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Abstract

Graph neural networks (GNNs) are a class of machine learning models that relax

the independent and identically distributed (i.i.d.) assumption between data points

that underlies most machine learning models.

Theoretical understanding of these models involves analyzing generalization bounds,

a theoretical framework for finding the provable discrepancies between expected train

and test loss. We make advancements in state-of-the-art PAC-Bayes generalization

bounds for GNNs using insights from graph theory and random matrix theory, and

perform experiments for validation.

One of the most important directions in the study of modern theoretical ma-

chine learning is the analysis of out-of-distribution error; that is, error measured

particularly on examples from a distinct distribution from the training distribution.

In particular for the graph learning setting and GNNs, there are importatnt ques-

tions that can be explored about size generalization, the capacity for a graph neural

network to make predictions on graphs much larger than seen on its training set.

We develop a theoretical framework for size generalization with the analysis of

graph learning settings where GNNs can easily perform size generalization, and de-

velop probabilistic theorems analyzing some measures of generalization error, build-

ing off of the work done in the PAC-Bayes analysis.
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Lay Summary

Graph neural networks (GNNs) are machine learning models that take into account

the relationships and networks between different data points. They have seen much

use in applications such as social network analysis and molecular science, since their

introduction and throughout the proliferation of deep learning.

As with many modern machine learning models, practice has outpaced theory,

with models being shown to be usable in new innovations before the research commu-

nity is able to analyze them theoretically, that is, in a completely provable fashion. In

this work, we review the state of theoretical understanding of graph neural networks,

and make some improvements to the theorems currently at the state of the art. We

then introduce the beginnings of a new theoretical framework to understand a key

question of interest regarding the models: if a GNN is trained on small networks,

what can they say about larger ones?
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Preface

This thesis is an original, unpublished work done in collaboration with Dr. Nicholas

Harvey and Dr. Renjie Liao.

The original results of this work are present in Chapters 9, 10, and 11. The main

body of the work in Chapter 9 were developed in collaboration with Dr. Harvey and

written by myself, with input from Dr. Liao, whose work we are extending. The

experiments described in Chapter 10 were designed and performed by myself, with

Dr. Liao providing support for the computation of the results of the experiments by

providing the code used in [1] which was modified by me for the purpose of my own

experiments. Dr. Liao also provisioned the computational resources needed to run

the associated code. The proofs in Chapter 11 were developed and written by myself

in collaboration with Dr. Harvey.
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Chapter 1

The learning task

Machine learning is a field of study that draws from many different areas including

computer science and statistics and may be viewed as the study of using algorithms

to infer models from data, with a model in the most general sense being a function

that yields some sort of insight about the underlying data used as input.

We will define this framework more formally using the notation of Shalev-Shwartz

and Ben-David [2], which defines a statistical learning framework with the following

mathematical constructs:

• The domain set, X , which contains objects that we wish to examine.

• The label set, Y . In Shalev-Shwartz and Ben-David [2] they define this as

being restricted to a two-element set like {−1, 1} or {0, 1} but many machine

learning tasks involve having the labeling space much larger than this, either

by having a multitude of possible labels (as in image classification) or even a

continuous space (as in regression tasks like predicting a quantity associated

with a protein).

• Training data, which consists of pairs (x1, y1), . . . , (xm, ym) that each exist in

X × Y .

• Given the training data, a learning algorithm outputs a function, h : X → Y .
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• We assume that there is some “ground truth” labelling function f : X → Y ,

such that yi = f(xi) for all i, and that the function h generated by the learning

algorithm is approximating f as closely as possible. Furthermore, we assume

that the training instances xi are generated independently and identically dis-

tributed under a probability distribution D.

• A loss function, ℓ(h), which is a measure of how different the function out-

putted by the algorithm is from the true learning function. For classifica-

tion functions like those that operate under the assumptions of SSBD this

can be simply the probability under D that an example x has f(x) ̸= h(x).

For continuous outputs another natural loss function is expected squared loss,

ℓ(h) = ED [(f(x)− h(x))2].

This is a very powerful characterization of machine learning models, as it can

apply to a plethora of model classes and learning tasks. However it must be noted

that a few key assumptions underpin this entire framework. This does not admit

certain models that are better suited to certain kinds of problems or data, particularly

when the nature of the data violates the framework’s assumptions. Of particular note

is the IID assumption under which the xi examples are generated. Many real-world

problems do not follow this framework; often an observable object in the world would

have predictable quantities which do not only depend on its own quantities but also

on the quantities of other objects with which it has relations. For example, if you

are trying to predict the position of an atom within a molecule after a certain time

step, it is not enough to consider just the chemical properties and current position

of the single atom; it is also necessary to examine those properties of the atom as

well as the properties other atoms close to it, to account for their interaction.
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Chapter 2

The learning task for graphs

2.1 Graph preliminaries

The mathematical construct of the graph is a universal model for pairwise relation-

ships. A graph G is a set of vertices V and a set of edges E ⊆ V × V , with two

vertices v1, v2 said to be connected if (v1, v2) ∈ E. For a given graph G ∈ G we can

also denote its vertices by V (G) and edges E(G).

Unless otherwise specified we assume graphs are undirected and without multi-

edges. For the purposes of machine learning, a graph may have a set of node features

xv : V → Rdv , and edge features, xe : E → Rde .

Given graph-structured data, a natural task that arises from a relaxation the

above framework is that of node classification (or regression). Formally, that means

that we have the following constructs:

• Graph data, {Gi}mi=1 ∈ G, where G is the set of all graphs. For each i, Gi =

(Vi, Ei), the vertex and edge sets of graph i.

• Node feature data, x : V → X , X ⊆ Rd for all vertices v ∈ V (Gi),∀i ∈ [m].

The graph structure also admits a neighbor function N (v) = {u ∈ V (Gi) :

(v, u) ∈ E(Gi)}.
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• Node labels, y : V → Y , with Y being the set of labels, either discrete or

continuous

• A ground truth function f , which is defined in a different way from the above

framework due to the graph structure; the definition would be a function f ,

which maps graphs to labels. Outputs h of the learning algorithm will be of

the same type as f . It is possible that the function f is associated with an

underlying vertex labelling, fV : V (G) → Y , of which f would be an aggregation

like f(G) = modev∈V (G)(fV (v)).

• An equivalent formulation of f is in terms of its node features and adjacency

matrix: f : X n × Rn×n → Yn. Permutation invariance and equivariance may

apply extra constraints; there is more discussion below.

• A loss function ℓ : G → R, for example defined in the classification case as

ℓ(G) = 1
|V (G)|

∑|V (G)|
i=1 I[f(G)i ̸= h(G)i].

This framework relaxes the IID assumption on the node data because the function

does not need to take in the data for each vertex in isolation; instead, it takes in

the whole graph. By doing this, for any given vertex the function may take into

account the properties of its neighbours, its 2-neighbours, or even any selection of

other nodes in the graph that may be useful.

Not all functions f that operate on that domain and range are necessarily per-

missible, however. If two graphs have exactly the same nodes but with the labels

permuted, then the function should produce the same output. This property of func-

tions f that do this is called permutation invariance. Formally, it is defined in terms

of permutation matrices and the graphs’ adjacency matrices.

• Two graphs G1 and G2 with adjacency matrices A1 and A2 are considered

isomorphic to each other if there exists a permutation matrix P such that

A2 = PA1P
⊤. A permutation matrix P ∈ Rn×n is defined such that every

entry is 0 or 1, and there is exactly one 1 entry in each row and each column.
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• A graph function in node feature-adjacency matrix form f : X n ×Rn×n → Yn

is considered permutation equivariant if ∀P,X,A, we have f(PX,PAP⊤) =

Pf(X,A).

• A loss function ℓ : X n × Rn×n → R is considered permutation invariant if

∀P,X,A, we have ℓ(PX,PAP⊤) = ℓ(X,A).

Note that in the above framework, if both the ground-truth function f and the

learned function h are permutation-equivariant, then the function ℓ is permutation-

invariant.
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Chapter 3

Neural Networks and Graph

Neural Networks

Neural networks are perhaps the most popular and important machine learning mod-

els of the modern era; this is because of their exceptional performance in certain

important tasks, such as image recognition [3], recommendation systems [4], and

natural language understanding, translation, and generation [5], which have been

put into use by many applications and websites that are used by billions of people.

