
A Large-scale Empirical Study of Low-level Function Use
in Ethereum Smart Contracts and Automated

Replacement

by

Rui Xi

B.Eng., Sun Yat-sen University, 2020

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

June 2022

© Rui Xi, 2022

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

A Large-scale Empirical Study of Low-level Function Use in Ethereum
Smart Contracts and Automated Replacement

submitted by Rui Xi in partial fulfillment of the requirements for the degree of
Master of Applied Science in Electrical and Computer Engineering.

Examining Committee:

Karthik Pattabiraman, Professor, Electrical and Computer Engineering, UBC
Supervisor

Zehua Wang, Adjunct Professor, Electrical and Computer Engineering, UBC
Supervisory Committee Member

ii

Abstract

The Ethereum blockchain stores and executes complex logic via smart contracts

written in Solidity, a high-level programming language. The Solidity language

provides features to exercise fine-grained control over smart contracts, termed low-

level functions. However, the high-volume of transactions and the improper use

of low-level functions lead to security exploits with heavy financial losses. Con-

sequently, the Solidity community has suggested secure alternatives to low-level

functions.

In this thesis, we first perform an empirical study on the use of low-level func-

tions in Ethereum smart contracts. We study a smart contract dataset consisting

of over 2,100,000 real-world smart contracts. We find that low-level functions are

widely used and that 95% of these uses are gratuitous, and are hence replaceable.

We then propose GoHigh, a source-to-source transformation tool to eliminate low-

level function-related vulnerabilities, by replacing low-level functions with secure

high-level alternatives. Our experimental evaluation on the dataset shows that,

among all the replaced contracts, about 80% of them do not introduce unintended

side-effects, and the remaining 20% are not verifiable due to their external depen-

dencies. Further, GoHigh saves more than 5% of the gas cost of the contract after

replacement. Finally, GoHigh takes 7 seconds on average per contract.

iii

Lay Summary

Smart contracts are increasing in adoption in many blockchains. The programming

language of smart contracts, Solidity, is known to include vulnerable features, in-

cluding low-level functions, and can lead to great financial loss. In this thesis, we

start with a large-scale empirical study of low-level function use in smart contracts

and find that they are widely used and the majority of them are gratuitous. Thus the

low-level functions can and should be replaced by Solidity guideline-recommended

high-level alternatives. Finally, we propose a technique, GoHigh, to automate the

replacing process. Our tool will aid in patching existing smart contracts which use

low-level functions.

iv

Preface

This thesis is the result of work carried out by myself, with the guidance and men-

torship of Dr. Karthik Pattabiraman. All chapters are based on the papers published

below. I was responsible for conceiving the ideas, designing and conducting exper-

iments, compiling the results, and writing the paper. My advisor was responsible

for overseeing the project, providing feedback, and writing parts of the paper.

• Rui Xi and Karthik Pattabiraman, “When They Go Low: Automated Re-

placement of Low-level Functions in Ethereum Smart Contracts”, Proceed-

ings of the IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER), 2022. (Acceptance Rate: 36%)

• Rui Xi and Karthik Pattabiraman, “A Large-scale Empirical Study on Low-

level Function use in Ethereum Smart Contracts and Automated Replace-

ment”, In submission to a journal.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

