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Abstract

A prominent challenge when drawing causal inference using observational data is the ubiq-

uitous presence of endogenous regressors. This dissertation investigates causal inference

and endogeneity correction, both in methodology development and empirical analysis.

The first essay (in Chapter 2) develops a new instrument-free method using copula to

address the endogeneity problem. The classical econometric method to handle regressor

endogeneity requires instrumental variables that must satisfy the stringent condition of ex-

clusion restriction. We use the statistical tool copula to directly model the dependence

among the regressors and the error term, and abstract information from existing regressors

as a generated regressor added to the outcome regression. Our proposed 2sCOPE method

extends the existing copula method to a more general setting by allowing (nearly) normal

endogenous regressors and correlated exogenous regressors, and is straightforward to use

and broadly applicable. We theoretically prove the consistency and efficiency of 2sCOPE,

and demonstrate the performance of 2sCOPE via simulation studies and an empirical appli-

cation.

The second essay (in Chapter 3) further studies the causal inference and endogeneity cor-

rection methods for high-dimensional data. The more and more common high-dimensional

data in the current big data era make the classical causal inference methods suffer finite-

sample bias, inefficiency, or even fail to work when the dimension is larger than the sample
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size. In this essay, we extend the 2sCOPE method developed in Chapter 2 to the high-

dimensional setting, and propose a lasso-based 2sCOPE method. We demonstrate the per-

formance of the proposed method via simulation studies and an empirical application.

The third essay (in Chapter 4) empirically studies vertical differentiation in two-sided

markets, where network size plays the central role. Vertical differentiation is a common

strategy in one-sided markets, but whether it is profitable for two-sided platforms is hard

to say because of the network effect. In this essay, I take advantage of a unique data set

from a leading ride-hailing platform, and develop a structural simultaneous demand and

supply model to quantify network externalities. The result shows that besides the product

intrinsic value, network value is crucial in determining the degree of product differentiation

in two-sided markets.
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Lay Summary

Causal inference and endogeneity correction are central to social science research. For

observational data, there are mainly three streams of approaches to correct endogeneity: in-

strument variable approach, structural model approach, and instrument-free approach. Re-

cently, there is a growing interest in instrument-free methods because of its simplicity that

no instruments are needed.

This thesis investigates different endogeneity-correction methods in both methodol-

ogy development and empirical applications. In Essay 1, I develop a new instrument-free

method, called 2sCOPE, which is straightforward to implement and can greatly broaden the

applicability of the instrument-free methods for dealing with endogeneity issues in practice.

In Essay 2, I further adapt the 2sCOPE method for high-dimensional data by combining it

with machine learning techniques. Finally, I empirically study consumer behavior in the

growing two-sided platforms, and bring insights and suggestions for two-sided platforms

based on the estimation results using classical methods for causal inference in Essay 3.
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Chapter 1

Introduction

Causal inference is central to social science research and business practitioners. People

are always interested in causal effect instead of just simple descriptive correlation. Nowa-

days, the rapidly available observational data and technological innovations in this digital

era make causal inference even more important to provide real-world evidence for better

decision makings. However, one challenge for empirical researchers to draw valid causal in-

ference from observational data is the presence of regressor endogeneity problem, in which

regressors are correlated with the (unobserved) structural error.

In the literature, there are mainly three streams of approaches for endogeneity correction

using observational data: instrumental variable (IV) approach, structural model approach,

and instrument-free approach. The first approach, the IV approach, is to find a good IV

that satisfies two conditions: it is strongly correlated with the endogenous regressor via an

explainable and validated relationship (i.e., relevance restriction), yet uncorrelated with the

structural error (i.e., exclusion restriction). Once a good IV can be found, it can abstract

the exogenous part from the endogenous regressor and draw correct causal inference using

the two-stage least square method. But empirical researchers usually face the challenge
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of finding good IVs in practice. When using the IV approach to correct endogenous, re-

searchers had better explain the validity of the IV, and show evidence of high relevance with

the endogenous regressor.

The second stream of approach, the structural model approach, is to specify the eco-

nomic structure that generates the observational data, including the endogenous regressors.

One example is to build up the simultaneous structural supply-demand model that generates

the endogenous marketing-mix variables. Doing so allows researchers not only to recover

parameters of interest and make causal inferences, but also to perform counterfactual analy-

sis and provide managerial insights. One concern with this approach is that the performance

highly depends on model assumptions of supply side. When using this approach, the more

information of the supply side, the better for model identification.

The third stream of approach, the instrument-free approach, has aroused increasing in-

terest recently. This approach addresses the endogeneity problem by using information in

the existing variables, and the advantage is that no extra instruments are needed. One ex-

ample is the copula method proposed by Park and Gupta (2012). They use the statistical

tool copula to directly model the dependence between the endogenous regressor and the

error term, and construct a generated regressor from the existing regressors to correct endo-

geneity. Intuitively, they use copula to split the error term into an endogenous part and an

exogenous part, and correct endogeneity by directly controlling for the endogenous part.

In this thesis, I investigate different endogeneity-correction methods to draw causal in-

ference. Specifically, I conduct three independent studies, two of which are about methodol-

ogy development of causal inference methods, and one is an empirical application applying

the classical causal inference methods. On the one hand, the increasingly available obser-

vational data (with more complicated structure e.g., high-dimension) in this digital big data

era bring new challenges for traditional methods to draw causal inference and demand the
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development of methodologies. Meanwhile, the interaction among different disciplines and

knowledge combination provide researchers with fertile soil (new opportunities) for new

creative method development to address economic problems.

In the first essay, I develop a new instrument-free approach using the statistical tool

copula. I extend the existing copula methods (Park and Gupta 2012, Haschka 2021) to a

more general setting with much weaker assumptions. Specifically, the proposed two-stage

copula endogeneity correction (2sCOPE) method allows close-to-normal or even normal

endogenous regressors, and can include exogenous regressors that are correlated with the

endogenous regressor to the model. Simulation result shows that the existing copula cor-

rection methods can yield biased estimates under the setting of endogenous regressors that

have insufficient non-normality or are correlated with exogenous regressors. The proposed

2sCOPE can provide unbiased estimates, and can even improve estimation efficiency by

up to 50%. Moreover, the 2sCOPE method uses the control function approach by adding

a generated regressor derived from existing regressors to control for endogeneity, and thus

is straightforward to use and broadly applicable. Overall, 2sCOPE method can greatly in-

crease the ease of and broaden the applicability of instrument-free methods for dealing with

regressor endogeneity in practice.

In the second essay, I further adapt the instrument-free method, 2sCOPE method, pro-

posed in the first essay for high-dimensional data by combining the causal inference method

with machine learning techniques. Nowadays, with the fast growth of internet and techno-

logical innovations, high-dimensional data are available everywhere (e.g., census and survey

data, complicated network data in online platforms, text, pictures, videos, genetic data etc.).

I propose a lasso-based 2sCOPE method by combining the 2sCOPE method with lasso-

based feature selection methods to deal with high-dimensional data for causal inference.

The simulation result shows that there is a large bias of 2sCOPE method alone without fea-

ture selection in high-dimensional setting, while the proposed lasso-based 2sCOPE method
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gains substantial improvement in both estimation accuracy and efficiency (around 50%). I

also apply the proposed method to an interesting data application. Specifically, I examine

how the government’s policy strictness during COVID-19 period affects citizens’ happiness.

By using the lasso-based 2sCOPE method, I get a robust and more significantly negative ef-

fect of policy stringency on people’s happiness, compared with the estimate using regular

2sCOPE without feature selection.

On the other hand, the recent technological innovations and fast growth of online and

mobile platforms bring new business models that can fundamentally change consumer be-

havior. These changes bring new opportunities and perspectives in understanding con-

sumers. In the third essay, I empirically apply the traditional causal inference methods to

study consumer behavior in the emerging two-sided markets (e.g., Taobao, Amazon, Airbnb,

Uber, Lyft, Meituan, DoorDash). Specifically, I use structural model and IV approach to

correct the endogeneity of network size in examining vertical differentiation in two-sided

markets. Network externalities, the distinct feature in two-sided markets, make the conven-

tional vertical differentiation strategy more complicated. It on the one hand makes firms

better off in market expansion, but on the other hand further segments the market and limits

the positive network effects, weakening the benefit of market expansion. Thus, understand-

ing and quantifying the economic impact of network externalities in two-sided markets is

of great importance. In this essay, I take advantage of a distinct data set from a leading

ride-hailing platform in New York City, and develop a simultaneous structural demand and

supply model to accommodate both the riders’ and drivers’ decisions and quantify network

externalities. The result shows that both the product intrinsic value and the network value

are important in determining the degree of product differentiation for two-sided platforms.

The chapters proceed as follows. In the first essay, we address endogeneity using a

two-stage generated regressor approach in Chapter 2. We provide the study overview in

Section 2.1, summarize the relevant literature in Section 2.2, develop a method in Section
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2.3, conduct simulation studies in Section 2.4 and empirical application in Section 2.5. We

further discuss the economic intuition and scope in Section 2.6 and conclude this chapter

in Section 2.7. In the second essay, we adapt the proposed method in the first essay to the

high-dimensional setting by combining with machine learning methods in Chapter 3. We

discuss the study motivation and overall results in Section 3.1 and review related literature

in Section 3.2. We develop the method in Section 3.3, and conduct simulation study in

Section 3.4 and data application in Section 3.5. We further conclude the chapter in Section

3.6. In the third essay, we investigate vertical differentiation in two-sided markets in Chapter

4. We provide the study overview in Section 4.1, review relevant literature in Section 4.2,

and discuss used dataset and preliminary data evidence in Section 4.3. We further develop

the structural model in Section 4.4, show the estimation results in Section 4.5, conduct

counterfactual analysis in Section 4.6 and conclude the chapter in Section 4.6. Chapter 5

gives a brief conclusion to the thesis.
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Chapter 2

Addressing Endogeneity Using a

Two-stage Generated Regressor

Approach

2.1 Introduction

Causal inference is central to many problems faced by academics and practitioners, and

becomes increasingly important as rapidly-available observational data in this digital era

promise to offer real-world evidence on cause-and-effect relationships for better decision

makings. However, a prominent challenge faced by empirical researchers to draw valid

causal inferences from these data is the presence of endogenous regressors that are corre-

lated with the structural error in the population regression model representing the causal

relationship of interest. For example, omitted variables such as ability would cause endo-

geneity of schooling when examining schooling’s effect on wages (Angrist and Krueger

1991). Simultaneous equations models of supply and demand can also be subject to the
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regressor endogeneity issue because both the supply and the demand are influenced by un-

observed omitted common shocks.

Regressor endogeneity poses great empirical challenges to researchers and demands

special handling of the issue in order to draw valid causal inferences. One classical method

to deal with the endogeneity issue is using instrumental variables (IV). The ideal IV has to

meet two requirements: it is correlated with the endogenous regressor via an explainable

and validated relationship (i.e., relevance restriction), yet uncorrelated with the structural

error (i.e., exclusion restriction). Although the theory of IVs is well-developed, researchers

often face the challenge of finding good IVs satisfying these two requirements. Potential

IVs often suffer from either weak correlation with endogenous regressors or challenging

justification for exclusion restriction, which hampers using IVs to correct for the underlying

endogeneity concerns (Rossi 2014).

To address the lack of suitable IVs, there has been a growing interest in developing

and applying IV-free endogeneity-correction methods. Several instrument-free approaches

have been developed, including identification via higher moments (Lewbel 1997, Erickson

and Whited 2002), heteroscedasticity (Rigobon 2003, Hogan and Rigobon 2003), and latent

instrumental variables (Ebbes et al. 2005). All three IV-free methods decompose the en-

dogenous regressor into an exogenous part and an endogenous part. The assumption of the

endogenous regressor containing an exogenous component is akin to the stringent condition

of exclusion restriction for IVs, and thus can be difficult to justify.

Park and Gupta (2012) proposed an alternative instrument-free method that uses the cop-

ula model (Danaher and Smith, 2011) to capture the regressor-error dependence. 1 Com-

pared with the three IV-free methods above, their copula method does not impose the exo-

1In statistics, a copula is a multivariate cumulative distribution function where the marginal distribution
of each variable is a uniform distribution on [0,1]. Copulas permit modeling dependence without imposing
assumptions on marginal distributions.
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geneity assumption as it directly models the association between the structural error and the

endogenous regressor via copula. Furthermore, the copula method can handle discrete en-

dogenous regressors better than other IV-free methods. These features considerably increase

the feasibility of endogeneity correction, as evidenced by the rapidly increasing use of the

copula correction method (see examples of recent applications in the next section of the

literature review). However, similar to other IV-free methods, the copula correction method

also requires the distinctiveness between the distributions of the endogenous regressor and

the structural error (Park and Gupta 2012). This means that the endogenous regressor is

required to have a non-normal distribution for model identification with the commonly as-

sumed normal structural error distribution. Furthermore, we show that the existing copula

correction method implicitly requires all exogenous regressors to be uncorrelated with the

linear combination of copula transformations of endogenous regressors (henceforth referred

to as copula control function (CCF)) used to control for endogeneity, and may yield signifi-

cant bias when there are noticeable correlations between the CCF and exogenous regressors.

In practical applications, both requirements of sufficient regressor non-normality and

no correlation between CCF and exogenous regressors can be too strong, and pose sig-

nificant challenges and limitations for applying the copula correction method. We often

encounter endogenous regressors or include transformations of endogenous variables as

regressors that have close-to-normality distributions. Examples of such regressors in eco-

nomics and marketing management studies include stock market returns (Sorescu et al.,

2017), corporate social responsibility (Eckert and Hohberger, 2022), the organizational in-

telligent quotient (Mendelson, 2000), and the logarithm of price (see Figure 2.3 in Section

5). Theoretically, the endogenous regressor and the structural error can contain a common

set of unobservables that collectively have a normal distribution, which can lead to a close-

to-normal distribution of the endogenous regressor. In these situations, even if the model is

identified asymptotically, close-to-normality of endogenous regressors can cause substan-
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tial estimation bias even in moderate sample size and can require a very large sample size

(> 2000) to mitigate the finite-sample bias (Becker et al., 2021). Correlations between the

CCF and exogenous regressors are also quite common in practical applications, especially

when the exogenous regressors are included to control for observed confounders. Examples

of such exogenous control variables abound in marketing and management studies, such

as customer-specific variables (age, household size, income, past purchase behaviors, etc.)

when estimating the returns of consumer targeting strategies on product sales (Papies et al.,

2017) and firms’ similarity when estimating the effect of competition on innovation (Aghion

et al., 2005). Although regressor normality or insufficient regressor non-normality leads to

more severe identification issues, including model non-identifiability and poor finite sample

performance (Table 2.1), correlations between CCF and exogenous regressors may occur

more frequently than close-to-normality of endogenous regressors. Thus, we consider the

two requirements of sufficient regressor non-normality and no correlation between CCF and

exogenous regressors as being equally stringent, which call for more general and flexible

copula correction methods that relax both requirements.

In this paper, we develop a generalized two-stage copula endogeneity correction method,

denoted as 2sCOPE, that relaxes the above two requirements. Similar to the existing cop-

ula method (Park and Gupta 2012, denoted as CopulaOrigin), 2sCOPE requires neither IVs

nor the assumption of exclusion restriction. It corrects endogeneity by adding residuals ob-

tained from regressing the latent copula data for each endogenous regressor on the latent

copula data for the exogenous regressors as generated regressors in the structural regres-

sion model. To demonstrate the benefits of 2sCOPE, we also consider as a benchmark

method, denoted as COPE, which is a direct extension of CopulaOrigin and corrects endo-

geneity by adding latent copula data themselves as generated regressors. The proposed

2sCOPE method is straightforward to use, and it overcomes the above two key limitations

of CopulaOrigin as shown in Table 2.1. CopulaOrigin can be viewed as a special case of the
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2sCOPE. Importantly, we prove that the 2sCOPE can identify causal effects under much

weaker assumptions than CopulaOrigin, as summarized in Table 2.1.

The contributions of this work are three folds. First, to the best of our knowledge,

this work is the first in the literature to provide formal proofs of the theoretical properties of

copula correction methods, along with clearly defined assumptions required for causal effect

identification (Table 2.1). These theoretical results are much needed because model identi-

fiability is central to addressing the endogeneity issue, and timely given the rapid adoption

of copula correction methods in marketing research and elsewhere. Recent methodological

work notes lacking rigorous proofs of required model identification conditions and estima-

tion properties (consistency and efficiency) as one main weakness of existing copula correc-

tion methods (Haschka, 2021) 2, and calls for further studies of their theoretical properties

(Becker et al., 2021). The theoretical results presented in this work fill in this important

knowledge gap, and contribute to a better understanding of the properties of the copula

correction methods and guidance of their practical use.

Two novel theoretical findings emerge from this study. First, we identify an implicit as-

sumption required for CopulaOrigin to yield consistent estimation, and provide conditions to

verify this implicit assumption to ensure consistent causal-effect estimation. This helps im-

prove the effectiveness of the rapidly adopted method for addressing the endogeneity issue.

An important result is that the existence of the correlations between endogenous and exoge-

nous regressors alone does not automatically introduce bias to and invalidate CopulaOrigin.

Instead, we show that the implicit assumption is the uncorrelatedness of the exogenous re-

gressors with the CCF, the linear combination of copula transformations of endogenous

regressors used to control for endogeneity. The difference between the implicit assumption

2Owing to the complex form of the estimation method, Haschka (2021) notes the lack of theoretical proofs
of required model identification conditions and estimation consistency as one limitation of the copula cor-
rection method developed there, and thus has to rely solely on simulation studies to evaluate its empirical
properties.
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Features CopulaOrigin Haschka (2021) 2sCOPE

Nonnormality of
Required Required Not Required2

Endogenous Regressors1

No Correlated
Required (implicit) Not Required Not Required

Exogenous Regressors3

Intercept Included4 YES NO5 YES

Theoretical Proof YES NO YES

Estimation Method Control Function MLE Control Function
& MLE

Structural Model Linear Regression LPM-FE Linear Regression
RCL LPM-FE, LPM-RE, LPM-ME

Slope Endogeneity RCL, Slope Endogeneity

Table 2.1: A Comparison of Copula Methods
Note: 1: When required, normality of any endogenous regressor leads to non-identifiable models. Insufficient
non-normality of endogenous regressors can also cause poor finite sample performance (finite sample bias
and large standard errors) and require extremely large sample size to perform well.
2: Non-normality of endogenous regressors is not required as long as at least one correlated exogenous
regressor is not normally distributed.
3: In our paper, correlated exogenous regressors refer to those exogenous regressors correlated with the CCF
(copula control function) used to control for endogeneity.
4: Becker et al. (2021) shows the significance of including intercept in marketing applications, and the
problem of adding intercept using the copula method CopulaOrigin (Park and Gupta 2012).
5: The approach cannot estimate the intercept term, which is removed from the panel model prior to
estimation using first-difference or fix-effects transformation (Web Appendix A.8 of Haschka (2021)).
LPM: Linear Panel Model; FE: Fixed Effects for individual-specific intercepts with common slope
coefficients; RE: Random Effects; ME: Mixed-Effects (including both fixed-effects and random coefficients);
RCL: Random Coefficient Logit

and the condition of zero pairwise correlations between endogenous and exogenous regres-

sors can be substantial, especially with multiple endogenous regressors. 3 We prove that the

new 2sCOPE method yields consistent causal-effect estimates when the implicit assumption

above is violated, which we show can cause biased causal effect estimates for CopulaOrigin.

The second novel finding of our theoretical investigation is as follows. Although the

exogenous regressors being correlated with the CCF require special handling for consistent

3Although Haschka (2021) explains why correlated regressors can cause potential bias for CopulaOrigin,
no condition of when bias can occur is given. Specifically, it is possible that with multiple endogenous re-
gressors, the CCF is uncorrelated with exogenous regressors when pairwise correlations between endogenous
and exogenous regressors are non-zeros. Even if there is only one endogenous regressor and CCF reduces
to be proportional to the copula transformation of the endogenous regressor, the correlation coefficient is not
invariant to nonlinear transformations and thus changes after the copula transformation of the endogenous
regressor.

11



causal-effect estimation, they can be beneficial as well by providing additional information

to help relax model identification requirements. They could help address the problem of

insufficient regressor non-normality, and sharpen model estimates. Furthermore, we prove

that when both COPE and 2sCOPE methods yield consistent estimates, 2sCOPE improves

the efficiency (i.e., precision) of the structural model estimation by exploiting the correla-

tions between the endogenous and exogenous regressors. The efficiency gain is substantial

and can be up to ∼50% in our empirical evaluation, meaning that the sample size can be

reduced by ∼50% to achieve the same estimation efficiency as compared with the COPE

method, which does not exploit the correlations between endogenous and exogenous regres-

sors.

Second, the proposed 2sCOPE method is the first copula-correction method that simul-

taneously relaxes the non-normality assumption of endogenous regressors and handles cor-

related endogenous and exogenous regressors (Table 2.1). Except for Haschka (2021), ex-

isting copula correction methods do not consider correlated endogenous and exogenous re-

gressors, and are subject to potential bias if this correlation is present. Haschka (2021) gen-

eralized Park and Gupta (2012) to fixed-effects linear panel models with correlated regres-

sors by jointly modeling the structural error, endogenous and exogenous regressors using

copulas and maximum likelihood estimation (MLE). However, as noted in Haschka (2021),

Haschka’s approach still requires the non-normality of endogenous regressors. Thus, all

existing copula correction methods require sufficient non-normality assumption of endoge-

nous regressors for model identification (Park and Gupta, 2012; Haschka, 2021; Becker

et al., 2021; Eckert and Hohberger, 2022); even when the model is identified, insufficient

regressor non-normality can cause significant finite sample bias in the sample size of less

than 2,000 (Haschka, 2021; Becker et al., 2021; Eckert and Hohberger, 2022). Becker et al.

(2021) suggested a minimum absolute skewness of 2 for an endogenous regressor in order

to ensure good performance of Gaussian copula correction methods in sample size as small
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as 200 (Figure 8 in Becker et al. 2021). These strong requirements can significantly limit

the use of copula correction methods in practical applications, despite the rapid adoption of

these methods recently. Our proposed 2sCOPE method overcomes these important limita-

tions of existing copula correction methods. First, we prove that the structural model with

normally distributed endogenous regressors can be identified using the 2sCOPE method as

long as one of the exogenous regressors correlated with endogenous ones is nonnormally

distributed, which is considerably more feasible in many practical applications. Second,

consistent with the above theoretical result, our evaluation in Section 2.4.3 demonstrates

superior finite-sample performance of 2sCOPE and shows that 2sCOPE eliminates or sub-

stantially reduces the significant finite sample bias problem due to insufficient regressor

non-normality raised in Becker et al. (2021) and Eckert and Hohberger (2022). Overall,

the proposed 2sCOPE method can greatly broaden the applicability of the instrument-free

methods for dealing with endogeneity issues in practice, as seen in Table 2.1.

Finally, 2sCOPE employs generated regressors to address endogeneity. By including

generated regressors in the structural model to control endogeneity, 2sCOPE enjoys several

benefits associated with using a control function (Heckman and Robb Jr 1985, Blundell and

Powell 2003, Blundell and Powell 2004, Petrin and Train 2010, Blundell and Matzkin 2014,

Wooldridge 2015) to address endogeneity, such as incurring little extra computational and

modeling burden to address endogeneity, broader applicability with much weaker assump-

tions, and increased robustness to model misspecifications 4. The vast majority of applica-

tions of the existing copula correction method have used the generated-regressor approach

(Becker et al., 2021). We demonstrate that 2sCOPE retains these desirable properties of the

control function approach for a range of commonly used models in marketing studies, as

shown in Table 2.1, while relaxing the two key assumptions of CopulaOrigin: regressor non-

normality and uncorrelatedness between CCF and exogenous regressors. In many of these

4As shown in Becker et al. (2021), Gaussian copula control function approach is more robust against error
term misspecifications than the Gaussian copula MLE approach. Note that when we compare MLE with
control function approach, we only consider the estimation method dimension.
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models, the MLE approach becomes much more difficult or computationally infeasible,

but our 2sCOPE approach is straightforward. Section 2.3.4 presents an example in which

extending the MLE approach of Haschka (2021) to random coefficient linear panel mod-

els with correlated endogenous and exogenous regressors requires numerically evaluating

potentially high-dimensional integrals of complicated functions of the random effect distri-

butions, whereas 2sCOPE eliminates the need to evaluate these high-dimensional integrals

and can be implemented using standard software programs for random coefficient linear

panel models assuming all regressors are exogenous. Furthermore, the generated-regressor

approach facilitates studying the theoretical properties of the proposed 2sCOPE procedure

and the comparison of these procedures. In this work, we provide theoretical proofs for the

implicit assumption needed to ensure consistency of CopulaOrigin, and the consistency and

efficiency comparison for the proposed 2sCOPE under correlated regressors and normally

distributed regressors.

The remainder of this paper unfolds as follows. Section 2.2 reviews the related lit-

erature on methods for causal inference with endogenous regressors. In Section 2.3, we

show the implicit assumption of CopulaOrigin. We then propose the 2sCOPE method, pro-

viding theoretical proofs for the consistency of the proposed 2sCOPE method as well as

for efficiency gain and model identifiability with normally distributed regressors under the

2sCOPE method. We also summarize the estimation procedure of the proposed method. In

Section 2.4, we evaluate the performance of our proposed 2sCOPE method using simula-

tion studies and compare it with CopulaOrigin and its direct extension COPE under different

scenarios. In Section 2.5, e apply the proposed 2sCOPE method to estimate price elasticity

using store purchase databases in section 2.5. We discuss the economic intuition and scope

of the proposed 2sCOPE method in section 2.6, and conclude the paper in Section 2.7.

14



2.2 Literature Review

The marketing, economic and statistics literature develops a rich set of methods to draw

causal inferences. The gold standard to estimate causal effects is using randomized as-

signment2 such as controlled lab experiments and field experiments (Johnson et al. 2017,

Anderson and Simester 2004, Godes and Mayzlin 2009). When controlled experiments are

not feasible, quasi-experimental designs such as regression discontinuity and difference in

differences are used to mimic randomized experiments and to enable the identification of

causal effects with observational data (Hahn et al. 2001, Hartmann et al. 2011, Narayanan

and Kalyanam 2015, Athey and Imbens 2006, Shi et al. 2017). However, these quasi-

experimental designs have special data and design requirements, and cannot cope with the

general issue of endogenous regressors when estimating causal effects using observational

data.

There is a large literature focusing on approaches to addressing endogenous regressors

when inferring causal effects. Rutz and Watson (2019), Papies et al. (2017) and Park and

Gupta (2012) provided an overview of addressing endogeneity in marketing. Three broad

classes of solutions are discussed. The most commonly used solution is to find observed

instrumental variables to correct for endogeneity (Kleibergen and Zivot 2003, Qian 2008,

Ataman et al. 2010, Van Heerde et al. 2013 and Novak and Stern 2009). Angrist and Krueger

(2001) and Rossi (2014) provide a survey of literature that uses the instrumental variables

approach. Rossi (2014) surveyed 10 years of publications in Marketing Science and Quanti-

tative Marketing and Economics, which revealed that the most commonly used instrumental

variables are lagged variables, costs, fixed effects and Hausman-style variables from other

markets. However, the survey found that the strength of the instruments is rarely measured

and reported, which is needed to detect the weak instrument problem. Moreover, one gen-

erally cannot test the exclusion restriction condition and verify the validity of instruments.
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The survey also found that most papers lack a discussion of why the instruments used are

valid. In a word, though the theory of instrumental variables is well-developed, good instru-

ments are difficult to find, making the IV approach hard to implement in practice. Studies

that identify good instruments are subsequently highly valued.

The second class of solutions to mitigate endogeneity is to specify the economic struc-

ture that generates the observational data including endogenous regressors (e.g., a supply-

side model for marketing-mix variables). Doing so allows researchers not only to recover

parameters of interest and make causal inferences, but also to perform counterfactual anal-

ysis (Chintagunta et al. 2006). Some other examples of this approach in the marketing lit-

erature are Berry (1994), Sudhir (2001), Dubé et al. (2002), Yang et al. (2003), Sun (2005),

Dotson and Allenby (2010) and Otter et al. (2011). The key concern with this approach

is that the performance highly depends on model assumptions of the supply side. Incor-

rect assumptions or insufficient information on the supply side can lead to biased estimates

(Chintagunta et al. 2006, Hartmann et al. 2011)

The third class of solutions in the domain of endogeneity correction is instrument-

free methods. This is a more recent stream of methodological development. Three ex-

tant instrument-free approaches are discussed in Ebbes et al. (2009): the higher moments

(HM) approach (Lewbel 1997, Erickson and Whited 2002), the identification through het-

eroscedasticity (IH) estimator (Rigobon 2003, Hogan and Rigobon 2003), the latent in-

strumental variables (LIV) method (Ebbes et al. 2005). Recently Wang and Blei (2019)

proposed a deconfounder approach that has some flavor to the LIV approach. All these

approaches divide the endogenous regressor P into an endogenous and an exogenous part,

P = f (Z)+ v, where f (Z) is treated as an exogenous random variable with unique struc-

tures imposed for model identification in different methods. However, the assumption of

f (Z) being exogenous is hard to guarantee. Park and Gupta (2012) introduced another

instrument-free method that doesn’t require the exogeneity of f (Z). It directly models the
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association between the structural error and the endogenous regressor via copula.

The copula method has been rapidly adopted by researchers to deal with the endogeneity

problem because of its feasibility in that no instruments are needed. For example, the copula

method has been used to study the effects of marketing activities such as promotion, adver-

tising, and loyalty programs (Burmester et al. 2015, Datta et al. 2015, Gruner et al. 2019,

Keller et al. 2019, Bombaij and Dekimpe 2020, Guitart et al. 2018, Lamey et al. 2018); to

study product design and brand equity (Wetzel et al. 2018, Heitmann et al. 2020); to study

sales force training (Atefi et al. 2018); to study healthy food consumption (Elshiewy and

Boztug 2018). Haschka (2021) developed an MLE method that extends Park and Gupta

(2012) to linear panel models with fixed-effect intercepts and constant slope coefficients in

the presence of correlated regressors. In our paper, we delineate the precise and verifiable

condition for CopulaOrigin to yield consistent estimates with correlated endogenous and ex-

ogenous regressors. For the case when this condition fails, we develop a new two-stage

endogeneity correction method using copula control functions (2sCOPE) that relaxes two

key assumptions imposed in Park and Gupta (2012): (1) all endogenous regressors must

have non-normal distributions and (2) exogenous regressors must be uncorrelated with the

CCF used to control for the endogeneity. We provide proof of the theoretical properties

of the proposed methods, including consistency and efficiency comparisons. We derive the

new procedures for a variety of types of structural models, including the random coefficients

models commonly used in marketing studies. As a result, the proposed 2sCOPE method is

applicable in more general settings with the capability to exploit exogenous regressors to

improve model identification and estimation.
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2.3 Methods

In this section, we develop a copula-based instrument-free method to handle endogenous

regressors when there exist exogenous regressors that are correlated with endogenous re-

gressors. We first review the CopulaOrigin method in Park and Gupta (2012). We show

that CopulaOrigin implicitly assumes no correlations between the exogenous regressors and

the CCF, as well as how the violation of the assumption can cause bias in the structural

model parameter estimates for the current copula-based instrument-free method. Then we

present a newly proposed method to deal with the problem and the detailed estimation pro-

cedure. We also show how exogenous regressors correlated with endogenous regressors can

sharpen structural model parameter estimates and permit the identification of the structural

model containing normally distributed endogenous regressors, known to cause the model

non-identifiability issue for CopulaOrigin.