The definition of a neural network is presented by [2] as a directed acyclic graph

(DAG). Furthermore, the nodes in this graph are further subdivided into disjoint

sets called layers, V1, . . . , Vl, such that any edge in this DAG connects a node in Vi

to a node in Vi+1 for some i ∈ {1, . . . , l−1}. This DAG is then coupled with a weight

function: f : E → R, which denotes weights applied to information as it is passed

from one layer to another.

The first layer V1 is the input to the neural network; the output of the neural

network is Rdout , where dout is the number of nodes in the final layer Vl. The output

is computed by the as

at+1,j(x) =

|Vt|∑
i=1

w(Vt,i, Vt+1,j)ot,i(x)
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and

ot+1,j(x) = σ(at+1,j)

where σ is a fixed nonlinear function; some popular choices of σ have included the

hyperbolic tangent (tanh) function, the sigmoid function σ(z) = 1
1−e−z , and the

rectified linear unit, σ(z) = max{0, z}.
Neural networks have been considered as essentially performing a feature trans-

formation followed by a supervised learning objective, learning a representation of

the underlying data unto which something resembling a regression model is applied.

In that respect, ordinary feedforward neural networks make an implicit assumption

that the underlying data is independent and identically distributed, and thus do not

capture structural dependencies between individual data points.

3.1 Definition of graph neural networks

Graph neural networks are a generalization of the neural network to data with vari-

able structures and dependencies on other data points, achieving this by adopting

an architecture suited to the graph learning task described in Section 2.

Input data are graphs, G ∈ G, and takes the form of node features and edge

features, where a feature vector in Rd is associated with either a vertex or edge in

the graph.

The message passing algorithm is defined in its most general form by the recur-

rence relation [6]

h(k+1)
u = UPDATE(h(k)

u ,AGGREGATE({h(k)
v |v ∈ N (u)})) (3.1)

It can be argued that the defining feature of each specific GNN variant depends

on the choice of UPDATE and AGGREGATE functions. A very basic GNN can be

derived by setting the AGGREGATE function to be a sum over all of the neighbors’

node features and the UPDATE function to an application of self- and neighbour-

weights followed by a nonlinear transformation σ (e.g. σ = ReLU). Formally this
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can be defined as

AGGREGATE(N (u)) = mN (u) =
∑

v∈N (u)

hv (3.2)

h(i+1)
u = UPDATE(hu,mN (u)) = σ

(
Wselfh

(i)
u +WneighbormN (u)

)
(3.3)

Figure 3.1: An illustration of the neighbor updates in a GNN layer.
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Chapter 4

Graph convolutional networks

(GCNs)

4.1 Convolutional neural networks

Convolutional neural networks are a model that developed independently of GNNs

and are the cornerstone of machine learning models that operate on image data,

including the famous AlexNet [3], which was the first CNN-based model to win

the ImageNet challenge, achieving human-like accuracy in image classification. (A

CNN-based model has won the competition every time it has been held since that

year.)

CNNs are a model that can capture the dependencies between spatially contigu-

ous pixels of an image, which, like GNNs, relax the IID assumption by considering

the dependencies between pixels and their neighbors. However, you cannot reduce a

CNN to a GNN, at least not with our current definitions of a graph. By inputting

image data into a GNN layer, each layer would work on a fixed graph structure,

where there are N2 nodes corresponding to pixels in an N × N resolution image,

and each pixel would be connected via an edge to each of its spatial neighbors. This

would lose the specific spatial relation between the pixel of interest and each of its

neighbors (i.e. you would lose the information that pixel (1, 2) is below pixel (1, 1)),
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because GNNs require permutation invariance.

Just as in a GNN, the computation of the model output for each node (pixel)

involves some sort of “message passing” to a node from each of its neighbors (spatially

close pixels). For each node, the output is calculated as the convolution between the

fixed-size convolutional kernel and the vectors/node features in R3 corresponding to

the color values of each pixel in the neighborhood.

4.2 Definition of the GCN

GNNs can be thought of as analogous to convolutional neural networks and both can

be categorized as part of a class of geometric deep learning methods. To go from the

design of a CNN to that of a GCN, one must acknowledge the consideration that

the structure of a node’s neighbourhood is not fixed, and thus the model cannot

distinguish between different classes neighbours.

Therefore, rather than a kernel that acknowledges the specific kind of spatial

difference between a pixel and its neighbours, the GCN layer only can incorporate

information from the nodes themselves. In this sense we can choose functions for

AGGREGATE and UPDATE that can mirror those of the convolutional neural net-

work. The formula is below according to [6]:

h(k+1)
u = σ

W(k)
∑

v∈N (u)∪{u}

h
(k)
v√

|N (u)|
√
|N (v)|

 (4.1)

This model is the same as the basic GNN model shown in earlier sections, but with

added normalizations. While a convolution kernel has specific weighting information

depending on the spatial relation between the pixels examined, the GCN simply

adds information by including information about the degree (neighbourhood size) of

each node in the neighbourhood of u. Despite the introduction of this model as a

generalization of a convolutional neural network, Kipf and Welling formulated the

model in the form of a first-order approximation of the Chebyshev polynomial of a

graph Laplacian, which I will introduce in the next section.
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4.3 Connection to graph spectral theory

The graph Laplacian matrix is defined as

L = D − A

where A is the adjacency matrix and D is the degree matrix. Similarly, the normal-

ized graph Laplacian is

L̃ = I −D−1/2AD−1/2

where each entry Aij is 1 if i = j and 1
di

if vertices i and j share an edge.

The graph Laplacian and its normalized counterpart are so named because they

are analogous to the Laplacian operator ∆f = ∇2f , and may be considered as an

operator that characterizes how a graph signal varies across its nodes. The analogy

is clear when considering the graph Laplacian of a chain graph of length l. Notice

that the rows of L in this case consist of all zeros except for a single block of the

form
[
· · · −1 2 −1 · · ·

]
. When appropriately normalized, this corresponds to a

linear approximation and discretization of the second derivative operator, when each

of the nodes corresponds to an equally-spaced point along the real line (i.e., the kth

node corresponds to the point x = k/l).

On the real line, the eigenfunctions of the Laplacian operator correspond to the

Fourier basis of sinusoidal functions, which have the property that linear combina-

tions of the functions present in this basis can represent any periodic function.

Similarly, any spectral convolution on a graph, gθ ⋆ x, can be defined as the

application of a signal can be defined as

gθ ⋆ x = Ugθ(Λ)U
⊤x

where U is the orthogonal matrix with columns equivalent to the eigenvectors of the

normalized laplacian L, with gθ being defined now as a function of the eigenvalues λ

or more simply as a function over the eigenvalue matrix Λ.

Evaluating every eigenvalue is computationally expensive, so a truncated version
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of the signal can be calculated by taking only the first K eigenvalues (rescaled):

gθ′(Λ) =
K∑
k=0

θ′kTk(Λ̂)

where Λ̂ are the rescaled eigenvalues, being the eigenvalues of the rescaled Laplacian

L̂ = 2
λmax

L̃− I.

The GCN formula arises when λmax is approximated to be 2 and K is set to be

equal to 1, giving

gθ′ ⋆ x = θ′0x− θ′1D
−1/2AD−1/2x

or, if turned into an update rule, exactly the same formula as Equation 4.1.

It is important to note that in the original paper, while the formulation of the

GCN formula as a graph-spectral derivation is correct, it is not grounded in a theo-

retical argument about the model class’s expressivity. There are no theorems in the

paper about why λmax is approximated to 2 or why specifically they needed to trun-

cate the Chebyshev polynomial sum at K = 1. It instead was verified empirically,

posting results that were better than the state-of-the-art graph neural network mod-

els at the time. Since then and before, there has been work analyzing the expressivity

of these models, which we will begin to discuss in the following sections.
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Chapter 5

Introduction to algorithmic

learning theory

5.1 Universal approximation for neural networks

The main theoretical underpinning for the expressivity of neural networks begins

with the universal approximation theorem for feedforward neural networks, which

dates back as early as 1989 [7].