List of Abbreviations . xiii

Acknowledgments . xv

1 Introduction . 1
1.1 Smart Contract Vulnerability in Solidity 2

1.2 Existing Patching Techniques . 3

1.3 Motivation . 5

1.4 Contribution and Summary . 7

2 Background and Related Work . 10
2.1 Background . 10

2.1.1 Blockchain . 10

2.1.2 Ethereum and Smart Contract 11

vi

2.1.3 Solidity Language . 12

2.1.4 Security Issues in Solidity Smart Contracts 13

2.2 Related Work . 15

2.2.1 Empirical Study . 16

2.2.2 Detection . 17

2.2.3 Testing . 19

2.2.4 Patching . 20

2.2.5 Insecure Features in Other Languages 21

2.3 Summary . 21

3 Low-Level Functions: Definition and Empirical Study 23
3.1 Definition . 23

3.1.1 Selection and Definition of Low-level Functions 23

3.1.2 Low-Level Functions Included 27

3.2 Empirical Study . 29

3.2.1 Dataset . 29

3.2.2 Tools . 29

3.2.3 Results . 30

3.3 Summary . 31

4 Methodology . 33
4.1 Challenge and Contribution . 33

4.2 Abstract Syntax Tree (AST) Generation 34

4.3 Pattern Matching . 35

4.4 Replacement . 36

4.5 Implementation . 39

4.6 Example . 39

4.7 Summary . 40

5 Results . 42
5.1 Experimental Setup . 42

5.1.1 Datasets . 42

5.1.2 Hardware and Software 44

5.2 Research Questions (RQs) . 44

vii

5.3 Results . 46

5.3.1 RQ1: Observations from Recent and Latest Datasets . . . 46

5.3.2 RQ2: Coverage of GoHigh’s replacement 47

5.3.3 RQ3: Compiler Warnings before and after Replacement . 49

5.3.4 RQ4: Unintended Side-Effects After Replacement 52

5.3.5 RQ5: Gas Cost Overhead of GoHigh 55

5.3.6 RQ6: Performance of GoHigh 57

5.4 Summary . 57

6 Discussion . 59
6.1 Possible Reasons Why Developers Violate the Guideline 59

6.1.1 Gas Consumption Misunderstanding 59

6.1.2 Overly Restrictive Guidelines 61

6.1.3 Vulnerable Access Control Library 62

6.1.4 Upgradeability and Proxy 63

6.2 Threats to Validity . 64

6.2.1 External Threat . 64

6.2.2 Internal Threat . 65

7 Conclusion and Future Work . 67
7.1 Conclusion . 67

7.2 Future Work . 68

7.2.1 Inline Assembly (Inline Assembly (IA)) 68

7.2.2 Upgradeable Proxy . 68

7.2.3 Access Control . 69

Bibliography . 70

viii

List of Tables

Table 1.1 The overall space of the contracts. 8

Table 3.1 Different categories of warnings in the Solidity documentation,

and their characteristics for inclusion in our study. 25

Table 4.1 The representations of Deprecated send (DS) and constant string

Low-level call (LC). 35

Table 4.2 The patterns of DS and LC for replacement, and the percentages

of their occurrence in the base dataset. 38

Table 5.1 The datasets used in the experiments. 44

Table 5.2 The distribution of low-level function. 46

Table 5.3 The distribution of complier warnings change before and after

replacement. 50

Table 5.4 The success rate in replaying transactions to replaced contracts. 53

Table 5.5 The gas used overhead introduced by GoHigh. 55

Table 6.1 The gas consumption of calling ERC-20 transfer() in three

different methods. 60

ix

List of Figures

Figure 1.1 The monthly statistics of Ethereum transactions volume and

market capitalization from March 2016 to December 2021. . . 2

Figure 1.2 The example of a vulnerable smart contract. 2

Figure 1.3 The example of a vulnerable smart contract patched by Smart-

Shield. 4

Figure 1.4 The example of a vulnerable smart contract patched by EVM-

Patch. 5

Figure 1.5 The example of a vulnerable smart contract patched by our ap-

proach. The low-level function send() in line 6 is replaced by

the high-level alternative, transfer(), as per the Solidity guide-

lines. 6

Figure 2.1 An example of Solidity smart contract. 13

Figure 2.2 Examples on Solidity smart contract issues. 16

Figure 3.1 An example of a warning box in Solidity documentation. . . . 24

Figure 3.2 Examples of low-level functions. 28

Figure 3.3 Low-level functions usage in the base dataset in (a) all con-

tracts, and (b) unique contracts 30

Figure 3.4 Examples of two subcategories of LCs. 30

Figure 3.5 The distribution of low-level functions in the base dataset in

(a) all contracts, and (b) unique contracts. 31

Figure 4.1 One replacement does not apply to every pattern. 34

Figure 4.2 The structure of an AST of a Solidity smart contract. 35

x

Figure 4.3 Difference between if-not and if-clause pattern. 37

Figure 4.4 The example before replacement. 39

Figure 4.5 Example’s AST (a) before replacement, and (b) after replacement. 40

Figure 4.6 The example after replacement. 41

Figure 5.1 Examples of (a) Proxy contract, (b) Forwarder contract

and (c) ForwardERC20 contract. 48

Figure 5.2 Low-level functions usage in the recent dataset for (a) all con-

tracts and (b) unique contracts. 48

Figure 5.3 The distribution of low-level functions in the recent dataset for

(a) all contracts and (b) unique contracts. 48

Figure 5.4 Low-level functions usage in the latest dataset for (a) all con-

tracts and (b) unique contracts. 49

Figure 5.5 The distribution of low-level functions in the latest dataset for

(a) all contracts and (b) unique contracts. 49

Figure 5.6 Change in compiler warnings for the base dataset for (a) DS,

and (b) Constant String LC. 50

Figure 5.7 Warning Added after replacement by GoHigh. 51

Figure 5.8 An example on special comment that disables low-level calls. 51

Figure 5.9 Change in compiler warnings for the recent dataset for (a) DS,

(b) Constant String LC. 52

Figure 5.10 Change in compiler warnings for the latest dataset for (a) DS,

(b) Constant String LC. 52

Figure 5.11 An example of a Solidity smart contract that contains external

dependency. 53

Figure 5.12 An example when Solidity compiler cannot estimate the actual

gas used. 57

Figure 5.13 The histogram of GoHigh’s performance across smart con-

tracts. 58

Figure 6.1 An example of calling ERC-20 transfer() in three differ-

ent methods. 60

Figure 6.2 The different methods in transferring Ether. 61

xi

Figure 6.3 An example of a contract reusing logics in a library contract. . 62

xii

List of Abbreviations

ABI Application Binary Interface

AO Arithmetic Operation

AST Abstract Syntax Tree

BT Block Timestamp

CF Cryptographic Function

CFG Control Flow Graph

CS Contract State

DAO Decentralized Autonomous Organization

DOS Denial of Service

DS Deprecated send

EOA Externally Owned Account

ETH Ether

EVM Ethereum Virtual Machine

I1 Arithmetic Underflow and Overflow Issue

I2 Reentrancy Issue

I3 Unchecked Return Value

I4 Use of Low-Level and Deprecated Solidity Functions

I5 Block Gas Limit Issue

IA Inline Assembly

xiii

IR Intermediate Representation

LC Low-level call

NLP Natural Language Processing

POW Proof of Work

USD U.S. Dollar

XML Extensible Markup Language

xiv

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Dr.

Karthik Pattabiraman for his constant support and invaluable guidance throughout

my master’s program. He has helped me refine research ideas and provided direc-

tion to build on top of them and execute to fruition. His dedication to high-quality

research spurred me on pursuing challenges.

In addition to my advisor, I would like to thank my thesis examining commit-

tee, Dr. Julia Rubin and Dr. Zehua Wang, for their thought-provoking questions

and valuable feedback on this thesis. I would like to thank Asem Ghaleb for his

guidance in conducting experiments and other colleagues from the Dependable

Systems Lab for their thoughtful discussions and constructive feedback.

Last but not least, I want to express my gratitude to my parents, whose uncon-

ditional support is the reason I can be here today.

xv

Chapter 1

Introduction

The blockchain is a distributed ledger system that persists the historical trans-

actions issued on it, which enables the tamper-proof value transfer worldwide.

Two prominent examples of such systems are Bitcoin [58] and Ethereum [17].

Blockchain technology is increasingly adopted in many industrial sectors (e.g.,

IoT [70], supply chain [27]) and even governmental financial organizations [25]. In

the near future, with the rise of global value transfer, it is predicted that blockchain

as financial infrastructure will soon become a reality [22, 97].