2.3.1 Assumptions in the Existing Copula Endogeneity-Correlation Method
(CopulaOrigin)

Consider the following linear structural regression model with an endogenous regressor and

a vector of exogenous regressors 5:

Yt = µ +Ptα +W ′
t β +ξt , (2.1)

where t = 1,2, ...,T indexes either time or cross-sectional units, Yt is a (1×1) dependent

variable, Pt is a (1×1) endogenous regressor, Wt is a (k×1) vector of exogenous regressors,

ξt is the structural error term, and (µ,α,β ) are model parameters. Pt is correlated with ξt ,

and this correlation generates the endogeneity problem. Wt is exogenous, which means it is

5Unlike Park and Gupta (2012), our model includes the intercept term. As shown in Becker et al. (2021),
it is important to include the intercept term when evaluating the copula correction method.

18



not correlated with ξt , but can be correlated with the endogenous variable Pt .

The key idea of the copula method (Park and Gupta 2012) is to use a copula to jointly

model the correlation between the endogenous regressor Pt and the error term ξt . The ad-

vantage of using copula is that marginals are not restricted by the joint distribution. Using

information contained in the observed data, marginals of the endogenous regressor and the

error term are first obtained respectively. Then the copula model enables researchers to con-

struct a flexible multivariate joint distribution that captures the correlation between the two

variables.

Let F(P,ξ ) be the joint cumulative distribution function (CDF) of the endogenous re-

gressor Pt and the structural error ξt with marginal CDFs H(P) and G(ξ ), respectively. For

notational simplicity, we may omit the index t in Pt and ξt below when appropriate. Ac-

cording to Sklar’s theorem (Sklar 1959), there exists a copula function C(·, ·) such that for

all P and ξ ,

F(P,ξ ) =C(H(P),G(ξ )) =C(Up,Uξ ), (2.2)

where Up = H(P) and Uξ = G(ξ ), and they both follow uniform(0,1) distributions. Thus,

the copula maps the marginal CDFs of the endogenous regressor and the structural error to

their joint CDF, and makes it possible to separately model the marginals and correlations of

these random variables.

To capture the association between the endogenous regressor P and the error ξ , Park and

Gupta (2012) used the following Gaussian copula for its many desirable properties (Danaher
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2007; Danaher and Smith 2011):

F(P,ξ ) =C(Up,Uξ ) = Ψρ(Φ
−1(Up),Φ

−1(Uξ ))

=
1

2π(1−ρ2)1/2

∫
Φ−1(Up)

−∞

∫
Φ−1(Uξ )

−∞

exp
[
−(s2 −2ρ · s · t + t2)

2(1−ρ2)

]
dsdt,

(2.3)

where Φ(·) denotes the univariate standard normal distribution function and Ψρ(·, ·) denotes

the bivariate standard normal distribution with the correlation coefficient ρ . Note that the

above Gaussian copula model depends on the rank-order of raw data only, and is invariant

to strictly monotonic transformations of variables in (Pt ,Wt ,ξt). Thus the above Gaussian

copula model is considered general and robust for most marketing applications (Danaher

and Smith, 2011). In the Gaussian copula model, ρ captures the endogeneity of the regressor

P, and a non-zero value of ρ corresponds to P being endogenous.

Under the above copula model for (Pt ,ξt) and the commonly-assumed normal distri-

bution for the structural error ξt , Park and Gupta (2012) developed the following gen-

erated regressor procedure to correct for regressor endogeneity. Let P∗
t = Φ−1(Up) and

ξ ∗
t = Φ−1(Uξ ), the above Gaussian copula assumes [P∗

t ,ξ
∗
t ]

′ follow the standard bivariate

normal distribution with the correlation coefficient ρ as follows:

P∗
t

ξ ∗
t

 ∼ N


 0

0

 ,

 1 ρ

ρ 1


 (2.4)

Under the assumption that the structural error ξt follows N(0,σ2
ξ
), Park and Gupta (2012)

showed that the structural error can be split into two parts as follows:

ξt = σξ ξ
∗
t = σξ ρP∗

t +σξ

√
1−ρ2ωt , (2.5)

where the first part σξ ρP∗
t captures the correlation between ξt and the endogenous regressor,
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and the other part σξ ·
√

1−ρ2ωt is an independent new error term. Equation (2.1) can be

rewritten as follows:

Yt = µ +Ptα +Wtβ +σξ ·ρ ·P∗
t +σξ ·

√
1−ρ2 ·ωt . (2.6)

Based on the above representation, Park and Gupta (2012) suggested the following gener-

ated regressor approach to correcting for the endogeneity of Pt : the ordinary least square

(OLS) estimation of Equation (2.6) with P∗
t = Φ−1(Up) included as an additional regressor

will yield consistent model estimates. Park and Gupta (2012) also pointed out that in order

for the above approach to work, Pt needs to have a non-normal distribution. Suppose Pt is

normally distributed, Pt = P∗
t ·σp, resulting in perfect collinearity between Pt and P∗

t and

violating the full rank assumption required for identifying the linear regression model in

Equation (2.6). Thus, Pt should follow a different distribution from the normal error term so

that the causal effect of P that is independent of all other regressors can be identified.

However, we show here that an additional and implicit assumption for the above generated-

regressor approach to yield consistent model estimates is the uncorrelatedness between P∗
t

and Wt . For the OLS estimation to yield consistent estimation, the error term ωt in Equa-

tion (2.6) is required to be uncorrelated with all the regressors on the right-hand side of the

equation: Pt ,Wt ,P∗
t . The theorem below shows that Wt becomes endogenous in Equation

(2.6) when Wt and P∗
t are correlated.

Theorem 1. Assuming (1) the error term is normal, (2) a Gaussian Copula for the structural

error term and Pt , and (3) Pt is endogenous: ρ ̸= 0, Cov(ωt ,Wt) =− ρ√
1−ρ2

Cov(Wt ,P∗
t ) ̸= 0

if P∗
t and Wt are correlated.

Proof: See the Appendix, Proof of Theorem 1.

To summarize, the generated regressor procedure based on Equation (2.6) makes the
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following set of assumptions.

Assumption 1. The structural error follows a normal distribution;

Assumption 2. Pt and the structural error follow a Gaussian copula;

Assumption 3. Nonnormality of the endogenous regressor Pt;

Assumption 4. Wt and P∗
t are uncorrelated.

As shown in the Appendix, Assumption 4 can be extended to Assumption 4(b) below

for the case of multiple endogenous regressor.

Assumption 4(b). When there are multiple endogenous regressors, Wt is uncorrelated with

the CCF, i.e., the linear combination of P∗
t that is used to control for endogenous regressors.

Specifically, Cov(Wt ,
ρξ 1−ρ12ρξ 2

1−ρ2
12

·P∗
1,t +

ρξ 2−ρ12ρξ 1

1−ρ2
12

·P∗
2,t) = 0 is required in the 2-endogenous

regressors case. 6

Assumptions 4 and 4(b) are verifiable and provide users with criteria to check whether

CopulaOrigin would provide consistent estimation when there exist exogenous regressors

that may be correlated with the CCF. With only one endogenous regressor, one can simply

check the correlations between the copula transformation of this endogenous regressor with

each exogenous regressor. For multiple endogenous regressors, one should check the cor-

relations between the CCF (i.e., the linear combination of copula transformations of these

endogenous regressors used to control for endogeneity) in CopulaOrigin with each exoge-

nous regressor. If there exists one exogenous regressor in Wt that fails Assumption 4 or

4(b), CopulaOrigin yields biased estimates, and our proposed 2sCOPE method should be

used, which is derived below.
6It is clear that this requirement is not the same as either Cov(Wt ,P∗

1,t) = 0,Cov(Wt ,P∗
2,t) = 0 or

Cov(Wt ,P1,t) = 0,Cov(Wt ,P2,t) = 0.
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In Park and Gupta (2012), all the above assumptions except Assumption (4) have been

made explicit. Among the first three assumptions, Park and Gupta (2012) have shown rea-

sonable robustness of their copula method to non-normal distributions of the error term

(Assumption 1) and alternative forms of copula functions (Assumption 2), although it is not

surprising to observe the sensitivity of CopulaOrigin to gross violations of these assumptions,

such as highly skewed error distributions (Becker et al., 2021). By contrast, the assumption

that the endogenous regressor Pt follows a non-normal distribution (Assumption 3) is criti-

cal. An endogenous regressor following a normal distribution can cause the structural model

to be unidentifiable regardless of sample size; a nearly normally distributed endogenous re-

gressor may require a very large sample size for the method to perform well and may cause

the method to have poor performance for a finite sample size. Moreover, we have shown

above that for their method to work, there should be no exogenous regressors that are cor-

related with P∗
t (Assumption 4). Both the Assumptions (3 and 4) can be too strong and

substantially limit the applicability of the instrument-free copula method in practice.

2.3.2 Proposed Method: Two-stage Copula Endogeneity-correction
(2sCOPE)

In this subsection, we propose a two-stage Copula (2sCOPE) method and show that it can

relax both the uncorrelatedness assumption between the copula-transformed endogenous

regressor and the exogenous regressors (Assumption 4) and the key identification assump-

tion of non-normality on the endogenous regressors (Assumption 3). The 2sCOPE method

jointly models the endogenous regressor, Pt , the correlated exogenous variable, Wt , and the

structural error term, ξt , using the Gaussian copula model, which implies that [P∗
t ,W

∗
t ,ξ

∗
t ]
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follows the multivariate normal distribution:
P∗

t

W ∗
t

ξ ∗
t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 , (2.7)

where P∗
t = Φ−1(H(Pt)), W ∗

t = Φ−1(L(Wt)), and ξ ∗
t = Φ−1(G(ξt)), and H(·), L(·) and G(·)

are marginal CDFs of Pt , Wt and ξt respectively.

Under the above Gaussian copula model in Equation (3.4), one can develop a direct

extension of CopulaOrigin, which adds generated regressors P∗
t and W ∗

t into the structural re-

gression model to correct for endogeneity bias (Appendix). The resulting method, denoted

as COPE, is shown to yield consistent causal effect estimates (Theorem A1 in the Ap-

pendix) without requiring Assumption 4 needed for CopulaOrigin. However, COPE requires

endogenous regressors Pt and exogenous regressors Wt to be both non-normally distributed

(Theorem A1 in the Appendix). To overcome the limitations of COPE, below we derive

the 2sCOPE method that relaxes both assumptions and is shown to be more efficient than

COPE.

Under the above Gaussian copula model, we have the following system of equations that

are similar to the two-stage least square method. However, we do not require any variable

that satisfies the exclusion restriction.

Yt = µ +Ptα +Wtβ +ξt (2.8)

P∗
t =W ∗

t γ + εt , (2.9)

where the two error terms εt and ξt are correlated because of the endogeneity of Pt . Under

the assumption that ξt follows a normal distribution, εt and ξt follow a bivariate normal

distribution, since they are a linear combination of tri-normal variate (ξ ∗
t ,P

∗
t ,W

∗
t ) under the
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Gaussian copula assumption.

The main idea of 2sCOPE is to make use of the fact that by conditioning on εt , the

structural error term ξt becomes independent of both Pt and Wt . That is, by conditioning

on the component of Pt causing the endogeneity of Pt (i.e, εt here), the structural error is

not correlated with both Pt and Wt , thereby ensuring the consistency of standard estimation

methods. In this sense, εt serves as a (scaled) control function to address the endogeneity

bias. To demonstrate this point, note that the Gaussian copula model in Equation (3.4) can

be rewritten as follows:


P∗

t

W ∗
t

ξ ∗
t

=


1 0 0

ρpw

√
1−ρ2

pw 0

ρpξ

−ρpwρ pξ√
1−ρ2

pw

√
1−ρ2

pξ
−

ρ2
pwρ2

pξ

1−ρ2
pw

 ·


ω1,t

ω2,t

ω3,t

 ,


ω1,t

ω2,t

ω3,t

∼ N




0

0

0

 ,


1 0 0

0 1 0

0 0 1


 . (2.10)

Given the above joint normal distribution for (P∗
t ,W

∗
t ,ξ

∗
t ) and ξ ∗

t = σξ ξt , we have

P∗
t = ρpwW ∗

t +
√
(1−ρ2

pw) ·ω2,t = ρpwW ∗
t + εt , (2.11)
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which shows γ in Equation (2.9) is ρpw and εt =
√
(1−ρ2

pw) ·ω2,t , and

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t

= µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

(P∗
t −ρpwW ∗

t )+σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t ,

= µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

εt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t . (2.12)

Equation (2.12) suggests adding the estimate of the error term εt from the first stage regres-

sion as a generated regressor to the outcome regression instead of using P∗
t and W ∗

t . As

shown in Theorem 2, the new error term ω3,t is uncorrelated with all the regressors in Equa-

tion (2.12), ensuring the consistency of model estimates. This two-step procedure, named

2sCOPE, adds the first-stage residual term ε̂t to control for endogeneity and in this aspect is

similar to the control function approach of Petrin and Train (2010). However, unlike Petrin

and Train (2010), 2sCOPE requires no use of instrumental variables.

Theorem 2. Estimation Consistency. Assuming (1) the error term is normal, (2) the en-

dogenous variable Pt or correlated regressors Wt is nonnormal, and (3) a Gaussian Copula

for the error term, Pt and Wt , Cov(ω3,t ,Wt) =Cov(ω3,t ,Pt) =Cov(ω3,t ,εt) = 0 in Equation

(3.8).

Proof: See the Appendix, Proof of Theorem 2.

According to Theorem 2, the proposed method 2sCOPE can yield consistent estimates

when assumptions are met. Specifically, Assumption 4 is relaxed because 2sCOPE can

handle the case when extra exogenous regressors that can be correlated with the endogenous

regressor are included in the model. Theorem 3 below further shows that 2sCOPE relaxes

Assumption 3 (the non-normality assumption on endogenous regressors), a critical model
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identification condition required in all other copula correction methods.

Theorem 3. Nonnormality Assumption Relaxed. Assuming (1) the error term is normal,

(2) one of the correlated exogenous regressors Wt is nonnormal, and (3) a Gaussian Copula

for the error term, Pt and Wt , 2sCOPE estimator θ̂2 is consistent when Pt follows a normal

distribution while the COPE estimator θ̂1 is not consistent.

Proof: See the Appendix, Proof of Theorem 3.

Theorem 3 shows that as long as one of the exogenous regressors that are correlated

with the endogenous regressor Pt is nonnormally distributed, 2sCOPE can correct for endo-

geneity for a normal regressor Pt while COPE cannot. Intuitively, when one of Pt and Wt

is normal, P∗
t (or W ∗

t ) becomes a linear function of Pt (or Wt) under the Gaussian copula

assumption, rendering the second stage model in COPE to fail the full rank assumption and

become unidentified. Thus, COPE cannot deal with normal endogenous regressors. For

the proposed 2sCOPE method in Equation (2.12), adding the first stage residual ε̂t as the

generated regressor helps model identification. As long as not all Wts are normal, εt would

not be a linear function of Pt and Wt and thus the second stage model (Equation 2.12) in

2sCOPE would satisfy the full rank requirement for model identification. Thus, our pro-

posed method 2sCOPE can relax the nonnormality assumption on the endogenous regressor

required in Park and Gupta (2012) as long as one of Wt is nonnormally distributed.

Theorem 4 below shows that when both COPE and 2sCOPE yield consistent estimates,

2sCOPE outperforms COPE, the direct extension of CopulaOrigin to more general settings,

by reducing the variance of the estimates and improving estimation efficiency.

Theorem 4. Variance Reduction. Assuming (1) the error term is normal, (2) the endoge-

nous variable Pt and correlated regressors Wt are nonnormal, and (3) a Gaussian Copula

for the error term, Pt and Wt , Var(θ̂2)≤ Var(θ̂1), where θ̂1 and θ̂2 denote parameter esti-

mates from COPE and 2sCOPE, respectively.
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Proof: See the Appendix, Proof of Theorem 4.

To sum up, we have proved the consistency of 2sCOPE method (Theorem 2). Theo-

rems 3 and 4 further establish that the 2sCOPE method outperforms the COPE method, the

extended CopulaOrigin, in terms of estimation efficiency gain and relaxing the nonnormality

assumption on the endogenous regressors required in CopulaOrigin by satisfying a very weak

condition.

2.3.3 Multiple Endogenous Regressors

In this subsection, we extend 2sCOPE to the general case of multiple endogenous regressors.

Consider the following structural linear regression model with two endogenous regressors

(P1,t and P2,t) that are potentially correlated with the exogenous regressor Wt :

Yt = µ +P1,t ·α1 +P2,t ·α2 +Wtβ +ξt . (2.13)

Under the multivariate Gaussian distribution assumption on (ξt ,P∗
1,t ,P

∗
2,t ,W

∗
t ), the sys-

tem equations of 2sCOPE method in Equation (2.8, 2.9) are readily extended to the case

with two endogenous regressors as

Yt = µ +P1,tα1 +P2,tα2 +Wtβ +ξt , (2.14)

P∗
1,t = ρwp1W ∗

t + ε1,t , (2.15)

P∗
2,t = ρwp2W ∗

t + ε2,t , (2.16)

where Equations (2.15) and (2.16) can be directly derived from the Gaussian copula as-

sumption; (ξt ,ε1,t .ε2,t) are a linear transformation of (ξt ,P∗
1,t ,P

∗
2,t ,W

∗
t ), and thus also follow

a multivariate Gaussian distribution. As a result, we can decompose the structural error ξt
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as additive terms for ε1,t , ε2,t and a remaining independent error term ω4,t as follows

Yt = µ +P1,tα1 +P2,tα2 +Wtβ +η1ε1,t +η2ε2,t +σξ ·m ·ω4,t , (2.17)

where ε1,t = P∗
1,t −ρwp1W ∗

t and ε2,t = P∗
2,t −ρwp2W ∗

t , m is a constant depending only on the

correlation coefficients in the Gaussian copula, and η1, η2 and ω4,t are the same as those

defined in Equation (A.6) in the Appendix for describing COPE for multiple endogenous

regressors and thus the new (scaled) error term ω4,t is independent of latent copula data

(P∗
1,t ,P

∗
2,t ,W

∗
t ) as well as all functions of these latent data including P1,t ,P2,t ,Wt ,ε1,t ,ε2,t .

Because ω4,t is independent of all regressors on the right side of Equation (2.17), the OLS

estimation of Equation (2.17) yields a consistent estimation of structural model parameters.

Note that Equation (2.17) can also be obtained from Equation (A.7) in Online Appendix A.3

for describing COPE for multiple endogenous regressors by noting that ε1,t = P∗
1,t −ρwp1W ∗

t

and ε2,t = P∗
2,t − ρwp2W ∗

t . However, 2sCOPE adds only two residual terms (ε1,t ,ε2,t) as

generated regressors instead of three copula transformations of regressors (P∗
1,t ,P

∗
2,t ,W

∗
t )

as generated regressors, as COPE does (Equation (A.7) in the Appendix). Thus, 2sCOPE

adds a smaller number of generated regressors than COPE, and provides higher estimation

efficiency. In addition, by adding residual terms as the generated regressors, 2sCOPE re-

laxes the assumption of regressor non-normality required to COPE as long as not all Wts

are normal. The proof for the estimation consistency of 2sCOPE, estimation efficiency gain

and relaxation of the regressor-nonnormality assumption for 2sCOPE can be found in the

Appendix under the related Theorems 2, 3, 4.

Table 2.2 summarizes the assumptions for the three methods: our proposed 2sCOPE

method, the existing copula method CopulaOrigin and CopulaOrigin’s direct extension, COPE.

Our proposed 2sCOPE method can deal with the case when there are exogenous regressors

that are correlated with the endogenous regressors. Moreover, 2sCOPE can further relax

the regressor-nonnormality assumption. Table 2.3 summarizes and compares the estimation
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CopulaOrigin COPE 2sCOPE

• The structural error follows a nor-

mal distribution (Asm. 1);

• Pt and the structural error follow a

Gaussian copula (Asm. 2);

• All regressors in Pt are nonnor-

mally distributed (Asm. 3);

• Wt is uncorrelated with the CCF

(copula control function which is

the linear combination of all P∗
t

used to control for endogeneity)

(Asm. 4, 4(b)).

• The structural error follows a

normal distribution;

• Pt , Wt and the structural error

follow a Gaussian copula;

• All regressors in Pt and Wt are

nonnormally distributed.

• The structural error follows a

normal distribution;

• Pt , Wt and the structural error

follow a Gaussian copula;

• Pt can be normally distributed

as long as one of Wt is nonnor-

mal.

Table 2.2: Summary of Assumptions for the Three Methods

procedure of COPE and 2sCOPE.

COPE 2sCOPE

Stage 1:

• Obtain empirical CDFs for each regressor in Pt

and Wt , denoted as Ĥ(Pt) and L̂(Wt);

• Compute P∗
t = Φ−1(Ĥ(Pt)) and W ∗

t =

Φ−1(L̂(Wt));

• Add P∗
t and W ∗

t to the outcome structural regres-

sion model as generated regressors.

• Obtain empirical CDFs for each regressor in Pt and

Wt , Ĥ(Pt) and L̂(Wt);

• Compute P∗
t = Φ−1(Ĥ(Pt)) and W ∗

t = Φ−1(L̂(Wt));

• Regress each endogenous regressor in P∗
t separately

on W ∗
t and obtain residual ε̂t ;

Stage 2:

• Add ε̂t to the outcome structural regression model as

generated regressors.

• Standard errors of parameter estiamtes are estimated using bootstrap in both methods.

Table 2.3: Estimation Procedure
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2.3.4 2sCOPE for Random Coefficient Linear Panel Models with
Endogenous Regressors

We consider the following random coefficient model for linear panel data

Yit |µi,αi,βi = µ̄ +µi +P′
itαi +W ′

itβi +ξit , (2.18)

where i = 1, · · · ,N indexes cross-sectional units and t = 1, · · · ,T indexes occasions. Pit

(Wit) denotes a vector of endogenous (exogenous) regressors. Pit and Wit can be correlated.

The error term ξit
iid∼ N(0,σ2

ξ
) is correlated with Pit due to the endogeneity of Pit but is un-

correlated with the exogenous regressors in Wit . The individual-specific intercept µi and

individual-specific slope coefficients (αi,βi) permit heterogeneity in both intercepts and re-

gressor effects across cross-sectional units. Extant marketing studies have shown the ubiq-

uitous presence of heterogeneous consumers’ responses to marketing mix variables (e.g.,

price sensitivity) and substantial bias associated with ignoring such heterogeneity in slope

coefficients. Thus, it is important to permit individual-specific slope coefficients, especially

in marketing studies.

The linear panel data model as specified in Equation (2.18) is general and includes the

linear panel model with only individual-specific intercepts considered in Haschka (2021) as

a special case. Specifically, Haschka (2021) fixes (αi,βi) to be the same value (α,β ) across

all units, assuming all cross-sectional units have the same slope coefficients. In contrast,

the model in Equation (2.18) relaxes this strong assumption and can generate unit-specific

slope parameters, which can be used for targeting purposes.

A fully random coefficient model typically assumes that (µi,αi,βi) follows a multi-

variate normal distribution. When all regressors are exogenous, estimation algorithms for

such random coefficient models are well-established and computationally feasible even for

a high-dimensional vector of random effects (µi,αi,βi): with the normal conditional dis-
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tribution for Yit |(µi,αi,βi) in Equation (2.18) and the multivariate normal prior distribution

for random effects (µi,αi,βi), marginally Yit follows a normal distribution with a closed-

form expression containing no integrals of random effects (µi,αi,βi), leading to an easy-

to-evaluate likelihood function (Greene, 2012). For instance, R function lme() can be

used to obtain MLEs of population model estimates and empirical Bayes estimates of ran-

dom effects. Alternatively, one can assume a mixed-effect model where µi is a fixed effect

parameter with µi’s allowed to be correlated with the regressors Pit and Wit . To avoid the po-

tential incidental parameter problem associated with these fix-effect parameters, one often

uses the first-difference or fixed-effects transformation to eliminate the incidental intercept

parameters as follows

ỹit |αi,βi = P̃′
itαi +W̃ ′

itβi + ξ̃it , (2.19)

where ỹit , P̃it , W̃it and ξ̃it denote new variables obtained from the first-difference or fixed-

effect transformation. Haschka (2021) considered a special case of Equation (2.19) by fixing

(αi,βi) to be constants.

It is straightforward to apply 2sCOPE to address regressor endogeneity in the general

random coefficient model for linear panel data in Equation (2.18) and the transformed one

without intercepts in Equation (2.19). 7 Assuming (Pit ,Wit ,ξit) follow a Gaussian copula,

COPE adds the generated regressor P∗
it = Φ−1(Ĥ(Pit)) and W ∗

it = Φ−1(L̂(Wit)) into Equa-

tion (2.18) to control for regressor endogeneity. The 2sCOPE procedure adds the residuals

obtained from regressing P∗
it on W ∗

it . Thus, 2sCOPE method can be implemented using stan-

dard software programs for random coefficient linear panel models assuming all regressors

are exogenous (see Section 2.4.6 for an illustration using the R function lme()). By con-

trast, the MLE approach for copula correction in the random coefficients model accounting

7Similar to Haschka (2021), a GLS transformation can be applied to both sides of Equation (2.19), resulting
in a pooled regression for which 2sCOPE can be directly applied.
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for correlated endogenous and exogenous regressors is not available yet and would require

constructing complicated joint likelihood on the error term, Pt and Wt , which involves newly

appearing numerical integrals of random effects and cannot be maximized by standard esti-

mation algorithms for random coefficient models. 8 Finally, current applications applying

CopulaOrigin do not consider the role of exogenous regressors. Our analysis shows that

this may yield bias if any exogenous regressor is correlated with the CCF added to control

endogeneity, for which 2sCOPE should be used to address regressor endogeneity.

2.3.5 2sCOPE for Slope Endogeneity and Random Coefficient Logit
Model

In the Appendix, we derive the 2sCOPE method to tackle the slope endogeneity problem and

address endogeneity bias in random coefficient logit models with correlated and normally

distributed regressors. In these two cases, we show how to apply 2sCOPE to correct for

the endogenous bias, which can avoid the potential bias of CopulaOrigin due to the potential

correlations between the exogenous regressors and CCF, as well as make use of the corre-

lated exogenous regressors to relax the non-normality assumption of endogenous regressors,

improve model identification and sharpen model estimates. As shown there, 2sCOPE can

be implemented using standard estimation methods by adding generated regressors to con-

trol for endogenous regressors. By contrast, the maximum likelihood approach can require

constructing a complicated joint likelihood that is not what the standard estimation method

uses and thus requires separate development and significantly more computation involving

numerical integration.

8With endogenous regressors, the individual random effects parameters enter into both the density function
for the outcome Yit |(µi,αi,βi) and the density of copula function C(Uξ ,it ,UP,it ,UW,it) via Uξ ,it , and thus cannot
be integrated out in closed form from the likelihood function even with the normal structural error term and
normal random effects. Therefore, numerical integration is required for obtaining MLEs in random coefficient
models with endogenous regressors, which cannot be performed with standard software programs for random
coefficient model estimation.
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2.4 Simulation Study

In this section, we conduct Monte Carlo simulation studies for the following goals: (a) to

assess the performance of the proposed method for correlated regressors, (b) to assess the

performance of the proposed method under regressor normality and near normality, (c) to

assess generalizability and restrictions of the distributional assumptions about the endoge-

nous and exogenous regressors, and (d) to compare the performance of the proposed method

with existing methods. Following Park and Gupta (2012), we measure the estimation bias

using tbias calculated as the ratio of the absolute difference between the mean of the sampling

distribution and the true parameter value to the standard error of the parameter estimate. As

defined above, tbias represents the size of bias relative to the sampling error. The Appendix

provides additional simulation results on the robustness of 2sCOPE to the misspecifications

of the structural error distribution and the copula dependence structure.

2.4.1 Case 1: Non-normal Regressors

We first examine the case when P and W are correlated. The specific data-generating process

(DGP) is summarized below:


P∗

t

W ∗
t

ξ ∗
t

∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


= N




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1


 ,(2.20)

ξt = G−1(Uξ ,t) = G−1(Φ(ξ ∗
t )) = Φ−1(Φ(ξ ∗)) = 1 ·ξ ∗

t , (2.21)

Pt = H−1(UP,t) = H−1(Φ(P∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (2.22)

Yt = µ +α ·Pt +β ·Wt +ξt = 1+1 ·Pt +(−1) ·Wt +ξt . (2.23)
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where ξ ∗
t and P∗

t are correlated with the correlation coefficient ρpξ = 0.5, and thus ξt and Pt

are correlated, generating the endogeneity problem. W ∗
t is exogenous and is not correlated

with ξ ∗
t . But W ∗

t and P∗
t are correlated with the correlation coefficient ρpw = 0.5, and

thus Wt and Pt are correlated. We consider four different estimation methods: (i) OLS, (ii)

CopulaOrigin in the form of Equation (2.6), (iii) the extended method COPE in the form of

Equation (A.3), and the proposed method 2sCOPE in the form of Equation (3.8). We set the

sample size T = 1000, and generate 1000 data sets as replicates using the DGP above. In

the simulation, we use the gamma distribution Gamma(1,1) with shape and rate equal to 1

for Pt and the exponential distribution Exp(1) with rate 1 for Wt . Models are estimated on

all generated data sets, providing the empirical distributions of the parameter estimates.

OLS CopulaOrigin COPE 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.689 0.045 6.964 1.231 0.081 2.849 1.012 0.093 0.129 1.009 0.059 0.157

α 1 1.571 0.036 15.75 1.055 0.069 0.791 0.985 0.072 0.213 0.986 0.070 0.197

β -1 -1.259 0.031 8.236 -1.289 0.031 9.169 -0.997 0.067 0.038 -0.995 0.042 0.123

ρpξ 0.5 - - - 0.570 0.047 1.504 0.505 0.055 0.090 0.504 0.038 0.097

σξ 1 0.862 0.020 6.902 1.011 0.043 0.244 1.008 0.041 0.206 1.006 0.040 0.143

D-error - - 0.002613 0.001614

0.7 µ 1 0.730 0.041 6.629 1.307 0.076 4.037 1.011 0.085 0.124 1.005 0.053 0.088

α 1 1.800 0.041 19.67 1.260 0.068 3.838 0.988 0.078 0.148 0.991 0.075 0.118

β -1 -1.529 0.037 14.21 -1.567 0.037 15.36 -0.997 0.071 0.041 -0.994 0.056 0.110

ρpξ 0.5 - - - 0.633 0.043 3.130 0.503 0.057 0.048 0.500 0.026 0.000

σξ 1 0.799 0.018 11.18 0.980 0.044 0.468 1.007 0.041 0.160 1.003 0.040 0.084

D-error - - 0.002902 0.001760

Table 2.4: Results of the Simulation Study Case 1: Non-normal Regressors

Note: Mean and SE denote the average and standard deviation of parameter estimates over all the 1,000
simulated samples.

Table 2.4 reports estimation results. As expected, OLS estimates of both α and β are
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biased (tbias = 15.75/8.24) as a result of the regressor endogeneity. The estimation result

of CopulaOrigin reduces the bias, but still shows significant bias for both the coefficient

estimates of Pt and Wt . The bias of CopulaOrigin depends on the strength of the correlation

between W and P. Stronger correlations between P∗ and W ∗ can cause a larger bias in

CopulaOrigin estimates. For example, when the correlation between W ∗ and P∗ increases

from 0.5 to 0.7, the bias of estimated α increases by around five times (from 0.055 to 0.260

in Table 2.4 under the column “CopulaOrigin”). The bias confirms our derivation in the model

section, demonstrating that using the existing copula method may not solve the endogeneity

problem completely with correlated regressors.