Theorem 5.1. Let σ be a continuous sigmoidal function. Then finite sums of the

form

G(x) =
N∑
j=1

αjσ(y
⊤
j x+ θj)

are dense in C(In), meaning that for any continuous function f on a compact interval

In, there exists G of the above form such that |G(x)− f(x)| < ϵ for any ϵ > 0.

The sum of sigmoidal functions in Cybenko’s expression is equivalent to a one-

layer feedforward neural network of arbitrary width and single output (the property

for multiple outputs can be shown using the property for each coordinate and a

smaller ϵ).
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5.2 PAC theory and VC-dimension

One may be tempted to think that neural networks are theoretically “proven to work”

because of the universal approximation theorem, but the statement of the proof still

leaves many mysteries. For one, from the proof itself it doesn’t give a characteri-

zation for how many parameters are needed to approximate a given function to a

desired accuracy ϵ, save for the number of nodes in a single, arbitrarily-wide hidden

layer. The vast majority of neural networks in practical usage today are deep rather

than wide; the universal approximation proof gives us no reasoning as to why this

might be the case. With this in mind, a more granular theory is needed in order

to characterize neural networks and to inform model selection when building neural

network architectures.

The general framework for learning tasks can be seen as a more general form from

the definition in Section 1.1. Given data from a training set Z consisting of data

from X and outputs from Y , we seek to find hypothesis functions h from a function

class H that estimates the ground truth function f : X → Y up to a particular error.

PAC (standing for Probably Approximately Correct)-learning theory is a formal

learning model introduced by Valiant in 1984 [8] that serves as a property of whether

or not a particular hypothesis class can achieve this. The definition, as restated by

Shalev-Shwartz and Ben-David [2], is as follows:

Definition 5.1 (PAC-learnability). A hypothesis class H is PAC-learnable if there

exists a function mH : (0, 1)2 → N (taking arguments ϵ and δ), such that: for every

ϵ, δ ∈ (0, 1), for every distribution D over ground set X , and for every labelling

function f : X → {0, 1}, then if the realizable assumption holds then when running

the learning algorithm on ≥ mH iid examples generated by D and labeled by f , the

algorithm returns a hypothesis h ∈ H such that, with probability 1 − δ, the expected

loss LD,f (h) ≤ ϵ

In the above an important assumption is made, namely that the function is

realizable, i.e. that for every training set S ∈ X n there exists a member h ∈ H such

that LS,f [h] = 0, and it is very easy to see that this case will not be true for all such

learning problems. A more general definition is made some time after:
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Definition 5.2 (PAC-learnability (agnostic case)). A hypothesis class H is agnos-

tic PAC-learnable if there exists a function mH and a learning algorithm with the

property: for every ϵ, δ ∈ (0, 1) and for every distribution D over X × Y, when

running the learning algorithm on more than mH(ϵ, δ) iid examples generated by

D, the algorithm returns an h ∈ H such that with probability greater than 1 − δ,

LD(h) ≤ minh′∈H LD(h
′) + ϵ.

PAC-learnability is closely related to the concept of VC-dimension, which is de-

fined as follows:

Definition 5.3 (VC-dimension). The VC-dimension of a hypothesis class H is as

follows

VCdim(H) = max
S⊆X

{|S| : {(h(s1), . . . , h(s|S|)) : h ∈ H} = {0, 1}|S|}

Here, the condition on the right is known as the hypothesis class H shattering the

set S.

It has been shown that if the VC-dimension of H is finite and equal to D, then

it is agnostically PAC-learnable with m(δ, ϵ) = Θ
(
D+ln 1

δ

ϵ2

)
.

The VC-dimension of feedforward neural networks with ReLU activations is

proven to be Ω(PL log P
L
) by Bartlett, Harvey, et al. [9] in 2019, where P is the

number of parameters and L is the number of layers. This means that the sample

size m for a neural network with parameters P and L and desired accuracy described

by (ϵ, δ) is

mP,L,ϵ,δ = O

(
1

ϵ2

(
PL log

P

L
+ ln

1

δ

))
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Chapter 6

PAC-Bayes theory

The PAC-Bayes framework augments the regular PAC framework by inducing a

prior distribution over the hypothesis class. A distribution of functions is created by

creating a distribution among its indexing parameters; for example, it is equivalent

to discuss a distribution of neural networks of a fixed architecture and a distribution

of its weights.

Perhaps the “fundamental theorem” of PAC-Bayes theory is that of McAllester

[10]. Its statement is as follows:

Theorem 6.1 (PAC-Bayes generalization gap [10]). In the multi-class classification

setting with K classes, let

LD,γ(f) = Pr
x∼D

[
f(x)[y] ≤ max

j ̸=y
f(x)[j] + γ

]
be the generalization error, with f(x) outputting a vector of class values in RK and

γ being a fixed threshold. Similarly, let

LS,γ(f) =
1

n

n∑
i=1

1

[
f(xi)[yi] ≤ max

j ̸=yi
f(xi)[j] + γ

]

be the empirical loss function over particular training set S.

Given any hypothesis class of functions f parameterized by weights w, for any
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prior P and posterior Q over w, for any δ ∈ (0, 1), we examine the expected losses

when picking a hypothesis from Q, which we denote as LD,γ(Q) = Ef∼Q[LD,γ(f)] for

the expected true data distribution loss and LS,γ(Q) = Ef∼Q[LS,γ(f)] for the expected

empirical loss. With probability ≥ 1− δ over training sets of size m, we have:

LD,γ(Q) ≤ LS,γ(Q) +

√
DKL(Q∥P ) + ln 2m

δ

2(m− 1)
(6.1)

Although PAC-Bayes relies on a prior over the weights, unlike Bayesian learning

the bounds of PAC-Bayes hold even if the prior is not correct [11]. It is still true

that the tightness of the bound depends on the choice of P and Q. Intuitively, it

can be observed that distributions that are better able to reflect the reality of the

distribution of weights and the mechanism of training are able to produce tighter

bounds.

Though it is possible to select two distributions P and Q that have low KL-

divergence, that can come at the cost of increasing LD,γ(Q). For example, selecting

Q = P (perhaps, to have a KL-divergence of 0) is equivalent to doing no training at

all, and thus would in all likelihood increase LD,γ(Q) significantly.

A prominent example of a posterior distribution is posited by Neyshabour et al.

[12], in which they derive a PAC-Bayes bound by setting the posteriors as “pertur-

bation distributions”, defined as follows. If the functions f are parameterized by

weights w, and P thus can be seen as a distribution over w, then a perturbation

distribution posterior Q is another such distribution denoted by w + u where u

comes from a distribution that satisfies certain properties (e.g. they are Gaussian).

A generalization bound can be formulated from these as follows.

Theorem 6.2 (Perturbation PAC-Bayes bound [12] If u is a perturbation distribu-

tion such that Pu[maxx∈X |fw+u(x) − fw(x)|∞ < γ/4). ≥ 1/2, then we have for all

w, with probability ≥ 1− δ:

LD,0(fw) ≤ LS,γ(fw) + 4

√
DKL(Q∥P ) + ln 6m

δ

m− 1
(6.2)
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PAC-Bayes analysis has been applied to the case where the hypothesis class is

that of feedforward, ReLU-activation neural networks [12]. The bound derived is as

such.

Theorem 6.3 (PAC-Bayes bound for RELU-activation neural networks [12]). For

any δ ∈ (0, 1), for any γ used in the multi-class margin loss, and for any β̃ we have

with probability ≥ 1− δ over training sets of size m:

LD,0(fw) ≤ LS,γ(fw) +O


√√√√B2d2h ln(dh)

∏d
i=1 ∥Wi∥22

∑d
i=1

∥Wi∥2F
∥Wi∥22

+ ln dm
δ

γ2m

 (6.3)

Since there is an m term in the denominator and the numerator only has a

logarithmic dependence on m, this means that as the training set size increases

toward infinity the generalization gap approaches 0.
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Chapter 7

Expressivity of GNNs

The generalization of learning tasks on fixed-structured data begat a few differing

perspectives for quantifying the expressivity of models that work on graphs. There

are different kinds of questions that one can use as the basis to form of a quantitative

assessment, namely:

• How well can a graph model generalize from data?

