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Abstract

This thesis deals with the mathematical analysis and numerical solution of double

saddle-point systems.

We derive bounds on the eigenvalues of a generic form of double saddle-point

matrices with a positive definite leading block. The bounds are expressed in terms

of extremal eigenvalues and singular values of the associated block matrices. Iner-

tia and algebraic multiplicity of eigenvalues are considered as well. The analysis

includes bounds for preconditioned matrices based on block diagonal precondi-

tioners using Schur complements, and it is shown that in this case the eigenvalues

are clustered within a few intervals bounded away from zero. Analysis for approx-

imations of Schur complements is included. Some numerical observations validate

our analytical findings.

We also derive bounds on the eigenvalues of (classical) saddle-point matrices

with singular leading blocks. The technique of proof is based on augmentation.

Our bounds depend on the principal angles between the ranges or kernels of the

matrix blocks. We use these analyses to derive a preconditioner for saddle-point

systems with singular leading blocks. Our preconditioning approach is based on

augmenting the leading block and using Schur complements of the augmented sys-

tem. We show that the resulting preconditioned operator has four distinct eigenval-

ues, and numerical experiments validate the effectiveness of our approach.

We then extend the preconditioner for saddle-point systems with a singular

leading block to deal with double saddle-point systems with a singular leading

block. The preconditioner is based on augmenting the leading block by a null

matrix of one of the off-diagonal blocks, and using the Schur complements of the

augmented system.
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Lay Summary

This thesis deals with double saddle-point matrices, which are matrices that often

arise in multiphysics problems (where one physical process is coupled with an-

other) and constrained optimization (where we want to find the best solution to a

problem, subject to certain conditions). These problems are so large that comput-

ers may take a long time to solve them or run out of memory unless we exploit the

properties of the problem in a clever way. In this thesis we analyze some mathe-

matical properties of these matrices, and use them as a starting point for developing

efficient solution methods.
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Preface

This thesis describes results in three research articles:

1. S. Bradley and C. Greif. Eigenvalue Bounds for Double Saddle-Point Sys-

tems. Submitted in revised form. (27 pages)

2. S. Bradley and C. Greif. Eigenvalue Bounds for Saddle-Point Systems with

Singular Leading Blocks. In revision. (17 pages)

3. S. Bradley and C. Greif. Augmentation-Based Preconditioners for Saddle-

Point Systems with Singular Leading Blocks. Under review. (17 pages)

All three papers have been submitted to journals. The first paper is described

in Chapters 3 and 4. The second is described in Chapter 5. The third paper is

described in Sections 6.1-6.3. Section 6.4 was written entirely by me and does not

appear in a publication.

All three papers were co-authored with my research supervisor. In all three

papers I was responsible for analyses, derived techniques, and numerical experi-

ments, which form the core of this thesis. I received guidance from my research

supervisor. All three pieces of work were mostly written by me, with the assis-

tance and editing of my supervisor. These papers appear mostly as they are written

for publication, with some changes to organization and notation for consistency

throughout the thesis.

This thesis includes several numerical experiments on test problems arising

from various applications. I wrote the code for the experiments themselves, but

others wrote the code to generate the test matrices. Where code/test matrices are

publicly available I have cited accordingly; but I have used code for the interior
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point method implementation written by Erin Moulding, code to generate geo-

physics test problems written by Eldad Haber, and Maxwell test matrices written

by Chen Greif and Dominik Schötzau.
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Chapter 1

Introduction

This thesis deals with the analysis and numerical solution of double (block-3×3)

saddle-point systems. These systems appear frequently in multiphysics problems,

and their numerical solution is of increasing importance and interest. As a re-

sult, there has been a recent surge of interest in the iterative solution of multiple

saddle-point problems, and our work adds to the increasing body of literature that

considers these problems. Recent papers that provide interesting analysis are, for

example, [2, 5, 11, 65, 84].

In this chapter, we first provide a mathematical problem statement and discuss

the connections between double and classical (block-2× 2) saddle-point systems.

We then provide a brief overview of iterative solution methods and preconditioning

approaches for large, sparse linear systems. We then provide a high-level overview

of the techniques we use for eigenvalue analysis and description of our mathemat-

ical notation. We conclude with an overview of the structure and contributions of

thesis.

1.1 Problem statement
Given positive integer dimensions n ≥ m ≥ p, consider the (n+m+ p)× (n+m+

p) double saddle-point system

K u = b, (1.1)

1



where

K =

A BT 0

B −D CT

0 C E

 ; u =

x

y

z

 ; b =

p

q

r

 . (1.2)

In (1.2), A∈Rn×n is assumed symmetric positive definite, D∈Rm×m and E ∈Rp×p

are positive semidefinite, and B ∈ Rm×n, C ∈ Rp×m.

The matrix K may be considered a generalization of the block-2×2 or “clas-

sical” (to use the terminology of [84]) saddle-point matrix

A =

[
A BT

B −D

]
. (1.3)

Classical saddle-point matrices arise as the first-order optimality conditions for

equality-constrained quadratic programming problems of the form

min
x

1
2

xT Ax− f T x (1.4a)

subject to Bx = g. (1.4b)

Letting y denote the vector of Lagrange multipliers, an optimal solution of (1.4)

is a saddle point for the Lagrangian:

L (x,y) =
1
2

xT Ax− f T x+(Bx−g)T y.

This is equivalent to the solution (x,y) of the linear system:[
A BT

B 0

]
︸ ︷︷ ︸

=:A0

[
x

y

]
=

[
f

g

]
, (1.5)

where the coefficient matrix A0 a matrix in classical saddle-point form with D = 0.

The matrix D in this case is often associated with regularization (or stabilization)

[17], and matrices with D= 0 are often called unregularized (or unstabilized). Such

a stabilization term is commonly used in, for example, the solution of the Stokes
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problem [91], which is to find velocity u and pressure p satisfying

−ν∇
2u+gradp = f in Ω, (1.6a)

divu = 0 in Ω. (1.6b)

Block-3×3 matrices in tridiagonal form as in (1.2) can occur when a physical

problem with constraints, such as the Stokes problem, is coupled with another

physical process, as in the Stokes-Darcy problem [94], which represents fluid flow

(represented by the Stokes equations) over a porous medium (where fluid flow

within the porous medium is represented by the Darcy equations). The resulting

linear system is  Ap AT
Γ

0

−AΓ A f BT
f

0 B f 0


φh

uh

ph

=

 fp,h

f f ,h

gh

 , (1.7)

which is equivalent to (1.2) up to a difference in sign. The system

[
A f BT

f

B f 0

]
is the

Stokes system, Ap is a symmetric positive Darcy matrix, and AΓ is a coupling term

that represents interface between the fluid and porous flow. For other examples

of matrices with higher numbers of blocks resulting from the coupling of physical

processes, we refer to, e.g., [27, 46, 50, 69, 72, 74].

Double saddle-point systems also arise in constrained optimization problems

that can be expressed in the form (1.4) where the primal variable x itself consists

of two components. This occurs in, for example PDE-constrained optimization,

where these are the state and control variables. These systems can be viewed as

double saddle-point systems (1.2), after some reordering of the variables.

Borrowing from the classical saddle-point terminology, we refer to the special

case of double saddle-point matrices with D = E = 0 as an unregularized form of

K , and denote it by K0:

K0 =

A BT 0

B 0 CT

0 C 0

 . (1.8)

3



This simpler form has been analyzed in various ways in [48, 65, 84] and is of much

potential interest, as it may be considered a direct generalization of the standard

saddle-point form for classical saddle-point matrices:

Classical saddle-point matrices of the form (1.3) have been extensively studied,

and their analytical and numerical properties are well understood; see [7, 73] for

excellent surveys. Some properties of K follow from appropriately reordering and

partitioning the block matrix and then using known results for block-2×2 saddle-

point matrices (as given in, for example, [35, 75, 76, 81]).

Specifically, K can be reordered and partitioned into a 2×2 block matrix

˜K =

 A 0 BT

0 E C

B CT −D

 . (1.9)

While this approach is often effective, we may benefit from considering the block-

3×3 formulation K directly, without resorting to (1.9). When E is rank-deficient

or zero (as occurs, for example, in [28, 55]), the leading 2×2 block of ˜K is singu-

lar, even if A is full rank. It is then more challenging to develop preconditioners for
˜K or to obtain bounds on its eigenvalues, as we are restricted to methods that can

handle singular leading blocks. Additionally, by considering the block-3× 3 for-

mulation in deriving eigenvalue bounds, we will see in this thesis that we can derive

effective bounds using the singular values of B and C (along with the eigenvalues

of the diagonal blocks). Analyzing ˜K using established results for block-2× 2

matrices (such as those given by Rusten and Winther [76]) instead requires singu-

lar values of the larger off-diagonal block
[
B CT

]
, which may be more difficult

to obtain than singular values of B and C. (We can estimate the singular values of[
B CT

]
in terms of those of B and C, but if these estimates are loose it will result

in loose eigenvalue bounds.)

The above said, we will observe in this thesis that analysis and solution meth-

ods for classical saddle-point systems often provide useful insights in developing

techniques for the double saddle-point case. Therefore, in this thesis we do perform

some analysis of the classical saddle-point case. We particularly focus on classi-

cal saddle-point matrices with a singular leading block; this case is less explored

4



in the literature, and we shall see that our analyses of these matrices will provide

useful tools in developing and analyzing a preconditioner for double saddle-point

matrices with a singular leading block.

The distribution of eigenvalues of K plays a central role in determining the

efficiency of iterative solvers. It is therefore useful to gain an understanding of the

spectral structure as part of the selection and employment of solvers [86], and this

comprises a major portion of this thesis. Effective preconditioners are instrumental

in accelerating convergence for sparse and large linear systems; see [6, 63, 78, 92]

for general overviews, and [7, 68, 73] for a useful overview of solvers and pre-

conditioners for saddle-point problems. For multiphysics problems it has been

demonstrated that exploiting the properties of the underlying discrete differential

operators and other characteristics of the problem at hand is beneficial in the de-

velopment of robust and fast solvers; see, e.g., [21].

1.2 Iterative solution of sparse linear systems
Double saddle-point systems of the form (1.2) are often large and sparse. Direct

solvers, such as those based on Gaussian elimination (we refer to [15, 33, 87] for

details), may introduce a large amount of fill-in: that is, the matrix decompositions

needed for exact inversion may have many more nonzero entries than the original

matrix. This can be problematic in the sparse matrix setting, where it is common

for an n× n matrix to have roughly O(n) nonzero entries; depending on the exact

sparsity pattern of the matrix, the computed factors may be quite dense (O(n2)

nonzero entries).

Additionally, when dealing with problems arising from the modeling of phys-

ical phenomena, a highly accurate solution like we obtain with direct solvers is

often not necessary. Whenever we discretize a problem to form a linear system –

by discretizing in space [17, 59], in time [4], or discretizing continuous processes

like differentiation and integration [85] – we introduce error in the discretization

process. As such, even a highly accurate solution of the linear system will still

not represent a perfectly accurate solution to the underlying problem; thus there is

typically no harm in solving the linear system a bit less accurately, particularly if

we can do so at a lower computational cost.
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Iterative solution methods for a linear system Kx = b rely on matrix-vector

products of the form Kv. Thus, they are well-suited for problems where matrix

decompositions are expensive but matrix-vector products are relatively cheap, as

is the case for large, sparse matrices. Iterative methods for linear systems fall into

two broad categories: stationary iterative methods and Krylov subspace methods.

1.2.1 Stationary iterative methods

Stationary iterative methods solve a linear system with a simpler matrix approxi-

mating the original one (often based on some splitting of the original matrix). At

each step, the iterate xk+1 is updated based on the residual at step k, defined by

rk = b−Kxk. Specifically, if we consider a splitting of our matrix K = M −N, a

stationary iteration takes the form

xk+1 = xk +M−1rk.

Examples of methods of this type include the Richardson method, Jacobi method,

Gauss-Seidel, and successive over-relaxation (SOR) method (see [78, Chapter 4]).

In practice, these methods converge slowly and are rarely used on their own. They

are, however, often used as a preprocessing step to accelerate the convergence of

more sophisticated methods, such as multigrid methods (see [42] for an overview)

or Krylov subspace methods.

1.2.2 Krylov subspace methods

The Krylov subspace methods select iterates in Krylov subspaces, which take the

form:

Km(K,r0) = span
{

r0,Kr0,K2r0, . . .Km−1r0
}
,

where r0 = b−Kx0 is the initial residual. The iterate xm obtained after m iterations

of such a method is of the form

xm = x0 + pm−1(K)r0,
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where pm−1 is a polynomial of degree m− 1. There are a variety of methods for

forming the basis and selecting the next iterate; we refer to the books of [37, 78]

for detailed overviews.

We describe here, at a high level, the Minimum Residual (MINRES) [62] method

for symmetric indefinite matrices and the Generalized Minimum Residual (GMRES)

[79] method for nonsymmetric matrices. Both GMRES and MINRES have the prop-

erty of minimizing the norm of the residual at each iteration [3]; that is, the ap-

proximate solution xm at iteration m satisfies:

min
xm∈Km(K,r0)

||b−Kxm||2. (1.10)

Both the MINRES and GMRES algorithms use an orthonormal basis for the subspace

Km(K,r0); we let Qm ∈ Rm×m denote the matrix whose columns form that basis.

The orthonormal basis is updated at each step of the algorithm by performing a

step of the Arnoldi process (in GMRES) or the Lanczos process (in MINRES).

The first vector in the Krylov subspace is r0, and thus the first orthonormal

basis vector for Km(K,r0) is the unit vector q1 = r0/||r0||. At the next step, we

take Aq1 (which is in the same direction as Ar0) and orthonormalize it against the

first basis vector q1. At subsequent iterations, we construct the basis vector qm+1

by taking Aqm and orthonormalizing against the previous basis vectors.

In GMRES, for any m ≥ 1, we can write a matrix relation of the form

KQm = Qm+1Hm+1,m, (1.11)

where Qk is a matrix of the first k basis vectors, and Hm+1,m ∈ R(m+1)×m is upper

Hessenberg, meaning that all entries are zero below the first subdiagonal (stated

more mathematically, we have that the matrix entry Hm+1,m(i, j) = 0 whenever

i > j+1).

Our aim at iteration m is to find a vector in the Krylov subspace Km(K,r0),

which we can write as

xm = x0 +Qmz,
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where z ∈ Rm minimizes the residual norm ||b−Kxm||. We have

||b−Kxm||= ||b−Kx0 −KQmz||= ||r0 −Qm+1Hm+1,m||= ||QT
m+1r0 −Hm+1,mz||.

Thus, we have now converted the original optimization problem (1.10) to a least-

squares problem involving a smaller (m+1)×m upper Hessenberg matrix Hm+1,m.

We can make the least-squares computations more efficient by maintaining a QR

factorization of Hm+1,m at each iteration and updating sequentially via Givens ro-

tations; see [85, Section 6.5.3].

We can show that

QT
mKQm = Hm,m,

where Hm,m ∈ Rm×m is the matrix consisting of the first m rows of Hm+1,m. Thus,

when K is symmetric, the matrix Hm,m is symmetric and therefore tridiagonal (be-

cause the matrix is Hessenberg). Thus, Hm+1,m is also tridiagonal, which allows

simplifications to the process described in GMRES. In MINRES, which deals with

symmetric indefinite matrices, the Arnoldi process amounts to the Lanczos process

and the upper Hessenberg matrix Hm+1,m in (1.11) is replaced by the tridiagonal

matrix Tm+1,m:

KQm = Qm+1Tm+1,m, (1.12)

The result is that each MINRES iteration is cheaper than a GMRES iteration, and can

in fact be implemented via a three-term recurrence relation like in the Conjugate

Gradient (CG) method for positive definite matrices; see [43]. Thus, in MINRES we

need only store the three most recent basis vectors, while for GMRES we must store

all m previously computed basis vectors.

A way in which we may get around this issue for GMRES is by using restarts:

after some predetermined number of iterations, we discard the computed basis

vectors and proceed using the last iterate xm as a new “initial guess.” Restarted

GMRES is denoted by GMRES(m), where m is the number of iterations between

restarts of the Arnoldi process.

We note that not all iterative solution methods use an orthonormal basis for

the Krylov subspace Km(K,r0). Variants such as QMR [25] or Bi-CG and its

variants [23, 83, 89] instead use a bi-orthogonalization procedure for nonsymmetric
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matrices.

1.3 Preconditioning
A disadvantage of iterative solvers is their potential lack of robustness. This is

evident in particular for large, ill-conditioned matrices. For symmetric and di-

agonalizable matrices, the convergence of methods such as GMRES and MINRES

depends on the distribution of eigenvalues of the matrix. (For nonsymmetric ma-

trices which may not be diagonalizable, additional tools to assess the convergence

of iterative solvers include the field of values [38] and pseudospectra [88].) For a

nonsymmetric diagonalizable matrix K = XΛX−1, where Λ = diag{λ1,λ2, . . . ,λn}
is the diagonal matrix of eigenvalues and X the matrix of eigenvectors, the residual

norm achieved by the mth step of GMRES satisfies [78, Proposition 6.32]

||rm||2
||r0||2

≤ κ2(X) min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)|, (1.13)

where Pm, p(0) = 1 denotes the set of polynomials of degree less than or equal to

m satisfying p(0) = 1 and κ2(X) = ||X ||2||X−1||2 denotes the (2-norm) condition

number of X . In the symmetric case, X is orthogonal, so the corresponding bound

for MINRES reduces to

||rm||2
||r0||2

≤ min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)|. (1.14)

An consequence of (1.13) and (1.14) is that convergence will be rapid if the eigen-

values of Λ are tightly clustered. In particular, if Λ contains s distinct eigenvalues,

then MINRES or GMRES will converge in no more than s iterations in exact arith-

metic.

Unfortunately, we have no control over the distribution of eigenvalues of our

matrix K. This is where the idea of preconditioning comes in: we multiply K by

another matrix such that the product of these matrices has a more favourable eigen-

value distribution, and we use our iterative solution method on the preconditioned

operator.
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1.3.1 Overview

A preconditioner is a matrix M that should satisfy a few properties. First, it should

be inexpensive to solve the linear system Mx = b, because all preconditioned linear

solvers will require solving a linear system with M at each step. It should also be

nonsingular (for obvious reasons), and should be “close to” K in some way.

The preconditioner can be applied from the left, leading to the preconditioned

system

M−1Kx = M−1b.

Alternatively, the preconditioned can be applied from the right:

KM−1u = b, x := M−1u.

It is also common for a preconditioner to be available in factored form

M = M1M2,

in which we can apply the split preconditioning:

M−1
1 KM−1

2 u = M−1
1 b, x := M−1

2 u.

We then carry out our iterative solution method using the preconditioned operator.

We therefore want the preconditioned operator to have few (or tightly clustered)

eigenvalues in order to ensure rapid convergence.

An important constraint is that, if we have a symmetric system K and wish to

use MINRES as our solver, we need to maintain symmetry of the preconditioned

operator. This means that M must be positive definite: in that case, we can split M

into two factors

M = M1MT
1 , (1.15)

and the split preconditioned operator yields the symmetric matrix:

M−1
1 KM−T

1 u = M−1
1 b, x := M−T

1 u.

We note that a factorization of M of the form (1.15) need not be explicitly available;
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see [78, Chapter 9].

Preconditioners can be purely algebraic, based on no prior knowledge of the

underlying problem (such as incomplete factorizations or some steps of a station-

ary iterative method); or they can be made for a specific problem based on knowl-

edge of the properties of the matrix or the problem from which is arises. The latter

situation is common in the numerical solution of PDEs: effective precondition-

ers are often derived by reasoning about the physical properties of the continuous

problem, or from known mathematical properties of the continuous or discrete op-

erators. We refer to the survey paper of [92] for more details. It is also possible to

use a flexible iterative solver such as FGMRES [77], which allows the precondi-

tioned operator to change at each iteration. A common use for this is to use another

iterative method (such as conjugate gradient) set to a low tolerance for some inner

solves.

1.3.2 Block preconditioning

Our focus in this thesis is on block matrices; specifically, the double and classical

saddle-point matrices K , K0, A and A0, defined in (1.2), (1.8), (1.3), and (1.5),

respectively. Monolithic preconditioners, which work on the entire matrix, have

been recently shown to be extremely effective. Recent work such as [1] has pushed

the envelope towards scalable solvers based on this methodology. Another increas-

ingly important approach is operator preconditioning based on continuous spaces;

see [44, 56]. This approach relies on the properties of the underlying continuous

differential operators, and uses tools such as Riesz representation and natural norm

considerations to derive block diagonal preconditioners. Block preconditioners can

also be derived directly by linear algebra considerations accompanied by properties

of discretized PDEs; see, for example, [17, 68].

We focus on block preconditioning: that is, preconditioners that are themselves

block matrices. These are typically derived in two steps. First, we begin with

an ideal preconditioner: this is often derived abstractly from a decomposition or

inverse formula of the original matrix. With ideal preconditioners, we can de-

rive spectral properties of the preconditioned operator and sometimes derive upper

bounds on the number of preconditioned iterations an iterative solver will need to
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converge. But there is a downside here, which is that ideal preconditioners tend to

involve computationally expensive terms – such as inverses of some of the blocks,

Schur complements [60], null spaces [19], or reduced Hessians [67] – that make

them too costly to apply in practice. So from the ideal preconditioner, we must

develop a practical preconditioner, which approximates the expensive terms in the

ideal preconditioner. How this is done is typically informed by the problem at

hand.

1.3.3 Review of ideal block preconditioners

We begin by reviewing ideal preconditioners for the classical saddle-point matrix

A0. Kuznetsov [53] and Murphy, Golub, and Wathen [60] show that, when A is

positive definite and B has full row rank, the preconditioner:

PMGW =

[
A 0

0 BA−1BT

]
(1.16)

has the property that the preconditioned operator P−1
MGW A0 has three distinct eigen-

values (equal to 1 and 1±
√

5
2 ), meaning that a preconditioned iterative solver (such

as MINRES) will converge within 3 iterations, in exact arithmetic.