Ethereum is one of the most popular blockchain systems today. Figure 1.1

shows the Ethereum transaction volume (red line) over five years. The transaction

volume soared from less than 1 million per month in 2017 to more than 40 million

per month recently. We observe a similar trend in the total market capitalization of

Ethereum. In November 2021, the Ethereum blockchain reached its highest market

capitalization (blue line), at 568 billion U.S. Dollar (USD) [2].

The most defining feature of Ethereum is smart contracts, which are programs

that can be executed on the Ethereum blockchain to modify the Ethereum blockchain’s

states. As of the end of 2021, there are 48,084,708 smart contracts on Ethereum [1],

and some of these have attracted millions of transactions. Smart contracts are usu-

ally written using Solidity, a Turing-complete language, and compiled down to

an executable format known as Ethereum Virtual Machine (EVM) bytecode before

being deployed on the Ethereum blockchain.

1

2016-3-1 2017-1-1 2017-11-1 2018-9-1 2019-7-1 2020-5-1 2021-3-1
time

0

100000

200000

300000

400000

500000

M
ar

ke
t C

ap
ita

liz
at

io
n

Market Capitalization
Transaction Volunm

0

1

2

3

4

Tr
an

sa
ct

io
n

Vo
lu

m
e

1e7

Figure 1.1: The monthly statistics of Ethereum transactions volume and mar-
ket capitalization from March 2016 to December 2021.

* The unit of transactions volume is 107 transactions (right y-axis). The market capitalization (left

y-axis) is in USD.

1.1 Smart Contract Vulnerability in Solidity

1 contract KotET {
2 address public king;
3 uint public claimPrice = 100;
4 receive() {
5 if (msg.value < claimPrice) revert();
6 king.send(calculateCompensation());
7 king = msg.sender;
8 claimPrice = msg.value;
9 }

10 function calculateCompensation() private {/*omitted*/}}

Figure 1.2: The example of a vulnerable smart contract.

In a Solidity smart contract, the main functionality is defined in contract,

which is similar to classes in other object-oriented languages. An example of Solid-

ity smart contract is given in Fig. 1.2, which is a simplified version of a real-world

contract [10]. The contract is a game where competitors can claim the throne by

transferring the most money (i.e., Ether (ETH), which is a virtual crypto-currency in

Ethereum) to it. It contains two state variables (i.e., king and claimPrice) and

2

two functions (i.e., receive() and calculateCompensation()). Both

the state variables are public, which means that they are publicly readable by other

contracts and users. The calculateCompensation() function is private,

which is not accessible to other contracts and users. The receive() is a spe-

cial fallback function in Solidity: every time the contract receives ETH transfer, the

receive() is invoked by default, and thus it is public without explicit declara-

tion. This make possible for a contract to handle incoming ETH transfers.

Assuming that a user is claiming the throne by sending some ETH to the con-

tract. After receiving an ETH transfer, the receive() is invoked automatically.

In Line 6, the function first check whether the transferred ETH amount is greater

than the highest price stored in the claimPrice variable. If the amount is less

or equal to claimPrice, the execution will be reverted and the contract states

will rollback to its initial state. Otherwise, in Line 6, the old king, whose address is

stored in the king variable, gets his refund via the send() function. The refund

amount is given by the calculateCompensation() function - we omit its

implementation for simplicity concern. Finally, in Line 7 and 8, the new king is

nominated and the new claimPrice is set to be the ETH transfer amount.

However, the example contract contains a missing “return value checks” vul-

nerability [4, 10]. The send() function does not throw an exception when the

ETH transfer is not successful, instead, it returns a Boolean value False to repre-

sent the result. The inherited behavior of the send() function leads to a vulner-

ability: if the return value of the send() function is not checked, the execution

of the receive() function will continue even if the ETH transfer fails. In the

example, if the old king fails to receive the refund ETH transfer, the process of

nominating a new king will continue, and hence the old king will lose his/her re-

fund. This vulnerability leads to a real-world exploit in 2016, resulting in a loss of

42 ETH, which is about 168,000 USD.

1.2 Existing Patching Techniques
Smart contracts are attractive targets for attackers, as they deal directly with trans-

acting ETH. Further, because smart contracts can be called by anyone who has the

address of the contract, and the resulting transfer of ETH is automated, there are

3

few restrictions on the attackers. These factors have led to many attacks on smart

contracts [56, 64], which have resulted in losses of millions of dollars.

The aforementioned exploit to the example contract succeeds because of the

lack of proper checks on critical operations in smart contracts. Pattern-based de-

tection approaches [28, 84], or symbolic execution approaches [53, 75] can be used

for vulnerability detection. However, these approaches either fail to detect several

instances of bugs [32], or they report high false-positive rates [37].

Patching techniques have proven effective in preventing possible exploits of

smart contract vulnerabilities [74, 86]. Unlike detection, the patching technique

patches smart contracts before their deployment, and thus prevents possible ex-

ploits from happening in the future. Such patching can be either manually imple-

mented or automatically done. For a given smart contract, patching techniques aim

to learn the vulnerable behavior and the patching strategies. Further, a patching

engine can apply the strategies to the vulnerable smart contracts to mitigate the

vulnerabilities. In this thesis, we aim to develop an automated patching tool to

prevent possible exploits of smart contract vulnerabilities.

1 contract KotET {
2 address public king;
3 uint public claimPrice = 100;
4 receive() {
5 if (msg.value < claimPrice) revert();
6 if(!king.send(calculateCompensation())) revert();
7 king = msg.sender;
8 claimPrice = msg.value;
9 }

10 function calculateCompensation() private {/*omitted*/}}

Figure 1.3: The example of a vulnerable smart contract patched by Smart-
Shield.

To the best of our knowledge, there are only two techniques that have focused

on patching techniques for smart contracts, namely SmartShield [86] and EVM-

Patch [74]. SmartShield patches the smart contracts by adding return value checks.