• How well does the model differentiate different graph structures?

• How well is the model able to identify substructures of a graph?

There exists a universal approximation for GNNs on the class of permutation-

invariant set functions, as well as work on how well they can count substructures and

differentiate between non-isomorphic graphs. There is also a PAC-Bayes generaliza-

tion bound for GNNs, which this work offers a new improvement upon. However,

little work exists giving a more precise characterization of which node functions are

easily representable by GNNs beyond universal approximation.

7.1 Substructure tests and isomorphism

The problem of GNNs’ ability to identify graph structures has been explored in

works such as [13] and [14]. If a given graph neural network is able to, given two
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graphs g1 and g2, always return the same output when they are isomorphic, and

always return different outputs when they are not, then running two graphs through

the GNN becomes an algorithm capable of solving the graph isomorphism decision

problem in polynomial time. It has been proven, however, that a single layer of a

graph neural network can be no more powerful than the 1-Weisfeiler-Lehman test

(1-WL) by [13]; the 1-WL test is not powerful enough to differentiate between all

nonisomorphic structures. As a corollary, a multi-layer GNN with k total layers is

shown to be no more powerful than the k-WL test.

7.2 Universal approximation of GNNs

A universal approximation theorem of the function class of GNNs is proven in Xu

et al., 2020 [15]. The framework is, given ϵ > 0 and permutation-invariant featured-

graph function f : G → R, there exists a message-passing graph neural network

NN that is able to approximate f on a compact space X of node features such that

∥f − NN∥∞ ≤ ϵ. The proof of this relies on a reduction of the learning task to a

learning task on set functions, as well as reducing the GNN model to a Deep Sets

model [16], another class of machine model that exhibits (and is built around) a

universal approximation theorem for permutation-invariant functions on sets.

7.3 VC-dimension and Rademacher Complexity

generalization bounds for GNNs

Scarselli et al. [17] showed that the VC-dimension of a GNN taking input feature vec-

tors in Rd with maximum hidden embedding dimension h has VC-dimension O(h6N),

where N is the maximum number of nodes in any of the input graphs, and conse-

quently having generalization error scale by Õ(h6N/
√
m).

Garg et al. [18] tighten this bound further by using a form of analysis pertaining

to a concept known as Rademacher complexity. Their theorem involves complicated

parameter definitions that are beyond the scope of this thesis, so we do not present

it in full detail.
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In the following sections we will present the current state-of-the art theoretical

understanding of GNNs particularly in the generalization bound setting, and make

our own original improvements.
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Chapter 8

Towards a tighter theory of GNN

generalization

The current state of the art generalization bound for GNN was formulated by [1]

using PAC-Bayes theory. The work uses the PAC-Bayes theorem from [12] that

pertains to general models parameterized by weights w is used and applies it to both

graph convolutional networks and general message-passing GNNs.

We will present the framework and theorem in detail. The analysis was done

with respect to loss function LD,γ[f ] and LS,γ[f ], pertaining to a multi-class margin

loss with respect to a fixed margin parameter γ. These are defined as

LD,γ[fw] = Pz∼D

(
fw(X,A)[y] ≤ γ +max

j ̸=y
fw(X,A)[j]

)
(8.1)

LS,γ[fw] =
1

m

∑
(Xi,Ai)∈S

(
fw(Xi, Ai)[y] ≤ γ +max

j ̸=y
fw(Xi, Ai)[j]

)
(8.2)

These definitions are analogous to those in the general PAC-Bayes setting as in

Section 6, but adapted to a setting with graphs as data points. Here y is the ground

truth, and m is the training set size.

Perturbation bounds are established for each of the GCN and general message-
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passing GNN, leading to generalization bounds formulated as in [12] in terms of the

spectral norms of each of the weights, as well as in terms of the maximum degree of

input graphs d.

Theorem 8.1 (GCN Generalization bound [1]). For any B > 0, l > 1, let fw ∈ H :

X ×G → Rk be an l-layer GCN. Then with probability ≥ 1− δ over the choice of an

iid size-m training set S from the data distribution D, we have for any w:

LD,0(fw) ≤ LS,γ(fw)+O

√B2dl−1l2h log(lh)
∏l

i=1 ∥Wi∥22
∑l

i=1(∥Wi∥2F/∥Wi∥2w) + log ml
δ

γ2m


(8.3)

In the course of this research, a particular point of improvement was indentified

with this bound, particularly the exponential dependence on the maximum degree d

of dataset graphs. The improvements made are discussed in the following section.
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Chapter 9

Improvement on GNN PAC-Bayes

bound

Improving on Liao et al.’s [1] work, we are able to prove the following:

Theorem 9.1. For any B > 0, l > 1, let fw ∈ H : X ×G → Rk be an l-layer GCN.

Then with probability ≥ 1 − δ over the choice of an iid size-m training set S from

the data distribution D, we have for any w:

LD,0 ≤ LS,γ +O


√√√√B2dl2β2(h+ ln(l))

∏l
i=1 ∥Wi∥22

∑l
i=1

∥Wi∥2F
∥Wi∥22

+ ln m
δ

γ2m

 (9.1)

The proof is as follows, and makes up the remainder of the chapter.

9.1 Improvement on degree dependency

In Liao et al. [1], a generalization bound is attained on graph convolutional networks;

this bound is dependent on a bound on the maximum perturbation of the function

value when a perturbation U is applied to the weights W , presented in that paper’s

Lemma 3.1. The bound is as follows
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|fw+u(X,A)− fw(X,A)|2 ≤ eBd
l−1
2

(
l∏

i=1

∥Wi∥2

)
l∑

k=1

∥Uk∥2
∥Wk∥2

(9.2)

The primary goal of this set of improvements is to reduce the factor of d
l−1
2 . For

each layer, let Hi ∈ R|V |×h be the matrix containing the hidden embeddings of all

of the nodes in its rows, with h being the hidden dimension. In the process of the

proof of Theorem 9.1, we are able to show the following:

Φj = max
i

|Hj[i, :]|2 ≤ d
j
2B

j∏
i=1

∥Wi∥2 (9.3)

Ψj = max
i

|H ′
j[i, :]−Hj[i, :]|2

≤ Bd
j
2

(
j∏
i=1

∥Wi∥2

)
j∑

k=1

∥Uk∥2
∥Wk∥2

(
1 +

1

l

)j−k
(9.4)

|∆l|2 =
∣∣∣∣ 1n1nH ′

l−1(Wl + Ul)−
1

n
1nHl−1Wl

∣∣∣∣
2

≤ eBd
l−1
2

(
l∏

i=1

∥Wi∥2

)[
l∑

k=1

∥Uk∥2
∥Wk∥2

]
(9.2)

We begin to simplify these bounds by removing the dependency on d
j
2 , replacing

it instead with a fixed power of d1/2 that remains constant for every layer, and thus

in the final result of Equation 9.2 as well.

Theorem 9.2. For all 1 ≤ j ≤ l − 1, we have:

Φj ≤
√
d B

k∏
i=1

∥Wi∥2 (9.5)

Ψj ≤

(
1 +

(
1 +

1

l

)j)
B

√
d

(
j∏
i=1

∥Wi∥2

)
(9.6)
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Finally,

|fw+u(X,A)− fw(X,A)|2 = |∆l|2 ≤
(
e+ 1 +

2

l

)
B

√
d

l∏
i=1

∥Wi∥2 (9.7)

The proof follows from a lemma about the 2-norm of any node representation at

any layer:

Lemma 9.3. We have, for all k ∈ [n] and for j ∈ [l]:

|Hj[u, :]|2 ≤ B
√

deg(u)

(
j∏
i=1

∥Wi∥2

)
(9.8)

Proof: We prove this by induction. By definition |H0[u, :]|2 ≤ B and thus

|H0[u]| ≤
√
deg(u)B

0∏
k=1

∥Wk∥2.

We assume that for all u, we have

Hj−1[u, :] ≤
√

deg(u)B

j−1∏
k=1

∥Wi∥2.