For the stabilized classical saddle-point matrix A , Ipsen [49] shows that the

block triangular preconditioner:

PI =

[
A BT

0 −(D+BA−1BT )

]
(1.17)

yields a preconditioned operator with minimal polynomial (λ − 1)2; therefore, a

preconditioned iterative solver (such as GMRES) will converge within 2 iterations,

in exact arithmetic. We note that the same result holds for nonsymmetric saddle-

point matrices.

The case in which A is singular has been less explored. Greif and Schötzau

[39] show that, when A has rank n−m, the preconditioner

PGS =

[
A+BTWB 0

0 W

]
,
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where W ∈ Rm×m is positive definite, yields two distinct eigenvalues (1 and −1)

for the preconditioned operator P−1
GS A0.

For double saddle-point systems with positive definite A, the block diagonal

preconditioner

M :=

A 0 0

0 S1 0

0 0 S2

 , (1.18)

where

S1 = D+BA−1BT ; S2 = E +CS−1
1 CT , (1.19)

is well-defined and positive definite when both S1 and S2 are positive definite. The

recent papers of Sogn and Zulehner [84] and Cai et al. [11] both analyze the perfor-

mance of a block-n×n block diagonal preconditioner analogous to M defined in

(4.1), though the former focus on the spectral properties of the continuous (rather

than discretized) preconditioned operator, and Cai et al. focus their analyses of this

preconditioner on the case where all diagonal blocks except A are zero. We will

provide a detailed analysis of this preconditoner in Chapter 4.

Cai et al. [11] also derive a block triangular preconditioner for double saddle-

point systems, analogous to (1.17):

MT :=

A BT 0

0 −S1 CT

0 0 S2

 , (1.20)

and show that the minimal polynomial of the preconditioned operator is (λ −1)3.

As was the case for the 2×2-block triangular preconditioner, this same result holds

when K is nonsymmetric.

To our knowledge, there have been no preconditioners designed for double

saddle-point systems K when A is singular.

1.3.4 From ideal to practical

All the preconditioners described in Section 1.3.3 are too expensive to be applied in

practice. To develop a practical solver, it is necessary to develop suitable approx-
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imations to the expensive terms (A-inversions, Schur complements) that arise in

these preconditioners. For problems arising from the numerical solution of PDEs,

a common approach is to replace an expensive differential operator arising in the

ideal preconditioner by a cheaper, spectrally equivalent one; see, for example,

[9, 39, 47, 52, 93]. Another common approach is to approximate the inversion

of some blocks using an inner iterative solver such as a multigrid method; see, for

example, [54, 82, 95].

1.4 Eigenvalue analysis
A primary focus of this thesis is generating eigenvalue bounds for block matrices.

We employ three primary techniques: energy estimates; the reduced matrix (or R-

matrix) method; and the diagonal matrix (or D-matrix) method. Energy estimates

have been widely used to generate eigenvalue bounds for block matrices, most fa-

mously by Rusten and Winther [76]. The R-matrix technique is a newer approach.

It was used by Sogn and Zulehner [84, Theorem 2.2] to bound the eigenvalues of

preconditioned tridiagonal block-k× k systems (though they do not call it the “R-

matrix method”). The D-matrix technique is a variation of the R-matrix technique,

also used by Sogn and Zulehner in the same problem setting [84, Theorem 2.1]

(though, again, “D-matrix” is our own name). We do not use the D-matrix tech-

nique in deriving any of the eigenvalue bounds in this thesis but we include the

description here. We will describe here how these methods can be generalized to

obtain eigenvalue bounds of any block matrix.

1.4.1 Description of analysis methods

We begin by providing a high-level explanation of all three techniques. For clarity

of exposition, we consider deriving an upper bound on positive eigenvalues of a

block matrix (lower bounds on negative eigenvalues and internal bounds – i.e.,

lower bounds on positive eigenvalues and upper bounds on negative eigenvalues –

will be discussed later).
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Consider a symmetric block-k× k matrix

M =


A11 AT

21 · · · AT
k1

A21 A22 AT
k2

...
. . .

...

Ak1 Ak2 · · · Akk

 ,

and let v =
[
xT

1 xT
2 · · · xT

k

]T
be an appropriately partitioned block vector.

Energy estimates With energy estimates, we write out the eigenvalue equations

for M :

A11x1 +AT
21x2 + . . .+AT

k1xk = λx1;
...

Ak1x1 +Ak2x2 + . . .+Akkxk = λxk.

We then perform various manipulations on the eigenvalue equations – often includ-

ing substituting one variable for another, taking inner products of xT
i with equation

i, using extremal singular values or eigenvalues of blocks to bound terms of the

form xT
i Ai jx j, dropping additive terms, and other manipulations – to obtain an in-

equality involving λ . The inequality is often of the form p(λ ) ≥ 0 or p(λ ) ≤ 0,

where p is a polynomial of degree k or less. This then gives us a bound that is a

root of the polynomial p.

R-matrix With the R-matrix technique, we seek to bound the quantity vT M v
vT v from

above, which provides an upper bound on the eigenvalues of M . We write

vT M v =
k

∑
i=1

k

∑
j=1

xT
i Ai jx j. (1.21)
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Letting λ ii
max denote the maximal eigenvalue of Aii and σ

i j
max the maximal singular

value of Ai j, we can bound each term of (1.21) by

xT
i Ai jx j ≤

λ ii
max||xi||2 if i = j

σ
i j
max||xi|| · ||x j|| otherwise,

(1.22)

with the second case holding as a result of the Cauchy-Schwarz inequality. We

then write

vT M v ≤
[
||x1|| ||x2|| · · · ||xk||

]


λ 11
max σ12

max · · · σ1k
max

σ12
max λ 22

max σ2k
max

...
. . .

...

σ1k
max σ2k

max · · · λ kk
max


︸ ︷︷ ︸

=:R


||x1||
||x2||

...

||xk||

 . (1.23)

An upper bound on vT M v
vT v – and, therefore, an upper bound on the eigenvalues of

M – is given by the maximal eigenvalue of R, which we call the “reduced matrix”

because it is k×k (instead of block-k×k). As before, the resulting bound is the root

of a polynomial of degree k or less1 – specifically, the characteristic polynomial of

R.

D-matrix In the D-matrix technique we modify the inequality in (1.22) so that

the resulting reduced matrix (shown in (1.23)) is diagonal. We further bound the

off-diagonal terms (where i ̸= j) using the Peter-Paul version of Young’s inequality

[90, Chapter 6] to obtain:

σ
i j
max||xi|| · ||x j|| ≤

σ
i j
maxεi j

2
||xi||2 +

σ
i j
max

2εi j
||x j||2,

1We can easily express the bound as the root of a polynomial of degree strictly less than k if R is
singular.
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for any εi j > 0. Then we can write

vT M v ≤
[
||x1|| . . . ||xk||

]
RD


||x1||

...

||xk||

 ,

where RD is a k× k diagonal matrix whose entries depend on µii, σi j, εi j. We then

select the values of εi j that yield the tightest upper bound: specifically, we wish

to minimize the largest eigenvalue of the reduced matrix RD, which amounts to

selecting εi j such that all entries of RD are equal.

1.4.2 Example: re-deriving a bound of Rusten and Winther

We now show how to use energy estimates, the R-matrix technique, and the D-

matrix technique to derive an upper bound on the eigenvalues of the standard clas-

sical saddle-point matrix:

A0 =

[
A BT

B 0

]
.

Energy estimates This proof is given in Rusten and Winther [76], but we include

it here as a simple example of using energy estimates. The eigenvalue equations

for A0 are

Ax+BT y = λx (1.24a)

Bx = λy. (1.24b)

We can use (1.24b) to write y in terms of x:

y =
1
λ

Bx.

We substitute this value into (1.24a) to obtain

Ax+
1
λ

BT Bx = λx. (1.25)
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We then take the inner product of xT with (1.25), divide each term by xT x, and

bound each of the left-hand terms from above to give

µ
A
max +

(σB
max)

2

λ
≥ λ ,

where µA
max denotes the largest eigenvalue of A and σB

max the largest singular value

of B. For λ > 0, rearranging yields

λ
2 −µ

A
maxλ − (σB

max)
2 ≤ 0,

from which we conclude that

λ ≤ µA
max +

√
µA

max +4(σB
max)

2

2
.

R-matrix We write

vT A0v = xT Ax+2xT By

≤ µ
A
max||x||2 +2σ

B
max||x|| · ||y||

=
[
||x|| ||y||

][
µA

max σB
max

σB
max 0

]
︸ ︷︷ ︸

=:R

[
||x||
||y||

]
.

An upper bound on λ is given by the larger eigenvalue of R, which is equal to
µA

max+
√

µA
max+4(σB

max)
2

2 , which is the same result given by energy estimates.
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D-matrix We write

vT A0v = xT Ax+2xT BT y

≤ µ
A
max||x||2 +2σ

B
max||x|| · ||y||

≤ µ
A
max||x||2 +

σB
max

ε
||x||2 + εσ

B
max||y||2 ∀ε > 0

=
[
||x|| ||y||

][
µA

max +
σB

max
ε

0

0 εσB
max

]
︸ ︷︷ ︸

RD

[
||x||
||y||

]
.

The eigenvalues of A0 are less than or equal to the maximum eigenvalue of RD.

We set

ε =
µA

max +
√

(µA
max)

2 +4(σB
max)

2

2σB
max

.

Then

RD =

 µA
max+

√
(µA

max)
2+4(σB

max)
2

2 0

0 µA
max+

√
(µA

max)
2+4(σB

max)
2

2

 ,

which again yields the same bound.

1.4.3 Extension to other bounds and discussion

The previous example showed how to use energy estimates and the R-matrix and

D-matrix techniques to derive an upper bound on the positive eigenvalues of a

block matrix. Lower bounds on negative eigenvalues can be obtained in a similar

way. Interior eigenvalue bounds – that is, lower bounds on positive eigenvalues

and upper bounds on negative eigenvalues – are less straightforward. Energy esti-

mates often work well for this, though in practice these bounds are harder to obtain

than the extremal bounds. The R/D-matrix methods, on the other hand, are not

well-suited for finding internal bounds without significant adaptations. If we are

working with a matrix whose block inverse has a fairly simple structure, one option

is to form the inverse and find its extremal bounds (using any method of choice) –

see [84, proof of Theorem 2.2] for an example of this combined with the R-matrix

technique to compute interior bounds.

Compared with energy estimates, the benefit of the R-matrix method is its sim-
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plicity. This is a particular advantage with matrices with many blocks, which can

become intractably complex for energy estimates. The drawbacks are that, as men-

tioned, interior bounds are difficult with the R-matrix technique, and that the R-

matrix technique can sometimes yield loose bounds. The R-matrix technique con-

siders each block of the matrix independently, so it may not yield a tight bound in

cases where relationships exist between the blocks (as often occurs in, for exam-

ple, preconditioned matrices). We can sometimes obtain a tighter bound in these

casees by using the D-matrix technique instead, though the D-matrix technique is

sensitive to the exact configuration of εi j parameters in the inequality. For instance,

in the example of Section 1.4.2, if we instead write that

vT A0v ≤ 2σ
max
B ||x|| · ||y|| ≤ εσ

max
B ||x||2 + σmax

B
ε

||y||2,

we will obtain a loose bound. Like energy estimates, the D-matrix technique can

also become very complicated for large block matrices because of the number of

εi j parameters to solve for.

1.5 Notation

Scalars, vectors, matrices, and block matrices In this thesis, scalars will be de-

noted by lower case Greek or Roman letters. Vectors are denoted by Roman letters

(most commonly v, x, y, z). We denote matrices by upper case Roman letters (e.g.,

A, B), and use calligraphic fonts (e.g., M , K ) to refer to block matrices.

Some results in this thesis deal with double saddle-point matrices as defined in

(1.2), while others deal with classical saddle-point matrices as in (1.3). To reduce

ambiguity, we will denote double saddle-point matrices by the calligraphic letter

K and classical saddle-point matrices by the calligraphic letter A . Similarly,

block-3×3 preconditioners for double saddle-point matrices will be demoted by a

calligraphic M and block-2×2 preconditioners for classical saddle-point matrices

will be denoted by a calligraphic P .

Eigenvalues and singular values The eigenvalues of the unpreconditioned and

preconditioned block matrices will be denoted by λ . We will denote the eigenval-
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ues of a matrix M ∈ Rn×n by

µi(M), i = 1, . . . ,n,

and in terms of ordering we will assume that

µ1(M)≥ µ2(M)≥ ·· · ≥ µn(M).

We follow the same convention for singular values of a rectangular matrix N, but

we use σ rather than µ: i.e., the the singular values of N ∈ Rm×n are denoted by

σ1(N)≥ σ2(N)≥ ·· · ≥ µm(N)≥ 0.

To increase clarity, we will often refer to the maximal eigenvalues/singular values

µ1(M) and σ1(N) by µmax(M) and σmax(M) respectively. Similarly, we will refer

to the minimal values µn(M), σm(N) by µmin(M) and σmin(M). The positive eigen-

values of a matrix will be denoted by an additional “+” subscript – for instance, we

denote the smallest nonzero eigenvalue of a semidefinite matrix M by µmin,+(M).

For compactness, we will use superscripts rather than parentheses when refer-

ring to eigenvalues/singular values of the matrices comprising K ; for example, we

will write µA
min,+ rather than µmin,+(A) to refer to the smallest positive eigenvalue

of A. Based on this convention, we use the notation of Table 1.1 for eigenvalues

and singular values of the matrices comprising K .

matrix size type number notation max min
A n×n eigenvalues n µA

i , i = 1, . . . ,n µA
max µA

min
B m×n singular values m σB

i , i = 1, . . . ,m σB
max σB

min
C p×m singular values p σC

i , i = 1, . . . , p σC
max σC

min
D m×m eigenvalues m µD

i , i = 1, . . . ,m µD
max µD

min
E p× p eigenvalues p µD

i , i = 1, . . . , p µE
max µE

min

Table 1.1: Summary of notation for eigenvalues and singular values of matrix
blocks.

Finally, in some parts of our analyses we denote a symmetric positive semidef-

inite matrix X by X ⪰ 0.
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1.6 Outline and contributions
This thesis is comprised of seven chapters. In Chapter 2, we provide an overview of

applications that lead to double and classical saddle-point matrices. In Chapter 3,

we provide a general framework for analysis of the eigenvalues of double saddle-

point matrices, with a rather minimal set of assumptions on the matrices involved.

We also derive upper and lower bounds on the positive and negative eigenvalues

of K . We provide some numerical illustrations to illustrate the tightness of the

bounds.

In Chapter 4 we consider preconditioning of double saddle-point matrices when

the leading block A is positive definite. We provide eigenvalue bounds on a block

diagonal Schur complement-based preconditioner. We also analyze the case in

which the preconditioner contain approximations of Schur complements and an

approximation of the leading block, and show how our bounds are affected as a re-

sult. Some numerical observations indicate that our bounds are tight and effective.

In Chapter 5 we provide eigenvalue bounds for classical saddle-point systems

in which A is singular. The challenge in this setting is the lower bound on positive

eigenvalues, for which existing eigenvalue bounds reduce to zero. Our general

approach involves augmenting the leading block to obtain this bound. The resulting

bounds rely on the angles between the kernels of A and B. We then present some

numerical results to validate our findings.

In Chapter 6 we consider preconditioning for classical and double saddle-point

matrices for which the leading block A is singular. The approach involves a combi-

nation of leading block augmentation and Schur complement preconditioning. We

will show how “minimally augmenting” the leading block yields a preconditioner

with a constant number of eigenvalues in the preconditioned operator in both the

classical and double saddle-point case. We also provide a set of numerical experi-

ments for the classical saddle-point preconditioner that illustrate the effectiveness

of our approach.

In Chapter 7 we provide concluding remarks and discuss areas for future work.

The main contributions of this thesis are:

1. The derivation of eigenvalue bounds for the unpreconditioned double saddle-

point matrix K . Existing analyses of the eigenvalues of unpreconditioned
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block-3×3 matrices have often been restricted to specific problems, such as

interior-point methods in constrained optimization; see [40, 58].

2. An analysis of the block diagonal multiple saddle-point preconditioner pro-

vided in [84], with new analysis in the discretized setting. We also provide

an analysis in the case where approximations to the leading block and Schur

complements are used.

3. New eigenvalue analyses for classical saddle-point matrices with a singular

leading block.

4. A new ideal preconditioner for classical saddle-point matrices with a singular

leading block. This preconditioner can be viewed as an extension of [34, 39],

with the property that the preconditioned operator has a constant number of

eigenvalues regardless of the rank of A.

5. A new ideal preconditioner for double saddle-point matrices with a singular

leading block. To our knowledge, this is the first preconditioner that has been

designed for this setting.
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Chapter 2

Relevant applications

Double saddle-point systems of the form (1.2) arise in several applications. We

provide an overview of these applications in Section 2.1. Because Chapter 5 and

Chapter 6 of this thesis deal in part with classical saddle-point systems with singu-

lar leading blocks, we also discuss these in Section 2.2.

2.1 Double saddle-point systems

2.1.1 Examples arising from optimization

PDE-constrained optimization Consider a discretized linear-quadratic optimiza-

tion problem of the form:

min
y,u

1
2

yTCy− yT w+
β

2
uT Ru

subject to Ky+Lu = d,
(2.1)

where K ∈Rn×n is a stiffness matrix corresponding to a partial differential equation

(PDE); L∈Rn×m is a control matrix; C ∈Rn×n is a positive semidefinite (sometimes

positive definite) observation matrix; R ∈Rm×m is a positive definite regularization

matrix; and β > 0 is a regularization parameter (often around 10−2 in practice).

The vector y ∈Rn denotes the state variables, u ∈Rm the control variables, and λ ∈
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Rn the Lagrange multipliers. The associated Karush-Kuhn-Tucker (KKT) system

can be written as a classical saddle-point system:C 0 KT

0 βR LT

K L 0


y

u

λ

=

w

0

d

 . (2.2)

We can also reorder the unknowns so that the coefficient matrix is in double saddle-

point form (1.2): C KT 0

K 0 L

0 LT βR


y

λ

u

=

w

d

0

 . (2.3)

Preconditioners based on the classical saddle-point formulation (2.2) have been

developed in, for example, [51, 66, 71, 80], while preconditioners based on the

double saddle-point formulation (2.3) have been developed in [5, 65, 84]. In many

cases, the preconditioners are designed for a restricted type of PDE-constrained

optimization problem. For instance, it is common to assume that the operator cor-

responding to K is elliptic [13, 66, 71, 80, 84]. In this case, the matrix K is singular

if the underlying PDE has pure Neumann boundary conditions, and positive defi-

nite otherwise. Some papers [13, 66, 71] focus primarily on what Kouri et al. [51]

refer to as the “idealized case”, in which m = n and C = L = R = M, where M is

a positive definite mass matrix. This case corresponds to distributed control and

observations, with identical discretizations for the state and control variables.

Interior point methods Consider the nonlinear optimization problem

min f (x) (2.4)

s.t. g(x)≤ 0,

where we assume that f and g are convex and twice-differentiable. The interior

point algorithm described for this problem in [8] requires solving, at each Newton
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iteration, a linear system of the form:H(x,y) J(x)T 0

J(x) 0 I

0 Z Y


∆x

∆y

∆z

=

−∇ f (x)− J(x)T y

−g(x)− z

µe−Y Ze

 . (2.5)

Here H and J are Hessian and Jacobian matrices, respectively, that change at each

iteration, and Y and Z are positive diagonal matrices whose diagonal entries consist

of the current iterates of the variables y and z, and here I is the appropriately sized

identity matrix. As the iterations proceed, some of the entries approach zero. The

matrix in (2.5) can be symmetrized using a diagonal similarity transformation:

K =

I 0 0

0 I 0

0 0 Z1/2


−1H(x,y) J(x)T 0

J(x) 0 I

0 Z Y


I 0 0

0 I 0

0 0 Z1/2



=

H(x,y) J(x)T 0

J(x) 0 Z1/2

0 Z1/2 Y

 . (2.6)

When (2.4) is a quadratic program (QP) [61, Chapter 16], the matrices H and J

are constant. We can write this problem in standard form as:

min
x

cT x+
1
2

xT Hx s.t. Jx = b,x ≥ 0,

max
x,y,z

bT y− 1
2

xT Hx s.t. JT y+ z−Hx = c,z ≥ 0,
(2.7)

where inequalities are understood elementwise and y and z are vectors of the La-

grange multipliers. At each iteration of the interior point method [61] for a QP with

regularization discussed in [26, 40], the matrix to be solved can be written (after

reordering) as

K =

 −X −Z1/2 0

−Z1/2 H +ρI JT

0 J −δ I

 , (2.8)

where δ ,ρ ≥ 0 are regularization parameters and X and Z are non-negative diag-
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onal matrices (where, again, some of the entries approach zero as the iterations

progress). The case in which H = 0 corresponds to a linear program (LP) in stan-

dard form. The matrix in (2.8) is equivalent to the double saddle-point formulation

(1.2) up to a difference in sign.

Constrained weighted least-squares Consider the least-squares problem with lin-

ear equality constraints (see [7, sec. 2.2]):

min
y

||c−Gy||2

s.t. Ey = d.

The optimality conditions for this problem are I G 0

GT 0 ET

0 E 0


 r

y

λ

=

c

0

d

 , (2.9)

where λ is a vector of Lagrange multipliers.