We next examine our proposed method. 2sCOPE provides consistent estimates without

the use of instruments. The average estimate of ρpξ is close to the true value 0.5 and is

significantly different from 0, implying a significant correlation between the endogeneity

regressor and the error term. Moreover, the proposed method 2sCOPE shows larger effi-

ciency. The standard error of α(β ) in 2sCOPE is 0.070 (0.042), which is 2.78% (37.31%)

smaller than the corresponding standard errors using COPE. We further calculate the esti-

mation precision of COPE and 2sCOPE using the D-error measure |Σ|1/K (Arora and Huber

2001, Qian and Xie 2021), where Σ is the covariance matrix of the parameter estimates in

the regression mean function, and K is the number of these parameters. A smaller value

of D-error means greater estimation efficiency and improved estimation precision. When

ρpw = 0.5, the D-error measure is 0.002613 for COPE and 0.001614 for 2sCOPE (Table

2.4), and thus 2sCOPE increases estimation precision by 38.2%, meaning that for 2sCOPE

to achieve the same precision with COPE, sample size can be reduced by 38.2%. A 39.3%

of efficiency gain for 2sCOPE is found for ρpw = 0.7 in Table 2.4.

We perform a further simulation study for a small sample size. Specifically, we use the

same DGP as described above to generate synthetic data, except with the sample size T=200.

Table A.1 in the Appendix reports the results and shows that OLS estimates have endogene-
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ity bias and CopulaOrigin reduces the endogeneity bias but the significant bias remains. Our

proposed method, 2sCOPE, performs well and has unbiased estimates for the small sam-

ple size of T=200. The efficiency gain of 2sCOPE relative to COPE appears to be greater

when the sample size becomes smaller. When the correlation between P∗ and W ∗ is 0.5,

the D-error measures are 0.0166 and 0.0091 for COPE and 2sCOPE (Appendix Table A.1),

respectively, meaning that 2sCOPE increases estimation precision by 1-0.0091/.0166=46%

compared with COPE, and thus sample size can be reduced by almost a half (∼50%) for

2sCOPE to achieve the same estimation precision as that achieved by COPE. A similar

magnitude of efficiency gain for 2sCOPE relative to COPE (∼50%) is observed when the

correlation between P∗ and W ∗ is 0.7 (Appendix Table A.1).

2.4.2 Case 2: Normal Regressors

Next, we examine the case when the endogenous regressor and (or) the correlated exogenous

regressor are normally distributed. We pay special attention to this case because normality

is not allowed for endogenous regressors in Park and Gupta (2012). We use the Gaussian

copula as described in Equations (2.24) to Equations (3.17) for DGP to generate the data,

except that the marginal CDFs for regressors (H(·) and L(·)) are chosen according to the

distributions listed in the first two columns in Table 2.5.

Table 2.5 summarizes the estimation results. As expected, OLS estimates are biased.

CopulaOrigin produces biased estimates whenever the endogenous regressor P follows a nor-

mal distribution. The estimates of CopulaOrigin are biased when P follows a gamma distri-

bution (first row of Table 2.5) for a different reason: P and W are correlated. Same with

CopulaOrigin, the results of COPE are biased in all three scenarios when at least one of Pt

and Wt is normal. When Wt is normal, β is 0.323 away from the true value -1; when Pt is

normally distributed, α is 0.684 away from the true value; when both Pt and Wt are normal,
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α is 0.663 away from the true value 1 and β is 0.324 away from the true value -1. This is

expected because COPE adds P∗
t and W ∗

t , the copula transformation of regressors, as addi-

tional regressors, and will cause perfect co-linearity and model non-identification problems

whenever at least one of these regressors is normally distributed.

Distribution OLS CopulaOrigin COPE 2sCOPE

P W Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

Gamma Normal µ 1 0.431 0.045 12.63 1.018 0.078 0.227 1.017 0.080 0.217 1.015 0.077 0.190

α 1 1.569 0.037 15.40 0.979 0.070 0.302 0.979 0.070 0.296 0.985 0.070 0.212

β -1 -1.259 0.030 8.619 -1.333 0.028 11.78 -1.323 0.433 0.746 -0.997 0.045 0.067

ρpξ 0.5 - - - 0.640 0.039 3.556 0.589 0.141 0.631 0.506 0.036 0.151

σξ 1 0.861 0.019 7.240 1.064 0.046 1.394 1.135 0.162 0.837 1.005 0.038 0.134

Normal Exp µ 1 1.286 0.042 6.777 1.286 0.045 6.374 0.994 0.073 0.081 1.023 0.070 0.334

α 1 1.628 0.031 20.36 1.532 0.462 1.152 1.684 0.437 1.568 1.048 0.126 0.381

β -1 -1.286 0.032 8.956 -1.287 0.032 8.960 -0.992 0.066 0.127 -1.024 0.062 0.383

ρpξ 0.5 - - - 0.089 0.419 0.980 -0.167 0.384 1.738 0.465 0.074 0.473

σξ 1 0.829 0.018 9.492 0.940 0.151 0.394 0.981 0.151 0.129 0.980 0.063 0.318

Normal Normal µ 1 1.001 0.026 0.046 1.002 0.030 0.052 1.001 0.033 0.024 1.002 0.028 0.057

α 1 1.668 0.030 22.38 1.663 0.450 1.474 1.663 0.460 1.441 1.655 0.395 1.657

β -1 -1.335 0.029 11.44 -1.335 0.029 11.42 -1.324 0.438 0.740 -1.328 0.197 1.668

ρpξ 0.5 - - - 0.006 0.412 1.198 0.001 0.412 2.426 0.010 0.303 1.616

σξ 1 0.816 0.019 9.687 0.917 0.155 0.534 1.003 0.211 0.016 0.879 0.092 1.317

Table 2.5: Results of Case 2: Normal Regressors

By contrast, the proposed 2sCOPE method provides consistent estimates as long as Pt

and Wt are not both normally distributed. Both α and β are tightly distributed near the

true value whenever Pt or Wt is nonnormally distributed. Unlike CopulaOrigin and COPE,

2sCOPE adds the residual term obtained from regressing P∗
t on W ∗

t as the generated re-

gressor. Thus, as long as Pt and Wt are not both normally distributed, the residual term is

not perfectly co-linear with the original regressors, permitting model identification. Only

when both Pt and Wt are normally distributed (the last scenario in Table 2.5), the residual

term added into the structural regression model becomes a linear combination of Pt and Wt ,
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causing perfect co-linearity and model non-identification. Overall, this simulation study

demonstrates the advantage of the proposed 2sCOPE to relax the nonnormality assumption

in CopulaOrigin as long as one of Pt and Wt is nonnormally distributed.

2.4.3 Case 3: Performance Under Insufficient Non-Normality of
Endogenous Regressors

The above section shows that the proposed 2sCOPE can deal with normal endogenous re-

gressors, while CopulaOrigin and COPE cannot. In this section, we examine the performance

of these methods in the more common situation of close-to-normal regressors. Although

models are identified asymptotically (i.e., infinite sample size), appreciable finite sample

bias can occur with realistic sample size commonly seen in marketing studies, if the endoge-

nous regressor is too close to a normal distribution (Becker et al., 2021; Haschka, 2021).

Becker et al. (2021) suggest a minimum absolute skewness of 2 for an endogenous regres-

sor in order for CopulaOrigin to have good performance in a sample size as small as 200.

This requirement can significantly limit the use of copula correction methods in practical

applications. Given that the proposed 2sCOPE can handle normal endogenous regressors,

we expect that 2sCOPE can handle much better the finite sample bias caused by insuffi-

cient regressor non-normality than the existing copula correction methods. Thus, in this

subsection, we further explore and compare the finite sample performance of those methods

when the distribution of the endogenous regressor has various magnitudes of closeness to

normality. Specifically, we show the performance using some commonly used distributions

in practice.

We use the data-generating process (DGP) below:


P∗

t

W ∗
t

ξ ∗
t

∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


= N




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1


 ,(2.24)
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ξt = G−1(Uξ ,t) = G−1(Φ(ξ ∗
t )) = Φ−1(Φ(ξ ∗)) = 1 ·ξ ∗

t , (2.25)

Pt = H−1(UP,t) = H−1(Φ(P∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (2.26)

Yt = µ +α ·Pt +β ·Wt +ξt = 1+1 ·Pt +(−1) ·Wt +ξt . (2.27)

where we still use Exp(1) for W as an example. We compare the performance of CopulaOrigin,

COPE and 2sCOPE methods when the endogenous regressor P is from some commonly

used distributions that are close to normal to different extents. Specifically, we use uniform,

log normal, t, gamma, beta and normal distributions, and use the average absolute bias of

all the estimated coefficients to measure the performance.

Figure 2.1 shows the estimation bias using different distributions of the endogenous

regressor P. According to the figure, estimates of CopulaOrigin are biased for all distribu-

tions, consistent with our theoretical proof. Compare the estimates of COPE and 2sCOPE,

first, COPE cannot handle normal endogenous regressors. This result is consistent with our

theoretical proof and the simulation result in Case 2. Moreover, the bias is not even decreas-

ing as the sample size increases. Second, COPE suffers from finite-sample bias when the

endogenous regressor follows some insufficient non-normal distributions (e.g., beta distri-

bution, t distribution with a large degree of freedom). Moreover, the smaller the sample size,

the larger the estimation bias of COPE would be with insufficient non-normal endogenous

regressor. This tells us that COPE doesn’t perform well for close-to-normal distributions.

Last but not least, the bias of COPE also indicates how close a distribution is to the normal

distribution. T distribution with a degree of freedom of 30 is closer to normal than the same

distribution with degrees of freedom of 10, 5 and 2, and beta distribution locates between t

(df=5) and t(df=10). In contrast to COPE, our proposed 2sCOPE method can get consistent

estimates for all normal and close-to-normal distributions.
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(a) Sample Size N=200

(b) Sample Size N=1000

Figure 2.1: Estimation Bias for Different Distributions of Endogenous Regressor.
Note: ’lognormal’ is lognormal(0,1), ’uniform’ is U[0,1], and ’gamma’ is Gamma(1,1).
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2.4.4 Case 4: Multiple Endogenous Regressors

In this case, we examine the performance of our proposed method when the model has

multiple endogenous regressors. We use the data-generating process (DGP) with two en-

dogenous regressors and one exogenous regressor that is correlated with the endogenous

regressor below:



P∗
1,t

P∗
2,t

W ∗
t

ξ ∗
t


∼ N





0

0

0

0


,



1 ρp ρwp1 ρξ p1

ρp 1 ρwp2 ρξ p2

ρwp1 ρwp2 1 0

ρξ p1 ρξ p2 0 1





= N





0

0

0

0


,



1 0.3 0.4 0.5

0.3 1 0.4 0.5

0.4 0.4 1 0

0.5 0.5 0 1




, (2.28)

ξt = G−1(Uξ ,t) = G−1(Φ(ξ ∗
t )) = Φ−1(Φ(ξ ∗)) = 1 ·ξ ∗

t , (2.29)

P1,t = H−1
1 (Up1) = H−1

1 (Φ(P∗
1,t)), P2,t = H−1

2 (Φ(P∗
2,t)), (2.30)

Wt = L−1(UW,t) = L−1(Φ(W ∗
t )), (2.31)

Yt = µ +α ·Pt +β ·Wt +ξt = 1+1 ·P1,t +1 ·P2,t +(−1) ·Wt +ξt , (2.32)

where H−1
1 (·) (H−1

2 (·)) and L−1(·) are the inverse distribution functions of the gamma and

exponential distributions used to generate these regressors. Sample size T = 1000. We gen-

erate 1000 data sets, and use existing methods and our proposed method to estimate the

model. Table 2.6 shows the estimation results. Both the OLS and CopulaOrigin estimates are

biased, while our proposed method provides unbiased estimates for all parameters, indicat-

ing that our proposed method performs well with multiple endogenous regressors.
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OLS CopulaOrigin COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.419 0.045 13.02 1.267 0.090 2.949 1.012 0.097 0.125 1.008 0.069 0.120

α1 1 1.450 0.029 15.46 1.040 0.060 0.665 0.990 0.060 0.166 0.991 0.059 0.153

α2 1 1.450 0.031 14.72 1.040 0.059 0.673 0.990 0.058 0.177 0.991 0.056 0.167

β -1 -1.320 0.029 11.04 -1.353 0.028 12.56 -0.997 0.057 0.061 -0.995 0.040 0.134

ρξ p1 0.5 - - - 0.567 0.043 1.545 0.503 0.049 0.052 0.502 0.040 0.048

ρξ p2 0.5 - - - 0.568 0.042 1.625 0.503 0.047 0.073 0.503 0.038 0.075

σξ 1 0.772 0.018 12.58 1.019 0.048 0.402 1.012 0.044 0.283 1.010 0.042 0.233

Table 2.6: Results of the Simulation Study Case 3: Multiple Endogenous Regressors

2.4.5 Case 5: Multiple Exogenous Control Covariates

We investigate the performance of our proposed method when there exist multiple exoge-

nous regressors consisting of both continuous and discrete variables. We generate the data

using the following DGP:


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t
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1,t

W ∗
2,t
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
∼ N
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= N
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0

0

0

0
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1 0.5 0.5 0.5
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0.5 0.3 1 0
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


, (2.33)
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ξt = G−1(Φ(ξ ∗
t )) = Φ−1(Φ(ξ ∗)) = 1 ·ξ ∗

t , (2.34)

Pt = H−1(Φ(P∗
t )), W1,t = L−1(Φ(W ∗

1,t)), (2.35)

W2,t =


1, if Φ(W ∗

2,t)≥ 0.5

0. if Φ(W ∗
2,t)< 0.5

, (2.36)

Yt = µ +α ·Pt +β1 ·W1,t +β2 ·W2,t +ξt = 1+1 ·Pt +(−1) ·W1,t +(−1) ·W2,t +ξt ,(2.37)

where H−1(·) and L−1(·) are the inverse distribution functions of the gamma and expo-

nential distributions. W2,t is a binary variable that follows a Bernoulli distribution. We

set sample size T = 1000 and generate 1000 data sets to estimate parameters using OLS

and copula methods. We follow the approach of Park and Gupta (2012) to generate la-

tent copula data for discrete variables. Specifically, for a discrete regressor Wt , such as

the binary exogenous regressor W2,t , we define UW,t , uniformly distributed on [0,1], as

the CDF for a latent variable W ∗
t that determines the discrete value of Wt . We then re-

late UW,t to Wt through the following inequality: K(Wt − 1) < UW,t < K(Wt), where K(·)

is the CDF of Wt and can be directly estimated from the frequencies of the observed data.

The above inequality implies the following relationship between W ∗
t = Φ−1(UW,t) and KW,t :

Φ−1(K(Wt −1))<W ∗
t < Φ−1(K(Wt)).

The estimation results for the multiple-exogenous-regressor case with both discrete and

continuous ones are summarized in Table 2.7. The OLS and CopulaOrigin estimates are

biased because of endogeneity and correlated exogenous regressors, respectively. The pro-

posed 2sCOPE method performs well and provides consistent estimates for all parameters.

This indicates that our proposed method performs well with multiple exogenous correlated

regressors. Moreover, correcting for endogeneity using our proposed method does not re-

quire every exogenous correlated regressor to be informative (i.e., continuously distributed).
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OLS CopulaOrigin COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.701 0.046 6.452 1.281 0.083 3.394 1.007 0.115 0.057 1.005 0.061 0.085

α 1 1.573 0.038 15.10 1.037 0.071 0.532 0.985 0.073 0.208 0.987 0.072 0.180

β1 -1 -1.225 0.041 5.523 -1.220 0.039 5.584 -0.990 0.069 0.140 -0.992 0.048 0.161

β2 -1 -1.096 0.075 1.273 -1.202 0.073 2.758 -1.006 0.115 0.051 -1.003 0.080 0.042

ρpξ 0.5 - - - 0.589 0.045 1.976 0.503 0.061 0.053 0.504 0.038 0.097

σξ 1 0.862 0.020 7.066 1.023 0.044 0.532 1.011 0.040 0.264 1.006 0.040 0.115

Table 2.7: Results of the Simulation Study Case 4: Multiple Exogenous Control Co-
variates

2.4.6 Case 6: Random Coefficient Linear Panel Model

We investigate the performance of our proposed 2sCOPE method in a random coefficient

linear panel model. We use the copula and marginal distributions for [Pit ,Wit ,ξit ] as specified

in Case 1 (Equations 2.24-3.16). We assign ρpw = 0.7 as an example. We then generate the

outcome Yit using the following standard random coefficient linear panel model:

Yit = µ̄ +µi +Pit(ᾱ +ai)+Wit(β̄ +bi)+ξit = 1+µi +Pit(1+ai)+Wit(−1+bi)+ξit ,

where [µi,ai,bi]∼ N(0, I3), t = 1, ...,50 indexes occasions for repeated measurements, and

i = 1, ...,500 indexes the individual units. The above random coefficients model permits in-

dividual units to have heterogeneous baseline preferences (µi) and heterogeneous responses

to regressors (ai,bi). Such random coefficient models are frequently used in marketing stud-

ies to capture individual heterogeneity and to profile and target individuals. The correlation

between ξit and Pit creates the regressor endogeneity problem in the random coefficient

model, which can cause biased estimates for standard linear random coefficient estimation

methods ignoring the regressor-error correlation. We generate individual-level panel data
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as described above 1000 times and use the data for estimation. Estimation results are in

Table 2.8. LME is the standard estimation method for linear mixed models assuming all

regressors are exogenous, as implemented in the R function lme(). LME and CopulaOrigin

are biased because of endogeneity and correlated exogenous regressors, respectively. Our

proposed method 2sCOPE provides unbiased estimates that are tightly distributed around

the true values for all parameters.

LME CopulaOrigin COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ̄ 1 0.722 0.046 6.052 1.314 0.049 6.399 1.001 0.054 0.016 1.004 0.048 0.091

ᾱ 1 1.853 0.045 18.83 1.293 0.045 6.469 1.000 0.045 0.009 1.000 0.046 0.008

β̄ -1 -1.557 0.045 12.39 -1.598 0.044 13.56 -0.996 0.048 0.079 -1.000 0.044 0.005

σµ 1 0.985 0.033 0.459 0.982 0.033 0.547 0.985 0.033 0.463 0.984 0.031 0.522

σα 1 0.988 0.036 0.326 0.987 0.034 0.397 0.986 0.035 0.403 0.989 0.035 0.316

σβ 1 0.993 0.031 0.235 0.992 0.033 0.249 0.992 0.031 0.264 0.992 0.033 0.248

ρpξ 0.5 - - - 0.646 0.009 16.33 0.509 0.012 0.757 0.507 0.005 1.365

σξ 1 0.794 0.004 57.71 0.957 0.010 4.439 0.985 0.009 1.689 0.985 0.009 1.640

Table 2.8: Results of the Simulation Study Case 5: Random Coefficient Linear Panel
Model

Note: σµ ,σα ,σβ are standard deviations of µi,ai,bi.

2.4.7 Misspecification of the Error ξt

Similar to CopulaOrigin, we assume the structural error ξt to be normally distributed. Though

the normality of ξt is a reasonable and commonly used assumption in marketing and eco-

nomics literature, the true distribution of ξt is often unknown, resulting in possible misspec-

ifications. In this simulation study, we examine the robustness of the proposed method to the

departures from the normality of ξt . We generate 1,000 data sets using the same multivariate
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normal distribution as in Equation (2.24). The rest of DGP is:

ξt = G−1(Uξ ,t) = G−1(Φ(ξ ∗
t )), (2.38)

Pt = H−1(Up,t) = H−1(Φ(P∗
t )), Wt = L−1(Uw,t) = L−1(Φ(W ∗

t )), (2.39)

Yt = µ +α ·Pt +β ·Wt + ξt = 1+1 ·Pt +(−1) ·Wt +ξt . (2.40)

where we set Pt ∼ Gamma(1,1) and Wt ∼ Exp(1) in the simulation. We check the robust-

ness of the structural error ξt using different distributions (e.g., a uniform distribution, beta

distribution and t distribution) instead of a normal distribution. We assume the normality of

ξt and use the OLS estimator, CopulaOrigin and the proposed method for estimation.

Table 2.9 reports estimation results. OLS and CopulaOrigin estimates are still biased, con-

sistent with the normal error case. Importantly, Becker et al. (2021) showed that CopulaOrigin

has estimation bias for misspecification of ξt even when no Wts are included, the case in

which CopulaOrigin should be consistent. This indicates that CopulaOrigin is not robust in

the misspecification of the error term. In contrast, 2sCOPE can recover the true parame-

ter values despite the misspecification of ξt , demonstrating the robustness of the proposed

2sCOPE method to the normal error assumption. See more robustness check results for

different distributions of the error term in the Appendix.

2.5 Empirical Application

In this section, we apply our method to a real marketing application. We illustrate the

proposed method to address the price endogeneity issue using store-level sales data of the

toothpaste category in Chicago over 373 weeks from 1989 to 1997 9. To control for prod-

uct size, we select data of toothpaste with the most common size, which is 6.4 oz. Retail

9We obtained the data from https://www.chicagobooth.edu/research/kilts/datasets/dominicks.
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OLS COPE 2sCOPE

Distribution of ξt Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

U[-0.5,0.5] µ 1 0.912 0.013 6.808 1.004 0.025 0.144 1.002 0.017 0.105

α 1 1.160 0.010 16.41 0.996 0.017 0.263 0.996 0.017 0.233

β -1 -1.072 0.009 8.033 -1.000 0.019 0.023 -0.998 0.011 0.147

ρpξ 0.5 - - - 0.497 0.049 0.054 0.495 0.035 0.155

σξ 0.289 0.251 0.004 9.018 0.291 0.009 0.287 0.290 0.008 0.197

Beta(0.5,0.5) µ 1 0.896 0.016 6.461 1.005 0.031 0.166 1.003 0.020 0.145

α 1 1.190 0.012 15.72 0.994 0.019 0.343 0.994 0.018 0.318

β -1 -1.086 0.011 7.763 -0.999 0.022 0.043 -0.998 0.014 0.183

ρpξ 0.5 - - - 0.483 0.050 0.339 0.481 0.033 0.593

σξ 0.354 0.311 0.005 9.046 0.357 0.009 0.355 0.356 0.009 0.258

t (df=3) µ 1 0.504 0.082 6.071 0.972 0.198 0.142 0.983 0.127 0.135

α 1 1.903 0.089 10.13 1.026 0.227 0.113 1.024 0.217 0.110

β -1 -1.410 0.064 6.448 -1.003 0.129 0.020 -1.012 0.109 0.111

ρpξ 0.5 - - - 0.449 0.088 0.577 0.454 0.069 0.676

σξ 1.732 1.503 0.231 0.992 1.701 0.246 0.124 1.698 0.244 0.141

Table 2.9: Results of the Simulation Study Case D1: Misspecification of ξt

price is usually considered endogenous. The endogeneity of retail price can come from un-

measured product characteristics or demand shocks that can influence both consumers’ and

retailers’ decisions. Since these variables are unobserved by researchers, they are absorbed

into the structural error, leading to the endogeneity problem. Prices of different stores are

correlated and often used as an IV for each other. This allows us to test the performance

of the proposed 2sCOPE method in an empirical setting where a good IV exists. Besides

the endogenous price, two promotion-related variables, bonus promotion and direct price

reduction, would also affect demand. Following Park and Gupta (2012), we treat the pro-
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motion variables as exogenous regressors. We focus on category sales in two large stores

in Chicago (referred to as Stores 1 and 2). We convert retail price, in-store promotion and

sales from the UPC level to the aggregate category level. They are computed as weekly

market share-weighted averages of UPC-level variables. The correlation between log retail

Store 1 Store 2

Variables Mean SD Max Min Mean SD Max Min

Sales (Unit) 115 52.8 720 35 165.7 93.7 1334 26

Price ($) 2.06 0.20 2.48 1.46 2.10 0.21 2.48 1.47

Bonus 0.18 0.20 0.80 0.00 0.16 0.19 0.79 0.00

PriceRedu 0.10 0.19 0.72 0.00 0.10 0.19 0.73 0.00

Table 2.10: Summary Statistics

price and bonus promotion in Store 1 (Store 2) is -0.30 (-0.15), and the correlation between

log retail price and price reduction promotion in Store 1 (Store 2) is -0.23 (-0.35). Both

the correlations are significantly different from zero. The appreciable correlations between

price and promotion variables provide a good setting for testing our method and examining

the impact that our proposed method can make in the setting of correlated endogenous and

exogenous regressors. Summary statistics of key variables are summarized in Table 3.2.

We estimate the following linear regression model:

log(Salest) = β0 + log(Retail Pricet) ·β1 +W ′
t β2 +ξt ,

where t = 1,2, ...,T indexes week. The vector Wt includes all exogenous regressors, which

are two promotion variables, bonus promotion and price reduction, in this application.

Figure 2.2 shows log sales and log retail prices of toothpaste at store 1 over time (store

2 is very similar). To control for the possible trend of retail price over time, we use the
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(a) Store 1 log sales (b) Store 1 log retail price

Figure 2.2: Log Sales and Log Retail Price of Toothpaste in Store 1.

de-trended log retail prices (as instrumental variables as well) for estimation below.

(a) detrended log price (b) bonus (c) price reduction

Figure 2.3: Histogram of Log Retail Price, Bonus and Price Reduction in Store 1

Figure 2.3 shows the histograms of detrended log retail prices and the two promotion

variables. All three variables are continuous. Moreover, except for log retail price, which

is a bit close to the normal distribution, the other two regressors, bonus and price reduction,

are both nonnormally distributed. Therefore, we expect that the proposed 2sCOPE method

can exploit these additional features of exogenous regressors correlated with the endogenous

regressor for model identification and estimation even if the endogenous regressor is close to

normal distribution. We estimate the model using the OLS, two-stage least squares (TSLS),

CopulaOrigin and our two proposed 2sCOPE method.
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We use the IV-based TSLS estimator as a benchmark to test the validity of our proposed

method. Following Park and Gupta (2012), we use retail price at the other store as an instru-

ment for the endogenous price in the focal store. This variable can be a valid instrument as

it satisfies the two key requirements. First, retail prices across stores in the same market can

be highly correlated because wholesale prices are usually offered the same (or very close).

The Pearson correlation between the detrended log retail prices at Stores 1 and 2 is 0.79,

providing strong explanatory power on the endogenous price. The correlation is comparable

to that in Park and Gupta (2012). Second, some unmeasured product characteristics such

as shelf-space allocation, shelf location and category location are determined by retailers

and are usually not systematically related to wholesale prices (exclusion restriction). For

the three copula-based methods, we make use of information from the existing endogenous

and exogenous regressors and no extra IVs are needed. In CopulaOrigin, we add the copula

transformation of the detrended log price, logP∗ = Φ−1(Ĥ(logP)), as a “generated regres-

sor” to the outcome regression. For the COPE method, we add another two “generated re-

gressors”, copula transformation of bonus and price reduction (Bonus∗ = Φ−1(L̂1(Bonus)),

PriceRedu∗ = Φ−1(L̂2(PriceRedu))). For the 2sCOPE method, we first regress logP∗ on

Bonus∗ and PriceRedu∗, and then add the residual as the only “generated regressor” to the

outcome regression. Ĥ(·), L̂1(·), L̂2(·) are all estimated CDFs using the univariate empirical

distribution for each regressor. Standard errors of parameter estimates are obtained using

bootstrap.

Table 3.3 reports the estimation results. Beginning with the results from Store 1, OLS

estimates are significantly different from TSLS estimates, indicating that the price endo-

geneity issue occurs. Instrumenting for retail price changes the price coefficient estimate

from -0.767 to -1.797, implying that there is a positive correlation between unobserved

product characteristics and the price. The estimates of ρ in the three IV-free copula-based

methods, representing the correlation between the endogenous regressor Pt and the error
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term, are all significantly positive, further confirming our previous conclusion. This di-

rection of correlation is consistent with previous empirical findings (e.g., Villas-Boas and

Winer 1999, Chintagunta et al. 2005).

OLS TSLS CopulaOrigin COPE 2sCOPE

Store Parameters Est SE t-value Est SE t-value Est SE t-value Est SE t-value Est SE t-value

Store 1 Constant 1.301 1.197 0.25 -2.993 1.646 1.82 -8.526 2.619 3.26 -8.569 2.820 3.04 -3.908 2.314 1.69

Price -0.767 0.288 2.66 -1.797 0.396 4.54 -3.082 0.620 4.97 -3.111 0.664 4.69 -2.014 0.555 3.63

Bonus 0.371 0.122 3.31 0.104 0.141 0.74 0.415 0.115 3.61 0.522 0.288 1.81 0.064 0.171 0.37

PriceRedu 0.498 0.115 4.33 0.285 0.125 2.28 0.544 0.111 4.90 1.033 0.211 4.90 0.275 0.143 1.92

ρ - - - - - - 0.521 0.098 5.32 0.662 0.117 5.66 0.297 0.089 3.34

Store 2 Constant -3.898 1.246 3.13 0.763 1.943 0.39 1.107 3.404 0.33 1.324 3.430 0.39 0.001 2.702 0.00

Price -1.982 0.300 6.61 -0.864 0.467 1.85 -0.799 0.807 0.99 -0.783 0.811 0.96 -1.048 0.648 1.62

Bonus 0.062 0.116 0.53 0.286 0.148 1.93 0.032 0.117 0.27 -0.819 0.426 1.92 0.239 0.151 1.58

PriceRedu 0.283 0.111 2.55 0.540 0.137 3.94 0.275 0.110 2.5 0.540 0.194 2.78 0.467 0.152 3.07

ρ - - - - - - -0.319 0.177 1.80 -0.358 0.164 2.18 -0.188 0.109 1.72

Table 2.11: Estimation Results: Toothpaste Sales

The price elasticity estimates from the CopulaOrigin, the extension COPE and the pro-

posed method 2sCOPE are -3.082, -3.111 and -2.014, respectively. Among the three es-

timates, the estimate of -2.014 from the proposed 2sCOPE is close to the estimate of -

1.797 from the TSLS method, whereas the existing copula and the COPE yield substantially

smaller price elasticity estimates. We confirm in the literature that the TSLS and 2sCOPE

estimates are reasonable because the price elasticity of the toothpaste category in the liter-

ature is around -2.0 (Hoch et al. 1995, Mackiewicz and Falkowski 2015). Comparing the

estimates of ρ from the three IV-free copula-based methods, our proposed 2sCOPE provides

a much smaller estimate of ρ (0.297 for 2sCOPE vs 0.521 for CopulaOrigin and 0.662 for

COPE in Table 3.3), consistent with the over-correction in both CopulaOrigin and COPE.

Reasons for the substantial difference in the estimates from the CopulaOrigin include (1)

it’s ignoring correlated endogenous and exogenous regressors which can lead to inconsis-

tent estimates, and (2) the unimodal close-to-normality distribution for the logarithm of the
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price variable leading to potentially poor finite sample performance. In fact, the correlations

between logP∗ and the exogenous regressors are -0.44 for Bonus and -0.26 for PriceRedu,

both of which are substantially larger than the corresponding correlations (-0.30 and -0.15,

respectively) between logP and the exogenous regressors. The p-value for the null hypoth-

esis of these correlations being zeros are significantly less than 0.05 (< 0.001), indicating a

violation of Assumption 4 required for CopulaOrigin to yield consistent estimates.

Reasons for the substantial difference in the estimates from the COPE method include

(1) a uni-modal close-to-normality distribution for the price variable leading to potentially

poor finite sample performance of COPE, and (2) loss of estimation precision manifested

due to a larger standard error of estimates as compared with those from 2sCOPE. By con-

trast, the proposed 2sCOPE can relax the non-normality assumption of the endogenous

regressor, and yield consistent and efficient estimates even if the endogenous regressor fol-

lows a normal or nearly normal distribution. Moreover, 2sCOPE provides estimates with

smaller standard error than COPE, which confirms Theorem 4 showing that using two-stage

copula estimation reduces estimation variance.

