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Abstract

This dissertation addresses the implications of the satisficing decision making in

retail and revenue management. In the first essay, we incorporate the satisficing

behavior of customers in an assortment optimization problem. While different

approaches to modelling customer choice have been adopted in assortment plan-

ning, all assume customers are utility maximizers. Our work bridges the research

streams of assortment planning and bounded rationality, particularly satisficing be-

havior. Furthermore, by defining a limit for the search budget of customers, based

on which customers leave without purchase after examining a certain number of

items, we bring a new perspective to the assortment planning literature. We for-

mulate this optimization problem and prove that the firm’s problem of finding the

optimal assortment is NP-hard. We also establish certain structural properties of

the optimal decision to reformulate the problem as a mixed integer program. We

show the size of the optimal assortment cannot exceed the maximum search budget

of all customers.

The second essay investigates the consequences of ignoring the satisficing be-

havior of customers. We identify analytically a tight upper bound on the firm’s

percentage loss of expected profit for small instances when it assumes incorrectly

that its customers are utility maximizers. In this regard, we take the multinomial

logit choice model as the representative of a utility maximizing model. For larger

instances, we take a numerical approach to characterize the loss. Our results indi-

cate that when the firm is dealing with satisficers, it may face considerable profit

loss by ignoring this type of behavior.

In the third essay, we propose a price optimization model for a firm offering

two substitutable items to satisficing customers. We define acceptability probabil-
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ity functions for each item and formulate the demand of each product based on

the assumption that customers examine the items one-by-one until they find an

acceptable alternative. We prove unimodality of the revenue function when the

acceptability probabilities follow certain structures. We then provide insights into

price dispersion of a utility maximizing pricing model and our satisficing model,

as well as the revenue loss of a firm adopting an incorrect choice model.
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Lay Summary

In the economic theory, it is mainly assumed that customers make choices by care-

fully examining the pros and cons of different options, behaving as utility maximiz-

ers. However, the limited information, time, or capacity may inhibit this behavior.

Rather, they stop searching and make a purchase as soon as they find a good enough

option, behaving more like satisficers.

This dissertation studies the applications of this behavior in retail and revenue

management. In Chapter 2, we consider the process of selecting the products to

be offered to customers, and propose a model to solve this problem based on the

assumption that customers are satisficers. In Chapter 3, we compare our model,

e.g., in terms of firm profit, with a utility maximizing model. Chapter 4 concerns

with pricing decisions when the firm is dealing with satisficing customers. We

develop a model for this problem and compare it with a utility maximizing model.
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Chapter 1

Introduction

This dissertation comprises of three essays that fall into the �eld of revenue and

operations management involving consumer behavior. The �rst essay concerns as-

sortment planning and optimization of the �rms which deal with customers that

are boundedly rational. More speci�cally, the customers are satis�cers instead of

being utility maximizers. The second essay investigates the difference between

assortment decisions when customers are utility maximizers vs. satis�cing cus-

tomers, and the degree to which the �rms could lose pro�t if they make wrong

assumptions about the underlying behavior of their customers. The third essay fo-

cuses on the price optimization of the �rm whose customers are satis�cers, in order

to maximize the �rm's expected revenue.

In the �rst essay, we formulate an assortment optimization problem in which

the customers who are offered a collection of substitutable items, do not wish to

maximize their utility in order to make a purchase. Rather, they start examining the

items one by one until they �nd a satisfactory item to purchase. The optimization

problem of what subset of products to offer is rather complex since the �rm needs

to make sure the items in the offer set are pro�table and at the same time, the

chance that customers will make a purchase is high enough. Having the right

balance between pro�tability, which requires the �rm to narrow down the offer set

to more pro�table items, and providing more alternatives to increase the chance of

making a purchase by the customers considering their choice behavior is the focus

of assortment optimization problems. To the best of our knowledge, all the relevant
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models in the literature have been built based on the assumption that customers are

utility maximizers.

We focus on the satis�cing behavior of the customers which is introduced

by (Simon 1955, 1956), and gained remarkable attention in the psychology, eco-

nomics and marketing literature. Satis�cers' payoff functions are simple (e.g. ei-

ther satisfactory or unsatisfactory), since cognitive burden and limited information

limits their ability to maximize their utility. We assign acceptable sets for each cus-

tomer type and assume each product can potentially be either acceptable or unac-

ceptable. We also incorporate search budgets by assuming that the customers will

examine at most a certain number of items and will leave without any purchase if

they run out of their search budget and do not �nd any acceptable items. We prove

that this assortment optimization problem is NP-hard and provide a mixed-integer

programming (MIP) formulation to solve this problem after demonstrating some

structural properties for the original highly non-linear model. Our main result sets

a bound on the size of the optimal assortment; we prove that the optimal assortment

cannot be larger than the maximum search budget among all customer types. In ad-

dition, through a numerical study, we evaluate the magnitude of the loss when the

�rm wrongly assumes unlimited search budgets for the satis�cing customers. We

de�ne various structures for the customers' acceptable sets to gain more insights

when major loss could occur.

The second essay concerns with the consequences of incorporating a wrong

customer behavior in assortment planning problems. Speci�cally, we look into

what happens when the �rm wrongly assumes that the satis�cing customers are

utility maximizers. Several empirical studies con�rm that the presence of too many

alternatives negatively affects customers' decision making process to choose one

of the options. In addition, recent empirical studies observed distinct behaviors

between maximizers and satis�cers in evaluation of product bundles (Xia & Bech-

wati 2021) and feature-rich (i.e. having many features) versus feature-poor items

(Brannon & Soltwisch 2017). We investigate the extent of pro�t loss a �rm could

face when ignoring satis�cing behavior. To this end, we use the assortment plan-

ning problem with multinomial logit choice model as a representative of the models

with utility maximizing assumption, and compare its assortment recommendation

scheme to that of the satis�cing model developed in Chapter 2.
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When the true customer behavior is explained by the satis�cing model, we

identify regions of model parameters for which a �rm with the incorrect assumption

of dealing with utility maximizers is worse off (or not) compared to the �rm with

the right assumption. We prove that for a two-product case, the �rm's pro�t loss

is bounded by 33%. Simulations with synthetic data for larger instances with un-

limited search budgets con�rms our �ndings obtained from the two-product case.

Our numerical results indicate that when the no-purchase probability is low and

high-pro�t products are less attractive compared to the low-pro�t ones (e.g., low-

involvement items), it is more probable for the �rm to experience a pro�t loss,

and the expected loss is usually higher in such cases as well. In this setting, al-

though the customers prefer low-pro�t items, most of them would prefer to choose

high-pro�t items rather than leaving without a purchase. This could represent pur-

chasing necessary items by customers who are somehow price-sensitive, but are

still inclined to make a purchase anyway. Therefore, this setting seems to be the

most critical situation in which the �rm should avoid ignoring the possibility of

dealing with satis�cing customers instead of utility maximizers.

In the third essay, we develop a price optimization model for two substitutable

products under the assumption that �rm is dealing with satis�cing customers. Over

the past two decades, incorporating customer choice behavior in revenue manage-

ment and pricing problems has gained signi�cant attention. However, the underly-

ing assumption in this stream of literature is that customers always maximize their

utility. To the best of our knowledge, our model is the �rst to deviate from that

assumption and incorporate satis�cing behavior in price optimization problems. In

our model, the customers have some acceptability criteria, which is a function of

price, and they examine the items one-by-one until they �nd an acceptable item to

purchase. Therefore, the demand of an item depends on whether the item is ac-

ceptable to the customer and that the customer gets to examine it. Compared to our

�rst essay in which we assume each product is either acceptable or unacceptable

to the customer, in this work, we de�ne the acceptability criteria only based on the

price of the product for the sake of tractability. We assign an acceptability proba-

bility function to each product, which is a function of its own price, and using these

functions, we obtain the demand of each product to formulate the revenue function

that the �rm wishes to maximize, in a two-product case.

3



We investigate the properties of optimal policy under certain structures for the

acceptability functions and prove that our proposed revenue function is unimodal

when the acceptability probabilities of the items are linear functions of their own

prices (the demand functions derived from the linear acceptability functions are

nonlinear), under some mild conditions. We then look into the characteristics of

the revenue function with concave acceptability probability functions. We provide

conditions under which the revenue function's �rst order conditions are guaranteed

to provide a unique solution. We also derive a suf�cient condition for the structure

of the concave functions, which guarantees a global maximum for the revenue

function. We then consider linear acceptability functions in the revenue function

to compare our satis�cing price optimization model with a utility maximizing one

(Lus & Muriel 2009). The optimal prices suggested by the satis�cing model turn

out to be larger than those of the linear demand model, no matter the parameter

values. We also conduct a numerical sensitivity study on the models' parameters

to gain insight into their impact on optimal prices, quantities and price dispersion.
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Chapter 2

Assortment Planning with

Satis�cing Customers

2.1 Introduction

The proliferation of products available to customers and the vast increase in data

on customer choice present new challenges and opportunities for retailers' assort-

ment planning decisions. The decision regarding which items to display involves

a delicate balance between providing enough choice to increase the probability of

purchase, while limiting the chance that the availability of lower-pro�t items will

cannibalize higher-pro�t items.

The recent operations management literature has seen a surge of predictive and

prescriptive models on assortment optimization (e.g., Talluri & van Ryzin 2004a,

Farias et al. 2013, Davis et al. 2014, Gallego & Topaloglu 2014, and Rusmevichien-

tong et al. 2014). To the best of our knowledge, all of these models assume that

customers are utility maximizers. Our framework differs in that we consider cus-

tomers who are “satis�cers.” Herbert Simon's Nobel-prize winning work suggested

that limited information, time, or capacity to perform complex calculations restrict

decision makers' ability to maximize their utility; instead, he suggested they are

“boundedly rational” (Simon 1955, 1956). Simon coined the term “satis�cer” to

describe someone who ends their search as soon as they �nd an option that is above

some acceptability threshold. He then recommended that decision models should
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consider simple zero-one payoff functions corresponding to obtaining a satisfac-

tory item or not. This is the approach we take.

Simon's satis�cing choice idea has motivated the development of several bound-

edly rational choice models (e.g., González-Vald́es & de Dios Ort́uzar 2018, Sẗuttgen

et al. 2012, Durbach 2009 and Araña et al. 2008), and their implications in differ-

ent �elds have been explored (e.g. see review papers McCain 2015 and Di & Liu

2016). The present work takes a step toward bringing together the satis�cing be-

havior and assortment planning literature. This is motivated by previous empirical

studies con�rming that selection in the presence of too many options leads to nega-

tive consequences that result from the customers' decision making process (Iyengar

& Lepper 2000, Desmeules 2002, and Schwartz et al. 2002). In addition, the surge

in development of eye-tracking techniques and their applications in data collection

facilitates information acquisition and tracking the decision making path customers

take during in-store or online purchasing (Meißner et al. 2016, Zuschke 2020, Shi

et al. 2013, Lu & Hutchinson 2019, Bialkova et al. 2020). Such data pave the road

for better calibration of path-dependent choice models such as bounded rational-

ity and satis�cing behavior (Yang et al. 2015 and Stüttgen et al. 2012), and could

accelerate the adoption of these models in retail operations and revenue manage-

ment. Furthermore, while satis�cing behavior is generally expected for purchasing

low-involvement products such as grocery items and apparel (Stüttgen et al. 2012),

recent empirical studies observed distinct behaviors between maximizers and sat-

is�cers in evaluation of product bundles (Xia & Bechwati 2021) and feature-rich

(i.e. having many features) versus feature-poor items (Brannon & Soltwisch 2017).

The proposed approach could therefore be relevant to a broad range of products.

The combination of limited time and capacity for making complex decisions

also leads us to include a search budget in our model. That is, we assume customers

leave without making a purchase if they do not �nd a satisfactory item within a

limited number of item views. The combination of limited search and satis�cing

behavior brings a new perspective to the assortment planning literature, along with

new solution challenges and insights.

In the remainder of the essay, after a brief literature review in Section 2.2, we

present our modeling framework in Section 2.3 and prove it is NP-hard in Sec-

tion 2.4. To facilitate solving moderately-sized instances, we also identify several
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structural properties in Section 2.4. We derive a mixed integer programming (MIP)

formulation for a model in which customers'search budgets are identical in Section

2.5. Finally, we generalize our satis�cing model in Section 2.6 by removing the

constraint that the selection of the products subset for examination and the �nal

purchase occur with equal probabilities.