Geophysical inverse problems Here we consider the example of a geophysical

inverse problem described in [41], which involves recovering a model based on

observations of a field. The regularized problem is defined by

min
m,u

1
2
||Qu−b||2 + β

2
||W (m−mre f )||2

s.t. A(m)u = q,

where β is a regularization parameter, m is a model, mre f is a reference model,

W is a weighting matrix, and A is a large, sparse, nonsingular matrix that encodes

the model conditions of the field being considered. If Gauss-Newton iterations are
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used, the linear system to be solved at each step takes the formQT Q AT 0

A 0 G

0 GT βW TW


δu

δλ

δm

=−

ru

rλ

rm

 , (2.10)

where G is the Jacobian of A and ru,rλ and rm are the discrete residuals arising

from the optimality conditions on the variables u,λ , and m, respectively. In the

typical case of sparse observations, G is sparse and QT Q has high nullity.

2.1.2 Examples arising from the numerical solution of partial
differential equations

Dual-dual finite element formulations Dual-dual finite element methods, as de-

scribed in [30], solve linear second-order elliptic equations in divergence form by

introducing the gradient as an explicit unknown. The matrices associated with the

resulting linear systems have the form A BT
1 0

B1 0 BT

0 B 0

 , (2.11)

where A is positive definite, and B1 and B have full row rank. We refer to [29] for

an example in hyperelasticity, and to [28] for an extension of Bramble-Pasciak CG

to these systems.

Magma mantle dynamics Rhebergen et al. [72] consider two-phase flow equa-

tions for magma/mantle dynamics on a domain in Ω ⊂ Rd , where 1 ≤ d ≤ 3. This

leads to the system of equations:
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−∇ ·
(

η(Du− 1
3

∇ ·u)
)
+∇p+∇pc = φe3

−∇ ·u+∇ · k∇p = ∇ · ke3,

−∇ ·u−ζ
−1 pc = 0,

where: u is the matrix velocity; Du is the total strain rate; p is the dynamic pressure;

pc =−η∇ ·u is an auxiliary variable; e3 is the unit vector in the direction aligned

with gravity; φ is the porosity; η is the shear viscosity; ζ is the bulk viscosity; k is

the permeability; and α = ζ/η −1/3. Decomposing the boundary of the domain

by ΓD ∪ΓN = ∇Ω where ΓD ∩ΓN = /0, the boundary conditions are given by

u = g on ΓD,

ηDu ·n−
(

1
3

η∇ ·u+ p+ pc

)
n = gN on ΓN ,

−k(∇p− e3) ·n = 0 on ∆Ω,

where g and gN are given boundary data and n is an outward unit normal vector.

The discrete problem then readsηK GT GT

G −kC 0

G 0 −ζ−1Q


 u

p

pc

=

 f

g

0

 ,

which we can reorder as−kC G 0

GT ηK GT

0 G −ζ−1Q


 p

u

pc

=

g

f

0

 , (2.12)

Here K and Q are positive definite, C is positive semidefinite, and G is assumed

to be rank-deficient by 1. Note that the matrix in (2.12) is equivalent to the one in

(1.2), up to a difference in sign.
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Boundary element tearing and interconnecting methods The inexact data-sparse

version of the boundary element tearing and interconnecting (BETI) method, as

presented by Langer et al. [55], results in a linear system of the form V −K 0

−KT −D BT

0 B 0


 t

u

λ

=

g

f

0

 . (2.13)

Here V , D, and K are all block diagonal matrices whose blocks correspond to dis-

cretized boundary integral operators for each element. The matrix V is positive

definite, while D generally has high nullity, as many of the blocks along the diag-

onal of D are singular. The null space of each singular block of D is spanned by

the vector (1,1, . . . ,1)T . The matrix B enforces the continuity of the local potential

vectors across subdomain boundaries. In preconditioning (2.13), Langer et al. use

a regularization technique to make D nonsingular.

Darcy-Stokes Following the formulation of [10], the linear system associated

with the Darcy-Stokes equations can be written in block form as: Ap AT
Γ

0

−AΓ A f BT
f

0 B f 0


︸ ︷︷ ︸

=:KDS

φh

uh

ph

=

 fp,h

f f ,h

gh

 , (2.14)

where φh is the piezometric head (essentially a scaled and shifted version of the

Darcy pressure variable), and uh and ph are the Stokes velocity and pressure, re-

spectively. In the block matrix, Ap is the (SPD) Darcy matrix, A f is the vector

Laplacian (also SPD), AΓ is the coupling matrix encoding the interface conditions,

and B f is a discrete divergence operator.

In its original formulation this matrix is nonsymmetric and has a positive (rather

than negative) definite (2,2)-block. However, we can symmetrize the system (and

make it conform to our assumptions on positive vs. negative diagonal blocks) by
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writing  Ap −AT
Γ

0

−AΓ −A f −BT
f

0 −B f 0


︸ ︷︷ ︸

=: ˜KDS

 φh

−uh

−ph

=

 fp,h

f f ,h

gh

 .

We refer also to [12] for further details on preconditioning.

Poromechanics Ferronato et al. [21] present a formulation for coupled porome-

chanical equations that leads to a (reordered) Jacobian matrix of the form

KP =

 K −Q 0

QT P γBT

0 −B A

 ,

where: K is an SPD elastic stiffness matrix; P is a diagonal SPD matrix represent-

ing the fluid flow capacity; A is an SPD mass matrix for Darcy’s velocity in mixed

form; Q and B are rectangular blocks coupling displacements and Darcy’s veloc-

ities to the pressure unknowns; and γ is a positive parameter equal to either ∆t or

0.5∆t, where ∆t is the integration timestep.

As in the Darcy-Stokes case, we can transform the matrix KP into a symmet-

ric matrix with alternating positive/negative definiteness of the diagonal blocks by

applying a matrix transformation to obtain a symmetric matrix ˜KP:

˜KP = KP

I 0 0

0 −I 0

0 0 1
γ
I


︸ ︷︷ ︸

=:Λ

=

 K Q 0

QT −P BT

0 B 1
γ
A

 .

2.2 Saddle-point systems with a singular leading block
Parts of this thesis deal with classical saddle-point systems with singular leading

blocks. In this section, we describe some examples of applications that generate

such systems. Some of these examples are, in fact, double saddle-point systems
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described in Section 2.1, where the systems are re-ordered and partitioned into

block-2×2 systems.

Time-harmonic Maxwell equations In the time-harmonic Maxwell equations in

lossless media with perfectly conducting boundaries and constant coefficients, the

problem is to find the vector field u and multiplier p such that

∇×∇×u+∇p = f in Ω,

∇ ·u = 0 in Ω,

u×n = 0 on ∂Ω,

p = 0 on ∂Ω,

where the domain Ω is a subset of R2 or R3. Discretizing with Nédéléc finite

elements for u and nodal elements for p [39, Section 2.2] yields a linear system of

the form [
A BT

B 0

][
u

p

]
=

[
g

0

]
, (2.15)

where A is a discrete curl-curl operator, B is a negative discrete divergence operator,

and M is the finite element mass matrix. The matrix A satisfies nullity(A) = m (a

situation we refer to later in this thesis as A being lowest-rank), and its null space

is given by the space of gradient functions.

Interior point methods While interior point methods were discussed in the previ-

ous section as an example of a double saddle-point system, we focus here partic-

ularly on the solution of a QP without regularization. Each step of a primal-dual

interior point method requires solving a linear system of the form [24]: H JT −I

J 0 0

−Z 0 −X


 ∆x

−∆y

∆z

=

−c−Hx+ JT y+ z

b− Jx

XZe− τe

 , (2.16)

where X and Z are diagonal matrices consisting of the current x and z iterates,

respectively, τ > 0 is the barrier parameter, and e is a vector of ones. Because X is
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diagonal, we can perform a step of block Gaussian elimination to reduce (2.16) to

block-2×2 form:[
H +X−1Z JT

J 0

][
∆x

∆y

]
=

[
−c−HxJT y+ τX−1e

b− Jx

]
. (2.17)

Some entries of both X and Z approach zero as the IPM iterations proceed, so

the leading block becomes increasingly ill-conditioned, with the largest magnitude

entries occurring along the diagonal. Thus the leading block may become numeri-

cally singular, particularly if H is singular.

Double saddle-point systems with an all-zero (3, 3)-block We note that all double

saddle-point systems with E = 0 can be written as a classical saddle-point system

with a singular leading block. Specifically, given a linear systemA BT 0

B −D CT

0 C 0


x

y

z

=

p

q

r

 ,

we obtain a classical saddle-point system with a rank-deficient leading block by

reordering the second and third block unknowns: A 0 BT

0 0 C

B CT −D


x

z

y

=

p

r

q

 .

Thus, of our examples from Section 2.1 the following can also be considered ex-

amples of classical saddle-point systems with a singular leading block: constrained

weighted least-squares (2.9); geophysical inverse problems (2.10); dual-dual finite

element formulations (2.11); boundary element tearing and interconnecting meth-

ods (2.13); and the Darcy-Stokes equations (2.14), along with some finite element

formulations of the Stokes equations [18, 31].
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Chapter 3

Eigenvalue bounds when A is
positive definite

3.1 Inertia and solvability conditions
We first discuss the inertia and conditions for nonsingularity of K defined in Equa-

tion 1.2. Recall that the inertia of a matrix is the triplet denoting the number of its

positive, negative, and zero eigenvalues [45, Definition 4.5.6].

Proposition 3.1. The following conditions are necessary for K to be invertible:

(i) ker(A)∩ker(B) = {0};

(ii) ker(BT )∩ker(D)∩ker(C) = {0};

(iii) ker(CT )∩ker(E) = {0}.

A sufficient condition for K to be invertible is that A, S1, and S2 are invertible.

Proof. We begin with the proof of statement (i) by assuming to the contrary that

the intersection of the kernels is not empty – namely, there exists a nonzero vector

x such that Ax = Bx = 0. This would mean that the block vector
[
xT 0 0

]T
was

a null vector of K , which would imply that K was singular. Similar reasoning

proves (ii) and (iii).

34



For the sufficient condition, we observe that when A, S1, and S2 are invertible

we can write a block-LDLT factorization of K :A BT 0

B −D CT

0 C E

=

 I 0 0

BA−1 I 0

0 −CS−1
1 I


A 0 0

0 −S1 0

0 0 S2


︸ ︷︷ ︸

=:D

I A−1BT 0

0 I −S−1
1 CT

0 0 I

 .

(3.1)

When A and S1 are invertible, S2 is well-defined and K is invertible if and only if

D is invertible. The stated result follows.

In this chapter and in Chapter 4, we assume that the sufficient condition holds:

namely, that A, S1, S2 are invertible. Given our assumptions that D and E are

semidefinite, this is equivalent to A, S1, and S2 being positive definite. This al-

lows us to obtain the following result on the inertia of K , which will be useful in

deriving our bounds.

Lemma 3.2 (Inertia of a double saddle-point matrix). If A, S1, and S2 are positive

definite, the matrix K has n+ p positive eigenvalues and m negative eigenvalues.

Proof. When A, S1, and S2 are symmetric positive definite, Sylvester’s Law of

Inertia tells us the inertia of K is the same as that of D defined in (3.1); the stated

result follows.

Corollary 3.3. Let a,b,c,d, and e be scalars with a > 0, d,e ≥ 0, s1 := d+ b2

a > 0

and s2 := e+ c2

s1
> 0. Any cubic polynomial of the form

p(λ ) = λ
3 +(d −a− e)λ 2 +(ae−ad −de−b2 − c2)λ +(ade+ac2 +b2e)

has two positive real roots and one negative real root.

Proof. Consider the 3×3 matrix

P =

a b 0

b −d c

0 c e

 .
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(

) y=0

x
 =

 0

Figure 3.1: Plot of a cubic polynomial p(λ ) of the form described in Corol-
lary 3.3, with two positive roots and one negative root.

Using the characteristic polynomial of P, it is straightforward to confirm that

det(λ I −P) = λ
3 −Tr(P)λ 2 − 1

2
(
Tr(P2)−Tr2(P)

)
λ −det(P)

= p(λ ).

Because P is symmetric its eigenvalues are real, and because P is a double saddle-

point matrix with n = m = p = 1, the two positive and one negative root follow by

Lemma 3.2. See Figure 3.1 for a graphical illustration.

3.2 Derivation of bounds
Let us define three cubic polynomials, as follows:

p(λ ) = λ
3 +(µD

max −µ
A
min)λ

2 −
(
µ

A
minµ

D
max +(σB

max)
2 +(σC

min)
2)

λ +µ
A
min(σ

C
min)

2;

(3.2a)
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q(λ ) = λ
3 +(µD

min −µ
A
max −µ

E
max)λ

2

+
(
µ

A
maxµ

E
max −µ

A
maxµ

D
min −µ

D
minµ

E
max − (σB

max)
2 − (σC

max)
2)

λ

+
(
µ

A
maxµ

D
minµ

E
max +µ

A
max(σ

C
max)

2 +(σB
max)

2
µ

E
max

)
;

(3.2b)

r(λ ) = λ
3 +(µD

max −µ
A
min −µ

E
min)λ

2

+
(
µ

A
minµ

E
min −µ

A
minµ

D
max −µ

D
maxµ

E
min − (σB

max)
2 − (σC

max)
2)

λ

+(µA
minµ

D
maxµ

E
min +µ

A
min(σ

C
max)

2 +(σB
max)

2
µ

E
min).

(3.2c)

All three of these polynomials are of the form described in Corollary 3.3. Thus,

all roots are real and each polynomial has two positive roots and one negative root.

For notational convenience, we will denote the negative root of p(λ ), for example,

by p−, and use subscripts max and min to distinguish between the two positive

roots. For example, p+max will denote the largest positive root and p+min will denote

the smallest positive root. The same notational rules apply to q(λ ) and r(λ ).

Theorem 3.4 (Eigenvalue bounds, matrix K ). Suppose A is symmetric positive

definite. Using the notation established in Equation 3.2, the eigenvalues of K are

bounded within the intervalsr−,
µA

max −
√

(µA
max)

2 +4(σB
min)

2

2

 ⋃ [
p+min,q

+
max

]
. (3.3)

Proof. Upper bound on positive eigenvalues. We let v =
[
xT yT zT

]T
be a

vector with x ∈ Rn, y ∈ Rm, and z ∈ Rp. Because K is symmetric, we can de-

rive an upper bound on the eigenvalues of K by bounding the value of vT K v
vT v . We

can write

vT K v = xT Ax− yT Dy+ zT Ez+2xT BT y+2yTCT z. (3.4)

We use Cauchy-Schwarz to bound the mixed bilinear forms – such as xT BT y – by,

for example,

−||x|| · ||BT y|| ≤ xT BT y ≤ ||x|| · ||BT y||.

Using this and the eigenvalues/singular values of the block of K , we can bound
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(3.4) from above by

vT K v ≤ µ
A
max||x||2 −µ

D
min||y||2 +µ

E
max||z||2 +2σ

B
max||x|| · ||y||+2σ

C
max||y|| · ||z||

=
[
||x|| ||y|| ||z||

]µA
max σB

max 0

σB
max −µD

min σC
max

0 σC
max µE

max


︸ ︷︷ ︸

=:R

||x||||y||
||z||

 .

An upper bound on vT K v
vT v is therefore given by the maximal eigenvalue of R. The

largest positive eigenvalue of K is therefore less than or equal to the largest root

of the characteristic polynomial det(λ I −R), which yields the desired result.

Lower bound on negative eigenvalues. The proof is similar to that for the

upper bound on the positive eigenvalues. Using Cauchy-Schwarz and the eigenval-

ues/singular values of the blocks, we bound (3.4) from below by writing

vT K v ≥ µ
A
min||x||2 −2σ

B
max||x|| · ||y||−µ

D
max||y||2 −2σ

C
max||y|| · ||z||+µ

E
min||z||2

=
[
||x|| ||y|| ||z||

] µA
min −σB

max 0

−σB
max −µD

max −σC
max

0 −σC
max µE

min


︸ ︷︷ ︸

=:R

||x||||y||
||z||

 .

A lower bound on vT K v
vT v is therefore given by the smallest eigenvalue of R. Taking

the characteristic polynomial of R yields the stated result.

Upper bound on negative eigenvalues. We derive an upper bound on the neg-

ative eigenvalues of K by finding a lower bound on the negative eigenvalues of

K −1. We begin by partitioning K as

K =

 A BT 0

B −D CT

0 C E

=

[
K2 C̄T

C̄ E

]
, (3.5)
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where K2 =

[
A BT

B −D

]
and C̄ =

[
0 C

]
. By [7, Equation (3.4)],

K −1 =

[
K −1

2 +K −1
2 C̄T S−1

2 C̄K −1
2 −K −1

2 C̄S−1
2

−S−1
2 C̄K −1

2 S−1
2

]
,

where S2 = E −C̄K −1
2 C̄T = E +CS−1

1 CT . Notice that

K −1 =

[
K −1

2 0

0 0

]
+

[
K −1

2 C̄T

−I

]
S−1

2

[
C̄K −1

2 −I
]
.

Because the second term is positive semidefinite, we conclude that the eigenvalues

of K −1 are greater than or equal to the eigenvalues of

[
K −1

2 0

0 0

]
. Thus, a lower

bound on the negative eigenvalues of K −1
2 is also a lower bound on the negative

eigenvalues of K −1. This means that an upper bound on the negative eigenvalues

of K2 is also an upper bound on the negative eigenvalues of K . The desired result

now follows from Silvester and Wathen [81, Lemma 2.2].

Lower bound on positive eigenvalues. We begin by noting that, because E is

positive semidefinite, the eigenvalues of K are greater than or equal to those of

KE=0 =

A BT 0

B −D CT

0 C 0

 .

Moreover, K and KE=0 have the same inertia, by Lemma 3.2. Thus, the smallest

positive eigenvalue of K is greater than or equal to the smallest positive eigenvalue

of KE=0. We therefore obtain a lower bound on the positive eigenvalues of K by

using energy estimates with KE=0. The eigenvalue problem associated with KE=0

is A BT 0

B −D CT

0 C 0


x

y

z

= λ

x

y

z

 . (3.6)
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The third block row of (3.6) gives z = 1
λ

Cy. The first block row gives

BT y = (λ I −A)x.

We now consider two cases based on the value of λ .

Case I: λ < µA
min: If λ < µA

min, then (λ I−A) is negative definite, so we can write

x = (λ I −A)−1BT y.

Substituting this into the second block row of (3.6), pre-multiplying by yT and

rearranging gives

λyT y = yT B(λ I −A)−1BT y− yT Dy+
1
λ

yTCTCy (3.7a)

≥ (σB
max)

2

λ −µA
min

yT y−µ
D
maxyT y+

(σC
min)

2

λ
yT y. (3.7b)

Dividing by yT y, using the fact that λ > 0 and λ −µA
min < 0, and rearranging yields

λ
3 +(µD

max −µ
A
min)λ

2 −
(
µ

A
minµ

D
max +(σB

max)
2 +(σC

min)
2)

λ +µ
A
min(σ

C
min)

2︸ ︷︷ ︸
=p(λ )

≤ 0.

By applying Corollary 3.3 with a = µA
min, b = σB

max, c = σC
min, and d = µD

max, we

know that this polynomial has two positive roots. Moreover, p(λ ) is negative be-

tween these two roots: this follows from the fact that p(0)> 0 and limλ→∞ p(λ ) =

∞. Therefore, we conclude that in this case λ is greater than or equal to the smaller

positive root of p(λ ), namely p+min.

Case II: λ ≥ µA
min: If λ ≥ µA

min, then (λ I −A) may be indefinite (and possibly

singular). However, we can still obtain a lower bound for λ by observing that µA
min

is greater than p+min. As stated earlier, p(λ ) has two positive roots and the value of

p(λ ) is negative between those roots. Moreover, these are the only positive values
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of λ for which p(λ )< 0. We observe, after simplification, that

p(µA
min) =−(σB

max)
2
µ

A
min < 0.

Therefore, the bound λ ≥ p+min also holds in this case, which completes the proof.

Remark 3.5. From Theorem 3.4 we see that when B and C are rank deficient, the

internal bounds are zero. Similarly, when A is rank-deficient the lower positive

bound is zero. Under mild conditions on the ranks and kernels of D and E, the

statement of the theorem and its proof may be revised to obtain nonzero internal

bounds in this case. However, doing so is rather technical, and since the case of

full rank B and C is common, further details on this end case are omitted.

The matrix K0 is a special case of K , and bounds on its eigenvalues can be

obtained as a direct consequence of Theorem 3.4.

Corollary 3.6 (Eigenvalue bounds, matrix K0). Define the following three cubic

polynomials as special cases of p,q and r defined in (3.2) with D = E = 0:

p̂(λ ) = λ
3 −µ

A
minλ

2 −
(
(σB

max)
2 +(σC

min)
2)

λ +µ
A
min(σ

C
min)

2; (3.8a)

q̂(λ ) = λ
3 −µ

A
maxλ

2 −
(
(σB

max)
2 +(σC

max)
2)

λ +µ
max
A (σC

max)
2; (3.8b)

r̂(λ ) = λ
3 −µ

A
minλ

2 −
(
(σB

max)
2 +(σC

max)
2)

λ +µ
A
min(σ

C
max)

2. (3.8c)

Using (3.8), the eigenvalues of K0 are bounded within the intervalsr̂−,
µA

max −
√

(µA
max)

2 +4(σB
min)

2

2

 ⋃ [
p̂+min, q̂

+
max

]
. (3.9)

The proof of Corollary 3.6 is omitted; it is similar to the proof of Theorem 3.4,

with simplifications arising from setting D = E = 0.

3.3 Tightness of the bounds
While the tightness of the bounds we have obtained depends on the problem at

hand, all bounds presented in this section are attainable, as we will demonstrate
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with small examples. For the extremal bounds (upper positive and lower neg-

ative), we note that both bounds hold for all double saddle-point matrices with

n = m = p = 1, as the characteristic polynomial of the 3× 3 matrix is the same

as the polynomial given in the upper positive and lower negative bounds of Theo-

rem 3.4.