For the example in Fig.1.3, SmartShield modifies Line 6 by adding an if-clause

to check the return value of the refund transfer. If the transfer is not successful,

the check introduced by SmartShield will revert the execution, and thus neutral-

4

1 contract KotET {
2 address public king;
3 uint public claimPrice = 100;
4 receive() onlyOwner{
5 if (msg.value < claimPrice) revert();
6 king.send(calculateCompensation());
7 king = msg.sender;
8 claimPrice = msg.value;
9 }

10 function calculateCompensation() private {/*omitted*/}}

Figure 1.4: The example of a vulnerable smart contract patched by EVM-
Patch.

ize the vulnerability. On the other hand, EVMPatch patches the smart contracts

by restricting access to vulnerable functions. For the example in Fig. 1.4, it adds

an onlyOwner modifier to the receive() function. Hence, only the owner

of the contract has access to the vulnerable send() function. The onlyOwner

modifier is implemented by runtime checks on the caller’s address.

Unfortunately, both of aforementioned patching techniques suffer from three

critical shortcomings. First, SmartShield [86] requires manual inspection to locate

the vulnerabilities, which requires human effort. Second, extra checks introduced

by EVMPatch [74] lead to high gas overhead, which is the transaction fee in the

Ethereum blockchain. Thirdly, both SmartShield and EVMPatch fail to eliminate

the send function in the smart contract example, as they only add checks and

access controls. Due to these shortcomings, these two patching techniques do not

provide a scalable and efficient patching solution to the vulnerabilities.

1.3 Motivation
The vulnerable smart contracts usually originate from bad practices of Solidity de-

velopers [88], and a majority of these bad practices can be avoided by following

the latest Solidity documentation and using the high-level features of Solidity [42].

Hence, we find that the root causes of smart contract vulnerabilities can be elimi-

nated by following the Solidity official documentation. This insight motivates an

alternative approach to patching smart contracts to follow the guidelines, rather

than patching the vulnerabilities.

5

We extract a set of guidelines from the Solidity official documentation, which

suggest using alternatives to replace the patterns that lead to insecure code. An

example of such a pattern is a Solidity built-in feature, e.g., the send function,

which is not recommended by the Solidity documentation because of known vul-

nerabilities in its use. We term those patterns low-level functions as all of these

patterns include the use of low-level features of Solidity. The use of these fea-

tures is no longer recommended since November 2018, when the Solidity version

0.5.0 was released. We provide a detailed selection criteria to extract the guide-

lines in Section 2.1. Although the low-level functions are not recommended by

the guidelines, they are still supported by the EVM. Further, once a smart contract

is deployed, it is very difficult to update or modify it, and hence the old, insecure

patterns continue to proliferate. This is exacerbated by high levels of code reuse in

smart contracts [21, 86].

1 contract KotET {
2 address public king;
3 uint public claimPrice = 100;
4 receive() onlyOwner{
5 if (msg.value < claimPrice) revert();
6 king.transfer(calculateCompensation());
7 king = msg.sender;
8 claimPrice = msg.value;
9 }

10 function calculateCompensation() private {/*omitted*/}}

Figure 1.5: The example of a vulnerable smart contract patched by our ap-
proach. The low-level function send() in line 6 is replaced by the high-
level alternative, transfer(), as per the Solidity guidelines.

The Solidity guidelines also recommend alternatives to the low-level functions,

which are less vulnerable. We term them high-level alternatives. For example, the

high-level alternative to the send function is the transfer function, which is

free from the missing return value check vulnerability as the transfer func-

tion automatically throws an exception when the transfer fails. An example of the

patching of the running example by our approach is shown in Fig. 1.5.

In summary, the ultimate goal of this thesis is to patch the vulnerable smart

contracts by applying the guidelines defined in the Solidity official documentation

to replace the low-level functions with their high-level alternatives.

6

1.4 Contribution and Summary
In this thesis, we characterize the use of insecure patterns that we term low-level

functions in Solidity. We first perform a detailed analysis of the insecure code

patterns that are mentioned in the Solidity documentation, and that have secure

replacements (i.e., high-level alternatives). We find that these low-level functions

are widely used in real-world smart contracts on the Ethereum blockchain. We

further find that the majority of the uses of the low-level functions (more than 95%)

are gratuitous for the smart contract’s functionality, and can hence be replaced by

high-level alternatives. However, there are many different patterns of such low-

level functions, which make them challenging to replace in a uniform manner.

Based on the above insight, we then build an automated static replacement

engine, GoHigh 1 that works on the Abstract Syntax Tree (AST) of the smart con-

tract’s source code to replace low-level functions with high-level alternatives. We

distill the different patterns of low-level functions that are commonly used in smart

contracts into AST templates, and propose replacements for the patterns taking into

account their unique constraints, without requiring any programmer effort.

GoHigh covers multiple classes of security vulnerabilities in smart contracts

detected by prior work [24, 53, 84]. None of these papers propose any solution to

deal with the vulnerabilities however, and leave it up to the developer to rewrite the

contracts. In comparison, GoHigh addresses both the return value check-related

vulnerabilities [24, 53, 84] as well as the use of low-level and deprecated functions

vulnerabilities [24], without requiring any effort from the developer. We categorize

these vulnerabilities in different issues, and further elaborate on these vulnerabili-

ties in Section 2.1.4.

To the best of our knowledge, we are the first to empirically characterize the

use of low-level functions in Ethereum smart contracts, and propose an automated

technique to statically replace them with high-level alternatives.

In summary, we make the following contributions in this thesis.

• We define a low-level function based on the guidelines in Solidity documen-

tation, and empirically analyze the usage of low-level functions in a real-

1The name GoHigh are inspired by a quote from Michelle Obama in 2016, “When they go low,
we go high”.

7

world dataset consisting of nearly 150,000 Ethereum smart contracts (“base

dataset”). We find that about 14% of the contracts in the base dataset use

low-level functions, and that about 80% of these uses in the base dataset are

gratuitous for the smart contract’s functionality.