2.2 Literature Review

Our work relates to two main streams of research: (a) assortment planning and (b)

bounded rationality. Several assortment planning papers differ in their approach

to modeling customer choice. These include the multinomial logit model (Talluri

& van Ryzin 2004a), the nested logit model (Davis et al. 2014), and their vari-

ants (see Gallego & Topaloglu 2014 and Rusmevichientong et al. 2014), as well

as non-parametric (Farias et al. 2013) and Markov chain-based models (Blanchet

et al. 2016). All of these models assume customers are expected utility maxi-

mizers. However, in addition to the challenge that Simon raised regarding in-

dividuals being maximizers (implicitly, over large choice sets), the famed Allais

paradox raised concerns that individuals are even expected utility maximizers over

small choice sets (Allais 1953). Indeed, the Allais paradox required new decision-

analytic frameworks to explain individual decision making, leading to the develop-

ment of Prospect Theory (Kahneman & Tversky 1979).

In the spirit of bounded rationality (though this is not mentioned explicitly),

Aouad et al. (2015) studied assortment optimization under “consider-then-choose”

frameworks, in which customers �rst narrow down their choice set using simple

heuristics, and then they maximize the expected utility over the remaining op-

tions. The authors showed that assortment optimization problems are tractable

under practical assumptions on how customers form their consideration sets. Feld-

man et al. (2019) studied an assortment planning problem with ak-product non-

parametric choice model, in which customers' consideration sets include at most

k products. In both of these papers, customers are assumed to have ranked a list

of products and purchase the item with the highest rank. Our model is different

from these papers as our customers do not have any sort of rankings over products.

Wang & Sahin (2017) incorporated search cost in assortment planning problems
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with consideration sets, where a multinomial logit (MNL) model is used by the cus-

tomer to make a choice after forming her consideration set. Feldman & Topaloglu

(2015) studied capacitated assortment optimization under the MNL model with

nested consideration sets. A key difference between the above work and ours is

that in our setting, customers do not apply a simpli�cation task followed by an

optimization task to maximize utility. Instead, they leave the store as soon as they

�nd an acceptable product.

Models of bounded rationality are prevalent in economics (e.g., Simon 1955

and Caplin et al. 2011), marketing (e.g., Stüttgen et al. 2012, Simonson & Sela

2010, Smith et al. 2011, and González-Vald́es & de Dios Ort́uzar 2018), and psy-

chology (e.g., Simon 1956, Gigerenzer & Goldstein 1996, and Schwartz et al.

2002). Here, we review the literature on bounded rationality applied in operations

management settings. At a high level, operations models have considered indi-

viduals who exhibit bounded rationality by either (a) making mental errors when

seeking optimal solutions or (b) satis�cing rather than optimizing. With regard to

the �rst category, Su (2008) suggested that bounded rationality can explain the well

known “pull-to-the-center” behavior of newsvendors (Schweitzer & Cachon 2000,

Bolton & Katok 2008, Gavirneni & Isen 2010, Kremer et al. 2010). Huang et al.

(2013) employed bounded rationality in service operations by considering that cus-

tomers may make mistakes in estimating waiting times in contrast to the common

assumption in the queueing literature that customers are fully rational. Huang &

Chen (2015) assumed that customers are not capable of perfectly inferring the ser-

vice rate or estimating the expected waiting time, and that they only rely on earlier

customers' service experiences to make their joining decisions. Huang et al. (2017)

studied the role of posterior price matching by assuming that the probability of fu-

ture sales estimated by customers are based on earlier customers' experiences of

the prices. Cui & Zhang (2017) used cognitive hierarchy theory to analyze retail-

ers' ordering behavior in a capacity allocation problem. Plambeck & Wang (2013)

applied quasi-hyperbolic discounting to capture the behavior of customers in sys-

tems with services that are unpleasant and take less time but generate long-term

future bene�ts for customers (e.g. �u shot clinics). For an extensive literature re-

view on this source of bounded rationality in operations management, we refer the

reader to Ren & Huang (2018).
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As for operations models of satis�cing behavior, Charnes & Cooper (1963)

used chance constraint programming to model satis�cing behavior by maximizing

the probability of achieving some aspiration levels. Cassidy et al. (1972) consid-

ered a satis�cing setting to solve two-person zero-sum games with random payoffs.

Several transportation papers have considered drivers with satis�cing preferences

(see Zhang 2011, Di & Liu 2016 for extensive review of these). For example, Mah-

massani & Chang (1987) assumed drivers have an “indifference band” of tolerable

schedule delay. In a revenue management setting, Bansal & Maglaras (2009) stud-

ied a product design problem in which the decision is to set prices and qualities

for M products to be offered to customers. The satis�cing behavior is modelled as

customers seeking the cheapest product that meets their quality threshold.

To the best of our knowledge, the model presented in this paper is the �rst that

takes into account satis�cing behavior in assortment planning problems. Bansal

& Maglaras (2009) applied satis�cing behavior in a revenue management con-

text. However, customers in their model are satis�cers based on one single at-

tribute, product quality, and they act as optimizers when it comes to price. Our ap-

proach to modelling satis�cing behavior is similar to the work of González-Vald́es

& de Dios Ort́uzar (2018) in the sense that we both attempt to fully capture Simon's

description of satis�cing behavior (Simon 1955, 1956). It differs from their work

in that we model this behavior in the context of assortment planning problems. We

further take into account the customers' random search paths, as emphasized by

Stüttgen et al. (2012) in the marketing literature.

Some classes of assortment planning problems have been shown to be solvable

in polynomial time (e.g. assortment planning problems with MNL choice models

Talluri & van Ryzin 2004a), whereas other assortment optimization models, e.g.

rank-based models, have been shown to be NP-hard (Honhon et al. 2015). We

prove our proposed model is NP-hard, and then we utilize structural results to

reformulate the model as a Mixed-Integer program (MIP). This facilitates solving

reasonable sized instances using commercial solvers.
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2.3 Problem De�nition and Formulation

We consider a �rm that aims to maximize its expected pro�t by offering the best

subset of products to satis�cing customers. We assume there areK customer types

who differ in their search budgetci and in the subsetTi that they �nd acceptable

amongM possible products. For the remainder of the paper, we will refer to “a

customer of typei” as “customeri”. Customers examine the offered productsse-

quentiallyandrandomlywith equal probabilities until they purchase the �rst ac-

ceptable product they discover. If customeri does not �nd an acceptable product

within a limited number of searches (ci), then she leaves without a purchase. Since

customeri examines items sequentially and randomly with equal probabilities, all

sequences the customer could potentially follow are equally probable. Also, note

that the length of these sequences are at most minf ci ; jSjg. Therefore, we can

interpret the customer's choice process alternatively as follows: customeri �rst

chooses a random subset of size minf ci ; jSjg (with equal probability), which we

call the examination set, from the assortmentS, and then randomly selects (with

equal probability) any of the acceptable products in that subset. This interpreta-

tion is equivalent to the sequential choice process explained above. Therefore, for

modeling convenience, from here on, we will use the alternate choice process to

formulate our model. We assume the �rm knows this information, as well as the

distribution of customer types. We letp j represent the pro�t the �rm obtains per

sale of productj. Table 2.1 summarizes the notation of our model.

Note that in Section 2.6, we generalize this interpretation by relaxing the as-

sumption that customers choose to examine a subset of items with equal proba-

bilities, as well as the equal chances of purchasing one of the examined accept-

able items. To do this, we assign weightsw j to each productj and de�ne the

unequal examination and purchasing probabilities accordingly. We show that our

main structural results presented in Section 2.4 and the MIP formulation provided

in Section 2.5 can be extended for this generalization of our model, as well. See

Section 2.6 for more details about this extension and the generalized results.

SinceTi is the acceptable set of customeri, the number of items this customer

�nds acceptable in assortmentSis given bybS
i = jTi \ Sj. Not all of thesebS

i prod-

ucts will be considered for purchase since the customer examines onlyci products
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from S. Let Si denote the random subset ofTi \ S; note that this subset might be

empty. For a non-emptySi , let XS
i be the random product that customeri chooses

from this set. Denote byP j
S;i the probability that customeri chooses productj from

Si given that productj is in Si . That is,P j
S;i = P(XS

i = j j j 2 Si). Then we have

P j
S;i =

minf ci ;bS
i g

å
t= 1

P(XS
i = j j jSi j= t; j 2 Si) � P(jSi j= t j j 2 Si)

=
minf ci ;bS

i g

å
t= 1

1
t

� P(jSi j= t j j 2 Si) ;

where the last equality follows since the probability of choosing productj given a

certain value ofjSi j is 1=jSi j.

Since the customer examines minf ci ; jSjg products and one of these products is

j (which is acceptable), the event(jSi j= t j j 2 Si) corresponds to having examined

t � 1 other acceptable products and minf ci ; jSjg � t non-acceptable products. Note

that there are a total ofbS
i � 1 acceptable products inS other than productj, and

there are a total ofjSj� bS
i non-acceptable products inS. Thus, we have

P(jSi j= t j j 2 Si) =

� bS
i � 1
t� 1

�� jSj� bS
i

minf ci ;jSjg� t

�

� jSj� 1
minf ci ;jSjg� 1

� :

Let PS denote the pro�t function, and letE[PS] denote its expected value. Then

the �rm's objective is to �nd Sto maximize

E[PS] = å
i2 I

di å
j2Ti \ S

p ja S
i P j

S;i ; (2.1)

where

a S
i = min

�
1;

ci

jSj

�

is the probability of examining a speci�c product within the assortment (i.e., the

probability that a speci�c product is among thoseci items). Note that in the objec-

tive function, for a �xedS, the customer will examine each of the products inTi \ S

with probabilitya S
i , and then she will purchase productj with probabilityP j

S;i .
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Table 2.1: Notation

Notation Description
M The total number of products that can potentially be offered
K The total number of customer types in the model
I The set of all customer types:I = f 1;2;3; :::;Kg
S A potential assortment, which is a subset of all products the �rm

can offer
Ti The acceptable set of products for customer typei 2 I , where

i = 1;2; :::;K
p j The per-unit pro�t of productj, wherej = 1;2; :::;M
di The proportion of customers who are of typei 2 I
ci Search budget for customer typei 2 I (i.e., the maximum number

of items customer typei 2 I examines during the searching pro-
cess)

bS
i The number of acceptable items for customeri in assortmentS

(i.e., size ofS\ Ti)
Si The subset of acceptable items inSthat are examined by customer

i. Si is random

2.3.1 Illustrative Examples

Next, we provide two small-sized examples to illustrate some insights and chal-

lenges in �nding optimal solutions to our problem. We formalize the dif�culty of

the assortment optimization problem with a hardness proof in Section 2.4. Our

discussion will bene�t by �rst introducing the following result (the proof appears

in Appendix A.1.1).

Proposition 1. Assume the search budgets of the customers are unlimited, i.e.,

ci = ¥ for each i2 I. Consider a product j. For each customer type it can satisfy,

suppose that j is the most pro�table product that can satisfy this particular cus-

tomer type, i.e.,p j � p j0 for each i such that j2 Ti and j02 Ti . Then, any optimal

assortment includes this product.

We also have this immediate corollary:

Corollary 1. The product with the highest pro�t, i.e. product j such thatp j � p j0

for any product j0, will certainly be in an optimal assortment when the search

budgets are unlimited.
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Interestingly, Proposition 1 does not necessarily hold when customers have

limited search budgets. Consider the following example with three customer types.

Let AC be the set of products that are acceptable only to customers who belong to

setC. For instance,Af 1g is the set of products that are only acceptable for Customer

1, andAf 1;2g is the set of products only acceptable to Customers 1 and 2, and so on.

Denote the pro�t of the products with the highest pro�ts within each of those sets

asp �
f 1g, p �

f 2g,p �
f 3g,..., p �

f 2;3g andp �
f 1;2;3g. Supposep �

f 1g > p �
f 1;2g, p �

f 1g > p �
f 1;3g, and

p �
f 1g > p �

f 1;2;3g. Therefore, the product associated with pro�tp �
f 1g has the highest

pro�t among the products that are in Customer 1's acceptable set. Also, since it

is not acceptable to the other customers, based on Proposition 1, it must be in the

optimal assortment when search budgets are unlimited.