For the upper bound on negative eigenvalues, we consider the example (with

n = m = 2, and p = 1):

K =


µA

max 0 σB
min 0 0

0 µA
max 0 σB

min 0

σB
min 0 0 0 0

0 σB
min 0 −µD σC

0 0 0 σC µE

.


We can permute the rows and columns of K to obtain a block diagonal matrix:

KD =


µA

max σB
min 0 0 0

σB
min 0 0 0 0

0 0 µA
max σB

min 0

0 0 σB
min −µD σC

0 0 0 σC µE

 .

The upper left block of KD has as an eigenvalue µA
max−

√
(µA

max)
2+4(σB

min)
2

2 , which is

the bound given by Theorem 3.4.

Finally, for the lower positive bound, we consider the matrix (with n = m =

p = 2)

K =



µA
min 0 σB

max 0 0 0

0 µA
min 0 σB

max 0 0

σB
max 0 −µD

max 0 σC
min 0

0 σB
max 0 −µD

max 0 σC
min

0 0 σC
min 0 0 0

0 0 0 σC
min 0 µE


.

As in the previous example, we can permute the rows and columns to obtain a
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block diagonal matrix:

KD =



µA
min σB

max 0 0 0 0

σB
max −µD

max σC
min 0 0 0

0 σC
min 0 0 0 0

0 0 0 µA
min σB

max 0

0 0 0 σB
max −µD

max σC
min

0 0 0 0 σC
min µE


.

The characteristic polynomial of the upper left block is precisely p(λ ) defined in

(3.2a); thus, the bound of Theorem 3.4 is obtained.

3.4 Numerical experiments
In this section we consider two slightly different variants of a Poisson control prob-

lem as in [71]. First, we consider a distributed control problem with Dirichlet

boundary conditions:

min
u, f

1
2
||u− û||2L2(Ω)+

β

2
|| f ||2L2(Ω) (3.10a)

s.t. −∇
2u = f in Ω, (3.10b)

u = g on ∂Ω, (3.10c)

where u is the state, û is the desired state, 0 < β ≪ 1 is a regularization parameter,

f is the control, g is a source function, and Ω is the domain with boundary ∂Ω.

After discretization, we can write the Lagrangian as:

L =
1
2

uT
h Muh −uT

h b+ ||û||22 +β f T
h M fh +λ

T (Ku−M fh),

where: M is the discrete mass matrix; K is the discrete Laplacian stiffness matrix;

uh and fh are the finite element discretizations of u and f ; b is a vector of inner

products of û with the finite element basis functions; d contains the terms coming

from the boundary values of uh; and λ is the Lagrange multiplier corresponding to

the constraint. Using the stationarity conditions of L , defined by setting ∇L = 0,
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we obtain the system M K 0

K 0 −M

0 −M βM


︸ ︷︷ ︸

=:K

uh

λ

fh

=

b

d

0

 , (3.11)

where M is a symmetric positive definite mass matrix and K is a symmetric positive

definite discrete Laplacian. All blocks of K are square (i.e., n = m = p).

As a second experiment we consider a boundary control problem:

min
u, f

1
2
||u− û||2L2(Ω)+

β

2
||g||2L2(∂Ω) (3.12a)

s.t. −∇
2u = 0 in Ω, (3.12b)

∂u
∂n

= g on ∂Ω, (3.12c)

which after discretization yields the linear systemM K 0

K 0 −E

0 −ET βMb


︸ ︷︷ ︸

=:K∂

uh

λ

gh

=

b∂

d∂

0

 , (3.13)

where Mb ∈ Rnb×nb (with nb < n) is a boundary mass matrix. Thus, in the dis-

tributed control problem the mass matrix in the (2,3)/(3,2)-block is square and in

the boundary control problem we consider a rectangular version of it.

In all experiments that follow we set Ω to be the unit square. We use uniform

Q1 finite elements and set β = 10−3. The MATLAB code of Rees [70] was used

to generate the linear systems.

Here we compare the eigenvalues of K (3.11) and K∂ (3.13) to the eigenvalue

bounds predicted by Theorem 3.4. We use MATLAB’s eigs/svds functions to

compute the minimum and maximum eigenvalues/singular values of the matrix

blocks M,K,Mb, and E.

We note that for the distributed control matrix K , all blocks are square and
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the (3,3)-block is positive definite; therefore, we can also use our results to obtain

bounds on the re-ordered matrix

Kflip =

βM −M 0

−M 0 K

0 K M

 . (3.14)

Both orderings generate the same extremal bounds but different interior bounds.

2-2 2-3 2-4 2-5 2-6

h

10-10

10-5

100

Original ordering

Flipped ordering

Figure 3.2: Largest and smallest positive eigenvalues of K . Blue circles
indicate the eigenvalues, and black lines the bounds given by Theo-
rem 3.4. The dashed lines indicate the bounds obtained by applying
Theorem 3.4 to the reordered matrix Kflip.

Comparisons of the predicted eigenvalue bounds to the actual eigenvalues are

shown in Figures 3.2-3.3 (distributed control) and 3.4-3.5 (boundary control). In

the distributed control case, we show the bounds obtained for both the original

matrix K and those for the reordered matrix Kflip. In all cases, the bounds for

the extremal eigenvalues are quite tight: this is because the K block has the largest

eigenvalues (O(1) compared to O(h2) for the others – see [17, Proposition 1.29 and

Theorem 1.32]). Therefore, the largest positive and smallest negative eigenvalue

of both K and K∂ tend towards µK
max and −µK

max, respectively. Referring to the
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2-2 2-3 2-4 2-5 2-6

h

-10-5

-10-4

-10-3

-10-2

-10-1

-100

-101

Original ordering

Flipped ordering

Figure 3.3: Largest and smallest negative eigenvalues of K . Blue circles
indicate the eigenvalues, and black lines the bounds given by Theo-
rem 3.4. The dashed lines indicate the bounds obtained by applying
Theorem 3.4 to the reordered matrix Kflip.

proofs of the extremal bounds in Theorem 3.4, the 3× 3 reduced matrices R will

contain a µK
max (or −µK

max) term, with other lower-order terms. This means that the

extremal eigenvalues of R (and therefore the predicted eigenvalue bounds) will also

be close to ±µK
max.

It is more difficult to capture the interior bounds. In the distributed control

case, each ordering (either the original ordering with M in the leading block or the

flipped ordering with βM in the leading block) gives one bound that is quite tight

and one that is loose. In the boundary control case, both interior bounds are loose.
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2-2 2-3 2-4 2-5 2-6

h

10-10

10-5

100

Figure 3.4: Largest and smallest positive eigenvalues of K∂ . Blue circles
indicate the eigenvalues, and black lines the bounds given by Theorem
3.4.

2-2 2-3 2-4 2-5 2-6

h

-10-5

-10-4

-10-3

-10-2

-10-1

-100

-101

Figure 3.5: Largest and smallest positive eigenvalues of K∂ . Blue circles
indicate the eigenvalues, and black lines the bounds given by Theorem
3.4.
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Chapter 4

Preconditioning when A is
positive definite

We consider the block diagonal preconditioner:

M :=

A 0 0

0 S1 0

0 0 S2

 , (4.1)

where

S1 = D+BA−1BT ; S2 = E +CS−1
1 CT . (4.2)

We assume that S1 and S2 are both positive definite.

The preconditioner M is based on Schur complements. It has been considered

in, for example, [11, 48, 84], and is a natural extension of [49, 60] for block-

2× 2 matrices of the form (1.3). In practice the Schur complements S1 and S2

defined in (4.2) are too expensive to form and invert exactly. It is therefore useful

to consider approximations to those matrices when a practical preconditioner is to

be developed, and we include an analysis of that scenario.

The properties of the preconditioning approach (4.2) have been the focus of

several recent articles. The paper [84] analyzes the performance of a block-n× n

block diagonal preconditioner analogous to M defined in (4.1), concentrating on

the spectral properties of the continuous preconditioned operator. The paper [65]
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provides additional analytical results and bounds, and in [64] the concentration

of eigenvalues near zero is discussed and an alternative preconditioning approach

is offered for multiple saddle-point systems with a larger number of blocks. The

papers [11, 48] focus their analyses on the case where all diagonal blocks of K

except A are zero. See also Remark 4.6.

Our analysis extends the work in the literature in a few useful ways. We use

energy estimates and other analytical tools to prove our results in a variety of cases.

Our proof techniques enable a refined analysis of the eigenvalues of the unprecon-

ditioned matrix when only D = 0, which is an interesting case because it arises

commonly in applications such as PDE-constrained optimization [71]. Here we

obtain bounds that cannot be easily derived from the analysis of the case in which

both D and E are (potentially) nonzero. Finally and most significantly, we pro-

vide eigenvalue bounds for the preconditioned system when approximations of the

leading block and Schur complement inversions are used in the challenging case

where D,E ̸= 0. Our assumptions are minimal and the analysis is broader than the

analysis in [48] for the unregularized matrix K0.

4.1 Eigenvalue bounds for block diagonal
preconditioning

We now derive bounds for the preconditioned matrix M−1K , with M defined in

(4.1).

4.1.1 Inertia and eigenvalue multiplicity

We begin with some observations on inertia and eigenvalue multiplicity. To sim-

plify the presentation and proof of this result, we restrict ourselves to the case that

B and C have full row rank. In some later results, we will lift this restriction to

allow for rank-deficient B and C.

Theorem 4.1 (Inertia and algebraic multiplicity, matrix M−1K ). Let K be de-

fined as in (1.2) and M as in (4.1), and suppose that B and C have full row rank.

The preconditioned matrix M−1K has:

(i) m negative eigenvalues;
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(ii) p eigenvalues in (0,1);

(iii) n−m eigenvalues equal to 1; and

(iv) m eigenvalues greater than 1.

Proof. Because M is symmetric positive definite, M 1/2 exists and is invertible,

and the inertias of M−1/2K M−1/2 and M−1K are equal to the inertia of K .

Thus, Lemma 3.2 establishes that M−1K has n+ p positive and m negative eigen-

values, which proves (i).

For (ii)-(iv) we split the n+ p positive eigenvalues into eigenvalues less than,

equal to, or greater than 1. For this we compute the inertia of the shifted, split-

preconditioned matrix

M−1/2K M−1/2 − I =

0 B̃T 0

B̃ −D̃− I C̃T

0 C̃ Ẽ − I

 ,

where B̃ = S−1/2
1 BA−1/2, C̃ = S−1/2

2 CS−1/2
1 , D̃ = S−1/2

1 DS−1/2
1 , Ẽ = S−1/2

2 ES−1/2
2 ,

and I is an identity matrix of appropriate dimension (with slight abuse of notation,

we use I to denote an identity matrix of any size). The number of positive, nega-

tive, and zero eigenvalues of M−1/2K M−1/2 − I will be equal to the number of

eigenvalues of M−1K greater than, less than, or equal to 1, respectively.

Noting that Ẽ +C̃C̃T = I, we write

M−1/2K M−1/2 − I =

[
0 B

BT T

]
,

where

T :=

[
−D̃− I C̃T

C̃ −C̃C̃T

]
and B =

[
B̃T 0

]
.

The matrix B is in Rn×(m+p) and has rank m. We define a matrix

N :=

[
0m×p

Ip

]
,

50



where 0m×p is the m × p zero matrix and Ip is the p × p identity matrix. The

columns of N form a basis for ker(B). Denote the inertia of M by In(M) =

(n+,n−,n0) . It is well known (see, e.g., [36, Lemma 3.4]) that

In(M−1/2K M−1/2 − I) = In(NT T N)+(m,m,n−m).

Because NT T N = −C̃C̃T is negative definite, this gives In(M−1/2K M−1/2 −
I) = (m,m+ p,n−m), which yields (ii)-(iv).

4.1.2 Derivation of bounds

It is possible to obtain eigenvalue bounds on the preconditioned system M−1K

by using the results of Theorem 3.4 on the (symmetric) preconditioned system

M−1/2K M−1/2; however, some of the resulting bounds will be loose. The rea-

son for this is that Theorem 3.4 uses the R-matrix technique, which assumes no

relationships between the blocks of K and considers each block individually. In

this section, we will derive tight eigenvalue bounds using energy estimates, which

allow us to fully exploit the relationships between the blocks of the preconditioned

system.

We begin by recalling a result that follows (after minor notational adjustments)

from Horn and Johnson [45, Theorem 7.7.3], which will be useful throughout the

analysis that follows.

Lemma 4.2. Let M and N be symmetric positive semidefinite matrices such that

M+N is positive definite. Then all eigenvalues of (M+N)−1M are in [0,1].

The following result follows directly from [84, Lemma A.1] and simplifies the

presentation of some of the subsequent results in this section.

Lemma 4.3. The roots of the cubic polynomial λ 3 −λ 2 −2λ +1 are given by

λ =

{
2cos

(
π

7

)
, 2cos

(
3π

7

)
, 2cos

(
5π

7

)}
,

which are approximately equal to 1.8019, 0.4450, and −1.2470, respectively.
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The case D = E = 0

When D and E are both zero, M−1K has six distinct eigenvalues given by: 1,
1±

√
5

2 , 2cos
(

π

7

)
,2cos

(3π

7

)
, and 2cos

(5π

7

)
. The last three are the roots of the

cubic polynomial λ 3 − λ 2 − 2λ + 1, per Lemma 4.3. The proof follows directly

from [84, Theorem 2.3]. See also [11, 48] for later proofs.

The case D = 0 and E ⪰ 0

When D= 0, it is necessary that B have full row rank in order for S1 to be invertible;

however, C may be rank-deficient. Suppose that CT has nullity k. The following

result holds.

Theorem 4.4 (Eigenvalue bounds, matrix M−1K , D = 0, E ̸= 0). When D =

0 and E ̸= 0, the eigenvalues of M−1K are given by: λ = 1 with multiplicity

n −m + k; λ = 1±
√

5
2 , each with multiplicity m − p + k; and p − k eigenvalues

located in each of the three intervals:

• I1 =
[
2cos

(5π

7

)
, 1−

√
5

2

)
≈ [−1.618,−0.618)

• I2 =
[
2cos

(3π

7

)
,1
)
≈ [0.4450,1)

• I3 =
(

1+
√

5
2 ,2cos

(
π

7

)]
≈ (1.618,1.8019]

Proof. We write out the (left-)preconditioned operator

M−1K =

 I A−1BT 0

S−1
1 B 0 S−1

1 CT

0 S−1
2 C S−1

2 E

 ,

with corresponding eigenvalue equations

x+A−1BT y = λx; (4.3a)

S−1
1 Bx+S−1

1 CT z = λy; (4.3b)

S−1
2 Cy+S−1

2 Ez = λ z. (4.3c)

We obtain n−m eigenvectors for λ = 1 by choosing x ∈ ker(B) and y,z = 0.
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By considering y ∈ ker(C) and z = 0, we obtain eigenvalues λ = 1±
√

5
2 , each with

geometric multiplicity m− p+ k.

For the remaining eigenvalues, we assume that z ̸= 0 and λ /∈ {1, 1±
√

5
2 }. From

(4.3a) we obtain

x =
1

λ −1
A−1BT y,

which we substitute into (4.3b) and rearrange to get

y =
λ −1

λ 2 −λ −1
S−1

1 CT z.

Substituting this into (4.3c) gives

λ −1
λ 2 −λ −1

S−1
2 CS−1

1 CT z+S−1
2 Ez = λ z. (4.4)

Because S2 = E +CS−1
1 CT , we can write S−1

2 E = I − S−1
2 CS−1

1 CT . We substitute

this into (4.4) and rearrange to obtain(
−λ

2 +2λ

)
S−1

2 CS−1
1 CT z =

(
λ

3 −2λ
2 +1

)
z.

Let {δ j,v j}, for 1 ≤ j ≤ p, denote an eigenpair of S−1
2 CS−1

1 CT . For k of these

eigenpairs corresponding to v j ∈ ker(CT ), we note that

S−1
2 Ev j = (I −S−1

2 CS−1
1 CT )v j = v j,

and therefore
[
0 0 vT

j

]T
is an eigenvector of M−1K with λ = 1. For the p−k

remaining eigenpairs, we have 0 < δ j ≤ 1 (by Lemma 4.2). We can then write(
−λ

2
j +2λ j

)
δ jz j =

(
λ

3
j −2λ

2
j +1

)
z j,

where λ j corresponds to an eigenpair {δ j,z j} of S−1
2 CS−1

1 CT . Because z j ̸= 0 this

implies that

λ
3
j − (2−δ j)λ

2
j −2δ jλ j +1 = 0. (4.5)

Thus, each of the p− k positive eigenvalues δ j of S−1
2 CS−1

1 CT yields three distinct
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corresponding eigenvalues λ
(1)
j ,λ

(2)
j , and λ

(3)
j of M−1K , corresponding to the

roots of the cubic polynomial (4.5). These 3(p−k) eigenvalues, combined with the

eigenvalues described earlier, account for all eigenvalues of M−1K . Substituting

δ j = 0 and δ j = 1 into (4.5) gives us the three intervals for these eigenvalues stated

in the theorem.

The case D ⪰ 0 and E = 0

When D⪰ 0 and E = 0, the bounds are the same as when D and E are both nonzero,

which are given next.

The case D,E ⪰ 0

Theorem 4.5 (Eigenvalue bounds, matrix M−1K , D,E ⪰ 0). The eigenvalues of

M−1K are bounded within the intervals[
−1+

√
5

2
,
1−

√
5

2

]
∪
[

2cos
(

3π

7

)
,2cos

(
π

7

)]
,

which are approximately [−1.618,−0.618]∪ [0.4450,1.8019].

Remark 4.6. A proof for the upper bound on the positive eigenvalues is presented

in [84, Theorem 2.1] and one for the lower bound on the positive eigenvalues is

given in [84, Theorem 2.2]. A different proof for the four bounds appears in [64,

Theorem 5.3]. We provide below an alternative technique of proof based on energy

estimates.

Proof. Upper bound on positive eigenvalues. We know from Theorem 4.1 that

the upper bound on positive eigenvalues is greater than 1, so we assume here that

λ > 1. We begin by writing the eigenvalue equations as

Ax+BT y = λAx; (4.6a)

Bx−Dy+CT z = λS1y; (4.6b)

Cy+Ez = λS2z. (4.6c)
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From (4.6a) we get

x =
1

λ −1
A−1BT y, (4.7)

and from (4.6c) we get z = (λS2 −E)−1Cy (because λ > 1, we are guaranteed that

λS2 −E = (λ − 1)E + λCS−1
1 CT is positive definite). Substituting these values

back into (4.6b) and pre-multiplying by yT gives(
1

λ −1

)
yT BA−1BT y+ yT (D+λS1)y− yTCT (λS2 −E)−1Cy = 0.

Recalling that S1 = D+BA−1BT we can rewrite this as(
1

1−λ
+λ

)
yT S1y+

(
1− 1

1−λ

)
yT Dy− yTCT (λS2 −E)−1Cy = 0. (4.8)

Because λ > 1, we have

yTCT (λS2 −E)−1Cy ≤ yTCT
(

λ (S2 −E)
)−1

Cy

=
1
λ

yTCT (CS−1
1 CT )−1

Cy.

Therefore, (4.8) gives(
1

1−λ
+λ

)
yT S1y+

(
1− 1

1−λ

)
yT Dy− 1

λ
yTCT (CS−1

1 CT )−1Cy ≤ 0. (4.9)

Next, we let ỹ = S1/2
1 y and rewrite the first and third terms in (4.9) in terms of ỹ:(

1
1−λ

+λ

)
ỹT ỹ+

(
1− 1

1−λ

)
yT Dy− 1

λ
ỹT S−1/2

1 CT (CS−1
1 CT )−1CS−1/2

1︸ ︷︷ ︸
:=P

ỹ ≤ 0.

(4.10)

Because P defined in (4.10) is an orthogonal projector, we have ỹT Pỹ ≤ ỹT ỹ.

And because λ > 1, we have 1 − 1
1−λ

> 0, which means that the second term(
1− 1

1−λ

)
yT Dy is non-negative and can be dropped from the inequality. The in-

equality (4.10) therefore becomes(
1

1−λ
+λ

)
ỹT ỹ− 1

λ
ỹT y ≤ 0,
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which we can divide by ỹT ỹ rearrange to give

λ
3 −λ

2 −2λ +1 ≤ 0.

This, combined with the assumption that λ > 1, gives us the stated result that

λ is less than or equal to the largest root of λ 3 − λ 2 − 2λ + 1. The polynomial

λ 3−λ 2−2λ +1 is of the form given in Corollary 3.3 with a= b= c= 1, d = e= 0,

so its value is negative between the two positive roots.

Lower bound on negative eigenvalues. We begin from (4.8) and note that when

λ < 0, by similar reasoning as was shown for the upper bound on positive eigen-

values,(
1

1−λ
+λ

)
yT S1y+

(
1− 1

1−λ

)
yT Dy− 1

λ
yTCT (CS−1

1 CT )−1Cy ≥ 0.

Rewriting the inequality in terms of ỹ = S1/2
1 y gives(

1
1−λ

+λ

)
ỹT ỹ+

(
1− 1

1−λ

)
ỹT S−1/2

1 DS−1/2
1 ỹ− 1

λ
ỹT Pỹ ≥ 0,

where P is the orthogonal projector defined in (4.10). For the second term, note

that S−1/2
1 DS−1/2

1 is similar to S−1
1 D which has all eigenvalues between 0 and 1 (by

Lemma 4.2). Thus, both ỹT S−1/2
1 DS−1/2

1 ỹ and ỹT Pỹ are less than or equal to ỹT ỹ

and we can therefore write(
1

1−λ
+λ

)
ỹT ỹ+

(
1− 1

1−λ

)
ỹT ỹ− 1

λ
ỹT ỹ ≥ 0,

which, after dividing by ỹT ỹ and simplifying, yields

λ
2 +λ −1 ≤ 0.

This along with the assumption that λ < 0 gives the desired bound of λ ≥−1+
√

5
2 .