From these statements we are able to deduce
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|Hj[u, :]| ≤
∑
v∈Nu

L̃[u, v]|Hj−1[v, :]|2∥Wj∥2

≤
∑
v∈Nu

1√
deg(u)deg(v)

[√
deg(v)B

j−1∏
k=1

∥Wk∥2

]
∥Wj∥2

=
∑
v∈Nu

1√
deg(u)

B

(
j−1∏
k=1

∥Wk∥2

)
∥Wj∥2

=
deg(u)√
deg(u)

B

j∏
k=1

∥Wk∥2

=
√

deg(u)B

j∏
k=1

∥Wk∥2

(9.9)

In these inequalities we use the fact that L̃[i, j] = (A+ I)ij/
√

deg(i)deg(j), and

we assume the simple case where there are unweighted edges so that (A+ I)ij is 1 if

and only if nodes i and j are connected and 0 otherwise.

By Lemma 9.3, we have that Φj = maxi |Hj[i, :]|2 ≤
√
dB
∏j

i=1 ∥Wi∥2, which is

exactly the result of equation (9.5).

Claim: For all v ∈ [n], |∆j[v, :]|2 ≤ B
√
deg(v)

(
1 + 1

l

)j (∏j
i=1 ∥Wi∥

)(∑j
i=1

∥Ui∥
∥Wi∥

)
.

Proof: We use induction assuming this is true for ∆j−1. We then have
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|∆j[v, :]|2 ≤
∑

u∈N (v)

L̃[v, u]|H ′
j−1[u, :]−Hj−1[u, :]|2∥Wj + Uj∥2 +

∑
u∈N (v)

L̃[v, u]|Hj−1[u, :]|2∥Uj∥2

≤

[
B

(
1 +

1

l

)j−1
(
j−1∏
i=1

∥Wi∥

)(
j−1∑
i=1

∥Ui∥2
∥Wi∥2

)
∥Wj + Uj∥+B∥Uj∥

j−1∏
i=1

∥Wi∥

]
(9.10) ∑

u∈N (v)

L̃[v, u]
√

deg(u)


= B

√
deg(v)

j−1∏
i=1

∥Wi∥

[
∥Wj + Uj∥

(
1 +

1

l

)j−1
(
j−1∑
i=1

∥Ui∥2
∥Wi∥2

)
+ ∥Uj∥

]

= B
√

deg(v)

j∏
i=1

∥Wi∥

[
∥Wj + Uj∥2

∥Wj∥2

(
1 +

1

l

)j−1
(
j−1∑
i=1

∥Ui∥2
∥Wi∥2

)
+

∥Uj∥2
∥Wj∥2

]

≤ B
√

deg(v)

j∏
i=1

∥Wi∥

[(
1 +

1

l

)j ( j−1∑
i=1

∥Ui∥2
∥Wi∥2

)
+

∥Uj∥2
∥Wj∥2

]

≤ B
√

deg(v)

j∏
i=1

∥Wi∥
(
1 +

1

l

)j ( j∑
i=1

∥Ui∥2
∥Wi∥2

)
(9.11)

∆l has a slightly different formulation but it has a very similar bound:
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|∆l|2 =
∣∣∣∣ 1n1n

(
L̃H ′

l−1(Wl + Ul)−
1

n
1nL̃Hl−1(Wl)

)∣∣∣∣
2

=
1

n

∣∣∣1nL̃(H ′
l−1 −Hl−1)(Wl + Ul) + 1nL̃Hl−1(Ul)

∣∣∣
2

≤ 1

n

n∑
i=1

|∆l−1[i, :]|2∥Wl + Ul∥2 +
1

n

n∑
i=1

|Hl−1[i, :]|2∥Ul∥2

≤ B
√
d

l−1∏
i=1

∥Wi∥
(
1 +

1

l

)l−1
(

l−1∑
i=1

∥Ui∥2
∥Wi∥2

)
∥Wl + Ul∥

+B
√
d∥Ul∥2

l−1∏
i=1

∥Wi∥2

≤ B
√
d

l∏
i=1

∥Wi∥

[(
1 +

1

l

)l( l−1∑
i=1

∥Ui∥
∥Wi∥

)
+

∥Ul∥
∥Wl∥

]

≤ B
√
d

l∏
i=1

∥Wi∥
(
1 +

1

l

)l( l∑
i=1

∥Ui∥
∥Wi∥

)

≤ eB
√
d

l∏
i=1

∥Wi∥

(
l∑

i=1

∥Ui∥
∥Wi∥

)
(9.12)

From this we have proven a tighter bound on the final output of the GNN under

perturbation, which we will use to calculate probabilistic and generalization bounds.

9.2 Improvement on probabilistic bounds using

random matrix theory

In [1], for all i ∈ [l], with l being the number of layers, the prior and the distribution of

the perturbations Ui ∈ Rdi+1×di ,, where all hidden dimensions di are upper-bounded

by a value h, were generated by a normal distribution N (0, σ2I), and give probabilis-

tic bounds on the operator norms ∥Ui∥ as P (∀i, ∥Ui∥ ≤ t) with probability greater

than 1 − 2lh exp−t2/2h2. We improve these bounds using theorems on random

matrices from work on high-dimensional probability, namely [19].
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Theorem 9.4 ((Theorem 4.4.5 in [19]). Let A be a matrix in Rm×n, where the entries

Aij are independent, mean-zero, sub-Gaussian random variables. Then, for all t > 0

we have

∥A∥ ≤ CK(
√
m+

√
n+ t)

with probability ≥ 1− exp(−t2), where K = maxi,j ∥Aij∥ψ2 and C is some constant.

In the above theorem the norm ∥X∥ψ2 is defined as inf{t : E[exp(X2/t2)] ≤ 2}.
In Example 2.5.8 in [19], it is shown that if X ∼ N (0, σ2) then it has ∥X∥ψ2 ≤ Cσ.

Corollary 9.4.1. If U ∈ Rm×n is a random matrix generated with the distribu-

tion N (0, σ2I) (i.e. all entries are independent and identically distributed Gaussian

random variables), then we have

∥U∥ ≤ σ(
√
m+

√
n+ t)

with probability at least 1− 2 exp(−t2).

With a change of variable, we are able to calculate the following:

P (∀i.∥Ui∥2 ≤ t) ≥ 1− P (∃i, ∥Ui∥ > t)

≥ 1−
l∑

i=1

P (∥Ui∥ > t)

≥ 1− 2l exp

((
t

Cσ
− 2

√
h

)2
)

And by setting the right-hand side to 1/2, we obtain:

t = Cσ(2
√
h+

√
ln(4l))

Using the above equation combined with our bound we are able to get

30



|fw+u(X,A)− fw(X,A)|2 ≤ eB
√
dl

(
l∏

i=1

∥Wi∥2

)
l∑

k=1

∥Uk∥2
∥Wk∥2

= eB
√
dβll

l∑
k=1

∥Uk∥2
β

≤ eB
√
dβl−1l(σ(2

√
h+

√
ln(4l)))

≤ e2B
√
dβ̃l−1(σ(2

√
h+

√
ln(4l))) ≤ γ

4
(9.13)

Here β̃ is an estimated of β such that |β − β̃| ≤ β/l that can be generated a

priori ; we discuss this in a later subsection.

We can set σ = γ

4e2Bβ̃
√
dC

(
2
√
h+
√

ln(4l)
) to satisfy the final inequality. From this

we can calculate the KL-divergence between the posterior and the prior:

KL(Q∥P ) =
|w|22
2σ2

=
16e4B2dl2β2(l−1)

(
2
√
h+

√
ln(4l)

)2
2γ2

l∑
i=1

∥Wi∥F

≤ O

(
B2dβ2ll2(h+ ln(l))

γ2

l∑
i=1

∥Wi∥2F
β2

)

≤ O

(
B2dl2 (h+ ln(l))

∏l
i=1 ∥Wi∥2

γ2

l∑
i=1

∥Wi∥2F
∥Wi∥2

)
(9.14)

From this we are able to calculate the generalization bound and thus prove the

theorem.