For the limited search budget case, consider the following situation. Suppose

ci = 1 for all customer types (each customer examines only one item). The cus-

tomers' acceptable sets and demand distribution along with the per-unit pro�ts of

the products are provided in Table 2.2:

Table 2.2: Example 1

Acceptability of Products
Product 1 Product 2 Customer Type Dist.

Customer 1 1 1 1/3
Customer 2 1 0 1/3
Customer 3 1 0 1/3

Per-Unit Pro�ts $9 $10

Note that in this example,p �
f 1g = $10;p �

f 1;2;3g = $9, which are associated with

Products 2 and 1, respectively;p �
C = $0 for all other subsetsC of customers; and

p �
f 1;2;3g < p �

f 1g. We can compute the expected pro�ts of possible assortments. If

the assortment includes products associated withp �
f 1g andp �

f 1;2;3g, i.e. Products 1

and 2, then the expected pro�t is

1
3

�
1
2

� 10+
1
2

� 9
�

+
1
3

�
1
2

� 9+
1
2

� 0
�

+
1
3

�
1
2

� 9+
1
2

� 0
�

= $6:17:

Note that zero pro�t refers to the no purchase case when the customer runs out

of search budget and leaves without purchasing any of the products. Now, if

13



only Product 1 is in the assortment, the expected pro�t is 9 because all customers

will purchase it. If the assortment includes Product 2, then the expected pro�t is
1
3

� 10= $3:33. In this example, the optimal assortment includes only Product 1.

Therefore, we can see that Proposition 1 does not always hold when search budgets

are limited.

We can also see that Corollary 1 does not hold in the presence of limited search

budgets, as the product with the highest pro�t is not in the optimal assortment in

the above example. We can see that our model captures the choice overload effect

studied in the psychology literature (Iyengar & Lepper 2000). Customers may not

�nd their desirable item if the size of the assortment is too large. In this case, it

may even be bene�cial to the �rm to exclude the most pro�table item from the

assortment.

Now consider the following example, which illustrates that a revenue-ordered

policy (the optimal policy for the assortment planning problem under the MNL

choice model) is not optimal for our model, even with unlimited search budgets.

Consider two customer types with equal demand proportions and unlimited search

budgets and three products. Table 2.3 shows the customers' acceptable sets as well

as the per-unit pro�t of the products. Based on Corollary 1, Product 1 is de�nitely

Table 2.3: Example 2

Acceptability of Products
Product 1 Product 2 Product 3Customer Type Dist.

Customer 1 1 1 0 1/2
Customer 2 0 1 1 1/2

Per-Unit Pro�ts $1 $0.5 $0.4

in the optimal assortment. Offer Setf Product 1g gives a pro�t of $0:5. Now con-

sider adding Product 2. By adding Product 2, we gain $0:75 from customer type

1 (choosing between Products 1 and 2), and $0.5 from customer type 2 (choosing

Product 2), which yields the pro�t of $0:625 based on their equal demand pro-

portion. However, the optimal expected pro�t is $0:7, associated with offering

Products 1 and 3. Note that offering all three products will yield a pro�t of $0:6.
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2.4 NP-Hardness and Structural Results

In this section, we show that the �rm's optimization problem is NP-hard. In fact,

we prove that a special case of our problem where the search budgets of all cus-

tomer types are identical is NP-hard. We accomplish this by reducing the well-

known “Exact Cover by 3-Sets” (X3C) problem to our problem.

Theorem 1. The assortment optimization problem with satis�cing customers is

NP-hard, even when customer search budgets are identical among all customer

types.

Proof. To prove this theorem, we use a reduction from the X3C problem. The X3C

problem can be stated as follows: given a setX, wherejXj= 3q for some integer

q, and a collectionC of 3-element subsets ofX, it asks if there is a sub-collection

of C that partitionsX, i.e., each element inX occurs in exactly one member of this

sub-collection (Garey & Johnson 1979).

Given an instance of the X3C problem, we de�ne our problem withK = 3q

customer types where the search budget of each customer typei is ci = q. All

customer types have the same proportion, i.e.,di = 1=(3q). There areM = jCj

products, where each product inC corresponds to a three-element subset inX and

is acceptable to exactly three customers represented by this subset. Furthermore,

each productj = 1; : : : ;M generates the same per-unit pro�t, i.e.,p j = $1 for each

j. Then, we claim that the X3C problem has the sub-collection with the required

property if and only if the corresponding assortment optimization problem achieves

the expected pro�t of $1.

Suppose the X3C problem has sub-collectionC0 with the desired property.

Then we choose the assortment corresponding toC0. SinceX has 3q elements,

the sub-collectionC0must haveq members, which correspond toq products. Fur-

thermore, each customer has exactly one acceptable product in this assortment, and

the customer is able to �nd and examine it since the search budget isq, which is

the same size asS. Therefore, no customer leaves without purchasing any product.

Thus, the expected pro�t for the �rm is $1.

Conversely, suppose that the assortment optimization problem generates the

expected �rm pro�t of $1. This means that each customer type must purchase a

product. We claim that the optimal assortment must have sizeq. If the assortment
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size is less thanq, then some of the 3q customer types will not have any acceptable

product in the assortment. If the assortment size is more thanq, then some of the

3q customers have more than one acceptable item in the assortment. Therefore,

one can choose a set ofq products from this assortment such that a customer type

has more than one acceptable product. In this case, there is a customer type without

any acceptable product among theseq products. In other words, knowing that the

customer's search budget isq, there is a strictly positive probability that some cus-

tomer type does not �nd any acceptable product, contradicting the expected �rm

pro�t of $1. Thus, we prove the claim that the optimal assortment has a size ofq.

Then, each customer type �nds at least one acceptable product in the assortment.

Since there are 3q customer types and each product is acceptable to only three cus-

tomer types, we deduce that each customer type must have exactly one acceptable

product in the assortment. This implies that this assortment corresponds to the

partition required for the X3C problem.

Therefore, we have shown that an instance of the X3C problem can be reduced

to an instance of our optimal assortment problem. Thus, the optimal assortment

problem is NP-hard.

Although assortment optimization with satis�cing customers is NP-hard, we

discuss some structural properties for the optimal policy, which we use to accel-

erate solution algorithms later. The main result is that the number of products in

an optimal assortment cannot be larger than the maximum search budget over all

customer types (Theorem 2).

To show this, we �rst prove Lemma 1. The proof of this lemma is provided in

Appendix A.1.2.

Lemma 1. Suppose ci � j Sj for each i2 I. Let n be such thatmax
i2 I

ci � n � j Sj.

Then the expected pro�t of S is the average of the expected pro�ts of all size-n

subsets of S, i.e.,

E[PS] =
1

� jSj
n

� å
Ŝ� S:jŜj= n

E[P Ŝ]:

Note that in Lemma 1, the constantn can be any value between the maximum

of the customer search budgets and the size of arbitrary assortmentS. Intuitively,
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the idea behind this result comes from the fact that the customers choose their al-

ternatives with equal probabilities, and even when their search budgets are smaller

than n, their examination sets can be subsets of each of the size-n subsets ofS

with equal probabilities. In fact, the expected pro�t of offeringSto a customer is

the same as the expected pro�ts of offering a size-n subset ofSwhere this subset

is a random variable. Hence, there is no change in the expected pro�t when we

consider all subsets of sizen and take their average.

However, if the size of those subsets is smaller than the search budget of a

customer, i.e.,n < ci for somei, then the average of the expected pro�ts of those

subsets may be smaller than the expected pro�t of the assortment. Consider the

following example. Fix an arbitrary assortmentS= f 1;2; ::;n+ 1g and suppose

ci = n+ 1. Now assume a customer type likes only one product, say productl in

this assortment. The �rm's pro�t obtained from this customer whenSis offered is

pl because this customer will observe this product with probability one (because

the customer'sci is equal ton+ 1), and then she will de�nitely purchase it since

there is no other product in this assortment that she likes. Now consider all subsets

of S which have sizen. We take the average of the expected pro�t. There are

(n+ 1) such subsets. The customer will de�nitely observe productl in n of the

subsets and will not observe it in one of these subsets, which isS� f lg. Therefore,

the average of the expected pro�t of subsets of sizen for this customer is equal

to
n

n+ 1
pl , which is less thanpl . Therefore, the result of Lemma 1 does not hold

when its assumption is violated.

We use Lemma 1 to prove the following theorem. This theorem implies that

the size of the optimal assortment is less than or equal to max
i2 I

ci .

Theorem 2. Fix an arbitrary assortment S. Suppose ci � j Sj for each customer

type i2 I. Let n be such thatmax
i2 I

ci � n � j Sj. Then, there exists a subset S0 of S

with jS0j= n such that S0 is at least as pro�table as S, i.e., E[PS] � E[PS0
].

Proof. From Lemma 1,

E[PS] =
1

� jSj
n

� å
S0� S:jS0j= n

E[PS0
] :
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Since the summation expression contains
�

jSj
n

�
terms, we deduce that one of these

terms must be at leastE[PS]. In other words, there existsS0 such thatE[PS] �

E[PS0
].

By applying Theorem 2 withn = max
i2 I

ci , we obtain that there exists an optimal

assortment with size at most max
i2 I

ci . Our result con�rms that the �rm may lose

pro�t if it offers relatively large assortments to the customers. This is consistent

with the so-called choice overload effect, reported by Iyengar & Lepper (2000),

based on which customers are much more likely to purchase a product if the as-

sortment is smaller. Accordingly, in Theorem 2, we prove that it is bene�cial for

the �rm to offer an assortment no larger than the customers' search budget.

Theorem 2 establishes an upper bound on the optimal assortment size given

by cmax = max
i2 I

ci . The example presented before Theorem 2 shows that this upper

bound can be tight. A natural question is how much pro�t loss would one expect

if the size of the optimal assortment is restricted (e.g., due to capacity limitations).

The following result shows that if we impose that the assortment size must be at

mostk , wherek � cmax, then the pro�t loss is at most 1� k=cmax of the uncon-

strained expected pro�t. For any constantk , de�ne S�
[k ] as the optimal assortment

for a model in which the number of products within the optimal assortment is re-

stricted to be at mostk . Then, it follows from the de�nition thatE[PS�
[k ] ] = E[PS�

]

for any k � j S� j. The following theorem establishes a lower bound on the ratio

E[PS�
[k ] ]

�
E[PS�

]. The proof of this theorem appears in Appendix A.1.3.

Theorem 3. Let S� be an optimal assortment. Fork satisfying1 � k � j S� j,

E[PS�
[k ] ]

E[PS� ]
�

k
jS� j

:

The following result follows from Theorems 2 and 3.

Corollary 2. For k satisfying1 � k � cmax,
E[PS�

[k ] ]
E[PS� ]

�
k

cmax
, where cmax =

max
i2 I

ci .
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Note that our model is NP-hard even when the customer search budgets are

identical (Theorem 1). To solve the model under this condition, using the result of

Theorem 2, we reformulate it as another nonlinear problem which is linearizable

to a mixed integer program (MIP). We use the MIP formulation to solve problem

instances in the numerical analyses of Sections 2.5.3 and 3.4. The MIP formulation

is provided in Section 2.5.

When the search budgets of the customers are identical and equal to a constant

k , by Theorem 2, the size of the optimal assortment is bounded byk . The MIP

provided in Section 2.5 can be used to �nd the optimal assortment whenci = k

for all customers. In addition, as shown in Corollary 2, if we impose that the

assortment size of the model with non-identical search budgets (i.e, the uncon-

strained model) must be at mostk , wherek � cmax, then the pro�t loss is at most

1� k=cmax of the unconstrained expected pro�t. Note that imposing this restriction

whenk > min
i2 I

ci , will in fact result in the modi�cation of the search budgets fromci

to c[k ]
i = minf k ;cig, which implies that even though some customers may now have

identical search budgets equal tok , the remainder will still have different search

budgets. The only case where the imposed restriction will result in identical search

budgets after this modi�cation is whenk � min
i2 I

ci . Therefore, we are able to obtain

an exact optimal solution to the model under the restrictionk = min
i2 I

ci , using the

MIP provided in Section 2.5. The following corollary guarantees an upper bound

for the relative gap between the optimal expected pro�t of the unconstrained model

(i.e., the model with non-identical search budgets) and the constrained model (i.e.,

whenk = min
i2 I

ci) solved by the MIP.