Lower bound on positive eigenvalues. Assume that 0 < λ < 1 (we know from

Theorem 4.1 that the lower bound is in this interval). Substituting (4.7) into (4.6b)
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and solving for y gives

y =
(

1
1−λ

BA−1BT +D+λS1

)−1

︸ ︷︷ ︸
=:Q

CT z, (4.11)

When 0 < λ < 1, the value 1
1−λ

is positive, so we are guaranteed that Q in (4.11) is

positive definite. If z∈ ker(CT ), (4.11) gives y= 0 and (4.7) gives x= 0, and we can

see from the eigenvalue equations (4.6a)-(4.6c) that this eigenvector corresponds

to λ = 1 (because Ez = S2z for z ∈ ker(CT )). This contradicts our assumption that

λ < 1; thus, we assume z /∈ ker(CT ).

We can then write (4.6c) as

C
(

1
1−λ

BA−1BT +D+λS1

)−1

CT z+(1−λ )Ez−λCS−1
1 CT z = 0. (4.12)

When 0 < λ < 1, we have 1
1−λ

> 1. Therefore, if we take the inner product of zT

with (4.12), replace D by 1
1−λ

D, and drop the non-negative term (1−λ )zT Ez, we

obtain the inequality

zTC
((

1
1−λ

+λ

)
S1

)−1

CT z−λ zTCS−1
1 CT z ≤ 0.

After simplifying and dividing by zTCS−1
1 CT z, we obtain

λ
3 −λ

2 −2λ +1 ≤ 0. (4.13)

This, combined with the assumption that 0 < λ < 1, gives us that λ must be greater

than or equal to the smaller positive root of (4.13), as required.

Upper bound on negative eigenvalues. Assume that λ < 0. We begin from

Equation (4.8) and note that λS2 −E is negative definite. Therefore,(
1

1−λ
+λ

)
yT S1y+

(
1− 1

1−λ

)
yT Dy ≤ 0.

Since 1− 1
1−λ

> 0, the yT Dy term is non-negative and can be dropped while keep-
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ing the inequality, giving us (
1

1−λ
+λ

)
yT S1y ≤ 0.

We thus require
1

1−λ
+λ ≤ 0 with λ < 0,

which leads to the desired bound λ ≤ 1−
√

5
2 .

Remark 4.7. The bounds in Theorem 4.5 are different than the bounds of Theorem

4.4: the lower bound on the negative eigenvalues is looser, and the inclusion set for

positive eigenvalues is a single interval that strictly contains and is larger than the

union of the two positive intervals in Theorem 4.4, I2 ∪ I3. While the lower bound

on negative eigenvalues of Theorem 4.4 may be obtained in the proof of Theorem

4.5 by assuming D = 0, the two positive intervals in Theorem 4.4 are obtained

thanks to the specific technique of proof we use in that proof, and we believe that

they cannot easily be obtained from the proof of Theorem 4.5 or by other means.

4.2 Bounds for block diagonal preconditioners with
approximations of Schur complements

In practice, it is too expensive to invert A, S1, and S2 exactly. In this section we

examine eigenvalue bounds on matrices of the form M̃−1K , where M̃ uses sym-

metric positive definite and ideally spectrally equivalent approximations for A, S1,

and S2. Specifically, we consider the approximate block diagonal preconditioner

M̃ =

Ã 0 0

0 S̃1 0

0 0 S̃2

 , (4.14)

with Ã, S̃1 and S̃2 satisfying the following:

Assumption 4.8. Let Λ(·) denote the spectrum of a matrix. The diagonal blocks

of the approximate preconditioner M̃ , given by Ã, S̃1, and S̃2, satisfy:

i. Λ(Ã−1A) ∈ [α0,β0];
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ii. Λ(S̃−1
1 S1) ∈ [α1,β1];

iii. Λ(S̃−1
2 S2) ∈ [α2,β2],

where 0 < αi ≤ 1 ≤ βi.

We note that to obtain spectral equivalence we seek approximations that yield

values of αi independent of the mesh size and bounded uniformly away from zero.

It is also worth noting that the values of αi and βi are typically not explicitly avail-

able. We briefly address this at the end of this section, following our derivation of

the bounds.

To simplify our analyses, we define:

Ã−1A =: Q0; (4.15a)

S̃−1
1 S1 =: Q1; (4.15b)

S̃−1
2 S2 =: Q2. (4.15c)

To derive the eigenvalue bounds, we consider the split preconditioned matrix

M̃−1/2K M̃−1/2 =

Q̃0 B̃T 0

B̃ −D̃ C̃T

0 C̃ Ẽ

 , (4.16)

where Q̃0 = Ã−1/2AÃ−1/2, B̃ = S̃−1/2
1 BÃ−1/2, C̃ = S̃−1/2

2 CS̃−1/2
1 , D̃ = S̃−1/2

1 DS̃−1/2
1 ,

and Ẽ = S̃−1/2
2 ES̃−1/2

2 . We proceed by bounding the eigenvalues and singular val-

ues of the blocks of M̃−1/2K M̃−1/2 and then applying the results for general

double saddle-point matrices presented in Section 3.2. In order to avoid providing

internal eigenvalue bounds equal to zero (see Remark 3.5) we assume here that B

and C have full row rank.

Lemma 4.9. When B and C have full row rank, bounds on the eigenvalues/singular

values of the blocks of the matrix M̃−1/2K M̃−1/2 are as follows:

• Q̃0: eigenvalues are in [α0,β0].

• B̃: singular values are in
[√

α0α1
1+ηD

,
√

β0β1

]
, where ηD is the maximal eigen-

value of (BA−1BT )−1D.

59



• C̃: singular values are in
[√

α1α2
1+ηE

,
√

β1β2

]
, where ηE is the maximal eigen-

value of (CS−1
1 CT )−1E.

• D̃: eigenvalues are in [0,β1].

• Ẽ: eigenvalues are in [0,β2].

Proof. The eigenvalue bounds on Q̃0 follow from the fact that Q̃0 is similar to Q0.

For D̃ and Ẽ, the lower bounds follow from the fact that D and E are semidefinite

(if D and/or E are definite, this bound will be loose, but we use the zero bound to

simplify some results that we present in this section). For the upper bound on D̃, we

note that D̃ = S̃−1/2
1 DS̃−1/2

1 , which is similar to S̃−1
1 D = Q1S−1

1 D. The eigenvalues

of S−1
1 D are less than or equal to 1 by Lemma 4.2, meaning that those of Q1S−1

1 D

are less than or equal to β1. Analogous reasoning gives the upper bound for Ẽ.

We now present the results for B̃. For the upper bound, note that the ma-

trix B̃B̃T = S̃−1/2
1 BÃ−1BT S̃−1/2

1 is similar to S̃−1
1 BÃ−1BT = Q1S−1

1 BÃ−1BT . Be-

cause the eigenvalues of Q1 are in [α1,β1], we need only bound the eigenvalues of

S−1
1 BÃ−1BT . These are the same as the nonzero eigenvalues of

Ã−1BT S−1
1 B = Q0A−1BT S−1

1 B.

The nonzero eigenvalues of A−1BT S−1
1 B are the same as those of S−1

1 BA−1BT ,

which are all less than or equal to 1 by Lemma 4.2. Thus, the eigenvalues of

Q0A−1BT S−1
1 B are less than or equal to β0, from which we conclude that the eigen-

values of B̃B̃T are less than or equal to β0β1, giving an upper singular value bound

of
√

β0β1. Similarly, a lower bound on the eigenvalues of B̃B̃T is given by α0α1

times a lower bound on the eigenvalues of S−1
1 BA−1BT . Because we have assumed

that B is full rank, BA−1BT is invertible, implying that

S−1
1 BA−1BT =

(
(BA−1BT )−1S1

)−1
=
(
I +(BA−1BT )−1D

)−1
.

The stated result then follows because the eigenvalues of S−1
1 BA−1BT are greater

than or equal to 1
1+ηD

, where ηD is the maximal eigenvalue of (BA−1BT )−1D. Thus,

a lower bound on the singular values of B̃ is given by the square root of this value.

The bounds for C̃ are obtained in the same way as those for B̃.
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We can now present bounds on the eigenvalues of M̃−1/2K M̃−1/2. We define

three cubic polynomials:

u(λ ) = λ
3 +(β1 −α0)λ

2 −
(

α0β1 +
α1α2

1+ηE
+β0β1

)
λ +

α0α1α2

1+ηE
; (4.17a)

v(λ ) = λ
3 − (β0 +β2)λ

2 +(β0β2 −β0β1 −β1β2)λ +2β0β1β2; (4.17b)

w(λ ) = λ
3 +(β1 −α0)λ

2 − (α0β1 +β0β1 +β1β2)λ +α0β1β2. (4.17c)

These polynomials all have two positive roots and one negative root, by Corollary

3.3. As in Chapter 3, we let u− denote the (single) negative root of a polynomial u,

and let u+min and u+max respectively denote the smallest and largest positive roots.

Theorem 4.10 (Eigenvalue bounds, matrix M̃−1/2K M̃−1/2). When B and C have

full row rank, the eigenvalues of M̃−1/2K M̃−1/2 are bounded within the intervalsw−,
β0 −

√
β 2

0 + 4α0α1
1+ηD

2

 ⋃ [
u+min,v

+
max

]
. (4.18)

Proof. The stated bounds follow from Lemma 4.9 and Theorem 3.4.

Remark 4.11. Obtaining ηD and ηE requires computation of eigenvalues of two

matrices related to the Schur complements S1 and S2: (S1−D)−1D=(BA−1BT )−1D

and (S2−E)−1E = (CS−1
1 CT )−1E, respectively. As we have previously mentioned,

in practice when solving (1.1) the matrices S1 and S2 would typically be approx-

imated by sparse and easier-to-invert matrices, rather than formed and computed

explicitly. Therefore, we cannot expect to compute ηD and ηE exactly. Spectral

equivalence relations may be helpful in providing reasonable approximations here.

For example, in common formulations of the Stokes-Darcy problem [10] the matrix

A is a discrete negative Laplacian and B and C are discrete divergence operators (or

scaled variations thereof). In such a case, for certain finite element discretizations

BA−1BT = S1 −D is spectrally equivalent to the mass matrix in the pressure space

[17, Section 5.5]. Denote it by Q. Then, estimating the maximal eigenvalue of

ηD amounts to computing an approximation to the maximal eigenvalue of Q−1D,

which is computationally straightforward given the favorable spectral properties of
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Q. If the above-mentioned Schur complement is approximated by the mass ma-

trix, then it can be shown that CS−1
1 CT = S2 −E is strongly related to the scalar

Laplacian, and therefore maximal eigenvalue of ηE would be relatively easy to

approximate as well.

When D = 0, ηD and the maximal eigenvalue of D̃ are zero. Similarly, when

E = 0, ηE and the maximal eigenvalue of Ẽ are zero. In these cases, we can

simplify some of the bounds of Theorem 4.10. Some of the cubic polynomials

that define the bounds will change in these cases. We will use a bar (e.g., ū) to

denote cubic polynomials where D = 0, a hat (e.g., û) to denote the polynomials

where E = 0, and both (e.g., ˆ̄u) to denote both D and E being zero. We define the

following cubic polynomials:

ū(λ ) = λ
3 −α0λ

2 −
(

α1α2

1+ηE
+β0β1

)
λ +

α0α1α2

1+ηE
; (4.19a)

û(λ ) = λ
3 +(β1 −α0)λ

2 − (α0β1 +α1α2 +β0β1)λ +α0α1α2; (4.19b)

ˆ̄u(λ ) = λ
3 −α0λ

2 − (α1α2 +β0β1)λ +α0α1α2; (4.19c)

v̂(λ ) = λ
3 −β0λ

2 − (β0β1 +β1β2)λ +β0β1β2; (4.19d)

w̄(λ ) = λ
3 −α0λ

2 − (β0β1 +β1β2)λ +α0β1β2. (4.19e)

The following results then follow directly from Theorem 4.10; the proof is omitted.

Corollary 4.12. In the case D = 0, E ̸= 0: the eigenvalues of M−1/2K M−1/2

are bounded within the intervalsw̄−,
β0 −

√
β 2

0 +4α0α1

2

 ⋃ [
ū+min,v

+
max

]
. (4.20)

In the case D ̸= 0, E = 0: the eigenvalues are bounded inw−,
β0 −

√
β 2

0 + 4α0α1
1+ηD

2

 ⋃ [
û+min, v̂

+
max

]
. (4.21)
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In the case D = 0, E = 0: the eigenvalues are bounded inw̄−,
β0 −

√
β 2

0 +4α0α1

2

 ⋃ [
ˆ̄u+min, v̂

+
max

]
. (4.22)

Remark 4.13. There is some looseness in the bounds of Theorem 4.10 when ap-

plied to the exact preconditioning case (i.e., αi = βi = 1). This is a consequence

of the fact that Theorem 4.10 is based on the bounds for unpreconditioned matri-

ces, which consider each matrix block individually with the R-matrix method, as

opposed to the energy estimates approach in Section 4.1, which fully exploits the

relationships between the blocks of the preconditioned matrix. For the extremal

(lower negative and upper positive) bounds, the looseness is minor: Theorem 4.10

gives a bound of 2 for the positive eigenvalues and approximately −1.9 on the

negative eigenvalues, while we know from Theorem 4.5 that tight bounds are ap-

proximately 1.8 and −1.6, respectively. For the interior bounds, however, we note

that the bounds may be quite loose if ηD or ηE is very large. Fortunately, this is of-

ten not a concern in practical settings as having a large ηD or ηE generally implies

that the spectral norm of D or E is large relative to that of BA−1BT or CS−1
1 CT ,

respectively. Often D and/or E are regularization terms, which tend to have a fairly

small norm. Nonetheless, it should be acknowledged that the interior bounds may

be pessimistic for some problems.

Remark 4.14. The values of αi and βi are rarely available in practical applications;

they are typically coercivity constants or related quantities, which are proven to be

independent of the mesh size but are not known explicitly. The values of βi should

not typically generate a difficulty, and approximating them by 1 or a value close to

1 should provide a reasonable approximation for the bounds.

For the αi, let us provide some (partial) observations. For the solutions of

the quadratic equations in Corollary 4.12, we can use the Taylor approximation
√

1+ x ⪅ 1+ x
2 for 0 < x ≪ 1 to conclude that

β0 −
√

β 2
0 +4α0α1

2
⪆−α0α1

β0
.
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This means that if α0 and α1 are small, then the above displayed expression would

be a valid (albeit slightly less tight) upper negative bound, and if the αi are uni-

formly bounded away from zero, then so is the bound.

4.3 Numerical experiments
We now consider preconditioning strategies for PDE-constrained optimization ma-

trices defined in (3.13)-(3.14). We note that, in this somewhat simplified problem,

optimal preconditioners for the classical saddle-point formulation have been pro-

posed in, e.g., [66, 71], and are shown to be highly effective. We examine eigen-

value bounds with both exact and approximate Schur complements.

For the distributed control problem, we work with the reordered matrix Kflip

(3.14). The Schur complement preconditioner for Kflip is

M =

βM 0 0

0 1
β

M 0

0 0 M+βKM−1K

 . (4.23)

The first and second blocks are mass matrices, which are cheap to invert, so we

leave these terms as they are. For the second Schur complement S2 =M+βKM−1K,

we use the approximation S̃2 =
(

M+
√

βK
)

M−1
(

M+
√

βK
)

proposed by Pear-

son and Wathen [66] to obtain the preconditioner:

M̃ =


βM 0 0

0 1
β

M 0

0 0
(

M+
√

βK
)

M−1
(

M+
√

βK
)
 . (4.24)

Per [66, Theorem 4], the eigenvalues of S̃−1
2 S2 satisfy Λ(S̃−1

2 S2) ∈
[1

2 ,1
]
. Thus M̃

satisfies Theorem 4.8 with α0 = β0 = α1 = β1 = 1, α2 =
1
2 , and β2 = 1.

Plots of the preconditioned eigenvalues for h = 2−4 are shown in Figure 4.1-

4.2. The preconditioned matrix eigenvalues are denoted by the blue dots, and

eigenvalue bounds are shown by lines. Recall that, for the exact preconditioner

shown in Figure 4.1, Theorem 4.4 predicts that the positive eigenvalues will be

contained in two intervals. The bounds on the two sub-intervals are denoted by
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Figure 4.1: Eigenvalue plots for Kflip with exact preconditioner M . Eigen-
values are shown by the blue circles; eigenvalue intervals predicted by
Theorem 4.4 are shown by lines.

dashed lines.

The value ηE , defined as the maximal eigenvalue of

(CS−1
1 CT )−1E = β (KM−1K)−1M,

is approximately 2.6×10−7. We note that for 2D problems with uniform Q1 finite

element discretizations the value ηE is O(βh4), and will thus be small in general.

Comparing Figures 4.1 and 4.2, we notice that the bounds on the negative

eigenvalue bounds do not change when we use the approximate Schur comple-

ment, but the lower positive bound becomes smaller (from 0.4450 with the exact

Schur complement to 0.2929 for the approximate Schur complement) and the upper

positive bound becomes larger (1.8019 in the exact case and 2 in the approximate

case). We note that the eigenvalues appear to be very close to the predicted bounds

except for the upper positive eigenvalues of M̃−1K . As discussed in Remark 3,

this kind of minor looseness in the upper bound can happen when we have highly

accurate Schur complement approximations (as in this case, where we are exactly
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Figure 4.2: Eigenvalue plots for Kflip with approximate preconditioner M̃ .
Eigenvalues are shown by the blue circles; eigenvalue bounds from
Corollary 4.12 are shown by lines.

inverting the two M blocks).

For the matrix K∂ arising from the boundary control problem, the Schur com-

plement preconditioner is

M∂ =

M 0 0

0 KM−1K 0

0 0 βMb +ET
(
KM−1K

)−1 E

 . (4.25)

In practice, the first Schur complement KM−1K can be inverted approximately

with, for example, a multigrid method. For the second Schur complement, we note

that for the 2D Poisson control problem on a uniform Q1 grid, the eigenvalues of

K are between O(h2) and O(1), while those of the mass matrices are all O(h2).

Therefore, the term βMb will dominate ET
(
KM−1K

)−1 E for all but very small

values of β (which are not commonly used in practice). Therefore, an approximate
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preconditioner for K∂ is given by

M̃∂ =

M 0 0

0 KM−1K 0

0 0 βMb

 . (4.26)

We note that this preconditioner is presented in [71], though it is derived there from

the block-2×2 formulation of K .
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Figure 4.3: Eigenvalue plots for the boundary control problem K∂ , precon-
ditioned by exact preconditioner M . Eigenvalue intervals predicted by
Theorem 4.4) are shown by horizontal lines.

Plots of the preconditioned eigenvalues for h = 2−4 are shown in Figures 4.3-

4.4. For M̃−1
∂

K
∂
, we note that there is a single large-magnitude positive eigen-

value and a large-magnitude negative eigenvalue, whose absolute values are nearly

200, and they make it difficult to see how the other eigenvalues compare to to those

of M−1
∂

K
∂
. Thus in Figure 4.4, we omit the largest and smallest eigenvalues of

M̃−1
∂

K
∂

and overlay the others on the corresponding eigenvalues of M−1
∂

K
∂
. We

notice that most other eigenvalues of M̃−1
∂

K
∂

remain close to those of M−1
∂

K
∂
.

We also note that the performance of this preconditioner depends on β : in particu-

lar, the performance of the Schur complement approximation deteriorates for small

β . We refer to [66, 71] for further discussion of this.
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Figure 4.4: All but the single smallest and largest eigenvalues of M−1
∂

K∂

(blue) and M̃−1
∂

K
∂

(red).

It is evident from Figure 4.3 that our bounds are tight and effective. Unlike in

the boundary control example, the Schur complement approximation S̃2 used here

does not have β - and h-independent constants α2,β2 such that Λ(S̃−1
2 S2)∈ [α2,β2],

so our analyses on Schur complement approximations in Section 4.2 are difficult

to apply. Nonetheless, we observe from Figure 4.4 that most of the eigenvalues

of M̃−1
∂

K∂ remain very close to those of M−1
∂

K∂ . Thus, we see that the eigen-

value bounds for the “ideal” Schur complement preconditioner may still be of use,

provided that we have an effective approximation of the Schur complement.
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Chapter 5

Eigenvalue bounds when A is
singular

In this chapter we consider the unregularized classical saddle-point system[
A BT

B 0

][
x

y

]
=

[
f

g

]
, (5.1)

where A∈Rn×n is symmetric positive semidefinite and B∈Rm×n has full row rank,

with m < n. We denote the coefficient matrix by

A0 =

[
A BT

B 0

]
. (5.2)

We assume throughout that A0 is invertible. Our goal in this chapter is to derive

eigenvalue bounds for A0 under the assumption that A is singular.

To illustrate the challenge posed by the problem in hand, recall the following

result of Rusten and Winther [76, Lemma 2.1]. We note that in their analyses it is

assumed that A is positive definite (as opposed to semidefinite); however, the proof

of this lemma does not rely on this, so the result still holds when A is semidefinite.

Lemma 5.1. The eigenvalues of A0 are bounded in the union of intervals

I− ∪ I+,
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where

I− =

[
1
2
(µmin −

√
µ2

min +4σ2
max),

1
2
(µmax −

√
µ2

max +4σ2
min)

]
and

I+ =

[
µmin,

1
2
(µmax +

√
µ2

max +4σ2
max)

]
.

When A is singular, the upper bounds on both positive and negative values of

A0 are unchanged, and the lower negative bound reduces to −σmax. However, the

lower bound on positive eigenvalues reduces to zero, which is not a useful bound.

In particular, when the null spaces of A and B are well separated, the matrix A0

may be well-conditioned. In this work, we derive a nonzero bound on the positive

eigenvalues of A0 by considering the principal angles between the ranges/kernels

of A and B. Ruiz et al. [75] also developed a lower positive eigenvalue bound using

principal angles, though their analyses assume a positive definite A.

