation events that are unequally spaced and potentially overlapping. To tease apart the effects

of publications and announcements, I run a joint event study by estimating a single regression of

daily returns on dummy variables that indicate the distance to both the publication as well as the
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announcement. In particular, I estimate

rit = βt + ∑
τ∈T

β
pub

tτ NRPreport
it 1(pub+τ days)report

it

+ ∑
τ∈T

β
act
tτ NRPreport

it 1(actual+τ days)report
it + ε

report
it

(3.6)

in a two-stage Fama-Macbeth regression. The unit of observation is a report-date, i.e. the sample

contains all reports and the associated returns in a [-30,70] trading day window around the report

publication. To be clear, a single rit can appear in the sample multiple times if the [-30,70] trading

day window of one report overlaps with the window of another report of the same firm. The overlap-

ping windows and repeated sampling of rit induce cross-sectional correlation of the residuals in the

first stage, but not in the second stage. 1(pub+τ days) is an indicator variable that is equal to one if

the return is τ days after the publication of the report. Similarly, 1(act+τ days) is equal to one if the

return is τ days after the earnings announcement date. For both publications and announcements, I

look at a±5 day window around the event and capture the days outside the event window in a single

dummy variable on either side of the window, i.e. T= {less than −5,−5,−4, . . . ,4,5,more than 5}.
Results of the second stage are shown in Table 3.5. A NRPi of 1% coincides with a 0.605% return on

the publication date. An increase of NRPi by the same magnitude predicts a 0.630% higher return

on the day after the earnings announcement. Since most earnings are announced during after-hours,

actual +1 day marks the first trading day after the earnings announcement in most cases. The co-

efficient on the announcement day dummy is very close to the coefficient on the publication day

dummy, suggesting that the neural network captures information that is on average only halfway

incorporated into prices upon publication. The regression results show that prices do not exhibit

any statistically significant drift around either the publication or the announcement day when the

drifts are estimated jointly. The apparent drifts in Fig. 3.5 are most likely artifacts of overlapping

event windows of publications and announcements.

The lack of a statistically significant drift between publication and announcement suggests that the

predictability of announcement returns is distinct from slow information diffusion. Instead, the in-

formation in the report does not seem to diffuse at all beyond the initial reaction. (Cohen et al.,

2020) observe a similar pattern in the market reactions to changes in the risk section of 10-K filings:

while changes of the text in the risk section have strong predictive power for future earnings and

returns, there is no price drift after the initial publication, and markets only react once the described

event is realized.

The lack of a post-announcement drift shows that the information that was picked up by the HAN is

incorporated into prices quickly upon the announcement of the actual earnings. Once the earnings
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are announced, investors seem to respond to the “news“ quickly, suggesting that attention to the

news is likely to be high and limits to arbitrage low on the actual earnings announcement day.

Cumulative abnormal returns (Fama and French, 2015, plus Momentum) around report publications and subsequent

earnings announcements. Publications are on report level but announcements are on firm level. Shaded regions are 95%

confidence bands.

Figure 3.5: Publication and announcement drifts
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Coefficient t-stat

Intercept 0.006∗ 1.688
NRP×1(more than 5 days before pub) −0.090 −1.007
NRP×1(pub -5 days) −0.079 −0.863
NRP×1(pub -4 days) −0.091 −1.013
NRP×1(pub -3 days) −0.097 −1.070
NRP×1(pub -2 days) −0.086 −0.931
NRP×1(pub -1 day) 0.112 1.026
NRP×1(pub) 0.605∗∗∗ 6.347
NRP×1(pub +1 day) 0.116 1.227
NRP×1(pub +2 days) −0.053 −0.555
NRP×1(pub +3 days) −0.112 −1.231
NRP×1(pub +4 days) −0.109 −1.182
NRP×1(pub +5 days) −0.110 −1.173
NRP×1(more than 5 days after pub) −0.123 −1.388
NRP×1(more than 5 days before actual) 0.126 1.383
NRP×1(actual -5 days) 0.139 1.324
NRP×1(actual -4 days) 0.257∗ 1.720
NRP×1(actual -3 days) −0.105 −0.366
NRP×1(actual -2 days) −0.154 −0.535
NRP×1(actual -1 day) 0.198 1.512
NRP×1(actual) 0.192 0.984
NRP×1(actual +1 day) 0.630∗∗∗ 3.315
NRP×1(actual +2 days) −0.022 −0.133
NRP×1(actual +3 days) 0.123 0.903
NRP×1(actual +4 days) 0.033 0.285
NRP×1(actual +5 days) 0.100 0.880
NRP×1(more than 5 days after actual) 0.117 1.289

The table shows the second stage of a Fama-Macbeth regression of daily abnormal returns (Fama and French, 2015, plus

Momentum) on the neural return prediction around the report publication date and subsequent earnings announcements as

shown in Eq. (3.6). The unit of observation is a report in the first stage and a date in the second stage. 1(pub) is a dummy

variable that is equal to one on publication days, 1(pub -1 day) is a dummy variable that is equal to one one trading day

before the publication, 1(more than 5 days before pub) is equal to one for all trading days that are more than 5 days prior

to the publication, etc. 1(actual) is equal to one on earnings announcement days. The remaining indicator variables are

defined accordingly. NRP is the out-of-sample neural return prediction of the most recent model at the time of report

publication. The sample includes all trading days within a [-30,70] trading day window around each report publication

from 2004 to 2019.

Table 3.5: Publication and announcement drifts
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The evidence presented up to this point suggests that markets do immediately not incorporate the

information picked up by the neural network into prices upon publication. This opens the question

whether the neural network identifies very particular types of information that lead to the observed

predictability, or whether markets underreact to information in analyst reports more broadly and the

neural network simply picks up this general pattern. In the latter case, the average publication re-

action to analyst reports preceding the earnings announcement would be a sufficient statistic of the

predictive information in the neural return predictions. To test this hypothesis, I regress announce-

ment reactions onto the out-of-sample return predictions controlling for the average publication

reaction. The average announcement reaction is the average of the abnormal publication returns of

the reports that were used to form the neural return predictions. The abnormal publication return

is the cumulative abnormal return realized in a three-day window around the report publication.

Abnormal returns are measured relative to a Fama-French four-factor model, and the three-day win-

dow starts with the closing price on the day prior to the publication day and ends with the closing

price on the second trading day after the publication. To establish a benchmark, I first run a univari-

ate regression of realized returns on predictions. Results are shown in Table 3.6 column (1). The

OLS coefficient on the neural return prediction is approximately 0.84. A coefficient below one in

the out-of-sample test suggests that there is some attenuation of the in-sample predictability, which

is in line with the observed difference between in-sample and out-of-sample R2 in Section 3.2.7.

Controlling for market-wide factors has little impact on the predictive power of the neural network

(column (2)). In column (3), I replace the neural return prediction with the average return on the day

of the analyst report publication on the right-hand side of the regression. The coefficient estimate of

approximately 0.01 is statistically significant at the 5% level but economically small: a publication

return of 1% predicts an announcement return of 1bps, and the within-R2 for publication returns

is zero. In column (4), I regress the announcement return on both the neural return prediction and

the average announcement return. Controlling for the publication return has virtually no impact on

the predictive power of the neural return prediction. The coefficient estimate shrinks marginally

from 0.725 to 0.723, and the R2 remains unchanged up to the second significant digit. However,

controlling for NRP renders the coefficient on the publication return insignificant.

The findings suggest that the persistent underreaction to information in analyst reports is not a gen-

eral feature of market reactions to analyst reports. Instead, the neural network seems to pick up par-

ticular information that is only partially incorporated into prices upon publication. Put differently,

the finding rejects the hypothesis that the predictive power of the neural network can be explained

by slow reaction to news to the extent that prices react slowly at a constant rate as suggested by

Daniel et al. (2020), among others.
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(1) (2) (3) (4)

Neural return prediction 0.841∗∗∗ 0.725∗∗∗ 0.723∗∗∗

(18.28) (15.67) (15.61)
Publ. return 0.009∗∗ 0.002

(2.35) (0.61)
Constant -0.068∗∗∗

(-3.37)

Fixed Effects (t) (t) (t)
Observations 170,028 169,983 169,983 169,983
R2 0.0048 0.0401 0.0371 0.0401
Within R2 0.0048 0.0031 0.0000 0.0031

The table shows regressions of announcement returns on out-of-sample predictions and publication returns. The depen-

dent variable is the market-adjusted return in the two-day announcement window. Columns (2)-(4) use daily date fixed

effects as indicated in the fixed effects row. Since every announcement reaction is measured over the span of two trading

days and the two-day windows of different firms might only partially overlap, every observation has two date-fixed effects

corresponding to the two days in the return measurement window. Standard errors are triple-clustered by firm and the

two dates. t-Statistics are shown in parentheses.

Table 3.6: Neural return prediction vs. publication returns

3.5 ... and the cross-section of returns

3.5.1 Portfolio sorts

In the previous two sections, I showed that the HAN can predict returns on earnings announcement

dates. A number of papers have suggested that earnings announcement days play an important role

in explaining asset pricing anomalies. For example, Engelberg et al. (2018) documents that anomaly

returns are significantly higher on earnings announcement days than on non-earnings announcement

days, and Lochstoer and Tetlock (2020) argue that anomaly returns are dominated by cash flow

news, which tends to be highest on earnings announcement days. To investigate the link between

the predictability of earnings announcement returns and the broader literature on cross-sectional

predictability of stock returns, I form monthly portfolios of stocks based on the return predictions

of the neural network. Every month, I use the latest available HAN model instance based on the bi-

ennial re-training of the model (see Section 3.2.5) to predict the next earnings announcement return.

In contrast to the previous section, I do not restrict myself to firms with earnings announcements
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here. Instead, for every firm and month, I form predictions based on the reports published between

the last earnings announcement and the end of the current month. As before, to rule out that my

analysis captured the contemporaneous market reaction to the news revealed in the report, I discard

reports published less than three trading days before the end of the month.

At the end of every month, I sort firms into five equally-sized portfolios based on their NRP for

the next earnings announcement date and hold them for one month. Results are shown in Table 3.7.

An equally-weighted long-short portfolio earns a highly significant CAPM alpha of 93bps per month

and an abnormal six-factor (Fama and French, 2015, plus momentum) return of 49bps per month.

Abnormal returns increase monotonically with the neural return prediction.

Despite not having supplied any information about firm characteristics to the HAN, the factor

betas reveal that the neural network picked up several well-known anomalies that were discovered

using characteristics-based portfolios. The neural long-short portfolio loads negatively on the mar-

ket (Frazzini and Pedersen, 2014) in the CAPM regression, and positively on momentum (Jegadeesh

and Titman, 1993) and profitability (Novy-Marx, 2013a) in the six-factor regression. Surprisingly,

the neural long-short portfolio loads negatively on size (Fama and French, 1992). However, it is

worth noting that the return on the size factor was economically and statistically insignificant at just

2bps per month during the out-of-sample period and negative for most of the model training period

of the 1980s and 1990s.

3.5.2 Time series

The relatively short sample period of 192 months makes it difficult to further split the sample into

subperiods. To investigate whether the predictive power of the NRP is generated in only a subset

of the sample, I plot the cumulative gross return and the cumulative abnormal in Fig. 3.6. Visual

inspection suggests that the abnormal returns occur throughout the entire sample with a notable

reversal coming out of the 2007-2009 recession.

3.5.3 A closer look at the profitability anomaly

Section 3.5.1 revealed a strong relationship between the profitability anomaly and the neural return

predictions. In this section, I test whether the NRP portfolio spans the profitability-sorted portfolio.

To do so, I use the high minus low predictability announcement return prediction portfolio, which

I refer to as NRP in the following, as an explanatory variable in various factor regressions with

the profitability factor RMW on the left-hand side. Results are shown in Table 3.8. The NRP

portfolio captures around two-thirds of the alpha on the RMW portfolio in the 2004-2019 period.

The remaining CAPM alpha is only marginally significant, while the p-values on the remaining FF4
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Low 2 3 4 High High-Low

Intercept -0.795∗∗∗ -0.258 -0.159 0.011 0.138 0.933∗∗∗

(-2.98) (-1.44) (-1.10) (0.09) (1.30) (3.95)
Mkt-RF 1.494∗∗∗ 1.371∗∗∗ 1.288∗∗∗ 1.214∗∗∗ 1.173∗∗∗ -0.321∗∗∗

(22.80) (31.24) (36.59) (39.26) (44.96) (-5.55)

N 192 192 192 192 192 192
Ad j.R2 0.73 0.84 0.88 0.89 0.91 0.14

Panel A: CAPM

Low 2 3 4 High High-Low

Intercept -0.295∗ 0.034 0.022 0.116∗∗ 0.192∗∗∗ 0.487∗∗∗

(-1.85) (0.40) (0.38) (2.09) (2.97) (2.61)
Mkt-RF 1.092∗∗∗ 1.054∗∗∗ 1.049∗∗∗ 1.021∗∗∗ 1.037∗∗∗ -0.055

(23.83) (42.50) (63.09) (64.31) (55.72) (-1.03)
SMB 1.086∗∗∗ 0.856∗∗∗ 0.693∗∗∗ 0.675∗∗∗ 0.563∗∗∗ -0.524∗∗∗

(14.54) (21.16) (25.55) (26.07) (18.54) (-5.99)
HML -0.231∗∗∗ 0.239∗∗∗ 0.323∗∗∗ 0.238∗∗∗ 0.031 0.262∗∗∗

(-2.97) (5.67) (11.42) (8.82) (0.98) (2.87)
CMA -0.138 -0.098 -0.041 -0.101∗∗ -0.171∗∗∗ -0.033

(-1.10) (-1.45) (-0.91) (-2.33) (-3.37) (-0.23)
RMW -0.930∗∗∗ -0.223∗∗∗ 0.009 0.118∗∗∗ 0.091∗∗ 1.021∗∗∗

(-8.59) (-3.81) (0.22) (3.15) (2.08) (8.06)
Mom -0.156∗∗∗ -0.177∗∗∗ -0.129∗∗∗ -0.090∗∗∗ -0.066∗∗∗ 0.090∗

(-3.93) (-8.28) (-9.00) (-6.58) (-4.10) (1.93)

N 192 192 192 192 192 192
Ad j.R2 0.91 0.96 0.98 0.98 0.97 0.50

Panel B: FF6

The table shows regression results for equally-weighted portfolios sorted on the neural return prediction. At the end of

each month, firms are sorted into quintiles based on their neural return prediction. Low denotes the lowest predicted

return quintile, and high denotes the highest predicted return quintile. The sample period is January 2004 to December

2019. Returns are monthly and in percent. T-statistics are shown in parentheses.

Table 3.7: Portfolios sorted on neural return prediction
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The figure shows the cumulative returns of a long-short portfolio based on neural return predictions. The long-short

portfolio is the monthly rebalanced portfolio that goes long firms in the highest quintile of neural return predictions and

short firms in the lowest quintile of neural return predictions. The left panel shows the cumulative gross return and the

right panel shows the cumulative abnormal return (alpha + residual from a FF6 regression).

Figure 3.6: Cumulative returns of the neural long-short portfolio

and FF4+CMA alpha exceed 10%.
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RMW RMW RMW RMW RMW

Intercept 0.396∗∗∗ 0.375∗∗∗ 0.165∗ 0.152 0.153
(3.70) (3.59) (1.76) (1.63) (1.63)

Mkt-RF -0.160∗∗∗ -0.122∗∗∗ -0.080∗∗∗ -0.075∗∗∗ -0.076∗∗∗

(-6.09) (-4.09) (-3.37) (-2.93) (-2.90)
SMB -0.189∗∗∗ -0.007 -0.006

(-3.88) (-0.15) (-0.14)
HML -0.024 -0.089∗∗ -0.085∗

(-0.46) (-2.26) (-1.84)
CMA -0.031 -0.015

(-0.37) (-0.20)
Mom -0.012 -0.032 -0.032

(-0.46) (-1.39) (-1.37)
NRP 0.248∗∗∗ 0.255∗∗∗ 0.254∗∗∗

(8.98) (8.09) (8.06)

N 192 192 192 192 192
Ad j.R2 0.16 0.21 0.41 0.42 0.41

The table shows regressions of the profitability factor (RMW) onto other factors as well as the neural return prediction

portfolio (NRP). Mkt-RF, SMB, HML, CMA are the factors from the Fama-French five-factor model, Mom the 12-

2 Momentum factor, and NRP a portfolio that goes long high neural return predictions and short low neural return

predictions.

Table 3.8: Using NRP to explain the profitability anomaly

3.6 Can risk premiums explain the predictability of announcement
returns?

3.6.1 Market risk

To rule out a risk-based explanation for the observed predictability of announcement day returns,

I run several tests in the spirit of Savor and Wilson (2016). First, I test whether the neural return

predictions predict higher market betas on the announcement day. Results are shown in Table 3.9.

I find no support for the hypothesis that market beta explains the return predictability. The coeffi-

cient estimate on the interaction term between the neural return prediction and the market return is

marginally negative and insignificant.
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Return

Neural return prediction 0.552∗∗∗

(14.15)
Mkt-RF 0.997∗∗∗

(27.65)
Neural return prediction ×Mkt-RF -0.012

(-0.43)
Constant 0.028

(0.84)

Observations 162,984
R2 0.058

The table shows regressions of daily announcement day returns on the market return and the neural return predictions.

Standard errors clustered by firm and month are shown in parenthesis.

Table 3.9: Announcement day betas

3.6.2 Aggregate growth

Next, I test whether the cash flow news channel proposed by Savor and Wilson (2016) can explain

the observed announcement returns. In their model, announcing firms carry a risk premium because

their earnings announcements are informative about aggregate cash flows. In the cross-section,

firms that are positively correlated to future aggregate earnings growth should carry a positive risk

premium, and firms that are negatively correlated to future aggregate earnings growth should carry

a negative risk premium. I test this hypothesis by regressing future aggregate earnings growth on

the return on the high and low neural return prediction portfolio. Results are shown in Table 3.10.

Again, I do not find support for the hypothesis that risk explains the return predictability: neither

the high nor the low return NRP portfolio significantly predict future earnings growth. Moreover,

the coefficient estimate on the low portfolio is positive, while the strong predictability of negative

announcement returns would require the portfolio to have a strong negative correlation with future

earnings growth.
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Earn. Growtht Earn. Growtht

Low NRPt−1 0.436
(1.36)

High NRPt−1 0.534
(1.26)

Constant -0.006 -0.017
(-0.25) (-0.60)

Observations 64 64
R2 0.042 0.032

The table shows regressions of quarterly earnings growth on the returns of the high and low neural return prediction

portfolio in the previous quarter. T-statistics based on Newey-West standard errors with four lags are shown in parenthesis.

Table 3.10: Predicting future earnings growth with NRP portfolios

3.6.3 Discount rate news

An alternative explanation for the observed announcement reaction would be that the neural network

predicts discount rate news. To test this hypothesis, I estimate each firm’s loadings on the five factors

from Fama and French (2015) and the Momentum factors both before and after the announcement.

In particular, I estimate the pre-announcement loadings in a 90 calendar day window ending 10

days prior to the announcement, and the post-announcement loadings in a 90 calendar day window

starting 10 days after the announcement. The gap between the two windows ensures that neither of

the two estimates is impacted by the announcement day reaction. I then run regressions in the form

∆βF,it = β
post
F,it −β

pre
F,it = δ0 +δ1NRPit + εit (3.7)

where F is one of the six factors. Results are shown in Table 3.11. I find that NRP does not predict

the change in the loading on any of the six factors. This lends further support to the hypothesis that

NRP predicts cash flow news.
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∆βMkt ∆βSMB ∆βHML ∆βMOM ∆βCMA ∆βRMW

NRP -0.002 -0.003 0.000 0.007 -0.044 0.067
(-0.15) (-0.12) (0.00) (0.28) (-0.79) (1.54)

Constant -0.000 -0.001 -0.004 -0.009 0.003 -0.010
(-0.05) (-0.23) (-0.45) (-1.13) (0.21) (-0.90)

N 126,929 126,929 126,929 126,929 126,929 126,929
R2 0.00 0.00 0.00 0.00 0.00 0.00

The table shows regressions of changes in six-factor betas around the earnings announcement on the neural return predic-

tion (NRP). ∆βF is the difference between the post-announcement loading and the pre-announcement loading on factor

F . Pre (post) announcement betas are measured in a 90 calendar day window ending (starting) 10 days prior to (after)

the earnings announcement date. Each firm has at least 45 valid returns in both the pre and post announcement window.

Standard errors are clustered by time (month). t-Statistics are shown in parentheses.

Table 3.11: Change in factor betas

3.6.4 Analyst expectations

The previous tests suggest that neural return predictions capture biased cash flow expectations rather

than risk premiums. If the aggregate market expectations are biased, individual market participants’

expectations are likely to be biased in the same direction. To find further support for this hypothesis,

I investigate whether NRP predicts biases in the stated expectations of one particular group of market

participants: stock market analysts. To do so, I calculate realized earnings surprises as well as

revisions in longer-term earnings expectations around earnings announcement dates with respect to

the median analyst forecast. Earnings surprises are defined as

Surpt =
Et −Et−1[Et ]

Pt−45
. (3.8)

where Et are the quarterly earnings per share announced at t. Et−1[Et ] is the consensus forecast

of Et measured at t − 1, the day before the announcement. Pt−45 the stock price 45 days before

the announcement. Realized earnings tend to be noisy and dominated by transitory earnings shocks

with limited impact on a company’s stock price. Therefore, I also calculate revisions in the analysts’

longer-term earnings expectations,

Revt,t+τ =
Et [Et+τ ]−Et−1[Et+τ ]

Pt−45
. (3.9)
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Here, Et [Et+τ ] is the consensus forecast of future earnings in t + τ measured right after the an-

nouncement of current earnings at t. In Table 3.12, I show that NRP strongly predicts both earnings

surprises and revisions of longer-term earnings expectations at the earnings announcement date.

This suggests that both short-term and long-term analyst forecasts are biased in the same direction

as the HAN predicts earnings announcement returns.

Surpt Revt,t+1Q Revt,t+1Y Revt,t+2Y

Neural return prediction 0.780∗∗∗ 0.468∗∗∗ 1.617∗∗∗ 1.287∗∗∗

(8.85) (12.67) (12.16) (13.36)
Constant -0.230∗∗∗ -0.267∗∗∗ -0.666∗∗∗ -0.518∗∗∗

(-7.54) (-16.68) (-13.01) (-12.10)

Observations 140,876 136,728 130,807 110,799
Adj. R2 0.0045 0.0100 0.0103 0.0124

The table shows regressions of consensus forecast errors and consensus forecast revisions on the neural return prediction.

Surpt is the realized quarterly EPS at time t minus the consensus forecast prior to the earnings announcement, where

t is the earnings announcement date. Revt,t+τ is the revision of the τ-periods ahead consensus EPS estimate at time t.

Pre- and post-earnings consensus forecasts are measured within a 45-day window before and after the announcement,

respectively. Surp and Rev are scaled by the stock price 45 days prior to the announcement. The consensus forecast

is the mean forecast published in the window. If an analyst publishes multiple forecasts within the window, only their

latest forecast is considered. Standard errors are double clustered by firm and time (month). t-Statistics are shown in

parentheses.

Table 3.12: Analyst surprises and revisions

3.7 Model diagnostics

3.7.1 Explaining the neural network with sparse local approximations

Neural networks are powerful because of their ability to model complex transformations and inter-

actions between the input features. However, these interactions make the predictions very hard to

interpret by a human observer, which is why deep learning algorithms are often labeled as “black

box” methods. The lack of interpretability is among the main reasons for the rather slow adoption

of machine learning techniques in economics, where causal inference is often more important than

predictive power alone.

Several methods to interpret machine learning methods have emerged from the literature. Baehrens
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et al. (2010) suggest interpreting the gradient vector as a measure of attribution of input features to

the model prediction. This approach was adopted in the finance literature by Chen et al. (2020).