Corollary 3. Let cmin = min
i2 I

ci . Then,

E[PS�
] � E[PS�

[cmin] ]
E[PS� ]

�
cmax� cmin

cmax
;

where E[PS�
[cmin] ] is obtained by solving the MIP provided in Appendix B.1.

By Corollary 3, when the model with identical search budgets equal tocmin

solved using the MIP instead of the unconstrained model, the optimality gap is

bounded by
cmax� cmin

cmax
.
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2.5 A Mixed Integer Programming Formulation When
Customer Search Budgets Are Identical

In this section, we provide a MIP formulation for a model in which customers'

search budgets are identical. We use the result of Theorem 2 to derive this MIP

formulation. To do so, we start with formulating our problem when no search bud-

get is involved, i.e., all customers have unlimited search budgets. We �rst provide a

nonlinear model for this special case and then linearize it as a MIP problem. Then,

using the result of Theorem 2, we provide a MIP formulation for the problem with

identical customer limited search budgets.

2.5.1 MIP Formulation When Search Budgets Are Unlimited

In this case, a customer examines all the acceptable items that are on the shelf and

purchases one of them randomly with equal probability. Thus, the expected pro�t

associated with each customer type depends on how many acceptable items are

in the assortment. This expected pro�t is equal to the sum of the per-unit pro�ts

of acceptable items in the assortment, divided by the number of those acceptable

products. Since we are optimizing over the sets, our objective function will end up

being nonlinear because of the fractions involved.

Formally, let the binary decision variablex j equal 1 if productj is in the op-

timal assortment, and 0 otherwise. Recall thatTi is the acceptable set of customer

typei. Also, di is the demand proportion of customer typei, andp j is the per-unit

pro�t of product j. Therefore, our expected pro�t maximization objective function

is

max
f x j g

K

å
i= 1

di
å j2Ti

p jx j

å j2Ti
x j

: (2.2)

Above, we multiply the demand proportion of each customer typei by the expected

pro�t that the �rm could make from that customer type and we add up these ex-

pected pro�ts for all types of customers. The expected pro�t of each customer

is calculated by adding up the per-unit pro�ts of the products that are in the as-

sortment and are acceptable to her, and dividing this by the number of products

that are acceptable to the customer within the offered set. This approach is valid

since the probability that each of those products are selected to purchase is equally
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distributed. We de�ne 0=0 = 0.

2.5.1.1 The Objective Function Is Not Submodular nor Supermodular: An
Example

Consider the following set function which is equivalent to the function of Eq. (2.2):

f (S) =
K

å
i= 1

di
å j2Ti \ Sp j

jTi \ Sj
(2.3)

where f (S) : 2M ! R is the set function that we want to maximize, andM is the

number of products that can potentially be included in the assortment.

Since the optimization problem is over a subset, supermodularity of the objec-

tive function in (2.3) might prove helpful for solving the problem in polynomial

time. Unfortunately, the objective function is in general not supermodular (nor

submodular) as shown by the following example.

Suppose there areM = 3 products,f 1;2;3g. There are two types of customers

with equal probabilityd1 = d2 = 0:5. The acceptable sets areT1 = f 1;2;3g and

T2 = f 1;3g, and the search budgets are unlimited. Then,

f (f 1g) = 0:5� p1 + 0:5� p1 = p1

f (f 1;3g) = 0:5� (p1 + p3)=2+ 0:5� (p1 + p3)=2 = 0:5� p1 + 0:5� p3

f (f 1;2g) = 0:5� (p1 + p2)=2+ 0:5� p1 = 0:75� p1 + 0:25� p2

f (f 1;2;3g) = 0:5� (p1 + p2 + p3)=3+ 0:5� (p1 + p3)=2 � 0:417� p1

+ 0:167� p2 + 0:417� p3:

Thus, we havef (f 1;3g) � f (f 1g) = � 0:5�p1+ 0:5�p3 andf (f 1;2;3g) � f (f 1;2g) �

� 0:333� p1 � 0:083� p2 + 0:417� p3. If p1 = 10;p2 = 30 andp3 = 14,

f (f 1;3g) � f (f 1g) = 2 � 0 = f (f 1;2;3g) � f (f 1;2g):

However, ifp1 = 10;p2 = 4 andp3 = 8,

f (f 1;3g) � f (f 1g) = � 1 � � 0:3333� f (f 1;2;3g) � f (f 1;2g):
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Hence, we can conclude that our set functionf is neither submodular nor super-

modular.

2.5.1.2 Linearization of the Objective Function

Since our problem is NP-hard and the set functionf is not supermodular, the opti-

mization problem is not easy to solve. Below, we show that the objective function

in Eq. (2.2) can be linearized, which should lead to faster solution times for rea-

sonably sized problems.

To linearize Eq. (2.2), we exploit that the original objective functions can be

expressed using binary variables only, and introduce fractional variables to repre-

sent the ratios. For eachi 2 I = f 1;2; : : : ;Kg, de�ne

zi =
å j2Ti

p jx j

å j2Ti
x j

;

which represents the expected pro�t from a customer of typei since each accept-

able item in the assortment is equally likely to be chosen. Then, by multiplying

both sides byå
j2Ti

x j , we haveå
j2Ti

p jx j = å
j2Ti

zix j . To remove the quadratic terms

zix j , we replace them with continuous variablesyi j = zix j , and obtain

å
j2Ti

p jx j = å
j2Ti

yi j ; 8i = 1;2; :::;K: (2.4)

We discuss how we can linearizezix j = yi j . Sincex j is a binary variable,yi j = 0

holds whenx j = 0, andyi j = zi holds whenx j = 1. We de�ne the following set

of constraints to ensure that this quadratic relation holds. LetM be a suf�ciently

large number.

M x j � yi j + zi � M 8i = 1; :::;K; j 2 Ti (2.5)

� M x j + yi j � 0 8i = 1; :::;K; j 2 Ti (2.6)

yi j � zi � 0 8i = 1; :::;K; j 2 Ti : (2.7)

If x j = 0, then Constraint (2.6) impliesyi j = 0. If x j = 1, then Constraint (2.5)

implieszi � yi j � 0, which together with constraint (2.7) implieszi = yi j .
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In addition, we need to ensurezi is positive only if at least one product is ac-

ceptable to customer typei (in other words, we need to take care of the assumption

that 0=0 = 0). To achieve this, we add the following constraint:

zi � M å
j2Ti

x j ; 8i = 1; :::;K: (2.8)

Altogether, the resulting formulation becomes

max
K

å
i= 1

dizi ;

subject to

å
j2Ti

p jx j � å
j2Ti

yi j = 0; 8i = 1; :::;K

M x j � yi j + zi � M ; 8i = 1; :::;K; j 2 Ti

� M x j + yi j � 0; 8i = 1; :::;K; j 2 Ti

yi j � zi � 0; 8i = 1; :::;K; j 2 Ti

zi � M å
j2Ti

x j � 0; 8i = 1; :::;K

yi j � 0;zi � 0;x j 2 f 0;1g; 8i = 1; :::;K; j = 1; :::;M:

The MIP presented above does not include customers' search budgets. Note

that this formulation has onlyM binary variables. Below, we will use the result

obtained in Theorem 2 to add another constraint to this MIP to take into account

the customers' search budgets.

2.5.2 MIP Formulation with Search Budgets

Suppose that all search budgets are identical, i.e., there exists a constantc such

that ci = c for each customer typei = 1;2; :::;K. Theorem 2 enables us to limit

the search space for the optimal assortment by restricting our attention to the sets

of at mostc elements. Thus, we can add the following constraint without loss of
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optimality:
M

å
j= 1

x j � c: (2.9)

With this constraint, any feasible assortmentShas the property that each customer

will examine all elements ofSsincejSj� c= ci for eachi, per Theorem 2. Thus, the

MIP formulation augmented by the above constraint is valid even when customers

have search budgets, provided that their search budgets are identical.

Even when the customers' search budgets are not identical, we can add the

above constraint wherec is replaced bycmax. If the optimal solutionS� to the

resulting modi�ed MIP satis�esjS� j� ci for eachci , then by the same argument

given above,S� will be the optimal assortment for this case of non-identical search

budgets. Otherwise, the MIP solution will not in general yield an optimal solution.

Note that the obtained expected pro�t is an upper bound to the non-identical search

budget case, and one can use heuristic methods to �nd an approximate optimal

solution.

Remark 1. If jS� j= c, the �rm's expected pro�t will weakly decrease as c de-

creases. This occurs since customer search budget limits the size of the assortment

(jS� j� c), which results in a decrease in the right-side of Eq.(2.9), forcing a

smaller-sized assortment. As a result, the �rm's expected pro�t will weakly de-

crease.

2.5.3 Consequences of Ignoring Customer Search Budget

In this section, we demonstrate how ignoring the search budgets of customers can

result in pro�t loss for the �rms. While we have assumed the customer search bud-

gets are �nite and identical, suppose that the �rm adopts a wrong assumption that

the customer search budgets are unlimited. We �nd the optimal assortment for each

instance of this problem considering the �rm's wrong belief. Call this assortment

S1. Then, keeping other parameters unchanged, we evaluate the expected pro�t of

S1 for different values of search budget ranging from 1 ton. The obtained pro�ts

are what the �rm will gain in the presence of the search budget (call this pro�tR1).

Next, we compute the optimal assortment for the model with actual search bud-

get of customers (call this assortmentS2). The expected pro�t of this assortment
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(R2) is what the �rm would gain if he took the actual search budget into account

while optimizing his expected pro�t. Finally, we compute
R2 � R1

R2
� 100%, which

represents the percentage loss of expected pro�t of the �rm.

We consider multiple cases to identify the extent of this pro�t loss the �rm

could experience. For that, we focus on the customers' acceptable sets. Keeping

all parameters (per unit pro�ts of the products and the demand distribution of the

customer types) unchanged, we design six cases by introducing different types of

acceptable sets. One of our cases is based on disjoint sets (see Case 1 below). Case

2 considers nested sets. Cases 3a to 3d in which the acceptable sets are neither

disjoint nor nested, concern some sort of correlation among the customers' interest,

i.e., theT of all acceptable sets (Ti) is generated such that there are a certain number

of products in each case that all customers �nd acceptable with a high probability,

and also there are a number of products that are acceptable to customers with a low

probability. We vary the number of these products across Cases 3a to 3d. More

details about these cases are provided later in this section.

In this numerical analysis, we consider 10 customer types and 15 products, and

generate the input parameters for 100 replications. At each replication, the per unit

pro�ts of the products (p j ; j = 1;2; ::;15) and the demand distributions of the cus-

tomer types (di ; i = 1; : : : ;10) are generated randomly, and remain unchanged for

all six cases. The randomp js are generated uniformly from the setf 1;2; : : : ;40g.

The demand distributions are also generated from a uniform distribution. The set

T is generated based on the rule of each case. Therefore, the only parameters that

vary from one case to the other at each replication are the acceptable sets. Below,

we describe how we generate MatrixT in each case.

Case 1 – Disjoint acceptable sets: In this case, each customer's acceptable set

includes at least one product. To generate the corresponding acceptable sets, one

randomly chosen distinct product is assigned to each customer to make sure none

of the acceptable sets are empty, and then the remaining products are assigned to

customers randomly without any restriction to the sizes of the acceptable sets.