In section 5.1 we discuss our general approach of augmenting the leading block

of a saddle-point matrix to obtain a lower bound on the positive eigenvalues. In

section 5.2 we provide our bounds, which rely on the angles between the kernel of

A and B. We then present numerical observations in 5.3.

5.1 Lower positive eigenvalue bounds using leading
block augmentation

Example. As a motivating example that illustrates the range of possibilities, con-

sider the coefficient matrix

A0 =

 1 0 b1

0 0 b2

b1 b2 0

 where A =

[
1 0

0 0

]
and B =

[
b1 b2

]
, (5.3)

with b2
1+b2

2 = 1 and b1,b2 > 0. The eigenvalues of A and singular value of B are the

same for all such b1, b2, but the lowest positive eigenvalue of A0 varies depending

on b1 and b2. The eigenvalues λ of A0 are the roots of the cubic polynomial

p(λ ) = λ 3 − λ 2 − λ + b2
2. This polynomial has two positive roots and and one
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negative root, by Corollary 3.3; the smaller positive root approaches zero as b2

goes to zero (i.e., when A and B have overlapping null spaces), but as b2 goes

to 1 (i.e., when A and B have orthogonal null spaces) the smaller positive root

approaches 1.

We now present a general approach for deriving nonzero bounds for the lower

positive eigenvalues of A0 when A is singular. We recall the following result [22,

32]:

Lemma 5.2. Let

A0(W ) =

[
A+BTWB BT

B 0

]
, (5.4)

where W ∈ Rm×m. If A0 and A0(W ) are both nonsingular, then

A −1
0 = (A0(W ))−1 +

[
0 0

0 W

]
. (5.5)

We will assume that W is positive semidefinite and the leading block AW :=

A + BTWB of A0(W ) is positive definite. We can use this along with (5.5) to

derive a nonzero bound on the lower positive eignvalues of A0, using a free matrix

parameter W .

Theorem 5.3. Let W ∈ Rm×m be a symmetric positive semidefinite matrix. Then

the positive eigenvalues of A0 are greater than or equal to

min
{

µmin(AW ),
1

µmax(W )

}
.

Proof. We derive a lower bound on the positive eigenvalues of A0 by considering

an upper bound on the eigenvalues of A −1
0 . By combining [7, Equation (3.4)] and

(5.5), we obtain

A −1
0 =

[
A−1

W −A−1
W BT S−1

W BA−1
W A−1

W BT S−1
W

S−1
W BA−1

W −S−1
W +W

]
, (5.6)
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where SW = BA−1
W BT . Notice that we can write

A −1
0 =

[
A−1

W 0

0 W

]
−

[
A−1

W BT

−I

]
S−1

W

[
BA−1

W −I
]
.

Because the subtracted term is positive semidefinite, we conclude that the eigen-

values of A −1
0 are less than or equal to the eigenvalues of[

A−1
W 0

0 W

]
.

The stated result follows.

5.2 Augmentation-based bounds when W = γI
As in section 5.1, we consider the augmented matrix A0(W ), but in this case we

restrict ourselves to the case where

W = γI,

as is done in [20, 32]. For simplicity we write Aγ = A+ γBT B and Aγ = A0(γI).

In this case, the lower bound on positive eigenvalues presented in Theorem 5.3

reduces to min
{

µmin(Aγ),
1
γ

}
.

We first consider the special case where rank(A) = n−m. We say here that

A is lowest-rank because if its rank were any lower then A0 would necessarily be

singular. It was shown in [19, 20] that Aγ and Aγ have unique properties, which we

will use here to refine the bound on lower positive eigenvalues given in Theorem

5.3. We return in Section 5.2.2 to the general case, where A is assumed to be

rank-deficient but not lowest-rank.

5.2.1 Bounds when A is lowest-rank

Theorem 5.4. When rank(A) = n−m, we have

µmin(Aγ)≥ ρ ·min
{

µ
+
min(A),γσ

2
min(B)

}
, (5.7)
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where ρ ≤ 1 is a constant that does not depend on γ .

Proof. We begin by writing a decomposition of Aγ as was done in [20]. Let

A =UΛUT , B = QSV T

be the economy-size singular value decompositions of A and B.

The matrices Λ and U comprise of the eigenpairs of A that correspond to its

nonzero eigenvalues, and the columns of V are the set of eigenvectors of BT B that

correspond to its nonzero eigenvalues. We can then write

Aγ = PΣPT , (5.8)

where

P =
[
U V

]
, Σ =

[
Λ 0

0 γS2

]
.

The decomposition in (5.8) resembles an eigenvalue decomposition, but is not an

eigenvalue decomposition in general because the columns of V will not be orthog-

onal to those of U .

We then derive a lower bound on the eigenvalues of Aγ by obtaining an upper

bound on the eigenvalues of A−1
γ . We can write

µmax(A−1
γ ) = ||A−1

γ ||= ||P−T
Σ
−1P−1|| ≤ ||Σ−1|| · ||P−1||2.

The largest eigenvalue of Σ−1 is equal to max
{

1
µ
+
min

, 1
γσ2

min

}
. The stated result fol-

lows by setting ρ = ||P−1||−2. We note that ρ ≤ 1, with equality when U and V

are mutually orthogonal (that is, when the range of A is orthogonal to the range of

BT ). To show this is the case, consider x ∈ ker(A). We then have

PT x =

[
UT x

V T x

]
=

[
0

V T x

]
.

Since V is orthogonal, this gives ||PT x|| ≤ ||x||. Defining q = PT x, this implies that

||q|| ≤ ||P−T q||,
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meaning that ||P−T || (and therefore ||P−1||) is greater than or equal to 1. Thus,

ρ ≤ 1.

We now provide a value for ρ = ||P−1||−2 in terms of the principal angles

between range(A) and range(BT ). Let

θi, i = 1, . . . ,m

denote these angles. The cosines cos(θi) of these angles are given by the singular

values of UTV (or V TU).

Lemma 5.5. Let θmin denote the minimum principal angle between range(A) and

range(BT ). Then

||P−1||= 1√
1− cos(θmin)

,

which implies that ρ defined in (5.7) is given by

ρ = 1− cos(θmin).

Proof. We proceed by analyzing the eigenvalues of PT P, using the fact that

||P−1||= 1√
µmin(PT P)

.

We write PT P in block form:

PT P =

[
UT

V T

][
U V

]
=

[
I UTV

V TU I

]
.

The (1,1)-block of PT P is size (n−m)× (n−m) and the (2,2)-block is size m×m.

We now assume without loss of generality that n−m ≥ m. (If n−m < m, we

can reorder the blocks of PT P such that the (1,1)-block is larger, and use the same

analysis as below.)

Letting v =
[
xT yT

]T
be an appropriately partitioned eigenvector, we write
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the eigenvalue equations for PT P:

x+UTV y = λx; (5.9a)

V TUx+ y = λy. (5.9b)

There is an eigenvalue λ = 1 with multiplicity n−2m, which we observe by choos-

ing x ∈ ker(V TU) and y = 0. For the remaining 2m eigenvalues, we assume λ ̸= 1.

From (5.9a) we have x = 1
λ−1UTV y, which we substitute into (5.9b) to obtain

y =
1

(λ −1)2V TUUTV y. (5.10)

The eigenvalues of V TUUTV are given by cos2(θi), where θi are the principal

angles between range(A) and range(BT ). Thus, for each θi we can write (5.10) as

y =
cos2(θi)

(λi −1)2 y,

implying that

λi = 1± cos(θi).

Thus each θi yields two distinct eigenvalues. Together with the n−2m eigenvalues

with λ = 1, this accounts for all n eigenvalues of PT P. Therefore, the smallest

eigenvalue of PT P is given by 1− cos(θmin); the stated result follows.

We can use the results we have established for matrices with lowest-rank A to

derive a lower bound on the positive eigenvalues of A0 that does not require us to

know the eigenvalues of Aγ . We saw in Theorem 5.3 that for W = γI, the bound

is given by min
{

µmin(Aγ),
1
γ

}
. As γ decreases, the value of µmin(Aγ) approaches

zero (because Aγ approaches A); thus, we achieve the best possible lower bound

when
1
γ
= µmin(Aγ).

Since we do not generally know the value of µmin(Aγ), we can instead select 1
γ

to

be equal to the reciprocal of the lower bound on µmin(Aγ) given by Theorem 5.4
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and Lemma 5.5. That is, we find a γ that satisfies

1
γ
= (1− cos(θmin))min

{
µ
+
min,γσ

2
min

}
.

Depending on which of the arguments to the min function is smaller, we either

have
1
γ
= µ

+
min(1− cos(θmin))

or we have 1
γ
= (1− cos(θmin)) · γσ2

min, which implies that

1
γ
= σmin

√
1− cos(θmin).

Therefore, if we select

1
γ
= min

{
µ
+
min(1− cos(θmin)),σmin

√
1− cos(θmin)

}
,

we know that µmin(Aγ) will be greater than or equal to this value of 1
γ
. This gives

the following result:

Theorem 5.6. When rank(A) = n−m, the positive eigenvalues of A0 are greater

than or equal to

min
{

µ
+
min(1− cos(θmin)),σmin

√
1− cos(θmin)

}
.

In some problems such as the Maxwell equation, knowledge of the null spaces

of A and B may be more readily available than the ranges of A and BT [39]. For

these settings, it is convenient to re-frame the result of Theorem 5.6 to rely on the

angle between kernels rather than the angle between ranges. Because ker(A) and

ker(B) are respectively orthogonal to range(A) and range(BT ), the principal angles

are the same between both pairs of subspaces. The following result then holds.

Corollary 5.7. Let rank(A) = n−m and let ψmin denote the minimum principal

angle between ker(A) and ker(B). The positive eigenvalues of A0 are greater than
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or equal to

min
{

µ
+
min(1− cos(ψmin)),σmin

√
1− cos(ψmin)

}
.

5.2.2 Bounds when A is not lowest-rank

We now return to the case in which A is rank-deficient but not lowest-rank, and

discuss how the results of the previous section can be extended to this case. Let us

denote the eigenvalue decomposition of A by:

A =UΛUT .

Let Λmax
n−m be a diagonal matrix of the n−m largest eigenvalues of Λ and Λmin

m be

a diagonal matrix of the m smallest. Similarly, let Umax
n−m denote the eigenvectors

corresponding to the n−m largest eigenvalues and Umin
m the eigenvectors corre-

sponding to the m smallest eigenvalues. We then have

A =
[
Umax

n−m Umin
m

][
Λmax

n−m 0

0 Λmin
m

][(
Umax

n−m
)T(

Umin
m

)T

]
. (5.11)

As before, if we consider a weight matrix W = γI, a lower bound on the positive

eigenvalues of A0 is given by

min
{

1
γ
,µmin(Aγ)

}
,

as this bound does not depend on the nullity of A. When A is not lowest-rank,

the bound of Theorem 5.4 is not immediately applicable. However, we note from

(5.11) that

A = Amax
n−m +Amin

m , (5.12)

where Amax
n−m = Umax

n−mΛmax
n−m

(
Umax

n−m
)T is a semidefinite matrix with rank n−m and

Amin
m = Umin

m Λmin
m

(
Umin

m
)T is a semidefinite matrix with rank less than or equal to

m. Thus, the eigenvalues of Aγ are all greater than or equal to those of

Amax
n−m + γBT B =: Amax

γ .
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The eigenvalue µn−m is the smallest eigenvalue in Λmax
n−m and therefore the smallest

positive eigenvalue of Amax
n−m. Let θ̃min denote the minimum principal angle between

range(Amax
n−m) and range(BT ). By Theorem 5.4 and Lemma 5.5, we have

µmin(Aγ)≥ µmin(Amax
γ )≥

(
1− cos(θ̃min)

)
·min

{
µ̃min,γσ

2
min

}
.

As we did before, we can select 1
γ

to be equal to the smaller of these two values

to obtain a lower bound on the positive eigenvalues of A0 that does not require

forming an augmented matrix. The proof of the following theorem is similar to

that of Theorem 5.6 and is omitted.

Theorem 5.8. Let A be semidefinite with n−m ≤ rank(A)≤ n. The positive eigen-

values of A0 are greater than or equal to

min
{

µn−m(1− cos(θ̃min)),σmin

√
1− cos(θ̃min)

}
,

where µn−m denotes the (n−m)-th largest eigenvalue of A and θ̃min the smallest

principal angle between range(BT ) and the subspace spanned by the eigenvectors

corresponding to the n−m largest eigenvalues of A. (Or, equivalently, θ̃min is the

smallest principal angle between ker(B) and the subspace spanned by the eigen-

vectors corresponding to the m smallest eigenvalues of A – see Corollary 5.7.)

Remark 5.9. Our approach in deriving the previous result was to convert a non-

lowest-rank A into a lowest-rank Ã by removing the part of the spectrum corre-

sponding to the m smallest eigenvalues. However, removing this part of the spec-

trum of A is not always a good choice, in that it may lead to an overly pessimistic

bound. For example, consider the matrix (with n = 3 and m = 2):

A0 =


1 0 0 0 1

0 α 0 0 0

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

=:

[
A BT

B 0

]
,

where 0 < α < 1. The positive eigenvalues of A0 are α,1, and 1+
√

5
2 . The “non-
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removed” eigenvector Umax
n−m, which is in this case the eigenvector corresponding to

λ = 1, is:

Umax
n−m =

1

0

0

 .

Because this eigenvector is in the range of BT , the value θ̃min is 0, meaning that

Theorem 5.8 gives a bound of 0. We would obtain a better bound if, instead of

keeping the part of the spectrum of A that corresponds to the eigenvalue λ = 1, we

kept the portion of the spectrum corresponding to λ = α (this would in fact give a

tight bound of α). However, the issue of optimizing what subspace of range(A) to

use in order to obtain a bound is beyond the scope of this thesis.

5.3 Numerical experiments
Here we test our eigenvalue bounds on two real problems. The first is a Maxwell

problem described in Equation 2.15. In this problem, A is lowest-rank. Figure 5.1

shows the predicted bound (as a solid line), the actual smallest positive eigenvalue

(dashed line) for various values of γ for a Maxwell matrix with n = 6080 and

m = 1985.

The second is a matrix arising from an Interior Point Method (IPM) solution

to a QP problem, described in Section 2.1.1. In Figure 5.2 we show the results

of our bounds on the first IPM iteration on TOMLAB1 Problem 17 for which the

saddle-point matrix A0 is numerically singular. This problem has n = 293 and

m = 286. For the particular matrix shown in the experiment below (which arises in

the 12th iteration of the IPM), there are 115 “numerically zero” eigenvalues of the

leading block (which we define as those less than machine epsilon times the largest

eigenvalue of that block).

In both cases the actual smallest positive eigenvalue µmin(K ) occurs precisely

where 1
γ
= µmin(Aγ). The bounds for the Maxwell matrix are rather tight, in the

sense that they are of the same order of magnitude as the eigenvalue (we also

see this with Maxwell matrices of other sizes): the predicted eigenvalue bound is

0.0453 while the actual smallest positive eigenvalue is 0.0611.

1Test matrices available at https://tomopt.com/tomlab/.
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Figure 5.1: Comparison of predicted and actual smallest positive eigenvalue
bounds at various values of γ for the Maxwell matrix (lowest rank)
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Figure 5.2: Comparison of predicted and actual smallest positive eigenvalue
bounds at various values of γ for the IPM matrix for TOMLAB QP 17
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The bound for the TOMLAB problem is looser: the predicted bound is 4.716×
10−7 while the actual smallest positive eigenvalue is 1.817×10−4. Recall that our

approach for deriving the bound for a matrix with A that does not have the lowest

rank consisted of two steps: (1) implicitly convert the matrix to one with a lowest-

rank leading block by “dropping” part of the spectrum of A corresponding to the

smallest positive eigenvalues; and (2) estimate the lower bound for the matrix with

the lowest-rank leading block using the results of Section 5.2.1, using the fact that

this will also be a lower bound for the original matrix. Because our bound in the

non-lowest-rank case relies on “dropping” part of the spectrum of A, as discussed

in Section 5.2.2, we might in general expect that to lead to some looseness in the

bound.

However, the dropping is not the cause of the looseness in this case of the

TOMLAB problem, as the saddle-point matrix we obtain by simply replacing A

with its dropped portion Amax
n−m (defined in (5.12)) has almost the same smallest

positive eigenvalue as the original matrix (1.810× 10−4, compared with 1.817×
10−4). Thus, the looseness in this bound does not come from the dropping part of

the spectrum of A to create a lowest-rank matrix, but rather in the estimation of the

lower positive eigenvalue bound of the modified matrix.
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Chapter 6

Preconditioning when A is
singular

In this chapter we consider preconditioning strategies for the unregularized classi-

cal saddle-point matrix

A0 =

[
A BT

B 0

]
(6.1)

and double saddle-point matrix

K0 =

A BT 0

B 0 CT

0 C 0

 , (6.2)

under the assumption that A is singular. Our strategy in both cases involves leading

block augmentation (as we saw in Chapter 5) combined with taking Schur com-

plements of the augmented systems. In both the classical and double saddle-point

settings, we obtain positive definite preconditioners that yield preconditioned oper-

ators with a constant number of eigenvalues; thus, a preconditioned iterative solver

such as MINRES will converge in a constant number of iterations in the absence of

round-off error. Of course, such preconditioners are expensive to apply and some

terms must be approximated, and we consider strategies for this as well.

Sections 6.1-6.3 deal with the classical saddle-point system (6.1). In Sec-
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tion 6.1 we review some known results when A is lowest-rank, including the exist-

ing block diagonal preconditioner of [39]. Then in Section 6.2 we use the eigen-

value analyses in Chapter 5 to extend these to the case where A is not lowest-rank,

and show how we can still maintain some of the desirable properties of the pre-

conditioner in the lowest-rank case through careful choice of the augmentation

parameter. We then include numerical observations in Section 6.3. We then extend

this preconditioning technique to the double saddle-point setting in Section 6.4.

6.1 Preconditioning when A is lowest-rank
In this section we consider the classical saddle-point matrix A0 (6.1). Recall from

Chapter 5 that A is considered to be lowest-rank if rank(A) = n−m, because if its

rank were any lower than A0 would necessarily be singular. Recall also that, given

a semidefinite weight matrix W ∈ Rm×m, we define the augmented leading block

by Aw := A+BTWB, and let

A0(W ) :=

[
AW BT

B 0

]
.

We assume that AW is invertible; when A is lowest-rank, this means that W must

be positive definite.

When A is lowest-rank, the blocks of A0 and those of the augmented matrix

A0(W ) interact in unique ways, which provide useful tools in the design and anal-

ysis of preconditioners. Estrin and Greif [19, Theorem 3.5] provide the following

result on the Schur complement of A0(W ):

Proposition 6.1. Suppose nullity(A) = m and let W ∈ Rm×m be an invertible ma-

trix. Then

B(A+BTWB)−1BT =W−1.

We also recall the following result [20, Corollary 2.1] applying to more general

matrices, which we will use repeatedly in our analyses:

Lemma 6.2. For matrices M,N ∈ Rn×n with rank(M) = r, rank(n) = n− r and
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M+N nonsingular, the matrix (M+N)−1M is a projector with rank r. Moreover,

M(M+N)−1N = 0.

We consider the block diagonal preconditioner [39]

PW =

[
AW 0

0 W−1

]
, (6.3)

where W is positive definite and AW = A+BTWB. Let us denote the blocks of the

split preconditioned operator P
−1/2
W A0P

−1/2
W as follows:

P
−1/2
W A0P

−1/2
W =

[
A−1/2

W AA−1/2
W A−1/2

W BTW 1/2

W 1/2BA−1/2
W 0

]
=:

[
Ã B̃T

B̃ 0

]
. (6.4)

Lemma 6.3. When rank(A) = n−m, the blocks of P
−1/2
W A0P

−1/2
W satisfy the

following:

(i) All nonzero eigenvalues of Ã are equal to 1;

(ii) All singular values of B̃ are equal to 1;

(iii) The subspaces range(Ã) and range(B̃T ) are orthogonal.

Proof. To prove (i), we note that Ã is similar to A−1
W A, which is a projector by

Lemma 6.2. Lemma 6.1 gives us that BA−1
W BT =W−1, and therefore

B̃B̃T =W 1/2BA−1
W BTW 1/2 = I,

which proves (ii). We prove (iii) by showing that range(B̃T ) ∈ ker(Ã). We write

ÃB̃T = A−1/2
W AA−1

W BTW−1/2 = 0,

where the second equality follows from the result of [19, Proposition 2.6], which

shows that A−1
W BT is a null-space matrix of A.

We now consider what the results of Lemma 6.3 tell us about the eigenvalues

of P−1
W A0 when rank(A) = n−m. The orthogonality of range(Ã) and range(B̃T )
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means that the value of cos(θmin) in Theorem 5.6 is 1, and thus that the positive

eigenvalues are greater than or equal to the minimum of the smallest positive eigen-

value of Ã and the smallest singular value of B̃. These are both equal to 1, by parts

(i)-(ii) of Lemma 6.3. Because the maximal eigenvalues of Ã and singular values

of B̃ are also equal to 1, all negative eigenvalues are equal to −1 and all positive

eigenvalues are less than or equal to 1 (as a consequence of Lemma 2.1 of Rusten

and Winther [76]). This yields the following result, which is also shown via a dif-

ferent proof method in [39, Theorem 4.1]; we refer to their proof for derivation of

the multiplicities of the eigenvalues.

Proposition 6.4. When rank(A)= n−m, the matrix P−1
W A0 has two distinct eigen-

values given by 1 and −1 with algebraic multiplicities n and m, respectively.

Proposition 6.4 tells us that, when A has maximal nullity there is a block diag-

onal preconditioner that yields a preconditioned operator with two distinct eigen-

values. This is similar to the block diagonal preconditioner of [60], which yields a

preconditioner with three distinct eigenvalues in the case that A is positive definite.