However, the partial derivatives in the gradient vector are an imperfect measure of feature impor-

tance in a model with strong feature interactions. In an instance where a combination of features is

important for a particular prediction, the gradients do not represent a meaningful allocation of the

joint importance to the individual features. Moreover, gradients might be misleading in particular

for very confident predictions where the gradient is near zero. An alternative approach to measuring

feature importance is to train a surrogate model that explains the predictions of the machine learning

model. Ribeiro et al. (2016) take this approach and study predictions of machine learning models

through sparse, locally linear approximations of the model. While the global decision function of a

neural network is usually highly non-linear, the function can possibly be approximated by a linear

function in a small neighborhood around the actual example. We can obtain such locally linear ap-

proximations by applying small perturbations to the observed input data, i.e. removing or replacing

individual words within a report, and fitting a linear model to the perturbed data. If the local lin-

earity assumption is valid, we can attribute the observed change in the neural network’s prediction

across the perturbations to the individual words.

I follow Ribeiro et al. (2016) and obtain word attributions for a randomly selected subset of

reports following the LIME procedure (local interpretable model-agnostic explanations). For each

document, explanations are obtained as follows:

1. Perturb the document 10,000 times by randomly replacing words with a masking token (the

unknown word token). For each perturbation, I first draw the number of words to be replaced

n∼Uni f orm[1,Ni], where Ni is the number of words in the report. Then, I draw the n words

to be replaced from the report text with equal probability. This gives each word a probability

of Ni+1
2Ni
≈ 0.5 to be replaced.

2. Use the neural network to predict the outcome for the perturbed documents.

3. Fit a weighted Lasso regression to the perturbed data and predicted outcomes. Use the regular-

ization path to find the 20 most important features in the report (Efron et al., 2004). Examples

are weighted by the cosine similarity between the perturbed example and the original text.

4. Store the regression coefficients (attribution scores) of the selected features.

Fig. 3.7 shows the estimated attribution scores for the most common words in a sample of 20,000

reports. A human reader would likely spot a difference in polarity between the word with positive

and negative average attribution scores. Words with positive attribution score include words with

positive polarity such as strong, increased, or raised, while sluggish is one of the most prominent
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words with negative attribution. To the extent that abnormal returns are at least partially realized

on or around the publication day, this finding is in line with Huang et al. (2014), who document

that the stock market reacts positively to analyst reports with positive sentiment and negatively to

reports with negative sentiment. The attribution scores also reveal that certain topics are typically

associated with negative or positive returns by the neural network. Among the top positive words

are financial reporting-related variables such as sales and revenue, as well as quarter. Among the

top negative words are terms that are typically used to express opinions such as recommend, view,

and believe. All of the top terms appear to be firm-specific. Neither the positive nor the negative

terms contain any terminology that is obviously related to macroeconomic conditions.

The plots reveal some limitations of the LIME procedure. Among the selected words are different

forms of the word are. These words are unlikely to carry any return-relevant information. The

LIME algorithm identifies words that, if removed from the given report, significantly change the

prediction of the model. Therefore, the algorithm might select words that are important for the

learned linguistic or syntactical interpretation of the surrounding words without being informative

by themselves. If true positive terms are more reliant on the syntactical context than negative ones,

or if the removal of a term creates false negatives, the term will appear to have a positive attribution

and vice versa. It is reassuring that only a small fraction of the most common 50 positive and

negative words appear to fall into this category.
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Positive Attribution Negative Attribution

The plots show the 50 most important positive (left panel) and negative (right panel) words identified by the LIME

procedure as outlined in Section 3.7.1. Importance is measured as the probability of a word being selected by the lime

procedure conditional on appearing in the report. Font size reflects the importance of each word. Font color reflects the

average attribution, where green reflects positive attribution and red reflects negative attribution. Weaker colors reflect

lower absolute attribution. Prepositions, determiners, and words that appear in less than 0.5% of the LIME explanations

are excluded.

Figure 3.7: LIME word clouds

3.7.2 The role of industry-specific information

The LIME procedure allows us to study to which extent the HAN picks up universal predictors

versus predictors that are only relevant for a subset of firms. To do so, I repeat the procedure

outlined in Section 3.7.1 for different subsets of reports. I assign firms to five industries using SIC

codes and the five Fama-French industry definitions from Ken French’s website. For each industry

subset, I train a separate LIME model using the same HAN that was learned based on all available

data. Fig. 3.8 shows the most important words for each industry. A number of terms appear to

be important in all five industries, in particular verbs and adjectives with strong polarity such as

raise[d], solid, and strong. Other terms appear to be industry-specific, for example, campaign in

the Consumer industry or subscribers in the Business Equipment, Telephone, and TV Transmission

sector. The Healthcare, Medical Equipment, and Drugs industry stands out for containing a large

number of terminology related to partnerships, such as partnership, partnering, or collaborations.

All of the partnership-related terms have a negative attribution, i.e. the HAN tends to predict a

negative announcement return following the mentioning of partnerships.
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1: Consumer 2: Manufacturing, Energy, and Utilities

3: Business Equip., Telephone and TV Transmission 4: Healthcare, Medical Equip., Drugs

5: Other

The plots show the 50 most important words identified by the LIME procedure as outlined in Section 3.7.1 for different

industries. Firms are assigned to industries using SIC codes and the five industry definitions of Fama and French. Each

word cloud shows the most important words for each industry, where importance is measured as the probability of a

word being selected by the lime procedure conditional on appearing in the report. Font size reflects the importance of

each word. Font color reflects the average attribution, where green reflects positive attribution and red reflects negative

attribution. Weaker colors reflect lower absolute attribution. Prepositions, determiners, and words that appear in less than

0.5% of the LIME explanations for a given industry are excluded.

Figure 3.8: LIME word clouds for different industries
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3.7.3 Horse race

In this section, I compare the predictive power of the HAN model to several simpler prediction

models: a fixed-effect model, a dictionary-based sentiment model, and an Elastic net model.

The fixed-effects model uses the prevailing historic mean announcement return for each firm as the

prediction for the next announcement. In other words, the fixed-effects model estimates the mean

announcement return for each firm in the training set and extrapolates this mean return to make

out-of-sample predictions.

The dictionary-based sentiment model uses the Loughran and McDonald (2011) sentiment dictio-

nary to assign a sentiment score to each report. Each word in the report is assigned a sentiment score

of -1, 0, or 1 based on the sentiment dictionary. The report sentiment score is the average word sen-

timent score. I fit a linear regression model to predict announcement returns from the average report

sentiment in the training sample and then use the fitted linear model to predict out-of-sample an-

nouncements returns.

The Elastic net also takes a linear bag-of-words approach. Words are represented as word counts,

and the prediction is based on a linear regression of announcement returns on these word counts.

The large vocabulary size relative to the number of examples and a high chance of collinear fea-

tures makes a standard OLS approach infeasible. Therefore, I apply both an L1 and a L2 penalty

on the coefficient matrix, a regularization method that is often referred to as Elastic net (Zou and

Hastie, 2005). I select the regularization parameters through an exhaustive grid search. The exact

specification of the benchmark models can be found in Appendix B.2.

Table 3.13 shows out-of-sample R2 for the HAN model and the three benchmark models. Both

the fixed effects model and the sentiment dictionary model perform worse than the historical mean

benchmark. The fixed-effects model has an out-of-sample R2 of nearly −6%, which suggests that

announcement returns do not exhibit strong firm-fixed effects and that the HAN does not simply

pick up persistent firm effects. The sentiment dictionary model has a marginally negative out-of-

sample R2 as well. Previous studies have shown that the stock market reacts to the sentiment in the

reports upon publication (Huang et al., 2014), and that sentiment predicts analyst forecast errors ().

The finding here suggests that the stock market fully incorporates the sentiment information leading

up to the next announcement. The Elastic net has an out-of-sample R2 of 0.11%. This suggests that

even simple machine learning approaches are able to capture some of the return predictability in the

analyst report dataset. It also provides a useful benchmark for the HAN model. The out-of-sample

R2 of the HAN model is four times higher than that of the Elastic net. The key difference between

the HAN model and the Elastic net is that only the former takes into account contextual informa-

tion. The large outperformance of the HAN model emphasizes the importance of this contextual

information.
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HAN Sentiment dictionary Elastic net Fixed effects

R2
oos,mean (%) 0.44 -0.00 0.11 -5.94

(10.75) (-3.41) (8.13) (-32.96)

The table shows out-of-sample R2 for different prediction models for the 2004-2019 period based on biennial model

updating. The HAN model is the neural network defined in Section 3.2. Sentiment dictionary makes return predictions

based on a regression of returns on an analyst sentiment score using the Loughran and McDonald (2011) sentiment

dictionary. Elastic net forms return predictions from analyst report texts using a bag-of-words elastic net regression.

Fixed effects predict the prevailing historical average announcement day return for each firm. Diebold-Mariano test

statistics are shown in parenthesis. The Diebold-Mariano test statistic for the difference between the HAN and its closest

contender, the Elastic net, is 7.14 (p < 10−12).

Table 3.13: Out-of-sample performance of different prediction models

3.8 Conclusion
I propose a new way to study stock return predictability that utilizes the vast amount of textual data

that is available to investors. I show that a deep neural network that takes into account contextual

information when interpreting individual words and optimally aggregates words and documents

outperforms linear natural language processing techniques by a factor of four in terms of out-of-

sample R2.

I use the proposed methodology to study stock returns on earnings announcement dates. I find

that market reactions to earnings announcements are predictable and that my findings are in line with

biased cash flow expectations and not in line with common risk-based explanations. I show that the

profitability factor loads strongly on an announcement return-prediction portfolio, suggesting that

biased cash flow expectations play an important role in explaining this anomaly.

My paper highlights the power of big data and machine learning techniques to study classic

questions in finance. Machine learning, in particular deep neural networks, allows researchers to

tap unused data sources and to model complex interactions between input variables that might play

an important role in explaining asset returns. While my paper focuses on individual stock return pre-

dictability on earnings announcement dates, a similar approach could be used to study long-horizon

predictability or the predictability of aggregate returns, as well as higher moments or corporate de-

cisions. The hierarchical attention network used in this paper can be readily applied to any source

of textual data, for example, newspaper articles or corporate filings. The presented attention mech-

anism is particularly valuable in scenarios where multiple documents are linked to a single outcome

variable and there does not exist an obvious aggregation method.
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Chapter 4

Are Technological Innovators Priced
Differently? Patent Intensity and Stock
Returns, 1926-2021

4.1 Introduction
Technological innovation has long been proposed as a primary driver of economic growth (Schum-

peter, 1911).1 The public-market valuations of innovators drive costs of capital for both public

and private firms,2 influencing the viability of technology-driven growth. Leading models of the

cross-section of stock returns such as Fama and French (1993, 2015), and Hou et al. (2015) do not

explicitly account for technological innovation. The originators of these models invoke steady-state

or static firm valuation models to obtain fundamentals-related pricing factors such as those based

on the market/book ratio (Tobin’s q), the capital investment rate, and profitability.3 We ask what, if

anything, do these steady-state-motivated models miss when applied to portfolios of technologically

innovative firms?

We show that technological innovators and non-innovators are priced differently. We propose

a new measure of technological innovation, patent intensity, given by the ratio of a firm’s number

of patents received to market capitalization. This simple new measure extends back to 1926, is

not reliant on accounting data, and produces a significant spread in returns. Alpha remains after

1See also Solow (1957), Romer (1986, 1990), and Aghion and Howitt (1992).
2See Gompers et al. (2008).
3See Fama and French (1995) equation 2, Fama and French (2015) equation 3, Hou et al. (2015) equation 1. Berk

(1995) provides a related valuation identity motivating size-related anomalies. The market/book ratio as a driver of
investment is developed in Tobin (1958).
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accounting for standard fundamentals-based factors. Innovators are not penalized for lack of prof-

itability or high investment to the same degree as non-innovators. On average, innovative firms

are larger than other firms, but the most innovation-intensive firms tend to be smaller firms with

high growth and low profitability. Benchmarked to common asset pricing models, these firms have

abnormally high returns.

We contribute to an important existing literature on technological innovation and the stock mar-

ket that has for example examined the role of research and development expenses, patenting, and

explicit models of technological progress. See, for example, Lev and Sougiannis (1996), Chan et al.

(2001), Eberhart et al. (2004), Gu (2005), Cohen et al. (2013), Hirshleifer et al. (2013), Kogan et al.

(2017), Hirshleifer et al. (2018), Bena and Garlappi (2020), and Kelly et al. (2021). We add to this

literature by developing a new measure of innovation intensity based on patenting, and document-

ing the effectiveness of standard cross-sectional pricing models for technological innovators. An

important property of innovation is its persistence. Portfolios formed on patent intensity have low

turnover, and their return spread lasts ten full years following portfolio formation. This presents a

significant challenge to asset pricing models.

The key to pricing portfolios sorted on patent-intensity is the expected growth factor of Hou

et al. (2021, HMXZ). We show that in models with investment and profitability factors but not ex-

pected growth, abnormal returns of portfolios of innovative firms are statistically and economically

significant for a full decade following formation. Including the expected growth factor eliminates

abnormal returns of patent-intensity sorted portfolios at nearly all horizons.

Risk dynamics of technological innovators in the decade following formation tell a compelling

economic story. Innovators load heavily on expected growth immediately following formation, and

over time their expected growth loadings fall. Even a decade after formation, the growth loadings

of innovators significantly exceed those of non-innovators. Investment loadings of innovators are

initially somewhat aggressive, but become even more so for two to three years following portfo-

lio formation. Investment loadings remain higher than non-innovators for a full decade. Finally,

innovators show extremely weak profitability loadings immediately after formation, but strengthen

substantially over the following decade.

Previous work has shown positive abnormal returns for R&D sorted portfolios (Chan et al.,

2001, HMXZ). We differ from these studies in several ways. First, these studies focus on firms with

strictly positive R&D data, which excludes firms with zero or missing R&D, comprising on average

half of firms by market capitalization. We use patent intensity, which allows us to unambiguously

categorize non-innovators. Further, patent intensity can be measured over much longer samples,

since it does not rely on accounting data. We show however that patent intensity and R&D inten-

sity are closely related over the period over which they can both be measured. Our study focuses
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exclusively on the pricing of innovators, and we study the drivers and dynamics of risk and return

for innovative firms.

Innovating firms have played an important role in the US stock market for at least one century.

While the firms and industries that were dominating the innovative landscape have varied substan-

tially over time, from manufacturing firms in the mid-20th century to computer and information

technology companies in the most recent two decades, the overall share of innovators in the US

stock market has remained remarkably constant. Throughout the 1926-2021 sample period, innova-

tors have accounted for approximately 40-80% of the total US market capitalization. Therefore, the

pricing of these firms is not only highly relevant for our understanding of asset pricing models, but

is also critical for capital allocation and ultimately economic growth.

4.2 Technological innovators and patent intensity
This section describes the patenting activity of publicly listed firms in the United States from 1926.

We define our main variable, patent intensity (PI), and show the characteristics of more and less

patent-intensive firms. Patent intensity is highly persistent.

4.2.1 Patent data and innovative firms

The United States Patent & Trademark Office (USPTO) is the source of complete data for all patents

granted. The USPTO provides downloadable text data starting in 1976.4 For the universe of all

patents filed between 1926-1975, Kelly et al. (2021) provide cleaned and tabulated patent data

created from USPTO image files.5 In combination, these two sources provide full coverage of all

U.S. patents issued from 1926-2021. We link patents to publicly listed companies using CRSP

permno-patent links from Kogan et al. (2017).6

U.S. firms with common stock traded on NYSE, AMEX, or Nasdaq are important contributors

to overall U.S. patenting. Each calendar year, starting in 1926, we calculate the share of patents for

all CRSP assignees (includes foreign firms), as well as the share of patents for all U.S. listed firms

with common stock (CRSP shrcd is 10 or 11). Fig. 4.1, Panel A shows the logarithm of the patent

counts for each group (universe, all CRSP, and listed U.S. common stock). Panel B shows the shares

of all CRSP assignees and U.S. listed common stock. The wedge between all CRSP assignees and

U.S.-listed common stock assignees toward the end of the sample is due to the growing importance

of cross-listed foreign firms that receive U.S. patents. Patenters with U.S.-listed common stock are

important throughout the sample, with a share of overall patenting ranging from twenty to forty

4https://www.uspto.gov/patents/search.
5https://github.com/KPSS2017/Measuring-Technological-Innovation-Over-the-Long-Run-Replication-Kit.
6https://github.com/KPSS2017/Technological-Innovation-Resource-Allocation-and-Growth-Replication-Kit.
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percent throughout most of the sample. These firms are key building blocks of empirical asset

pricing studies. Publicly listed patenters are also economically important because they provide a

broad investor base access to equity in technological innovators, and because daily updated prices

reflect a market view of the value of innovation.

From the standard CRSP sample of all common stock (shrcd is 10 or 11) traded on NYSE,

AMEX, or Nasdaq, each year on June 30 we classify firms as “innovators” or “non-innovators”

based on whether they received a patent in the prior 12-month period. The USPTO publishes its

Official Gazette every Tuesday with information on patents granted that day, so patent information

is immediately available to market participants.7

Relative to other measures of innovation such as accounting-based measures of R&D, a patent-

based classification of innovators is appealing because it is based on a standardized and tangible

legal claim. Patent data is not subject to the reporting practices of individual firms, and reporting

cannot be missing or delayed. Patents measure the output of the innovation process, whereas R&D

measures the input. Our choice of a twelve-month lookback period for measuring innovation is

simple and convenient. Our results are robust to variations such as measuring patenting activity

over the prior calendar year, or to using longer lookback periods, such as patents received over

a three-year window. Choosing a one-year window for our main results ensures that our results

about the persistence of patenting activity are not artificially driven by overlapping measurement

windows. To avoid any inconsistencies with assigning patents to newly listed firms, we drop firms

from our analysis that have less than a twelve-month history in the CRSP data.8

Fig. 4.1, Panels C-F show that despite some sharp fluctuations in the percentage of innovators

versus non-innovators over time by firm count, the percentage of innovators by market capitalization

is much slower-moving, and appears mean-reverting. The share of innovators by number of firms

(Panel D) ranges from about twenty to fifty percent throughout the sample. By market capitalization,

the share of innovators generally ranges from fifty to seventy-five percent, consistent with innovators

being larger. All of our main results use value-weighted portfolios, so the more stable market-

capitalization weighted shares of innovators versus non-innovators are most relevant.

A coarse example shows that the sector composition of innovative and non-innovative firms

varies considerably over time. Each year we assign all CRSP firms to one of ten Fama-French

industries, each of which can be thought of as a sector. Fig. 4.2, Panel A shows sector allocations

over time from the market-capitalization weighted portfolio of all innovative firms. Panel B shows

the sector allocations for the market-capitalization weighted portfolio of all non-innovative firms.

7https://www.uspto.gov/learning-and-resources/official-gazette.
8Links from patent assignees to CRSP firms are reliable, but linking assignees to firms before they become public is

more challenging.
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Figure 4.1: Patents, US-listed firms, technological innovators and market capitalization
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The sector allocations change considerably throughout the sample. For example, the importance

of manufacturing and consumer durables in the innovator portfolio decreases over time, while the

importance of business equipment and healthcare increases. Technological innovation concentrates

in different sectors of the economy throughout our sample.

4.2.2 Patent intensity

Starting in 1926, on June 30 of every year we calculate for every firm in the CRSP sample the ratio

of patents received in the prior 12-month period divided by current CRSP market capitalization.

This is our measure of patent intensity (PI). All results in the remainder of the paper are robust to

reasonable alternative choices such as measuring patent intensity at the end of the prior calendar

year, or over three-year windows. We choose a one-year window because of its simplicity and

because a one-year window does not generate mechanical persistence in the measure. Scaling by

market capitalization is a natural choice and makes PI comparable to prior measures such as the

book-to-market ratio, which can be thought of as a measure of asset intensity, or R&D to market

capitalization. Conceptually, purchasing firms with high PI allows an investor to obtain the most

concentrated exposure to recent patenting activity with the least dollar investment.

To begin our characterization of patent intensity, each year we sort firms into three groups.

Group zero has no patents in the prior twelve-month period, and are the “non-innovators” described

previously. We note that, unlike other variables, there is no issue of “missing data” with patents.

For example, missing data is common in R&D data, and many researchers (e.g., Chan et al., 2001)

discard from analysis firms with missing R&D data. Ambiguity caused by missing data is not an

issue with patents. We distinguish between low- and high-intensity patenters, each year dividing all

innovators at the median positive PI breakpoint, forming two equal-sized groups by firm count.

Table 4.1 provides descriptive statistics for the three groups, showing important differences.

Panel A shows the average contributions of each of the three groups to firm counts, total mar-

ket capitalization, and past and future patenting. Most firms (68% on average) are non-patenters.

Nonetheless, the 32% of patenting firms contribute the majority of market capitalization, 65% in

an average year. The concentration of market capitalization is even more noticeable if we look at

the high- and low-PI groups. The low PI group, while only 16% of firm count, contributes 54%

of market capitalization. The high-PI group is again 16% by firm count, but only 11% by market

capitalization.

It would be a tremendous mistake to conclude that the high-PI group is inconsequential because

of its small market capitalization. This group owns on average 62.5% of the universe of patents

created by public firms in the prior year. The majority of innovation has occurred within this group.

Moreover, this is not just ex post selection. The high-PI group also contributes 60% of the patents
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Panel A. Patenting Firms
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Panel B. Non-patenting Firms

Other -- Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance
Manufacturing -- Machinery, Trucks, Planes, Chemicals, Off Furn, Paper, Com Printing
Oil, Gas, and Coal Extraction and Products
Consumer NonDurables -- Food, Tobacco, Textiles, Apparel, Leather, Toys
Utilities
Wholesale, Retail, and Some Services (Laundries, Repair Shops)
Consumer Durables -- Cars, TV's, Furniture, Household Appliances
Healthcare, Medical Equipment, and Drugs
Business Equipment -- Computers, Software, and Electronic Equipment
Telephone and Television Transmission

Figure 4.2: Sector composition of patenting and non-patenting firms by market capitalization and
Fama-French 10 industries
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Non-patenting Low PI High PI

Panel A. Portfolio shares

Share of firms 0.682 0.159 0.159
Share of cap 0.349 0.538 0.113
Share of patents 0.000 0.375 0.625
Share of patents (next year) 0.012 0.391 0.597
Share of patents (next 3 years) 0.014 0.405 0.580
Share of patents (next 5 years) 0.017 0.418 0.565

Panel B. Portfolio variables
CRSP age mean 13.313 20.283 15.422
CRSP age median 11.711 17.685 12.998
BM mean 1.573 0.801 1.130
BM median 0.998 0.662 0.909
Investment mean since 1963 0.137 0.164 0.090
Investment median since 1963 0.075 0.091 0.043
Profitability mean since 1963 0.164 0.257 0.095
Profitability median since 1963 0.210 0.264 0.165

This table shows descriptive statistics and characteristics of firms sorted on patent intensity PI, patents received in the

prior year divided by market capitalization. Firms are sorted every year at the end of June into three groups. The first

group consists of non-patenting firms (PI = 0). Remaining firms are split equally into two groups, low and high PI. In

panel A, share of firms is the portfolio’s percentage of all companies, share of cap is the portfolio’s share of total market

capitalization and share of patents is the portfolio’s share of all patents at the time of sorting or as indicated. Panel B

shows descriptive statistics based on information available at the time of sorting. Mean and median indicate whether the

value is from cross-sectional mean or median, respectively, before averaging across years. Age is calculated from the

stock’s first appearance in CRSP. Investment and profitability are available only since 1963. For all numbers, we first

calculate the annual percentages (or mean and median as indicated) and then average across years from 1926 to 2021, or

as indicated.