• We mine the base dataset to distill 11 distinct patterns of low-level functions

that are used in the contracts, and represent the patterns as AST structures.

• We develop an automated, source-to-source transformation tool called Go-

High to detect low-level functions corresponding to the AST structures, and

to replace the low-level functions with high-level alternatives2.

• We analyze two more recent datasets of Ethereum smart contracts consist-

ing of over 2,000,000 contracts (“recent dataset” and “latest dataset”), that

were deployed well after the publication of Solidity guidelines to avoid low-

level functions. We find that the number of smart contracts using low-level

functions more than doubled (40%) compared to the base dataset (14%), and

more than 95% of these uses were gratuitous for the contract’s functionality,

which covers 38% of the overall space of the contracts. We term this cate-

gory as “replaceable” since all the contracts in this category have low-level

functions that can be replaced with high-level alternatives. The overall space

of the contracts is shown in Table 1.1.

Table 1.1: The overall space of the contracts.

Total Use Low-level Functions Replaceable Verified Not Verifiable

Percentage 100% 40% 38% 30.4% 7.6%

Absolute Number 2,150,000 860,000 817,000 653,600 163,400

• We find that the patterns distilled from the base dataset also applied to all

the contracts in both the recent dataset and the latest dataset, and that they

covered 100% of the contracts in both datasets. Further, GoHigh reduces

the number of compiler warnings in the contracts by 4.9%. We also com-

pare the behavior of the contracts after replacement by GoHigh by replaying

2Our artifacts are available at https://github.com/DependableSystemsLab/GoHigh

8

Ethereum transactions on the original and replaced contracts, and checking

whether their externally visible states match. For the contracts that could

be verified (about 80%), we find that all of the state changes matched after

replacement by GoHigh in all datasets. The remaining 20% (which takes

7.6% of the overall space of the contracts) are not verifiable due to their ex-

ternal dependency on other contracts. Further, the gas costs of the contracts

also reduced by 5% on average after the replacement performed by GoHigh.

Finally, GoHigh takes between 0.1 and 60 seconds for replacement, with an

average of 7 seconds per contract.

9

Chapter 2

Background and Related Work

In this chapter, we start by explaining the basic concepts of the blockchain and

the smart contract. We follow up with security issues in the smart contract. We

conclude with related work in the area of smart contract vulnerabilities.

2.1 Background
In this section, we first discuss the architecture and processes of blockchain, fol-

lowed by an introduction to the main concepts of the Ethereum blockchain and So-

lidity language. Then, we provide an overview of security issues in smart contracts

written using Solidity, namely Arithmetic Underflow and Overflow, Reentrancy,

and Block Gas Limit.

2.1.1 Blockchain

At a high level, the blockchain is a ledger system based on a peer-to-peer network,

which keeps transaction records to present the value transfer between accounts.

Each peer, also known as a miner, in the blockchain takes the responsibility to

validate and pack the transactions it receives, which compose a “block”. Peers in

the blockchain mine and append the latest block to previous blocks and broadcast

it. If the latest block is valid and is accepted by the network, it will be a part of the

ledger. Bitcoin [58] is the first implementation of blockchain, which employ Proof

of Work (POW) as its consensus protocol. In POW protocol, all the peers should

10

race to find a nonce to generate a hash with a specific number of leading zero bits.

The winner claims the privilege to build the block and receives the block reward.

2.1.2 Ethereum and Smart Contract

Ethereum is the second-most popular blockchain after Bitcoin, and its currency is

ETH. The main difference between Bitcoin and Ethereum is that Ethereum supports

smart contracts. A smart contract is a program running on the blockchain with a

unique account address denoting smart-contract accounts. The user’s account is

called Externally Owned Account (EOA).

Transactions in Ethereum are classified into two categories, the ETH transfer

transactions, and contract executions transactions, in terms of the recipient of the

transactions. If a transaction is sent to an EOA, the transaction is an ETH transfer;

otherwise, it is a contract execution. Ethereum charges a fee for all transactions

as part of the incentive to the Ethereum blockchain peers, termed gas. For an

ETH transfer, the gas usage is a flat 21,000 units (since 2015); while for contract

executions, the gas cost depends on the storage and operation complexity of the

target contracts.

The gas serves as the transaction fee for a blockchain transaction. The gas cost

of a transaction c is calculated by c = u× p, where u denotes the gas usage by

transaction and p denotes the gas price. The gas usage u is determined by the oper-

ations of the executed smart contract function. For example, the ADD operation in

Ethereum uses 1 unit of gas, while the SLOAD operation uses 200 units [18]. Note

that the gas used by operations may change according to EVM versions. The gas

price is a user-determined value of the user’s willingness to pay for the transaction.

The unit of gas price is Gwei (1018 wei = 109 Gwei = 1 ETH).

The gas cost protects the Ethereum network from Denial of Service (DOS) at-

tacks via sending a large number of transactions. To conduct a DOS attack on

Ethereum, the attackers must pay a considerable amount of gas fee to let attack

transactions be accepted. The gas cost also serves as one of the incentives to the

Ethereum blockchain peers for executing smart contracts.

11

2.1.3 Solidity Language

Solidity is a programming language to write smart contracts. Solidity is a statically

typed, object-oriented, and Turing-completed language with inheritance, library,

and other features supported. Figure 2.1 shows an example of the structure of a

Solidity smart contract. In Line 2, we define a contract called “Register”, where

a student can register his/her name. Before that, in Line 1, we first define the

compiler version of Solidity. Because of the fast pace change of Solidity com-

piler versions, the latest compilers may not be backward-compatible with all smart

contracts. In our case, the acceptable compiler versions are >= 0.8.6 < 0.9.0.

The Solidity language supports many built-in types, including uint, bytes,

string and etc. Further, it also has special types such as address (in Line 3).