Unlike Store 1, the results from Store 2 indicate that the retail price is not endogenous.

First, The estimates of ρ , which is the correlation between price and the error term, are

not significantly different from 0 for both CopulaOrigin and 2sCOPE (t-value ≤ 1.96 under

columns “CopulaOrigin” and “2sCOPE” for Store 2 in Table 3.3), and only slightly signifi-

cantly different from 0 for COPE (a t-value of 2.18, slightly larger than 1.96 under Column

“COPE” in Table 3.3). The estimate of ρ for COPE, however, is questionable because of

the limitations of COPE mentioned in the paragraph above. Second, the estimated price

coefficient of OLS is -1.982, which is very close to the estimates of TSLS and 2sCOPE in

store 1 and further confirms no endogeneity of price in store 2. Overall, the price elasticity

estimates from TSLS and the three IV-free copulas-based methods are close to each other

for Store 2, and the observed differences between them and the OLS estimate can be at-

53



tributed to estimation variability incurred from using more complicated models instead of

the presence of endogeneity.

In sum, the convergence of results between TSLS and the proposed method 2sCOPE

in both stores supports the validity of the proposed method in addressing the endogeneity

issue. Moreover, the difference between the estimates in COPE and 2sCOPE in store 1

shows the advantages of 2sCOPE in terms of relaxing the non-normality assumption of the

endogenous regressor and estimation efficiency gain by exploiting additional information

from correlated exogenous regressors.

2.6 Economic Intuition and Practical Guidance of
2sCOPE

In this section, we intuitively discuss how our proposed 2sCOPE works for correcting en-

dogeneity, and the practical guidance of 2sCOPE.

Intuitively, the proposed 2sCOPE method divides the error term into two parts, one being

an endogenous part, which is the first-stage residual that is correlated with the endogenous

variable P, and the other being an exogenous part. The 2sCOPE method corrects endogene-

ity by directly controlling for the endogenous part in the error term. Suppose we are using

2sCOPE to estimate the effect of price on quantity demanded, a classical marketing ques-

tion. P is the endogenous price, W contains all observed variables that are correlated with

price and would affect demand (e.g., observed product attributes), and Y is the observed

demand. The remaining unobserved variables that also influence demand are all contained

in the error term, and some that are correlated with the price can cause the endogeneity

problem. Those unobservables can be product attributes that are observed by customers

but not researchers (i.e., the smell of perfume products). Then in the first-stage regression

by regressing P∗ on W ∗, W ∗ helps to explain part of the price that influences demand, and
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the residual can be interpreted as containing all the unobserved variables (e.g., unobserved

product attributes) that cause the endogeneity plus the errors. Adding the residual as a gen-

erated regressor in the demand model can be interpreted as controlling for all the unobserved

variables that cause the correlation between price and error term. Here, we take the effect

of price on demand as an example. If supply-side data are observed, 2sCOPE can also be

used to estimate the effect of price on supply.

Our proposed 2sCOPE method empirically provides sound causal inference once the

observational data are given. Data is not limited to cross-sectional data, 2sCOPE can also

correct endogeneity for panel data. For panel data analysis, researchers use fixed effects to

control for endogeneity. But adding fixed effects might not be enough, and our 2sCOPE

method can use copula to further correct endogeneity besides panel fixed effects. Moreover,

2sCOPE is straightforward to be applied to a wider range of commonly used marketing

models, including linear regression models, linear panel models with mixed effects, random

coefficient logit models and slope endogeneity. Any model that can use the control function

approach can in principle apply our method for correcting endogeneity.

We have listed in the literature review different approaches for correcting endogeneity.

Each method has its own assumptions. 2sCOPE method requires the normality assumption

on the error term (Villas-Boas and Winer 1999, Yang et al. 2003, Ebbes et al. 2005), and

the Gaussian copula relationship among regressors and the error term. Compare 2sCOPE

with IV approach, IV corrects endogeneity by using extra exogenous shock from the other

side while 2sCOPE identifies the model by controlling the endogenous part from exist-

ing regressors themselves. The exclusion restriction is difficult to achieve in IV, while the

Gaussian copula structure required in 2sCOPE, which results in the normality assumption

of the first stage residual, is very general and robust (Danaher and Smith 2011). Eckert and

Hohberger (2022) further use simulations to explore the practical usefulness of Gaussian

Copula approach and compare it with OLS, IV regression, and Higher Moments (HM) esti-
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mator. They find that the performance of Gaussian Copula approach is as good as a strong

IV case when assumptions are met. Generally speaking, our 2sCOPE method can be used

in practice when it’s hard to find a strong instrumental variable or when experiments are

not available to conduct. But future research is needed for comparing more methods and

providing clearer guidance on when to use our 2sCOPE method.

2.7 Conclusion

Causal inference lies at the center of social science research, and observational studies of-

ten beg rigorous post-study designs and methodologies to overcome endogeneity concerns.

In this paper, we focus on the instrument-free copula method to handle the problem of

endogenous regressors. We propose a generalized two-stage copula endogeneity correc-

tion (2sCOPE) method that overcomes two key limitations of the existing copula-based

method in Park and Gupta (2012) (CopulaOrigin), and extends CopulaOrigin to more general

settings. Specifically, 2sCOPE allows exogenous regressors to be correlated with endoge-

nous regressors and relaxes the nonnormality assumption on the endogenous regressors. To

demonstrate the benefits of 2sCOPE, we compare it with the direct extension of CopulaOrigin

method, called COPE. Similar to the CopulaOrigin, 2sCOPE method corrects endogeneity by

adding “generated regressors” derived from the existing regressors and is straightforward to

use. COPE is a direct extension to CopulaOrigin by adding latent copula transformation of

existing regressors, while 2sCOPE has two stages and adds the residuals from regressing

latent copula data for the endogenous regressor on the latent copula data for the exogenous

regressors as a “generated regressor” in the structural regression model. We theoretically

prove that 2sCOPE can yield consistent causal-effect estimates when exogenous regres-

sors are correlated with the endogenous regressors, which can cause biased estimates in the

method of Park and Gupta (2012). Moreover, the 2sCOPE method can further relax the

nonnormality assumption on the endogenous regressors and improve estimation efficiency.
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We conduct simulation studies and use an empirical marketing application to empirically

verify the performance of our proposed method. The simulation results show that 2sCOPE

yields consistent estimates under relaxed assumptions. Moreover, 2sCOPE method outper-

forms COPE in terms of dealing with normal endogenous regressors and improving estima-

tion efficiency. Endogenous regressors are allowed to be normally distributed as long as one

of the exogenous regressors is nonnormally distributed, which is a very weak assumption.

The efficiency gain is substantial and can be up to ∼50%, meaning that the sample size can

be reduced by ∼50% to achieve the same estimation efficiency as compared with COPE

method which does not exploit the correlations between endogenous and exogenous regres-

sors. Last but not least, our robustness checks show that the proposed method 2sCOPE is

reasonably robust to the structural error distributional assumption and non-Gaussian copula

correlation structure (see details in Appendix). We further apply our 2sCOPE method to a

commonly used public dataset in marketing. When dealing with endogenous price, we find

that the estimated price coefficient using our proposed 2sCOPE is very close to the TSLS

estimate, while OLS and CopulaOrigin show large biases. Moreover, the difference between

the results of 2sCOPE and COPE demonstrates the advantage of 2sCOPE in dealing with

(nearly) normal endogenous regressors and improving estimation efficiency.

These findings have rich implications for guiding the practical use of copula-based

instrument-free methods to handle endogeneity. A known critical assumption for CopulaOrigin

is the non-normality of endogenous regressors. The users of the method in the literature have

all been practicing the check and verification of this assumption. However, our work shows

that this is insufficient: one also needs to check Assumption 4 for the one-endogenous-

regressor case, and Assumption 4(b) for the multiple-endogenous-regressors case. Note

that neither assumption is the same as checking the pairwise correlations between the en-

dogenous and exogenous regressors. Assumption 4 evaluates pairwise correlations involv-

ing copula transformation of the endogenous regressor, which, as shown in our empirical
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application, can be substantially different from the pairwise correlations using the regres-

sor itself (Danaher and Smith 2011). Assumption 4(b) evaluates the correlations between

exogenous regressors and the linear combination of generated regressors, which are even

more different from checking pairwise correlations on the regressors themselves. When the

above assumptions are satisfied, CopulaOrigin is preferred to our proposed 2sCOPE method,

since the simpler and valid model outperforms more general but more complex models.

If any endogenous regressor fails to have sufficient departure from being normally dis-

tributed, or any exogenous regressor violates Assumption 4 or 4(b), our proposed 2sCOPE

method should be used instead of CopulaOrigin. The 2sCOPE is straightforward to extend to

many other settings, and we have derived 2sCOPE for a range of commonly used marketing

models, including linear regression models, linear panel models with mixed-effects, random

coefficient logit models and slope endogeneity. The 2sCOPE method proposed here can be

applied to these cases and many other cases not studied here, while accounting for corre-

lations between exogenous and endogenous regressors and exploiting the correlations for

model identification in the presence of insufficient non-normality of endogenous regressors.

Although the proposed 2sCOPE contributes to the literature by relaxing key assump-

tions of the existing copula method CopulaOrigin and extending it to more general settings,

it is not without limitations. For the 2sCOPE to work best, the distributions of the en-

dogenous regressors need to contain adequate information. The condition is violated when

the endogenous regressors follow Bernoulli distributions or discrete distributions with small

support, as noted in Park and Gupta (2012). The proposed 2sCOPE method does not address

this limitation. Developing instrument-free methods to handle such inadequately distributed

endogenous regressors is an important topic for future research. The simplicity of 2sCOPE

hinges on the normal structural error and Gaussian copula dependence structure. Although

2sCOPE demonstrates reasonable robustness to departures from these assumptions as shown

in the Appendix, future research is needed for more flexible methods testing and relaxing
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these assumptions. Despite these limitations, we expect that the proposed 2sCOPE will pro-

vide a useful alternative to a broad range of empirical problems when instruments are not

available.
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Chapter 3

Lasso-based Instrument-free Causal

Inference

3.1 Introduction

Copula-based instrument-free method to correct endogeneity and draw causal inference has

aroused wide interest because of its simplicity to implement as no instruments are needed.

Yang et al. (2022) proposed a general two-stage copula method called 2sCOPE to account

for endogeneity by adding a generated regressor, which is the first-stage residual, to the

structural regression model, analogous to the control function approach. The statistical tool

copula is a cumulative distribution function used to model multiple variables jointly. Yang

et al. (2022) used copula to model the joint distribution among the endogenous regressors,

exogenous regressors and the error term, and obtain the first-stage residual by regressing

latent copula data for each endogenous regressor on the latent copula data for the exogenous

regressors. Intuitively, the residual in the first stage contains all the unobserved variables that

make the endogenous regressor and the error term correlated. By controlling the residual,
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endogeneity can be corrected because all the unobservables that cause the endogeneity are

controlled for. Thus, the residual plays a central role in correcting for endogeneity using

2sCOPE, and the wrong estimation of the residual can cause bias in the estimation of the

endogenous regressor.

A problem empirical researchers face when using the conditional-on-residual identifica-

tion strategy (i.e., control function approach) is that the residual is unknown and is relying

on knowing what variables to include in the first-stage regression. The problem is inevitable,

especially for high-dimensional data, which are becoming increasingly common in this big

data era. Belloni et al. (2014a) pointed out that high-dimensional data can arise through

the inherent high-dimensional features. Examples are conventional data such as census

and survey data, scanner data and genomics data (Peng et al. 2010) , and unconventional

data that is too high-dimensional for standard estimation methods, including image (Zhang

et al. 2017) and language/text data (Amado et al. 2018) that we conventionally had not even

thought of as data we can work with (Mullainathan and Spiess 2017). We cannot avoid

high-dimensional data in empirical analysis. Sometimes economic intuition would help in

suggesting a set of variables that might be important, but it cannot identify exactly what

variables are important. With high-dimensional data and too many irrelevant variables, the

traditional endogeneity-correction methods may have poor performance with finite-sample

bias. Moreover, the dimension of variables can even be larger than the sample size, making

the traditional estimation methods infeasible.

In this paper, we combine the causal inference method with machine learning techniques

to deal with the high-dimensional problem in drawing causal inference. Machine learning

(ML) is a powerful tool for data analysis, especially for large or high-dimensional data

sets. Researchers are recently trying to apply the powerful machine learning tool to diverse

areas, such as Economics (Athey and Imbens 2019), Marketing (Cui et al. 2006, Ascarza

2018, Ngai and Wu (2022)) and operation research (Feldman et al. 2022). However, unlike
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the single-equation prediction setting in most papers that apply the ML tool, our causal

inference setting, which takes a two-stage structure, makes the application of ML different

and more complicated. Several papers recently have tried to apply ML to some economic

models for causal inference. For example, Belloni et al. (2012) applied ML instrumental

variable models, and Belloni et al. (2014a) and Belloni et al. (2014b) used ML to study

treatment effects.

Our paper studies the two-stage instrument-free method 2sCOPE to correct endogene-

ity with machine learning techniques. Specifically, we use lasso-based feature selection

methods for the first-stage estimation of 2sCOPE because the copula relationship among

the endogenous and exogenous regressors in the first stage are linearly correlated. Lasso

method has been widely used for feature selection in the literature (Tibshirani 1996, Belloni

et al. 2012, Belloni et al. 2014a, Belloni et al. 2014b, Belloni and Chernozhukov 2013, Bai

and Ng 2008, Bai and Ng 2009, Javanmard and Montanari 2014a). But since Lasso selects

important variables by adding a penalty term of non-zero coefficients to the least squares op-

timization function, the Lasso estimator has estimation bias. After noticing this drawback,

researchers are devoted to methodology development in alleviating or even eliminating the

bias. For example, Belloni et al. (2012) proposed a post-Lasso method to alleviate the bias

of the Lasso estimator, and Javanmard and Montanari (2014a) proposed a de-biased lasso

method. In this chapter, we propose a method combining the 2sCOPE method with dif-

ferent Lasso-based methods (Lasso, post-Lasso, de-biased Lasso) in the estimation of first-

stage residual, and examine how Lasso-based methods work for correcting endogeneity and

drawing causal inference for high-dimensional data. We demonstrate the performance of the

proposed lasso-based 2sCOPE, compared with the regular 2sCOPE method without feature

selection methods in the first stage, via simulation studies and real-data application. The

simulation result shows that using Lasso-based methods in the first stage can improve the

estimation accuracy and efficiency by around 50%, as compared with the regular 2sCOPE
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method in high-dimensional data. We further apply our lasso-based 2sCOPE method to

real data, examining how governments’ policy stringency in the COVID-19 period affects

citizens’ happiness. We use country-level cross-sectional data for analysis. The dimension

of country-level characteristics is relatively large, around half of the sample size. The es-

timation result shows that using Lasso-based methods in the first stage makes the effect

of policy stringency on happiness more significantly negative compared with the regular

2sCOPE method without feature selection. Moreover, the estimates using different Lasso-

based methods are quite robust.

The remainder of this paper unfolds as follows. Section 3.2 reviews the related litera-

ture on causal inference with feature selection. In Section 3.3, we propose a method that

combines 2sCOPE with lasso-based methods. In Section 3.4, we evaluate the performance

of our proposed lasso-based 2sCOPE method using simulation studies and compare the per-

formance with the 2sCOPE method without feature selection. In Section 3.5, we apply the

proposed lasso-based 2sCOPE method to examine the effect of policy strictness of COVID-

19 on citizens’ happiness using high-dimensional country-level cross-sectional databases.

We conclude the paper and discuss future work in Section 3.6.

3.2 Literature Review

There is a large literature in marketing, economics and statistics, focusing on approaches to

addressing endogeneity when inferring causal effects. Among them, the most commonly

used approach is the instrumental variable approach (Angrist and Krueger 2001, Rossi

2014). Though the theory of instrumental variables is well-developed, good instruments

are extremely difficult to find in practice. Rossi (2014) summarized the most frequently

used instrumental variables in the literature, and pointed out that many of them are weak

IVs with poor performance or even fail the validity (exclusion restriction) condition. This

63



forces researchers to seek for new methodologies to correct endogeneity and draw causal

inference.

One stream of methodologies called the instrument-free method has recently aroused

wide interest. Literally speaking, instrument-free method means no instrumental variables

are needed. Park and Gupta (2012) proposed a method using the statistic tool copula to

correct endogeneity by directly modeling the association between the endogenous variable

and the error term via copula. By doing so, it can address the lack of suitable instruments

issue using information in the existing regressors themselves without any extra information.

After that, the copula method has been rapidly adopted by researchers to deal with the endo-

geneity problem because of its feasibility (Burmester et al. 2015, Datta et al. 2015, Gruner

et al. 2019, Keller et al. 2019, Bombaij and Dekimpe 2020, Guitart et al. 2018, Lamey

et al. 2018, Wetzel et al. 2018, Heitmann et al. 2020, Atefi et al. 2018, Elshiewy and Boztug

2018). Regarding methodology development, Yang et al. (2022) and Haschka (2021) further

extend the method to a more general setting. Both the papers allow exogenous regressors

that are correlated with the endogenous regressor to be included in the model, while the

original paper doesn’t allow that. But compared with Haschka (2021), the method proposed

in Yang et al. (2022) has weaker assumptions on the regressors, is simpler to implement

and can be applied to a wider range of models because it uses the control function approach

by adding a generated regressor to the outcome regression. However, none of the papers

studies causal inference when high-dimensional data are present, which is quite common in

this big data era. The performance of the method relies on the first-stage residual (in the

control function approach), conditional on which the endogeneity can be corrected. But the

residual is unknown and needs estimation. With too many irrelevant controls in the first

stage, the performance of first-stage regression can be poor with finite-sample bias, thus

causing amplifying bias in the estimation of the endogenous variable.Moreover, sometimes

the dimension of controls can even be larger than the sample size, making the traditional
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estimation methods infeasible. To solve the high-dimensional problem, we propose a com-

bined 2sCOPE method in Yang et al. (2022) with lasso-based feature selection methods that

help to select important control variables in the first stage Our paper contributes to the lit-

erature on instrument-free approach to addressing the endogeneity problem by combining

with machine learning methods for estimating the first-stage regression on high-dimensional

exogenous control variables.

Another related literature is feature selection in high-dimensional data for causal infer-

ence. There is a large and growing literature on Lasso-based methods for feature selection

(Tibshirani 1996, Belloni et al. 2012, Belloni et al. 2014a, Belloni et al. 2014b, Belloni and

Chernozhukov 2013, Bai and Ng 2008, Bai and Ng 2009, Javanmard and Montanari 2014a).

Recently, researchers start to consider applying Lasso-based methods to economic models

for causal inference. For example, Belloni et al. (2012) proposed a Lasso-based method for

instrument selection in linear instrumental variables models with many instruments. Belloni

et al. (2014b) and Belloni et al. (2014a) used Lasso methods to study the treatment effects

with high-dimensional controls in a partially linear model. But the challenge is that when

the goal is causal inference, model selection can be problematic. The model selection pro-

cedures are originally designed for forecasting (prediction). When doing model selection

for causal inference, it’s a two-stage model instead of just a one-equation prediction, and

the model selection method is acting directly on the endogenous variable in the first stage.

One cannot guarantee that exactly all the variables with nonzero coefficients are perfectly

selected, and the omission of some variables with small effects can contaminate causal in-

ference results based on the selected set of variables (Leeb and Pötscher 2008a, Leeb and

Pötscher 2008b). As mentioned previously, several papers have tried applying machine

learning methods to draw the causal inference. Belloni et al. (2012) studied instrument se-

lection in instrumental variables models with many instruments. Belloni et al. (2014b) and

Belloni et al. (2014a) studied the treatment effects with high-dimensional controls.
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In this paper, we address the endogeneity problem using an instrument-free approach

2sCOPE with high-dimensional exogenous variables. We apply Lasso-based methods in

the first stage to select important and meaningful controls in explaining the endogenous

variable and use the estimated residual to draw causal inference. It’s natural to use the

Lasso-based methods because of the linear relationship among the copula-transformed re-

gressors in the first stage. But one drawback of the lasso method is that it has shrinkage bias.

Belloni et al. (2012) proposed a post-Lasso method to alleviate the bias, and Javanmard

and Montanari (2014a) developed a de-biased Lasso method. But no paper has examined

how those lasso-based methods work in the instrument-free model to correct endogeneity

with high-dimensional data. Our paper contributes to the feature selection for causal in-

ference literature by being one of the first to study feature selection in the copula-based

instrument-free method. We propose a combined lasso-based method with 2sCOPE, and

compare the performance using different Lasso-based methods to draw causal inferences in

the instrument-free approach setting.

3.3 Methods

In this section, we develop a copula-based instrument-free method that is combined with

machine learning methods to handle endogenous regressors when the dimension of the ex-

ogenous variables is huge, relative to the sample size. Specifically, we build on the two-stage

Copula (2sCOPE) method that deals with endogeneity (Yang et al. 2022) and then use the

Lasso-based methods to select important features among the exogenous variables in the first

stage to better explain the endogenous variable and control the endogeneity.
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3.3.1 Copula Endogeneity Correction Method (2sCOPE) in Standard
Case

We first introduce the concept of copula and review the 2sCOPE method (Yang et al. 2022)

in the standard low-dimension case. Consider the following linear structural regression

model with an endogenous regressor and a vector of exogenous regressors:

Yt = µ +Ptα +W ′
t β +ξt (3.1)

where t = 1,2, ...,T indexes either time or cross-sectional units, Yt is a (1×1) dependent

variable, Pt is a (1×1) endogenous regressor, Wt is a (k×1) vector of exogenous regressors,

ξt is the structural error term, and (µ,α,β ) are model parameters. Pt is correlated with ξt ,

which generates the endogeneity problem.

The key idea of the 2sCOPE method is to divide the error term into an endogenous and

an exogenous part by jointly modeling the relationship among the endogenous regressor

Pt , exogenous regressors Wt and the error term ξt using copula, and then control for the

endogenous part, the first-stage residual, to correct endogeneity. The statistical tool copula

is a cumulative distribution function used to model multiple variables jointly. It outperforms

the traditional multivariate distribution in that the marginal distributions are not needed to

be from the same distribution family. (ξt ,Pt ,Wt) is assumed to follow Gaussian Copula for

its many desirable properties (Danaher 2007; Danaher and Smith 2011).

In statistics, a copula is a multivariate cumulative distribution function that models the

dependence among variables without imposing assumptions on marginal distributions. Let

F(P,W,ξ ) be the joint cumulative distribution function (CDF) of the endogenous regressor

Pt and the structural error ξt with marginal CDFs H(P), L(W ) and G(ξ ), respectively. For

notational simplicity, we may omit the index t in Pt and ξt below when appropriate. Ac-

cording to Sklar’s theorem (Sklar 1959), there exists a copula function C(·, ·) such that for
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all P, W and ξ ,

F(P,W,ξ ) =C(H(P),L(W ),G(ξ )) =C(Up,Uw,Uξ ), (3.2)

where Up = H(P), Uw = L(W ) and Uξ = G(ξ ), and they all follow uniform(0,1) distribu-

tions. Thus, the copula maps the marginal CDFs of the endogenous regressor, exogenous

regressors and the structural error to their joint CDF, and makes it possible to separately

model the marginals and correlations of these random variables.

To capture the association between the endogenous regressor P, Wt and the error ξ , we

use the Gaussian copula (Park and Gupta 2012, Haschka 2021, Yang et al. 2022) for its

many desirable properties (Danaher and Smith 2011):

F(P,W,ξ ) =C(Up,Uw,Uξ ) = ΨΣ(Φ
−1(Up),Φ

−1(Uw),Φ
−1(Uξ ))

=
1√

(2π)3|Σ|

∫
Φ−1(Up)

−∞

∫
Φ−1(Uw)

−∞

∫
Φ−1(Uξ )

−∞

exp
[
−[s, t,q]′Σ−1[s, t,q]

2

]
dsdtdq,

(3.3)

where Φ(·) denotes the univariate standard normal distribution function and ΨΣ(·, ·) denotes

the multivariate standard normal distribution with the covariance matrix Σ. In the Gaussian

copula model, Σ captures the correlation among variables.

The Gaussian copula assumption on (Pt ,Wt ,ξt) is equivalent to that [P∗
t ,W

∗
t ,ξ

∗
t ] follows

the multivariate normal distribution:
P∗

t

W ∗
t

ξ ∗
t

 ∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 , (3.4)

where P∗
t = Φ−1(H(Pt)), W ∗

t = Φ−1(L(Wt)), and ξ ∗
t = Φ−1(G(ξt)). H(·), L(·) and G(·)
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are marginal CDFs of Pt , Wt and ξt respectively. We call P∗
t ,W

∗
t ,ξ

∗
t the Gaussian copula

transformations of Pt Wt , ξt , respectively.

The above multivariate distribution can be rewritten as follows:


P∗

t

W ∗
t

ξ ∗
t

=


1 0 0

ρpw

√
1−ρ2

pw 0

ρpξ

−ρpwρ pξ√
1−ρ2

pw

√
1−ρ2

pξ
−

ρ2
pwρ2

pξ

1−ρ2
pw

 ·


ω1,t

ω2,t

ω3,t

 ,


ω1,t

ω2,t

ω3,t

∼ N




0

0

0

 ,


1 0 0

0 1 0

0 0 1


 . (3.5)

Then, we have a linear relationship between P∗ and W ∗, and here comes the first-stage

regression,

P∗
t = ρpwW ∗

t + εt (3.6)

and the structural error in Equation (3.1) can be re-expressed as

ξt = σξ ·ξ ∗
t =

σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

ω3,t ,

=
σξ ρpξ

1−ρ2
pw

(P∗
t −ρpwW ∗

t )+σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t ,

=
σξ ρpξ

1−ρ2
pw

εt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t (3.7)

In this way, the structural error term ξt is split into two parts: one part is the first-stage

residual, which is a function of P∗
t and W ∗

t that captures the endogeneity of Pt and the

association of Wt with ξt |Pt
1, and the other part is an independent new error term. Then, we

1Although the exogenous regressor Wt and ξt are uncorrelated, Wt and ξt |Pt (the error component in ξt
remaining after removing the effect of the endogenous regressor Pt ) can be correlated.
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substitute Equation (A.2) into the main model in Equation (3.1), and obtain the following

regression equation:

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

εt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t . (3.8)

Equation (3.8) suggests adding the estimate of the residual εt from the first stage regres-

sion (Equation 3.6) as a generated regressor to the outcome regression. Adding the first

stage helps model identification with extra information, the correlation between P∗
t and W ∗

t ,

making the new error term ω3,t to be uncorrelated with all the regressors in Equation (3.8)

and thus consistent estimates can be obtained. This two-step 2sCOPE method adds the

first-stage residual term ε̂t to control for endogeneity and in this aspect is similar to the

control function approach of Petrin and Train (2010), while requires no use of instrumental

variables.

Intuitively, the usage of the copula function allows us to directly model the relationship

among the endogenous regressors, the observed exogenous regressors and the structural

error. The correlated exogenous regressors added in the first stage help to capture and ex-

plain part of the endogenous regressor. By controlling the residual εt obtained from the first

stage, we actually control all the unobserved variables that cause the endogeneity problem,

and thus can correct endogeneity and get consistent estimates.

However, it becomes problematic when we have a large dimension of Wt , and we don’t

know which ones in Wts are important in explaining the endogenous regressor. This problem

is similar to the many-instruments problem (Belloni et al. 2012). A naive approach is to

include all the possible exogenous variables in the first stage (regular 2sCOPE). However,

doing so would make the performance of finite-sample prediction worse and inefficient.

In the section below, we propose a lasso-based method to select important features in the

first-stage of 2sCOPE in helping explain the endogenous regressor.
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3.3.2 2sCOPE with Lasso and post-Lasso

In this subsection, we propose a method to deal with the case when the dimension of ex-

ogenous regressors is huge, but only a few are correlated with the endogenous regressor.

This is actually very common in practice. Specifically, we combine the 2sCOPE method in

dealing with endogeneity with a feature selection machine learning method in the first stage

to select important Wts when the dimension of Wt is large relative to the sample size. If too

many irrelevant variables are included in the first stage to explain the endogenous regressor,

it would affect both the finite-sample estimation accuracy and efficiency.

To eliminate the too-many-control issue, we use a Lasso method in the first stage of

the 2sCOPE method in Equation (3.6). Under the Gaussian copula assumption in Equation

(3.4), we have a linear relationship between P∗
t and all the W ∗

t s,

P∗
t =W ∗

t γ + εt

where P∗
t and W ∗

t are the Gaussian copula transformations of Pt and Wt , respectively. Con-

sider the usual least squares optimization function:

Q̂(γ) :=
1

2n
∥P∗−W ∗

γ∥2
2, (3.9)

Since the dimension of W is large, which can even be larger than the sample size, we need to

select important features to obtain better estimation in the first stage, and thus improve the

estimation accuracy and efficiency of the endogenous regressor to draw the causal inference.

Because of the linear relationship between P∗ and W ∗ and the sparsity of important W s, it’s

very natural to use Lasso regression to penalize too many parameters. Lasso solves for

regression coefficients by minimizing the sum of the usual least squares objective function

and a penalty for model size. The Lasso estimator (Tibshirani 1996) is defined as a solution
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of the optimization program below:

γ̂l(P∗,W ∗;λ ) = arg min
γ∈Rk

Q̂(γ)+λ∥γ∥1, (3.10)

where λ is the penalty level. In the estimation procedure, we use cross validation to tune

the penalty level. Specifically, we set λ = λmin, for which we can get the minimum mean

cross-validated error. Using Lasso method to form first-stage prediction provides an ef-

fective approach to obtain efficiency gains or even accuracy for finite sample estimation.

However, since the Lasso estimator reduces the dimension of variables and estimates the

first-stage regression coefficients by adding a penalty of non-zero coefficients based on the

usual least squares objective function, the estimates of Lasso would be biased. Thus, we

further use a post-lasso method to alleviate the bias. The post-Lasso estimator discards the

Lasso estimates, but will take advantage of variables selected by Lasso and then refit the

first-stage regression using the selected variables via OLS estimation.

Denote Il the variables selected among W ∗ in the first stage using the Lasso method.

The post-Lasso estimator is defined as the ordinary least squared estimator among variables

Ipl ⊇ Il . Ipl contains the variables in Il and some meaningful variables according to real data

application (Im). The post-Lasso estimator γ̂pl is

γ̂pl ∈ arg min
γ∈Rk:γ(Îl∪Im)c=0

Q̂l(γ) (3.11)

The Lasso and post-Lasso methods are motivated by the desire to predict the first-stage

residual well without overfitting, and thus gain more estimation accuracy and efficiency for

correcting the endogeneity. It can also deal with the case when the dimension of variables

is even larger than the sample size, which would cause a problem for OLS estimation. Once

we get estimates using Lasso and post-Lasso in the first stage, we calculate the residual

and then add it as a generated regressor to the outcome regression model. In this way, we
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combine the 2sCOPE method with the lasso-based machine learning methods to deal with

the high-dimension case.

3.3.3 2sCOPE with De-biased Lasso

As mentioned above, though the Lasso method is powerful in reducing the dimension of

variables, the Lasso estimator is biased. The post-Lasso method introduced above can al-

leviate the bias to some extent by running OLS estimation after variables are selected by

Lasso. However, the post-Lasso estimator can still have bias. In this section, we intro-

duce the de-biased Lasso method proposed by Javanmard and Montanari (2014a) that can

eliminate the bias using Lasso-based methods, and combine it with the 2sCOPE method to

address the endogeneity problem with high-dimensional exogenous controls.