Table 4.1: Patent intensity (PI) and firm characteristics

83



granted to public firms in the next year, 58% of patents granted in the next three years, and 56.5%

of patents in the next five years. Patenting activity is very persistent, and with a relatively small

allocation of equity capital (11.3% of total market capitalization), one can purchase the majority of

not only recent but also future five-year ahead public market patenting activity.

Table 4.1, Panel B shows further characteristics of the three groups. Non-innovators are younger

on average and by median than innovators. This may seem surprising given the stereotype of young

firms as innovators, but average age also relates to death rate, which we explore further below.

Among innovators, high-PI are younger than low-PI, consistent with intuition. The B/M ratio is

a traditional measure of “value”, and non-innovators have the highest B/M ratios. Interestingly,

high-intensity innovators appear to be more value-like than low-intensity innovators. This should

not be too surprising, since both PI and B/M have market capitalization in the denominator. We can

usefully think of PI as a measure of technological-innovation value or the most cost-efficient way

to purchase patenting activity. Considering investment and profitability, low-intensity innovators

have the highest investment rates in traditional assets and the highest profitability. High-intensity

innovators have both the lowest investment in traditional assets and the lowest profitability.

Table 4.1 thus shows that technological innovation intensity captures important differences

across firms. The archetype of a non-innovator is a modestly sized, perhaps shorter-lived value

firm with moderate investment and profitability. Low patent-intensity firms are larger, longer-lived

firms that appear successful, investing in traditional assets and maintaining high profitability, and

appearing as “growth” by low B/M. High-intensity innovators are young and small, somewhat coun-

terintuitively appear as “value” by the B/M measure, invest the least in traditional assets and have

the lowest profitability, but produce the lion’s share of technological innovation among listed public

firms. Because of the important differences across these categories of firms, we anticipate a mean-

ingful challenge for traditional pricing factors such as size, value, investment, and profitability to

price PI-sorted portfolios.

The NASDAQ exchange has a reputation as a listing place for technological innovators,9 and

Table 4.2 shows the importance of NASDAQ for patenting. Panel A shows that by firm count,

most of the firms on NASDAQ are non-innovators. But by market capitalization, NASDAQ has

been shifting more and more to be represented by low-intensity innovators. Panel B shows the

contribution of NASDAQ firms to the PI-sorted portfolios. In recent years, more than fifty percent

of the cap weight and forty percent of the patents of low-intensity innovators have come from

NASDAQ. For high-intensity innovators, more than forty percent of both the cap weight and patents

come recently from NASDAQ.

Finally, Table 4.3 shows in Panel A average transition probabilities across the three PI-sorted

9See for example Schwert (2002); Pástor and Veronesi (2006, 2009).
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Non-patenting Low PI High PI

Panel A. NASDAQ Composition (columns add to one)

Share of NASDAQ firms since 1973 0.797 0.074 0.129
Share of NASDAQ firms since 2000 0.720 0.108 0.171
Share of NASDAQ firms since 2015 0.732 0.105 0.164

Share of NASDAQ cap since 1973 0.552 0.361 0.087
Share of NASDAQ cap since 2000 0.309 0.548 0.143
Share of NASDAQ cap since 2015 0.252 0.621 0.127

Share of NASDAQ patents since 1973 0.303 0.697
Share of NASDAQ patents since 2000 0.343 0.657
Share of NASDAQ patents since 2015 0.412 0.588

Panel B. NASDAQ Shares of Column (1-entry is non-NASDAQ)

Firms from NASDAQ since 1973 0.606 0.352 0.604
Firms from NASDAQ since 2000 0.598 0.471 0.742
Firms from NASDAQ since 2015 0.587 0.472 0.732

Cap from NASDAQ since 1973 0.219 0.155 0.205
Cap from NASDAQ since 2000 0.229 0.277 0.371
Cap from NASDAQ since 2015 0.262 0.407 0.441

Patents from NASDAQ since 1973 0.185 0.218
Patents from NASDAQ since 2000 0.356 0.360
Patents from NASDAQ since 2015 0.517 0.407

This table reports the portfolio shares and composition of NASDAQ-listed companies across portfolios of non-patenting,

low-PI, and high-PI firms as defined in notes of Table 4.1. The share of NASDAQ firms in panel A is the portfolio’s

average percentage of all NASDAQ-listed companies in the specified time period. The share of NASDAQ cap and

the share of NASDAQ patents are equivalently portfolio’s average percentages for market capitalization and patents,

respectively, of NASDAQ listed companies. Firms from NASDAQ in panel B shows the average percentage of the firms

in the portfolio over the indicated time period that are listed on NASDAQ. Cap and patents from NASDAQ are defined

equivalently for market capitalization and patents, respectively, of NASDAQ-listed companies. For all numbers, we first

calculate the annual percentages and then average across the indicated time period.

Table 4.2: Technological innovators on NASDAQ
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portfolios as well as exit, at horizons of one, three, and five years. For comparison, Panel B shows

similar transition probabilities for the traditional measure of growth, the M/B ratio. To enhance

comparison, we set the breakpoints for the M/B sort in Panel B identically on a year-by-year basis

to the breakpoints for the PI sorts in Panel A.10

10Transition probabilities in Panel B are calculated conditional on not having a negative or missing book value. Missing
or negative book values are not trivial, 12% of the sample on average, which is a general difficulty for accounting-based
characteristics that does not apply to patent intensity.
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Panel A. PI-sorted portfolios Panel B. M/B-sorted portfolios

Non-
patenting

Low
PI

High
PI

Out
Low
M/B

Medium
M/B

High
M/B

Missing Out

Transition probabilities over 1 years

Non-patenting 86.8 4.6 2.6 6.1 Low M/B 85.6 6.5 1.6 3.6 2.7
Low PI 17.7 67.0 12.7 2.6 Medium M/B 35.0 43.8 16.0 3.3 2.0
High PI 12.8 12.0 71.1 4.1 High M/B 9.8 19.9 63.0 5.2 2.1

Missing 9.4 2.3 5.2 57.3 25.9

Transition probabilities over 3 years

Non-patenting 75.9 5.2 2.8 16.1 Low M/B 73.6 7.7 3.0 3.8 11.9
Low PI 17.4 58.7 15.9 8.0 Medium M/B 43.6 28.1 15.2 3.7 9.4
High PI 13.2 15.0 60.0 11.8 High M/B 20.9 20.4 43.8 5.4 9.6

Missing 14.9 4.2 5.6 39.0 36.2

Transition probabilities over 5 years

Non-patenting 67.5 5.5 2.9 24.1 Low M/B 65.6 7.8 3.5 3.6 19.6
Low PI 17.1 53.6 16.7 12.5 Medium M/B 45.0 22.2 13.5 3.5 15.8
High PI 12.8 16.4 52.4 18.4 High M/B 25.5 18.5 35.1 4.8 16.1

Missing 17.6 5.1 5.2 28.7 43.4

Panel A shows the transition probabilities between portfolios of stocks sorted by PI as described in notes of Table 4.1 over 1, 3, and 5 years. Rows specify the initial

portfolio and columns the portfolio of the stock after the indicated time period. Column “out” reports the probability of a stock disappearing from the data. The

probabilities in each row are conditional, indicate the probability of moving from the initial portfolio (rows) to the destination portfolio in columns (or out), and

sum up to 1 across the columns. Panel B shows the equivalent for market-to-book (M/B)-sorted portfolios and defines an additional ”Missing” portfolio consisting

of firms with negative or missing market-to-book ratio. To allow a fair comparison of the transition probabilities of the PI-sorted portfolios with the transition

probabilities of M/B-sorted portfolio, the M/B-sorted portfolios are based on the same percentiles as PI-sorted portfolios: each year, we calculate the percentages

of firms in each of the three PI-sorted portfolios and use these percentages to categorize stocks by M/B. The unconditional probabilities (shares) of non-patenting,

low-PI, and high-PI portfolios are 68.2%, 15.9% and 15.9%, respectively (see Table 4.1). These probabilities apply also to the M/B-sorted portfolios for stocks

with non-missing M/B. 88% of stocks have non-missing M/B, the remaining 12% have missing M/B. Accordingly, the unconditional probabilities of the four

M/B-sorted portfolios are: 68%*88%=59.4% (low M/B), 15.9%*88%=14% (medium M/B), and 15.9%*88%=14% (high M/B). Transition probabilities are

calculated annually over period from 1926 to 2020. The presented transition probabilities are time-series averages.

Table 4.3: Transition probabilities of PI- vs. M/B-sorted portfolios
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One key message from Table 4.3 is the high exit rate of non-innovative firms. Compared to

the low-M/B firms in Panel B at one-, three-, and five-year horizons, the non-innovator versus low-

M/B delisting rates are respectively 6.1 vs. 2.7%, 16.1 vs. 11.9%, and 24.1 vs. 19.6%. The high

delisting rate of non-innovators helps to explain their low average age shown previously. Further,

the majority of delistings are negative events, which are known to impact portfolio performance

(Shumway, 1997).

A second key finding from Table 4.3 is the persistence of PI sorts. For every horizon, high-PI

firms are considerably more likely to remain high-PI firms in the future than are high-M/B firms.

Low-PI is similarly more persistent than medium M/B. Comparing non-patenters to the low M/B

firms, persistence is modestly higher at all horizons, but given the higher exit rates of non-patenters

this persistence is still noticeable. Because of the persistence of the PI characteristic, we expect

portfolio sorts to be relatively low-turnover.

4.3 Patent intensity and stock returns
In this section, we compare the stock returns of innovators and non-innovators. Innovators have

higher returns than non-innovators, both in raw returns and after controlling for common risk fac-

tors. We show similarities in sorts on R&D intensity and patenting intensity, and demonstrate that

controlling for expected growth is crucial to capturing the returns of innovating firms.

4.3.1 Stock returns of patent intensity portfolios

We use two samples in this subsection. The first, full sample, begins in July, 1926. The second

sample begins in July, 1963 to accommodate performance analysis with the Fama-French five-factor

model, whose investment and profitability factors begin that month.

In the full sample, the portfolios are exactly as in the prior section: non-innovators (no patents,

denoted portfolio “0”), low-intensity innovators (lower half of PI sort, portfolio “1”), and high-

intensity innovators (upper half of PI sort, portfolio “2”). The 1963-2021 period eliminates early

years with much smaller numbers of firms, so we sort innovators into bins of four bins with equal

numbers of firms. We label these 1-4. The sorts thus appear numbered as tercile or quintile sorts, but

portfolio zero always corresponds to non-innovators (PI = 0), and positive-numbered portfolios are

innovators (PI > 0) sorted by PI into bins with equal numbers of firms. Portfolio HL is a zero-cost

portfolio with a short position in the non-patenting portfolio “0” and a long position in the highest

PI portfolio. Table 4.4 shows value-weighted monthly excess returns (Panel A), CAPM regressions

(Panel B), Fama-French three-factor regressions (Panel C), and Fama-French five-factor regressions

(Panel D). The left-hand side of the table shows full-sample results and the right-hand side shows
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the 1963-2021 sample.

In Table 4.4, Panel A, the annualized average excess returns (monthly returns multiplied by

twelve) increase monotonically across portfolios in the full sample from 7.68% for the non-patenting

portfolio 0 to 11.79% for the high-PI stocks. The sample starting in 1963 confirms the increasing

average excess returns across the more granular sort into five portfolios. The pattern is again mono-

tonic with the exception of portfolio 1 having a slightly lower return than non-patenting portfolio.

The HL portfolio earns economically and statistically significant returns of 4.1% over the full sam-

ple and 6.97% over the post-1963 sample.

The CAPM regressions in Panel B show that market betas are slightly increasing across the

PI-sorted portfolios, but not sufficiently so to explain the excess returns of the high-PI portfolio.

The HL alpha is 2.28% p.a. in the full-sample and 5.12% post-1963, both statistically signifi-

cant. The FF3 regressions in Panel C show similar alphas – controlling for size and book-to-market

factors does not substantially change our inference about portfolio performance. We do see that

non-innovative firm loadings are consistent with small size and value. Among innovators, higher PI

is associated with greater size loadings and somewhat more value than growth.

Despite the common description of the HML factor as value versus growth, the FF3 results could

be consistent with HML playing dual contradictory roles for PI-sorted portfolios. Firms in the high-

PI portfolio do a lot of patenting, which we naturally think of as a predictor of growth. At the same

time, investors can acquire these firms with minimum employment of equity capital, which seems

to indicate value. The value-growth paradigm faces the difficulty that value and growth do not seem

to be opposites in a single dimension, but two distinct concepts. Value-growth can be effective in a

low-dimensional factor model because it relates to and summarizes several other useful sources of

variation, but in higher-dimensional models, HML becomes less informative as those other sources

of variation are parsed explicitly (Fama and French, 2015). This difficulty can be seen in the PI

sorts. Despite the very large variation in the types of firms in the PI-sorted portfolios, we see

surprisingly little variation in the HML loadings. The HML factor cannot help to explain the returns

of technological innovators.

The FF5 regressions in Panel D, which add investment and profitability factors, cannot resolve

the mispricing of technological innovators. In fact, if anything the difficulties deepen. The prof-

itability loadings align very strongly with the technological innovation sort, but in the opposite

direction needed to explain the pattern of returns. High-PI firms have very negative profitability

loadings, and non-innovators have positive profitability loadings. Higher profitability is supposed

to earn a premium according to the profitability factor, but that pattern is reversed in the PI sorts.

Investment loadings are not statistically significant but align in the right direction to help explain

returns. The net effect is that the five-factor model produces a stronger alpha-sort than the CAPM
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1926-2021 1963-2021

0 1 2 HL 0 1 2 3 4 HL
Panel A. Excess returns
Excess return 7.68*** 8.41*** 11.79*** 4.1*** 6.58*** 6.18*** 8.62*** 9.56*** 13.54*** 6.97***

(3.82) (4.41) (4.75) (3.84) (2.95) (3.14) (3.92) (3.8) (4.1) (3.43)

Panel B. CAPM
Constant -0.44 0.5 1.83** 2.28** -0.34 -0.24 1.59** 1.62 4.78** 5.12***

(-0.93) (1.62) (2.29) (2.32) (-0.51) (-0.46) (2.32) (1.55) (2.52) (2.61)
Mkt-RF 0.98*** 0.95*** 1.2*** 0.22*** 0.99*** 0.92*** 1.01*** 1.14*** 1.25*** 0.26***

(67.76) (92.35) (42.93) (8.23) (55.95) (70.49) (59.31) (42.67) (26.31) (5.37)
R2 0.95 0.97 0.89 0.16 0.93 0.94 0.9 0.82 0.67 0.07

Panel C. Fama-French 1993
Constant -0.89** 0.78*** 1.45* 2.35** -1.36*** 0.41 1.83*** 1.23 3.63** 4.99***

(-2.23) (2.96) (1.84) (2.35) (-2.83) (0.97) (2.64) (1.17) (2.14) (2.6)
Mkt-RF 0.94*** 0.99*** 1.15*** 0.2*** 1.0*** 0.94*** 1.0*** 1.08*** 1.12*** 0.12*

(86.04) (122.77) (42.37) (6.24) (68.43) (96.36) (52.54) (31.78) (20.54) (1.9)
SMB 0.08** -0.12*** 0.25*** 0.17* 0.09** -0.2*** -0.01 0.3*** 0.7*** 0.61***

(2.41) (-9.47) (3.62) (1.79) (2.06) (-15.68) (-0.26) (3.73) (5.78) (3.84)
HML 0.14*** -0.06*** 0.06 -0.09 0.22*** -0.1*** -0.06* 0.01 0.09 -0.13*

(5.8) (-4.38) (1.2) (-1.43) (7.21) (-5.48) (-1.75) (0.31) (1.4) (-1.67)
R2 0.96 0.98 0.91 0.2 0.95 0.96 0.9 0.85 0.76 0.25

Panel D. Fama-French 2015
Constant -1.76*** 0.13 2.11*** 2.02** 4.94*** 6.71***

(-3.75) (0.3) (3.03) (1.97) (2.96) (3.54)
Mkt-RF 1.0*** 0.95*** 1.01*** 1.08*** 1.12*** 0.12**

(76.92) (93.56) (64.84) (33.85) (23.2) (2.29)
SMB 0.13*** -0.18*** -0.05* 0.22*** 0.57*** 0.44***

(5.41) (-14.08) (-1.73) (3.87) (7.38) (4.71)
HML 0.21*** -0.08*** -0.08** -0.08 -0.1 -0.31***

(6.57) (-3.69) (-1.99) (-1.18) (-1.08) (-2.81)
CMA -0.03 0.02 0.08 0.14 0.24 0.27

(-0.81) (0.58) (1.37) (1.55) (1.58) (1.6)
RMW 0.13*** 0.05*** -0.12*** -0.28*** -0.45*** -0.58***

(3.23) (2.63) (-3.38) (-3.83) (-3.11) (-3.47)
R2 0.96 0.96 0.9 0.86 0.77 0.32

The table shows the average excess returns of PI-sorted portfolios in panel A and the results of regressing the portfolio

returns on a constant and market excess returns, Fama-French 3 factors and Fama-French 5 factors in panels B, C, and D,

respectively. Portfolio ”0” consists of non-patenting firms and the remaining portfolios of patenting firms sorted by PI.

HL is a zero-cost portfolio with a long position in the highest PI portfolio and a short position in portfolio ”0”. Stocks

are sorted into portfolios each year at the end of June. All portfolios are value-weighted and rebalanced annually. The

underlying portfolio returns are at monthly frequency, and the estimates of the average excess returns and constants are

annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors with five lags are reported in

parentheses. The time period of the sample is indicated in headings, i.e., 1926-2021 and 1963-2021. Data for Fama-

French 5 factors is available from 1963. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table 4.4: Patent Intensity sorts and performance, Fama-French factors
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or three-factor models, with a highly statistically significant HL alpha of 6.7%.

One other item of note from Panel D is the abnormal negative five-factor performance of non-

innovators (portfolio 0). This portfolio can be formed with a simple indicator variable, whether a

firm received a patent in the last year or not. Though the magnitude of the alpha is economically

modest, -1.76% per year, it is highly statistically significant. Non-innovators earn negative abnormal

returns according to very standard benchmark models (see also Panel C in both samples).

The results presented in this subsection are robust to including a momentum factor as in the

Fama and French (2018) six-factor model, as shown in Table C.3 in the appendix. Momentum

loadings on the PI sorted portfolios are generally small and do not change alphas substantially.

4.3.2 Comparison with R&D intensity

Research and development expenditures and patents both capture aspects of the innovation process.

R&D expenditures are an input to technological innovation, whereas patents are an output. While

the success of research and development is uncertain, prior literature (e.g., Bound et al., 1982)

shows that R&D expenses predict patenting. We therefore expect portfolios sorted on R&D to

relate to portfolios sorted on patent intensity.

Following prior literature, we measure R&D intensity (RDI) on June 30 as the ratio of R&D

expense (prior fiscal year) to CRSP market capitalization (calendar end of prior year) starting in

1975. Chan et al. (2001) first show a positive relationship between R&D expenses and returns.

They scale R&D expenses by market capitalization and begin their sample in 1975. Although R&D

data is available prior to 1975, in 1974 the FASB issued SFAS No. 2, which standardized and

required accounting for R&D costs.11 Hou et al. (2021) confirm a positive relationship between

R&D and abnormal returns with standard factors in a sample extended to 2016.

Our measure of R&D intensity (RDI) is identical to the R&D to market equity variable used in

prior literature, but we make one important change to methodology in the treatment of missing or

zero R&D expenses. Both Chan et al. (2001) and Hou et al. (2021) include only stocks with positive

R&D expenses, sorting into quintiles and deciles, respectively. Stocks with missing or zero R&D are

excluded.12 We treat stocks with missing R&D data in Compustat as having no R&D. Following

the sorting methodology we use for patents, our portfolio zero comprises all stocks having zero

or missing R&D expenses (“non-innovators”), and from the remaining firms with positive R&D

expenses (“innovators”) we sort into four bins by RDI with equal numbers of firms.

11See Statement of Financial Accounting Standard No. 2: Accounting for Research and Development Costs at https:
//fasb.org/referencelibrary. The impact of this change has been studied in the accounting literature. See Elliott et al.
(1984).

12See Chan et al. (2001) notes to Table VI, page 2449, and Hou et al. (2020b) Appendix A.5.4, page 2104. See also
Cohen et al. (2013).
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Our approach to missing or zero R&D data is different but informative. First, as Peters and

Taylor (2017) explain, SFAS No. 2 gives us reasonable confidence that firms with missing R&D

expenses in Compustat after 1974 typically did not incur such expenses, i.e. can be treated as zero.

Second, the identical treatment of our R&D sort with our patent sort gives greater comparability of

results. Third, the effects of our treatment of R&D expenses can be checked ex post. If our portfolio

zero of non-innovators with R&D looks similar to our portfolio of non-innovators with patents,

where there is no missing data, then this gives confidence that treating the absence of R&D expenses

as no R&D expenses is reasonable. Finally, including firms with zero or missing R&D expenses

greatly expands the scope of our analysis. In the post-1975 period, firms with zero or missing R&D

comprised 60-70% of the total universe by firm count, and 40-50% of the total universe by market

capitalization, as shown in Fig. 4.3. Including these firms in our analysis therefore gives a useful

check of the relationship documented in earlier literature on a broader sample.

Table 4.5 shows results for return performance of the RDI portfolios. Panel A confirms that firms

with high RDI have higher returns than firms with low RDI. The average annual excess returns of

firms in the highest RDI quartile are approximately 6.41% higher than those in the lowest quartile.

The average excess return of firms with no research and development expenses, shown in portfolio

“0”, is slightly higher than that of firms in portfolio “1”, but still substantially lower than the return

of high RDI firms. Panel B shows risk-adjusted returns controlling for the Fama-French five factors.

Here, the importance of separating low-R&D firms from no-R&D firms becomes evident. While

low-R&D firms are correctly priced by the Fama-French five-factor model, no-R&D firms have a

statistically significant negative alpha of -1.06% per year. This finding mirrors the results for the

low-patenting versus no-patenting portfolios shown in the previous section.

Table 4.6 compares the high-minus-low RDI portfolio with the high-minus-low PI portfolio.

Columns 1 and 3 show FF5 regressions for PI and RDI, respectively. Both HL portfolios load

similarly on the Fama-French five factors, for example loading very negatively on profitability (-

0.64 and -0.71 for PI and RDI, respectively), somewhat negatively on value (-0.36 and -0.24), and

positively on investment (0.41 and 0.32 implying conservative investment in traditional assets).

These results confirm that the two portfolios have similar risk exposures and returns. In columns 2

and 4, we test whether the RDI portfolio spans the PI portfolio and vice versa. Column 2 shows that

the PI portfolio loads strongly on RDI (loading of 0.61), and the regression R2 increases from 0.34

in column 1 to 0.56 in column 2. Alpha falls by approximately one-half from column 1 to column 2,

leaving a significant abnormal return of 2.92% unexplained. Column 4 similarly shows that the PI

portfolio explains significant variation in the RDI portfolio, and about two-thirds of the RDI alpha

is eliminated with the remainder being statistically indistinguishable from zero.