Case 2 – Nested acceptable sets:To build the acceptable sets in this case, 2K =

20 random integers are chosen between 1 and 2M = 30 uniformly (repetition is

allowed), and they are considered as the start points and the end points of the nests.
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Cases 3a to 3d – Customers' interests in products are correlated:In these cases,

each product is acceptable to all the customers with either high or low probabilities

(i.e. products are either popular or unpopular). The high and low acceptability

probabilities for each customer are derived from certain intervals. For example,

customers may �nd product 3 acceptable with probabilities between 0.65 and 0.75,

and product 5 between 0.25 and 0.35. Here, product 3 is popular, and product

5 is unpopular. Note that these probabilities may vary for each customer type as

they are generated randomly with uniform distribution within a de�ned range. The

variation among the four cases (a,b,c and d) relates to the number of products in

each category. More speci�cally, in the current analysis withK = 10 andM = 15,

the number of popular products are assumed to be 3,6,9 and 12 for Cases 3a to

3d, respectively. To build the acceptable sets, a random number is generated (uni-

formly) for each element of allTi in T to specify whether a product is acceptable

to a customer or not based on its popularity and the acceptability probability. The

acceptability probability of the product itself is also randomly generated from one

of the two intervals discussed above depending on whether that product is popular

or unpopular.

Figure 2.1 shows the average of the �rm's percentage pro�t loss in expectation

(of 100 replications) under each case considering all possible values for the search

budget neglected by the �rm. As the �gure shows, disjoint sets generate the largest

pro�t losses because each product in the assortment will accommodate only one

customer type, and therefore, there is a tendency to make the assortment size larger

when search budgets are neglected.
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Figure 2.1: Average (100 replications) percentage loss of expected pro�t of
the �rm for different cases under possible search budgets

The pro�t loss is the least when the acceptable sets are nested (except for Case

3d where most products are acceptable to the majority of customers). This is an

intuitive result because the nested structure helps to accommodate more number

of customer types, especially when the products selected to be in the assortment

belong to the inner nesting levels. Therefore, there is often no need for larger

assortments when the �rm neglects the search budgets, i.e., the �rm's wrong belief

will not result in large gaps between gained pro�t and optimal pro�t.

Going from Case 3a to 3d, since customers' preferences are positively corre-

lated and the number of popular items are increasing, the sizes of acceptable sets

grow accordingly. This results in a decrease in the pro�t loss, which is also in-

tuitive; the customers' preferences become more similar to each other, and larger

number of products turn out to be acceptable to them. Hence, even in the absence

of search budget, the size of the assortment and the percentage pro�t loss of the

�rm decrease.

Note that in all scenarios, the percentage pro�t loss is decreasing to zero as the

search budget increases. In general, imposing a limited search budget to the model

may shrink the size of the assortment. This is because offering larger assortments

may result in higher no-purchase probabilities for the customers with small search

budgets who may leave without purchase, even if some acceptable products exist
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for them in those assortments. Therefore, although the optimal assortment for the

unlimited search budget case may include the preferences of those customers, they

might miss the acceptable items only due to running out of their search budget.

This type of no-purchase probability and lost sales decreases as the search budget

increases, until getting to a point at which the search budget is not a barrier for

offering a larger assortment anymore. This is why the pro�t loss is decreasing in

search budgets, and eventually reaches zero. In summary, as assortment becomes

larger, the likelihood that it contains more acceptable products increases. On the

other hand, a limited or smaller search budget means that the customer may not

see the acceptable products. This negative effect of limited search budget becomes

dominant when the assortment gets too large, or equivalently, when the search

budget gets relatively small.

2.6 Generalization of the Satis�cing Model: Products
with Unequal Examination Probabilities

We revisit the decision process of the satis�cing customers who examine a subset

of items and pick one of the examined acceptable items randomly. In this section,

we no longer assume that the selection of the products subset for examination (call

this subset the random variableEi) as well as the �nal purchase occur with equal

probabilities. Instead, we introduce the following generalization. We assume that a

weight ofw j is associated with each productj. Suppose that the size of the subset

is �xed at ci . We then de�ne the probability of choosing a subsetS̄as

PEi (S̄) � P(Ei = S̄j jEi j= ci) =
å j2 S̄w j

å Ŝ� S:jŜj= ci
å k2Ŝwk

; (2.10)

which is the weight of subset̄S divided by the sum of the weights of all subsets

of Swith sizeci . We also de�ne the probability of choosing the acceptable itemj

among the acceptable ones that are examined in subsetS̄as
w j

å k2Ti \ S̄wk
, whereTi

is the set of products that customer typei �nds acceptable.

Note that since each of thewk;k 2 S, is counted
�

jSj� 1
ci � 1

�
times in the denom-

inator of Eq. (2.10), we can rewrite this probability as
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PEi (S̄) =
å j2 S̄w j

� jSj� 1
ci � 1

�
å k2Swk

: (2.11)

With this setting, we generalize Lemma 1 in Lemma 2 provided below, en-

abling us to conclude that Theorem 2 holds for this generalization of our model as

well. Theorem 2 states that the number of products in an optimal assortment can-

not be larger than the maximum search budget over all customer types. Since the

generalized problem is also NP-hard, this structural property for the optimal policy

obtained in Theorem 2 helps us reformulate the new problem as a mixed integer

program as well.

Recall thatPS denotes the pro�t function for subsetS, andE[PS] represents its

expected value. Also note that the constantn in Lemma 2, similar to Lemma 1, can

be any value between the maximum of the customer search budgets and the size of

arbitrary assortmentS. Lemma 2 is as follows, and its proof appears in Appendix

A.1.4.

Lemma 2. Suppose ci � j Sj for each i2 I. Let n be such thatmax
i2 I

ci � n � j Sj.

Then the expected pro�t of S is the weighted average of the expected pro�ts of all

size-n subsets of S, i.e.,

E[PS] =
å Ŝ� S:jŜj= nå j2 Ŝw jE[P Ŝ]

� jSj� 1
n� 1

�
å k2Swk

:

Note that based on Lemma 2, Theorem 2 holds for the generalized model as

well. Therefore, we can conclude there exists an optimal assortment with size

at most max
i

ci in these cases as well. With this result, similar to the original MIP

provided in Section 2.5, a MIP formulation for the generalized model with identical

search budgets can be developed by modifying Eq. (2.2) to account for the weights

as in

max
f x j g

K

å
i= 1

di
å j2Ti

w jp jx j

å j2Ti
w jx j

;

following the same linearization method and using the result of Theorem 2.

Finally, note that the results provided in this section can also be extended for the
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case in which the customers are heterogeneous with respect to the product weights,

i.e., the weight associated with productj by customeri is wi
j .

2.7 Conclusions

We proposed in this essay a new assortment optimization model with customers

who do not aim to choose the best option, but rather settle for a suf�cient alterna-

tive. Given the limited consideration of satis�cing choice behavior in the opera-

tions management literature, the current study offers a new framework for thinking

about assortment planning problems.

In our model, satis�cing customers are assumed to have a limited search bud-

get. This assumption enabled us to capture the choice overload effect reported in

the study of Iyengar & Lepper (2000), in which customers are much more likely

to purchase a product if the assortment of items offered to them is smaller. With

customers preferring to choose from smaller assortments (i.e. having search bud-

gets), we proved it is bene�cial for the �rm to offer an assortment no larger than

the customer's search budget (Theorem 2). In the search budget model, the no-

purchase probability may increase with the assortment size particularly when the

customer's acceptable set and/or search budget is relatively small compared to the

assortment size. This is also consistent with several choice experiments of Rogge

(2016), which indicate that as the assortment expands, a larger number of products

will remain unexamined by the satis�cing customers, and the no-purchase proba-

bility may increase accordingly.

We also proved that although the choice behavior of satis�cers may be sim-

pler and faster than that of utility maximizers, the �rm's assortment optimization

problem under satis�cing customers is NP-hard. We demonstrated some structural

results of optimal solutions and constructed a MIP formulation to accelerate nu-

merical solutions. However, large-sized problems may require heuristic solution

methods.

The product that satis�cing customers eventually decide to purchase highly de-

pends on the search path they take and the search pattern they use. In our model, we

�rst assumed customers pick items randomly with equal probability for the sake of

simplicity. Then, we relaxed this assumption to make the model applicable to more
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general settings. This extension of the model, can better capture situations where

customers are facing choice overload. For example, Iyengar & Kamenica (2010)

state that simpler options are more likely to be selected compared to more complex

alternatives when customers are facing choice overload. The probability of the al-

ternative to be selected for evaluation during the search process can be adjusted

based on its complexity. Swait & Adamowicz (2001) provide further discussions

on quantifying choice complexity.
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Chapter 3

Assortment Comparison for

Satis�cing vs Maximizing

Customers

3.1 Introduction

In this chapter, we investigate the effects of consumer choice behavior on the op-

timal set of items suggested by assortment planning models. Particularly, we look

into how the optimal assortment could vary with customers being satis�cers ver-

sus utility maximizers. The interaction between consumer choice and assortment

decision has gained a lot of attention in revenue management and inventory man-

agement �elds as the demands of the items are not independent from each other,

and customers mostly prefer to purchase a substitute item when their most pre-

ferred item is not available on the shelf, rather than leaving the store empty handed

(Mahajan & Ryzin 1999). Consumer choice, therefore, plays an important role

in assortment decisions. The consumer choice models in operations management

�eld have evolved from assuming that the consumers' tastes for a particular at-

tribute have a uniform distribution (De Groote 1994), to utility based models such

as multinomial logit (MNL) and its variants (Talluri & van Ryzin 2004a, Davis

et al. 2014, Gallego & Topaloglu 2014, Rusmevichientong et al. 2014). Later, other
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models such as rank-based models (Farias et al. 2013) and consideration-set-based

models (Aouad et al. 2015) have been developed. The assumption of all these

choice models is that the customers aim to choose the best option among the avail-

able alternatives including the no-purchase option. In this chapter, we investigate

how assortment decisions would vary if this underlying assumption is modi�ed to

a satis�cing choice process explained in Chapter 2.

To investigate the difference between optimal assortments under the utility

maximizing assumption and those with satis�cing assumption, we choose the as-

sortment planning problem with the MNL choice model as a representative of mod-

els that assume customers are utility maximizers. The MNL model is derived by

assuming that the error terms in the customer utilities for each product are inde-

pendent and identically distributed random variables with a certain Gumbel distri-

bution. The MNL model proves to be analytically tractable because of some useful

properties of the Gumbel distribution. Namely, the maximum ofn independent

Gumbel random variables with the same scale parameter also follows a Gumbel

distribution. This property makes the MNL model very simple to use in the utility

maximizing setting. Deterministic choice models (i.e., when maximum utility is

always associated with one speci�c product) and models with uniform distribution

among alternatives are special cases of the MNL model.

One limitation of the MNL model is its independence from irrelevant alterna-

tive (IIA) property, which makes the researchers use this model with caution. This

property becomes problematic when one or more groups of choices in the offer

set are more similar to each other compared to the other items that are not in that

particular group. With the MNL model, adding an item that is similar to one group

of alternatives, will affect the demand of all alternatives equally, whereas it is ex-

pected that the demand of items within that group get affected more than the rest of

the items. Variants of the MNL model such as nested MNL (Davis et al. 2014) have

been developed to overcome this limitation. However, the MNL model is shown to

be relatively accurate and easy to estimate when the IIA property is not a concern

(Mahajan & Ryzin 1999).

In this chapter, we use the satis�cing model proposed in Chapter 2, except that

we relax the assumption that customers have limited search budgets. We consider

the unlimited search budget case for simplicity, and also to focus more on the

33



selection pattern of the customers. The level of dissimilarity in the assortment

suggestions of the two utility maximizing and satis�cing with limited search budget

models would be at least as much as what we observe in the unlimited case.

We �rst look into the two-product case and obtain the choice probabilities of

the two models assuming identical attraction levels for both to make them compa-

rable to each other. Then, using these choice probabilities, we obtain the optimal

assortments for each model and identify regions in which the two models suggest

identical or different assortments. We then derive analytical bounds on the ex-

pected pro�t loss of the �rm for each of the regions that the assortments differ,

when the true underlying model is the satis�cing choice model. We then expand

our �ndings from the two-product case to larger set of products using numerical

analysis.

In the remainder of this chapter, we �rst provide a brief literature review on

the application of the MNL choice model in assortment planning as well as the

research emphasising the importance of considering the satis�cing behavior in de-

cision making process. In Section 3.3, we provide our analytical results for the

two-product case. In Section 3.4, we explore the difference in assortments of the

two models for larger instances as well as the pro�t loss a �rm could face when the

true model of the choice is explained by satis�cing behavior and the �rm adopts

the MNL model instead for optimizing its assortment.