The address is a unique global identifier for all EOAs and smart contracts. Any ETH

transfers and contract executions must target a specific address. The “mapping” is

a built-in key-value dictionary in Solidity. As shown in Line 4 and 5, there are two

maps mapping from an address to a Boolean value and to a string, respec-

tively. Solidity has access modifiers to control the accessibility to state variables

and functions. The public modifier allows both internal and external access to

variables and functions. However, the private modifier can only prevent access

from other addresses inside the blockchain, but it cannot prevent users from reading

the value from outside of the blockchain. Line 6 shows the header of a function.

The function is an external function, which means that it can only be called

from outside of the contract or through this, a reference to the current contract

instance. The header also indicates that the function returns a Boolean value.

The function body is shown in Line 7-9. It contains a require statement,

a value assignment and a return statement. Ethereum is a public blockchain

that allows every user who has a connection to the Ethereum network to operate,

and so users have access to all smart contract deployed on Ethereum by default.

The require statement usually serves as an input sanitizer and an access control

mechanism. If the value of the first parameter is not true, the require statement

will revert the execution and will alert the user with the error message defined in

the second parameter.

12

1 pragma solidity ˆ0.8.6;
2 contract Register {
3 address public admin;
4 mapping(address => bool) private registered;
5 mapping(address => string) public studentNames;
6 function registerName(string memory _name) external returns(

bool){
7 require(!registered[msg.sender], "Register:: Already

registered.");
8 studentNames[msg.sender] = _name;
9 return true;

10 }
11 }

Figure 2.1: An example of Solidity smart contract.

2.1.4 Security Issues in Solidity Smart Contracts

As programs are working on a permissionless system, i.e., by default all users have

the capability to read, write and execute files in the system, Solidity smart contracts

face many security issues [10]. Further, the high financial reward of exploiting

the vulnerabilities makes smart contracts a ripe target for attackers. We discuss

five typical security issues as follows. The first four issues (Arithmetic Underflow

and Overflow Issue (I1) [3], Reentrancy Issue (I2) [5], Unchecked Return Value

(I3) [4], and Use of Low-Level and Deprecated Solidity Functions (I4) [24]) are

due to the nature of Solidity language; the last issue (DOS with Block Gas Limit

Issue (I5) [6]) is due to the Ethereum blockchain and EVM design.

Arithmetic Underflow and Overflow (I1): An underflow/overflow happens

when an arithmetic operation reaches the maximum or minimum size of a type.

For example, consider a number stored in an uint8 type, i.e., in an 8-bit unsigned

integer number ranging from 0 to 28 − 1, if an arithmetic operation attempts to

create a value 28, which is outside of the range that an uint8 type can represent,

an overflow occurs. If the contract used the incorrect value in critical decisions, it

will lead to financial loss. For example, assume a user withdraws 100 ETH from

a smart contract bank, while her balance is only 99 ETH, which is stored in an

uint8 type. Without proper checks on the subtraction operation in calculating the

balance, the value underflows to 28 − 1 ETH. Further, due to the immutability of

blockchain, the bank owner cannot correct the balance. One common solution to

this issue is the SafeMath standard library [63].

13

Reentrancy (I2): The atomicity and sequentiality of a contract execution may

be broken when a contract is interacting with an external contract. While devel-

opers may assume that a non-recursive function cannot be re-entered when it is

revoked [10], this is not always the case because the fallback mechanism allows

the callee contract to re-enter the caller function. This may result in unexpected

behaviors. The fallback mechanism in Solidity smart contract is designed to han-

dle ETH received, and function calls that do not match any defined functions. The

fallback functions are usually used to redirect function calls and handle received

ETH. There are two types of fallback function, receive() and fallback().

The ReentranceVictim contract and the ReentranceAttacker con-

tract in Fig.2.2 show an example of a pair of reentrancy victim and attacker. The

ReentranceVictim contract is a bank that allows its users to withdraw ETH

from. The withdraw() function first retrieves the ETH amount of deposit (Line

4). Then, it transfers the ETH to the address who calls the withdraw() function

(Line 5). Finally, it resets the deposit amount to zero (Line 6). If the withdraw()

function is executed atomically, the function is free from attack. However, because

ETH transfer (Line 5) triggers the fallback mechanism in ReentranceAttacker

(Line 11), resetting amount (Line 6) is not executed right after ETH transfer (Line

5). Instead, as the fallback function defined in contract ReentranceAttacker

(Line 3), it re-enters the withdraw() function, and transfer the same amount of

ETH for a second time. Noteworthy, the “Decentralized Autonomous Organiza-

tion (DAO) hack” exploited this vulnerability in June 2016, and the “Agave hack”

exploited the very same vulnerability in March 2022. Both of them led to millions

of USD-worth ETH loss.

Unchecked Return Value (I3): As shown in Chapter 1, the lack of return value

check will resume the function execution even if the send function is unsuccess-

ful. If the ETH transfer accidentally fails or malicious users force it to fail, this

vulnerability may cause unexpected behavior in the subsequent program logic. In

the example we presented in Chapter 1, the consequence is that the old king fails to

get his refund. Other than the send function, the low-level call functions have

the same vulnerability. We further elaborate on this issue by giving code examples

in Chapter 3.

Use of Low-Level and Deprecated Solidity Functions (I4): Using low-level

14

and deprecated functions can violate the specification in unexpected ways that ef-

fectively disable built-in protection mechanisms and introduce exploitable incon-

sistencies. In the Solidity official documentation, the low-level call and inline as-

sembly are marked as the low-level functions and should be avoided whenever it

is possible. Meanwhile, the send function shown in Fig. 1.2 is labeled as dep-

recated, and thus should not be used. The use of the low-level and deprecated

functions introduces other issues (e.g., I3). Therefore, it should be avoided in de-

veloping Solidity smart contracts.

Block Gas Limit (I5): The Ethereum blockchain specifies a gas limit for each

block. Recall that the block is a set of transactions that are packed and verified

by the Ethereum peers. The sum of the the gas used of all transactions in one

block must be lower than the gas limit, otherwise the block is not valid and will

not be accepted by the Ethereum network. The block gas limit also constrains the

maximum gas used of a single transaction. The gas used for iterating over a large

array grows with the array size. If the gas used of querying the array exceeds the

block gas limit, the query will never succeed.