The overriding takeaway from this analysis is that patenting intensity and R&D intensity, both
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Figure 4.3: Fraction of non-R&D and non-patenting firms in the sample
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0 1 2 3 4 HL

Panel A. Excess returns
Average 8.459∗∗∗ 7.127∗∗∗ 9.890∗∗∗ 11.227∗∗∗ 13.538∗∗∗ 5.078∗∗

(3.55) (3.08) (3.92) (4.18) (3.64) (2.23)

Panel B. Fama-French 2015
Average -1.056∗∗ 0.209 1.973∗∗ 3.082∗∗∗ 3.681∗∗ 4.737∗∗

(-2.46) (0.25) (2.17) (2.79) (2.07) (2.46)
Mkt-RF 1.005∗∗∗ 0.951∗∗∗ 1.019∗∗∗ 1.022∗∗∗ 1.133∗∗∗ 0.129∗∗∗

(92.55) (53.28) (47.99) (32.75) (25.43) (2.61)
SMB 0.051∗∗ -0.180∗∗∗ -0.028 0.156∗∗∗ 0.496∗∗∗ 0.445∗∗∗

(2.31) (-5.91) (-0.58) (3.61) (6.96) (5.18)
HML 0.248∗∗∗ -0.175∗∗∗ -0.261∗∗∗ -0.195∗∗∗ 0.009 -0.239∗∗

(10.38) (-4.63) (-5.34) (-3.95) (0.09) (-2.13)
CMA -0.080∗∗ -0.006 0.123 0.180 0.245 0.324∗

(-2.31) (-0.08) (1.63) (1.52) (1.61) (1.90)
RMW 0.118∗∗∗ -0.042 -0.101 -0.302∗∗∗ -0.590∗∗∗ -0.707∗∗∗

(4.27) (-0.66) (-1.31) (-3.19) (-5.34) (-5.57)
R2 0.96 0.90 0.90 0.84 0.79 0.38

The table shows the average excess returns of R&D intensity-sorted portfolios in panel A and results of regressing the

portfolio returns on a constant and Fama-French 5 factors in panel B. R&D intensity (RDI) is research and development

expenses divided by the market value of equity. Portfolio ”0” consists of firms with missing or no R&D expenditures

and the remaining portfolios of firms are sorted by RDI. HL is a zero-cost portfolio with a long position in the highest

RDI portfolio and a short position in portfolio ”0”. Stocks are sorted into portfolios each year at the end of June. All

portfolios are value-weighted and rebalanced annually. The underlying portfolio returns are at monthly frequency, but the

estimates of the average excess returns and constants are annualized. Newey-West heteroscedasticity and autocorrelation

consistent standard errors with five lags are reported in parentheses. The sample period is 1975-2021. */**/*** indicate

significance level at 10, 5, and 1%, respectively.

Table 4.5: R&D-Intensity sorts and performance, Fama-French factors
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PI PI RDI RDI

Constant 5.826∗∗∗ 2.915∗∗ 4.737∗∗ 1.688
(2.79) (1.97) (2.46) (1.16)

Mkt-RF 0.140∗∗ 0.061 0.129∗∗∗ 0.055
(2.45) (1.25) (2.61) (1.31)

SMB 0.447∗∗∗ 0.174∗∗ 0.445∗∗∗ 0.211∗∗∗

(4.11) (2.26) (5.18) (3.29)
HML -0.355∗∗∗ -0.208∗∗ -0.239∗∗ -0.053

(-3.29) (-2.45) (-2.13) (-0.56)
CMA 0.412∗∗ 0.212 0.324∗ 0.109

(2.15) (1.49) (1.90) (0.83)
RMW -0.644∗∗∗ -0.209∗ -0.707∗∗∗ -0.370∗∗∗

(-3.70) (-1.84) (-5.57) (-5.08)
RDI 0.614∗∗∗

(10.82)
PI 0.523∗∗∗

(14.16)
R2 0.34 0.56 0.38 0.58

The table shows the results of regressing PI- and RDI-sorted zero-cost portfolios onto the Fama-French 5 factors as well

as the PI and RDI portfolios. PI is a zero-cost portfolio with a long position in the highest PI portfolio and a short

position in PI portfolio ”0”. RDI is a zero-cost portfolio with a long position in the highest RDI portfolio and a short

position in RDI portfolio ”0”. More details can be found in the descriptions of Table 4.4 and Table 4.5. Newey-West

heteroscedasticity and autocorrelation consistent standard errors with five lags are reported in parentheses. The sample

period is 1975-2021. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table 4.6: Patent Intensity and R&D Intensity.

measures of technological innovation, capture similar variations in risk and expected returns. Of

less interest to us is a “horse race” between the two measures, since in theory, both are important.

While our current interest is the similarity between PI and RDI, future research may want to explore

their differences, particularly as they should capture different phases of the innovation process. One

practical difference between PI and RDI is the considerably longer sample period permitted by

patent intensity. Standardized R&D data begins only in 1975, whereas our current study calculates

patent intensity for the entire 95 years of available CRSP data. Since reliable patent data goes back

even further, until 1790, the only limitation preventing further historical analysis of patent intensity

is comprehensive linking to stock return data. A final advantage of the patent data is the lack of
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ambiguity about the definition of portfolio “0” for PI sorts, as non-patenting firms can be clearly

identified from the data. The close resemblance of the RDI portfolio “0” and the PI portfolio “0”

serves as a robustness check for the treatment of missing values in the R&D data.

4.3.3 Pricing patent intensity with q-factors

Hou et al. (2015) develop their original q-factor model motivated by the first-order conditions of the

static optimization problem of a profit-maximizing firm, suggesting investment and profitability as

characteristics related to firm returns.13 Their q-factor model has four factors, with market and size

in addition to investment and profitability.

The q-factor model is sometimes presented as in competition with the five-factor model of Fama

and French (2015),14 but for our purposes, the similarities between the two models are more rel-

evant. Fama and French (2015) also have market, size, investment, and profitability factors, and

acknowledge that their value factor is redundant after accounting for the first four factors. Further,

the characteristics for size and investment are identical in both approaches. If the value factor is re-

moved, the remaining differences between the two approaches relate to how profitability is defined,

and the sorting procedures used for combining factors.15 Like HXZ, FF have consistently empha-

sized using simple economic theory to discipline the factors, favoring a static return decomposition

(see for example equation 3 in Fama and French (2015) and equation 2 in Fama and French (1995)).

While the q-factor model and the FF5 model may certainly have meaningful empirical differences

in specific cases, the economic motivation and content of the models are similar, and we expect

them to present a consistent overall picture of technological innovators.

A much more important distinction is the q5 model of Hou et al. (2021), which adds an expected

growth factor. Expected growth fits into the paradigm of appearing in the first-order conditions of

an optimizing firm, once extended to a multiperiod setting (see HMXZ equation 1). One can also

see that growth matters in the accounting identity of Fama and French (2015), allowing for variation

in future quantities (see their equation 3). Technological innovation should naturally be expected

to load on expected growth. Innovation creates new products or reduces costs, raising the marginal

product of future investments in traditional assets, and adding to expected growth. Correspondingly,

HMXZ demonstrate the importance of expected growth for R&D sorted portfolios.

13See their equation 4. Earlier literature documents the anomalies related to investment (Titman et al., 2004; Cohen
et al., 2013) and profitability (e.g., Novy-Marx (2013b)).

14See for example Hou et al. (2020b).
15Fama and French (2015) define profitability as operating profitability scaled by annually updated book equity while

Hou et al. (2015) using earnings before extraordinary items scaled by quarterly updated book equity. FF use bivariate
sorts on size and profitability and size and investment to form those factors, while HXZ use a trivariate sort of all three
characteristics.
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We show that the expected growth factor also plays an essential role in pricing patent intensity

portfolios. This complements the findings of HMXZ by using a different but related measure of

technological innovation. Further, our sample is nine years longer, limited only by the availability

of q-factors before 1967. Finally, our methodology uses a broader cross-section of firms, including

the portfolio zero of non-innovators.

We first apply the original q-factor model with four factors. Panel A in Table 4.7 shows that this

model leads to similar or even stronger mispricing across the portfolios than the FF5 model. The

alphas increase monotonically from -2.03% in portfolio zero to 6.79% in portfolio 4, generating

abnormal return of 8.82% for the HL portfolio. In unreported results, we confirm that the stronger

mispricing result relative to the FF5 model is not driven by the slightly later start of the q-factor data

in 1967.

The q-factor loadings of the PI-sorted portfolios closely resemble the loadings on the five Fama-

French factors discussed in the previous section. In particular, the loadings on the profitability factor

(ROE) decrease almost monotonically across the portfolios from slightly positive but insignificant

value for non-patenting firms to significantly negative value of -0.48 for high-PI firms. This lowers

the q-factor model implied expected returns for high-PI portfolios, further adding to the already

higher excess returns of these portfolios. Although the q-factor model is based on an appealing

investment asset pricing framework, its empirical factors share some key characteristics of the FF5

factors, and hence lead to a similar amplification of the mispricing of the PI-sorted portfolios.

Panel B shows q5-regressions, which include the expected growth factor (EG). The loadings

show a strong relationship between patenting intensity and expected growth. Non-patenting firms

have a negative loading of -0.18 on EG, which monotonically increases with PI to 0.64 for high-

patent intensity firms, generating a loading spread of 0.82 in the long-short portfolio. Including EG

further amplifies the negative loadings on the investment and profitability factors, which decrease

to −0.42 and −0.79 from −0.27 and −0.52, respectively. The inclusion of the EG factor is crucial

to explain the returns of the PI-sorted portfolio. While q5-factor alphas are still monotonically

increasing, resulting in a long-short alpha of 2.26%, the remaining long-short alpha is statistically

indistinguishable from zero. The results show that the q5 model is able to price technological

innovators, in particular relative to non-innovating firms.

In unreported robustness checks, we find that the statistical significance of the q5 results is sen-

sitive to the exact specification of patenting activity. For example, when measuring patent intensity

as the number of patents over the last 36 months (instead of 12 months in the main specification)

divided by the firm’s market capitalization, the high-PI portfolio still earns a statistically significant

q5-alpha, resulting in a significant alpha of the HL portfolio as well. Nonetheless, what remains

robust across all checks is a very strong sort on the expected growth loading and a large reduction
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0 1 2 3 4 HL

Panel A. Q4-factors 1967-2021

Constant -2.04*** -0.04 2.83*** 3.5*** 6.79*** 8.82***
(-3.27) (-0.08) (3.75) (2.87) (3.69) (3.96)

MKT 1.0*** 0.95*** 0.99*** 1.05*** 1.08*** 0.08
(50.36) (86.86) (53.28) (28.13) (19.58) (1.11)

ME 0.14*** -0.19*** -0.08** 0.2** 0.55*** 0.41**
(2.68) (-11.85) (-2.07) (2.56) (4.44) (2.43)

IA 0.22*** -0.06** -0.05 -0.06 -0.05 -0.27*
(4.52) (-2.43) (-1.25) (-0.85) (-0.39) (-1.76)

ROE 0.04 0.07*** -0.15*** -0.29*** -0.48*** -0.52***
(1.33) (3.14) (-3.6) (-4.64) (-5.02) (-4.64)

R2 0.95 0.96 0.9 0.86 0.78 0.28

Panel B. Q5-factors 1967-2021

Constant -0.59 0.18 0.57 1.18 1.67 2.26
(-1.06) (0.39) (0.76) (0.98) (1.05) (1.24)

MKT 0.98*** 0.95*** 1.02*** 1.08*** 1.15*** 0.17***
(55.85) (86.26) (60.46) (29.18) (23.18) (2.85)

ME 0.12** -0.19*** -0.05 0.23*** 0.61*** 0.49***
(2.36) (-12.25) (-1.44) (2.99) (5.12) (2.98)

IA 0.25*** -0.06** -0.11*** -0.12* -0.17 -0.42***
(5.13) (-2.15) (-2.59) (-1.7) (-1.39) (-2.8)

ROE 0.1*** 0.08*** -0.25*** -0.38*** -0.69*** -0.79***
(2.7) (3.31) (-5.57) (-5.35) (-6.84) (-6.37)

EG -0.18*** -0.03 0.28*** 0.29*** 0.64*** 0.82***
(-4.88) (-0.9) (5.54) (3.8) (5.92) (6.52)

R2 0.95 0.96 0.91 0.86 0.79 0.35

The table shows the results of regressing the PI-sorted portfolio returns on a constant and the four Q-factors (Hou et al.,

2015), i.e., market (MKT), size (ME), investment (IA), and profitability (ROE), in panel A, and additionally on fifth

Q-factor (Hou et al., 2021), i.e., expected growth (EG), in panel B. Portfolio ”0” consists of non-patenting firms and the

remaining portfolios of patenting firms sorted by PI. HL is a zero-cost portfolio with a long position in the highest PI

portfolio and a short position in portfolio ”0”. Stocks are sorted into portfolios each year at the end of June. All portfolios

are value-weighted and rebalanced annually. The underlying portfolio returns are at monthly frequency, and the estimates

of the constants are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors with five

lags are reported in parentheses. The time period of the sample is given by availability of the Q-factors, i.e., 1967-2021.

*/**/*** indicate significance level at 10, 5, and 1%, respectively.

Table 4.7: Patent Intensity and q-factors
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in mispricing. These are the key economic findings that we focus on.

4.3.4 Build-up or resolution?

A different lens through which to understand the performance of technological innovators is the

methodology of van Binsbergen et al. (2021), which proposes to determine whether an anomaly

is due to “build-up” or “resolution” of misvaluation. They generate an empirical pricing kernel

by assuming that the market portfolio is priced correctly on average over the sample period, given

realized cash flows (dividends) over a fifteen-year period and the terminal value of the portfolio in

year fifteen. Other portfolios, such as the market at other horizons or any anomaly portfolio at any

horizon, can be valued using this pricing kernel. Assets are therefore priced by their covariation

with realized market returns, as in the CAPM. We apply this methodology to our patent-intensity

portfolios.

Starting in 1963, we estimate the fair market value of anomaly portfolios, including PI-portfolios,

using the van Binsbergen et al. (2021) dividend discount model and CAPM-SDF. For greater com-

parability with their results, we form our last portfolios in 2002 (final cash flows in 2017). Portfolios

are therefore formed in June of every year from 1963 to 2002. The price wedge of a portfolio is

the difference between the actual price of the portfolio and the imputed fair market value from

the model. In addition to the price wedge at the time of portfolio formation, we track the portfolios

through time until 15 years after portfolio formation. Importantly, we track the same group of stocks

throughout the 15 years and keep the endpoint constant, forcing the price wedge to be equal to zero

after 15 years. We carry out this methodology for not only the PI-portfolios but also the market and

anomalies related to size, value, investment, and profitability.

Fig. 4.4 shows estimated price wedges. The top left panel shows the benchmark market port-

folio, and long-short portfolios formed on size, value, investment, and profitability. This reveals an

important consideration in interpreting the reported price wedges: The market itself is “misvalued”

in the years after portfolio formation as it ages. We point this out not to critique the methodology,

but to make clear that the pattern observed in the market is the benchmark by which we may want to

evaluate other portfolios.16 The long-short portfolios in the top left corner should not be as strongly

affected by this benchmark issue, since it affects both the long and short sides. Consistent with the

results of van Binsbergen et al. (2021), the profitability anomaly is a “build-up” anomaly and the

other anomalies considered are “resolution” or reduction of existing mispricing.

The top right panel of Fig. 4.4 shows price wedges for the long and short sides separately of

16The apparent misvaluation of the market at intermediate horizons could be due to autocorrelations in market returns,
or to dropping years of data at the sample beginning in the aged portfolios. For example, the one-year aged portfolio
drops from the valuation of the market all of the 1963 data.
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The figure shows price wedge dynamics for portfolios sorted on size, book-to-market, investment, and profitability in the

top row and portfolios sorted on PI in the bottom row. Price wedges are calculated as the difference between observed and

the fair market value suggested by a 15-year dividend discount model using CAPM SDF as suggested by van Binsbergen

et al. (2021). The top-left panel plots the price wedge for a long-short portfolio, where the long side is the quartile

portfolio with the highest (lowest) value of b/m or profitability (size or investment) and the short side is the quartile

portfolio with the lowest (highest) value. Market is the estimated price wedge of the market portfolio. The top-right panel

plots the price wedges of the individual legs of the aforementioned long-short portfolios. The bottom-left panel plots

the price wedge of a portfolio that goes long high PI firms (portfolio ”4”) and short low PI firms (portfolio ”0”). The

bottom-right panel shows the wedges of the two portfolios separately.

Figure 4.4: Price wedge dynamics
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each of the traditional anomalies. To avoid the benchmark issue shown for the market portfolio, we

display price-wedge differences, the difference between the price wedge of each portfolio and the

price wedge of the market portfolio (if we did not subtract the price wedge of the market portfolio,

all long-only portfolios would have this as a common component of their price wedges). Undervalu-

ation appears to play a modestly more important role than overvaluation. We also see differences in

the speed of misvaluation resolution. For example, small stocks have a small undervaluation wedge

that dissipates quickly.

The bottom two panels of Fig. 4.4 show price wedge dynamics of the PI-sorted portfolios, with

the long-short portfolio in the left-hand panel and the price wedge differences (relative to market)

of the long and short sides separately on the right-hand side. According to the benchmark model,

the long-short portfolio is initially undervalued by a little less than twenty percent, with all of this

coming from undervaluation of patent-intensive firms.

These results help to interpret the CAPM results shown in Table 4. According to the CAPM,

non-innovators (the short side of the PI long-short portfolio) are not mispriced, and the price wedge

shows no long-run mispricing either. On the other hand, patent-intensive firms earn positive ab-

normal returns, and the bottom right-hand panel of Fig. 4.4 says that this should be interpreted as

undervaluation that takes several years to resolve. The results thus conform well with early discus-

sions in the literature of undervaluation of technological innovation by investors, perhaps because

of short-sightedness or misunderstanding the value of innovation (Hall, 1993; Hall and Hall, 1993).

A natural question to follow this analysis is why adding additional “standard” factors to the

CAPM, such as investment and profitability, worsens the mispricing of technological innovators

(Table 4.4, Panel D)? Further, is this additional mispricing short-lived or long-lived? We turn to

these questions in the next section.

4.4 (Mis)pricing innovation
We further explore the dynamics of mispricing in patent-intensity portfolios by considering factor-

model regressions on “aged” portfolios, formed in year zero, and followed for up to ten years fol-

lowing formation. Consistent with previous results, CAPM and FF3 abnormal performance resolves

within two to three years of portfolio formation. Adding investment and profitability factors, in FF5

and q4, dramatically worsens the picture. Abnormal returns on the long-short PI portfolio remark-

ably remain significantly positive for a full decade after portfolio formation.

The expected growth factor of the q5 model again largely resolves the problem. For almost all

PI-sorted portfolios and horizons, abnormal performance becomes insignificant. Loading dynamics

explain the lives of innovators. Expected growth starts very high and remains high for a full decade
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while gradually declining. Investment in traditional assets becomes more aggressive in the years

immediately following formation and levels off. Profitability begins very weak and gradually im-

proves throughout the decade. Removing any one of these priced sources of fundamentals causes

persistent mispricing of innovators.

To further understand the role of investment and profitability, we carry out characteristic sorts

within portfolios of innovators and non-innovators to see if the characteristics earn similar spreads.

Market, size, and value characteristics largely earn similar spreads among innovators and non-

innovators, both in raw returns and controlling for standard factors. But investment and profitability

are different. Among non-innovators, high investment is associated with the familiar lower returns.

Among innovators, the spread is smaller and not statistically significant. Controlling for standard

factors, non-innovators are priced well, but innovators with high investment rates have positive

abnormal returns. Profitability sorts produce a more extreme result. Among non-innovators, prof-

itability associates with the familiar higher return. But among innovators, the return spread has

the opposite sign, though not statistically significant. As a consequence, applying standard factor

models, non-innovators appear well-priced, but innovators earn a significant positive alpha for weak

profitability. In sum, innovators that load on investment and profitability do not earn the same return

premium as the overall population, explaining the alphas earned by exposure to these factors among

innovators.

We conclude by examining the ability of the expected growth factor of the q5 model to resolve

the challenging mispricing of characteristic sorts within innovators, and discuss implications for

future research.

4.4.1 Risk and alpha dynamics of aged portfolios

We examine risk and alpha dynamics of patent-intensity sorted portfolios for a decade following

the initial sort date. At the end of June of year t we use the PI sort from year t −K to form

value-weighted portfolios, for lags K = 0,1, ...,10. The sorts do not depend on time-t information,

and any stocks from the t −K sort that are no longer present at date t are simply omitted from

the aged portfolio. The value weights depend on values at the end of June of year t. The K-

aged portfolio returns are identical to the returns one would receive if forming the portfolios at

year t−K, rebalancing each year to current value weights based on the stocks remaining from the

original portfolio sort, and reinvesting any dividends or delisting returns at the same value weights.

In other words, we study portfolios of firms that were classified as high-PI or non-patenting K years

ago. The analysis reveals the evolution of risk and performance of the initially sorted portfolios over

time.

Table 4.8 shows FF5 alpha dynamics of the aged portfolios in the 1963-2021 sample period.
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The results are striking. FF5 abnormal performance for non-innovators is significantly negative for

a full eleven years after formation (cohorts 0 to 10), and the high-PI portfolio remains significantly

positive for a full ten years. The long-short portfolio alpha is highly statistically significant ex-

ceeding 5% annually in the 10th year after formation (cohort 9). The persistence of performance is

remarkable.

Table 4.9 shows long-short returns and alphas for CAPM, FF3, and FF5, for the full sample and

post-1963 sample. For the CAPM and FF3 models, positive abnormal returns remain statistically

significant for only two to three years. The addition of the investment and profitability factors in

the FF5 portfolios not only makes abnormal performance larger but also substantially more per-

sistent. As discussed by van Binsbergen and Opp (2019), persistence in abnormal performance,

or significant inaccuracy in costs-of-capital over long periods of time, can imply highly inefficient

real investment. If the FF5 model accurately captures the market-required return on equity capital,

technological innovators face too-high costs of capital for long horizons, and are therefore likely

to significantly underinvest. Meanwhile, non-innovator costs-of-capital would be too low, implying

overinvestment. Table C.4 and Table C.5 in the appendix show similar results respectively for FF6

alphas (adds momentum) and q4 alphas.

Table 4.10 shows that the expected growth factor of the q5 model again remarkably resolves

these difficulties for nearly all portfolios and horizons. To understand the role played by expected

growth, Fig. 4.5 shows the dynamics of factor loadings in the q5 model (Fig. C.1 and Fig. C.2 in

the appendix show similar loadings for FF5 and q4 models). Table 4.7, Panel B previously showed

a very high contemporaneous loading of the long-short PI portfolio on expected growth, but what

does such a high level of expected growth imply for the risk dynamics of technological innovator

loadings?

The factor loading dynamics reveal a compelling economic story. First, we consider expected

growth itself. The initial spread is very strong and monotonic, with the high-PI loading exceeding

0.6, the non-innovator loading approaching -0.2, and the net long-short loading exceeding 0.8. Over

time, we should always anticipate loadings with a strong initial sort to mean-revert. The growth

loadings mostly do so, but with a twist. In particular, the four innovator portfolio loadings appear to

mean revert to a common mean, and all are in-between 0.1 and 0.2 in the 10th year, while the non-

innovator loading stays negative and statistically significant throughout the decade. The long-short

growth loading is 0.31 with a t-statistic exceeding 2 in the 10th year. Innovator growth and non-

innovator growth appear to revert to different means, and innovator growth loadings are persistently

higher.

The loadings on investment also show a strong distinction between innovators and non-innovators.