The de-biased Lasso estimator γ̂dl of the first-stage regression is,

γ̂dl = γ̂l(λ )+
1
n

M(W ∗)T (P∗−W ∗
γ̂l(λ )). (3.12)

where γ̂l(λ ) is the Lasso estimator in Equation (3.10), and M is a chosen matrix depend-

ing on the P∗. We can find that the second part 1
nM(W ∗)T (P∗−W ∗γ̂l(λ )) is proportional

to a subgradient of the l1 norm at the Lasso estimator, (W ∗)T (P∗ −W ∗γ̂l(λ ))/(nλ ). So

intuitively, the de-biased lasso estimation γ̂dl can compensate the bias introduced by the l1

penalty in the lasso by adding a term proportional to the subgradient.

The quality of the debiasing procedure depends on the choice of M. Javanmard and

Montanari (2014b) suggests the choice M = cΣ−1 with Σ = E{P∗(P∗)T} being the pop-

ulation covariance matrix and c a positive constant. Javanmard and Montanari (2014a)
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suggested setting M = (m1,m2, ...,mk)
T by solving a convex program below.

minimize mT
Σ̂m

subject to ∥Σ̂m− ei∥∞ ≤ µ, (3.13)

where ei ∈ Rk is the vector with one at the ith position and zero everywhere else, and Σ̂ =

((P∗)T P∗)/n. The benefit of this choice M is that the method requires weaker assumptions

on P∗. It can be applied to general covariance structures Σ, while Javanmard and Montanari

(2014b) can only be applied to sparse Σ. In this paper, we use the de-biased lasso estimator

in Javanmard and Montanari (2014a) (Equation 3.12) with M solved by Equation 3.13 for

the first-stage estimation in 2sCOPE in Equation (3.6).

3.4 Simulation Study

In this section, we conduct Monte Carlo simulation studies for the following goals: (a) to

assess the performance of the proposed method for high-dimensional correlated regressors,

and (b) to compare the performance of the proposed methods with existing methods.

We examine the case when the dimension of W s is large relative to the sample size, and

only a few of them play important roles in explaining endogeneity. Specifically, we generate

the sample size N = 1000 and the dimension of W , Nw = 600. The specific data-generating

process (DGP) is summarized below:


P∗

t

W ∗
t

ξ ∗
t

∼ N




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


 (3.14)

74



ξt = G−1(Uξ ,t) = G−1(Φ(ξ ∗
t )) = Φ−1(Φ(ξ ∗)) = 1 ·ξ ∗

t , (3.15)

Pt = H−1(UP,t) = H−1(Φ(P∗
t )), Wt = L−1(UW,t) = L−1(Φ(W ∗

t )), (3.16)

Yt = µ +α ·Pt +β ·Wt +ξt = 1+1 ·Pt +(−1) ·Wt +ξt . (3.17)

where ξ ∗
t and P∗

t are correlated with the correlation coefficient ρpξ = 0.2, and thus ξt and

Pt are correlated, generating the endogeneity problem. W ∗
t s are exogenous and are not

correlated with ξ ∗
t . W ∗

t and P∗
t are set to be correlated with different correlation levels,

which determines how important each W ∗ is in explaining the endogenous P. Specifically,

we set two different levels of the correlation, ρpw ∈ {0.1,0.3}. Among all the possible W ∗s,

only 13 are important ones that are correlated with P∗ with non-zero ρpw, among which three

of them are the most important ones with correlation ρpw = 0.3. For simplicity, we assume

that there is no correlation among W ∗s. We consider six different estimation methods:

(i) OLS, (ii) 2sCOPE with all W ∗
t s included in the first stage (2sCOPEAll), (iii) 2sCOPE

with selected W ∗
t s using Lasso with penalty parameter λ = λmin (Lasso), (iv) 2sCOPE with

selected W ∗
t s using post-Lasso (post-Lasso), (v) 2sCOPE with selected W ∗

t s using De-biased

Lasso (De-biased Lasso), and (vi) 2sCOPE with optimal W ∗
t s (Golden).

We generate 1000 data sets as replicates using the DGP above. In the simulation, we

use the gamma distribution Gamma(1,1) with shape and rate equal to 1 for Pt and the

exponential distribution Exp(1) with rate 1 for Wt . Models are estimated on all generated

data sets, providing the empirical distributions of the parameter estimates.

Table 3.1 reports estimation results. In the table, we only list the first three (β1,β2,β3) of

all the 600 Wt coefficients to save space. As expected, OLS estimates of all µ , α and β are

biased as a result of the regressor endogeneity. However, unexpectedly, the estimation result

of 2sCOPEAll has a significant bias, especially for the estimated coefficient of Pt (0.118 away

from the true value). This tells us that, for finite sample estimation, including too many

irrelevant or unimportant variables in the first stage of the model would make the estimation
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OLS 2sCOPEAll Lasso post-Lasso De-biased Lasso Golden

Parameters True Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE

µ 1 1.166 1.099 1.088 1.105 1.187 1.085 1.061 1.072 1.045 1.078 1.013 1.078

α -1 -0.749 0.060 -0.882 0.082 -1.019 0.105 -1.006 0.104 -0.981 0.100 -1.009 0.102

β1 1 0.931 0.049 0.966 0.051 0.988 0.054 1.002 0.052 0.992 0.054 0.999 0.055

β2 1 0.934 0.050 0.968 0.050 0.990 0.052 0.996 0.049 0.994 0.053 1.001 0.053

β3 1 0.933 0.052 0.967 0.054 0.989 0.055 0.995 0.050 0.993 0.056 1.000 0.056

MSE(α) 0.0668 0.0207 0.0114 0.0108 0.0104 0.0105

MSE(ALL) 0.00420 0.00399 0.00385 0.00384 0.00383 0.00380

Table 3.1: Simulation Results of Lasso-based 2sCOPE

Note: Mean and SE denote the average and standard deviation of parameter estimates over all the 1,000
simulated samples.

biased. This actually demonstrates the importance of using feature selection in the first

stage to get unbiased causal estimates in the high-dimensional case. We next examine some

lasso-based machine learning methods. All three types of lasso methods (Lasso, post-Lasso

and De-biased Lasso) can significantly reduce estimation biases. Moreover, post-Lasso

can reduce more bias and get better performance in estimation accuracy than Lasso. The

estimated coefficient α using post-Lasso is -1.006, very close to the true value. The mean

squared error (MSE) is 0.0108, which is 47.8% smaller than the MSE using 2sCOPEAll . It

means that using post-Lasso in the first stage can improve estimation efficiency by around

47.8%, compared with the naive approach of including all variables (2sCOPEAll). De-biased

Lasso shows comparable performance with post-Lasso. The estimated coefficient α using

De-biased Lasso is -0.981, and the mean squared error (MSE) is 0.0104, which is 49.8%

smaller than the MSE using 2sCOPEAll .
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3.5 Empirical Application

In this section, we apply our method to a real data application. We are interested in how

COVID-19 changes individual life. Specifically, we want to examine how governments’

policies to contain the spread of COVID-19 affect citizens’ happiness. We use the Strin-

gency Index 2 constructed by Oxford Coronavirus Government Response Tracker (Ox-

CGRT) to measure the strictness of policy. The COVID-19-related data is from the Our

World in Data team and the Covid-19 Data Repository by the Center for Systems Science

and Engineering (CSSE) at Johns Hopkins University (JHU) 3. The data contains daily con-

firmed COVID-19 cases, daily stringency level, etc. We further collect happiness data from

the World Happiness Report 4, and country-level characteristics from the World Bank 5 and

Fraser Institute 6. Country-level characteristics include economy (GDP, inflation), popula-

tion, gender, labor market-related, governance-related, legal system characteristics and so

on.

Government policies in response to COVID-19 can be endogenous. The endogeneity

can come from unmeasured country characteristics such as ideology, democracy, and free-

dom that can influence both people’s happiness and governments’ decisions. Since these

variables are unobserved by researchers, they are absorbed into the structural error, leading

to the endogeneity problem. Besides the endogenous stringency index, many country-level

exogenous variables are included. In total, there are 41 country characteristics and 102

country observations. Table 3.2 summarizes the statistics of several key variables.

2The nine metrics used to calculate the Stringency Index are: school closures; workplace closures; cancel-
lation of public events; restrictions on public gatherings; closures of public transport; stay-at-home require-
ments; public information campaigns; restrictions on internal movements; and international travel controls.
https://ourworldindata.org/covid-stringency-index

3COVID-19 data: https://github.com/owid/covid-19-data/tree/master/public/data.
4https://worldhappiness.report;
5https://databank.worldbank.org/source/world-development-indicators
6https://www.fraserinstitute.org/economic-freedom/map?geozone=worldpage=

mapyear=2019.
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Variables Mean SD Max Min

Happiness 0.49 0.13 0.67 0.08

HappinessGrowth 0.07 0.03 0.19 -0.03

Stringency/10 6.12 1.23 8.84 1.51

LogCases/million 8.87 1.83 11.01 2.11

LogPopuden 4.34 1.42 8.98 0.68

LogGDP 9.66 1.09 11.50 7.17

LogGDP Growth -0.04 0.04 0.06 -0.23

Table 3.2: Summary Statistics

Figure 3.1 shows data evidence of the relationship between happiness and stringency

level. It shows that both the happiness and the happiness growth in the year 2020 are de-

creasing with the stringency level. The stricter the policy in response to COVID-19, the less

happy people will be.

(a) Happiness (b) Happiness Growth

Figure 3.1: Relationship Between Happiness and Stringency Index.
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We then consider the following linear regression model:

HappyGrowthi = β0 +StringencyChangei ·β1 +W ′
i β2 +ξi, (3.18)

where i = 1,2, ..., I indexes country. Wi includes all country characteristics, such as change

of confirmed COVID-19 cases, GDP growth, population, freedom and legal-system-related

characteristics in this application. We are interested in examining how the stringency change

during the COVID-19 period and country characteristics affect people’s happiness growth.

(a) Stringency Index (b) Happiness (c) HappinessGrowth

(d) LogCases permillion (e) Log Populationdensity (f) Log GDP

Figure 3.2: Histogram of Stringency, Happiness, and Country Characteristics in 2020

Figure 3.2 shows the histograms of the Stringency index and some country-level char-

acteristics. All the variables are continuous. Different country characteristics can have

different correlations with the endogenous stringency index, which means they might have

different importance levels in explaining the endogenous variable. For example, the cor-

relation between stringency and log number of confirmed COVID-19 cases/million is 0.24
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(p-value = 0.017). The correlation between stringency and logGDP growth is -0.27 (p-

value = 0.006). Both the correlations are significantly different from zero. These are two

characteristics that have high correlations with the endogenous variable, and many charac-

teristics don’t have high pairwise correlations with the endogenous stringency. Importantly,

whether a variable is important in explaining the endogenous variable is hard to determine.

It is complicatedly affected by all variables together, and the simple pairwise correlation

may not fully measure the importance. That’s why we use the lasso-based methods to fully

measure and select important features in explaining the endogenous stringency in the first

stage.

The many exogenous variables and the different correlations between the endogenous

variable and exogenous variables provide a good setting for examining the performance

of our proposed lasso-based 2sCOPE method. We estimate the linear regression model in

Equation (3.18) using the OLS, the 2sCOPE method with all exogenous variables included

in the first stage (2sCOPEAll), the 2sCOPE method using Lasso in the first stage (Lasso),

and the 2sCOPE method using De-biased Lasso in the first stage (De-biased Lasso).

OLS 2sCOPEAll Lasso post-Lasso De-biased Lasso

Parameters Est SE t-value Est SE t-value Est SE t-value Est SE t-value Est SE t-value

Constant 0.226 0.153 1.479 0.219 0.158 1.385 0.266 0.167 1.597 0.249 0.157 1.590 0.242 0.153 1.581

Stringency -0.025 0.010 -2.394 -0.023 0.012 -1.866 -0.031 0.014 -2.152 -0.031 0.013 -2.331 -0.034 0.014 -2.494

LogCases -0.009 0.007 -1.314 -0.009 0.007 -1.304 -0.007 0.008 -0.926 -0.008 0.007 -1.018 -0.007 0.007 -0.987

LogGDP 0.207 0.067 3.109 0.208 0.067 3.090 0.200 0.068 2.943 0.198 0.068 2.905 0.200 0.067 2.995

ρ -0.0207 0.378 0.258 0.465

Table 3.3: Estimation Results: How COVID-19 affects Happiness

Table 3.3 reports the estimation results. The estimated OLS coefficient of the Stringency

is -0.025, which means that increasing Stringency by 10 units would decrease happiness

growth by 0.025. The estimated coefficient is significantly different from zero. Look at the

estimates of 2sCOPEAll , the 2sCOPE method with all the exogenous variables included in
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the first stage, the stringency coefficient is -0.023, which is very close to the OLS estimate

and becomes even less significant. This can result from adding too many irrelevant variables

in the first stage. When using Lasso-based methods to select important variables in the first

stage, the estimated coefficients of stringency are -0.031 for Lasso, -0.031 for post-Lasso,

and -0.034 for De-biased Lasso, all significantly different from zero. Those estimates are

quite close, indicating the robustness of different Lasso-based methods in obtaining causal

inference using 2sCOPE under this specific setting. Overall speaking, using Lasso-based

methods to select important features in the first stage changes the stringency coefficient

estimate from -0.023 to up to -0.034, implying that there is a positive correlation between

unobserved country characteristics and stringency. For example, unobserved ideological

characteristics such as conservative level can be positively correlated with both stringency

and happiness. The positive estimates of ρ in the three Lasso-based 2sCOPE methods also

confirm the positive correlation.

In sum, including too many irrelevant variables in the first stage in the high-dimensional

case would weaken the power of 2sCOPE in correcting endogeneity and achieving accurate

causal inference. After the feature selection procedure using Lasso-based methods in the

first stage of 2sCOPE, we obtain a more negative and significant coefficient of stringency

than using 2sCOPE with all observed exogenous variables included in the first stage. The

estimated coefficient is -0.034, which means that increasing Stringency by 10 units would

decrease happiness growth by 0.034. Moreover, the estimated coefficients are quite close

using different Lasso-based methods, showing the robustness of the estimates.

3.6 Conclusion

Causal inference lies at the center of social science research, but the more and more com-

mon high-dimensional data in this big data era might make the traditional causal inference
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methods fail to work. On the one hand, too many (irrelevant) variables added might bring

finite-sample bias, reduce estimation efficiency, or even make the traditional regression in-

feasible when the dimension of variables is larger than the sample size. That’s why feature

selection machine learning methods are needed for causal inference methods. On the other

hand, the more complicated structure of causal inference methods (e.g., two-stage estima-

tion) other than a single-equation regression provides a distinct setting and a different per-

spective for feature selection methods. Adaption of traditional causal inference methods for

high-dimensional data is much needed.

In this paper, we are interested in the copula instrument-free causal inference method

for correcting endogeneity, and adapting the method to a high-dimensional setting. The

copula method, first proposed by Park and Gupta (2012), has aroused wide interest because

of its feasibility that no instruments are needed. After that, many empirical researchers have

applied the copula method for real-data analysis (Burmester et al. 2015, Datta et al. 2015,

Gruner et al. 2019, Keller et al. 2019, Bombaij and Dekimpe 2020, Guitart et al. 2018,

Lamey et al. 2018, Wetzel et al. 2018, Heitmann et al. 2020, Atefi et al. 2018, Elshiewy

and Boztug 2018). We consider a two-stage copula method, called 2sCOPE in Yang et al.

(2022), that extends the original one to a much more general setting, and adapt it to the

high-dimensional setting. Specifically, 2sCOPE corrects endogeneity by adding a generated

regressor, which is the first-stage residual, to the outcome regression, just like what the

control function approach does. By controlling the residual estimated in the first stage,

endogeneity can be corrected. Thus, the estimation of the first-stage residual plays a central

role. We propose a method combining the generalized two-stage copula method (2sCOPE)

with some lasso-based methods (lasso, post-lasso, de-biased lasso) in selecting important

variables in the first stage. We call it the lasso-based 2sCOPE method.

We conduct simulation studies and use an empirical real-data application to empirically

verify the performance of our proposed method. The simulation results show that 2sCOPE
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without feature selection suffers the finite-sample bias when the dimension is relatively

large. Moreover, the lasso-based 2sCOPE method can substantially improve estimation ac-

curacy and efficiency, by around 50%, as compared with the 2sCOPE without feature selec-

tion. We further apply our method to a current data set about COVID-19, and examine the

effect of governments’ policy strictness in response to COVID-19 on citizens’ happiness.

We use country-level cross-sectional data. The dimension of country characteristics is rela-

tively large, around half of the sample size. The result shows that the estimated coefficient

of the endogenous policy stringency level from the 2sCOPE with all controls included in the

first stage is very close to the OLS estimate and becomes even insignificant. In contrast, our

proposed lasso-based 2sCOPE method makes the effect of policy strictness on happiness

more significantly negative. Moreover, the estimates using different lasso-based methods

are quite robust in this application. This application result confirms the findings in the sim-

ulation study. Under the lasso-based 2sCOPE estimation, the application tells us that policy

strictness has a significant negative effect on people’s happiness during the COVID-19 pe-

riod. Increasing policy strictness by 10 units would decrease happiness growth by 0.034,

which is more than one standard deviation of happiness growth.

In the above analysis, we only consider using feature selection methods in the first stage

of 2sCOPE, which means that we assume what variables are going to have effects on the

main outcome are known. It is worth exploring and incorporating cases where one has

less certainty on important controls in the outcome regression. Our next step is to further

explore how to apply feature selection methods in the main regression model as well, which

we label as double lasso-based 2sCOPE method for correcting endogeneity. Moreover, for

the current simulation analysis on 2sCOPE combined with the lasso-based methods, we

only conduct simulation studies for one single setting. In reality, lasso can be sensitive to

variations in real data. For future research, we will conduct more simulation studies in terms

of parameter variation, and theoretically prove what are the requirements for our method to
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work.
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Chapter 4

Vertical Differentiation in Two-sided

Markets: Evidence from A Ride-hailing

Platform

4.1 Introduction

Two-sided (or, more generally, multi-sided) markets are roughly defined as markets in which

one or several platforms enable interactions between end-users and try to get the two (or

multiple) sides “on board” by appropriately charging each side (Rochet and Tirole (2006)).

Leading examples of such platforms include Uber and Lyft for rides; Airbnb for accom-

modation; and eBay and Taobao for E-commerce. Statistics show that consumers spend

$65 billion on Uber 1, and $3.5 trillion on goods on E-commerce sites 2 in 2019. Given

the growing economic significance of such platforms, it is important to understand the two-

sided markets—what makes them different from traditional markets, and whether traditional
1https://www.businessofapps.com/data/uber-statistics/
2https://www.statista.com/topics/871/online-shopping/
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business strategies are still applicable to them.

One distinct feature of two-sided markets is network externalities, which can exist both

within and across sides. The demand (supply) of a product is dependent on the demand (sup-

ply) from other users considering that product. In addition, demand will attract more service

providers (supply) to join the platform, and meanwhile, more supply will further make the

platform more attractive to consumers. Since users’ utilities from the product depend on

other users’ decisions, network externalities create and provide users with another product

quality dimension, which I call the network value. That is, in markets where products are

subject to network externalities, the number of users also determines, at least partially, the

perceived quality of the product. For example, users of a ride-sharing platform value short

waiting time, which comes from a large scale of drivers available on the platform, whereas

drivers value short cruising time, which results from a large demand base from the rider

side.

Vertical differentiation is a business strategy commonly used by firms in both conven-

tional markets and two-sided markets. By designing products with different qualities, a

firm can attract and satisfy consumers with heterogeneous preferences and thus expand the

market. For example, Uber designs Uber Black to target high-end customers and UberX

to target low-end customers. Several studies have examined whether price discrimination

is profitable for a monopoly. For example, Gabszewicz et al. (1986), Maskin and Riley

(1984), Mussa and Rosen (1978), Salant (1989) and Stokey (1979) discussed vertical dif-

ferentiation in a one-sided market scenario. In particular, Salant (1989) and Stokey (1979)

identify conditions under which the monopolist finds it optimal to price discriminate. These

papers are developed in the context of conventional markets without network externalities.

Jing (2007) further investigates how network externalities affect a firm’s decision to price

discriminate in a one-sided market. They find that network externality is a factor that makes

firms favor extending a product line. Moreover, they find that the monopolist employs two
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qualities of products for rather different purposes: the low-end product is used mainly to

expand its network size, and the high-end product is its primary source of profits. However,

the paper only considers vertical differentiation with network externalities in one-side mar-

kets. In a two-sided market, both consumers (demand side) and service providers (supply

side) are affected by network externalities. Moreover, the network externalities can exist

both within and across sides. All these make vertical differentiation more complicated in

two-sided markets.

In the two-sided markets, it is unclear whether network externalities still make firms

favor extending a product line. On the one hand, according to the literature on one-sided

markets, firms can be better off by designing vertically differentiated products to expand

the market, especially when network externalities exist. On the other hand, offering ver-

tically differentiated products in a two-sided market might be less optimal than offering a

homogeneous product if the further segmented demand and supply limit positive network

effects. Firms might want to unite markets from different products into one scaled-size mar-

ket to achieve large positive network effects. Thus, there is a tradeoff when using vertical

differentiation in two-sided markets. The main goal of this paper is to examine whether ver-

tical differentiation is better than a homogeneous product design in two-sided markets. This

paper contributes to the literature by being one of the first to empirically examine vertical

differentiation in two-sided markets.

I use a distinct dataset from a leading ride-hailing company located in New York City

to empirically analyze and answer the research question above. On this platform, there are

two types of differentiated products with different qualities of car make and service quality,

one is called premium and the other is called standard. The data is from January 2016 to

May 2016, and include all individual order requests from riders and drivers’ corresponding

responses about whether to pick up the riders. I build up a structural model to simulta-

neously estimate demand and supply, and use the Bayesian Markov chain Monte Carlo
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(MCMC) method for model estimation. The results show that both intrinsic product quality

and network value are significant components for riders’ and drivers’ decisions, and thus

for determining the degree of vertical differentiation. I also conduct counterfactual analyses

based on the estimation results. In counterfactual analysis, I evaluate alternative strategies

by using the estimated parameters to solve the fixed points and obtain the equilibrium in the

new setting. Specifically, I compare the current vertical differentiation case with a homo-

geneous product case. The result shows that using vertical differentiation under the current

pricing strategy is better than a standard-only homogeneous product in terms of both mar-

ket size expansion and profit maximization, which means that the positive effect of market

expansion from vertical differentiation can offset the loss from network segmentation. By

comparing different pricing strategies under the same vertical differentiation setting, I find

that the roles of the two vertically differentiated products are different. Premium product is

more profitable, but also costs the firm more to maintain the network because of the smaller

network size (value). Low-end product is not profitable, but is valuable to the firm in enlarg-

ing user size. In a word, network externalities play important roles in two-sided markets,

and two-sided platforms should understand users’ preferences over both the network value

and the product value when determining the optimal product strategy and pricing strategies.

The remainder of the paper is organized as follows. In section 4.2, I reviewed the market-

ing and economics literature relevant to vertical differentiation and ride-hailing platforms.

Section 4.3 describes the data used in the empirical implementation and presents model-

free evidence of network externalities and how network externalities influence riders’ and

drivers’ behavior. Section 4.4 describes the model and estimation method used for esti-

mating the simultaneous demand and supply model and quantifying network externalities.

Section 4.5 presents the detailed estimation results. Section 4.6 further conducts counter-

factual analysis and provides managerial implications. Section 4.7 concludes the paper with

key results and suggestions for future work.
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4.2 Literature Review

This paper is broadly related to three streams of literature. I first discuss the general vertical

differentiation literature, then link vertical differentiation to two-sided markets, and discuss

the relevant work on the ride-hailing industry in the end.

Vertical differentiation research has attracted considerable attention in both economics

and marketing (Lancaster (1990), Mussa and Rosen (1978), Shaked and Sutton (1982),

Sridhar Moorthy (1984)). In a vertically differentiated product space, more attributes will

attract consumers with different preferences, who may have different willingness to pay.

Vertical differentiation has already been widely discussed in one-sided markets. For exam-

ple, Mussa and Rosen (1978), Sridhar Moorthy (1984), Salant (1989) and Stokey (1979)

studied vertical differentiation for monopolists. In particular, Salant (1989) and Stokey

(1979) identified conditions under which the monopolist finds it optimal to price discrimi-

nate. Shaked and Sutton (1982) built up a theoretical model for vertical differentiation in

a competitive setting. These papers focused on one-dimensional product differentiation,

many papers also discussed multidimensional product differentiation. For example, Van-

denbosch and Weinberg (1995) studied product and price competition in a two-dimensional

vertical differentiation model, whereas product qualities are differentiated into two product

attributes.

All those papers are developed in the context of conventional markets without network

externalities. Jing (2007) further investigated how network externalities affect a firm’s de-

cision to price discriminate in a one-sided market. They find network externalities are a

factor that favors extending a product line. Specifically, they find that monopolists employ

the two qualities for rather different purposes: The low-end product is used mainly to ex-

pand its network size, which is why the monopolist would lower the price of the low-end,

and the high-end product is its primary source of profits with a rather higher price than in
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conventional markets. However, the paper only considers the effect of network externalities

in one-side markets. That is, they assume network externalities only affect the demand side

and assume supply is sufficient.

Recently, two-sided markets have raised wide concern in academia. In a two-sided mar-

ket setting, not only consumers are affected by network externalities, but service providers

(supply) are also affected. The within- and cross-network externalities would make vertical

differentiation more complicated. Only a few papers in the literature have studied vertical

differentiation in two-sided markets. For example, Liu and Serfes (2013) theoretically com-

pared the effect of vertical differentiation on competition in two-sided markets with that in

a one-sided market. They find that price discrimination in a two-sided market may actu-

ally soften competition. Gabszewicz and Wauthy (2014) developed a theoretical model and

demonstrated that a unique vertical differentiated pricing equilibrium exists for two firms

competing in a two-sided market. They also assume that products are vertically differen-

tiated only by network size. While in this paper, I focus on vertical differentiation within

a platform and products are vertically differentiated not only by network value but also by

product intrinsic quality. Lin (2020) studied vertical differentiation in a monopoly case

for media platforms. These papers theoretically study vertical differentiation in two-sided

markets, while this paper studies vertical differentiation using empirical analysis within a

two-sided platform. There is also some empirical work in two-sided markets. For exam-

ple, Zervas et al. (2017) and Li and Srinivasan (2019) studied the impact of the two-sided

platform Airbnb’s entry on hotels. However, they didn’t study vertical differentiation. This

paper is one of the first papers to empirically analyze vertical differentiation in the two-sided

market context.

With the increasing scale of ride-hailing platforms, it has attracted wide attention from

researchers. Most papers in ride-hailing literature focus on driver-side behavior. They study

the effect of the new ride-hailing technology on drivers. For example, Chen et al. (2019)
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studied the value of ride-hailing platforms in creating flexible work for drivers. Wang et al.

(2019) studied the impact of mobile hailing technology on taxi driving behaviors. Frechette

et al. (2019) studied matching frictions and technologies in the taxi industry. Guda and

Subramanian (2019) studied the effect of surge pricing on worker incentives with flexi-

ble work. Few papers have studied vertical differentiation. Lin (2020) studied vertical

differentiation in a monopoly case for media platforms. They theoretically develop a two-

sided media model and examine how a monopoly ad-financed media can price discriminate

through versioning using membership-based pricing. While our paper empirically studies

usage-based pricing strategy for a non-monopoly firm. Another related paper is Bryan and

Gans (2019). It theoretically studied vertical differentiation in a ride-hailing setting. But

they assume that the number of drivers is endogenously determined by the platform. In this

way, they only model how the network size of drivers would influence riders through wait-

ing time, but didn’t consider the effect of rider size on drivers’ decisions. While this paper

models demand and supply simultaneously. Moreover, they assume products are vertically

differentiated only in network size, while I consider the case when products are vertically

differentiated in two quality dimensions, product intrinsic quality and network value.

In a word, the contribution of this paper to the literature on vertical differentiation in

two-sided markets is mainly twofold. First, I study two-dimension vertical differentiation

in two-sided markets. That is, products are assumed to be vertically differentiated in two

dimensions, product intrinsic quality and network value, and both are important in deter-

mining the level of vertical differentiation. Second, this paper is one of the first papers to

empirically study vertical differentiation in two-sided markets and quantify network exter-

nalities by modeling demand and supply simultaneously.
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4.3 Data and Model-Free Evidence

In this section, I will introduce the data, and provide data patterns and evidence about why

network externalities are important in riders’ and drivers’ choices towards vertically differ-

entiated products.

4.3.1 Data Background

The global ride-hailing market is valued at USD 113 billion in 2020. Overall, Didi, Uber,

Lyft, and Grab are major players who have prominent market share globally. UBER and

Lyft have a prominent share in the North American region, whereas, in China, Didi Chuxing

Technology Co 3. contributes to the high market share.

The focal platform under study is a leading on-demand ride-hailing company located in

New York City, where the major competitors are yellow/green taxi, Uber and Lyft. Riders

on this platform order a car by using the company’s location-based smartphone app. They

can place order requests at any time and anywhere they want. Once a rider placed an order

request, drivers nearby who are active on the platform can receive the offer notifications

from the platform, and then decide whether to accept the offer.

This platform provides two main ride types that riders can choose from, which are called

standard and premium. Standard type serves affordable everyday rides and premium type

serves a bit more expensive high-end rides, which are similar to UberX and UberBlack.

Riders are charged fees for each realized trip, and drivers earn income from trip fares. The

fares for the two types of products are different for both riders and drivers. Note that the

fare structure for drivers varies in peak and off-peak time, and also changes once during the

time window, while remaining the same for riders over time. Tables 4.1 and 4.2 show the

3https://www.mordorintelligence.com/industry-reports/ride-hailing-market
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detailed fare structure for rider and driver side separately. On the rider side, the standard

type charges a fixed fee of $8.98 for each trip, and the premium type charges a two-part

tariff consisting of a one-time fixed fee and a duration-based fee. The rate is $8 for the first

15 minutes, $0.5 per minute between 15-29 minutes, $0.75 per minute above 30 minutes,

and $1 per minute above 40 minutes.

Table 4.1: Price Structure for Rider

Time Price Structure Standard Premium
Jan – May 2016 Base fee $ 8.98 $8

Per additional minute (15-29 mins) 0 $0.5
Per additional minute (30-39 mins) 0 $0.75
Per additional minute (≥ 40 mins) 0 $1

On the driver side, earnings all follow a two-part tariff, and a significant fare change

was implemented in February 2016. Before February 14, 2016, drivers earn the same fixed

fee, $8, for both types, while the number of minutes to earn the base fee is shorter (13 <

15) and the per-minute payment for an additional minute is higher for the premium type

($0.62 > $0.55). Throughout the whole period, there was a surcharge of $0.75 for premium

and $0.9 for standard in peak times during 7:00 a.m-9:00 a.m, 6:00 p.m.- 8:00 p.m., and

night hours between 8:00 p.m. and 3:00 a.m on weekends. After February, the platform

changes the fixed fee to $7 and also lowers per-minute earnings for both types of products

in both peak and off-peak hours. The above shows the fare structures for rider and driver, and

the platform further takes a fixed rate of fares as commission from drivers. The commission

rate of Uber is 25% while that is 20% on this platform. All order requests from riders and all

the drivers’ corresponding responses in the Manhattan area from January 9 to May 15, 2016,

a total of 18 weeks, are observed. The raw data comprises 98,342 riders who request at least

one ride and 3,509 drivers available during the period. On average, each rider requested 8

times, for a total of 760,298 requests from all riders.
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Table 4.2: Fare Income Structure for Driver

Standard Premium
off-peak peak off-peak peak

Before Feb. 14, 2016 Base fee ($) 8
Minutes to earn minimum fare (min) 15 11 13 9
Per additional minute ($) 0.55 0.75 0.62 0.9

After Feb. 14, 2016 Base fee ($) 7
Minutes to earn minimum fare (min) 13 13 14 11
Per additional minute ($) 0.54 0.6 0.52 0.72

4.3.2 Variables Related to Network Externalities

I first clean the raw data, and construct key variables that are related to network externalities

in both rider (demand) and driver (supply) sides for further analysis.