LD,0 ≤ LS,γ +O


√√√√B2dl2(h+ ln(l))

∏l
i=1 ∥Wi∥22

∑l
i=1

∥Wi∥2F
∥Wi∥22

+ ln m
δ

γ2m

 (9.15)
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9.3 Selecting parameter β̃

The prior normal distribution’s variance parameter σ2 is dependent on β, but β

cannot be used in its calculation because that information is only known after model

training. Instead, we can select a parameter β̂ such that |β − β̂| ≤ 1
l
β and thus

1
e
βl−1 ≤ β̂l−1 ≤ eβl−1 (as per equation 33 in [1]).

As in [1] we only have to consider values of β in the range

(
γ

2B
√
d

)1/l

≤ β ≤
(

γ
√
m

2B
√
d

)1/l

as otherwise the generalization bound holds trivially because LD,0 ≤ 1 by definition.

If we consider values of β̂ that cover this interval then by union bound we are

still able to get a high probability; the covering C needs to have |C| = l
2
(m

1
2l − 1).
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Chapter 10

Experiments

If the generalization gap bound is low enough then it would be possible for algorithms

that exist that may provide insight about the learning problem before training. With

this insight, it may be possible to greatly simplify the currently costly and difficult

model selection process by being able to compare different models’ expected per-

formance before having to start a computation-intensive training process. Similar

preprocessing mechanisms exist for linear/integer/quadratic/mixed-integer program

optimizers like CPLEX and company, where the solver is able to select the fastest or

most accurate algorithm depending on the parameters of the problem.

10.1 Experimental methodology

We conduct experiments in order to compare our PAC-Bayes bound to the origi-

nal PAC-Bayes bound in [1], on multiple datasets also used in that paper. These

datasets consist of six generated datasets of random graph data, three social net-

work datasets (IMDBBINARY and IMDBMULTI of data from the Internet Movie

Database, and COLLAB, a dataset of academic collaborations), and a bioinformatics

dataset, PROTEINS, from [16].

Experiments were done on multi-class classification tasks involving each dataset,

with prior PAC-Bayes bound coming from [1] as well as our formula proven in Section

?? being calculated after training a GCN-based neural network for a set number of
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epochs.

We use the following formula for the generalization bound from [1], using an

explicit constant factor:

GenGap(B, d, l, {Wi}li=1) =

√√√√
42 ·

B2dl−1l2 ln(4lh)
∏l

i=1 ∥Wi∥22
∑l

i=1

∥Wi∥2F
∥Wi∥22

γ2m
(10.1)

Similarly, the formula used for the new PAC-Bayes generalization bound is

GenGap(B, d, l, {Wi}li=1) =

√√√√
42 ·

B2dl2(h+ ln(l))
∏l

i=1 ∥Wi∥22
∑l

i=1

∥Wi∥2F
∥Wi∥22

γ2m
(10.2)

Testing was done for different network depths, with values of l = 4 and l = 6.

The setup works by training a GCN-based neural network architecture on each

of the datasets, then computing the theoretical bounds at the end of training.

10.2 Results

Tables below are for calculated bounds in the case of 4 layers (Table 10.1) and 6

layers (Table 10.2).
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Liao et al. (2021) [1] New bound

ER-1 14.985735 ±0.071 11.727639 ±0.071

ER-2 15.972616 ±0.068 12.080796 ±0.068

ER-3 16.533779 ±0.038 12.285284 ±0.038

ER-4 16.869156 ±0.000 12.391819 ±0.000

SBM-1 15.859210 ±0.080 12.030569 ±0.080

SBM-2 15.503044 ±0.066 11.892126 ±0.066

IMDBBINARY 17.370839 ±0.079 12.458184 ±0.079

IMDBMULTI 16.466189 ±0.038 11.977553 ±0.038

COLLAB 19.773157 ±0.009 13.574678 ±0.009

PROTEINS 14.011104 ±0.079 10.753008 ±0.079

Table 10.1: Table of results, 4 layers (log values)

Liao et al. (2021) New bound

ER-1 20.123308 ±0.046 13.607115 ±0.046

ER-2 21.814967 ±0.017 14.031327 ±0.017

ER-3 22.782537 ±0.008 14.285547 ±0.008

ER-4 23.377554 ±0.021 14.422881 ±0.021

SBM-1 21.605130 ±0.037 13.947847 ±0.037

SBM-2 21.028283 ±0.047 13.806447 ±0.047

IMDBBINARY 24.648394 ±0.058 14.823084 ±0.058

IMDBMULTI 23.373624 ±0.105 14.396352 ±0.105

COLLAB 28.261012 ±0.106 15.864055 ±0.106

PROTEINS 19.421826 ±0.059 12.905633 ±0.059

Table 10.2: Table of results, 6 layers (log values)
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Figure 10.1: Generalization bound values on real-world data sets, 4 layers
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Figure 10.2: Generalization bound values on synthetic graph data sets, 4 layers
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Figure 10.3: Generalization bound values on real-world data sets, 6 layers
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Figure 10.4: Generalization bound values on synthetic graph data sets, 6 layers

10.3 Discussion

Unilaterally, the new bound is a strict improvement on the bound in [1] whenever

there is more than one layer in the network, i.e. l > 1. The results show that in all

cases that the new bound is several orders of magnitude lower than the old bound.

As the number of layers l increases, the improvements are of higher magnitude, as

the previous results had an exponential dependence on l while our work only has a

linear dependence.

39



The results shown from this experiment still show that if this paradigm is feasible,

there is still much work left to be done, as the generalization bounds from both

the original paper of [1] and the improved bounds in this work still generate large

enough bounds to need to be expressed in log-form. But improvements on theoretical

generalization bounds could be important steps toward the realization of this goal.

The values obtained during the course of experiments are still quite large, large

enough that we need to express them with log values rather than the actual values.

As can be seen in the formula for both generalization bounds, there is still an ex-

ponential dependence on the maximum hidden dimension h (due to the dependence

on spectral norms ∥Wi∥2. The number of training examples needed to reduce the

absolute numbers sufficiently thus also depend exponentially on h.

While these high bound values may be the case for this result as well as many

others in the state of the art of learning theory, it is still important to decrease the

dependencies on the parameters as much as possible.

40



Chapter 11

Towards developing a theory for

size generalizaton

In PAC and PAC-Bayes we examine the relationship between a true/population

distribution D and training sets S that come from the empirical distribution of iid

samples, Dm.

In the previous setting, the support of the distribution D is X ×Y , consisting of

the dataset graphs (X = the set of graphs) as well as labels (multiclass, Y = [n] for

some n).

PAC-Bayes (and PAC) theory pertain to statements of the form: for all f ∈ H,

we have with probability ≥ 1− δ:

LD[f ] ≤ LDm [f ] + A(X ,Y , f, δ)

where LP [f ] for an arbitrary distribution P is E(x,y)∼P [ℓ(f ;x, y)] for some loss func-

tion ℓ. In particular all of the theorems of PAC and PAC-Bayes hinge on the partic-

ular relationship between the distributions on the LHS and RHS of the expression:

the one on the right is the empirical sampling distribution of the one on the left,

with size m.

In the new graph-sampling regime, we assume that the dataset distribution X×Y
comes from a particular process dependent on a very large graph G (with square
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symmetric adjacency matrix A), where X consists entirely of subgraphs of G that

can be derived by random walks of a certain length.

Consider two such lengthsN andM , withM ≫ N , and the corresponding dataset

distributions D0 for the length-N subgraphs and D1 for the length-M subgraphs.

We are interested in proving a statement of the form: for all f ∈ H, we have with

probability ≥ 1− δ:

LD1 [f ] ≤ LD0 [f ] +B(G, N,M, f, δ)

and perhaps as a corollary:

LD1 [f ] ≤ LDn
0
[f ] + A(· · · ) +B(· · · )

Given that H is a class of GNNs, this corollary (and the setup that preceded it)

would give a theoretical framework and answer to the question of: given a dataset

of small graphs, how well could a trained GNN generalize to a larger graph?