The non-innovator investment loading is in the range of 0.25 to 0.3 (conservative) and highly statis-
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Horizon
(years)

0 1 2 3 4 HL

0 -1.76*** 0.13 2.11*** 2.02** 4.94*** 6.71***
(-3.75) (0.3) (3.03) (1.97) (2.96) (3.54)

1 -1.78*** -0.13 2.57*** 1.38 6.24*** 8.03***
(-3.9) (-0.31) (3.8) (1.48) (4.01) (4.6)

2 -1.75*** 0.0 1.55** 1.0 4.88*** 6.63***
(-3.71) (0.01) (2.5) (1.2) (3.19) (3.83)

3 -2.0*** -0.13 1.53** 1.39 2.5* 4.5***
(-4.26) (-0.3) (2.34) (1.6) (1.83) (2.87)

4 -1.9*** -0.08 0.95 1.74* 1.92 3.82**
(-4.07) (-0.18) (1.57) (1.93) (1.49) (2.51)

5 -1.84*** 0.18 0.44 1.73* 2.22* 4.07***
(-3.99) (0.38) (0.72) (1.94) (1.71) (2.71)

6 -1.82*** 0.27 0.58 0.88 3.31** 5.13***
(-3.98) (0.59) (1.02) (0.94) (2.33) (3.15)

7 -1.55*** 0.13 0.33 1.41* 2.97** 4.52***
(-3.47) (0.31) (0.58) (1.65) (2.09) (2.79)

8 -1.66*** -0.03 0.92 0.46 2.7* 4.36***
(-3.7) (-0.08) (1.5) (0.48) (1.9) (2.68)

9 -1.71*** 0.27 0.35 0.76 3.55** 5.26***
(-3.74) (0.6) (0.6) (0.87) (2.48) (3.18)

10 -1.43*** 0.24 -0.67 2.04** 1.44 2.86*
(-3.09) (0.5) (-1.12) (2.11) (0.99) (1.69)

The table shows the abnormal returns (alphas) relative to five-factor model (Fama and French 2015) of PI-sorted portfolios

for holding period of one-year at different investment horizons (indicated in rows). Portfolio ”0” consists of non-patenting

firms and the remaining portfolios of patenting firms sorted by PI. HL is a zero-cost portfolio with a long position in the

highest PI portfolio and a short position in portfolio ”0”. Stocks are sorted into portfolios at the end of June K years prior

to the beginning of the holding period in July of year t. The holding period lasts for one year from July (end of June) in

year t to the end of June in year t +1. Each portfolio consists of the stocks assigned to the portfolio K years ago that are

still active as of the beginning of the holding period, i.e., end of June in year t. Portfolios are value-weighted with weights

as of the beginning of the holding period. The underlying portfolio returns are at monthly frequency, but the estimates

of the alphas are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors with five lags

are reported in parentheses. The time period of the sample is given by availability of the FF5-factors, i.e., 1963-2021.

*/**/*** indicate significance level at 10, 5, and 1%, respectively.

Table 4.8: Aged Patent Intensity portfolios, FF5 alpha dynamics, 1963-2021
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Panel A. 1926-2021 Panel B. 1963-2021

Horizon
(years)

Excess
return

CAPM
alpha

FF3
alpha

Excess
return

CAPM
alpha

FF3
alpha

FF5
alpha

0 7.187*** 3.914*** 3.392** 6.968*** 5.119*** 4.99*** 6.709***
(4.423) (2.852) (2.505) (3.431) (2.605) (2.604) (3.543)

1 7.002*** 3.88*** 3.649*** 7.213*** 5.279** 5.849*** 8.027***
(4.362) (2.651) (2.648) (3.507) (2.535) (3.202) (4.604)

2 4.726*** 2.056 2.201 4.736** 2.862 4.021** 6.628***
(3.074) (1.419) (1.631) (2.381) (1.373) (2.299) (3.83)

3 3.169** 0.474 0.58 2.882 0.803 1.827 4.504***
(2.05) (0.337) (0.436) (1.495) (0.402) (1.039) (2.874)

4 2.772* 0.156 0.221 2.7 0.736 1.638 3.822**
(1.941) (0.118) (0.175) (1.499) (0.4) (1.004) (2.514)

5 3.976*** 0.935 0.931 3.425* 1.321 2.369 4.067***
(2.754) (0.73) (0.751) (1.942) (0.758) (1.431) (2.711)

6 5.019*** 1.636 2.063 4.469** 2.218 3.406** 5.13***
(3.356) (1.197) (1.584) (2.367) (1.204) (1.997) (3.149)

7 3.42** 0.484 1.309 3.483* 1.296 2.725 4.518***
(2.381) (0.345) (1.004) (1.823) (0.674) (1.61) (2.79)

8 3.67** 0.731 1.847 3.324* 1.036 2.495 4.355***
(2.45) (0.501) (1.373) (1.677) (0.522) (1.437) (2.681)

9 3.329** 0.726 2.137 3.823* 1.663 3.18* 5.26***
(2.242) (0.487) (1.552) (1.89) (0.822) (1.828) (3.181)

10 1.8 -0.784 0.51 2.313 0.027 1.42 2.865*
(1.24) (-0.545) (0.377) (1.178) (0.014) (0.817) (1.693)

The table shows the excess and abnormal return (indicated in columns) on PI-sorted long-short portfolios for holding

period of one-year at different investment horizons (indicated in rows). The PI-sorted long-short portfolio consists of

a long position in high-PI firms and a short position in non-patenting firms. In panel A, stocks are sorted into three

portfolios (non-patenting, low-PI and high-PI), and in panel B into five portfolios (non-patenting, and the remaining

patenting stocks into four portfolios by PI). Stocks are sorted into portfolios at the end of June K years prior to the

beginning of the holding period in July of year t. The holding period lasts for one year from July (end of June) in year t to

the end of June in year t+1. Each portfolio consists of the stocks assigned to the portfolio K years ago that are still active

as of the beginning of the holding period, i.e., end of June in year t. Portfolios are value-weighted with weights as of

the beginning of the holding period. Excess return is average return of the long-short portfolio in excess of risk-free rate.

CAPM alpha, FF3 alpha, and FF5 alpha indicate abnormal return relative to market model, Fama and French 1993, and

Fama and French 2015, respectively. The underlying portfolio returns are at monthly frequency, but the estimates of the

average excess returns and alphas are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard

errors with five lags are reported in parentheses. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table 4.9: Aged Patent Intensity long-short portfolios, alpha dynamics
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Figure 4.5: Aged Patent Intensity portfolios, q5-factor loading dynamics, 1967-2021
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Horizon
(years)

0 1 2 3 4 HL

0 -0.59 0.18 0.57 1.18 1.67 2.26
(-1.06) (0.39) (0.76) (0.98) (1.05) (1.24)

1 -0.76 0.27 0.69 0.11 3.57 4.33*
(-1.31) (0.54) (0.86) (0.1) (1.56) (1.65)

2 -0.65 0.01 0.22 0.05 2.9 3.56
(-1.09) (0.01) (0.27) (0.05) (1.37) (1.47)

3 -1.05* -0.23 0.54 0.91 0.71 1.76
(-1.85) (-0.45) (0.65) (0.8) (0.44) (0.93)

4 -0.91 -0.5 0.15 1.28 -0.42 0.49
(-1.62) (-0.95) (0.2) (1.15) (-0.27) (0.27)

5 -0.94* -0.3 0.22 0.76 -0.28 0.66
(-1.68) (-0.54) (0.27) (0.69) (-0.19) (0.38)

6 -0.95* -0.35 0.12 0.51 0.45 1.4
(-1.68) (-0.62) (0.17) (0.46) (0.27) (0.71)

7 -0.65 -0.78 0.02 0.66 0.98 1.63
(-1.17) (-1.49) (0.03) (0.65) (0.58) (0.84)

8 -1.09** -0.87 0.95 -0.47 0.88 1.97
(-1.98) (-1.4) (1.2) (-0.45) (0.5) (0.97)

9 -1.08* -0.49 0.05 -0.01 2.08 3.16
(-1.87) (-0.84) (0.07) (-0.01) (1.17) (1.53)

10 -0.86 -0.96 -0.5 1.36 0.11 0.97
(-1.41) (-1.55) (-0.63) (1.16) (0.06) (0.46)

The table shows the abnormal returns (alphas) on PI-sorted portfolios for holding period of one-year at different invest-

ment horizons (indicated in rows) relative to the Q-factor model (Hou et al., 2021). Portfolio 0 consists of non-patenting

firms and the remaining portfolios of patenting firms sorted by PI. HL is a zero-cost portfolio with a long position in the

highest PI portfolio and a short position in portfolio 0. Stocks are sorted into portfolios at the end of June K years prior to

the beginning of the holding period in July of year t. The holding period lasts for one year from July (end of June) in year

t to the end of June in year t +1. Each portfolio consists of the stocks assigned to the portfolio K years ago that are still

active as of the beginning of the holding period, i.e., end of June in year t. Portfolios are value-weighted with weights as

of the beginning of the holding period. The underlying portfolio returns are at monthly frequency, but the estimates of the

alphas are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors with five lags are

reported in parentheses. The time period of the sample is given by availability of the Q-factors, i.e., 1967-2021. */**/***

indicate significance level at 10, 5, and 1%, respectively.

Table 4.10: Aged Patent Intensity portfolios, q-factor alpha dynamics, 1963-2021
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tically significant throughout the decade. Innovator loadings are initially negative (aggressive) and

bunched (-0.06 to -0.17), but then diverge. Low-intensity innovators become more conservative in

their investment loadings and high-intensity innovators become more aggressive. High-intensity in-

novators particularly shift toward aggressive investment in the two years following portfolio forma-

tion. To explore the relation between expected growth and investment further, Panel F (bottom right)

plots growth loadings and two-year forward investment loadings on the same axes. The overlap is

remarkably strong. Expected growth loadings predict future investment loadings for technological

innovators.

The final piece of the economic story is profitability loadings. Once again the initial sort is

strong and monotonic, with non-innovators loading slightly positively on profitability (0.1, t=2.7)

and high-intensity innovators loading negatively (-0.69, t=-6.8). Over time mean-reversion occurs,

but slowly and mostly among the most innovation-intense firms. In the 10th year, the loading sort

is still monotonic, with non-innovators still loading positively (0.08, t=1.9) and high-intensity inno-

vators still loading negatively (-0.26, t=2.7). Over the ten-year period, non-innovator profitability

very modestly weakens (year 10 minus year 0 profitability loading equals -0.04, t=-2.36, Table C.9,

Panel D in the appendix). Meanwhile, the most intense innovators move strongly towards more

robust profitability (year 10 minus year 0 profitability loading equals 0.4, t=4.9).

These three elements, growth, investment, and profitability, drive a compelling economic story.

High-intensity innovators develop growth options, which they take advantage of through increas-

ingly heavy investment, gradually leading to improved profitability. All three factors earn strong

premia, and all are needed to explain the complex risk and return dynamics of innovative firms.

Though not as central to the economic story, the dynamics of size loadings are also interesting.

Naturally, we expect ex-ante that size loadings should decrease, as the firms in the aged portfolios

are not replaced by new firms. Most of the portfolios follow a pattern of gradual decrease in size

loadings, but size loadings drop most dramatically for the most innovation-intensive, consistent with

these firms growing fastest.

4.4.2 Investment and profitability

We finally seek to further understand why investment and profitability factors can misprice techno-

logical innovators when not controlling for expected growth. We also more generally explore the

question of differences in pricing between innovators and non-innovators. Our approach is to sort

within the groups of all non-innovators (PI = 0, portfolio 0) and all innovators (PI > 0, portfolios

1-4) on the FF5 characteristics: market, size, B/M, profitability, and investment. For simplicity, the

long-short portfolios are always long the quintile with the highest value of the sorting variable and

short the quintile with the lowest value, irrespective of which side earns the higher return tradition-
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ally. We ask whether the characteristics earn similar return spreads within the groups of innovators

and non-innovators, and compare alphas after controlling for the FF5 factors.

Table 4.11 shows results. For beta, size, and B/M the return spreads and alphas are largely unre-

markable. The value spreads are positive and significant among both innovators and non-innovators,

but their difference is not, and none of the alphas is significant controlling for standard factors. The

raw size spread is larger for innovators than non-innovators, but the alpha difference is insignificant

controlling for standard factors. The raw beta spreads are insignificantly different from zero, as

are the within-group alphas, but the alpha is mildly larger for innovators than non-innovators (beta

earns more of a premium for innovators than non-innovators). These results do not appear central

to explaining the pricing of innovative versus non-innovative firms.

The results for investment and profitability are more noteworthy. The raw return spread for non-

innovators shows the familiar negative sign and is statistically significant, whereas the return spread

for innovators is negative, but of lower magnitude and not significant. The difference in spreads is

not significant. Controlling for FF5 factors, however, the difference in alpha becomes significantly

positive, with a magnitude of 4.5% p.a. (t=2.36) driven by a very negative loading on investment

(innovators have a much wider spread in investment loadings than non-innovators). The difference

for profitability is even stronger. In raw returns, among non-innovators the most profitable quintile

earns the familiar higher return than the least profitable quintile, with a return spread of 6% p.a.

(t=2.34). To the contrary, among non-innovators the return spread is negative (-3.5% p.a.) but not

significant. The return spread difference is very large, -9.6% p.a. (t=-3.4). Controlling for the

FF5 factors has predictable results. The alpha for non-innovators is statistically indistinguishable

from zero, but the alpha for innovators is -6.2% p.a. (t=-2.7). The alpha difference is economically

meaningful at -7.8% p.a., and statistically significant.

The explanation for mispricing when using the FF5 model for innovative firms is now clear. In

the aggregate data, the return spreads earned for investment and profitability are driven primarily by

non-innovators. Innovators have strong variation in these characteristics, but the return spreads are

weaker or even opposite to the overall data.

Why does the q5 model help to price portfolios of innovators, and can it further solve the chal-

lenging problem of characteristic sort mispricing within groups of innovators and non-innovators?

Table 4.12 sheds light on these questions, showing mixed results. For investment sorts, the alpha

difference between innovators and non-innovators falls by more than 50% to approximately 2% p.a.

and a t-statistic less than one. The improvement in pricing is driven by a strong positive loading

on expected growth (0.36, raising the benchmark required return) that partially compensates for the

large negative investment loading (-0.74, decreasing the benchmark required return). This is the

classic omitted variables problem. Heavy investors who are innovators are expected to grow faster
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Ex. Ret. Fama-French 2015

Constant Constant Mkt-RF SMB HML CMA RMW R2

Beta Non-Inno -1.237 -1.750 0.619∗∗∗ -0.163∗∗∗ 0.140∗ -0.762∗∗∗ -0.372∗∗∗ 0.40
(-0.49) (-0.85) (14.61) (-2.68) (1.72) (-6.27) (-4.42)

Inno 0.093 2.734 0.435∗∗∗ -0.065 -0.233∗∗ -0.751∗∗∗ -0.645∗∗∗ 0.33
(0.03) (1.10) (8.48) (-0.88) (-2.35) (-5.10) (-6.32)

Diff 1.330 4.484∗ -0.183∗∗∗ 0.098 -0.374∗∗∗ 0.011 -0.273∗∗∗ 0.07
(0.59) (1.96) (-3.87) (1.45) (-4.09) (0.08) (-2.91)

Size Non-Inno -4.582∗ -3.732∗ 0.225∗∗∗ -1.148∗∗∗ -0.320∗∗∗ 0.207∗ 0.257∗∗∗ 0.42
(-1.82) (-1.85) (5.41) (-19.25) (-3.98) (1.73) (3.11)

Inno -7.833∗∗∗ -4.125∗∗ -0.099∗∗ -1.482∗∗∗ -0.338∗∗∗ 0.070 0.421∗∗∗ 0.62
(-2.67) (-2.17) (-2.52) (-26.39) (-4.47) (0.62) (5.41)

Diff -3.251∗ -0.393 -0.324∗∗∗ -0.334∗∗∗ -0.018 -0.137 0.164∗∗ 0.25
(-1.73) (-0.23) (-9.15) (-6.58) (-0.27) (-1.35) (2.33)

B/M Non-Inno 3.792∗∗ -0.217 0.004 0.184∗∗∗ 1.009∗∗∗ 0.136∗∗ -0.202∗∗∗ 0.62
(2.16) (-0.19) (0.19) (5.47) (22.23) (2.02) (-4.34)

Inno 5.965∗∗∗ -0.794 0.157∗∗∗ 0.424∗∗∗ 0.976∗∗∗ 0.370∗∗∗ -0.020 0.45
(2.68) (-0.46) (4.39) (8.27) (14.13) (3.60) (-0.28)

Diff 2.173 -0.577 0.153∗∗∗ 0.240∗∗∗ -0.033 0.234∗ 0.182∗∗ 0.05
(1.10) (-0.29) (3.67) (4.02) (-0.40) (1.95) (2.21)

Invest Non-Inno -4.168∗∗∗ -0.786 0.007 -0.144∗∗∗ -0.131∗∗∗ -0.803∗∗∗ 0.020 0.52
(-3.51) (-0.91) (0.37) (-5.64) (-3.81) (-15.69) (0.56)

Inno -2.190 3.721∗∗ -0.080∗∗ -0.041 0.037 -1.631∗∗∗ -0.002 0.48
(-1.08) (2.43) (-2.54) (-0.90) (0.61) (-18.02) (-0.03)

Diff 1.978 4.507∗∗ -0.087∗∗ 0.103∗ 0.168∗∗ -0.827∗∗∗ -0.022 0.10
(1.03) (2.36) (-2.20) (1.83) (2.22) (-7.33) (-0.28)

Profit Non-Inno 6.048∗∗ 1.641 -0.092∗∗ -0.335∗∗∗ -0.268∗∗∗ 0.440∗∗∗ 1.572∗∗∗ 0.55
(2.34) (0.90) (-2.47) (-6.27) (-3.72) (4.11) (21.33)

Inno -3.538 -6.208∗∗∗ -0.197∗∗∗ -0.387∗∗∗ 0.243∗∗∗ -0.284∗∗ 1.498∗∗∗ 0.47
(-1.19) (-2.71) (-4.21) (-5.74) (2.68) (-2.10) (16.12)

Diff -9.586∗∗∗ -7.849∗∗∗ -0.105∗ -0.052 0.511∗∗∗ -0.724∗∗∗ -0.075 0.04
(-3.40) (-2.69) (-1.77) (-0.61) -4.43 (-4.22) (-0.63)

The table shows the average excess returns of innovative and non-innovative firms sorted on common firm characteristics

as well as the results of regressing the portfolio returns on a constant and Fama-French 5 factors. Stocks are labeled as

innovators and non-innovators at the end of June in each year and then sorted into five portfolios within the two groups.

Innovative firms are firms that have at least three patents over the last three years and one patent over the last year at

the time of portfolio formation. The table shows the returns of a long-short portfolio that goes long the highest quintile

and short the lowest quintile. All portfolios are value-weighted and rebalanced annually. The five firm characteristics

(beta, size, book-to-market equity ratio, investments, and profitability), shown in the first column of the table, follow

the definitions from Ken French’s website. The underlying portfolio returns are at monthly frequency, but constants are

expressed in annualized percent. The time period of the sample is 1963-2021. */**/*** indicate significance level at 10,

5, and 1%, respectively.

Table 4.11: Characteristics sorts for innovative vs. non-innovative firms
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than heavy investors who are non-innovators, and failing to account for this correlation causes mis-

pricing. Turning to profitability sorts, the q5 model eliminates the statistical significance of the

difference in alpha between innovators and non-innovators, but leaves a strong and statistically sig-

nificant negative alpha (-7.2%, t=-2.4) for the sort within innovators. In other words, innovators still

earn surprisingly low returns for profitability (according to the q5 model), even after accounting for

the expected growth factor.

Overall, these results shed further light on differences in pricing for innovators and non-innovators.

The raw investment and profitability anomalies are stronger in non-innovators than innovators, and

innovators show abnormal performance for exposure to these factors using standard FF5 or q4 mod-

els. The expected growth factor of the q5 model realigns pricing of investment because heavy

investors who are innovators also tend to have high growth loadings. The pricing of profitability

sorts among innovators remains a challenge even for the q5 model. We note that the construction of

the expected growth factor in the q5 model specifically targets investment growth. But fundamental

valuation suggests that different types of growth can be relevant, for example, not just investment

growth but also profitability growth or revenue growth. We leave these issues for future research.

4.5 Conclusion
Over the past century, approximately a quarter of US-publicly listed firms could be classified as

technological innovators by their patenting activity. Since the 1930s, innovators accounted for more

than half of the total market capitalization at any point in time. Despite being long proposed as a

key driver of economic growth, leading factor models only implicitly take into account technological

innovation. Our paper proposes a simple patent-based measure of innovation intensity that allows

us to study the role of technological innovation for stock returns.

Technological innovators earn higher returns than non-innovators and do not incur the same

punishment for high capital investment and low profitability as non-innovators. In particular, a

portfolio of firms with high patenting intensity earns significant abnormal returns for a full decade

after portfolio formation, according to standard pricing models. We unite our findings with the

recent literature on the role of expected growth in stock returns (Hou et al., 2021). Over time, firms

with high patenting intensity invest more in physical capital and gradually improve their profitability

as they age. An expected growth factor is crucial to explain the returns of innovating firms.

Our study highlights strongly predictable patterns in the risk dynamics of innovative firms. The

results suggest more formally linking theory to the evolution of firm risk, providing stronger tests of

pricing models. Since our measure does not rely on accounting data, empirical studies can use long

samples, even beyond the nearly full century of data that we study. This is particularly important
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Ex. Ret. Hou, Mo, Xue, and Zhang 2021

Constant Constant MKT ME IA ROE EG R2

Beta Non-Inno -1.941 0.003 0.651∗∗∗ -0.200∗∗∗ -0.248∗∗ -0.036 -0.444∗∗∗ 0.39
(-0.73) (0.00) (14.33) (-3.20) (-2.41) (-0.44) (-3.64)

Inno -0.706 1.969 0.529∗∗∗ -0.151∗∗ -0.822∗∗∗ -0.410∗∗∗ 0.053 0.29
(-0.23) (0.66) (9.51) (-1.97) (-6.51) (-4.06) (0.35)

Diff 1.235 1.967 -0.122∗∗ 0.049 -0.574∗∗∗ -0.374∗∗∗ 0.496∗∗∗ 0.06
(0.52) (0.72) (-2.41) (0.71) (-5.00) (-4.07) (3.65)

Size Non-Inno -4.236 -8.669∗∗∗ 0.254∗∗∗ -0.887∗∗∗ 0.138 0.753∗∗∗ 0.021 0.42
(-1.61) (-3.67) (5.78) (-14.69) (1.38) (9.42) (0.18)

Inno -7.544∗∗ -9.464∗∗∗ -0.039 -1.336∗∗∗ 0.027 0.788∗∗∗ 0.141 0.66
(-2.46) (-4.48) (-0.99) (-24.76) (0.31) (11.03) (1.34)

Diff -3.308∗ -0.795 -0.292∗∗∗ -0.450∗∗∗ -0.110 0.035 0.120 0.29
(-1.68) (-0.41) (-8.04) (-9.00) (-1.34) (0.54) (1.23)

B/M Non-Inno 4.283∗∗ 1.506 -0.024 0.174∗∗∗ 1.029∗∗∗ -0.587∗∗∗ 0.173∗∗ 0.41
(2.33) (0.90) (-0.78) (4.10) (14.64) (-10.41) (2.08)

Inno 5.290∗∗ 2.442 0.078∗ 0.337∗∗∗ 1.142∗∗∗ -0.596∗∗∗ 0.011 0.33
(2.28) (1.09) (1.87) (5.91) (12.12) (-7.89) (0.10)

Diff 1.006 0.936 0.102∗∗ 0.163∗∗∗ 0.113 -0.009 -0.162 0.05
(0.49) (0.40) (2.33) (2.72) (1.14) (-0.11) (-1.38)

Invest Non-Inno -4.556∗∗∗ 0.440 0.022 -0.194∗∗∗ -0.847∗∗∗ 0.119∗∗∗ -0.164∗∗∗ 0.47
(-3.74) (0.42) (1.11) (-7.27) (-19.20) (3.37) (-3.14)

Inno -2.679 2.524 0.005 -0.129∗∗∗ -1.588∗∗∗ 0.033 0.192∗∗ 0.44
(-1.30) (1.39) (0.14) (-2.77) (-20.72) (0.54) (2.12)

Diff 1.877 2.083 -0.017 0.066 -0.741∗∗∗ -0.086 0.356∗∗∗ 0.10
(0.96) (0.95) (-0.42) (1.18) (-8.04) (-1.16) (3.27)

Profit Non-Inno 6.225∗∗ -1.737 -0.116∗∗∗ -0.315∗∗∗ 0.232∗∗ 1.211∗∗∗ 0.099 0.47
(2.35) (-0.76) (-2.74) (-5.38) (2.40) (15.63) (0.86)

Inno -3.650 -7.176∗∗ -0.213∗∗∗ -0.541∗∗∗ 0.071 0.794∗∗∗ 0.134 0.31
(-1.20) (-2.39) (-3.82) (-7.06) (0.56) (7.82) (0.89)

Diff -9.876∗∗∗ -5.439 -0.097 -0.227∗∗∗ -0.161 -0.417∗∗∗ 0.035 0.03
(-3.44) (-1.63) (-1.56) (-2.66) (-1.14) (-3.70) -0.21

The table shows the average excess returns of innovative and non-innovative firms sorted on common firm characteristics

as well as the results of regressing the portfolio returns on a constant and HMXZ q5-factors. Stocks are labeled as

innovators and non-innovators at the end of June in each year and then sorted into five portfolios within the two groups.