3.2 Literature Review

Kök et al. (2015) provide a detailed overview of various consumer choice mod-

els adopted in assortment planning. Here, we limit our focus on some of those

works that consider the multinomial logit (MNL) choice model for static assort-

ment problems (i.e., the assortment selection is not revised or changed over the

selling season). Ryzin & Mahajan (1999) consider an MNL-based demand model

and a newsvendor-based supply model to formulate an optimization problem with

inventory and assortment decisions. Aydi n & Hausman (2009) consider the as-

sortment planning problem with MNL in a decentralized supply chain with one

supplier and one retailer. Based on their �ndings, the retailer's optimal assort-

ment is narrower than that of the supply chain. Talluri & van Ryzin (2004a) prove
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that the assortment optimization problem with MNL choice model can be solved

ef�ciently; the optimal assortment is a subset of revenue-ordered items, which in-

cludes the topk products for somek. Cachon et al. (2005) incorporate consumer

search in the assortment planning problem under the MNL choice model, moti-

vated by the observation that even when the customer's most preferred item is not

the no-purchase option, she may still prefer to explore the options that are available

in other stores, which they call consumer search. In contrast to the original model,

in the consumer search model, it may be optimal to include an unpro�table item

in the assortment. Therefore, the optimal assortment of the classical model is nar-

rower than what their approach suggests. Miller et al. (2006) consider a sequential

choice model in which customers form consideration sets �rst, and then make a

selection based on the MNL model within their consideration set.

The assumption that the customers are utility maximizers is subject to various

criticisms (e.g., violations of transitivity in utility theory as observed by Loomes

et al. 1991), and modi�cations have been proposed to alleviate its shortcomings.

For example, Hauser & Wernerfelt (1990), and Roberts & Lattin (1991) introduced

consideration sets, constructed by consumers following some rules to narrow down

their choices, prior to maximizing their utilities. Bounded rationality and satis�c-

ing behavior introduced by Simon (1955, 1956) created a new stream of research,

as these choice models are applied to various disciplines, such as economics, mar-

keting and �nance, with different interpretations (Manski 2017). From Simon's

perspective, customers are less concerned about collecting information about all

the alternatives, and more interested in �nding an option that is good enough. The

choice experiment conducted by Caplin et al. (2011) con�rmed that many decisions

can be understood using the sequential search interpretation of Simon's satis�cing

model.

In addition, Simon argues that the cost of further exploring may not be identi�-

able to the decision maker. In fact, when customers stop searching when they �nd

a satisfactory item, they do not attempt to minimize their search cost along with

maximizing their utility (e.g., in Wang & Sahin 2017); rather, they settle for a good

enough option without an optimization mindset. Stüttgen et al. (2012) presented an

empirical satis�cing choice model based on the assumption that customers choose

their desired product through a search path. They state that although the stopping
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rule of the consumers when purchasing an item can be explained by the models that

incorporate search costs, the search patterns observed in their experiment as well

as the way consumers skip information cannot be explained by these models, but

rather by a satis�cing choice rule. Gigerenzer & Todd (1999) state that consumers

may not even have the ability, time and knowledge to evaluate costs and bene�ts of

further search. Rogge (2016)'s experiments showed that individuals with a higher

tendency to maximize their utility invested more time in choice making compared

to individuals with lower tendencies to maximize. We investigate the consequences

of overlooking the satis�cing behavior in assortment planning problems.

3.3 Optimal Assortment Under Utility Maximizing vs.
Satis�cing Customers

In this section, we compare optimal assortments under the satis�cing choice model

and the multinomial logit (MNL) choice model. In particular, we consider two

�rms. One �rm assumes its customers are utility maximizers and follow the MNL

choice model, while the other �rm assumes its customers are satis�cers. Both �rms

seek to optimize their assortments based on their assumptions regarding customer

choice. We assume a setting in which customers are satis�cers, and we compare

the expected pro�ts of the two �rms. For simplicity, we assume in this section that

customer search budgets are unlimited.

The MNL choice model assumes customers are utility maximizers. That is,

they select the product with the highest utility provided it exceeds the utility of a no-

purchase option (which we label Product 0). The utility for each productj is given

by bVj = Vj + ej , which is the sum of a deterministic componentVj representing the

intrinsic attractiveness of the product and a random elementej . The MNL model

assumes theej 's are independent, identically distributed Gumbel distributions with

scale parameter 1. Then, given an assortmentS, the probability that a customer

selects productj 2 S[ f 0g is (Talluri & van Ryzin 2004a):

PMNL
j (S) = P

�
bVj = max

j02S[f 0g

n
bVj0

o�
=

eVj

eV0 + å j02SeVj0
:

Note that we use the above notation for the choice probabilities in this section,
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which includes assortmentSas an argument to avoid confusion and make it easier

to follow later in this section.

For the satis�cing choice model, we assume customers have the same under-

lying utility function over products as above. However, instead of searching for

the product with maximum utility, they purchase the �rst product whose utility ex-

ceeds the utility of the no-purchase option (if such a product exists; otherwise they

leave without a purchase). This induces acceptable setsTi (Table 2.1), where each

Ti represents one of the subsetsA of all productsf 1;2; : : : ;Mg. This set is based on

whether each product has a higher utility than the no-purchase option. For a given

subsetA, the probability that a customer is of this type is given by:

P(A) = P
�

bVj > bV0 for eachj 2 A, andbVj � bV0 for eachj =2 A
�

: (3.1)

Then, given an assortmentS, the probability that a satis�cing customer selects

product j 2 S, i.e. PSat
j (S), is computed by adding up the probabilities that the

customers who havej in their acceptable set will buy productj. This depends on

how many products assortmentSand each of those customer types' acceptable sets

have in common:

PSat
j (S) = å

i2 I : j2Ti

1
jS\ Ti j

P(Ti):

While the expression forPSat
j (S) does not seem straightforward, Gumbel dis-

tribution's properties enable us to better deal with this form of choice model. See

Appendix B.2 for a closed form expression for computing the distribution of ac-

ceptable sets when product utilities are derived as they are in the MNL framework.

We note two key observations. First, the no-purchase probability under the

MNL choice model (PMNL
0 (S)) is the same as the no-purchase probability under

the satis�cing choice model (PSat
0 (S)) for any assortmentS. For both models, this

probability is

PMNL
0 (S) = PSat

0 (S) = P
�

bV0 � max
i2S

n
bVi

o�
=

eV0

eV0 + å i2SeVj
: (3.2)

Second, if all products have the same attractiveness, i.e.,V1 = V2 = � � � = VM, then
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productsf 1; : : : ;Mg are equally likely to be chosen under either choice model.

Therefore the MNL model and the satis�cing model turn out to be the same, yield-

ing the same optimal assortment and expected pro�t.

For the remainder of this section, for analytical tractability and ease of exposi-

tion, we restrict our attention to the case ofM = 2 products. We compare in Section

3.3.1 how the optimal assortments differ for �rms assuming MNL vs. satis�cing

customer choice models. Then, in Section 3.3.2, we examine the cost of assuming

an incorrect choice model.

3.3.1 Comparison of the MNL and Satis�cing Choice Models: The
Two-Product Case

In this section, we compare the optimal assortments and expected pro�ts obtained

from a �rm that assumes their customers apply an MNL choice model vs. a satis-

�cing choice model, when customers are in fact satis�cers.

We �rst obtain the choice probabilities of the two models for each given as-

sortment in a two-product problem and then we use these choice probabilities to

obtain optimal assortments under each model. We derive conditions under which a

particular assortment is optimal in the two models.

We �rst consider the case where the assortment contains only one product,

namely Product 1, i.e.,S= f 1g. Under the MNL choice model, the probability of

choosing no product, Product 1, and Product 2 are given by:

PMNL
0 (S= f 1g) =

eV0

eV0 + eV1
; PMNL

1 (S= f 1g) =
eV1

eV0 + eV1
; andPMNL

2 (S= f 1g) = 0:

Under the satis�cing model, Product 2 still cannot be chosen because it is not in the

assortmentS, i.e., PSat
2 (S= f 1g) = 0. From Eq. (3.2), no-purchase probabilities

are the same, i.e.,PMNL
0 (S= f 1g) = PSat

0 (S= f 1g), which also implies that the pur-

chase probabilities for Product 1 are also the same, i.e.,PMNL
1 (S= f 1g) = PSat

1 (S=

f 1g). Thus, ifScontains only one product, the probabilities of choosing each prod-

uct are the same across both choice models, i.e.,PSat
j (S= f 1g) = PMNL

j (S= f 1g)

for j = 0;1;2.

Now suppose that the assortment contains both products, i.e.,S= f 1;2g. In

this case, for eachj = 0;1;2, the probabilities under the MNL choice model are
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given by,

PMNL
j (S= f 1;2g) =

eVj

eV0 + eV1 + eV2
:

From Eq. (3.2), no-purchase probabilities under the MNL model and the satis�c-

ing model are the same, i.e.,PMNL
0 (S= f 1;2g) = PSat

0 (S= f 1;2g). However, the

probabilities for Products 1 and 2 under the satis�cing model do not coincide with

those under the MNL model. To obtainPSat
1 (S= f 1;2g), we note that if a cus-

tomer's acceptable set isf 1g, then she will purchase Product 1. If her acceptable

set isf 1;2g, then she is equally likely to purchase Product 1 and Product 2. Thus,

we add the probability that the acceptable set isf 1g and half of the probability that

the acceptable set isf 1;2g, i.e.,PSat
1 (S= f 1;2g) = P(A = f 1g)+ P(A = f 1;2g)=2.

From Eq. (3.1), we have

P(A = f 1g) = P
�

bV1 > bV0 andbV0 � bV2

�

= P
�

bV0 � bV2

�
� P

�
bV0 � bV1 andbV0 � bV2

�

=
eV0

eV0 + eV2
�

eV0

eV0 + eV1 + eV2
; (3.3)

where the second equality comes from the fact that for the two eventsB andC, we

can writeP(B) = P(B\ C)+ P(B\ Cc). Also,

P(A = f 1;2g) = P
�

bV1 > bV0 andbV2 > bV0

�

= 1� P
�

bV0 � bV1

�
� P

�
bV1 > bV0 andbV0 � bV2

�
(3.4)

= 1�
eV0

eV0 + eV1
�

eV0

eV0 + eV2
+

eV0

eV0 + eV1 + eV2
: (3.5)

Note that Eq. (3.4) comes fromP(C)+ P(B\ Cc)+ P(Bc \ Cc) = P(C)+ P(Cc) = 1

for the two eventsB andC, and we obtain Eq. (3.5) using Eq. (3.3). Thus,

PSat
1 (S= f 1;2g) = P(A = f 1g)+ P(A = f 1;2g)=2

=
1
2

�
1�

eV0

eV0 + eV1
+

eV0

eV0 + eV2
�

eV0

eV0 + eV1 + eV2

�
:
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Letting

D�
eV1+ V2(eV1 � eV2)

2(eV0 + eV1)(eV0 + eV2)(eV0 + eV1 + eV2)
; (3.6)

through algebraic manipulation, it can be shown that

PSat
1 (S= f 1;2g) =

eV1

eV0 + eV1 + eV2
� D ;

and

PSat
2 (S= f 1;2g) =

eV2

eV0 + eV1 + eV2
+ D :

Therefore, these two probabilities are different from those of the MNL model. In

fact, the above equations characterize the difference, showingPSat
1 (S= f 1;2g) �

PMNL
1 (S= f 1;2g) = � D andPSat

2 (S= f 1;2g) � PMNL
2 (S= f 1;2g) = D. Note that

D is positive if and only ifV1 > V2. Thus, when Product 1 is more attractive than

Product 2 (i.e.,V1 > V2), we havePMNL
1 (S= f 1;2g) � PSat

1 (S= f 1;2g), which im-

plies that the MNL model pulls customers to the more attractive product compared

to the satis�cing model.

Now we turn our attention to the optimal assortment a �rm should offer to

customers who are MNL utility maximizers vs. customers who are satis�cers.