The BlockGasLimit contract in Fig.2.2(c) shows an example of a coding

pattern that may reach the block gas limit. The field players is a dynamic array

to store all the players of the contract. Players add themselves to the contract via

calling the addPlayer() function. The claimWinner() function will send

the winner all the ETH stored in the contract. The winner is chosen as the player

who has the largest address. When the contract is determining the winner, it loops

over the array. If the array is so long that the iterating it drains all the gas, the

execution will be reverted, and the winner can never claim his/her reward.

2.2 Related Work
In this section, we discuss related work on empirical analysis, vulnerability de-

tection techniques, testing techniques for Solidity smart contracts, and dynamic

features in other programming languages. We classify the related work into five

categories (1) Empirical Study, (2) Detection, (3) Testing, (4) Patching, and (5)

Insecure Features in Other Languages. First, we discuss the vulnerable features in

Solidity smart contracts, followed by the detection techniques and their limitations.

15

1 contract ReentranceVictim {
2 mapping(address => uint) balance;
3 function withdraw() {
4 uint amount = balance[msg.sender];
5 payable(msg.sender).call{value: amount}("");
6 balance[msg.sender] = 0;}}

(a) An example of vulnerable contract with the reentrancy issue.

1 contract ReentranceAttacker {
2 function attack() {reentranceVictim.withdraw();} // start

attack
3 receive() {reentranceVictim.withdraw();}}

(b) An example of attacker contract that exploits the reentrancy issue.

1 contract BlockGasLimit {
2 address[] players;
3 function addPlayer() {players.push(msg.sender);}
4 function claimWinner() {
5 address winner = address(0);
6 for (uint i=0; i<players.length; i++) if (players[i]>

winner) winner=players[i];
7 payable(winner).transfer(this.balance); }}

(c) An example of vulnerable contract with the block gas limit issue.

Figure 2.2: Examples on Solidity smart contract issues.

Then, we discuss the existing testing and patching tools. Finally, we discuss the

insecure features in other programming languages.

2.2.1 Empirical Study

Recent work carried on multiple empirical studies on Solidity programming lan-

guage features and vulnerabilities. Atzei et al [10] categorized known vulnerabil-

ities in Solidity smart contracts, which are caused by Solidity language features.

Hwang and Ryu [42] studied smart contracts that use older version Solidity com-

pilers. Their work reveals that more than 98% of real-world Solidity contracts use

older version compliers without vulnerability patches. We also discuss vulnerabil-

ities from deprecated functions and specifically focus on the low-level function in

this thesis. Wang et al [88] summarized 41 common features used in real-world

Solidity smart contracts. Their results indicate that high-level function invocations

have been one of the most popular features in Solidity. And the low-level calls

and send are used in 14.77% and 5.62% among all open-source Solidity smart

16

contracts, respectively, which complies with our observations.

2.2.2 Detection

There has been significant work in detecting vulnerabilities in smart contracts.

Pattern-based Method. Securify [84] uses both compliance and violation pat-

terns to detect possible violations of the secure patterns in smart contracts. It pro-

vides four default sets of patterns, and a domain-specific language for user-defined

patterns. SmartCheck [80] extracts syntax and semantic information from the smart

contract’s source code. It then utilizes XPath, a query language in searching nodes

in Extensible Markup Language (XML) documents, to match vulnerable patterns.

However, due to the increase of complexity in contract logic, SmartCheck does

not work correctly for Solidity versions starting with 0.6.0 and is announced dep-

recated in 2020. MadMax [35] detects gas-related vulnerabilities (I5) from the

Control Flow Graph (CFG), memory layout, and data structure of the smart con-

tract. It implements a decompiler to transform EVM bytecode into Intermediate

Representation (IR), and then employ IR rules to filter possible violation of gas-safe

patterns. eTainter [33] employs taint analysis in gas-related vulnerability (I5) de-

tection, with the consideration of protective patterns. Slither [28] is a static analysis

framework that converts Solidity smart contract into an intermediate representation

called SlithIR. Slither then uses data-flow analysis to detect bug patterns scoped

within a function. The shortcoming is that Slither focuses on data-flow at function

level and fails to do path reasoning, which leads to false alarms. SAILFISH [16]

and SolType [79] detect state inconsistency and arithmetic overflow (I1), respec-

tively, on top of SlithIR. Beillahi et al [13] propose an automated detection and

patching tool on transaction order dependency vulnerabilities based on SlithIR.

Clairvoyance [94] extends Slither via utilizing cross-function and cross-contract

information, reaching both high accuracy and low false positive in detecting reen-

trancy bugs (I2).

Symbolic Execution Method. Oyente [53] is the first tool for detecting smart

contract vulnerabilities using symbolic execution. It is capable to detect four types

of vulnerabilities, i.e., mishandled exceptions, transaction-ordering dependence,

timestamp dependence, and reentrancy (I2). Chen et al [20] extended Oyente by

17

combining with CFG construction and stack event analysis. The proposed DE-

FECTCHECKER detects 20 types of smart contract vulnerabilities. Se et al [75]

combined symbolic execution with a language model to solve the path accessi-

bility problem. However, their tool fails to detect reentrancy defects (I2), which

remains one of the most severe vulnerabilities in smart contracts. RA [23] is a

symbolic execution-based analyzer detecting only reentrancy vulnerability. The

authors developed an emulator, which emulates inter-contract reentrancy attacks

(I2), which is the first work that can detect inter-contract attacks without executing

the smart contracts. ETHBMC [30] provides a bounded model checker based on

symbolic execution to automatically generate exploits to inter-contract vulnerabil-

ities. The authors showed ETHBMC’s effectiveness by running experiments on

both toy examples and real-world smart contracts. The latter experiment success-

fully extracted ETH from more than 5,000 real-world smart contracts. Similarly,

Feng et al [29] presented the state dependency of exploits as summaries and em-

ployed symbolic execution to query possible exploits in Solidity smart contracts.