What has not yet been developed is a preconditioner that gives a constant number

of distinct eigenvalues for the “in-between” case where A is rank-deficient, but not

maximally so. This is the focus of the next section.

6.2 Preconditioning when A is not lowest-rank

6.2.1 Preconditioner derivation

Let us now consider the case in which A has nullity k, with k < m. We will now

consider how we can devise a preconditioner to preserve (perhaps approximately)

the properties listed in Lemma 6.3 in the case where A is not lowest-rank.

Let us consider a general block diagonal preconditioner of the form

P =

[
A+G 0

0 C

]
,

where C is positive definite and G is a semidefinite matrix such that A+G is posi-
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tive definite. As before, let us define the split preconditioned system:

P−1/2A0P
−1/2 =

[
(A+G)−1/2A(A+G)−1/2 (A+G)−1/2BTC−1/2

C−1/2B(A+G)−1/2 0

]

=:

[
Ã B̃T

B̃ 0

]
.

Property (i) of Lemma 6.3 holds whenever rank(G) = k; see Lemma 6.2. It

is also straightforward to verify, using a similar process as in the proof of Lemma

6.3, that Property (ii) holds if and only if

C = B(A+G)−1BT .

Property (iii) of Lemma 6.3 holds because, in that Lemma’s setting,

A(A+G)−1BT = 0.

We can write this as

A(A+G)−1BT = (A+G−G)(A+G)−1BT

= BT −G(A+G)−1BT .
(6.5)

Suppose that G has rank k, as we have already established will ensure Property (i).

Then, as a consequence of Lemma 6.2, G(A+G)−1 is a projector onto the range

of G. From (6.5) we see that Property (iii) will hold if G(A+G)−1 is a projector

onto the range of BT ; however, this is clearly not possible if rank(G) = k < m. But

we note that if we set

G = BTWkB,

where Wk is a symmetric positive semidefinite matrix of rank k, this matrix will be a

projector onto a rank-k subspace of range(BT ). While Property (iii) will not hold in

this case because we will not have ÃB̃T = 0, we instead have that nullity(ÃB̃T ) = k

(which is the highest nullity we can achieve, as from (6.5) we have a rank-k term

being subtracted from B).
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Thus, we consider the preconditioner:

Pk =

[
Ak 0

0 Sk

]
, (6.6)

where Ak = A+BTWkB and Sk = BA−1
k BT , with rank(Wk) = nullity(A) = k. This is

the same preconditioner analyzed in [34], but with the additional assumption that

rank(Wk) = k.

Remark 6.5. We note that, when A is maximally rank-deficient, the preconditioner

Pk reduces to that of Greif and Schötzau defined in eq. (6.3). When A is positive

definite, then Pk is equivalent to the preconditioner of Murphy, Golub, and Wathen

shown in eq. (1.16).

6.2.2 Preconditioner analysis

We begin by presenting a few lemmas that will be necessary for our analysis.

Lemma 6.6. When rank(Wk) = nullity(A) = k,

(BA−1
k BT )−1 =Wk +(BBT )−1B(A−AVA)BT (BBT )−1,

where V = Z(ZT AZ)−1ZT with Z ∈ Rn×(n−m) being a null-space matrix of B.

Proof. The proof follows by considering the block inverses of A0 and

A0(Wk) :=

[
Ak BT

B 0

]
.

Let Z ∈ Rn×(n−m) denote a matrix whose columns form a basis for ker(B). The

inverse of A0 is (see [7, Eq. (3.8)]):

A −1
0 =

[
V (I −VA)BT (BBT )−1

(BBT )−1B(I −AV ) −(BBT )−1B(A−AVA)BT (BBT )−1

]
,

where V = Z(ZT AZ)−1ZT ; we note that ZT AZ must be nonsingular for any non-

singular A0 (see [7]). The result then follows from Lemma 5.2 and the fact that the

(2,2)-block of (A0(Wk))
−1 is equal to −(BA−1

k BT )−1 (see [7, Eq. (3.4)]).
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Lemma 6.7. The matrix VA is a projector. Moreover, when rank(Wk)= nullity(A)=

k, the following results hold:

(i) The matrix A−1
k A is a projector;

(ii) The matrices VA and A−1
k A commute.

Proof. By writing VA = Z(ZT AZ)−1ZT A, it is clear that VA is a projector onto

ker(B). Item (i) holds because of Lemma 6.2.

To verify (ii), we first note that

VAA−1
k A =VA,

because AA−1
k is a projector (this follows from the fact that A−1

k A = (AA−1
k )T is a

projector) onto the range of A. Because A−1
k A = I −A−1

k BTWkB, we can write

A−1
k AZ = Z −A−1

k BTWBZ = Z.

Therefore,

A−1
k AVA = A−1

k AZ(ZT AZ)−1ZT A

= Z(ZT AZ)−1ZT A

=VA

=VAA−1
k A.

Theorem 6.8. Let A0 be nonsingular with A having nullity k, and let Wk ∈ Rm×m

be a rank-k matrix such that A+BTWkB is positive definite. The preconditioned

operator P−1
k A0 has four distinct eigenvalues:

• λ =−1 with multiplicity k;

• λ = 1 with multiplicity n−m+ k;

• λ = 1±
√

5
2 , each with multiplicity m− k.

88



Proof. We consider the eigenvalue equations for the preconditioned system:

Ax+BT y = λAkx; (6.7a)

Bx = λSky. (6.7b)

From (6.7b) we obtain y = 1
λ

S−1
k Bx. Substituting this into (6.7a) and re-arranging

yields

A−1
k Ax+

1
λ

A−1
k BT S−1

k Bx−λx = 0. (6.8)

By Lemma 6.6, we can write

A−1
k BT S−1

k B = A−1
k BTWkB

+A−1
k BT (BBT )−1B(A−AVA)BT (BBT )−1B. (6.9)

As was discussed in the proof of Lemma 6.7, VA is a projector onto ker(B), mean-

ing that I−VA is a projector onto range(B). Because BT (BBT )−1B is an orthogonal

projector onto this subspace, we have

(I −VA)BT (BBT )−1B = I −VA.

Similarly, BT (BBT )−1B(I −AV ) = I −AV . Thus, we can further simplify (6.9),

using relations we developed in Lemma 6.7:

A−1
k BT S−1

k B = A−1
k BTWkB+A−1

k (A−AVA)

= I −A−1
k AVA

= I −VA.

We can thus rewrite (6.8) as

A−1
k Ax− 1

λ
VAx+

(
1
λ
−λ

)
x = 0. (6.10)

By Lemma 6.7, A−1
k A and VA are commuting projectors; thus, they have the same
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eigenvectors. Because VA has rank n−m and A−1
k A has rank n− k, we have

range(VA)⊆ range(A−1
k A) and ker(A−1

k A)⊆ ker(VA).

We now consider x in the ranges/kernels of these projectors.

Case I: When x ∈ ker(A), (6.10) becomes(
1
λ
−λ

)
x = 0. (6.11)

We note that x cannot be zero, as (4.6a) would necessarily imply y = 0. Thus,

(6.11) gives k eigenvectors corresponding to each of the eigenvalues λ =±1.

Case II: When x ∈ range(VA) (and therefore also in range(A−1
k A)), (6.10) be-

comes

(1−λ )x = 0,

which gives n−m additional eigenvectors corresponding to the eigenvalue λ = 1.

Case III: if x ∈ ker(VA) and range(A−1
k A) (we know there are m− k such vec-

tors because the projectors commute), (6.10) becomes(
1+

1
λ
−λ

)
x = 0,

which gives the eigenvalues λ = 1±
√

5
2 , each with geometric multiplicity m− k.

Cases I-III account for all n+m eigenvectors of P−1
k A0.

6.2.3 Schur complement approximations

In practice, the blocks Ak and Sk of the ideal preconditioner Pk defined in (6.6) are

too expensive to invert exactly. While developing suitable approximation strategies

for these terms often requires some knowledge of the problem at hand, we provide

here two strategies for approximately inverting the Schur complement Sk.

First, recall from Lemma 6.1 that when A is lowest-rank we have S−1
k = Wk.

Thus, when A is not lowest-rank but is close (i.e., has high nullity), it is reasonable
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to use an approximation of the form

S−1
k ≈Wk +αI, (6.12)

where α is a small positive value. We add the αI term because if A is not maximally

rank-deficient then Wk will be singular. We refer to this strategy as the “WkI Schur

complement approximation.”

For our second strategy, recall that Lemma 6.6 tells us that

S−1
k =Wk +(BBT )−1B(A−AVA)BT (BBT )−1

=Wk +(BBT )−1BA(I −VA)︸ ︷︷ ︸
=:P

BT (BBT )−1.

Since VA is a projector whose range is ker(B) and whose kernel is ker(ZT A), the

matrix P = (I −VA) has range given by ker(ZT A) and kernel given by ker(B).

Thus, we consider replacing the projector (I −VA) by the orthogonal projector

onto range(B), defined by PB = BT (BBT )−1B. This matrix has the same kernel as

P but a different range, and has the advantage of yielding a considerably simpler

second term, as we can write:

(BBT )−1BAPBBT (BBT )−1 = (BBT )−1BABT (BBT )−1BBT (BBT )−1

= (BBT )−1BABT (BBT )−1.

Thus, we can consider the Schur complement approximation:

S−1
k ≈Wk +(BBT )−1BABT (BBT )−1. (6.13)

We note that this modified second term is similar to the BFBT preconditioner pro-

posed by Elman [16] for the Navier-Stokes equations; thus, we refer to this as the

“BFBT Schur complement approximation.”

6.3 Numerical experiments
In this section we consider implementations of the block diagonal preconditioner

described in Section 6.2. All experiments are run in MATLAB R2021a on a com-
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modity desktop PC. We report computation times for all experiments. The code

is not optimized for efficiency and the measurements do not represent what would

be possible with an optimized, state-of-the-art code base; they are included as a

way to compare the computational costs of different approaches and validate our

analytical observations.

6.3.1 Selection of weight matrix

Here we detail our general approach for choosing Wk. For simplicity, all our matri-

ces Wk are diagonal matrices with either 1 or 0 on the diagonal; thus, the augmented

matrix Ak is equal to A in addition to k terms of the form bibT
i , where bi denotes the

ith column of BT . Hence, our task of selecting Wk becomes the task of selecting

which columns of BT to use in to augment A.

We begin by forming a matrix Adrop formed by eliminating very small elements

of A (for our purposes, we eliminate those matrix entries whose absolute values are

less than machine epsilon times the largest magnitude entry in A). We then select

columns of BT that increase the structural rank of Adrop until the matrix Adrop +

∑i bibT
i has full structural rank. These selected columns of BT do not guarantee that

the augmented matrix A+∑i bibT
i has full numerical rank or is sufficiently well-

conditioned to avoid convergence problems, so in some cases we add additional

columns of BT ; in this case, we greedily select the sparsest columns of BT to reduce

fill-in of Ak.

We note that, in general, this approach of selecting Wk does not guarantee a

“minimal-rank” augmentation; that is, the rank of Wk may be greater than the nul-

lity of A. Finding a Wk with rank exactly equal to the nullity of A such that the

augmented matrix Ak is sufficiently well-conditioned to avoid numerical difficulty

requires knowledge of the null-space of A and of which vectors in BT will span

that null space. That said, in many practical applications, for example in problems

arising from discretizations of PDEs, some information on the discrete differential

operators and their null space is often available and comes handy.
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6.3.2 Constrained optimization problems

Problem statement

Here we consider preconditioning matrices that arise in the IPM solution of a linear

or quadratic program. Recall from Section 2.2 that each step of a primal-dual

interior-point method (IPM) to solve (2.7) requires solving a linear system of the

form [61]: [
H +X−1Z JT

J 0

][
∆x

∆y

]
=

[
−c−HxJT y+ τX−1e

b− Jx

]
. (6.14)

See [61] for full details. Some entries of the diagonal matrices X and Z approach

zero as the IPM iterations proceed, so the leading block of the saddle-point matrix

becomes increasingly ill-conditioned, with the largest magnitude entries occurring

along the diagonal. Thus the leading block may become nearly singular or numer-

ically singular, particularly if H is singular.

Description of test problems

We use an implementation of the predictor-corrector algorithm of Mehrotra [57].

The matrices for linear programming problems were obtained from the Sparse

Suite matrix collection [14], and the quadratic programming problems are from

TOMLAB1. A summary of the test suite of LP problems used in our experiments

is given in Table 6.1.

Comparison of different augmentation and approximation strategies

In this experiment we consider preconditioners of the form

P =

[
Ãaug 0

0 BÂ−1
augBT ,

]
(6.15)

where Ãaug and Âaug are approximations (potentially the same approximation) of

an augmented leading block A. Our experiments are on matrices that arise while

1Test matrices available at https://tomopt.com/tomlab/.
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Problem ID m n nnz(A0)

lp 80bau3b 2,262 12,061 35,325
lp bandm 305 472 2,966
lp capri 271 482 2,378
lp finnis 497 1,064 3,824
lp fit1p 627 1,677 11,545
lp ganges 1,309 1,706 8,643
lp lofti 153 366 1,502

lp maros r7 3,136 9,408 154,256
lp osa 14 2,337 5,497 371,894
lp osa 30 4,350 104,374 708,862
lp pilot87 2,030 6,680 81,629
lp scfxm1 330 600 3,332
lp scsd8 397 2,750 11,334
lp stair 356 614 4,617

lp standmps 467 1,274 5,152
lp stocfor2 2,157 3,045 12,402
lp truss 1,000 8,806 36,642

lp vtp base 198 346 1,397

Table 6.1: Summary of linear programming (LP) problems used in numerical
experiments. The value nnz(A0) gives the number of nonzeros arising in
the saddle-point system at each interior point method (IPM) iteration.

applying an interior-point method on an LPs, so the leading block A is diagonal.

We consider three augmentation strategies:

1. Partial augmentation: we take Aaug = A+ BTWkB, where we form Wk by

selecting just enough rows of B such that Adrop +BTWkB has full structural

rank, where Adrop is the matrix obtained by setting to zero all elements of A

with absolute value less than or equal to machine-epsilon times the largest

absolute magnitude value of A.

2. Full augmentation: we take Aaug = A+BT B.

3. Identity augmentation: we take Aaug = A+ρI, for some positive ρ .

For Aaug arising from partial and full augmentation, we consider three approxima-

tions for Ãaug and Âaug in (6.15):
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1. Ideal approximation (ID): Ãaug = Âaug = Aaug. (This is too expensive to use

in practice but we include it here for comparison purposes.)

2. Diagonal approximation (D): Ãaug = Âaug = diag(Aaug).

3. Incomplete Cholesky approximation (IC) : Ãaug = IC(Aaug) and Âaug = diag(Aaug).

We use ICT with drop tolerance of 0.01 (meaning that non-diagonal elements

of the factorization with absolute value less than 0.01 times the norm of that

row of Aaug are dropped).

For the identity-based augmentation, the matrix Aaug is diagonal, so we solve it

exactly (that is, Ãaug = Âaug = Aaug).

Problem ID
Partial Full Identity

ID D IC ID D IC ID
80bau3b 5 (0.03) 22 (0.03) 230 (0.02) 18 (2.0) 122 (0.02) 254 (0.01) 43 (0.02)
maros r7 22 (3.7) 22 (0.2) 56 (0.1) 2 (2.2) 19 (0.1) 26 (0.1) 11 (0.1)

Table 6.2: MINRES iteration counts for partial, full and identity-
augmentation preconditioners for the lp 80bau3b and lp maros r7
problems, using various block approximation strategies (ID=ideal,
D=diagonal, IC=incomplete Cholesky). Time per iteration (in seconds)
is given in parentheses.

Problem ID
Partial augmentation Full augmentation

Rank(W ) nnz(AW ) nnz(IC(AW )) Rank(W ) nnz(AW ) nnz(IC(AW ))

80bau3b 2 12,249 12,101 2,262 456,943 14,183
maros r7 2,511 1,101,752 31,343 3,136 1,230,928 10,761

Table 6.3: Comparison of memory usage for partial and full augmentation for
the lp 80bau3b and lp maros r7 problem.

We use matrices that arise from IPMs on the test problems lp 80bau3b and

lp maros r7. Iteration counts and time per iteration are given in Tables 6.2 and

6.3.

We observe that for lp 80bau 3b, the partial augmentation preconditioner

outperforms the full augmentation preconditioner in terms of both iteration count

and memory usage. This is because the leading block of this matrix is only mildly

rank-deficient, so we only need a low-rank augmentation to make it nonsingular
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(which leads to a much sparser augmented matrix than the full augmentation);

additionally, when we fully augment this matrix we are far away from the “ideal”

amount of augmentation (i.e., the rank of augmentation that would yield a constant

number of eigenvalues in an ideally-preconditioned iterative solver) because the

leading block is nowhere near lowest-rank.

In contrast, the leading block for lp maros r7 is highly rank-deficient, as

even the minimal amount of augmentation to obtain a structurally nonsingular lead-

ing block requires using most of the rows of B (2,511, when m for this problem is

3,136). And we observe that, in cases like these where the nullity of the leading

block is high, we are close enough to the lowest-rank case that full augmentation

performs well. In this case, it actually performs better than the partial augmenta-

tion in terms of iteration counts and computation time because the fully augmented

leading block is more well-conditioned than the partially augmented leading block.

Recall that our procedure for choosing Wk only looks at structural rank, and does

not guarantee that the augmented matrix is actually nonsingular (so we may still

encounter numerical difficulties without further augmentation).

Finally, we note that the incomplete Cholesky approximation strategy is less

effective than the diagonal approximation strategy. One reason for this is that by

the time IPM matrices are singular, the largest magnitude entries tend to occur

along the diagonal; thus, a diagonal leading block approximation is generally ef-

fective (as we will see in the next set of experiments). The other is that when

we used the incomplete Cholesky in the leading block, we avoided using the in-

verse of the incomplete Cholesky factors in the Schur complement approximation

to avoid introducing too much computational expense. Thus, the Schur comple-

ment approximation is not equal to BÃ−1
augBT (where Ãaug is the selected leading

block approximation); and as we saw in Section 6.2, this has an impact on the

theoretical properties of the preconditioned operator.

Running partial augmentation preconditioners on LP test suites

Here we consider preconditioning the complete set of problems described in Table

6.4. The matrices reported below are the first matrices for which the IPM gener-

ates a matrix with a numerically singular leading block. We consider the partial
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augmentation preconditioner of the form (6.15) with the diagonal leading block

approximation strategy: that is, we define a preconditioner PD of the form (6.15)

using Ãaug = Âaug = diag(Aaug). In all cases, we select Wk by augmenting A until

the matrix Adrop +BTWkB is structurally nonsingular. MINRES solver tolerance is

set to a relative residual norm of 10−8.

Problem ID rank(Wk) nnz(Ak)
PD

Iters Time per iter
80bau3b 1 12,117 20 0.02
bandm 5 1,444 40 0.003
capri 13 2,230 67 0.003
finnis 29 11,184 77 0.006
fit1p 5 2,545 28 0.06
ganges 88 2,690 41 0.01
lofti 13 966 194 0.001

maros r7 64 73,102 26 0.2
osa 14 34 98,459,317 171 0.06
osa 30 4 354,880,632 80 0.1
pilot87 5 133,798 37 0.2
scfxm1 1 840 32 0.003
scsd8 36 16,826 6 0.003
stair 33 9,994 11 0.006

standmps 2 557,906 65 0.004
stocfor2 61 3,411 9 0.1
truss 15 18,468 34 0.005

vtp base 10 3,126 125 0.002

Table 6.4: MINRES iteration counts and time per iteration (in seconds) of
the partial augmentation preconditioners with diagonal approximations
of Ak.

Eigenvalues of the preconditioned operator P−1
D A0 are shown in Figure 6.1 for

lp fit1p problem. Notice that there is strong clustering around the eigenvalues

1, 1±
√

5
2 .
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Figure 6.1: Eigenvalues of preconditioned operator P−1
D A0 for matrix aris-

ing in the IPM solution of the lp fit1p problem. Horizontal lines are
shown at y =±1, 1±

√
5

2 .

Using preconditioned MINRES iterations in an IPM

Here we consider using preconditioned inner solves in an IPM solver. For our

test problems, we use the LP lp stocfor2 and the TOMLAB QP problem 37

(which has m = 490; n = 1275; 3,288 nonzeros in the Jacobian matrix; and 290 in

the Hessian). Our preconditioning approach at each iteration is as follows:

• If the leading block A is nonsingular, we use the preconditioner

PLP =

[
A 0

0 BA−1BT

]

for the LP (recall that in this context A is diagonal), and

PQP =

[
IC(A) 0

0 B(diag(A))−1BT

]

for the QP, with an ICT drop tolerance of 0.01.
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• If the leading block A is singular, we select the lowest-rank Wk to make

Adrop +BTWkB nonsingular, and use the preconditioner

P =

[
diag(Ak) 0

0 B(diag(Ak))
−1BT

]
.

We solve the IPM to a duality gap tolerance of 10−6 and use an inner tolerance of

10−7 for the MINRES solves.

We see that for both problems, using inexact solves results in modestly more

IPM iterations, as we would expect. For the LP, the leading block was nonsingular

for the first 21 iterations and numerically singular for the final 10. For the QP, the

leading block was nonsingular for the first 22 iterations and singular for the last

16. Notice that the average MINRES iteration counts are correspondingly higher

for the QP. This is because, at the LP steps with a nonsingular leading block, we

were able to use an ideal preconditioner because the leading block is diagonal,

and convergence was always achieved in roughly three iterations. Additionally,

the nonzero Hessian in the QP has some additional terms in the leading block that

are dropped in the diagonal leading block approximation once the leading block

becomes singular.