Innovative firms are firms that have at least three patents over the last three years and one patent over the last year at the

time of portfolio formation. The table shows the returns of a long-short portfolio that goes long the highest quintile and

short the lowest quintile. The sample period is 1967-2021. More details can be found in the caption of Table 4.11.

Table 4.12: Pricing characteristics-sorted portfolios in innovative vs. non-innovative firms with the
q5-factor model
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in the context of technology and growth, which shape the behavior of firms and the development of

economies for decades into the future.
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Chapter 5

Conclusion

This thesis is a collection of three essays that investigate how financial markets interact with infor-

mation about future earnings.

The first chapter shows that analyst report texts contain information about future earnings. A

simple, dictionary-based tone measure captures information about future earnings that is not re-

flected in the numerical earnings forecasts in the same reports. The publication of analyst reports

causes significant stock price movements on the publication day. However, analyst tone does not

predict future stock returns, suggesting that the initial publication reaction adequately incorporates

the tonal information into prices. The chapter highlights that analysts use the report text to convey

information and that financial market participants pay close attention to the textual information in

these documents.

The second chapter develops a new methodology to study pricing-relevant information from

analyst report texts. In contrast to the dictionary-based method of the first chapter, which studies

a particular measure of linguistic sentiment and the embedded information about future earnings,

the deep learning method presented in this chapter explicitly extracts pricing-relevant information

from the reports. I demonstrate that not all information in analyst reports is priced correctly upon

publication. The deep neural network is able to predict earnings announcement returns days or

weeks after the publication of the reports. Initial price reactions and drifts - or the absence thereof

- suggest that markets initially react insufficiently to particular information in the reports and that

this insufficient initial reaction is only corrected on the date of the actual earnings announcement

following the report publication. The identified predictors of future returns can be used to predict

returns several years out-of-sample. Without retraining, the neural network eventually loses its

predictive power, suggesting that markets slowly learn from past pricing mistakes.

The third chapter shows that publicly available information about firms’ innovation activities is
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an important determinant of the cross-section of stock returns. Firms with high market patenting

intensity, defined as the ratio of the number of patents assigned to the firm and its market capi-

talization, earn a significant return premium several years after the patent grant date. Not only do

common factor pricing models fail to explain this return premium, but some of the underlying cross-

sectional relationships that these factor pricing models are based on do not exist among innovative

firms. In particular, innovative firms with low profitability still earn high returns in contrast to the

well-known profitability anomaly. Moreover, there is no significant relationship between tangible

investments and returns in innovative firms. Portfolios sorted on patenting intensity are strikingly

stable, producing abnormal five-factor returns for a full decade after portfolio formation.
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Pástor, L’uboš, and Pietro Veronesi, 2006, Was there a nasdaq bubble in the late 1990s?, Journal of
Financial Economics 81, 61–100.
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Appendix A

Appendix to Chapter 2

A.1 Matching

A.1.1 Target price based

1. Infer target prices from reports

• remove currency symbols from corpus (”$”, ”US$”, ”USD”)

• remove text in parentheses (to remove annotations, such as target price dates)

• on the first page of the report, search for the key words ”target price”, ”price target”,

or ”target” followed by a number, potentially preceded by a colon. This number is the

target price estimate

2. Match reports with IBES target price file on firm-date-target price to obtain contributor-

estimid link

3. Verify contributor-estimid links

• For non-masked estimids (all but PRMDN*), check whether estimid is roughly similar

to the contributor name, or known former names of this contributor

• The sum of all verified contributors should cover a large proportion (e.g. >90%) of

linked reports for each estimid

4. Merge with estimid-emaskcd link from IBES recommendations file

Note that estimid-contributor links are not unique due to inconsistent spelling in Thomson One

as well as mergers and acquisitions. For example, estimid ”BEAR” should be linked to the contrib-

utors ”BEAR, STEARNS & CO., INC.”, ”BEAR, STEARNS MORNING MEETING NOTES”,
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and ”BEAR STEARNS AND CO INC”. Similarly, the contributor ”CIBC CAPITAL MARKETS

CORP.” should be linked to the estimids ”OPPEN” and ”WOODGUND”. We keep all possible links

at this point and take care of ambiguous links later on.

A.1.2 Hand matching

For each contributor:

1. Randomly select report from this contributor

• Manually read earnings forecasts for the next two fiscal years from the report (use fiscal

quarters if annual estimates are not available)

• Look for matching entry in IBES Details (i.e. a emaskcd with matching firm-date-

estimate for both forecasts)

• Record emaskcd of matched entry (entries)

2. Repeat the previous step up to ten times until the same emaskcd has been matched at least

five times

3. The emaskcd-contributor match is considered invalid if less than five matches were found, or

if multiple emaskcds have been matched more than twice with this contributor1

A.2 Text cleaning
The first step of the text cleaning procedure seeks to remove all text blocks that do not contain

structured text or paragraphs that do not contain analyst opinions.

1. Remove report pages do not contain any elements other than the following, according to the

table of contents: ’Disclosure’, ’Disclaimer’, ’Analyst Certification’, ’Report Key’, ’Page is

Blank/No Information’,’Company Description’, ’Company Profile’, ’Table/Chart’, ’Graph’,

’Table’. Note that the title in the table of contents can be followed by the expression ’(CONT)’

or a set of Roman or Arabic numerals.

2. Split reports into paragraphs

3. Remove non-ascii characters

4. Remove trailing special characters

5. Remove repeated whitespaces characters

1Matching multiple emaskcds is rare, thus most emaskcd-contributor links are based on five out of five matches.
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6. Remove trailing whitespace characters

7. Remove paragraphs that match any of the following expressions ignoring capitalization. The

caret symbol indicates that the expression must be found at the beginning of the paragraph:

’does and seeks to do business with companies covered in’, ’has been an investment banking

client of’, ’has received compensation for investment banking services’, ’ˆanalyst certifica-

tion’, ’ˆdisclosure’, ’disclosures and analyst certifications’, ’ˆimportant disclosure’, ’ˆcom-

pany description’, ’ˆthis report was produced by’, ’ˆthis report has been prepared by’, ’ˆdis-

claimer’, ’ˆglobal disclaimer’, ’ˆcustomers of the firm in the United States can receive inde-

pendent, third-party research’, ’all rights reserved’

The second step is to extract relevant words from the report text.

1. Convert all characters to lowercase

2. Remove possessive ’s

3. Replace special characters with white spaces

4. Lemmatize words using the spaCy lemmatizer

A.3 Robustness checks

A.3.1 Predictability of forecast errors

Level vs change in analyst tone
In Table A.1, we investigate whether the level or the change in analyst tone is responsible for

the predictability of forecast errors. Univariate regressions suggest that while both the level and the

change in analyst tone have a positive correlation with forecast errors, the level has much higher

explanatory power than the change. Controlling for the level of post-announcement analyst tone

St , the change in analyst tone around the announcement date predicts t + 1Q and t + 4Q forecast

errors with a negative sign. However, the relationship is statistically weak for t + 1Q errors, and

economically small for all forecast periods relative to the level effect. This is in line with Huang

et al. (2014), who find that the analyst opinions rather than changes in their opinions explain the

market reaction on analyst report announcement dates.
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FEt+1Q
t FEt+1Q

t FEt+1Q
t FEt+4Q

t FEt+4Q
t FEt+4Q

t

Tonet 0.074∗∗∗ 0.091∗∗∗ 0.089∗∗∗ 0.117∗∗∗

(15.71) (12.59) (14.90) (12.98)
Tonet−Tonet− 0.029∗∗∗ -0.009∗ 0.021∗∗∗ -0.028∗∗∗

(6.74) (-1.70) (4.25) (-5.02)

Fixed Effects (f,t) (f,t) (f,t) (f,t) (f,t) (f,t)
N 86,821 49,886 49,886 73,225 43,259 43,259
R2 0.117 0.134 0.138 0.145 0.172 0.179
Within R2 0.005 0.001 0.006 0.007 0.000 0.008

This table reports regressions of post-announcement forecast errors onto post-announcement analyst tone as well as the

change in analyst tone. All variables are measured at the firm level, therefore, firm subscripts are omitted for ease

of notation. Post-announcement forecast errors Et+τ
t are realized actuals for period t + τ (shown in the superscript)

minus consensus expectations measured after the earnings announcement in period t scaled by the stock price 46 days

prior to the announcement. Post-announcement consensus expectations are the average of individual analyst expectations

measured within 45 days after the announcement. Post-announcement analyst tone Tonet is the average tone of the reports

published along with the selected individual expectations. Similarly, pre-announcement analyst tone Tonet− is the average

tone of the reports published along with pre-announcement expectations within 45 days prior to the announcement.

Tonet −Tonet− is the difference between post and pre-announcement analyst tone. See Section 2.2.3 for details on the

measurement and aggregation of analyst tone. Regressions include firm (f) and year-quarter (t) fixed effects. Standard

errors are clustered by firm and year-quarter. T-statistics are shown in parenthesis.

Table A.1: Sentiment vs sentiment changes and future errors (post-announcement)
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A.3.2 Portfolio sorting

low med high low-high

Intercept 0.331∗∗∗ 0.157∗∗∗ -0.032 0.331∗∗∗

(4.56) (2.60) (-0.58) (3.73)
Mkt-RF 1.090∗∗∗ 1.020∗∗∗ 1.036∗∗∗ 0.039

(36.96) (37.97) (42.79) (1.02)
SMB 0.476∗∗∗ 0.289∗∗∗ 0.394∗∗∗ 0.128∗

(8.61) (6.50) (9.31) (1.86)
HML 0.450∗∗∗ 0.251∗∗∗ 0.094∗∗ 0.339∗∗∗

(8.72) (5.80) (2.35) (5.31)

N 591 585 662 544
Ad j.R2 0.75 0.75 0.76 0.05

This table shows the returns of a tone-based trading strategy identical to the post-announcement strategy in Table 2.7,

benchmarked against a Fama-French (1993) three-factor model, omitting the Momentum factor.

Table A.2: FF3 risk-adjusted returns of an analyst tone-based trading strategy
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A.3.3 Predicting forecast errors

Ct/Pt− (%) Ct/Pt− (%) Ct/Pt− (%) Ct/Pt− (%)

Et− [Ct ]/Pt− (%) 0.959∗∗∗ 0.913∗∗∗ 0.960∗∗∗ 0.914∗∗∗

(269.46) (190.91) (265.31) (189.05)
Tonet− 0.005∗∗∗ 0.009∗∗∗

(3.59) (7.70)
Constant 0.095∗∗∗ 0.094∗∗∗

(16.52) (15.77)

Fixed Effects (f,t) (f,t)
N 78,482 78,275 78,482 78,275
R2 0.853 0.876 0.853 0.876
Within R2 0.751 0.752

Panel A: Current earnings

Ct+4Q/Pt− (%) Ct+4Q/Pt− (%) Ct+4Q/Pt− (%) Ct+4Q/Pt− (%)

Et− [Ct+4Q]/Pt− (%) 0.752∗∗∗ 0.624∗∗∗ 0.758∗∗∗ 0.629∗∗∗

(68.32) (48.50) (69.46) (48.25)
Tonet− 0.025∗∗∗ 0.027∗∗∗

(4.98) (7.78)
Constant 0.250∗∗∗ 0.240∗∗∗

(19.05) (17.73)

Fixed Effects (f,t) (f,t)
N 46,466 46,188 46,466 46,188
R2 0.492 0.617 0.494 0.618
Within R2 0.283 0.285

Panel B: Four quarters ahead earnings

This table report regression results of future earnings on earnings expectations. In Panel A, the dependent variable Ct/Pt−

is the period-t earnings scaled by price. The independent variables include the pre-announcement earnings expectations

E[Ct ]/Pt− and the pre-announcement analyst tone Tonet− as defined in Section 2.2.3. In Panel B, the dependent variable

Ct+4Q/Pt− is the four-quarter ahead earnings scaled by price, and the independent variable E[Ct+4Q]/Pt− is the expectation

of the four-quarter ahead earnings prior to the period-t earnings announcement. Regressions include firm (f) and year-

quarter (t) fixed effects as denoted in the fixed effects row. Standard errors are clustered by firm and year-quarter.

T-statistics are shown in parentheses.

Table A.3: Error components
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FEt
t− FEt

t− FEt
t− FEt+4Q

t− FEt+4Q
t− FEt+4Q

t− FEt+4Q
t−

Tonet− 0.033∗∗∗ 0.033∗∗∗ 0.090∗∗∗ 0.099∗∗∗ 0.095∗∗∗

(5.26) (5.23) (8.73) (10.12) (10.22)
Rect− 0.013 -0.003 -0.020 -0.066∗∗∗ -0.066∗∗∗

(1.00) (-0.19) (-0.93) (-3.03) (-3.20)
FEt

t− 0.171∗∗∗

(24.13)
Constant 0.006 -0.041 0.016 -0.020 0.070 0.226∗∗ 0.225∗∗∗

(0.44) (-0.84) (0.31) (-0.94) (0.78) (2.54) (2.66)

N 66,773 66,773 66,773 34,681 34,681 34,681 34,681
R2 0.001 0.000 0.001 0.006 0.000 0.007 0.038

Same as Table 2.2 but without fixed effects.

Table A.4: Pre-announcement sentiment and forecast errors, no fixed effects

FEt
t− FEt+1Q

t− FEt+1Q
t− FEt+2Q

t− FEt+3Q
t− FEt+4Q

t−

Tonet− 0.056∗∗∗ 0.098∗∗∗ 0.093∗∗∗ 0.103∗∗∗ 0.099∗∗∗ 0.097∗∗∗

(10.23) (16.20) (15.22) (14.22) (12.11) (11.51)
FEt

t− 0.192∗∗∗ 0.132∗∗∗ 0.103∗∗∗ 0.150∗∗∗

(26.05) (18.72) (13.94) (22.00)

Fixed Effects (f,t) (f,t) (f,t) (f,t) (f,t) (f,t)
N 68,241 65,777 51,128 46,098 40,630 34,389
R2 0.134 0.113 0.164 0.162 0.176 0.208
Within R2 0.002 0.006 0.045 0.027 0.019 0.031

Same as Table 2.2 but with additional horizons

Table A.5: Pre-announcement sentiment and forecast errors, additional horizons
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Full Sample Excl. recessions Recessions
FEt

t− FEt
t− FEt

t−

Tonet− 0.056∗∗∗ 0.055∗∗∗ 0.053∗∗

(10.23) (9.65) (2.42)

N 68,241 62,306 5,557
R2 0.134 0.140 0.338

Same as Table 2.2 but splitting the sample into recession and non-recession periods. Recession periods are defined by the

NBER recession indicator and include Jul 1990 to Mar 1991, Mar 2001 to Nov 2001, and Dec 2007 to Jun 2009.

Table A.6: Pre-announcement sentiment and forecast errors, business cycle subsamples

A.3.4 Miscellaneous
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The figure shows binscatter plots of pre-announcement analyst tone Tonet− as defined in Eq. (2.4) against various control

variables. For each panel, the variable on the horizontal axis is sorted into 20 equally-sized bins. Each dot represents the

mean analyst tone and the mean of the binned variable for one bin. The red line represents a linear fit of the underlying

data. The R2 of this linear regression is shown in each panel. The top-left panel plots analyst tone against average daily

turnover in the pre-announcement window [t-45,t-1]. Daily turnover is the fraction of outstanding shares that was been

traded on a single day. Both the number of shares traded and the number of shares outstanding are from CRSP. The

top-right panel plots analyst tone against the logarithm of the average daily dollar trading volume, approximated by the

number of shares traded times the daily closing price from CRSP. The bottom-left panel plots analyst tone against the

percentage of shares owned by institutional shareholders. Institutional ownership is measured by the latest institutional

ownership data available in the Thomson Reuters 13f database within [t-100,t-1]. The bottom-right panel plots analyst

tone against the fraction of shares shorted. The number of shares shorted is from Compustat, while the number of shares

outstanding is from CRPS. For each firm and date, we use the latest short interest figure available within [t-45,t-1].

Figure A.1: Analyst tone and additional control variables

133



Tonet−

Tone(t−1)− 0.561∗∗∗

(79.67)
Et−1[Ct ]−Et− [C

t ]
Pt−1

0.142∗∗∗

(18.40)
Rect− 0.532∗∗∗

(26.97)
TPIRt− -0.095

(-1.37)
log(market cap)t− 0.017∗∗

(2.52)
BMt− -0.727∗∗∗

(-29.26)
Volatilityt− -0.703∗∗∗

(-6.32)
Returnt− 0.899∗∗∗

(3.12)

N 106347 61389 116163 75070 81378 80958 62288 62288
R2 0.338 0.027 0.078 0.000 0.001 0.089 0.030 0.023

Regressions as shown in Fig. 2.4. Standard errors are clustered by firm and year-quarter. T-statistics are shown in

parenthesis. *,**, and *** indicate p-values of less than 10%, 5%, and 1%, respectively.

Table A.7: Linear relationship between pre-announcement analyst tone on other pre-announcement
variables.
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Appendix B

Appendix to Chapter 3

B.1 Neural network details

B.1.1 Embeddings

Words are embedded into a low-dimensional vector space using the fasttext algorithm of Bojanowski

et al. (2017) based on the skipgram algorithm with negative sampling as in Mikolov et al. (2013a).

The objective of the skipgram algorithm is to predict the neighboring words of each word in the

text corpus from a low-dimensional vector representation. This vector representation, called the

word embedding, is learned during the training process. I create two randomly initialized matrices

of word representation, We ∈ RE×V and U ∈ RV×E . The first matrix We maps the one-hot encoded

word vectors of length V (the size of the vocabulary) to the low-dimensional embedding vector of

length E. I use wi to refer to columns in We and ui to refer to rows in U . These vectors are often

referred to as input and output vectors. Only the input vectors will be used in the downstream task.

A simple way to generate predictions of context words would be to maximize the likelihood of the

observed context words, i.e. for M reports of length Nm we would maximize the likelihood

M

∏
m=1

Nm

∏
i=1

∏
c∈Ci

p(c|i)

where Ci is the set of context words of word i, and p(c|i) could be parametrized with We and V and

a softmax function. However, while mathematically simple, this specification is computationally

expensive, since it requires us to calculate gradients of every possible context word (i.e. every word

in the vocabulary) at every step. Instead, I use negative sampling to drastically reduce the number

of candidate context that we evaluate for each word i. I do so by approximating the likelihood
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maximization by a series of binary classification tasks. For each focus word i and observed context

words Ci, I randomly sample five words C̃i from the vocabulary that do not appear in Ci. Formally,

we can write the objective function as

M

∏
m=1

Nm

∏
i=1

∏
c∈Ci

p(c|i) ∏
c̃∈C̃i,c

(1− p(c̃|i))

I model the probability p(c|i) with the logistic function,

p(c|i) = 1
1+exp(−s(c, i))

where s(c, i) is a score function that converts the input and output vector representations correspond-

ing to c and i to a scalar measure of vector similarity via the dot product,

s(c, i) = w⊤i uc

Note that we use a different vector representation for a given word when it appears as input (w) than

when it appears as a context word (u). So far, we ignored the internal structure of words. If we were

to treat w as a free parameter as in the basic skipgram model of Mikolov et al. (2013b), we would

neglect any type of morphological information that can be used to relate words to each other. Bo-

janowski et al. (2017) suggest to further parametrize the input word vectors w by modeling them as

linear combination of subword vectors. In particular, I represent each word as the original word plus

a bag of character n-grams. Following the original literature, I set n to be between 3 and 6, and add

the boundary symbols < and > to the beginning and the end of the word to distinguish prefixes and

suffixes from other n-grams. For example, the word finance will be represented as a collection of the

n-grams { <fi, fin, ina, nan, anc, nce, ce>,

<fin, fina, inan, nanc, ance, nce>,

<fina, finan, inanc, nance, ance>

<finan, financ, inance, nance>,

<finance>}
I refer to the collection of n-grams for word i as Gi. I then associate a vector representation zg ∈RE

to each unique n-gram g and obtain the word representation wi by taking the sum of all the subword

representations,

wi = ∑
g∈Gi

zg.
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Finally, I can define the objective function as

argmax
Z ,U

M

∏
m=1

Nm

∏
i=1

∏
c∈Ci

p(c|i) ∏
c̃∈C̃i,c

(1− p(c̃|i))

=argmax
Z ,U

M

∑
m=1

Nm

∑
i=1

∑
c∈Ci

log p(c|i)+ ∑
c̃∈C̃i,c

log(1− p(c̃|i))


=argmax

Z ,U

M

∑
m=1

Nm

∑
i=1

∑
c∈Ci

log
1

1+exp(−w⊤i uc)
+ ∑

c̃∈C̃i,c

log(1− 1
1+exp(−w⊤i uc̃)


=argmax

Z ,U
−

M

∑
m=1

Nm

∑
i=1

∑
c∈Ci

log(1+exp(−w⊤i uc))+ ∑
c̃∈C̃i,c

log(1+exp(w⊤i uc̃))


where Z ∈ RE×|G | is the matrix of n-gram embeddings (each column is equal to a unique zg). G =⋃M

m=1
⋃Nm

i=1 Gi is the collection of unique n-grams over the entire sample. I solve the optimization

problem with stochastic gradient descent.

B.1.2 GRU details

The implementation of the GRU follows Cho et al. (2014a). The unit comprises a hidden state ht ,

which is the output of the unit, and two gates zt and rt that control the flow of information across

time steps. All states and gates are vectors of length H.

For an input sequence {w1, . . . ,wt}, the hidden state at step t is a weighted combination of the

previous hidden states and a new candidate hidden state. In particular,

ht = zt ⊙ h̃t +(1− zt)⊙ht−1

where h̃t is the candidate hidden state state,

h̃t = tanh(Whwt +Uh(rt ⊙ht−1)+bh)

and

zt = sigm(Wzwt +Uzht−1 +bz)

rt = sigm(Wrwt +Urht−1 +br)

are the gates. ⊙ is the Hadamart product (element-wise product) operator, sigm is the element-wise
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sigmoid (logistic) function and tanh is the element-wise hyperbolic tangent function. zt is the update

gate that regulates how much of the previous hidden state gets carried over to the new hidden state.

rt is the reset gate that controls which parts of the previous hidden state enter the new candidate

hidden state. h0 is a vector of zeros.

In the main paper, I use the functional notation GRU(·) which summarizes the sequence of

algebraic operations above. In particular, GRU(·) is a vector-valued function that outputs ht , i.e.

GRU(w1, . . . ,wt) = GRU{Wh,Uh,bh,Wz,Uz,bz,Wr,Ur,br}(w1, . . . ,wt) = ht

B.1.3 Hyperparameter search space

I restrict the parameter space that is explored by the GP-UCB algorithm to a coarse grid of values

that are commonly used in the machine learning literature. The search space is shown in Table B.1.