11.1 Homophilous graphs and graph signals

A learning task that is natural to examine for the sake of understanding size gen-

eralization is that of node classification. Suppose, for example, that each node is a

person, the neighborhood information is social connections, and the task is to iden-

tify whether a cluster of people primarily identify as being part of Group A or Group

B.

Homophily [20] is a concept in network science that refers to the property that

like nodes group together, which for the node-labelling case means that nodes that

are neighbours are likely to have the same label. Size generalization is natural when

the labelling of the nodes exhibits homophily; we will call this a homophilic signal.

The presence of a homophilic signal implies that the labels of the nodes are unlikely

to change during the course of a long random walk on the graph.

It is also important to note that homophily also is a concept that applies to the

graph topology, as not every possible graph structure can be given a labelling that
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Figure 11.1: An example of a small expander graph. Any labelling of its nodes
cannot exhibit homophily.

exhibits homophilic properties. An example of one such topology where homophily

is not possible is an expander graph [21], as in Figure 11.1, where nodes have either

random or random-like edges connected to a constant number of other nodes in the

entire graph. In this case, any labelling of the nodes only have limited implications

on the homophily of the signal.

A setting with more homophily is akin to a barbell graph, as in Figure 11.2, where

there are two densely connected components, and comparatively few edges connecting

the two dense regions. If the signal of interest lines up with these divisions generated

by the topology, then it is natural to see that it exhibits a homophilic property.

Results in graph theory give a mathematical description of homophily, in the

form of spectral analysis of a graph’s Laplacian matrix.

Cheeger’s inequality [21] is a theorem from spectral graph theory that pertains

to partitions of graphs, which have a natural connection to binary-valued signals on

graphs (one side of the partition gets value 0, the other 1). Central to the theorem

is the concept of conductance ϕ(S) (where S is a subset of the vertices of a graph)

defined as

ϕ(S) =
E(S, S̄)

|S|
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Figure 11.2: Example of a small barbell graph. If a signal is exactly differentiated
between the two groups, then it exhibits homophily.

Here E(S, S̄) is the set of edges that connect one node in S to a node outside of S.

Furthermore, the conductance of the whole graph, ϕ(G), is defined as

ϕ(G) = min
|S|≤ |V |

2

ϕ(S)

i.e. the size of the min-cut. The theorem states that

λ2/2 ≤ ϕ(G) ≤
√
2λ2

where λ2 is the second-smallest eigenvalue of the normalized Laplacian

L̃ = D−1/2(D − A)D−1/2.

Cheeger’s inequality links the real-valued quantity of λ2 to the abstract concept

of homophily. If λ2 is small then the conductance of G must also be low, and a

low-conductance graph induces a related partition S. If a signal on graph nodes

f : V (G) → {0, 1} coincides with this partition, i.e. one side of the partition S is
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generally labelled 0 and the complement S̄ is generally labelled 1, then the signal f

exhibits homophily.

This property of signals in general also has connections to the spectral properties

of the graph’s Laplacian matrix. We have the following result linking λ2 to general

graph signals f :

λ2 = min
f⊥d

f⊤Lf

f⊤Df

where f ⊥ d means signals f that are orthogonal to the degree vector d, i.e. f⊤d = 0.

For d-regular graphs this quantity is equivalent to min
f⊥1

f⊤L̃f
f⊤f

.

Thus, upper-bounding λ2, Cheeger’s inequality can take the form

∀f ⊥ 1, ϕ(G) ≤
√
2 ·
√
f⊤Lf

∥f∥2
In the following sections we will use this mathematical formalism of homophily to

quantitatively identify graph topologies and signals for which size generalization is

natural, accompanied by provable probabilistic bounds for size generalization error.

11.2 A probability bound for partition crosses

Recall that the random-walk-sampling out-of-distribution problem involves the dis-

tributions of random walk-induced subgraphs of a large graph G of two lengths: the

subgraphs from random walks of length N comprise the training set, and we wish

to test the resulting trained GNN’s performance on subgraphs induced by length-M

random walks, where M is much larger than N .

Cheeger’s inequality can be related to this problem in the following fashion, at

least for the case of d-regular graphs.

Theorem 11.1. Let u1, u2, . . . be a random walk over the nodes of a connected, d-

regular graph G, with u1 chosen from the stationary distribution of the nodes of G.

If M ≤ d/(25/2
√
λ2), then the probability of crossing over the sparsest-cut partition

throughout the first M steps of the random walk is under 1/2.

Proof. Because u1 is chosen from the stationary distribution (uniform over vertices,
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because G is connected and d-regular), then for all i ≥ 1 the distribution for ui, ui+1

follows the distribution Unif[E], where E is the edge set of the graph.

Let S be the sparsest-cut partition of G. Let Xi be the indicator of the event that

the vertex pair is in the set of edges crossing the partition, namely 1{(ui, ui+1) ∈
E(S, S̄)}. By linearity of expectation, this means that E[Xi] = |E(S, S̄)|/|E|.

Furthermore, let Yk be the cumulative number of edges crossing the partition

along the first k steps of the random walk. This is expressed nicely as Yk =
∑k

i=1Xi.

Thus E[Yk] = k |E(S,S̄)|
|E| .

Applying Markov’s inequality, we get Pr[Yk ≥ tk|E(S, S̄)|/|E|] ≤ 1/t. Suppose

we wish to examine under what conditions we can ensure that we do not cross over

the partition at all in M steps, i.e. Pr[YM ≥ 1] ≤ 1/2. From the inequality above,

we are able to get that

Pr

[
YM ≥ 2M

|E(S, S̄)|
|E|

]
≤ 1

2

just by setting k = M and t = 2. We then use the following basic fact: if we have

an inequality of the form Pr[Z ≥ z] ≤ 1
2
, then Pr[Z ≥ z′] ≤ 1

2
for any z′ ≥ z.

Let E(S) denote the set of edges connected to any vertex in S. Because |E(S)| ≤
|E|, then we have |E(S, S̄)|/|E| ≤ |E(S, S̄)|/|E(S)|. Furthermore, since we assume a

connected graph, |E(S)| ≥ (d/2)|S|, and thus |E(S, S̄)|/|E(S)| ≤ |E(S, S̄)|/[(d/2)|S|].
1 Thus using the fact above we can deduce

Pr

[
YM ≥ 2M

|E(S, S̄)|
(d/2)|S|

]
≤ 1

2

Note that |E(S, S̄)|/|S| is the conductance of the graph ϕ(G), because S was defined

to be the sparsest-cut partition ofG. Thus we can apply the fact again with Cheeger’s

inequality to get

Pr
[
YM ≥ 2M(2/d)

√
2λ2

]
≤ 1

2

1It is important to note that this specific dependency of |E(S)| on d requires G to be a d-regular
graph. If the theorem is to be expanded to more general cases, one may use the simple inequality
|E(S)| ≥ |S|.
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And since we are interested in Pr[YM ≥ 1], we can thus set 2M
√
2λ2 ≤ 1 to get a

necessary condition for M , from which we achieve

M ≤ d

25/2
√
λ2

This completes the proof.

Corollary 11.1.1. If we want to bound the probability by δ instead of 1/2, then we

have the restriction M ≤ (δd)/23/2
√
λ2.

Proof. Follow the proof of Theorem 11.1, but with t = 1
δ
instead of t = 2.

11.2.1 More general case

A quite restricting condition of Theorem 11.1 is that it requires the partition S to

be a sparsest cut, namely that it is the partition with the least conductance ϕ(S). A

very slight modification of the proof yields a quantity that can work for any signal

f .

Let f be a boolean (i.e., {0, 1}-valued) signal on the vertices of the graph.

Let the signal-partition S = {v ∈ V (G) : f(v) = 1}.
We are interested in the probability that a random walk of length M includes an

edge that crosses the signal-partition S.

Claim 11.1. Let f be a boolean signal on the nodes of G with signal-partition S.

Let u1, u2, . . . be a random walk on the large graph G. Analogous to Theorem 11.1,

let Xi be the indicator event that the ith edge of the random walk is an edge crossing

the signal partition, i.e., Xi = 1
[
(ui, ui+1) ∈ E(S, S̄)

]
. Also analogous to Theorem

11.1, let Yk =
∑k

i=1 Xk be the number of times that we cross the signal-partition of

f in steps of the random walk.