Without loss of generality, suppose that Product 1 is at least as pro�table as Product

2, i.e., p1 � p2. It is not dif�cult to show that it is optimal to include the most

pro�table product, either under the MNL model or the satis�cing model, with an

unlimited search budget (Proposition 1). Thus, the �rm decides between offering

f 1g or f 1;2g. Denote the optimal assortment byS�
MNL or S�

Sat depending on the

choice model. Under the MNL model, the �rm chooses the assortment off 1g if

the expected pro�t associated with offeringf 1g is higher than the expected pro�t

associated with offeringf 1;2g. That is, if

PMNL
f 1g =

eV1p1

eV0 + eV1
>

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
= PMNL

f 1;2g : (3.7)

Under the satis�cing choice model, offeringf 1g is preferred to offeringf 1;2g if

PSat
f 1g =

eV1p1

eV0 + eV1
>

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
� (p1 � p2)D= PSat

f 1;2g : (3.8)
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Note that the left-hand sides of Eqs. (3.7) and (3.8) are identical. Also, the right-

hand sides of Eqs. (3.7) and (3.8) differ by the term(p1 � p2)D. Since(p1 � p2)

is nonnegative (by assumption), ifV1 > V2 (i.e., D > 0), then the right-hand side

of Eq. (3.8) is less than the right-side expression of Eq. (3.7). Therefore, when

V1 > V2, there are only three possibilities for the optimal assortmentsS�
MNL and

S�
Sat: (a) S�

MNL = f 1g and S�
Sat = f 1g, (b) S�

MNL = f 1;2g and S�
Sat = f 1g, or (c)

S�
MNL = f 1;2g andS�

Sat = f 1;2g. In particular, we do not have the case in which

(d) S�
MNL = f 1g andS�

Sat = f 1;2g holds. Similarly, ifV1 < V2, we have cases (a),

(c), and (d), but not (b).

In summary, ifV1 > V2, the only case resulting in different optimal assortments

for the two models is whenS�
MNL = f 1;2g and S�

Sat = f 1g. Similarly, if V1 <

V2, the two models suggest different optimal assortments whenS�
MNL = f 1g and

S�
Sat = f 1;2g. We investigate these two cases later to provide insights on the pro�t

loss of the �rm if it chooses the MNL model's assortment when its customers are

satis�cers.

3.3.2 When Customers Are Satis�cers: A Performance Bound

We now consider the loss in expected pro�t for a �rm that assumes their customers

choose according to the MNL model when in fact they are satis�cers. Recall that

S�
MNL andS�

Sat are optimal assortments under the MNL model and the satis�cing

model, respectively, and the expected pro�t associated with any assortmentS is

PSat
S . Clearly, PSat

S

�
PSat

S�
Sat

� 1 for any assortmentS. We are interested in �nd-

ing a lower bound on the ratioPSat
S�

MNL

�
PSat

S�
Sat

or equivalently an upper bound on

1� PSat
S�

MNL

�
PSat

S�
Sat

. Namely, we aim to �nd the maximum percentage of pro�t loss

if the �rm wrongly assumes customers are utility maximizers who are following

MNL choice behavior. This pro�t loss is negligible if all products have similar at-

tractiveness, as suggested by the second of the two observations mentioned earlier

in Section 3.3 . In this section, we show that this relative pro�t loss is bounded by

a constant.

Without loss of generality, we assumeV0 = 0 andp1 � p2. As discussed in

Section 3.3.1, the latter assumption implies that the optimal assortment for a �rm

is either to offerf 1g or f 1;2g. If the optimal assortment for the �rm assuming the
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MNL choice model is the same as the optimal assortment for the �rm assuming

the satis�cing choice model, i.e.,S�
MNL = S�

Sat = f 1g or S�
MNL = S�

Sat = f 1;2g, then

there is no pro�t loss to the �rm assuming the MNL choice model (i.e., the wrong

choice model). We �rst consider the case withS�
MNL = f 1;2g andS�

Sat = f 1g and

later consider the case withS�
MNL = f 1g andS�

Sat = f 1;2g. Recall from Section

3.3.1 that the �rst case occurs ifV1 � V2, and the second case occurs whenV1 � V2.

Case V1 � V2 : Here, we haveS�
MNL = f 1;2g andS�

Sat = f 1g. From S�
MNL =

f 1;2g, the expected pro�t the MNL �rm thinks it will achieve fromf 1;2g is greater

than the expected pro�t it thinks it can achieve fromf 1g. That is, the following

must hold based on Eq. (3.7):

PMNL
f 1g =

eV1p1

eV0 + eV1
�

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
= PMNL

f 1;2g : (3.9)

Using the expressions ofPSat
f 1;2g andPSat

f 1g given in Eq. (3.8), the de�nition ofD,

and Eq. (3.9), we demonstrate that the relative loss in the expected pro�t of the

�rm satis�es (assumeV0 = 0):

1�
PSat

S�
MNL

PSat
S�

Sat

�
eV2(eV1 � eV2)

2(1+ eV1)(1+ eV2)(1+ eV1 + eV2)
: (3.10)

See Appendix B.3 for the details of deriving this relation. Further, in Appendix

B.3, we show that the right-hand side of Eq. (3.10), expressed in terms of(V1;V2),

has a unique maximum, which occurs at approximately(V1;V2) = ( 1:11; � 0:187),

implying a right-hand side value of approximately 0:025. That is, the maximum

pro�t loss for the MNL �rm is approximately 2:5% of the satis�cing �rm. In other

words, if the more pro�table product is also the more attractive product, the relative

loss associated with wrongly assuming the MNL choice is minimal. We also show

in Appendix B.3 that this is a tight upper bound.
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Case V1 � V2 : In this case, we haveS�
MNL = f 1g andS�

Sat = f 1;2g from our

discussion in Section 3.3.1. SinceS�
Sat is f 1;2g, we have

PSat
f 1g =

eV1p1

eV0 + eV1
�

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
� (p1 � p2)D= PSat

f 1;2g :(3.11)

Also, fromS�
MNL = f 1g, we obtain

PMNL
f 1g =

eV1p1

eV0 + eV1
�

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
= PMNL

f 1;2g : (3.12)

Instead of �nding a lower bound forPSat
S�

MNL

�
PSat

S�
Sat

directly, we �rst �nd an upper

bound for the ratioPSat
S�

Sat

�
PSat

S�
MNL

using Eqs. (3.11) and (3.12) (see Appendix B.3

for details):

PSat
S�

Sat

PSat
S�

MNL

� 1+
1
2

= 1:5;

and then by rearranging, we get

PSat
S�

Sat
� PSat

S�
MNL

PSat
S�

Sat

� 1�
1

1:5
=

1
3

Hence, the relative loss in pro�t in this case is at most 1=3. This is a tight upper

bound for the relative pro�t loss. See Appendix B.3 for more analytical details and

worst case examples.

3.3.2.1 Sensitivity Analysis for the Two-Product Case

In this section, we study how the magnitude of the relative pro�t loss discussed

above varies across different ranges of model parameters. For �xed values of

p2=p1, we divide the(V1;V2) plane into four regions, where each region corre-

sponds to one of the possible combinations of(S�
MNL;S�

Sat). Clearly, there is no

pro�t loss for the cases whereS�
Sat = S�

MNL (i.e., when the optimal assortments of-

fered by the two models are identical to each other). For example, consider Figure

3.1 representing the four regions described above for the case ofp2=p1 = 0:7. In
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this �gure, the green curve is plotted based on the condition where the expected

pro�ts of the two offer setsf 1g andf 1;2g are equal according to the assortment

planning problem with the satis�cing choice model. In other words, the green

curve corresponds to the implicit function (which follows from Eq. (3.11))

eV1p1

eV0 + eV1
=

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
� (p1 � p2)D (3.13)

or equivalently, by rearranging Eq. (3.13) and lettingV0 = 0 (which follows from

Eq. (B.15))
p1 � p2

p1
=

2(1+ eV2)
eV1(2+ eV1 + eV2) + 2(1+ eV2)

: (3.14)

Observe that in Figure 3.1, to the right of the green curve, it is optimal for the

satis�cing model to include only Product 1, and to the left of this curve, it is optimal

to include both products.

Similarly, using the implicit function below corresponding to the case where

the MNL model suggests identical expected pro�ts for the two offer sets (which

follows from Eq. (3.12)), we can draw the red line in Figure 3.1:

eV1p1

eV0 + eV1
=

eV1p1

eV0 + eV1 + eV2
+

eV2p2

eV0 + eV1 + eV2
: (3.15)

Note that by rearranging Eq. (3.15) and lettingV0 = 0, we getp2 = eV1p1=(1+ eV1),

which is why the red line is straight. Similar to the green curve, to the right of the

red line, the optimal assortment suggested by the MNL model is only Product 1,

and to left of this line, it is optimal to include both products based on the MNL

model. Also, the dashed lineV1 = V2 crosses the point where the red and green

curves intersect. This is where the two choice models suggest identical optimal

assortments and optimal expected pro�ts.

To provide some intuition for Figure 3.1, in the region that corresponds to

(S�
MNL;S�

Sat) = ( f 1g; f 1;2g), the MNL model does not let the less pro�table prod-

uct into the assortment because otherwise it will steal too much of the demand for

Product 1 in comparison to the satis�cing model (see discussion in Section 3.3.1).

The satis�cing model still bene�ts by allowing the less pro�table item into the as-

sortment, because it reduces the no-purchase probability by enough. Similar argu-
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Figure 3.1: Regions in which each pair of optimal decisions for the MNL and
satis�cing assortment models hold for the case ofp2=p1=0.7.

ments explain the discrepancy of decisions for the case(S�
MNL;S�

Sat) = ( f 1;2g; f 1g)

whenV1 � V2.

Apart from distinguishing those four regions, we also show how different ratios

of p2=p1 result in different pro�t losses in Figure 3.2 (Figure 3.1 corresponds to

Figure 3.2-(g)). By looking at the scales to the right of each plot in Figure 3.2, we

see that for small ratios ofp2=p1 (e.g., Figure 3.2-(a)), the worst-case pro�t loss for

the MNL decision-maker is considerably larger than the worst-case pro�t loss for

larger ratios ofp2=p1 (e.g., Figure 3.2-(i)). This makes sense, since smaller ratios

means the two pro�t margins are farther apart, and thus the decision of presenting

customers with one or both products has more potential for error. Moreover, larger

pro�t losses occur in the region that corresponds to(S�
MNL;S�

Sat) = ( f 1g; f 1;2g),

i.e., whenV2 � V1, which is consistent with the upper bounds derived in Section

3.3.2.

Figure 3.2 also shows that the losses of the MNL decision perspective relative

to the satis�cing perspective occur when the attractiveness level of Product 1 (V1)

lies within a band (de�ned by the left and right asymptotes ofV1 asV2 approaches

negative and positive in�nity, respectively). Furthermore, going from Plot (a) to

(i), these bands shift from left to right. The equation corresponding to the red line
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associated with the MNL model isp2=p1 = eV1=(1+ eV1). Thus, this line shifts

to the right asp2=p1 increases, i.e.V1 must increase in order for that equation to

hold. Looking at Eq. (3.14), the green curve associated with the satis�cing model

must also shift to the right asp2=p1 increases. Intuitively, when the relative pro�t

bene�t of Product 1 over Product 2 shrinks, it takes more attractiveness of Product

1 to justify offering only Product 1 in the assortment.

Now we focus on the behavior of the pro�t loss within those bands in which

this pro�t loss occurs. We show for the caseV1 � V2 (V1 � V2), for �xed values

of p2=p1 andV2, the loss of expected pro�t is increasing (decreasing) inV1 when

suggested assortments by the two models are different. Visually, this is indicated in

Figure 3.2 by observing that for any �xed value ofV2, the shading becomes darker

asV1 approaches the red line. We prove this in the following proposition.

Proposition 2. In the two-product case with unlimited search budget, when V1 � V2

(V1 � V2), for �xed values ofp2=p1 and V2, the relative pro�t loss is increasing

(decreasing) in V1 when suggested optimal assortments of the two choice models

differ.

The proof of Proposition 2 appears in Appendix B.1.1.
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Figure 3.2: The magnitude of the relative pro�t loss for different parameter
values when the choice model is wrongly assumed to be MNL. Color
bars represent percentage loss of expected pro�t.
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In the next section, we provide insights on the consequences of ignoring the

satis�cing behavior using numerical analysis. The analysis presented in Section 3.4

is similar to that of Section 3.3.2, with a focus on larger instances under unlimited

search budgets.