Rider’s Expected Waiting Time

On the rider side, the rider’s waiting time for each type of product, a direct indicator of

network effect, is a key factor to affect their choices. In this ride-hailing platform, though

the time riders have to wait is unobserved, it’s reasonable to assume that they can form

expectations on the waiting time because they can observe the real traffic environment.

Below shows the procedure of how I construct the rider’s expected waiting time for each

type.

• Define and calculate the rider’s waiting time of each trip as the total time from order

creation to estimated driver’s arrival, both of which are observed by researchers;

• Divide the total area into smaller markets for constructing expected waiting time at

a specific time and location. Specifically, I first divide the Manhattan area into 29

smaller locations, according to a common demarcation of Manhattan4, which is visu-

alized in Figure 4.1. Then define a market at a week-hour-location level. That is, order
4https://data.cityofnewyork.us/City-Government/Neighborhood-Tabulation-Areas-NTA-/cpf4-rkhq
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requests at a specific location in a specific hour and week are in the same market. In

the end, there are 5,672 markets in total.

• After the market is defined, I construct the rider’s ex-ante expected waiting time for

each type by averaging the waiting time of all same-type trips in the same market.

Figure 4.1: Manhattan Neighborhoods.

Driver’s Cruising Time

On the driver side, cruising time for a trip is essential for their decisions on whether to take

the trip. Cruising time is defined as the estimated time to pick up the rider once an offer

is received. The driver’s cruising time is not observed directly by the driver, but the rider’s

location and the distance from the rider at the time the driver receives an offer are observed.

And researchers can observe the cruising time for drivers to pick up riders for realized trips.

We assume drivers can approximate the cruise time, and fill in the missing cruising time

for unrealized trips by using the observed distance from riders of all trips and the observed

cruising time for realized trips (see more details in Appendix). It’s reasonable to approx-

imate the cruising time in this way because drivers must be familiar with the geographic
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information once the location of the rider is revealed. The reason I want to construct cruis-

ing time instead of using distance alone is two folds. First, drivers care about both distance

and time spent. Second, distance itself cannot fully reveal the dynamic traffic environment,

while cruising time can because traffic environment can be different in different times and

areas because of the real-time network effect. For example, two trips with the same distance

from riders, one in rush hour while the other not, can have exact different cruising times.

Table 4.3: Summary statistics

Variables Unit Mean SD Max Min
Premium Type Trip fare $ 10.76 4.15 24.44 5.38

Rider waiting time min. 7.54 4.47 24.37 0.20
Driver wage $ 13.6 7.68 62.8 7.0
Driver wage (no cruise) $/min 0.73 0.25 3 0.28
Driver wage (incl cruise) $/min 0.54 0.19 4.57 0.10
Trip duration min. 18.8 9.0 69.6 4.2
Driver cruise time min. 5.81 2.60 20.35 0.40
Demand size Units 4.98 4.78 50.5 1.0
Supply size Units 3.30 2.98 29.75 0.25

Standard Type Trip fare $ 8.98 0.23 24.00 8.00
Rider waiting time min. 7.38 4.35 24.37 0.20
Driver wage $ 14.4 7.03 48.5 7.0
Driver wage (no cruise) $/min 0.68 0.23 3.7 0.39
Driver wage (incl cruise) $/min 0.53 0.18 5.15 0.10
Trip duration min. 21.4 9.74 69.8 4.2
Driver cruise time min. 5.44 2.09 19.50 0.32
Demand size Units 8.28 7.04 55.75 1.0
Supply size Units 5.72 5.07 31.0 0.25

After the construction of riders’ expected waiting time and drivers’ cruise time for each

trip, I further calculate the network size of both demand and supply in each market to ana-

lyze network externalities. Here, I define demand as the number of total trip requests from

riders, and measure supply using the number of trips that drivers accept. Until now, I have

finished the construction of rider’s expected waiting time, driver’s expected cruising time,

demand size and supply size for each type. I further clean the data by removing erroneous

observations and outliers, and summarize the descriptive statistics of key variables in Ta-
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ble 4.3. It shows that on average, the premium type has a higher trip fare with $10.76

than the standard type with $8.98 for riders, and provides a higher per-minute payment with

$0.73 than the standard type with $0.68 for drivers. However, both riders’ waiting time

and drivers’ cruising time are longer for the premium type. After accounting for cruising

time, drivers’ per-minute payments from the two types become quite close. The statistics

provide some key factors that might influence drivers’ and riders’ choices towards the two

types, which I will show detailed evidence in the next section. In the end, 304,044 trips with

63,260 available riders and 3,509 drivers on this platform are surviving for further analysis.

4.3.3 Data Evidence in Riders’ Choice

In this section, I will show data evidence about how riders choose between the two types,

and what factors would affect their choice decisions.

Figure 4.2 shows riders’ aggregate choices. Around two-thirds of riders choose the

standard type and one third choose the premium. What are the key factors or the differences

between the two types that differentiate riders’ preferences? What do high-end riders pay

higher prices for?

First, the products’ intrinsic qualities are different, which is the core to help differenti-

ate in traditional one-sided markets. The quality difference between the two types mainly

comes from car quality and service quality. Data shows that cars are more luxury and rating

is higher for premium (see details about the quality difference between the two types in

Appendix B.1). This quality difference provides different product intrinsic value to riders

that help to differentiate riders with heterogeneous preferences 5.

Second, besides product intrinsic quality, waiting time is another important factor that

5Note that some proportion of standard drivers in this platform is allowed to serve both the premium and
standard riders. No need to worry, as the market is still differentiated. See more details in Appendix B.1
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Figure 4.2: Choice Occasion between The Two Types.

plays an important role in riders’ choice decisions. Figure 4.3 shows the relationship be-

tween market share and waiting time. The line with the negative slope indicates that the

market share of the premium type decreases with the waiting time difference between pre-

mium and standard type. That is, the longer the waiting time for premium type compared

with that for standard type, the smaller the market share of premium type would be. This

model-free evidence demonstrates that riders prefer shorter waiting time, and waiting time

is an important factor that affects riders’ preferences over the two types of products. In a

word, data evidence shows that product intrinsic quality and waiting time are two important

attributes for product differentiation in two-sided markets.

4.3.4 Data Evidence in Drivers’ Behavior

In this subsection, I further explore what would affect driver behavior.

First, drivers care about earnings from the received offer. Since time is money for
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Figure 4.3: Relationship Between Market Share and Waiting Time.

(a) Payment without Cruise Time (b) Payment with Cruise Time

Figure 4.4: Drivers’ Average per-minute Payment from Realized Trips.

drivers, per-minute payment should be a better measure for drivers’ earnings instead of

a total fare from a trip. Figure 4.4(a) shows the average per-minute payment drivers can

get from the two types of products across hours. This per-minute payment is calculated

by dividing drivers’ earnings by the driving time with passengers. It shows that generally

speaking, drivers receive higher payment from the premium than from the standard-type

trips. However, not only does the driving time which creates value matter, but the cruising
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time for drivers to pick up the rider also matters. Since drivers can observe the location of

the rider, cruising time can be another key factor that would affect drivers’ decision about

whether to accept the current offer. Figure 4.4(b) shows drivers’ per-minute payment after

accounting for the cruising time to pick up riders. It shows that after accounting for cruising

time, drivers’ average per-minute payment decreases from around $0.7 to $0.5, a more than

20% decrease, which indicates that cruising time accounts for non-negligible importance.

Moreover, drivers’ per-minute payments from the two types become surprisingly close. This

tells that though premium has higher payment, cruising time for drivers to fulfill premium

is also longer. Thus, cruising time can be an important factor that would affect drivers’ de-

cisions. Figure 4.5 further shows the relationship between drivers’ average acceptance rate

within each hour and the cruising time in that hour. The negative slope tells us that drivers

favor trips with shorter cruising times.

Figure 4.5: Relationship Between Drivers’ Acceptance Rate and Cruise Time.

Second, besides the earning from the current offer, whether there exist other possible

opportunities can also be an important factor that would affect drivers’ decisions on whether

to accept the current offer. Drivers can be picky about offers if there are many options for

them. Figure 4.6 shows that drivers’ acceptance rate of offers is negatively correlated with
100



the total demand size in that market. It tells us that once drivers have more options (demand),

they will be more selective about offers and less likely to accept the current offer. This is

actually one way how network externalities play roles in affecting drivers’ decisions. A

larger demand size provides more opportunities to drivers, which will further affect drivers’

decisions.

Figure 4.6: Relationship Between Drivers’ Acceptance Rate and Demand Size.

4.4 Model

In this section, I develop a structural model to capture both riders’ and drivers’ choices

simultaneously, together with the IV and control function approach to correct endogeneity,

and use the Bayesian MCMC method for estimation.
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4.4.1 Rider’s Decision

An individual rider needs to decide which car type to choose before placing an order request.

Premium type and the standard type are different in prices and some quality-level attributes.

The demand function is specified as a multinomial logit model. Suppose requests from

a group of riders (i = 1,2, . . . , I) for k types of choices (k = 1,2) across m markets (m =

1,2, . . . ,M) are observed. The utility rider i receives from type k product at market m is

specified as:

Uikm = β
d
0i +β

d
1iPikm +β

d
2iEwaitkm +Xd

mβ
d +ξ

d
km + εikm, (4.1)

In the case of choosing the outside option, I denote it as k = 0 and the associated utility

function is:

Ui0tm = εi0m. (4.2)

where Pikm is the price charged for that ride, Ewaitkm is riders’ expected waiting time for

type k at market m, which is the key variable that indicates network externalities in the

current market, and Xd
km is a vector of market-level exogenous controls for each type k.

Ewaitkm depends on the current total demand and the total supply of drivers for that type in

the same market.

I further model riders’ expected waiting time as a function of current demand and supply.

Ewaitkm = γ
d
k0 + γ

d
k1Dkm + γ

d
k2Skm + ε

d
km. (4.3)

β0i, β1i and β2i are individual-level response coefficients, and γk0, γk1,γk2 are market-level

response coefficients. Dkm and Skm are the logarithms of demand and supply size for type

k of market m. εikm and εkm are independent individual-level and market-level unobserved

error terms separately. I make assumptions on the error terms and response coefficients as

102



the following:

εikm ∼ extreme value (0,1), (4.4)

εkm ∼ N(0,σ2
1 ), (4.5)

θi = (β0i,β1i,βi)∼ MV N(θ̄i,Σθ i). (4.6)

According to Equations (4.1) and (4.3), I can easily find that riders’ expected waiting time

will affect their choice of which type of product to request, and meanwhile, the number of

total requests for that type will in turn influence riders’ waiting time for that type. Thus, this

is a system of simultaneous equations. However, this system of simultaneous equations is

different from traditional ones, as the demand is modeled non-linearly using a choice model.

The type I extreme value specification of εikm leads to a standard logit choice probability for

rider i choosing type k at market m,

Pr(yikm = 1) =
exp(uikm)

1+ exp(ui1m)+ exp(ui2m)
,(k = 1,2). (4.7)

where

uikm = β
d
0i +β

d
1iPikm +β

d
2iEwaitkm +Xd

tmβ
d +ξ

d
km. (4.8)

and the predicted demand using this choice model will further influence Ewaitkm. I later

use 3SLS estimation and the control function approach to estimate this nonlinear system

of simultaneous equations. After riders make their choice decisions, the platform will send

those order requests to nearby drivers. Then drivers will make decisions on whether to

accept the offer.
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4.4.2 Driver’s Decision

Once a driver receives an offer from a rider, some offer-specific information such as the type

of the offer, price, and time they have to cruise around to pick up the rider (distance away

from the rider) is revealed to the driver. He/she might also obtain some information about the

current market, such as the expected demand and supply. Based on all those observed and

inferred information, they make decisions on whether to accept the offer. I model drivers’

behavior in the following way. After receiving an offer, a driver will decide whether to

accept the offer by comparing the earning from the current trip with his reservation wage in

the current market. He will accept the offer if and only if the per-minute payoff from the

trip is larger than or equal to his reservation wage. That is, I assume the driver j will accept

the offer f in market m if and only if his expected per-minute pay exceeds his reservation

wage at market m.

Y j f m =

 1 if Payment j f m ≥ R jm,

0 otherwise.

Then the utility of driver j by accepting the offer f in market m is specified as

Vj f m = β
s
1 j

Wage j f m

RideDur j f m +Cruise j f m
−R jm + ε

s
j f m, (4.9)

where Wage j f m is the total payment from offer f , RideDur j f m and Cruise j f m are ride du-

ration and cruising time of offer f . R jm is individual and market-level reservation wage,

which depends on the driver’s specific preference and market environment, and indicates

the possible opportunities for the driver j in the market m. The reservation wage of driver j

at market m is modeled as

R jm = β
s
0 j +β

s
2 jD1m +β

s
3 jS1m +β

s
4 jD2m +β

s
5 jS2m +β

s
6 jX

s
m +ξ

s
m + ε

s
jm. (4.10)
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where Xm includes all market-specific variables such as week, hour, and location dummies.

Dkm,Skm (k=1,2) are network sizes in rider and driver sides for each product separately.

Here, I model that network externalities would affect drivers’ decisions by also influencing

their reservation wages (opportunities) in the focal market. This model setting is reason-

able because, besides the payment from the current offer, the driver also cares about other

possible opportunities in the current market.

I make similar assumptions on the error terms and response coefficients for drivers as

the following:

ε
s
j f m ∼ extreme value (0,1) (4.11)

ε
s
m ∼ N(0,σ2

2 ) (4.12)

θ j = (β s
0 j,β

s
1 j, ...,β

s
6 j)∼ MV N(θ̄ j,Σθ j) (4.13)

The type I extreme value specification of ε j f m leads to a standard logit choice probability

for driver j choosing to accept offer f at market m,

Pr(Yj f m = 1) =
exp(v j f m)

1+ exp(v j f m)
. (4.14)

where

Vj f m = v j f m + ε
s
j f m. (4.15)

4.4.3 Hierarchical model

After modeling drivers’ and riders’ decisions, I further add a hierarchical layer to estimate

individual parameters. The individual parameters, (θi ≡ (β d
0i,β

d
1i,β

d
i ),θ j ≡ (β s

0i,β
s
1i,β

s
i )),
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are determined by a vector of individual-related Wi,Wj separately as follows:

θi = GdWi +ηi,ηi ∼ N(0,Σθ i),

θ j = GsWj +η j,η j ∼ N(0,Σθ j).

(4.16)

where Gd(Gs) is a matrix of parameters that indicate how each demographic variable influ-

ences the individual parameter θ . Σθ i(Σθ j) is the variance-covariance matrix capturing the

interdependence among θi(θ j). The Wi(Wj) includes riders’ (drivers’) demographic vari-

ables that will influence their decision-making process. In the current estimation, I include

intercepts only in Wi(Wj).

After model setup, I next introduce the endogeneity issue and some exogenous variables

in this setting that could be used as IVs to deal with the endogeneity of the simultaneous-

equation system.

4.4.4 3SLS/2SLS and Control Function Approach

In this simultaneous-equation system, riders’ expected waiting time and demand (supply)

are endogenous variables. On the one hand, riders’ expected waiting time for a specific

type of product will affect their decisions of whether to choose that type. On the other

hand, in this dynamic request and pick-up process, each rider’s choice will influence supply

and demand and in turn affect riders’ waiting time. For example, suppose there’s a sudden

demand shock (e.g., a concert is just over), many people are requesting for rides and thus

the waiting time in that place must be quite long because of no enough supply. This would

cause the waiting time and demand to be positively correlated, giving us the wrong and

confusing intuition that riders prefer long waiting time. Similar to the driver side. network

size would simultaneously influence drivers’ decisions.
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I use the instrumental variable approach to correct the endogeneity of expected wait-

ing time (expected cruising time) and demand (supply). Specifically, I use the expected

waiting time in the last week at the same hour and location as an instrumental variable for

endogenous waiting time. Last-period waiting time will not influence the current demand,

but has a strong correlation with the waiting time in the current period. For the endogenous

demand and supply in Equations (4.3) and (4.10), I use last-hour demand and supply in the

same week at the same location as instrument variables. Another important IV for supply is

the exogenous subsidy level, which is defined as the difference between driver’s wage and

rider’s price. On this platform, riders’ price structure remains the same over time, while

drivers’ wage structure changes a couple of times. This exogenous variation can help to

correct endogeneity. To sum up, I use 3-stage (2-stage) lease squares to correct endogeneity

on the rider (driver) side.

Stage 1: In the first stage, I use lag demand and lag supply as IV to correct endogeneity in

waiting time and reservation wage.

Demandkm(h)
= δ

d
k0 +δ

d
k1Demandkm(h−1)

+ ε
d
km, (4.17)

Supplykm(h)
= δ

s
0k +δ

s
k1Supplykm(h−1)

+δ
s
k2Subsidykm(h)

+ ε
s
km. (4.18)

The IVs of demand and supply are valid that on the one hand, the last-hour demand (supply)

is correlated with the current demand (supply). On the other hand, the IV satisfies the

exclusion restriction that last-hour demand (supply) should not affect the current waiting

time directly, but instead will affect waiting time only by affecting the current demand

(supply).

Stage 2: Then I substitute the predicted demand and supply into the waiting time stage on

the rider side (reservation wage on the driver side), and add the waiting time from last week
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at the same hour and location as IV to correct endogeneity in the choice stage.

Ewaitkm = γ
d
k0 + γ

d
k1

̂Demandkm + γ
d
k2

̂Supplykm + γ
d
k3Ewaitk(w−1)m +µ

d
ktm. (4.19)

Stage 3: Since the choice stage is not linear, I cannot simply substitute the predicted Ewait

into the third stage. Here, I use the control function approach. Following Petrin and Train

(2010), I use the simplest version of the control function, which is a linear function of

second-stage residual.

CF(µ;λ ) = λ µ, (4.20)

where µ is residual from the waiting time stage, and λ is the parameter to be estimated.

Then utility with the control function is

Uikm = uikm +λ µkm +σmηkm + εikm. (4.21)

where uikm is the mean utility in Equation (4.8), and ηkm is i.i.d standard normal. In the

estimation below, I use the random coefficient model so that σm here acts as the standard

deviation of the intercept. I use a similar way on the supply side. The only difference is

that there are only 2 stages (i.e., stages 1 & 3) on the supply side. No cruising time stage is

needed as cruising time is observed by drivers. I replace network size in reservation wage

with predicted network size to deal with the simultaneous endogeneity issue. After I set up

models and address the endogeneity problem, I use Bayesian MCMC for model estimation

(see more details about the estimation procedure in Appendix).

4.5 Estimation Result

In the sections above, I focus on the model-free evidence of network externalities and

the structural model development. In this section, I will show both the reduced-form and
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MCMC estimation results to quantify the network externalities and product intrinsic value

in riders’ and drivers’ choice decisions.

4.5.1 Estimation for Network Externalities

I first show estimation results in terms of how network sizes affect riders’ waiting time and

drivers’ cruising time. Note that, the cruising time stage is not used for estimation because

drivers can observe cruising time directly. However, the estimates of the cruising time stage

will be used in the following counterfactual analysis.

I use IVs in section 3.2 to correct endogeneity in each stage. Table 4.4 shows the 2SLS

estimation results in terms of how network size on each side influences riders’ waiting time

and drivers’ cruising time. The dependent variables of the four columns are riders’ waiting

time, drivers’ cruising time, the demand size, and the supply size separately. The first

column shows that riders’ waiting time is influenced by both the direct and indirect network

externalities. The waiting time is increasing with demand (direct network externalities), and

is decreasing with supply (indirect network externalities). For example, a 10% increase in

supply would decrease waiting time by 0.38 (=log(1.1)∗3.97) minutes, and a 10% increase

in demand would increase waiting time by 0.357 (=log(1.1) ∗ 3.75) minutes. Similarly,

drivers’ cruising time is influenced by both the direct and indirect network externalities as

well. It is decreasing with demand (indirect network externalities) and is increasing with

supply (direct network externalities). In a word, Table 4.4 shows that there exist both direct

and indirect network externalities on both rider and driver sides. Next, I will show both the

reduced-form and MCMC estimation results in riders’ and drivers’ choice decisions.
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Table 4.4: How Network Externalities Influence Waiting/Cruis-
ing Time

Wait2SLS Cruise2SLS IVDemand IVSupply
8.01 4.77 -0.17 -0.30Intercept (0.29)*** (0.17)*** (0.07)* (0.06)***

3.75 -1.09Log demand (0.11)*** (0.12)***

-3.97 1.11Log supply (0.14)*** (0.13)***

0.10LagWeek wait (0.008)***

0.15LagWeek cruise (0.009)***

0.59 0.28Laghour log demand (0.01)*** (0.01)***

0.20 0.29Laghour log supply (0.02)*** (0.01)***

0.41Subsidy level (0.01)***

Fixed Effects
Week YES YES YES YES
Hour YES YES YES YES
Location YES YES YES YES

R2 0.49 0.55 0.83 0.81
Num. obs. 5,672 5,672 5,672 5,672

***p<0.001, **p<0.01, *p<0.05
Note: Dependent variables are market-level waiting time, cruising time,
log of demand and log of supply respectively. Standard errors are in
parentheses.

4.5.2 Reduced-form Estimation

Previous model-free evidence in Figure 4.3 shows that riders favor short waiting time, and

the section above already shows how direct and indirect network externalities affect riders’

waiting time. In this section, I further show reduced-form evidence about how the waiting

time influences riders’ choices toward the two types of products on this platform. Moreover,

besides waiting time, whether there exist other factors that also help to determine the degree

of vertical differentiation.

Table 4.5 shows the reduced-form estimation results. On the demand side, after adding

IVs to control for endogeneity (Model 2), waiting time adds a significant negative value to
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Table 4.5: Reduced-Form Estimation Results for Rider and Driver

Rider Side Model Driver Side Model
Models Model 1 Model 2 Model 3 Model 4

0.22 0.19PremiumDummy (0.006)*** (0.007)***

-3.02 -3.02LogPrice (0.01)*** (0.02)***

-0.015 -0.10Wait (0.002)*** (0.01)***

-2.81 -2.75Intercept (0.05)*** (0.06)***

6.33 6.35Wage (0.03)*** (0.03)***

-0.43 -0.64LogDemandp (0.02)*** (0.05)***

0.09 0.26LogSupplyp (0.02)*** (0.06)***

-0.59 -0.53LogDemands (0.02)*** (0.05)***

0.65 0.61LogSupplys (0.02)*** (0.05)***

Num. Obs. 391,642 391,642 388,296 388,296
Log Likelihood -183,242 -183,195 -233,874 -232,307
IV NO YES NO YES

***p<0.001, **p<0.01, *p<0.05
Note: DV of Model 1 and 2 is a binary choice of whether the rider chooses the
premium type; DV of Model 3 and 4 is a binary choice of whether the driver
accepts the offer; Wage is driver’s per-minute payment after considering cruising
time to pick up rider; Standard errors are in parentheses.

riders, and premium product adds significant positive value to riders. This result is consis-

tent with model-free evidence in Figure 4.3. In a word, both product intrinsic quality and

network externalities are crucial in affecting riders’ choices. On the driver side, according

to the result of Model 4 in Table 4.5, network externalities would affect drivers’ decisions

in two ways. First, drivers prefer offers with higher wages, which is the per-minute wage

that takes cruising time into consideration, and thus drivers favor offers with shorter cruis-

ing time. Second, network size on both sides would affect drivers’ decisions by influencing

drivers’ opportunities to get other offers. More demand indicates more opportunities, and

would decrease drivers’ probability to accept the current offer; While more supply indicates

more competitors and fewer opportunities, and would increase driver’s probability to accept

the current offer.
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The reduced-form estimation results show that network externalities are key components

to affect riders’ and drivers’ choices. Both the product intrinsic quality and the network

externalities play important roles in determining the degree of vertical differentiation in

two-sided markets. Next, I will add outside demand from Green/Yellow taxi in NYC, and

use Bayesian MCMC to estimate the model with heterogeneous parameters.

4.5.3 MCMC Estimation Results for Heterogeneous Choice Model

The above reduced-form estimation results show that riders’ waiting time and drivers’ cruis-

ing time are affected by network size, both within and across sides. Next, I will show the

MCMC estimation result, and quantify the value of each component for riders’ and drivers’

decisions. Before estimation, I first add outside options for riders. When a rider decides to

order a ride, he might also consider outside options such as taxi and Uber. I include pub-

lic taxi data in New York City as the outside option to control the total market size in the

following analysis. The taxi data in New York City is public online, including all realized

trips with trip start time, trip fare, distance and geographic information. Please find details

about how I match outside demand with the data and how I construct alternative options

for those who choose the outside option in the Appendix. The utility for the outside option

is normalized to zero. Then I follow the estimation procedure in the model section and

use the MCMC method to estimate the random coefficient model. I run a total of 300,000

MCMC iterations and report the posterior distribution of the parameters based on the last

100,000 draws. Table 4.6 shows the estimation results of the mean and standard deviation

of parameters among the population.

Table 4.6 shows the MCMC estimation results on both the rider and driver sides. Let’s

first look at the estimation result on the demand (rider) side. First, product intrinsic value

matters for riders when vertical differentiation is used. Choosing a premium trip would
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Table 4.6: MCMC Estimation Results for Demand and Supply

Variables Mean Parameter Standard Deviation σ

Demand Side Intercept 9.10 (8.83, 9.36) 7.08 (6.90, 7.26)

Premium Dummy 0.08 (0.06, 0.11) 1.77 (1.74, 1.80)

Log Price -2.93 (-2.99, -2.88) 2.33 (2.27, 2.40)

Avg wait -0.13 (-0.15, -0.10) 0.45 (0.43, 0.47)

Supply Side Intercept -3.76 (-3.98, -3.59) 2.68 (2.46, 2.83)

Payment ($/min) 8.00 (7.78, 8.23) 4.66 (4.41,4.87)

Log Demandp -0.53 (-0.69, -0.33) 0.81 (0.74, 0.93)

Log Supplyp 0.29 (0.09, 0.50) 0.82 (0.71, 0.92)

Log Demands -0.23 (-0.37, -0.09) 0.71 (0.68, 0.75)

Log Supplys 0.22 (0.09, 0.34) 0.73 (0.65, 0.83)

Note: Numbers in parentheses indicate the 2.5 and 97.5 percentiles; Avg wait is the expected
waiting time in that market; Subscript p represents the premium network and s represents the
standard network.

make riders gain 0.08 more utility than choosing a standard trip. Second, I quantify net-

work value to riders. The result shows that riders’ waiting time, the indicator of network

externalities, provides negative values to riders. One minute increase in waiting time would

decrease riders’ utility by 0.13, which is much larger than the utility gain if choosing the

premium type. I further link the network externalities with waiting time. According to the

waiting time stage result in Table 4.4, a 10% increase in supply productivity, keeping all

others equal, can achieve a 0.38-minute (=log(1.1) ∗ 3.97) decrease in waiting time, and

finally increase the utility of choosing the option by 0.05. Thus, besides product intrin-

sic value, network externality is a crucial factor in affecting riders’ choices by influencing

riders’ waiting time.

On the driver side, network externalities would affect drivers’ decisions in two ways.

First, network externalities can influence drivers’ earnings by affecting the time drivers

need to cruise around to pick up riders. Drivers prefer higher per-minute wages, which will

increase when cruising time decreases. A $0.01 per-minute wage increase would increase

the odds of accepting the offer by 8.33% = (e8∗0.01-1), which means the probability of
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accepting the offer increases from 50% to 52% if fixing the original acceptance rate to

50%. Second, besides the effect on cruising time, network size would also affect drivers’

probability of accepting the current offer by directly affecting their potential opportunities

to get other offers. A 10% increase in premium demand would cause the odds of accepting

the current offer to decrease by 5.2%, and a 10% increase in standard demand would cause

the odds to decrease by 2.3%.

4.5.4 Visualization of MCMC Estimates

Visualization of Rider Heterogeneity

In the analysis above, I have used a heterogeneous model to estimate and quantify network

value in riders’ decision-making process. In this section, I plot the distribution of those esti-

mates among riders, and get some visual insights about rider heterogeneity on the platform.

Figure 4.7 shows the distribution of the estimated coefficients of some key variables among

riders. First, I find that riders, on average, have negative price coefficients (Figure 4.7(a)),

and the price coefficients of standard riders are more negative than those of premium riders.

This tells us that the riders who choose standard type are more sensitive to price than riders

who choose premium type. Second, the coefficient of the premium dummy is much larger

for premium riders (Figure 4.7(b)), which means that riders who choose the premium type

indeed value the high intrinsic quality of the premium type. Third, the coefficient of waiting

time is more negative for standard riders (Figure 4.7(c)), which means standard riders are

more sensitive to waiting time than premium riders. In a word, the estimated coefficients

mainly tell us that the premium riders on the platform are less sensitive to price than stan-

dard riders. They are willing to pay higher prices for the premium type because they value

mostly on the high intrinsic quality of the premium type, and can bear a bit longer waiting

time.
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(a) Price Coefficient (b) Premium Intrinsic Value (c) Waiting Time Coefficient

Figure 4.7: Distribution of Estimated Riders’ Heterogeneous Coefficients

Visualization of Driver’s Reservation Wage

In the analysis above, I have used model estimation to quantify network value in both riders’

and drivers’ decision-making processes. I further use estimates to calculate and visualize

drivers’ reservation utility to test the rationality of the model.

Figure 4.8: Average Predicted Reservation Utility by Hour.

Figure 4.8 shows drivers’ average reservation utility across hours. First, on average,

premium drivers have higher reservation utility than lower-tier drivers do. Second, for both

types of drivers, they have higher reservation utility during rush hours and midnight periods.
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The prediction results are quite reasonable. During rush hours, drivers have more opportu-

nities because of more demand requests and thus have higher reservation utility. During the

midnight period, drivers have high reservation utility because most of them would not go

out for work and are used to staying at home for rest.

In this section, I estimate the model to quantify the network value and product intrinsic

value to riders and drivers, and I also visualize drivers’ reservation wages using the esti-

mates. Next, I will do some counterfactual analysis to get managerial implications.

4.6 Platform Pricing Policy and Counterfactual Analysis

Previously, I build up a structural model to estimate and evaluate riders’ and drivers’ behav-

ior under the platform’s current pricing strategy. Drivers’ (riders’) choices toward the two

types are determined by the earnings (prices), product value and the network value from the

two types of product. The network size in equilibrium and the firm’s profit will be fully

determined by the firm’s product strategy (vertical differentiation vs. homogenous project)

and the price strategies. Once the two-sided platforms know the preferences of their tar-

get users (via data analysis like what I did above or via other approaches), they can design

optimal strategies.

From the analysis above, I have quantified users’ preferences over product value and

network value, and users’ price (earning) sensitivities on this platform. In this section,

I will introduce more details about the platform’s current strategy, and further do some

counterfactual analysis using the model estimates above to examine whether there are better

strategies for the platform and get some managerial implications.
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4.6.1 Platform’s Current Pricing and Subsidy Policy

According to Tables 4.3, 4.1 and 4.2, the platform’s current strategy is that it charges differ-

ent prices for different types. Moreover, the prices charged from riders and the earnings the

platform provides to drivers are not the same.