Problem Direct inner solve MINRES inner solve

ID Type IPM iterations IPM iterations
Inner iters (average)

Predictor Corrector
stocfor2 LP 27 31 4.1 4.1
TOMLAB37 QP 31 38 35.1 36.6

Table 6.5: Comparison of IPM iterations using a direct vs. preconditioned
MINRES solver for the inner linear system solves. Average number of
inner MINRES iterations are reported for both the predictor and corrector
steps.

Testing different block approximation strategies

Here we test the WkI Schur complement approximation strategy (see Eq. (6.12)).

We use a matrix that arises at the 20th iteration of the IPM solution for the LP
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maros r7 and use β = 0.5. As we have seen in our earlier LP experiments, by

the time the IPM iterations have advanced enough to create a numerically singular

leading block, the diagonal has enough large entries that the augmented matrix Ak

is mostly diagonally dominant. Thus, using diag(Ak) is often effective in approxi-

mating Ak. We include comparisons between the preconditioners in which:

• Ak approximated by diag(Ak) and S−1
k is approximated by

Bdiag(Ak)
−1BT (the preconditioner PD explored in the previous set of exper-

iments);

• Ak is approximated by diag(Ak) and S−1
k is approximated by Wk +β I (“Di-

agonal+WkI” or “D+WkI”).

For this experiment, our weight matrix Wk has rank 2,911 (the minimum required

to achieve structural nonsingularity of Adrop +BTWkB).

A convergence plot is shown in Figure 6.2. The PD preconditioner converges

in 11 iterations and 1.4 seconds (0.1 seconds per iteration), and the Diagonal+WkI

preconditioner in 102 iterations and 0.18 seconds (0.0018 seconds per iteration).

While this is a significantly higher iteration count, we notice that this precondi-

tioner is extremely cheap (in that it is fully diagonal) and thus results in faster

computational time overall. We note that a basic Jacobi iteration on the original

system (or Jacobi on the leading block combined with the WkI approximation of

the Schur complement) does not lead to convergence. Thus, the leading block aug-

mentation has utility in arriving at this surprisingly simple-looking preconditioner.

6.3.3 A geophysical inverse problem

Problem statement

Here we consider the solution of a geophysical inverse problem, as described in

Section 2.2. If Gauss-Newton iterations are used, the linear system to be solved at

each step takes the formQT Q 0 AT

0 βW TW GT

A G 0


δu

δm

δλ

=−

ru

rm

rλ

 , (6.16)
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Figure 6.2: Comparison of block approximation strategies (diagonal lead-
ing block + B(diag(Ak))

−1BT Schur complement; Diagonal leading
block+WkI Schur complement) for a matrix arising from an IPM on
the lp maros r7 problem.

with G being the Jacobian of A. In the typical case of sparse observations, QT Q

has high nullity.

Testing different block approximation strategies

In this experiment we test the BFBT Schur complement approximation strategy

(Eq. (6.13)). We set the regularization parameter β = 10−3. The leading block

is highly singular, so we augment A by all of B to avoid numerical difficulties (as

simply augmenting by enough rows of B to make the augmented matrix structurally

nonsingular still leads to a matrix that is highly ill-conditioned).

Recall that the BFBT Schur complement approximation requires two solves

for BBT . Fortunately, for the geophysics problem, this term is sparse and banded.

Thus, in computing this approximation, we will solve exactly for the BBT terms.

We note that the augmented matrix A+BT B has an interesting structure, as

we can see in Figure 6.3: if we partition the matrix four blocks with the (1,1)-
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block of size m and the (2,2)-block of size n−m, we observed that the (1,1)- and

(2,2)-blocks are banded (e.g., for a problem with m = 9,261 and n = 17,261, the

bandwidths are 848 and 421, respectively), and can therefore be solved less expen-

sively than the entire matrix A+BT B. Thus, we can use block Jacobi to approxi-

mately solve Ak. Because stationary methods are often not especially effective as

preconditioners, we will instead use block Jacobi as a preconditioner for an inner

preconditioned conjugate gradient (PCG) solver for Ak.

0 2000 4000 6000 8000 10000 12000 14000 16000

nz = 901167

0

2000

4000

6000

8000

10000

12000

14000

16000

Figure 6.3: Sparsity pattern of Ak = A+BT B for a geophysics problem with
m = 9,261 and n = 17,261.

Thus, in these experiments, we compare the preconditioners in which:

• Ak is inverted exactly (which is generally not practical for large problems

but is included here for validation and comparison), and S−1
k is approximated

with the BFBT approximation. We denote this by “Akinv+BFBT.”

• Ak is inverted approximately using CG to an inner tolerance of 0.1, with

block Jacobi as a preconditioner, and S−1
k is approximated by the BFBT ap-

proximation. We denote this by “CG+BFBT.”

We use MINRES for the Akinv+BFBT preconditioner. Because the CG+BFBT
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preconditioner involves a nonstationary iteration in the outer iteration, we must use

a different outer solver. Accordingly, for the CG+BFBT preconditioner we will use

FGMRES with restarts every 30 iterations, denoted by FGMRES(30).

m n
Akinv+BFBT CG+BFBT

Iters Time per iter Iters Time per iter
2,197 3,195 6 0.21 9 0.20
4,913 9,009 6 1.07 10 0.76
9,261 17,261 8 2.87 10 2.26

Table 6.6: Results (solver iteration counts and time per iteration) geophysics
problems of varying size. Akinv+BFBT = exact solve for Ak, BFBT
approximation for Sk; CG+BFBT = block Jacobi preconditioned CG for
Ak, BFBT for Sk.

Results are shown in Table 6.6. The Akinv+BFBT preconditioner performs

well in terms of iteration count, but includes a very expensive term in the Ak solve.

We note, however, that the number of preconditioned iterations is very close to

what we would expect of the ideal preconditioner (with exact solves for both Ak

and Sk), which highlights the effectiveness of the BFBT Schur complement approx-

imation for this problem. The CG+BFBT preconditioner achieves similar conver-

gence to the Akinv+BFBT – in particular, the number of iterations appears to be

independent of problem size – and is modestly less expensive per iteration in terms

of compute time (we avoid the direct solve for Ak, but have some added expense

from the inner CG solves and additional orthogonalization for FGMRES). On av-

erage, the inner PCG solves required 28.7 iterations for the first test problem (with

m = 2,197 and n = 3,195), 35.1 iterations for the second problem (with m = 4,913

and n = 9,009), and 35.8 iterations for the third (with m = 9,261 and n = 17,261).

For larger problems, we speculate that CG+BFBT will outperform Akinv+BFBT

by larger margins.

6.4 Preconditioning of double saddle-point systems
In this section, we extend the preconditioning approach of the previous section to

the unregularized double saddle-point matrix K0 (6.2). We note that the unregu-

larized case is comparatively less common in the double saddle-point context than
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in the classical saddle-point context, though examples arise in, for example, dual-

dual mixed finite element formulations [28], constrained weighted least squares

problems, and some finite element formulations of the Stokes equation [18, 31].

Additionally, the approach we describe here has not been deployed as part of a

practical, preconditioned solver; thus, the work presented here should be viewed

as a theoretical starting point for the development of a preconditioned solver.

We begin by extending the definition of “lowest-rank” to the double saddle-

point context. The following proposition gives some invertibility condition on K0.

Proposition 6.9. The following conditions are necessary for K0 to be invertible:

(1) p ≤ m ≤ n+ p;

(2) rank(B)≥ m− p;

(3) rank(A)≥ n− (m− p).

Proof. We will prove the statements of the proposition in the order (2), (3), (1).

For (2), we begin by noting that if C is not full rank then K0 is clearly singular.

We also must have that ker(BT )∩ ker(C) = /0, as if we have a nonzero vector y in

ker(BT )∩ker(C) = /0 then
[
0 yT 0

]T
will be a null vector of K0. Statement (2)

follows from this, along with the fact that BT and C have m columns and C has rank

p.

To prove statement (3), we partition K into a 2×2 block matrix as follows:

K =

 A BT 0

B 0 CT

0 C 0

 .

Because K0 is invertible, the (2,1)-block
[
0 C

]
must have full row rank (because

C must have full row rank). We can define a null space of this block using

ker(
[
0 C

]
) = span of

[
In 0

0 ZC

]
, (6.17)

where In is the n×n identity matrix and ZC ∈Rm×(m−p) is a matrix whose columns

form a basis for ker(C). From [7, eq. (3.8)], we can see that K is invertible if and
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only if the reduced Hessian, defined by[
In 0

0 ZC

][
A BT

B 0

][
In 0

0 ZT
C

]
=

[
A BT ZC

ZT
C B 0

]
, (6.18)

is invertible. A necessary condition for this is for ker(A)∩ ker(ZT
C B) = /0. Be-

cause ZT
C B ∈ R(m−p)×n (and can easily be shown to have full rank because of the

requirement that ker(BT )∩ker(C) = /0), this proves the requirement that rank(A)≥
n− (m− p).

The requirement that the reduced Hessian be invertible also implies that m−
p ≤ n, which establishes the second inequality of statement (1). The first inequality

follows from the requirement that C have full row rank.

Thus, we say that the leading block A of a double saddle-point matrix is lowest-

rank if rank(A) = n− (m− p). As a consequence of statement (3) of Proposition

6.9, K0 will necessarily be singular if the rank of A is any lower.

6.4.1 Leading block augmentation

As in the classical saddle-point case, our approach is to augment the singular lead-

ing block A so it becomes positive definite, which then enables us to design precon-

ditioners based on the Schur complements of the augmented system. Recall from

Lemma 5.2 that augmenting A in the classical saddle-point case only changed one

block of the inverse of the matrix. The following result gives us a way to accom-

plish this in the double saddle-point case.

Proposition 6.10. Let F ∈ Rm×m be a matrix satisfying

CF = 0.

Define AF := A+BT FB and let

K0(F) =

AF BT 0

B 0 CT

0 C 0

 . (6.19)
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Then

(K0(F))−1 = K −1
0 −

0 0 0

0 F 0

0 0 0

 .

Proof. We will approach this problem by re-ordering and partitioning K0 into a

(classical) saddle-point matrix:

K0 =

 A 0 BT

0 0 C

B CT 0

 .

We know from Lemma 5.2 that, for any m×m matrix W ,

 A+BTWB BTWC BT

CTWB CTWC C

B CT 0


−1

=

 A 0 BT

0 0 C

B CT 0


−1

−

0 0 0

0 W 0

0 0 0

 .

We seek an augmentation strategy that only changes one block of the matrix inverse

(as this does), but we would rather not fill in any of the zero blocks of K0. Thus,

we select a specific weight matrix F satisfying CF = 0; this yields the desired

result.

Since a goal of leading block augmentation is to convert a semidefinite leading

block to a positive definite one, we present the following result to prove that this is

still achievable even with the additional constraint that the weight matrix be a null

matrix of C.

Proposition 6.11. Let K0 is invertible, and let F be an m×m matrix satisfying

CF = 0. Then A+BT FB is positive definite for any F with rank m− p.

Proof. Assume to the contrary that K0 is nonsingular but A+BT FB is singular;

then, there exists a nonzero vector x ∈ Rn such that (A+BT FB)x = 0. Because

both A and BT FB are semidefinite, it must be the case that

Ax = 0 and BT FBx = 0.
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We cannot have a nonzero x ∈ ker(A)∩ker(B), because if that were the case then

the block vector
[
xT 0T 0T

]T
would be a null vector of K0. Thus, we must

have

x ∈ ker(A) and Bx ∈ ker(F). (6.20)

Because F has rank m− p, its kernel is given by range(CT ). Thus, (6.20) is equiv-

alent to

x ∈ ker(A) and Bx =CT z,

for some z ∈ Rp. However, this implies that
[
xT 0T −zT

]T
is a null vector K0.

Thus, we have shown by contradiction that there can be no nonzero null vector of

A+BT FB, and therefore A+BT FB is positive definite.

We note that the condition that F have rank m− p is a sufficient condition for

A+BT FB to be invertible, but it is not necessary unless A has nullity m− p. In

general, if A has nullity k, then it is clear that having rank(F) ≥ k is a necessary

(though not sufficient) condition for invertibility of A+BT FB.

6.4.2 Preconditioner derivation and analysis

Our approach is identical to the approach we used in deriving our classical saddle-

point preconditioner: namely, we augment A with as low-rank a weight matrix

as possible, and then use the block diagonal Schur complement of the augmented

system. Thus, our preconditioner is defined by:

MF =

AF 0 0

0 SF,1 0

0 0 SF,2

 ,

where AF = A+BT FB, SF,1 = BA−1
F BT and SF,2 =CS−1

F,1CT , with F being a matrix

of rank nullity(A) that satisfies CF = 0. Note that, in order for all these Schur

complements to be defined, we require B to be invertible, even though this is not

a necessary condition for invertibility of K0 (as we saw in Proposition 6.9). Thus,

we assume for the remainder of this section that B is invertible.

This preconditioner is similar to standard Schur complement approaches, but
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in practice it also requires some knowledge of the null-space of the block C in order

to form the weight matrix F . In this sense, it is conceptually similar to null-space-

based preconditioners for classical saddle-point systems, such as, e.g., [19, 67].

Theorem 6.12. Let A have nullity k (where 0 ≤ k ≤ m− p), B have full row rank,

and let F ∈Rm×m be a matrix of rank k that satisfies CF = 0. Define the precondi-

tioner

MF =

AF 0 0

0 SF,1 0

0 0 SF,2

 ,

where AF = A+BT FB, SF,1 = BA−1
F BT and SF,2 = CS−1

F,1CT . The preconditioned

operator M−1
F K0 has seven distinct eigenvalues given by:

• λ = 1, with multiplicity n−m+ k;

• λ =−1, with multiplicity k;

• λ = 1±
√

5
2 , each with multiplicity (m− p)− k;

• The roots of the cubic polynomial λ 3−λ 2+2λ +1 (approximately −1.2470,0.4450,

and 1.8019), each with multiplicity p.

Proof. The eigenvalue equations for the preconditioned system are:

Ax+BT y = λAFx (6.21a)

Bx+CT z = λSF,1y (6.21b)

Cy = λSF,2z. (6.21c)

We begin by searching for eigenvectors with z = 0. Eq. (6.21c) tells us that y ∈
ker(C). Then, subject to the this constraint, the eigenvalue equations reduce to

Ax+BT y = λAFx (6.22a)

Bx = λS1(F)y. (6.22b)

These are precisely the eigenvalue equations (6.7a)-(6.7b) that arise from the anal-
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ysis of the block-2×2 case in Theorem 6.8; by obtaining

y =
1
λ

S−1
F,1Bx (6.23)

from (6.22b), substituting into (6.22a), and using identical reasoning as was used

in Theorem 6.8, we obtain the equality:

A−1
F Ax− 1

λ
VAx+

(
1
λ
−λ

)
x = 0, (6.24)

where V = Z(ZT AZ)−1ZT with Z ∈ Rn×m being a null-space matrix of B. At this

point, our analysis cannot proceed in exactly the same manner as in Theorem 6.8

(by simply considering x in the ranges/kernels of the projectors A−1
F A and VA)

because we now have the added constraint due to (6.23) that

x ∈ ker(CS−1
F,1B).

However, we note that this is clearly true of any x ∈ ker(B) (and therefore any

x ∈ range(VA)), as in that case S−1
F,1Bx = 0. It is in fact also true of any x ∈ ker(A).

Recall from Lemma 6.6 that

S−1
F,1 = F +(BBT )−1B(A−AVA)BT (BBT )−1. (6.25)

Therefore,

CS−1
F,1B =CFB+C(BBT )−1B(A−AVA)BT (BBT )−1B

=C(BBT )−1B(A−AVA)BT (BBT )−1B. (6.26)

Recalling that (I −VA) is a projector onto range(B) and BT (BBT )−1B, we see that

C(BBT )−1B(A−AVA)BT (BBT )−1B =C(BBT )−1B(I −AV )A,

and therefore CS−1
F,1Bx = 0 for any x ∈ ker(A). So, by identical reasoning as in

Theorem 6.8, we immediately obtain:

• k eigenvectors corresponding to each of the eigenvalues λ =±1 by selecting
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x ∈ ker(A).

• n−m additional eigenvectors corresponding to λ = 1 by setting x∈ range(VA).

We can then obtain the m− k − p eigenvectors corresponding to the eigenvalues

λ = 1±
√

5
2 by taking

x ∈ ker(VA)∩ range(A−1
F A)∩ker(CS−1

F,1B).

We now consider the case in which z ̸= 0. We assume that λ /∈ {±1, 1±
√

5
2 }, and we

also assume that x ∈ range(A−1
F A) (we will confirm the validity of this assumption

at the end of the proof). Because A−1
F A is a projector, this means A−1

F Ax = x, and

(6.21a) gives

x =
1

λ −1
A−1

F BT y. (6.27)

Substituting this into (6.21b) and solving for y yields

y =
λ −1

λ 2 −λ −1
S−1

F,1CT z. (6.28)

Substituting this into (6.21c) and rearranging yields

(λ 3 −λ
2 −2λ +1)SF,2z = 0.

This, combined with the positive definiteness of SF,2 yields the remaining eigenval-

ues stated in the theorem and accounts for all n+m+ p eigenvalues of M−1
F K0.

It remains for us to verify our earlier assumption that x ∈ range(A−1
F A); we will

show here that this holds for any z. From Eqs. (6.27) and (6.28) we can write:

x =
1

λ 2 −λ −1
A−1

F BT S−1
F,1CT z. (6.29)

Using (6.25), recalling that BT (BBT )−1B(I − AV ) = (I − AV ), and simplifying

(6.29) yields

x =
1

λ 2 −λ −1
A−1

F A(I −VA)BT (BBT )−1CT z,

which is clearly in range(A−1
F A), as assumed earlier.
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As in the block-2×2 case, the multiplicity of eigenvalues in the preconditioned

operator is smaller in the case when A has minimal rank. The following result

follows directly from Theorem 6.12.

Corollary 6.13. When A is lowest-rank (i.e., has nullity m− p), the preconditioned

operator M−1
F K0 has five distinct eigenvalues given by: 1,−1, and the roots of the

cubic polynomial λ 3−λ 2+2λ +1 (approximately −1.2470,0.4450, and 1.8019).

Remark Analogously to the block-2×2 case, we observe that the preconditioner

MF reduces to the standard Schur complement preconditioner (4.1) when A is

positive definite.
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Chapter 7

Conclusions

7.1 Summary
In this thesis we provided eigenvalue analysis and considered preconditioning tech-

niques for double saddle-point systems with full-rank and singular leading blocks,

as well as for classical saddle-point systems with singular leading blocks. While

our focus has been more on theoretical analysis than on practical implementations,

a solid theoretical understanding of matrices and preconditioners is an essential

first step in the development of solvers.

For double saddle-point systems with a positive definite leading block, we have

provided effective eigenvalue bounds based on the eigenvalues and singular values

of the matrix blocks. The increasing importance of double saddle-point systems

requires attention to spectral properties of the matrices involved. We have shown

that energy estimates are an effective tool for obtaining eigenvalue bounds in this

case. We then used these results to analyze the performance of a block diagonal

Schur complement preconditioner, including in the more realistic scenario where

the leading block and Schur complements are replaced by approximations.

We then considered matrices in which the leading block is singular. We have

made some contributions to existing work on classical saddle-point systems by

providing a nonzero lower bound for the positive eigenvalues of these matrices

based on the angles between the ranges of the blocks, and we then used these

analyses to construct a preconditioner that yields a constant number of eigenvalues

112



of the preconditioned operator, regardless of the rank of the leading block. We then

extended this to the double saddle-point context and created a preconditioner that

again yields a constant number of eigenvalues of the preconditioned operator.

7.2 Future work
1. In terms of eigenvalue analysis, following Remark 4.13, specific assump-

tions on the magnitudes of the norms of the matrices D and E may yield ad-

ditional results and insights on the bounds. The rank structure of the blocks

may also have a significant effect, and it may be useful to eliminate the pos-

itive definiteness requirement of A and/or consider rank-deficient B and C.

2. It would be useful to consider and further develop preconditioners for non-

symmetric double saddle-point systems, This will likely involve considering

block triangular, rather than block diagonal, preconditioners (some theoreti-

cal work in this area has already been done in [11]). We note that when sym-

metry is lost, eigenvalue bounds may not be a sufficient tool for predicting

convergence rates of Krylov subspace solvers, and we must instead resort to

such tools as fields of values [38] or pseudospectra [88]. It may nonetheless

be possible to derive effective practical solvers for certain problems, even in

the absence of some of the theoretical guarantees we can achieve in the sym-

metric case. Both theoretical analysis and practical experimentation could

lead to useful developments.

3. For classical saddle-point systems with singular leading blocks, future work

in this area includes improving the bound in the non-lowest-rank case (for in-

stance, by intelligently selecting the portion of the spectrum that is “dropped”

from A).

4. In terms of preconditioning for classical saddle-point systems with a singular

leading block, a limitation of our approach is the need to construct a suitable

weight matrix Wk. We describe a method for doing this in the numerical

experiments that looks only at the structural rank of a modified augmented

matrix, but saw in a few cases that this does not guarantee that the augmented

matrix will be numerically nonsingular. Another potential area for improve-
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ment is that in our experiments we restricted ourselves to diagonal weight

matrices with all ones and zeros along the diagonal; it is worth exploring

whether other matrix structures or scalings could be more effective.

5. There are several steps required before our preconditioner for double saddle-

point systems with a singular leading block can be incorporated into a prac-

tical solver. One is, again, the choice of a suitable weight matrix, which is

more difficult in this case because the ideal weight matrix is a null matrix

of C. There is also a need to develop some strategies (which will likely be

problem-dependent) for approximating the expensive terms in the precondi-

tioner, as we did in the classical saddle-point case. Because the unregularized

case is less common for double saddle-point systems than classical saddle-

point systems, it would also be useful to extend this preconditioner to the

case where D,E ̸= 0.
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