3.4 Impacts of Ignoring Satis�cing Behavior - A
Numerical Analysis

In Section 3.3.2, we discussed the percentage pro�t loss of the �rm when it wrongly

assumes its customers are utility maximizers, using the MNL model as a represen-

tative of a utility maximizing choice behavior. We then showed that the upper

bounds for the percentage pro�t loss of the two-product case are 33% and 2.5%

depending onV1 andV2 values. In this section, we provide more insights for larger

instances through numerical analysis.

Note that in this analysis, we assume the search budgets are unlimited and also

the only difference between a satis�cer and a maximizer is the way they acquire

information about the products and make a purchase; the maximizer chooses the

best option among all the alternatives, and the satis�cer chooses the �rst acceptable

item she examines. Therefore, similar to Section 3.3.2, we translate the maximiz-

ers' utilities into satis�cers' acceptable sets: the utility of the no-purchase option is

the acceptability threshold of the satis�cers. Note that under this setting and with

M potential products, we will have 2M customer types (see Appendix B.2). This

condition arises as a result of deriving the acceptable sets from the product utilities

of the MNL model. In the general satis�cing model, this is not necessarily the case

as the number of customer types (or equivalently acceptable sets) could be smaller.

Since in this analysis, the instance size and hence the computation time of our MIP

model grows exponentially withM, we limit the number of products toM = 10.

To provide a better perspective on how the percentage pro�t loss varies across

different instances, we consider 5 scenarios differing in the variation of attraction

levels across products and the no-purchase option. In each of these scenarios, we

generate 20 distinct sets of per-unit pro�ts for the 10 products from a discrete uni-

form distribution over the interval [1,25]. Then, for each set of per-unit pro�ts,

we create 500 instances with different random vectors of attraction levels (details
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of generating these vectors for each scenario are presented later). For each of the

20� 500= 10;000 instances in every scenario, by solving the MNL and satis�cing

optimization models, we obtain their respective optimal assortments. The percent-

age loss of expected pro�t is the difference between the expected pro�ts of these

two assortments divided by the optimal expected pro�t of the satis�cing model.

Note that the expected pro�ts of both assortments are calculated exactly using the

satis�cing model's expected pro�t function (Eq. 2.2 in Section 2.5). Different con-

ditions imposed on the attraction levels (Vi 's) for the scenarios are outlined below.

These scenarios are deliberately de�ned to reveal the circumstances under which

higher pro�t loss is more likely to occur.

Scenario 1: All the Vi 's, includingV0 are generated from a discrete uniform dis-

tribution over the interval [1,6]. In this general scenario, the attraction levels are

large enough so that all products and the no-purchase option could have notable

demands among customers.

Scenario 2:All the Vi 's, includingV0 are generated from either [1,6] or [-6,-1] with

equal probabilities. This is also a general scenario similar to Scenario 1, except that

the attraction levels and hence the demands of the choices are allowed to be very

small as well. In fact, Scenario 2 creates more distance between low and high

attraction levels.

Scenario 3: The attraction levels of the no-purchase option and the items with

pro�ts smaller than or equal to 15 are generated from [1,6], attraction level of the

most pro�table product is generated from [-6,-1], and the remaining are generated

from either [1,6] or [-6,-1] with equal probabilities. This scenario simulates the

cases where low-pro�t items are more attractive to the customers, e.g., because of

lower prices, while some of the items with higher pro�ts could also be attractive

(e.g., more expensive, but worthy because of higher quality). Also, with a positive

no-purchase attraction level, customers mostly prefer to leave without purchase,

than buying the more pro�table items (e.g., expensive products).

Scenario 4: The attraction levels of the no-purchase option and the items with

pro�ts smaller than 16 are generated from [1,6], and the remaining are generated

from [-6,-1]. This scenario is similar to Scenario 3, except that high-pro�t items

are always less attractive than the other options. Therefore, it is highly probable

that the customers would prefer to leave without a purchase than buying high-pro�t
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items.

Scenario 5: The attraction levels of the no-purchase option and the items with

pro�ts greater than 15 are generated from [-6,-1], and the remaining are generated

from [1,6]. In this scenario, customers prefer low-pro�t items similar to Scenario

4, except that with a high probability, they might prefer to choose high-pro�t items

rather than leaving without a purchase. This could represent purchasing necessary

items by customers who are somehow price-sensitive, but are still inclined to make

a purchase anyway.

Looking into the outputs of all scenarios, we classify the instances with a non-

zero loss into four families based on the similarities and differences between the

satis�cing optimal assortment and the assortment suggested by the MNL model for

each instance:

Output Family 1: All the items in the two assortments are identical, except that

the satis�cing assortment has one additional item (call it Productp): S�
Sat = S�

MNL [

f pg.

Output Family 2: The MNL assortment has one additional item (Productq), and

the remaining items of the two assortments are identical:S�
MNL = S�

Sat[ f qg.

Output Family 3: The optimal satis�cing assortment isS�
Sat = S̄[ f pg, and the

assortment suggested by the MNL model isS�
MNL = S̄[f qg, whereS̄= S�

Sat\ S�
MNL,

i.e., there is only one product in each assortment that does not exist in the other.

Output Family 4: The remaining instances fall into this family, with the relation

jS�
MNLj�j S�

Satj> 1 holding for all of them. Note thatS�
Sat is not necessarily a subset

of S�
MNL.

Considering the size of the assortments among the four output families, we

remark that even though the search budgets are assumed to be unlimited, Output

Family 1 (OF-1) is the only group of instances whose satis�cing assortments are

larger (always by one unit) than the MNL assortments.

In Table 3.1, we compare the maximum and mean of the percentage pro�t

loss for the �ve scenarios. These statistics are calculated for two subgroups of

instances in each scenario: the ones with nonzero pro�t loss (i.e., the instances

with nonidentical MNL and satis�cing optimal assortments), and those with pro�t

loss greater than 1%. We also report the proportion of instances belonging to these

subgroups in Table 3.1. The reason we omit the instances with loss between zero
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and one in the latter is that the value of loss for the majority of instances fall into

this interval, which hinders the explanation and interpretation of larger losses and

their properties.

Table 3.1: Parameter setting and summary statistics of simulated instances
for the scenarios.

Sc.

Signs of V's Max
Loss (%)

Instances with Loss> 0% Instances with Loss> 1%

V0
High
p j

Low
p j

Proportion
of Instances (%)

Mean of
Loss (%)

Proportion of
of Instances (%)

Mean of
Loss (%)

1 + + + 15.4 32 1 8 3.1
2 + =� + =� + =� 18.6 23 1.4 7 4.2
3 + + =� + 19.8 32 1.3 10 3.8
4 + � + 25.5 27 1.6 10 3.6
5 � � + 23.7 40 3.3 22 5.6

In Table 3.2, we provide the breakdown of the results into the four output fami-

lies of each scenario, and present the distribution of instances, conditioned on hav-

ing a non-zero loss, across the output families, along with their mean and maximum

of percentage loss (see also stacked histograms in Figure 3.4 for the distribution of

the pro�t loss in each of the scenarios and their output families).

The results in Tables 3.1 and 3.2 indicate that when the no-purchase probability

is low and high-pro�t products are less attractive compared to the low-pro�t ones

(e.g., low-involvement items), represented by Scenario 5, it is more probable for

the �rm to experience a pro�t loss (40% of instances have non-zero loss as reported

in Table 3.1). Also, for this scenario, the mean of the loss is higher in general and

in each output family compared to other scenarios. Therefore, Scenario 5 seems to

be the most critical setting in which the �rm should avoid ignoring the possibility

of dealing with satis�cing customers.

From Table 3.2, one can also conclude that with high no-purchase attraction

levels, i.e.,V0 > 0, it is less likely to face considerably large pro�t losses. The

following two observations support this claim. We �rst observe that the losses in-

curred in instances of OF-2 are relatively small (6.6% or less). Note that this is

consistent with the theoretical result obtained in Section 3.3.2 for the two-product

case: the loss is proved to be bounded by 2.5% (Proposition 6), and the MNL

assortment was shown to include one additional item compared to the satis�cing
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assortment. The second observation is that OF-2 has a higher relative frequently

in the scenarios withV0 > 0 (Scenarios 1, 3 and 4); namely, when the no-purchase

probability is relatively high. As for Scenario 2 in whichV0 is assumed to be posi-

tive with a probability of 0.5, 49% of the outputs fall into OF-2, still higher than the

OF-2 relative frequency in Scenario 5 whereV0 < 0. We also ran instances with

negativeV0 and positiveVjs, j = 1;2; ::;M (the detailed results are not reported

here as only 1.9% of the instances incurred loss). The resulting relative frequency

of OF-2 (31%) was still considerably smaller compared to Scenarios 1, 3 and 4,

similar to Scenario 5. We can therefore conclude that when the no-purchase at-

traction level is high (V0 > 0), it is less likely that the pro�t loss would become

signi�cantly large as most of the losses in these cases belong to OF-2.

Table 3.2: Breakdown of output families in each scenario.

Sc.
Proportion of Instances (%)

with Loss> 0%
Mean of Loss> 0% Max Loss (%)

OF-1 OF-2 OF-3 OF-4 OF-1 OF-2 OF-3 OF-4OF-1 OF-2 OF-3 OF-4
1 15 64 6 15 2.4 0.4 4 1.1 13.4 3 15.4 14.1
2 18 49 8 25 3.7 0.3 3.7 1.3 18.6 6.6 17.5 16.6
3 18 60 5 17 4 0.4 3.9 0.8 19.8 6 14.7 18.3
4 18 71 5 6 4 0.8 5.2 1.1 25.5 6.6 18.6 12.1
5 37 37 12 14 4.9 0.7 7 2.6 23.7 4.7 18.9 16.3

In Figure 3.3, we focus on characterizing the products that differentiate MNL

and satis�cing assortments in output families 1 to 3. Scenarios 4 and 5 are selected

for comparison since Scenarios 1 to 4 behave similarly possibly because of their

positive no-purchase attraction levels as mentioned above. For this analysis, we

rank the products that the �rm considers in its assortment planning according to

their per-unit pro�ts (p j ) and attraction levels (Vj ). We denote the products pre-

ferred by the satis�cing and MNL models asp and q respectively. For Output

Family 1, we visualize the relative frequency of non-zero losses with respect to

the ranks ofpp andVp. Similarly, in Output Family 2, the ranks ofpq andVq are

considered. As for Output Family 3, we plot the relative frequencies against the

differences in the ranks ofpp andpq, as well asVp andVq. Note that the prod-

uct with the largest per-unit pro�t or attraction level has the highest rank (Rank

1) among the items. It should also be mentioned that the relative frequencies are
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computed for each output family and each scenario separately.

Based on our observations, when the no-purchase attraction level is relatively

large, the assortment size tends to become larger to decrease the high non-optimal

probability of leaving without purchase. This explains the larger assortment sizes

in Scenario 4 compared to 5. Therefore, in output families 1 and 2 of Scenario

4, the products differentiating the MNL and satis�cing assortments are among the

low pro�table items (i.e., their rank numbers are larger) compared to Scenario 5.

Knowing this, we next discuss the observations in each of the output families.

Considering the size and distribution of plot circles for Output Family 1 in

Figure 3.3, one can see that the products favorable to the satis�cing model, but

not the MNL model are the ones with either a high pro�t, or if their pro�t is low,

a high attraction level. Also, the triangle formed by the circles of Scenario 4 is

smaller because as mentioned before, in this scenario, low pro�t products mainly

distinguish the two assortments. For Output Family 2, since the assortment sizes

are small in Scenario 5, the products with relatively large pro�ts do not get into

the satis�cing assortments despite being in the MNL assortments because their

attraction levels are very low (note the orange circles in the lower right side of the

plot). In Scenario 4 which results in large assortments, the blue circles lean more

towards the middle where the attraction levels are moderate to low. This implies

that the MNL model puts the last item that improves its pro�t in the assortment

without looking into its attraction level as opposed to the satis�cing model; i.e.,

in most cases, the satis�cing model prefers not to take low-pro�t items if their

attraction levels are not high. A more extensive discussion about the characteristics

of this output family is provided in the next section.
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