Table 4.3 shows that there’s a significant gap between payment from riders and payment

given to drivers, especially for standard-type rides. That is, under the current strategy, the

platform is not simply giving drivers what riders pay, but is actually subsidizing drivers,

especially for drivers who serve standard-type trips. The data shows that 53.4% of pre-

mium trips offered subsidies to drivers, and 62.9% of the standard-type trips offered sub-

sidies. Ride-sharing platforms usually charge a fixed commission rate from drivers based

on drivers’ earnings from trip fares. For example, Uber charges a 25% commission from

drivers. The commission rate that the platform charges is 20% during the time window. On

average, a premium trip provides a $0.12 subsidy to drivers, while a standard trip provides

a $2.54 subsidy.

The possible reason why the platform wants to subsidize drivers is that they want to

attract more users to gain enough network value. Once the platform gets a large scale, it can

start to earn profit from the two types. Comparing the subsidy to premium and standard, the

firm is subsidizing more to the standard type, which can be interpreted as that the platform

is ’earning’ more from premium trips than from standard trips. This strategy is actually

consistent with the theoretical work in one-sided markets (Jing (2007)) that when there exist

network externalities, firms can provide a low-quality product to enlarge the market size and

expand the market, and earn profit from the high-end product. But is the current strategy

optimal? Specifically, is vertical differentiation better than a homogeneous product? If yes,

is there any better pricing strategy? Next, I will do counterfactual analyses to address these

questions.
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4.6.2 Counterfactual Analysis

According to the summary of the platform’s current strategy above, the platform is using

vertical differentiation and ’earns’ more profit from the premium type. The network size of

the standard type seems to be stably around two times the size of the premium product under

the current pricing strategy. In this section, I use the above MCMC estimates and do coun-

terfactual analyses regarding what strategy would be better for the platform. Specifically, I

discuss several counterfactual scenarios below.

Base Case. The platform uses vertical differentiation under the current pricing strategy;

Case 1. The platform provides a homogeneous product, and only focuses on the low-end

market, which is the standard product;

Case 2. The platform provides no subsidy to drivers. That is, earnings for drivers are set to

be equal to what riders pay for each trip.

To predict demand and supply in the new counterfactual settings, I have to solve fixed

points in the simultaneous system by substituting predicted waiting time and cruising time

as a function of demand and supply into the choice stage for both rider and driver sides.

Table 4.7 shows the detailed algorithm for solving fixed points.

Table 4.7: Algorithm to Solve Fixed Points

Steps:
1. Start with initial demand, d0, and supply, s0 in each market;
2. Calculate estimated waiting time w1 and cruising time c1 using d0 and s0;
3. Calculate new demand, d1, and supply, s1 using updated w1 and c1 in the choice model;
4. Repeat steps 2-3 until demand and supply converge.

That is max(|dn −dn−1|, |sn − sn−1|)≤ ε.

Table 4.8 shows the counterfactual results, listing the pricing strategies for both sides
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of each product and the predicted number of realized trips and profit in each counterfactual

scenario. I discuss the three counterfactual cases one by one.

Table 4.8: Counterfactual Results

Base Case 1 Base2 Case 12 Case 2
Price (premium) 13.15 - 13.15 - 13.15

(4.16) (4.16) (4.16)
Wage (premium) 16.6 - 16.6 - 13.15

(7.89) (7.89) (4.16)
Price (standard) 9.0 9.0 9.0 9.0 9.0

(0.23) (0.23) (4.16) (4.16) (4.16)
Wage (standard) 14.2 14.2 14.2 14.2 9.0

(6.44) (6.44) (6.44) (6.44) (4.16)
# realized trips 189,872 173,150 175,324 173,872 110,941
Total profit ($) -504,353 -444,413 -298,607 -390,796 129,622
Profit/trip ($) -2.65 -2.57 -1.70 -2.25 1.17

I first compare the current vertical differentiation strategy with a homogeneous product

case. Under the platform’s current pricing strategy (Base case), the average premium price is

$13.15 and the standard price is a constant, $9.0. And the average corresponding earning for

drivers is $16.6 from a premium trip and $14.2 from a standard trip. For the homogeneous

standard-only case (Case 1), I use the same pricing for the standard product. Compare Case

1 with the Base case, I find that the market size is expanded using vertical differentiation

(189,872 > 173,150). However, it seems more costly for the platform to maintain two

networks as the per-trip cost is higher for vertical differentiation than the homogeneous

product case ($2.65>$2.57). After further exploration, I find it’s actually not the case. There

is a tricky part of the platform’s current strategy. According to the current pricing strategy,

the price for the standard type is fixed, no matter how long the trip is, while the price for the

premium type is positively correlated with trip duration. In this way, we find riders actually

strategically choose the premium when their rides are short and choose standard when their

rides are long. This can explain why the cost to maintain the two products is higher than

the homogeneous case, as the platform extracts less surplus from riders because of their

’smart’ behavior. This result also tells us that for ride-hailing companies, it’s not wise to set
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constant prices, especially when there are multiple choices for riders. Using constant price

would undermine the benefit of vertical differentiation for usage-based platforms.

To answer whether it’s better to use vertical differentiation, I next use a clean setting in

Base2 and Case 12, in which the price for the standard ride is set to be equal to the price for

the premium type minus $4, instead of using a constant price. In this way, we can somehow

avoid riders’ ’smart’ behavior because the price of the premium is strictly higher than that of

the standard type, regardless of what duration the trip has. Under this clean setting, I find the

market size is still expanded when using vertical differentiation (175,324 > 173,872). This

tells us that the size gain from market expansion by using vertical differentiation can offset

the loss from network size segmentation. Moreover, profit from vertical differentiation is

also higher than the homogeneous product case (-$1.7 > -$2.25). This tells us that by using

vertical differentiation, the platform can extract more surplus from high-end customers.

Next, I further explore how the network size of the two products would change with

the platform’s pricing strategy. Specifically, I examine what would happen if no subsidy is

provided to drivers when using vertical differentiation. In case 2, I set drivers’ earnings from

trips equal to the prices charged from riders. Compare Case 2 with the base case in Base2, by

providing subsidy to drivers, the platform in total spend $(298,607 + 129,622) = $428,229

and attract (175,324 − 110,941) = 64,383 more realized trips. Thus, the cost of attracting

an extra realized trip is 428,229
64,383 = $6.7. I further calculate the cost of attracting an extra

premium or standard realized trip separately. The result shows that the cost of attracting an

extra premium realized trip is (6,857 + 72,200) / (34,792 − 26,536) = $9.6, while the cost

of attracting an extra standard realized trip is (291,750 + 57,422) / (140,532 − 84,405) =

$6.2. The cost of attracting an extra premium trip (marginal cost) is higher than that of a

standard trip, $9.6>$6.2. Thus, it’s more costly for the platform to expand and maintain

the premium network. The network size of the standard is around three times the size of

the premium, and the corresponding cost of attracting an additional standard realized trip
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is only 64.6% (=6.2/9.6) of the cost of attracting an additional premium realized trip. This

tells us the value of network size (scale effect). A large network size would generate a large

positive network value, while the expansion of the product with a relatively small network

size might be restrained.

4.6.3 Managerial Implications

I further get managerial implications from the above counterfactual analyses. First, for ride-

hailing platforms (usage-based), prices charged from riders should be positively correlated

with trip duration instead of being constant, especially when multiple options are offered

to riders. Otherwise, it would undermine the platforms’ benefit from using vertical differ-

entiation. Second, extending a product line by offering another high-end product is better

than just providing a low-end product for ride-hailing platforms under the competitive en-

vironment in New York City. That is, network externalities still make firms favor product

differentiation in a two-sided market setting. On the one hand, market size can be expanded,

as the effect of market expansion from vertical differentiation can offset the loss of a sin-

gle network size advantage. On the other hand, firms can make more profit by extracting

more surplus from high-end customers. Finally, even though high-end customers are more

profitable, the high-end network is more costly to maintain and harder to expand because

of its relatively smaller network value (smaller user group). In a word, two-side platforms

should pay high attention to the network externalities when deciding whether to use vertical

differentiation, and if yes, what price surcharges between products on each side to use.

4.7 Conclusion

The distinct feature in two-sided markets, network externalities, makes the conventional

vertical differentiation strategy more complicated. On the one hand, platforms might be
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better off designing vertically differentiated products in terms of attracting customers with

heterogeneous preferences and expanding the market. On the other hand, offering multi-

ple differentiated products might be less optimal than offering a homogeneous product if

the segmented demand and supply limit the positive network effects in two-sided markets.

Platforms might want to unite the markets from different products into one larger market to

achieve greater positive network effects. Thus, understanding and quantifying the economic

impact of network externalities on both demand and supply in two-sided markets is of great

importance to both industry practitioners and the academic audience. This paper is among

the first to empirically examine how vertical differentiation works in two-sided markets. I

use a distinct data set from a two-sided ride-hailing platform that provides two vertically

differentiated types of car service. I develop a structural model to simultaneously model

the demand and supply, and use the Bayesian MCMC method to estimate and quantify

users’ preferences over intrinsic product value and network value. I present the main results

concerning riders’ and drivers’ behavior, the counterfactual analyses, and the managerial

implications for the platform below.

On the rider side, both the intrinsic product value and the network value are crucial in af-

fecting riders’ choices toward vertically differentiated products. According to the evidence

from the data, riders who choose the premium product can get a better quality car and possi-

bly better service quality, but has to on average wait longer because of the smaller network

size and pay more in trip fare. Overall, one-third of riders are willing to order a premium

trip. According to the estimation results in Tables 4.6 and 4.4, both intrinsic product value

and network externalities are important for riders’ decisions. First, the premium product

adds value for riders. The utility obtained from the premium product is 0.08 larger than

that from the standard product. Second, a large network size also provides value to riders.

Specifically, a 10% increase in supply productivity would decrease riders’ waiting time by

0.38 minutes on average and result in a 0.05 utility gain for riders.
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On the driver side, network externalities also play important roles in affecting drivers’

decisions about whether to accept the offer. Specifically, network externalities affect drivers’

decisions in two ways. First, network externalities can influence drivers’ earnings by af-

fecting the time drivers need to cruise around to pick up riders. Data statistics show that,

although a driver’s per-minute earning from a premium trip is $0.05 more than that from

a standard trip, the cruising time for the premium trip is 0.34 minutes longer, making the

earnings from the two types, taking cruising time into account, in equilibrium surprisingly

close, around $0.53 per minute. According to the estimation results in Tables 4.6 and 4.4, a

10% increase in demand would decrease cruising time by 0.10 minutes, which will further

driver’s per-minute earning. The exact increase in earnings is not determined, as it depends

on other information about the offer, such as the price and trip duration. Suppose the de-

mand variation can bring a $0.01 per-minute wage increase, it would increase drivers’ odds

of accepting the offer by 8.33%. Second, network externalities would also affect drivers’

decisions of whether to accept the current offer by influencing the driver’s potential op-

portunity to receive other offers. Estimation results show that a 10% increase in premium

demand would cause the odds of accepting the current offer to decrease by 5.2%, and a 10%

increase in standard demand would cause the odds to decrease by 2.3%. More opportunities

to receive other offers would decrease drivers’ probability of accepting the current received

offer. Thus, network externalities play important roles in both riders’ and drivers’ behavior,

and the intrinsic product value and network value together determine the degree of vertical

differentiation in equilibrium.

For two-sided platforms, it is crucial to understand users’ preferences for both intrinsic

product quality and network value when deciding what strategy to use. Once users’ pref-

erences are revealed using model analysis, the platform can further decide whether to use

vertical differentiation, and if yes, what pricing strategies on each side for different products

to use. Taking the focal ride-hailing platform as an example, I conduct several counterfactual
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studies based on the estimation results to answer those questions. Specifically, I compare

the platform’s current strategy with two counterfactual settings, one being a standard-only

homogenous product case and the other being vertical differentiation with a different pricing

strategy, to obtain managerial implications about what can be better strategies for the firm.

These counterfactual analyses yield several managerial implications. First, for ride-hailing

(usage-based) platforms, prices charged from riders should be monotonically increasing

with trip duration. The platforms should never use a constant price, especially when multi-

ple options are offered. Second, extending the product line by offering a second high-end

product is better for the ride-hailing platform than just providing a low-end product in the

competitive environment of New York City. That is, network externalities still lead firms to

favor product differentiation in two-sided markets. The benefit from the market expansion

by using vertical differentiation can offset the loss from market segmentation. Moreover,

firms can make more profit by extracting more surplus from high-end customers. Finally,

even though high-end customers are more profitable, the high-end network is more costly

to maintain and harder to expand because of its smaller network value (smaller user group).

Two-sided platforms should take both the benefit and the cost of vertical differentiation

into consideration, and if using vertical differentiation, carefully decide the optimal price

surcharges between products on both demand and supply sides.

The findings should be interpreted based on the limitations inherent to this context.

Though my research context offers a clean and detailed setting to observe riders’ individual

decisions towards two vertically differentiated products, it is also a setting lacking other

ride-hailing competitors such as Uber. I try to make up by treating the green and yellow

taxis in New York City as the main competitors and assume the three choices—the premium

and standard types on the focal platform and the outside option—satisfy the IIA assumption

in my model. I leave it to future research when more information about other ride-hailing

competitors is available.
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Chapter 5

Conclusion

This dissertation addresses the endogeneity problem for causal inference, and applies causal

inference methods based on observational data to some interesting marketing and economic

topics. For methodology development, I propose a new instrument-free method for correct-

ing endogeneity. The method requires no instrument variables or even extra information.

It corrects endogeneity using a control function approach by adding a generated regressor

constructed on existing variables. I also extend the method for high-dimensional data. Be-

sides the methodology development, I empirically apply causal inference methods to learn

consumer behavior and get managerial insights.

The first essay develops a generalized two-stage copula endogeneity correction (2sCOPE)

instrument-free method to correct endogeneity. I theoretically prove that 2sCOPE can yield

consistent and efficient causal-effect estimates under a much weaker assumption than the

proposed copula methods in Park and Gupta (2012) and Haschka (2021). The simulation

results show that 2sCOPE yields consistent estimates under relaxed assumptions and im-

proves estimation efficiency by up to 50%. Moreover, simulation studies also show that the

2sCOPE method can deal with normal endogenous variables, while other copula methods
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in Park and Gupta (2012) and Haschka (2021) cannot even handle close-to-normal endoge-

nous variables such as t distribution with the degree of freedom equals to 10. The estimation

results in data application also confirm the performance of 2sCOPE because the estimated

price coefficient using 2sCOPE is very close to the TSLS estimate, while OLS and previous

copula method in Park and Gupta (2012) show large biases. Finally, the 2sCOPE is straight-

forward to implement, and can be widely applied to many other models, including linear

regression models, linear panel models with mixed effects, random coefficient logit models,

slope endogeneity, etc.

The second essay further studies the 2sCOPE method and extends it to the high dimen-

sional setting. As described in detail above, 2sCOPE corrects endogeneity by adding the

first-stage residual as a generated regressor to the outcome regression. Thus, the estimation

of the first-stage residual plays a central role. With high-dimensional data (dimension can

even be larger than sample size), estimation of the residual using the traditional method (i.e.,

OLS estimation) would be problematic. To address the high-dimension problem, I propose

a method combining the 2sCOPE with some lasso-based methods (lasso, post-lasso, de-

biased lasso) to select important variables in the first stage. I call it the lasso-based 2sCOPE

method. Simulation results show that 2sCOPE without feature selection in the first stage suf-

fers a large finite-sample bias when the dimension is relatively large, while the lasso-based

2sCOPE method can improve substantial estimation accuracy and efficiency, by around

50%. I further apply the method to examine the effect of the government’s policy strin-

gency in response to COVID-19 on citizens’ happiness. I use country-level cross-sectional

data with a large dimension of country characteristics (i.e., around half of the sample size).

The result shows that the estimated coefficient of the proposed lasso-based 2sCOPE method

makes the effect of policy strictness on happiness more significantly negative. Increasing

policy strictness by 10 units would decrease happiness growth by 0.034, which is larger than

one standard deviation of happiness growth.
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The above two essays focus on methodology development in correcting endogeneity for

causal inference. The third essay empirically applies causal inference methods to solve the

endogeneity problem in an interesting marketing scenario, two-sided markets. Specifically,

I apply structural modeling with IV approach to correct the endogeneity of network size

in examining vertical differentiation in two-sided markets. Data is from a leading ride-

hailing platform that provides two vertically differentiated types of car service. I build

up a simultaneous structural model together with the IV approach on both demand and

supply sides, use the Bayesian MCMC method to quantify users’ preferences over intrinsic

product value and network value, and also conduct counterfactual analyses to get managerial

insights. The result shows that both intrinsic product value and network externalities are

important in determining the degree of vertical differentiation. Users favor high intrinsic

product quality and hate long waiting (cruising) time affected by network size. For two-

sided platforms, it is crucial to understand users’ preferences over both intrinsic product

quality and network value when deciding what product strategy (i.e., vertical differentiation

vs. homogeneous product) and price strategies to use.

In the end, I wish to point out a few general limitations and research directions regarding

the dissertation. First, in terms of methodology development to correct endogeneity, the dis-

sertation proposes an instrument-free method and also adapts it to the high-dimensional set-

ting combined with machine learning techniques. Though the method relaxes some key as-

sumptions in the literature, it still relies on some assumptions. For example, for the 2sCOPE

in the first essay to work best, the distributions of the endogenous regressors need to contain

adequate information, which is violated for Bernoulli distributions or discrete distributions

with small support. Moreover, 2sCOPE hinges on the normal structural error and Gaus-

sian copula dependence structure. Future research is needed for more flexible methods that

test and relax these assumptions. Second, it is interesting to apply our proposed method

(2sCOPE or lasso-based 2sCOPE) for more classical empirical applications. For example,
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we could further apply the proposed instrument-free method to quantify the endogenous

network value in the third essay in the future.
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Appendix A

Chapter 2 Appendices

Appendix: Proofs

A.1 Proof of Theorem 1

Under the Gaussian copula assumption for structural error term ξt and the endogenous re-

gressor Pt , and the normality assumption of ξt , the outcome regression becomes (Equation

2.6)

Yt = µ +Ptα +Wtβ +σξ ·ρ ·P∗
t +σξ ·

√
1−ρ2 ·ωt .

Because of the exogeneity assumption of Wt in linear model (Equation 2.1), Cov(Wt ,ξt) = 0,

Cov(Wt ,ξt) =Cov(Wt ,σξ ·ρ ·P∗
t +σξ ·

√
1−ρ2 ·ωt)

= σξ ·ρ ·Cov(Wt ,P∗
t )+σξ ·

√
1−ρ2 ·Cov(Wt ,ωt) = 0.
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Thus, whenever Wt and P∗
t is correlated, the covariance between Wt and P∗

t is

Cov(Wt ,ωt) =− ρ√
1−ρ2

Cov(Wt ,P∗
t ) ̸= 0,

and Wt would be correlated with the new error term ωt . Theorem proved.

A.2 Assumption 4.b in CopulaP&G

According to Park and Gupta (2012), under a Gaussian copula model for (P1,t ,P2,t ,ξt), the

structural model in Equation (2.13) with two endogenous regressors can be re-expressed as

Yt =µ +P1,tα1 +P2,tα2 +Wtβ +σξ

ρξ 1 −ρ12ρξ 2

1−ρ2
12

·P∗
1,t +σξ

ρξ 2 −ρ12ρξ 1

1−ρ2
12

·P∗
2,t

+σξ ·

√
1−ρ2

ξ 1 −
(ρξ 2 −ρ12ρξ 1)

2

1−ρ2
12

·ωt . (A.1)

where P∗
1,t = Φ−1(H1(P1,t)), P∗

2,t = Φ−1(H2(P2,t)), and H1(·) and H2(·) are CDFs of P1,t and

P1,t , respectively, ρ12 is the correlation between P∗
1,t and P∗

2,t , ρξ 1 is the correlation between

ξ and P∗
1,t , ρξ 2 is the correlation between ξ and P∗

2,t , and ωt is a standard normal random

variable that is independent of P∗
1,t and P∗

2,t . For the OLS estimation of Equation (A.1)

to yield consistent estimates, Wt need also be uncorrelated with ωt , which requires that

Cov(Wt ,σξ ·
√

1−ρ2
ξ 1 −

(ρξ 2−ρ12ρξ 1)
2

1−ρ2
12

·ωt) =−Cov(Wt ,
ρξ 1−ρ12ρξ 2

1−ρ2
12

·P∗
1,t +

ρξ 2−ρ12ρξ 1

1−ρ2
12

·P∗
2,t) =

0 (Assumption 4(b) in the main text) where
ρξ 1−ρ12ρξ 2

1−ρ2
12

·P∗
1,t +

ρξ 2−ρ12ρξ 1

1−ρ2
12

·P∗
2,t is the CCF used

to control for endogeneity in CopulaP&G.

A.3 COPE Method Development

Under the Gaussian copula model for the endogenous regressor, Pt , the correlated exoge-

nous regressor, Wt , and the structural error term, ξt in Equation (3.5), the structural error in
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Equation (2.1) can be re-expressed as

ξt = σξ ·ξ ∗
t =

σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

ω3,t . (A.2)

In this way, the structural error term ξt is split into two parts: one part as a function of P∗
t

and W ∗
t that captures the endogeneity of Pt and the association of Wt with ξt |Pt

1, and the

other part as an independent new error term. Then, we substitute Equation (A.2) into the

main model in Equation (2.1), and obtain the following regression equation:

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t . (A.3)

Given P∗
t and W ∗

t as additional regressors, ω3,t is not correlated with all regressors on the

right-hand side of Equation (A.3) as proved in Theorem ?? below, and thus we can con-

sistently estimate the model using the least squares estimator. The regressors P∗
t and W ∗

t

can be generated from the nonparametric distribution of Pt and Wt as P∗
t = Φ−1(Ĥ(Pt)) and

W ∗
t = Φ−1(L̂(Wt)), where Ĥ(Pt) and L̂(Wt) are the empirical CDFs of Pt and Wt , respec-

tively.

Theorem A1. Estimation Consistency. Assuming (1) the error term is normal, (2) the en-

dogenous regressor Pt and exogenous regressors Wt are non-normally distributed, and (3) a

Gaussian Copula for the error term, Pt and Wt , Cov(ω3,t ,Wt)=Cov(ω3,t ,Pt)=Cov(ω3,t ,W ∗
t )=

Cov(ω3,t ,P∗
t ) = 0 and thus the OLS estimation of Equation (A.3) yields consistent estimates

of model parameters.

Proof: See Online Appendix, Proof of Theorem A1

1Although the exogenous regressor Wt and ξt are uncorrelated, Wt and ξt |Pt (the error component in ξt
remaining after removing the effect of the endogenous regressor Pt ) can be correlated as seen by the correlation
between Wt and ωt in Figure ?? (b).
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As shown in Theorem A1, the proposed COPE method does not require the uncorre-

latedness between P∗
t and Wt for consistent model estimation, an assumption needed for

CopulaP&G. In fact, CopulaP&G can be obtained as a special case of the COPE: when Wt

is uncorrelated with Pt (i.e. ρpw = 0) and also uncorrelated with P∗
t under the joint copula

model,
−σξ ρpwρpξ

1−ρ2
pw

W ∗
t in Equation (A.3) vanishes and COPE based on Equation (A.3) reduces

to CopulaP&G base on Equation (2.6). This broader applicability of COPE is a merit of

COPE. However, similar to CopulaP&G, COPE requires the non-normality of the endoge-

nous regressor Pt to fulfill the full-rank identification assumption. Moreover, a correlation

between endogenous regressor P and the exogenous regressors W will cause CopulaP&G

to transfer the endogeneity from P to W ; the correction for the induced endogenous regres-

sor W should have the same non-normality assumption for model identification as with P.

In the next subsection, we will develop a novel two-stage COPE method that relaxes the

regressor non-normality assumption. We further extend the model to incorporate multiple

endogenous regressors in the section 4.4.

COPE in Multiple Endogenous Regressors Case Under the Gaussian Copula assumption

that [P∗
1,t ,P

∗
2,t ,W

∗
t ,ξ

∗
t ] follows a multivariate normal distribution:



P∗
1,t

P∗
2,t

W ∗
t

ξ ∗
t


∼ N





0

0

0

0


,



1 ρp ρwp1 ρξ p1

ρp 1 ρwp2 ρξ p2

ρwp1 ρwp2 1 0

ρξ p1 ρξ p2 0 1




,
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we have:



P∗
1,t

P∗
2,t

W ∗
t

ξ ∗
t


=



1 0 0 0

ρp

√
1−ρ2

p 0 0

ρwp1
ρwp2−ρpρwp1√

1−ρ2
p

√
1−ρ2

wp1 −
(ρwp2−ρpρwp1)2

1−ρ2
p

0

ρξ p1
ρξ p2−ρpρξ p1√

1−ρ2
p

−ρwp1ρξ p1−
(ρwp2−ρpρwp1)(ρξ p2−ρpρ

ξ p1)

1−ρ2p√
1−ρ2

wp1−
(ρwp2−ρpρwp1)

2

1−ρ2p

m


·



ω1,t

ω2,t

ω3,t

ω4,t


,



ω1,t

ω2,t

ω3,t

ω4,t


∼ N





0

0

0

0


,



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, (A.4)

where m is a function of all the ρs. Under the Gaussian Copula assumption above, we can

derive ξ ∗
t as a function of Pt and Wt . After simplification, the structural error in Equation

(2.13) can be decomposed as

ξt = σξ ξ
∗
t = η1P∗

1,t +η2P∗
2,t − (η1ρwp1 +η2ρwp2)W ∗

t +σξ ·m ·ω4,t . (A.5)

where

η1 =
σξ ρξ p1(1−ρ2

wp2)−σξ ρξ p2(ρp −ρwp1ρwp2)

1−ρ2
p −ρ2

wp1 −ρ2
wp2 +2ρpρwp1ρwp2

,

η2 =
σξ (ρwp1ρwp2ρξ p1 +ρξ p2 −ρpρξ p1 −ρ2

wp1ρξ p2)

1−ρ2
p −ρ2

wp1 −ρ2
wp2 +2ρpρwp1ρwp2

. (A.6)

The COPE method with one endogenous regressor in Equation (A.3) is then extended to

Yt = µ +P1,tα1 +P2,tα2 +Wtβ +η1P∗
1,t +η2P∗

2,t − (η1ρwp1 +η2ρwp2)W ∗
t +σξ ·m ·ω4,t .

(A.7)
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In Equation (A.7), the new error term ω4,t is uncorrelated with all the regressors on the

right-hand side of Equation (A.7). Thus, the OLS estimation of Equation (A.7) provides

consistent estimates of structural regression model parameters (µ,α1,α2,β ).

A.4 Proof of Theorem A1

Under the Gaussian copula model for (Pt ,ξt) and the normality assumption of the error term

ξt , we can divide ξt into an endogenous and exogenous part and our proposed COPE method

is based on the OLS estimation of the regression below (Equation A.3) by adding P∗
t and

W ∗
t as generated regressors.

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t

We want to prove that the new error term ω3,t is uncorrelated with all terms of the right-hand

side. Since ω1,t , ω2,t and ω3,t follow a standard multivariate Gaussian distribution (Equation

3.5), they are independent. According to the same equation, W ∗
t and P∗

t are linear functions

of ω1,t and ω2,t . Thus, P∗
t and W ∗

t are normally distributed and are independent of ω3,t .

Since functions of independent variables are still independent, Pt (Wt), as a function of P∗
t

(W ∗
t ), would be uncorrelated with ω3,t and thus ω3,t is not correlated with Pt ,P∗

t ,Wt and W ∗
t

on the right-hand side of Equation (A.3). Since Pt and Wt are nonnormal distributed, the full

rank assumption is satisfied and thus COPE yields consistent estimates. Theorem proved.

Next we show that this result can be readily extended to the multi-dimension Wt case.

We first derive the regression of the COPE method. Here we take 2-dimension Wt as an

example. When there are one endogenous regressor Pt and two exogenous regressors Wt ,
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the linear regression is:

Yt = β0 +β1Pt +β2W1,t +β3W2,t +ξt (A.8)

Under the Gaussian Copula assumption,



P∗
t

W ∗
1,t

W ∗
2,t

ξ ∗
t


∼ N





0

0

0

0


,



1 ρ1 ρ2 ρξ

ρ1 1 ρw 0

ρ2 ρw 1 0

ρξ 0 0 1




(A.9)

The multivariate normal distribution can be written as follows:



P∗
t

W ∗
1,t

W ∗
2,t

ξ ∗
t


=



1 0 0 0

ρ1

√
1−ρ2

1 0 0

ρ2
ρw−ρ1ρ2√

1−ρ2
1

√
1−ρ2

2 −
(ρw−ρ1ρ1)2

1−ρ2
1

0

ρξ

−ρ1ρξ√
1−ρ2

1

(ρw−ρ1ρ2)ρ1ρ
ξ

1−ρ2
1

−ρ2ρξ√
1−ρ2

2−
(ρw−ρ1ρ2)

2

1−ρ2
1

γ


·



ω1,t

ω2,t

ω3,t

ω4,t


,

where ωk,t ∼N(0,1),k = 1,2,3,4, γ =

√√√√√1−ρ2
ξ
−

ρ2
1 ρ2

ξ

1−ρ2
1
−
( (ρw−ρ1ρ2)ρ1ρ

ξ

1−ρ2
1

−ρ2ρξ√
1−ρ2

2−
(ρw−ρ1ρ2)

2

1−ρ2
1

)2

. Structural

error ξt can then be written as a function of P∗
t and W ∗

t ,

ξt = σξ ξ
∗
t =

σξ ρξ (1−ρ2
w)

1−ρ2
1 −ρ2

2 +2ρ1ρ2ρw +ρ2
w

(
P∗

t − ρ1 −ρ2ρw

1−ρ2
w

W ∗
1,t −

ρ2 −ρ1ρw

1−ρ2
w

W ∗
2,t

)
+σξ γ ·ω4,t .

(A.10)

Thus, our COPE method in 2-W case becomes:

Yt = β0 +β1Pt +β2W1,t +β3W2,t +β4P∗
t +β5W ∗

1,t +β6W ∗
2,t +σξ γ ·ω4,t (A.11)
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where

β4 =
σξ ρξ (1−ρ2

w)

1−ρ2
1 −ρ2

2 +2ρ1ρ2ρw +ρ2
w

β5 =
−σξ ρξ (1−ρ2

w)

1−ρ2
1 −ρ2

2 +2ρ1ρ2ρw +ρ2
w
· ρ1 −ρ2ρw

1−ρ2
w

β6 =
−σξ ρξ (1−ρ2

w)

1−ρ2
1 −ρ2

2 +2ρ1ρ2ρw +ρ2
w
· ρ2 −ρ1ρw

1−ρ2
w

.

Since ω4,t is independent of P∗
t , W ∗

1,t and W ∗
2,t , it would also be uncorrelated with any func-

tional form of P∗
t , W ∗

1,t and W ∗
2,t , and thus ω4,t is uncorrelated with any other terms in Equa-

tion (A.11). The COPE method can easily be extended to the case with multiple endogenous

regressors by adding copula transformation of each regressor as generated regressors into

the outcome regression, and the proof of estimation consistency is similar.

A.5 Proof of Theorem 2: Consistency of 2sCOPE

We have shown the derivation of 2sCOPE method in Section 3. The system of equations

used in 2sCOPE method (Equations 3.1, 2.9) leads to the following equations

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

εt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t ,

P∗
t = ρpwW ∗

t + εt .