Parameter Symbol Range

Layer dimensions
Word embedding size E [64,128]
GRU hidden units (combined directions) 2H [16, 32, 64]
Report encoder intermediate layer D1 [16, 32, . . . , 256]
Report encoder output dimension D2 [16, 32, . . . , 256]

Regularization parameters
Report encoder word attention Ww l2-regularizer λWw [0,10−10,10−9, . . . ,10−3]
Report encoder word attention uw l2-regularizer λuw [0,10−10,10−9, . . . ,10−3]
Report encoder Wh1 l2-regularizer λWh1

[0,10−10,10−9, . . . ,10−3]

Report encoder Wh2 l2-regularizer λWh2
[0,10−10,10−9, . . . ,10−3]

Word attention output dropout [0,0.1, . . . ,0.5]
Report attention Wd l2-regularizer λWd [0,10−10,10−9, . . . ,10−3]
Report attention ud l2-regularizer λud [0,10−10,10−9, . . . ,10−3]
Report attention output dropout [0,0.1, . . . ,0.5]
Final prediction Wv l2-regularizer λWv [0,10−10,10−9, . . . ,10−3]

Table B.1: Neural network hyperparameter search space
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B.2 Benchmark models

B.2.1 Sentiment dictionary

Instead of learning relevant features from the data, the sentiment dictionary approach measures

the sentiment in each report by using a sentiment dictionary. The sentiment score is then turned

into a return prediction with a simple univariate regression. Sentiment dictionary approaches are

popular in the analyst literature. Huang et al. (2014) shows that the sentiment in analyst report texts

positively correlates with stock returns on the report publication date.

I assign a sentiment score s to each firm-announcement by calculating the net fraction of positive

words in associated report and then taking the average over the reports,

s =
1
N ∑

reports

positive words−negative words
total number of words

Words are classified as positive, negative, or neutral using the Loughran and McDonald (2011)

sentiment dictionary for financial data. Words are lemmatized before the classification. To form

return predictions, I regress the announcement returns on the sentiment scores and a constant,

argmin
b0,b1

(r− [s I]b)⊤Ω(r− [s I]b),

where s is a vector of sentiment scores s, 1 is a vector of ones, and [s I] is the concatenation of the

two. Ω is a diagonal matrix of sample weights, and is identical to the weight matrix used for the

HAN model.

B.2.2 Elastic net

The elastic net solves the following equation

argmin
b

(
(r− r̂)⊤Ω(r− r̂)+λ1 ∥b∥1 +λ2 ∥b∥2

2

)
where r̂ is a vector of firm-announcement retun predictions, with each element r̂ being equal to the

average prediction formed from each associated report,

r̂ =
1
N ∑

reports
x⊤b,
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where x is a vector of word occurrence frequencies. Ω is a diagonal matrix of sample weights, and

is identical to the weight matrix used for the HAN model.

The regularization parameters λ1 and λ2 are hyperparameters. The elastic net has three note-

worthy special cases: if λ1 = λ2 = 0, it is identical to weighted least squares. If λ1 = 0, it is equal to

Ridge regression, and if λ2 = 0 it is equal to LASSO. λ2 penalizes large absolute coefficients, thus

forcing the coefficients to be closer to zero. λ1 tends to induce sparsity to the coefficient vector b.

The idea of both the L1 and L2 regularization is to reduce the variance of the least-squares estimator,

which often reduces overfitting and results in better out-of-sample predictions.

I use grid search to determine the values for λ1 and λ2 that minimize the loss function in the

validation set. To ensure a level playing field with the HAN algorithm, I only choose the hyper-

parameters once for the 2004 data and hold them constant for all other training periods. The grid

search procedure determines λ1 = 0.001 and λ2 = 0.1 to be the optimal parameters.

B.3 Robustness checks

B.3.1 Monthly portfolio sorts excluding non-announcing firms
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Low 2 3 4 High High-Low

Intercept -0.753∗∗∗ -0.045 -0.104 0.343∗∗ 0.462∗∗∗ 1.214∗∗∗

(-2.63) (-0.18) (-0.53) (2.00) (2.83) (4.08)
Mkt-RF 1.445∗∗∗ 1.360∗∗∗ 1.343∗∗∗ 1.217∗∗∗ 1.206∗∗∗ -0.239∗∗∗

(20.57) (21.57) (27.68) (28.91) (30.15) (-3.28)

N 192 192 192 192 192 192
Ad j.R2 0.69 0.71 0.80 0.81 0.83 0.05

Panel A: CAPM

Low 2 3 4 High High-Low

Intercept -0.322 0.268 0.108 0.442∗∗∗ 0.493∗∗∗ 0.815∗∗∗

(-1.32) (1.22) (0.71) (3.31) (3.56) (2.80)
Mkt-RF 1.102∗∗∗ 1.060∗∗∗ 1.080∗∗∗ 1.026∗∗∗ 1.060∗∗∗ -0.042

(15.66) (16.75) (24.63) (26.71) (26.66) (-0.50)
SMB 0.814∗∗∗ 0.814∗∗∗ 0.707∗∗∗ 0.657∗∗∗ 0.615∗∗∗ -0.199

(7.09) (7.90) (9.90) (10.49) (9.49) (-1.45)
HML 0.041 0.226∗∗ 0.317∗∗∗ 0.316∗∗∗ 0.038 -0.004

(0.35) (2.10) (4.26) (4.84) (0.56) (-0.03)
CMA -0.099 -0.160 -0.184 -0.146 -0.142 -0.043

(-0.52) (-0.93) (-1.54) (-1.39) (-1.31) (-0.19)
RMW -0.716∗∗∗ -0.379∗∗ -0.050 0.151∗ 0.211∗∗ 0.927∗∗∗

(-4.31) (-2.54) (-0.48) (1.67) (2.24) (4.68)
Mom -0.137∗∗ -0.088 -0.154∗∗∗ -0.075∗∗ -0.113∗∗∗ 0.024

(-2.25) (-1.61) (-4.06) (-2.26) (-3.29) (0.33)

N 192 192 192 192 192 192
Ad j.R2 0.79 0.80 0.89 0.90 0.88 0.16

Panel B: FF6

The table shows regression results for equally-weighted portfolios sorted on the neural return prediction. At the end of

each month, firms that announce earnings in the following month are sorted into quintiles based on their neural return

prediction. Low denotes the lowest predicted return quintile, and high denotes the highest predicted return quintile.

The sample period is January 2004 to December 2019. Returns are monthly and in percent. T-statistics are shown in

parentheses.

Table B.1: Portfolios of announcing firms sorted on neural return prediction
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B.3.2 Announcement and publication drifts for different firm sizes
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Figure 3.5 for different firm sizes. Firms are sorted into five size quintiles based on CRSP breakpoints three months prior

to the publication.

Figure B.1: Publication and announcement drifts for different firm sizes
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B.3.3 Controlling for characteristics

To test the relationship between the neural return predictions and common return predictors, I

regress the realized announcement returns on the predicted returns and various control variables.

In Table B.2 column (5), I control for various firm characteristics including market beta, size, prof-

itability, investments, and momentum. Out of the five characteristics, only profitability and invest-

ments are statistically significant at the 1% and 5% levels, respectively. The finding is in line with

Engelberg et al. (2018), who find that anomalies have excessively high returns on corporate news

days. The coefficient on the NRP drops from 0.70 to 0.59, suggesting that a small fraction of the

predictability can be explained by profitability and investments.
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(1) (2) (3) (4) (5)

Neural return prediction 0.841∗∗∗ 0.786∗∗∗ 0.704∗∗∗ 0.602∗∗∗

(18.28) (15.13) (12.76) (9.61)
Publ. return -0.001 -0.005

(-0.22) (-0.95)
Beta 0.015 0.025

(0.39) (0.67)
Size 0.056∗∗∗ 0.009

(4.22) (0.60)
B/M 0.030 0.018

(0.54) (0.32)
Profitability 0.467∗∗∗ 0.278∗∗∗

(6.11) (3.67)
Investments -0.168∗∗ -0.139∗

(-2.27) (-1.90)
Momentum 0.098∗∗ 0.082∗

(1.98) (1.66)
Constant -0.068∗∗∗ -0.060∗∗

(-3.37) (-2.44)

Fixed Effects (t) (t) (t)
Sample All Controls Controls Controls Controls
Observations 170,028 92,380 92,295 92,295 92,295
R2 0.0048 0.0037 0.0544 0.0533 0.0547
Within R2 0.0048 0.0037 0.0027 0.0016 0.0030

The table shows regressions of cumulative announcement returns on out-of-sample predictions. The dependent variable

is the market-adjusted return in the two-day announcement window. Column (1) shows results for the sample of all

announcements with non-missing neural return prediction. In columns (2)-(5) the sample is restricted to observations

for which all control variables are available. Columns (3)-(5) use daily date fixed effects as indicated in the fixed effects

row. Since every announcement reaction is measured over the span of two trading days and the two-day windows of

different firms might only partially overlap, every observation has two date-fixed effects corresponding to the two days in

the return measurement window. Standard errors are triple-clustered by firm and the two dates. t-Statistics are shown in

parentheses.

Table B.2: Out-of-sample announcement return regressions controlling for characteristics
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Appendix C

Appendix to Chapter 4

C.1 Additional Tables and Figures

146



0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ad
in
g

Panel A. MKT
0
1

2
3

4
HL

0 1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Pa el B. ME

0 1 2 3 4 5 6 7 8 9 10
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Lo
ad
i 
g

Pa el C. IA

0 1 2 3 4 5 6 7 8 9 10
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Pa el D. ROE

The figure shows the dynamics of loadings of PI-sorted aged portfolios on the Q4 factors as indicated in headings of

panels A-D. The construction of the underlying portfolios is described in detail in notes to Table 4.8. The time period of

the sample is given by availability of the Q-factors, i.e., 1967-2021. */**/*** indicate significance level at 10, 5, and 1%,

respectively.

Figure C.1: Aged Patent Intensity portfolios, q4-factor loading dynamics, 1967-2021
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The figure shows the dynamics of FF5 factor loadings of PI-sorted aged portfolios. Refer to Fig. C.1 for more details.

Figure C.2: Aged Patent Intensity portfolios, FF5-factor loading dynamics, 1963-2021
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0 1 2 HL
Panel A. Excess returns
Excess return 9.4** 10.69*** 14.01*** 4.61***

(2.48) (2.85) (2.86) (2.61)

Panel B. CAPM
Constant -0.64 0.75* 1.3 1.93

(-0.97) (1.7) (1.14) (1.4)
Mkt-RF 0.98*** 0.97*** 1.23*** 0.26***

(44.55) (55.46) (31.99) (7.79)
R2 0.96 0.98 0.95 0.36

Panel C. Fama-French 1993
Constant -0.85 0.9** 1.12 1.97

(-1.34) (2.04) (1.01) (1.43)
Mkt-RF 0.91*** 1.01*** 1.18*** 0.27***

(63.99) (86.58) (46.49) (9.01)
SMB 0.08*** -0.08*** 0.07* -0.01

(2.63) (-3.99) (1.68) (-0.29)
HML 0.13*** -0.08*** 0.1* -0.03

(4.55) (-3.37) (1.81) (-0.45)
R2 0.97 0.98 0.95 0.36

The table shows the average excess returns of PI-sorted portfolios in panel A and results of regressing the portfolio returns

on a constant and market excess returns, and Fama-French 3 factors in panel B and C, respectively. Portfolio ”0” consists

of non-patenting firms and the remaining portfolios of patenting firms sorted by PI. HL is a zero-cost portfolio with a long

position in the highest PI portfolio and a short position in portfolio ”0”. Stocks are sorted into portfolios each year at the

end of June. All portfolios are value-weighted and rebalanced annually. The underlying portfolio returns are at monthly

frequency, but the estimates of the average excess returns and constants are annualized. Newey-West heteroscedasticity

and autocorrelation consistent standard errors with five lags are reported in parentheses. The time period of the sample is

1926-1963. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table C.1: Returns of PI-sorted portfolios, 1926-1963
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1926-2021 1963-2021

0 1 2 HL 0 1 2 3 4 HL
Panel A. Excess returns
Excess return 10.64*** 10.14*** 14.89*** 4.25*** 8.79*** 7.85*** 9.25*** 11.07*** 15.72*** 6.92***

(3.83) (4.28) (4.55) (3.92) (3.06) (3.33) (3.39) (3.43) (3.98) (3.74)

Panel B. CAPM
Constant 1.1 0.66 3.69** 2.58*** 1.7 0.19 1.1 2.56 7.09*** 5.38***

(0.95) (1.09) (2.56) (2.61) (1.08) (0.29) (0.96) (1.45) (2.87) (3.17)
Mkt-RF 1.15*** 1.15*** 1.35*** 0.2*** 1.01*** 1.1*** 1.17*** 1.22*** 1.23*** 0.22***

(24.4) (59.19) (29.69) (12.01) (30.69) (88.15) (44.11) (36.46) (26.04) (7.28)
R2 0.78 0.93 0.76 0.15 0.71 0.92 0.81 0.68 0.52 0.07

Panel C. Fama-French 1993
Constant -0.77* 0.21 2.16** 2.94*** -0.6 -0.02 0.24 1.2 5.13*** 5.73***

(-1.72) (0.55) (2.36) (3.02) (-0.98) (-0.03) (0.36) (1.13) (3.09) (3.44)
Mkt-RF 0.92*** 1.06*** 1.11*** 0.19*** 0.88*** 1.01*** 1.01*** 1.0*** 0.95*** 0.07

(79.54) (60.6) (42.42) (8.64) (62.36) (84.57) (43.78) (30.7) (22.78) (1.58)
SMB 0.86*** 0.43*** 1.1*** 0.24** 0.88*** 0.37*** 0.75*** 1.1*** 1.45*** 0.57***

(39.87) (9.41) (11.68) (2.28) (23.52) (14.99) (16.88) (12.26) (10.83) (3.71)
HML 0.41*** 0.02 0.19*** -0.21*** 0.32*** -0.05*** 0.0 0.03 0.08 -0.24***

(14.08) (0.75) (3.09) (-3.69) (12.37) (-3.0) (0.06) (0.66) (1.0) (-2.8)
R2 0.97 0.97 0.93 0.28 0.95 0.97 0.95 0.92 0.82 0.34

Panel D. Fama-French 2015
Constant -0.45 0.2 1.08* 2.57** 7.21*** 7.66***

(-0.74) (0.45) (1.94) (2.46) (4.2) (4.36)
Mkt-RF 0.87*** 1.02*** 1.01*** 0.99*** 0.94*** 0.07**

(63.36) (91.5) (59.37) (46.1) (27.25) (2.07)
SMB 0.88*** 0.34*** 0.69*** 0.98*** 1.27*** 0.39***

(29.9) (22.3) (26.47) (21.83) (18.66) (5.45)
HML 0.16*** -0.15*** -0.15*** -0.2*** -0.25*** -0.41***

(5.2) (-8.25) (-4.69) (-3.29) (-3.03) (-4.66)
CMA 0.06 0.11*** 0.13** 0.2** 0.33*** 0.27**

(1.49) (3.01) (2.22) (2.41) (2.69) (2.37)
RMW -0.03 -0.11*** -0.26*** -0.42*** -0.67*** -0.63***

(-1.13) (-4.42) (-4.72) (-4.39) (-4.73) (-4.02)
R2 0.95 0.97 0.96 0.93 0.85 0.46

The table shows the average excess returns of PI-sorted, equal-weighted portfolios in panel A and results of regressing

the portfolio returns on a constant and market excess returns, Fama-French 3 factors and Fama-French 5 factors in panels

B, C, and D, respectively. Portfolio ”0” consists of non-patenting firms and the remaining portfolios of patenting firms

sorted by PI. HL is a zero-cost portfolio with a long position in the highest PI portfolio and a short position in portfolio

”0”. Stocks are sorted into portfolios each year at the end of June. All portfolios are equal-weighted and rebalanced

annually. The underlying portfolio returns are at monthly frequency, but the estimates of the average excess returns and

constants are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors with five lags are

reported in parentheses. The time period of the sample is indicated in headings, i.e., 1926-2021 and 1963-2021. Data for

Fama-French 5 factors is available only from 1963. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table C.2: Returns of PI-sorted (equal-weighted) portfolios
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0 1 2 3 4 HL

Constant -1.58*** 0.03 2.35*** 2.85*** 5.73*** 7.31***
(-3.38) (0.06) (3.33) (2.71) (3.58) (4.15)

Mkt-RF 1.0*** 0.95*** 1.0*** 1.06*** 1.11*** 0.11**
(81.01) (93.2) (66.46) (36.24) (26.05) (2.35)

SMB 0.13*** -0.18*** -0.05* 0.22*** 0.58*** 0.45***
(5.72) (-14.08) (-1.66) (3.9) (7.4) (4.74)

HML 0.2*** -0.08*** -0.1** -0.13* -0.15 -0.35***
(6.85) (-3.33) (-2.29) (-1.9) (-1.57) (-3.16)

CMA -0.02 0.01 0.09 0.18** 0.27* 0.29*
(-0.62) (0.43) (1.56) (2.01) (1.8) (1.74)

RMW 0.13*** 0.05** -0.12*** -0.26*** -0.43*** -0.56***
(3.38) (2.55) (-3.37) (-3.14) (-2.77) (-3.15)

Mom -0.02 0.01 -0.03 -0.1*** -0.09 -0.07
(-1.33) (0.95) (-1.53) (-2.84) (-1.5) (-1.0)

R2 0.96 0.96 0.9 0.86 0.78 0.32

The table shows the results of regressing the portfolio returns on a constant, Fama-French five factors and momentum

factor. Portfolio ”0” consists of non-patenting firms and the remaining portfolios of patenting firms sorted by PI. HL

is a zero-cost portfolio with a long position in the highest PI portfolio and a short position in portfolio ”0”. Stocks

are sorted into portfolios each year at the end of June. All portfolios are value-weighted and rebalanced annually. The

underlying portfolio returns are at monthly frequency, but the estimates of the constant are annualized. Newey-West

heteroscedasticity and autocorrelation consistent standard errors with five lags are reported in parentheses. The time

period of the sample is 1963-2021. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table C.3: Patent Intensity sorts and performance, Fama-French Factors with Momentum, 1963-
2021
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Horizon
(years)

0 1 2 3 4 HL

0 -1.58*** 0.03 2.35*** 2.85*** 5.73*** 7.31***
(-3.38) (0.06) (3.33) (2.71) (3.58) (4.15)

1 -1.61*** 0.03 2.5*** 1.63* 6.32*** 7.93***
(-3.48) (0.07) (3.64) (1.73) (3.67) (4.15)

2 -1.56*** 0.17 1.58** 1.38 4.67*** 6.23***
(-3.34) (0.38) (2.38) (1.58) (2.75) (3.28)

3 -1.77*** -0.06 1.81** 1.96** 3.09** 4.86***
(-3.87) (-0.14) (2.54) (2.11) (2.23) (3.05)

4 -1.7*** -0.02 1.13* 2.39*** 2.32* 4.02***
(-3.71) (-0.05) (1.8) (2.65) (1.86) (2.72)

5 -1.6*** 0.27 0.77 2.25** 2.77** 4.37***
(-3.48) (0.56) (1.23) (2.46) (2.1) (2.93)

6 -1.47*** 0.15 1.03* 1.51* 3.17** 4.64***
(-3.37) (0.34) (1.76) (1.67) (2.18) (2.85)

7 -1.29*** 0.15 0.55 2.01** 2.98** 4.27***
(-2.93) (0.35) (0.94) (2.39) (2.12) (2.71)

8 -1.51*** -0.03 1.38** 0.8 3.27** 4.78***
(-3.39) (-0.07) (2.24) (0.85) (2.35) (3.01)

9 -1.47*** 0.31 0.64 1.22 3.89*** 5.36***
(-3.17) (0.7) (1.1) (1.46) (2.84) (3.39)

10 -1.22*** 0.2 -0.15 2.33** 1.66 2.88*
(-2.64) (0.43) (-0.24) (2.52) (1.12) (1.7)

The table shows the abnormal returns (alphas) relative to FF5 model with momentum (Fama and French 2015) of PI-sorted

portfolios for holding period of one-year at different investment horizons (indicated in rows). Portfolio ”0” consists of

non-patenting firms and the remaining portfolios of patenting firms sorted by PI. HL is a zero-cost portfolio with a long

position in the highest PI portfolio and a short position in portfolio ”0”. Stocks are sorted into portfolios at the end of June

K years prior to the beginning of the holding period in July of year t. The holding period lasts for one year from July (end

of June) in year t to the end of June in year t +1. Each portfolio consists of the stocks assigned to the portfolio K years

ago that are still active as of the beginning of the holding period, i.e., end of June in year t. Portfolios are value weighted

with weights as of the beginning of the holding period. The underlying portfolio returns are at monthly frequency, but

the estimates of the alphas are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors

with five lags are reported in parentheses. The time period of the sample is given by availability of the FF5-factors, i.e.,

1963-2021. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table C.4: Aged Patent Intensity portfolios, FF5+Momentum alpha dynamics, 1963-2021
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Horizon
(years)

0 1 2 3 4 HL

0 -2.04*** -0.04 2.83*** 3.5*** 6.79*** 8.82***
(-3.27) (-0.08) (3.75) (2.87) (3.69) (3.96)

1 -2.06*** 0.05 2.78*** 2.29** 6.77*** 8.83***
(-3.44) (0.11) (3.69) (2.07) (3.44) (3.82)

2 -1.99*** 0.17 1.89** 1.59* 5.26*** 7.25***
(-3.21) (0.37) (2.57) (1.65) (2.63) (3.05)

3 -2.4*** 0.14 2.17*** 2.01** 2.73* 5.13***
(-3.79) (0.29) (2.62) (2.01) (1.84) (2.85)

4 -2.19*** 0.06 1.55** 2.45** 2.18 4.37***
(-3.76) (0.12) (2.19) (2.45) (1.56) (2.6)

5 -2.17*** 0.33 1.12 2.32** 2.5* 4.67***
(-3.94) (0.6) (1.61) (2.27) (1.65) (2.61)

6 -2.1*** 0.52 1.11* 1.45 2.81* 4.91**
(-3.42) (0.99) (1.69) (1.43) (1.67) (2.41)

7 -1.77*** 0.22 0.93 1.89* 2.83* 4.6**
(-3.06) (0.47) (1.5) (1.93) (1.74) (2.36)

8 -2.09*** 0.31 1.42** 0.59 2.74* 4.83**
(-3.78) (0.62) (2.2) (0.55) (1.7) (2.5)

9 -2.11*** 0.72 0.71 0.84 3.51** 5.62***
(-3.51) (1.37) (1.14) (0.91) (2.04) (2.71)

10 -1.81*** 0.53 -0.21 2.03* 1.5 3.32
(-2.95) (1.0) (-0.31) (1.96) (0.85) (1.55)

The table shows the abnormal returns (alphas) relative to five-factor model (Fama and French 2015) of PI-sorted portfolios

for holding period of one-year at different investment horizons (indicated in rows). Portfolio ”0” consists of non-patenting

firms and the remaining portfolios of patenting firms sorted by PI. HL is a zero-cost portfolio with a long position in

the highest PI portfolio and a short position in portfolio ”0”. Stocks are sorted into portfolios at the end of June K years

prior to the beginning of the holding period in July of year t. The holding period lasts for one year from July (end of

June) in year t to the end of June in year t + 1. Each portfolio consists of the stocks assigned to the portfolio K years

ago that are still active as of the beginning of the holding period, i.e., end of June in year t. Portfolios are value weighted

with weights as of the beginning of the holding period. The underlying portfolio returns are at monthly frequency, but

the estimates of the alphas are annualized. Newey-West heteroscedasticity and autocorrelation consistent standard errors

with five lags are reported in parentheses. The time period of the sample is given by availability of the Q-factors, i.e.,

1967-2021. */**/*** indicate significance level at 10, 5, and 1%, respectively.