Let f ′ = f − 1(|S|/|V |), and let α = f ′⊤Lf ′/∥f ′∥22.
Then Pr [YM ≥ 1] ≤ 1

2
if M ≤ d

25/2
√
α
.

Proof. The quantity f ′ is a transformation of f that retains all the information

contained in f while still being orthogonal to the all-ones vector 1, so that we can
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apply Cheeger’s inequality. This orthogonalization is rather standard and can be

found in [22].

Let s = |S|/|V (G)|. Note that s ∈ [0, 1], and without loss of generality we can

assume that s ≤ 1/2.

We observe that the vth coordinate of the vector f ′ corresponds to the mapping

f ′(v) =

1− s v ∈ S

−s v /∈ S
(11.1)

This ensures that f ′ is orthogonal to 1, as

f ′⊤1 =
n∑
i=1

f ′(vi) = |S|
(
1− |S|

|V |

)
+ (|V | − |S|)

(
− |S|
|V |

)
= |S| − |V |

(
|S|
|V |

)
= 0.

We then note that ∥f ′∥22 =
∑n

i=1 f(v)
2 is equal to s(1 − s)|V |, and we can infer

|S|/2 ≤ ∥f ′∥22 ≤ |S|; the first inequality holds since s ≤ 1/2.

The number of edges |E(S, S̄)| crossing the signal-partition is equal to f ′⊤Lf ′, as

f ′⊤Lf ′ =
∑

(u,v)∈E

((f(u)− s)− (f(v)− s))2 = |E(S, S̄)|

where L is the Laplacian matrix of G.
Thus the quantity 2M |E(S,S̄)|

|E(S)| ≤ 2M f ′⊤Lf ′

|E(S)| ≤ 2M f ′⊤Lf ′

(d/2)|S| . We are able to get

the second inequality because we know |E(S)| ≥ (d/2)|S|. Because we know that

|S| ≥ ∥f ′∥2, we can then upper bound this further by 2M f ′TLf ′

(d/2)∥f ′∥22
. Substituting this

quantity in the proof of Theorem 11.1, we achieve the desired bound for M .

Corollary 11.1.2. Similar to Corollary 11.1.1, if instead of probability 1/2 we want

to bound the probability by δ, we have Pr [YM ≥ 1] ≤ δ if M ≤ (δd)/23/2
√
α.

11.3 Overall prediction error

Let F be the event that the graph generated by the M -random walk, GM , does not

lie completely within a single signal-partition. We will first analyze the probability
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of various methods giving a correct judgement, given that the event F does not take

place.

If all of the nodes of M are within a single signal-partition, then all of their labels

are the same. Therefore if ϕ is a model trained on N -random walks of G, then one

can just sample a single connected N -subgraph G′ from GM via random walk (or

any other method), feed it into ϕ, and return the output of ϕ as the answer for all

of GM .

The probability that ϕ returns a wrong answer is exactly that of ϕ returning a

wrong answer on G′. In our PAC-Bayes framework, ϕ is actually analyzed as being

a member of a distribution Q of models, so the probability of a wrong judgement is

Eϕ∼Q[LD0 [ϕ]] = LD0 [Q].

With this quantity, we are then able to prove a bound on the overall prediction

error of this procedure.

Theorem 11.2 (Overall prediction error). For any δ ∈ [0, 1), if we restrict M to

the condition in Corollary 11.1.1, that M ≤ (δd)/23/2
√
α then the overall probability

of error of each of the above errors, denoted as Pr [F ], satisfies

Pr [F ] ≤ δ + LD0 [Q] (11.2)

Proof. We make use of the fact that, for any random events F and E:

Pr [F ] ≤ Pr [E] + Pr
[
F |Ē

]
(11.3)

Let E be the event that the M -random walk that generates the graph GM is

crosses the sparsest-cut partition, and let F be the overall event that we make a

wrong prediction. The theorem in the previous section is the second term, Pr
[
F |Ē

]
,

because it examines the case where GM doesn’t cross the partition.

Substituting the values from the previous two theorems we find that the claimed

inequality is satisfied instantly.
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11.4 Discussion

This section has laid out a theoretical framework for understanding certain problems

in size generalization. There are a number of future directions that can be pursued

to expand this theory.

• Firstly, this framework for size generalization assumes the property that nodes

that are connected to each other are likely to be labelled the same. This does

not cover all of the cases in which GNNs might work well. As a trivial example,

consider a case where for all of G users are necessarily connected only to users

with the opposite labelling - a trained GNN would still work well in predicting

the labels in this setting, as it is trivial to see that setting neighbor weights so

that the model mimics the behavior of a NOT gate would be able to perform

the task perfectly. In order to work towards the overall goal of seeing how

GNNs are able to perform size generalization, these cases must be considered

as well.

• The theorems in this section give probability bounds for size generalization

under a setup that assumes certain properties about the underlying graph G
as well as the ground-truth labelling function f . Difficulties occur in analysis

when G is very large. If the investigator is fortunate enough to have access

to the entire graph G, while computing quantities like λ2 or f⊤Lf is generally

costly one may apply algorithms such as the Lanczos iteration [23] for more

efficient computation of eigenvalues. If the investigator does not have access

to all of G, these properties may not be computable, either because it would

be costly or because the investigator simply cannot access all of the data. In

particular, since G is so big (our canonical example is the graph of users of a

billion+-user social network), it makes it infeasible to obtain exact values for

the space of sparsest cuts because that would involve computing λ2(G); likewise
for more general signals, it is also costly to calculate f⊤Lf/∥f∥22 for the whole
graph (because f has dimension equivalent to the number of nodes).

• For the sake of ease of analysis, we have made the assumption throughout the
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setup that the graph is d-regular. Generally for results in spectral graph theory,

similar assumptions can be made to prove theorems and then later extended to

the non-d-regular case. In particular, we have used the d-regularity assumption

in the calculation of inequalities regarding Cheeger’s inequality as well as our

framework that assumes that the stationary distribution is uniform over the

nodes. The stationary distribution assumption was integral in our calculation

of the random walk-based quantities.
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Chapter 12

Conclusion

Graph neural networks have been an important development in machine learning,

particularly for applications related to social network analysis as well as computa-

tional chemistry, with still more to follow. In the context of this work, graph neural

networks also represent a class of model where the speed of development of new types

of model is much faster than how well we can theoretically analyze their efficacy. A

canonical example of this is the original GCN paper by Kipf and Welling [24], which

gave birth to one of the most popular forms of GNN without theoretical justification.

The developments in this work are an attempt to further the theoretical under-

standing of the efficacy of this model. Although the generalization bounds in Section

?? are an advancement over the state-of-the-art, the actual numerical values for the

generalization gaps found on “canonical” graph learning tasks are still in exponential

orders of magnitude, despite being meant to compare probabilities, which are neces-

sarily less than 1. Despite the impracticality of using these bounds for practitioners

at the present moment, furthering our understanding of what we can prove about

neural networks a priori could be of fundamental importance in the future. If, with

perhaps more specific analysis of datasets, mathematical ingenuity, or a combination

of both, we are able to reduce the bounds enough to get them within probabilistic

range (in [0, 1]) or even further, then it would be of immediate practical usefulness.

Before starting an expensive training process, a practitioner could check the theoret-

ical bounds or other provable quantities about the task to aid in selecting the class of
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model or its hyperparameters. Such a step would become particularly important in

situations where computational resources are more scarce, but training new machine

learning models is still necessary.

Understanding size generalization would also be an important step in expanding

theoretical knowledge for the sake of reducing overall computational cost. In this

analysis, what was analyzed was the generalization from small to large subgraphs of a

large underlying graph G. By identifying cases where it is practical to train on small

subgraphs instead of large ones, we potentially ease the burden of expensive data

collection. Expanding the cases to which theoretical analysis can apply is imperative

to achieve this easing across different graph learning tasks.

It is the author’s hope that this work could be a contribution, starting point, or

even mere inspiration for expanding the theoretical analysis of graph neural networks

and neural networks in general, as these models continue to maintain their presence

in everyday life.
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