Since ω3,t is independent of P∗
t and W ∗

t , it would also be uncorrelated with any functional

form of P∗
t and W ∗

t , and thus ω3,t is uncorrelated with Pt , Wt and εt . Once Pt or Wt is

nonnormal, εt is not a linear function of Pt and Wt , satisfying the full rank condition required

for model identification using the 2sCOPE method. Theorem proved.

Next we show that this result can be easily extended to the multi-dimension Wt case.
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We first derive the system of equations of the 2sCOPE method. Here we take 2-dimension

Wt as an example. Because of the Gaussian relationship among P∗
t and W ∗

t we assumed in

Equation (A.9), the first stage regression becomes

P∗
t =

ρ1 −ρ2ρw

1−ρ2
w

W ∗
1,t +

ρ2 −ρ1ρw

1−ρ2
w

W ∗
2,t +

√
1−ρ2

1 −
(ρ2 −ρ1ρw)2

1−ρ2
w

ω3,t

=
ρ1 −ρ2ρw

1−ρ2
w

W ∗
1,t +

ρ2 −ρ1ρw

1−ρ2
w

W ∗
2,t + ε2,t

= γ1W ∗
1,t + γ2W ∗

2,t + ε2,t . (A.12)

The structural error ξt in Equation (A.8) and the first-stage error term ε2,t are linear transfor-

mations of the Gaussian data (ξt ,P∗
t ,W

∗
1,t ,W

∗
2t
) and thus follow a bivariate normal distribu-

tion. Thus, ξt can be decomposed to a sum of one term containing ε2,t and an independent

new error term, resulting in the following regression equation:

Yt = β0 +β1Pt +β2W1,t +β3W2,t +β4ε2,t +σξ γ ·ω4,t . (A.13)

where

β4 =
σξ ρξ (1−ρ2

w)

1−ρ2
1 −ρ2

2 +2ρ1ρ2ρw +ρ2
w
.

Since ω4,t is independent of P∗
t , W ∗

1,t and W ∗
2,t , it is uncorrelated with any functional form

of P∗
t , W ∗

1,t and W ∗
2,t , and thus ω4,t is uncorrelated with Pt , W1,t , W2,t and ε2,t in Equation

(A.13). Thus, 2sCOPE that performs OLS regression of Equation (A.13) yields consistent

model estimates. Without loss of generality, the result can be extended to cases with any

dimension of Wt .
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A.6 Proof of Theorem 3: Nonnormality Assumption
Relaxed

In this section, we prove that our proposed 2sCOPE method can relax the nonnormality

assumption on the endogenous regressors imposed in CopulaP&G, while COPE does not.

We first examine the COPE method in Equation (A.3),

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t .

If the endogenous regressor Pt is normally distributed, Pt = Φ−1
σp
(Φ(P∗

t )) = σpP∗
t and thus

P∗
t and Pt would be fully collinear, violating the full rank assumption and making the model

unidentified.

We then examine the 2sCOPE method in Equation (3.8).

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

εt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t ,

εt = P∗
t −ρpwW ∗

t .

When the endogenous regressor Pt is normally distributed, Pt = Φ−1
σp
(Φ(P∗

t )) = σpP∗
t . Since

we add the residual εt from the first stage to the outcome regression instead of adding each

P∗
t and W ∗

t , εt would not be perfectly collinear with Pt and Wt as long as one of the W s

correlated with Pt is not normally distributed. Theorem proved.
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A.7 Proof of Theorem 4: Variance Reduction

According to the COPE method in Equation (A.3),

Yt = µ +Ptα +Wtβ +
σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t .

Note that all the regressors on the right-hand side of the equation above are not endogenous.

The coefficients of P∗
t and W ∗

t follows a linear relationship. Denote δ3 and δ4 the coefficients

of P∗
t and W ∗

t respectively. Then,

δ4 +ρpwδ3 = 0.

With the two-stage estimation in 2sCOPE (Equation 3.8), ρpw is estimated in the first stage

and is thus treated as a known parameter in the main regression. That is, 2sCOPE can be

viewed as the COPE method with a linear restriction. The linear restriction is,

δ4 + ρ̂pwδ3 = 0. (A.14)

In this case, the two-stage copula method (2sCOPE) can be viewed as one kind of restricted

least square estimation based on COPE. We next prove that restricted least square can

achieve reductions in standard errors. Suppose we simplify the regression expression in

Equation (A.3) as

y = Xθ + ε,
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where ε ∼ N(0,σ2I), X ≡ (1,Pt ,Wt ,P∗
t , W ∗

t ), and θ = (µ,α,β ,δ3,δ4). The restriction in

Equation (A.14) becomes

Rθ = 0,whereR = (0,0,0, ρ̂pw,1).

Thus, the 2sCOPE yields the least square estimates θ̂2 of Equation (A.3) subject to the above

restriction, whereas COPE yields the unrestricted least square estimates, θ̂1, as follows.

θ̂1 ∼ N(θ ,σ2(X ′X)−1),

θ̂2 ∼ N(θ ,σ2M(X ′X)−1M′).

where according to restricted least square theory, M = I−(X ′X)−1R′(R(X ′X)−1R′)−1R. Let

us compare the variance of θ̂1 and θ̂2. Note that,

M(X ′X)−1M′

=(I − (X ′X)−1R′(R(X ′X)−1R′)−1R)(X ′X)−1(I −R′(R(X ′X)−1R′)−1R(X ′X)−1)

=(X ′X)−1 − (X ′X)−1R′(R(X ′X)−1R′)−1R(X ′X)−1.

Therefore,

Var(θ̂1)−Var(θ̂2) = σ
2{(X ′X)−1 −M(X ′X)−1M′}

= σ
2(X ′X)−1R′(R(X ′X)−1R′)−1R(X ′X)−1 ≥ 0.

Since the matrix Var(θ̂1)−Var(θ̂2) is positive semi-definite, all the diagonal elements

should be greater than or equal to zero. Thus, the imposition of the linear restriction brings

about a variance reduction. Theorem proved.

We have proved that there would be variance reduction when there exist restriction of
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parameters. When the exogenous regressor Wt is a scalar, the linear restriction is shown in

Equation (A.14). We next show that when Wt is extended to a multi-dimension vector, there

are still linear restrictions and variance reduction of 2sCOPE. We take a 2-dimension Wt as

an example below. According to the 2sCOPE method with 2-dimension Wt in Equations

(A.12, A.13), 2sCOPE is equivalent to adding two restrictions to COPE in Equation (A.11).

The two restrictions are:

β5 + γ̂1β4 = 0

β6 + γ̂2β4 = 0

where γ̂1 and γ̂2 are estimated and obtained in the first stage in Equation (A.12). Thus,

compared with COPE, we still have variance reduction using 2sCOPE in the 2-W case.

Without loss of generality, this result can be extended to cases with any dimension of Wt .

A.8 2sCOPE for Slope Endogeneity with Correlated and
Normally Distributed Regressors

In this section, we describe the 2sCOPE approach to addressing slope endogeneity with

correlated regressors in the following model:

Yt = µ +Ptαt +W ′
t βt +ηt , where αt = ᾱ +ξt , (A.15)

αt ,βt are individual-specific regression coefficients and ᾱ is the mean of αi, ξt ∼ N(0,σ2
ξ
).

The normal error term ηi is uncorrelated with the regressors Pt and Wt and thus causes no en-

dogeneity concern. However, the random coefficient ξt can be correlated with the regressor

Pt , causing the problem of “slope endogeneity”. Pt and Wt can be correlated. Assuming that

(Pt ,Wt ,αt) follows a Gaussian copula model, the COPE approach to addressing the slope
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endogeneity problem is derived as follows.

Yt = µ +Pt(ᾱ +
σξ ρpξ

1−ρ2
pw

P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

W ∗
t +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

ω3,t)+W ′
t βt +ηt

= µ +Ptᾱ +
σξ ρpξ

1−ρ2
pw

Pt ×P∗
t +

−σξ ρpwρpξ

1−ρ2
pw

Pt ×W ∗
t +W ′

t βt +

σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

Pt ×ω3,t +ηt . (A.16)

Given both Pt ×P∗
t and Pt ×W ∗

t in Equation (A.16), the unobserved variable w3,t is indepen-

dent of all regressors (Pt ,Wt ,P∗
t ,W

∗
t ) and uncorrelated with functions of these regressors.

Thus, Equation (A.16) can be estimated using standard methods for random-effects models

with ω3,t as the random effect and (Pt ×P∗
t , Pt ×W ∗

t ) as generated regressors. The method

of Park and Gupta (2012) adds only Pt ×P∗
t as a generated regressor, and may fail to yield

consistent estimates when Pt and Wt are correlated, resulting in the correlation between the

random effect in their method and the regressor Wt .

The 2sCOPE for addressing the slope endogeneity problem with correlated regressors is

derived as follows

Yt = µ +Pt(ᾱ +
σξ ρpξ

1−ρ2
pw

εt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

·ω3,t)+W ′
t βt +ηt

= µ +Ptᾱ +
σξ ρpξ

1−ρ2
pw

P∗
t × εt +W ′

t βt +σξ

√√√√1−ρ2
pξ

−
ρ2

pwρ2
pξ

1−ρ2
pw

Pt ×ω3,t +ηt ,(A.17)

where only one generated regressor, P∗
t × εt , is needed, given which the random effect ω3,t

is independent of all regressors in Equation (A.17).

Both COPE and 2sCOPE can be implemented using the standard methods for random

effects models by simply adding generated regressors to control for endogenous regressors.

By contrast, the maximum likelihood approach requires constructing a complicated joint
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likelihood of (ξt ,ηt ,P∗
t ,W

∗
t ), which is not what the standard random effects method uses and

thus requires separate development and significantly more computation involving numerical

integration.

A.9 2sCOPE for Random Coefficient Logit Model with
Correlated and Normally Distributed Regressors

We next consider endogeneity bias in the following random utility model with correlated

endogenous and exogenous regressors:

uh jt = ψh j +P′
jtαh +W ′

jtβh +ξ jt + εh jt , j = 1, · · · ,J,

uh0t = εh0t , j = 0 if no purchase,

where uh jt denotes the utility for household h = 1, · · · ,nh at occasion t = 1, · · · ,T with

j = 1, · · · ,J alternatives and j = 0 denotes the option of no purchase. In the utility function,

ψh j is the individual-specific preference for choice j with ψhJ normalized to be zero for

identification purpose, (Pjt ,Wjt) include the choice characteristics, and (αh,βh) denote the

individual-specific random coefficients. These individual-specific coefficients (ψh j,αh,βh)

permit heterogeneity in both intercepts and regressor effects across cross-sectional units,

such as consumers or households. In this model, the association between regressors in

Pjt and the unobserved common shock ξ jt causes endogeneity bias. We further allow Pjt

and Wjt to be correlated. The term εh jt is the idiosyncratic error uncorrelated with all re-

gressors. An individual at any occasion chose the alternative with the largest utility, i.e.,

Yh jt = 1 iff uh jt > uh j′t ∀ j′ ̸= j. When εh jt follows an i.i.d Type I extreme value distribu-

tion, the choice probability follows the random-coefficient multinomial logit model.

The 2sCOPE approach can be used to address the endogeneity issue using the following
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two-step procedure. In the first step, we estimate the model

uh jt = δ jt + ψ̃h j +P′
jtah +W ′

jtbh + εh jt ,

where δ jt = µ j +P′
jtᾱ +W ′

jt β̄ +ξ jt , (µ j, ᾱ, β̄ ) is the mean of random effects (ψh j,αh,βh),

ψ̃h j = ψh j −µ j,ah = αh− ᾱ and bh = βh− β̄ . δ jt is treated as occasion- and choice-specific

fixed-effect parameters in this model. Since the regressors are uncorrelated with the error

term εhi j, there is no endogeneity bias in the model. In the second step, we estimate the

equation below.

δ̂ jt = µ j +P′
jtᾱ +W ′

jt β̄ +ξ jt +η jt , (A.18)

where δ̂ jt denotes the estimate of the fix-effect δ jt ; η jt denotes the estimation error of δ̂i j

and is approximately normally distributed. In the second-step model, the structural error

is correlated with Pjt , leading to endogenous bias. We then apply 2sCOPE to correct for

the endogenous bias, which can avoid the potential bias of CopulaP&G due to the potential

correlations between P and W , as well as make use of this correlation to relax the non-

normality assumption of Pit , improve model identification and sharpen model estimates.

The above development is for individual-level data. Park and Gupta (2012) also derived

their copula method for addressing endogeneity bias in random coefficient logit models

using aggregate-level data. It is straightforward to extend the 2sCOPE to the setting with

correlated regressors and (nearly) normal regressor distributions.
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Appendix: Additional Results

A.10 Additional Results for Smaller Sample Size

In previous simulation studies in section 4, we use sample size N=1000. We want to further

check the robustness of sample size. That is, whether our proposed methods can be applied

to smaller sample size. We simulate sample N=200 for T=1000 times, and use the same

DGP for continuous endogenous and exogenous regressors as in case 1. Table A.1 shows

that 2sCOPE has unbiased estimates for small sample size N=200. Hence, our proposed

method is robust and can be applied to very small sample size.

OLS CopulaP&G COPE 2sCOPE

ρpw Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

0.5 µ 1 0.683 0.097 3.264 1.228 0.191 1.194 1.020 0.223 0.091 0.999 0.137 0.005

α 1 1.583 0.079 7.388 1.048 0.178 0.271 0.990 0.184 0.056 0.996 0.175 0.023

β -1 -1.265 0.068 3.902 -1.291 0.068 4.293 -1.019 0.166 0.116 -1.004 0.101 0.044

ρpξ 0.5 - - - 0.559 0.122 0.489 0.493 0.139 0.048 0.489 0.097 0.109

σξ 1 0.857 0.044 3.224 1.016 0.107 0.148 1.018 0.100 0.176 1.001 0.094 0.013

D-error - - 0.016598 0.009069

0.7 µ 1 0.723 0.091 3.050 1.304 0.175 1.740 1.006 0.197 0.031 0.983 0.114 0.153

α 1 1.817 0.095 8.583 1.255 0.161 1.584 1.032 0.182 0.175 1.044 0.174 0.253

β -1 -1.539 0.084 6.388 -1.574 0.086 6.686 -1.045 0.180 0.250 -1.033 0.131 0.251

ρpξ 0.5 - - - 0.624 0.103 1.200 0.490 0.135 0.077 0.480 0.067 0.297

σξ 1 0.796 0.039 5.156 0.988 0.105 0.116 0.999 0.096 0.011 0.982 0.090 0.205

D-error - - 0.016245 0.008867

Table A.1: Results of the Simulation Study for Case 1 with Sample Size of 200
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A.11 Misspecification of ξt

Table 2.9 reports estimation results of misspecification of ξt using uniform[-0.5,0.5], beta(0.5,0.5)

and t(df=3) distributions. We provide estimation results of beta and t distributions with dif-

ferent distribution parameters below.

OLS CopulaP&G COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.948 0.008 6.928 1.036 0.013 2.909 1.000 0.014 0.022 1.000 0.010 0.009

α 1 1.095 0.006 16.61 1.011 0.011 1.024 0.999 0.011 0.057 1.000 0.010 0.044

β -1 -1.043 0.005 8.149 -1.048 0.005 9.267 -1.000 0.011 0.004 -1.000 0.007 0.030

ρpξ 0.5 - - - 0.565 0.046 1.414 0.499 0.053 0.010 0.499 0.037 0.025

σξ 0.167 0.144 0.003 7.969 0.168 0.006 0.136 0.167 0.006 0.077 0.167 0.006 0.011

Table A.2: Results of the Simulation Study: Misspecification of ξt (Beta(4,4))

OLS CopulaP&G COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.603 0.059 6.723 1.270 0.115 2.343 0.992 0.126 0.066 0.997 0.080 0.039

α 1 1.727 0.053 13.65 1.095 0.114 0.836 1.006 0.118 0.053 1.006 0.113 0.057

β -1 -1.328 0.043 7.642 -1.366 0.043 8.554 -0.997 0.090 0.030 -1.002 0.067 0.037

ρpξ 0.5 - - - 0.549 0.059 0.829 0.483 0.065 0.254 0.486 0.047 0.292

σξ 1.291 1.118 0.049 3.506 1.293 0.074 0.030 1.292 0.071 0.008 1.289 0.070 0.032

Table A.3: Results of the Simulation Study: Misspecification of ξt (t(5))

A.12 Misspecification of Copula

In the proposed methods, we use the Gaussian copula to capture the dependence structure

among the regressors and error term (Up, Uw and Uξ ). In practice, the dependence might

155



come from an economic mechanism (such as marketing strategic decisions) and thus might

be different from what the Gaussian copula generates. In this section, we examine the ro-

bustness of the Gaussian copula in simulated data. Specifically, we generate the dependence

among Up, Uw and Uξ using copula models other than the Gaussian copula. Specifically, we

consider the following T copula models which provide flexible random general generation

from arbitrary and heterogeneous correlation structures among more than two variables:

C(Up,Uw,Uξ ) =
∫ t−1

ν (Up)

−∞

∫ t−1
ν (Uw)

−∞

∫ t−1
ν (Uξ )

−∞

Γ(ν+d
2 )

Γ(ν

2 )
√
(πν)d|Σ|

(
1+

x′Σ−1x
ν

)
dx, (A.19)

where t−1
ν denotes the quantile function of a standard univariate tν distribution. We set the

degree of freedom ν=2, and the dimension of the copula d=3 in this example. Σ is covari-

ance matrix capturing correlations among variables. The data-generating process (DGP) of

t copula is summarized below:


P∗

t

W ∗
t

ξ ∗
t

∼ td
ν




0

0

0

 ,


1 ρpw ρpξ

ρpw 1 0

ρpξ 0 1


= td

ν




0

0

0

 ,


1 0.5 0.5

0.5 1 0

0.5 0 1


 .(A.20)

Figure A.1 shows the scatter plots of randomly generated (Up,Uw,Uξ ) pairs from the

above copulas, as well as the Gaussian copula with the same correlation of 0.5. The fig-

ure shows disparate dependence structures between Up and ξt (Up and Uw) for these two

copulas.

We then use the following process to generate Pt ,Wt and ξt :

ξt = G−1(Uξ ) = Φ
−1(Uξ ), (A.21)

Pt = H−1(Up),Wt = L−1(Uw), (A.22)

Yt = 1+1 ·Pt +(−1) ·Wt +ξt . (A.23)
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(a) T Copula (ρ = 0.5) (b) Gaussian Copula (ρ = 0.5)

Figure A.1: Scatter plots of Randomly Generated Pairs Up,Uw (Up,Uξ ) for Consid-

ered Copulas.

where H(·) is a gamma distribution and L(·) is an exponential distribution. We set T =

1000, generate 1000 data sets and estimate the parameters using the OLS estimator and the

proposed 2sCOPE method.

Table A.4 summarizes the estimation results. OLS estimates are still biased for all pa-

rameters. By contrast, estimates from the proposed COPE and 2sCOPE methods are cen-

tered closely around the true values. Therefore, the proposed methods based on the Gaus-

sian copula are reasonably robust to the misspecification of the copula dependence structure

among the regressors and the structural error.

OLS COPE 2sCOPE

Parameters True Mean SE tbias Mean SE tbias Mean SE tbias

µ 1 0.710 0.530 5.463 1.002 0.127 0.016 0.988 0.077 0.156

α 1 1.580 0.044 13.13 1.030 0.115 0.257 1.029 0.116 0.250

β -1 -1.289 0.047 6.142 -1.033 0.127 0.262 -1.017 0.070 0.248

ρpξ 0.5 - - - 0.463 0.085 0.435 0.458 0.067 0.622

σξ 1 0.864 0.026 5.236 0.993 0.054 0.133 0.988 0.054 0.230

Table A.4: Results of the Simulation Study Case D2: Misspecification of Copula
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Appendix B

Chapter 4 Appendices

B.1 Quality Difference Between Premium and Standard

One thing to note is that on this platform, each driver is not just belongs to a single type.

Among the 3,509 drivers, 1,074 drivers with luxury cars are assigned to serve premium

riders only, which I call the high-tier drivers. However, the remaining 2,435 drivers with

relatively lower quality cars are allowed to serve both premium and standard riders, and

I call them low-tier drivers. One possible reason why the platform allows the mixture of

driver type is that the platform wants to make better use of each driver’s time to provide

more supply. Table B.1 shows the car make and service quality difference between the two

types of drivers. Both the car price and review rate of high-tier drivers are significantly

higher than that of low-tier drivers.

Though there is a quality mixture of the low- and high-quality cars for premium riders,

it shouldn’t be a big concern for analyzing vertical differentiation. Vertical differentiation

can be interpreted from a different perspective. On the rider side, a premium ride can be
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Table B.1: Quality Difference Between the Two Types

High-tier Driver Low-tier Driver
Car Make Bentley, BMW etc. Toyota, Honda, Ford etc.
Average Car Price $62,445 $29,833
Review Rate (without 0 rate) 4.68 4.60
Review Rate (with 0 rate) 1.26 0.85

viewed as the potential to get a high-quality car, while a standard ride can be viewed as

a type to get a low-quality car for sure. In this way, riders still get higher quality value

from premium type, and the market can still be differentiated. On the supply side, the two

products can be viewed as competing for drivers’ available time instead of the number of

drivers. The larger the demand size, the more time a mixed driver would spend serving that

type because of the larger network value. In this way, this setting can still be a good setting

to study vertical differentiation and quantify the network externalities of the two products

by analyzing riders’ and drivers’ choices.

B.2 Data Preparation

B.2.1 Rider’s Expected Waiting Time

I first construct rider’s expected waiting time. Because of the distinct feature network ex-

ternalities in two-sided markets, network size would add value to riders by affecting the

time they have to wait for a car. Though riders cannot observe waiting time directly, they

can observe the real traffic environment and would form expectations on the time they have

to wait. In this data set, the time when the order is placed by rider and the time when it

is confirmed by driver, if available, are observed by researchers. Once an order request is

confirmed by a driver, the estimated driver arrival time is further observed. I use those time

points to construct and approximate the rider’s expected waiting time in a specific time and

location.
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There are mainly three steps for the construction of rider’s waiting time. First, there’s a

significant number of reorders occur in this platform, and I will first find a way to combine

them. Reorder is defined as orders placed by the same rider in the same location within a

very short period. There can be multiple reasons why those reorders occur. For example, the

rider might fill in wrong information; the order request might expire without any response

from the driver, etc. Since waiting time is a key quality dimension that differentiate riders

to choose different type of rides, it’s crucial to capture rider’s actual waiting time for a ride.

Figure B.1(a) shows the distribution of time from order creation to confirmation. There’s

a clear cutoff at 3 minutes, which means order requests would expire after 3 minutes and

would be cancelled automatically if no response is received from drivers within this short

period. Then riders might place an order again or leave. I observe that reorders account for

27% of all orders in this data set. If I just treat each order request as an independent trip,

waiting time for the trip would be downward biased. To solve the problem, I combine those

reorders into one trip and use the aggregate time from the creation of the first request to the

final driver estimated arrival time as the rider’s total waiting time. I set several criteria to

define reorders. An order is defined as a reorder if

a. the rider’s last order request was not realized and

b. the time interval from the last request is shorter than 15 minutes and

c. the pick-up location the rider provides is the same with last request.

After I change requests to trip-level requests, I calculate rider’s waiting time for a trip as

the aggregate time of all requests from order creation to driver estimated arrival time if the

trip is finally confirmed. Figure B.1(b) shows the distribution of the total waiting time from

order creation to driver estimated arrival in a combined trip. After combining to trip-level

request, total number of orders decreases from 1.2 million to 766,471, but percentage of

realized trips increases from 37.7% to 59.4%. Moreover, trips with more than one request
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(a) Order-level Wait (b) Payment with Cruise Time

Figure B.1: Waiting Time Distribution.

only accounts for 27.3% of all trips, and among those trips with multiple requests, 84% of

them don’t include requests for both the types of requests, which means that most riders

wouldn’t change their idea of what type to choose when they make multiple requests. This

gives us a clear setting to calculate aggregate waiting time for each trip.

Second, after the construction of waiting time above, another problem is that the waiting

time of trips that are not confirmed by any driver is missing. I approximate and fill in

those missing waiting time using trips with available waiting time in a similar environment.

Below shows the steps how I construct a market and fill in the missing waiting time with the

observed waiting time in the same market.

1. I first divide Manhattan area into 29 smaller locations. The 29 neighborhoods are

divided according to a common demarcation of Manhattan, which is visualized in

Figure 4.1;

2. I assume traffic environment in a specific hour in weekdays are similar, and define

market in the location-week-hour level. That is, I treat observations in the same week

and at the same location and hour from Monday to Thursday as in the same market.

This is a reasonable assumption, as both the price patterns and people’s behavior are
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the same from Monday to Friday, while are very different on Friday, Saturday, and

Sunday. For example, traffic in 7:00 am of Monday and Tuesday should be similar,

and traffic at the same in Monday and Saturday should be quite different. Thus, to

keep it clean, I define market in the above way and just use observations from Monday

to Thursday for analysis. In the end, there are 5,672 markets in total;

3. Once I group together trips with similar environment, I fill in the missing waiting time

of a trip with the maximum waiting time among same-type trips in the same market.

After this step, all trips have waiting time;

Third, after we obtain waiting time for each trip, we further constructed rider’s expected

waiting time. The waiting time constructed above is ex post waiting time, which is obtained

after the trip is fulfilled. However, when riders make order request, they cannot observe

waiting time in advance, and thus I continue this step to further construct ex ante expected

waiting time for each type of ride by averaging the waiting time of all trips with the same

type in the same market.

B.2.2 Driver’s Cruising Time

Once a driver receives an offer, he will observe the distance from the rider and thus can infer

how long he has to cruise to pick up the rider. In this section, I focus on how to construct

cruising time using observed distance.

What I can observe in data is drivers’ distance from rider for all received offers, and

driver’s expected arrival time for offers that are accepted by drivers. I first get drivers’

cruising time for those realized trip by calculate the time between driver’s expected arrival

time and the time he accepted the offer. Then I regress the cruising time on distance and

market fixed effects such as week, hour and location, and then use the regression result to
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predict cruising time for those unrealized trips. The construction of drivers’ cruising time is

simpler than rider’s waiting time. For cruising time, I don’t need to calculate market-level

expected cruising time, as drivers can observe the location of the rider and the distance upon

receiving each offer.

B.2.3 Construction for Outside Demand and Counterfactual Options

On this platform, I can only observe order requests from riders who choose this platform,

and cannot observe options from those who choose outside options. In real situation, riders

may consider more options besides the two options in this platform. Moreover, for those

who choose this platform, we researchers can only observe the information of the chosen

option, while the information of the one not chosen is not available. But riders can observe

information for each type at the time when placing an order.

Thus, to better capture and model rider’s behavior, I include taxi data in New York

City as outside option for estimation to control market size, and estimate rider’s choice

decision taking outside option into consideration. The source of taxi data is public online 1

2. Meanwhile, I fill in the missing information of those options not chosen for all possible

demand, including the outside demand. The taxi data in New York City is public online. It

includes all realized trips with trip start time, trip fare, distance and geographic information.

I first match taxi demand with the demand using geographic location to get demand size in

each market, and then simulate the price of the two options in this platform for those outside

demands. To construct the counterfactual choice for all demand, I fill in the missing order-

level variable (e.g., price) of the option not chosen. According to the price structure listed

in Table 4.1, price for standard is a fixed price $8.98, while price for premium depends on

trip duration and trip distance. In the dataset, I can observe trip duration for realized trips,

1https://data.cityofnewyork.us/dataset/2016-Yellow-Taxi-Trip-Data/uacg-pexx;
2https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb.
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and origin and destination for all trips, thus can get relationship between trip price, duration

and distance using realized trip and then predict trip price for counterfactual option. I list

the steps how I get outside demand in each specific market and how I predict and simulate

price for counterfactual option below.

1. Download Green and Yellow taxi data in 2016 at New York City online, in which

information such as price, trip duration and trip distance are listed for each realized

trip;

2. Get the market index for each taxi trip using trip time and geographic information (lat-

itude and longitude), and calculate taxi demand in each market (week-hour-location).

To save time for MCMC code running, I randomly sample 10% taxi demand as the

outside demand for estimation;

3. For unrealized trips in this platform, I approximate trip distance and duration using

trips with same origin and destination in taxi data. I define two trips to have the same

origin and destination if the rounded latitude and longitude with 2 decimal places are

the same.

4. Regress price on trip distance and duration using the realized trips in this platform,

and get the relationship between price and trip distance and duration;

5. Use the relationship in step 4 to predict price for the option not chosen or trips with

missing price;

6. Fill in waiting time for the option not chosen with market-level waiting time of that

type.
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B.3 Bayesian MCMC Estimation

In my model, I have individual specific coefficients and unobserved demand and supply

shocks. For model estimation, I use Bayesian method and treat those random coefficients

and unobserved shocks as latent variables instead of using frequentist approach and inte-

grating those parameters out. Analysis proceeds by iteratively sampling from the full condi-

tional distributions of all model parameters, including those latent variables. The estimation

process can be written in hierarchical form:

Y d|Xd,Ewaitkm,θi,ζkm,λi,µw,ε Observed demand, (B.1)

Y s|X s,D,S,θ j,ζm,λ j,µc,ε Observed supply, (B.2)

Ewaitkm|Dkm,Skm,γ,µw,µc Market-average waiting time (B.3)

θi,θ j|θ̄ , Ii, I j,Σθ Heterogeneity, (B.4)

ε, Extreme value error (B.5)

where θi = (β d
i ), θ j = (β s

j ) are rider and driver heterogeneous parameters, and Ii, I j are

their demographic information. Observed demand and supply are dependent on rider’s and

driver’s coefficients (θi,θ j), demand and supply shock ζ , unobserved error (ε) and explana-

tory variables. The conditional demand and supply density, given θ and explanatory vari-

ables is multinomial-logit probabilities (see Equation (4.7)). Rider and driver coefficients

are specified as random coefficients and depend on demographics. The joint density of all

model parameters is then

f (θi,θ j,ζ , θ̄ ,Σθ |Yd,Ys,X , I)

∝ ΠiΠ jΠtΠmprob(Yd,Ys|X ,θi,θ j)π1(θi,θ j|I, θ̄ ,Σθ )π2(θ̄ ,Σθ )

(B.6)

Estimation is carried out using a Markov chain Monte Carlo procedure that involves gener-

ating a sequence of draws from the full conditional distributions of the model (see Gelfand
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and Smith, 1990; Gelfand et al., 1990).

Estimation steps:

1. Generate θi,θ j for (i = 1,2,. . . , I; j = 1,2,. . . , J)

[θi,θ j|∗] ∝ ΠiΠ jprob(Yd,Ys|X ,θi,θ j,ζm)(θi ∼ MV N(θ̄i,Σθ i))(θ j ∼ MV N(θ̄ j,Σθ j))

I use Metropolis-Hastings algorithm with a random walk chain to generate draws of

θi,θ j.

2. Generate θ̄ ,Σθ using Gibbs sampling.

Note that random-coefficients for rider and driver are generated and updated sepa-

rately. Here I only update coefficients for rider, θ̄iΣθ i, as an example.

[θ̄i|θi,Di,Σθ i]∼ N((D̃i
′
D̃i +A)−1(D̃i

′
θ̃i +Aβ0),(D̃i

′
D̃i +A)−1))

D̃i =U−1′Di

θ̃i =U−1′
θi

Σθ i =U ′U

[Σθ i|θ̄i,θi]∼ Inverted Wishart(ΣI
i=1(θ

′
i − θ̄iDi)(θ

′
i − θ̄iDi)

′+V0, I +n0)

suppose the priors of θ̄ ,Σθ are θ̄ ∼ N(β0,A−1),Σθ ∼ IW (V0,n0).

3. Generate γ using Gibbs sampling.
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