Table C.5: Aged Patent Intensity portfolios, q4 alpha dynamics, 1967-2021
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Ex. Ret. Fama-French 2015

Constant Constant Mkt-RF SMB HML CMA RMW R2

Beta Non-Inno -0.841 -1.713 0.641∗∗∗ -0.039 0.118 -0.819∗∗∗ -0.315∗∗∗ 0.43
(-0.33) (-0.83) (15.04) (-0.64) (1.43) (-6.69) (-3.73)

Inno -2.077 -1.069 0.576∗∗∗ -0.371∗∗∗ -0.099 -0.639∗∗∗ -0.514∗∗∗ 0.33
(-0.77) (-0.45) (11.74) (-5.28) (-1.05) (-4.54) (-5.28)

Diff -1.236 0.644 -0.066 -0.332∗∗∗ -0.217∗∗∗ 0.179 -0.199∗∗ 0.07
(-0.66) (0.33) (-1.65) (-5.82) (-2.83) (1.57) (-2.52)

Size Non-Inno -4.541∗ -3.553∗ 0.200∗∗∗ -1.131∗∗∗ -0.301∗∗∗ 0.157 0.183∗∗ 0.41
(-1.87) (-1.81) (5.02) (-19.37) (-3.98) (1.35) (2.26)

Inno -5.517∗ -4.409∗ 0.101∗∗ -1.339∗∗∗ -0.441∗∗∗ 0.134 0.673∗∗∗ 0.46
(-1.77) (-1.83) (2.07) (-18.70) (-4.76) (0.95) (6.80)

Diff -0.976 -0.856 -0.099∗∗∗ -0.208∗∗∗ -0.140∗∗ -0.023 0.490∗∗∗ 0.18
(-0.57) (-0.52) (-2.95) (-4.24) (-2.21) (-0.23) (7.24)

B/M Non-Inno 3.588∗ -0.529 0.019 0.156∗∗∗ 1.131∗∗∗ 0.061 0.006 0.57
(1.82) (-0.39) (0.70) (3.89) (21.73) (0.76) (0.10)

Inno 1.485 -3.142∗ 0.173∗∗∗ 0.298∗∗∗ 1.151∗∗∗ 0.104 -0.354∗∗∗ 0.44
(0.61) (-1.65) (4.48) (5.28) (15.74) (0.93) (-4.53)

Diff -2.104 -2.614 0.153∗∗∗ 0.142∗∗ 0.020 0.043 -0.359∗∗∗ 0.08
(-0.94) (-1.15) (3.34) (2.12) (0.24) (0.32) (-3.87)

Invest Non-Inno -3.607∗∗∗ -1.192 0.039∗ -0.138∗∗∗ -0.068 -0.839∗∗∗ 0.158∗∗∗ 0.41
(-2.69) (-1.09) (1.77) (-4.25) (-1.62) (-13.11) (3.53)

Inno -2.378 2.944∗∗ -0.038 -0.190∗∗∗ -0.001 -1.433∗∗∗ -0.070 0.47
(-1.32) (2.12) (-1.36) (-4.60) (-0.03) (-17.56) (-1.23)

Diff 1.229 4.136∗∗ -0.077∗∗ -0.052 0.066 -0.594∗∗∗ -0.228∗∗∗ 0.06
(0.68) (2.23) (-2.06) (-0.95) (0.93) (-5.45) (-3.00)

Profit Non-Inno 5.653∗∗ 1.847 -0.113∗∗∗ -0.203∗∗∗ -0.112 0.226∗ 1.541∗∗∗ 0.46
(2.17) (0.92) (-2.78) (-3.42) (-1.46) (1.92) (18.75)

Inno -2.202 -3.421∗ -0.145∗∗∗ -0.691∗∗∗ 0.184∗∗ -0.344∗∗∗ 1.478∗∗∗ 0.58
(-0.76) (-1.75) (-3.69) (-11.97) (2.47) (-3.01) (18.52)

Diff -7.854∗∗∗ -5.268∗ -0.033 -0.487∗∗∗ 0.297∗∗∗ -0.570∗∗∗ -0.063 0.07
(-2.76) (-1.83) (-0.56) (-5.75) (2.70) (-3.39) (-0.54)

The table shows the average excess returns of innovative and non-innovative firms sorted on common firm characteristics

as well as the results of regressing the portfolio returns on a constant and Fama-French 5 factors. Stocks are labeled as

innovators and non-innovators at the end of June in each year and independently sorted into five portfolios. Innovative

firms are firms that have at least three patents over the last three years and one patent over the last year at the time of

portfolio formation. The table shows the returns of a long-short portfolio that goes long the highest quintile and short the

lowest quintile. More details can be found in the caption of Table 4.11.

Table C.6: Characteristics-sorted portfolios in innovative vs. non-innovative firms with full-sample
breakpoints
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Ex. Ret. q5

Constant Constant MKT ME IA ROE EG R2

Beta Non-Inno -1.493 0.922 0.665∗∗∗ -0.121∗ -0.353∗∗∗ -0.012 -0.498∗∗∗ 0.43
(-0.55) -0.38 -14.71 (-1.96) (-3.45) (-0.15) (-4.11)

Inno -2.902 -1.092 0.643∗∗∗ -0.416∗∗∗ -0.454∗∗∗ -0.237∗∗ -0.132 0.31
(-1.00) (-0.38) -12.1 (-5.72) (-3.77) (-2.46) (-0.93)

Diff -1.409 -2.014 -0.022 -0.295∗∗∗ -0.101 -0.225∗∗∗ 0.367∗∗∗ 0.08
(-0.71) (-0.89) (-0.52) (-5.13) (-1.06) (-2.96) -3.26

Size Non-Inno -4.421∗ -7.848∗∗∗ 0.238∗∗∗ -0.875∗∗∗ 0.103 0.677∗∗∗ 0.009 0.41
(-1.73) (-3.40) -5.55 (-14.73) -1.07 -8.69 -0.08

Inno -5.799∗ -10.452∗∗∗ 0.177∗∗∗ -1.181∗∗∗ 0.048 1.050∗∗∗ 0.071 0.51
(-1.75) (-3.84) -3.51 (-16.90) -0.42 -11.45 -0.53

Diff -1.377 -2.604 -0.061∗ -0.306∗∗∗ -0.055 0.372∗∗∗ 0.063 0.19
(-0.75) (-1.35) (-1.69) (-6.15) (-0.68) -5.71 -0.66

B/M Non-Inno 3.920∗ 0.927 -0.009 0.121∗∗ 1.172∗∗∗ -0.504∗∗∗ 0.104 0.34
(1.89) -0.47 (-0.25) -2.38 -14.26 (-7.58) -1.07

Inno 1.684 -0.223 0.124∗∗∗ 0.268∗∗∗ 1.136∗∗∗ -0.842∗∗∗ 0.073 0.35
(0.66) (-0.09) -2.74 -4.29 -11.19 (-10.24) -0.61

Diff -2.236 -1.15 0.133∗∗∗ 0.148∗∗ -0.036 -0.337∗∗∗ -0.031 0.08
(-0.95) (-0.43) -2.7 -2.16 (-0.33) (-3.76) (-0.24)

Invest Non-Inno -4.045∗∗∗ -0.35 0.059∗∗ -0.211∗∗∗ -0.769∗∗∗ 0.266∗∗∗ -0.201∗∗∗ 0.38
(-2.93) (-0.27) -2.49 (-6.44) (-14.46) -6.19 (-3.21)

Inno -2.875 0.831 0.045 -0.198∗∗∗ -1.391∗∗∗ 0.097∗ 0.169∗∗ 0.43
(-1.51) -0.49 -1.43 (-4.56) (-19.74) -1.71 -2.04

Diff 1.170 1.181 -0.014 0.013 -0.623∗∗∗ -0.169∗∗ 0.371∗∗∗ 0.08
(0.62) -0.55 (-0.35) -0.24 (-6.98) (-2.34) -3.52

Profit Non-Inno 5.432∗∗ -1.228 -0.095∗∗ -0.256∗∗∗ 0.261∗∗ 1.081∗∗∗ 0.056 0.37
(2.04) (-0.49) (-2.05) (-4.00) -2.51 -12.88 -0.46

Inno -1.735 -3.424 -0.125∗∗ -0.829∗∗∗ 0.219∗∗ 0.950∗∗∗ -0.144 0.43
(-0.58) (-1.28) (-2.53) (-12.09) -1.97 -10.56 (-1.10)

Diff -7.168∗∗ -2.196 -0.031 -0.574∗∗∗ -0.042 -0.131 -0.2 0.07
(-2.47) (-0.67) (-0.50) (-6.77) (-0.30) (-1.17) (-1.23)

The table shows the average excess returns of innovative and non-innovative firms sorted on common firm characteristics

as well as the results of regressing the portfolio returns on a constant and q5-factors. Stocks are labeled as innovators and

non-innovators at the end of June in each year and independently sorted into five portfolios. Innovative firms are firms

that have at least three patents over the last three years and one patent over the last year at the time of portfolio formation.

The table shows the returns of a long-short portfolio that goes long the highest quintile and short the lowest quintile.

More details can be found in the caption of Table 4.11.

Table C.7: Characteristics-sorted portfolios in innovative vs. non-innovative firms with the q5-
Factor model and full-sample breakpoints
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Ex. Ret. q4

Constant Constant MKT ME IA ROE R2

Beta Non-Inno -1.941 -3.038 0.718∗∗∗ -0.075 -0.454∗∗∗ -0.163∗∗ 0.41
(-0.73) (-1.35) (16.39) (-1.22) (-4.52) (-2.19)

Inno -0.706 -2.139 0.657∗∗∗ -0.404∗∗∗ -0.480∗∗∗ -0.277∗∗∗ 0.31
(-0.23) (-0.82) (12.92) (-5.64) (-4.12) (-3.21)

Diff 1.235 0.899 -0.061 -0.329∗∗∗ -0.027 -0.114∗ 0.06
-0.52 (0.43) (-1.51) (-5.77) (-0.29) (-1.66)

Size Non-Inno -4.236 -7.777∗∗∗ 0.237∗∗∗ -0.876∗∗∗ 0.104 0.680∗∗∗ 0.41
(-1.61) (-3.67) (5.82) (-15.01) (1.11) (9.89)

Inno -7.544∗∗ -9.875∗∗∗ 0.169∗∗∗ -1.188∗∗∗ 0.061 1.073∗∗∗ 0.51
(-2.46) (-3.96) (3.52) (-17.29) (0.55) (13.26)

Diff -3.308∗ -2.098 -0.068∗∗ -0.312∗∗∗ -0.043 0.393∗∗∗ 0.19
(-1.68) (-1.18) (-2.00) (-6.38) (-0.55) (6.82)

B/M Non-Inno 4.283∗∗ 1.768 -0.021 0.111∗∗ 1.192∗∗∗ -0.471∗∗∗ 0.34
-2.33 (0.98) (-0.61) (2.22) (14.86) (-8.02)

Inno 5.290∗∗ 0.365 0.115∗∗∗ 0.261∗∗∗ 1.150∗∗∗ -0.818∗∗∗ 0.35
-2.28 (0.16) (2.69) (4.25) (11.62) (-11.29)

Diff 1.006 -1.403 0.137∗∗∗ 0.151∗∗ -0.042 -0.347∗∗∗ 0.08
-0.49 (-0.58) (2.92) (2.24) (-0.39) (-4.39)

Invest Non-Inno -4.556∗∗∗ -1.975∗ 0.083∗∗∗ -0.192∗∗∗ -0.806∗∗∗ 0.202∗∗∗ 0.37
(-3.74) (-1.68) (3.65) (-5.92) (-15.44) (5.27)

Inno -2.679 2.200 0.025 -0.214∗∗∗ -1.360∗∗∗ 0.152∗∗∗ 0.43
(-1.30) (1.41) (0.84) (-5.00) (-19.73) (3.01)

Diff 1.877 4.175∗∗ -0.058 -0.022 -0.554∗∗∗ -0.049 0.06
-0.96 (2.11) (-1.51) (-0.41) (-6.30) (-0.77)

Profit Non-Inno 6.225∗∗ -0.774 -0.101∗∗ -0.261∗∗∗ 0.271∗∗∗ 1.099∗∗∗ 0.37
-2.35 (-0.34) (-2.31) (-4.15) (2.68) (14.85)

Inno -3.65 -4.586∗ -0.108∗∗ -0.816∗∗∗ 0.192∗ 0.904∗∗∗ 0.43
(-1.20) (-1.87) (-2.31) (-12.09) (1.77) (11.38)

Diff -9.876∗∗∗ -3.812 -0.007 -0.555∗∗∗ -0.079 -0.195∗∗ 0.07
(-3.44) (-1.26) (-0.12) (-6.65) (-0.59) (-1.99)

The table shows the average excess returns of innovative and non-innovative firms sorted on common firm characteristics

as well as the results of regressing the portfolio returns on a constant and q4-factors. Stocks are labeled as innovators and

non-innovators at the end of June in each year and independently sorted into five portfolios. Innovative firms are firms

that have at least three patents over the last three years and one patent over the last year at the time of portfolio formation.

The table shows the returns of a long-short portfolio that goes long the highest quintile and short the lowest quintile.

More details can be found in the caption of Table 4.11.

Table C.8: Characteristics-sorted portfolios in innovative vs. non-innovative firms with the q4-
Factor model and full-sample breakpoints
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Panel A. MKT

Horizon
(years)

0 1 2 3 4 HL

0 0.98*** 0.95*** 1.02*** 1.08*** 1.15*** 0.17***
(55.85) (86.26) (60.46) (29.18) (23.18) (2.85)

1 0.99*** 0.94*** 1.03*** 1.08*** 1.16*** 0.17***
(55.89) (79.07) (59.05) (36.91) (31.16) (3.78)

2 0.99*** 0.95*** 1.02*** 1.11*** 1.1*** 0.11**
(57.22) (69.85) (52.34) (47.16) (23.82) (1.97)

3 0.99*** 0.94*** 1.04*** 1.08*** 1.15*** 0.16***
(57.88) (73.03) (51.96) (47.28) (28.67) (3.24)

4 0.99*** 0.94*** 1.04*** 1.09*** 1.17*** 0.18***
(61.68) (83.78) (65.76) (44.25) (30.03) (3.69)

5 0.98*** 0.94*** 1.03*** 1.09*** 1.19*** 0.22***
(59.66) (75.58) (60.55) (45.74) (26.81) (4.01)

6 0.98*** 0.94*** 1.02*** 1.08*** 1.2*** 0.22***
(54.97) (77.33) (66.78) (47.67) (28.35) (4.24)

7 0.97*** 0.94*** 1.02*** 1.09*** 1.17*** 0.2***
(61.09) (91.42) (63.97) (53.25) (27.45) (3.78)

8 0.97*** 0.94*** 1.0*** 1.11*** 1.17*** 0.2***
(59.86) (91.77) (62.31) (52.43) (26.28) (3.65)

9 0.97*** 0.94*** 1.02*** 1.08*** 1.14*** 0.17***
(57.63) (88.71) (64.0) (44.41) (22.36) (2.81)

10 0.96*** 0.95*** 1.0*** 1.05*** 1.18*** 0.21***
(53.19) (79.31) (51.9) (39.24) (21.49) (3.21)

10-0 -0.02** 0.0 -0.02 -0.04 0.02 0.04
(-2.26) (-0.25) (-0.89) (-1.13) (0.57) (0.95)

The table shows the loadings on the q-factors (indicated in panel headings) of PI-sorted portfolios for holding period

of one-year at different investment horizons (indicated in rows). The last row shows the difference in loadings between

horizon 10 and 0. The construction of the underlying portfolios is described in detail in notes to Table 4.8. Newey-West

heteroscedasticity and autocorrelation consistent standard errors with five lags are reported in parentheses. The time

period of the sample is given by availability of the q factors, i.e., 1967-2021. */**/*** indicate significance level at 10,

5, and 1%, respectively.

Table C.9: Aged Patent Intensity portfolios, q5-factor loadings dynamics, 1967-2021
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Panel B. ME

Horizon
(years)

0 1 2 3 4 HL

0 0.12** -0.19*** -0.05 0.23*** 0.61*** 0.49***
(2.36) (-12.25) (-1.44) (2.99) (5.12) (2.98)

1 0.11** -0.19*** -0.08** 0.2*** 0.51*** 0.39***
(2.28) (-14.31) (-2.15) (3.65) (6.25) (3.25)

2 0.1* -0.19*** -0.1*** 0.13*** 0.52*** 0.42***
(1.95) (-12.25) (-3.58) (3.01) (4.41) (2.62)

3 0.09* -0.18*** -0.14*** 0.08** 0.42*** 0.33**
(1.88) (-13.09) (-6.42) (2.0) (4.76) (2.55)

4 0.09* -0.18*** -0.14*** 0.04 0.38*** 0.3***
(1.9) (-11.5) (-6.36) (1.03) (5.21) (2.79)

5 0.07* -0.2*** -0.15*** 0.09** 0.33*** 0.26**
(1.68) (-8.21) (-5.57) (2.04) (3.76) (2.11)

6 0.06 -0.17*** -0.15*** 0.01 0.39*** 0.33**
(1.29) (-8.4) (-6.55) (0.18) (4.17) (2.44)

7 0.06 -0.18*** -0.17*** 0.05 0.33*** 0.27*
(1.36) (-9.79) (-6.84) (1.29) (3.1) (1.88)

8 0.05 -0.18*** -0.19*** 0.03 0.33*** 0.28**
(1.26) (-8.51) (-7.64) (0.66) (3.28) (2.09)

9 0.02 -0.17*** -0.19*** 0.04 0.3*** 0.29**
(0.37) (-7.88) (-7.26) (0.87) (2.95) (2.05)

10 0.02 -0.17*** -0.2*** 0.04 0.26** 0.25
(0.36) (-7.98) (-8.31) (0.94) (2.33) (1.61)

10-0 -0.1*** 0.02 -0.15*** -0.18*** -0.35*** -0.25***
(-8.05) (0.64) (-3.56) (-2.93) (-5.15) (-3.35)

Table C.9-continued

158



Panel C. IA

Horizon
(years)

0 1 2 3 4 HL

0 0.25*** -0.06** -0.11*** -0.12* -0.17 -0.42***
(5.13) (-2.15) (-2.59) (-1.7) (-1.39) (-2.8)

1 0.28*** -0.04 -0.08 -0.15** -0.21 -0.49***
(5.39) (-1.5) (-1.57) (-2.23) (-1.43) (-2.6)

2 0.29*** 0.01 -0.14** -0.12* -0.47*** -0.76***
(5.74) (0.47) (-2.27) (-1.84) (-3.3) (-4.21)

3 0.3*** 0.04* -0.12** -0.21*** -0.35*** -0.65***
(5.71) (1.82) (-2.09) (-2.94) (-3.93) (-5.48)

4 0.3*** 0.06** -0.08* -0.17*** -0.28*** -0.58***
(6.15) (2.41) (-1.71) (-3.21) (-3.44) (-5.4)

5 0.28*** 0.06 -0.01 -0.17*** -0.22** -0.5***
(7.03) (1.58) (-0.23) (-3.13) (-2.32) (-4.54)

6 0.28*** 0.06 0.03 -0.15** -0.29*** -0.57***
(6.36) (1.57) (0.57) (-2.31) (-3.04) (-4.68)

7 0.29*** 0.04 0.07* -0.16*** -0.35*** -0.64***
(6.29) (1.13) (1.88) (-3.05) (-3.77) (-5.25)

8 0.29*** 0.05 0.03 -0.07 -0.37*** -0.67***
(7.34) (1.31) (0.58) (-1.14) (-3.99) (-5.71)

9 0.29*** 0.07** 0.02 -0.08 -0.39*** -0.68***
(6.97) (1.99) (0.43) (-1.56) (-4.03) (-5.79)

10 0.3*** 0.08*** 0.04 -0.1 -0.23** -0.53***
(6.28) (2.82) (0.88) (-1.58) (-2.05) (-4.07)

10-0 0.05** 0.14*** 0.14** 0.01 -0.06 -0.11
(2.11) (3.8) (2.42) (0.16) (-0.49) (-0.8)

Table C.9-continued
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Panel D. ROE

Horizon
(years)

0 1 2 3 4 HL

0 0.1*** 0.08*** -0.25*** -0.38*** -0.69*** -0.79***
(2.7) (3.31) (-5.57) (-5.35) (-6.84) (-6.37)

1 0.11*** 0.05** -0.19*** -0.3*** -0.45*** -0.56***
(2.73) (2.04) (-4.98) (-5.87) (-4.59) (-4.57)

2 0.11*** 0.04 -0.15*** -0.21*** -0.32*** -0.43***
(2.71) (1.4) (-3.51) (-4.56) (-2.95) (-3.24)

3 0.12*** 0.02 -0.17*** -0.19*** -0.35*** -0.47***
(2.96) (0.95) (-3.07) (-3.31) (-4.66) (-5.15)

4 0.09** 0.04* -0.13*** -0.2*** -0.36*** -0.45***
(2.41) (1.67) (-2.75) (-3.88) (-4.12) (-4.36)

5 0.09** 0.04 -0.11** -0.19*** -0.4*** -0.49***
(2.24) (1.34) (-2.53) (-3.69) (-3.99) (-4.05)

6 0.07 0.04 -0.09** -0.13*** -0.24*** -0.31***
(1.64) (1.25) (-2.4) (-2.67) (-3.03) (-2.96)

7 0.06 0.04 -0.08** -0.13*** -0.25*** -0.32***
(1.48) (1.58) (-2.3) (-2.68) (-3.06) (-2.89)

8 0.07* 0.03 -0.05 -0.09* -0.29*** -0.36***
(1.86) (1.04) (-1.29) (-1.76) (-2.82) (-2.85)

9 0.08* 0.01 -0.01 -0.1** -0.26*** -0.34***
(1.92) (0.31) (-0.27) (-1.98) (-2.7) (-2.86)

10 0.07 0.01 0.01 -0.07 -0.28** -0.35**
(1.59) (0.38) (0.18) (-1.23) (-2.44) (-2.57)

10-0 -0.04** -0.07** 0.25*** 0.32*** 0.4*** 0.44***
(-2.36) (-2.24) (4.91) (4.4) (4.92) (5.09)

Table C.9-continued
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Panel E. EG

Horizon
(years)

0 1 2 3 4 HL

0 -0.18*** -0.03 0.28*** 0.29*** 0.64*** 0.82***
(-4.88) (-0.9) (5.54) (3.8) (5.92) (6.52)

1 -0.16*** -0.03 0.26*** 0.27*** 0.4*** 0.56***
(-4.2) (-0.82) (4.92) (3.71) (3.06) (3.63)

2 -0.17*** 0.02 0.21*** 0.19*** 0.29*** 0.46***
(-4.29) (0.6) (4.08) (2.87) (2.59) (3.3)

3 -0.17*** 0.05 0.2*** 0.14** 0.25** 0.42***
(-4.19) (1.39) (3.74) (2.04) (2.18) (3.0)

4 -0.16*** 0.07* 0.17*** 0.15** 0.32*** 0.48***
(-3.95) (1.85) (3.28) (2.35) (2.85) (3.49)

5 -0.15*** 0.08* 0.11** 0.19*** 0.35*** 0.5***
(-4.11) (1.76) (2.2) (3.18) (3.25) (3.81)

6 -0.14*** 0.11*** 0.12*** 0.12** 0.29*** 0.44***
(-3.65) (2.65) (2.63) (2.02) (2.66) (3.22)

7 -0.14*** 0.12*** 0.11*** 0.15*** 0.23* 0.37***
(-3.68) (3.41) (2.91) (2.64) (1.95) (2.6)

8 -0.13*** 0.15*** 0.06 0.13** 0.23* 0.36**
(-3.35) (3.28) (1.46) (2.3) (1.85) (2.39)

9 -0.13*** 0.15*** 0.08** 0.11* 0.18 0.31**
(-3.21) (3.72) (2.03) (1.81) (1.44) (2.09)

10 -0.12*** 0.19*** 0.04 0.08 0.17 0.29**
(-2.84) (4.56) (0.8) (1.35) (1.57) (2.18)

10-0 0.06*** 0.21*** -0.25*** -0.21*** -0.46*** -0.53***
(2.9) (5.37) (-4.01) (-2.84) (-3.74) (-4.07)

Table C.9-continued
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