Machine Learning-based Method. Extensive work has explored the possibil-

ity of leveraging machine learning techniques in detecting Solidity smart contract

vulnerabilities, including K-nearest neighbors algorithm [93], random forest [92]

and decision tree [87]. In terms of neural network, Liu et al [50, 51] first em-

ployed Graph Neural Network to extract features from the CFG and the data-flow

semantics of the source code of smart contracts. However, the proposed tools work

on the function level, which means that they fail to detect any inter-function and

inter-contract vulnerabilities. Peculiar [89] targets the crucial data flow graph of

Solidity smart contacts, and involves a pre-trained sequence-to-sequence tagging

neural network model to process both the source code and data flow graph. Other

attempts on transferring Natural Language Processing (NLP) knowledge into the

smart contract vulnerability detection also considered different network architec-

tures, e.g., word2vec [9, 38], LSTM [76], and BERT [43].

Evaluation of Detection Tool. The idea of “analyzing programming analyz-

ers” [19] is attractive since most tools do not produce “the right answer” all the time

because of over-fitting, algorithmic limitation, and engineering trade-offs. Ghaleb

and Pattabiraman [32] evaluated a wide range of Solidity smart contract analysis

tools [24, 28, 53, 80, 84] using bug injection, revealing that the evaluated tools fail

18

to detect several instances of bugs despite the claims made by the papers describing

the tools. Meanwhile, all the evaluated tools report many false positives. Durieux

et al [26] evaluated nine automated analysis tools [24, 28, 53, 57, 61, 80–82, 84]

using an annotated dataset, and a real-word contract dataset. Their results showed

that the existing tools are only able to detect together 42% of the vulnerabilities

from the annotated dataset while reporting low agreement among the evaluated

tools. Yu et al [96] specifically analyzed the false positives on reentrancy reported

by [28, 53], and derived five path filters to eliminate false positives. Groce et

al [37] compared three Solidity smart contract analysis tools [28, 80, 84] by pro-

ducing mutants of real code. Their experiments also revealed that Solidity analysis

tools report high false-positive rates. However, their experiments are based on 100

randomly selected smart contracts from EtherScan, which may not be representa-

tive.

2.2.3 Testing

Fuzz Testing. Fuzzing is an testing technique used to test programs with ran-

domly generated input data. Reguard [49] detects reentrancy vulnerability (I2)

using fuzzing. Reguard translates Solidity smart contracts into C++ files, and then

uses fuzzing engines (e.g., AFL and LibFuzzer) to generate exploits. However, the

authors evaluated Reguard using only five Ethereum contracts, which is insuffi-

cient to reflect the effectiveness of the fuzzing technique in testing smart contracts.

Jiang et al [45] proposed a fuzzing framework specific to Solidity smart contracts,

detecting 7 categories of vulnerabilities including reentrancy (I2). However, the

proposed tool, ContractFuzzer, is only able to reenter the same function as the

initial call, which greatly narrows down the search space for detecting reentrancy

vulnerability. ReDefender [65] extends ContractFuzzer by leveraging the storage

state and depth of the call stack to automatically generate test cases with high ac-

curacy in detecting reentrancy vulnerabilities (I2). Nguyen et al [59] proposed a

feedback-based adaptive fuzzer called sFuzz to improve the branch coverage effi-

ciency. Ji et al [44] extended sFuzz using dynamic taint analysis, which increases

the covered branches by 6%. Echidna [36] and Foundry [66] are fuzzing frame-

works widely used in industry, both of which feature efficient test generation with

19

simple configuration and user-friendly manuals.

Formal Verification. Formal verifications are based on formal methods of

mathematics and are able to provide formal proof of the correctness of the software

program with respect to its specification. Bhargavan et al [15] proposed the first

functional programming language, named F* to analyze and verify both the run-

time safety and the functional correctness of Solidity smart contracts. FSolidM [54]

is a formal verification tool on Solidity smart contracts that allows its user to de-

sign a smart contract as a finite state machine and then transform it into Solidity.

VeriSolid [55] extends FSolidM by introducing the aspect of formal verification

into the tool, which provides the user with the ability to specify intended behav-

ior in the form of liveness, deadlock freedom, and safety properties. However,

both FSolidM and VeriSolid restrict users with limits of the provided templates

and they only verify the state machine, instead of the smart contract’s properties.

VerX [69] also extends FSolidM in verifying temporal properties in the finite state

machine. Park et al [67] proposed KEVM, a complete formal semantics of the

EVM powered by K-framework, to reason about all possible corner-case behaviors

of the EVM bytecode. Other than K-framework, existing work also employed Is-

abelle/HOL [71], Coq [77] and SMT solvers [7] to formally prove the correctness

of Solidity smart contracts. Solythesis [47] is a source to source runtime valida-

tion tool on Solidity smart contracts. However, it requires an EVM update, and

all Ethereum peers must agree to migrate to the updated version in order for the

protection to take effect.

2.2.4 Patching

As we already introduced two major patching techniques, SmartShield and EVM-

Patch, in Chapter 1, we recapitulate them quickly and focus more on their exten-

sions in this section. SmartShield [98] is the first tool on protecting low-level calls

by adding a return value check to each of them. Elysium [83] extends SmartShield

by adding two patching templates on access control and denial of service, but fails

to address the shortcomings of SmartShield. Another recent technique, EVM-

Patch [74] protects not only the low-level calls statement but the whole function

by adding access control to it. The access controls check whether a contract is

20

properly initialized before being used (whether the owner os correctly configured),

and restrict the caller of sensitive and vulnerable functions (e.g., initialize, self-

destroy, functions that contain low-level functions). sGuard [60] and HCC [34]

extend EVMPatch by extracting a CFG and data-flow pattern to patch reentrancy

and arithmetic overflow in the bytecode level.

2.2.5 Insecure Features in Other Languages

Insecure features in other programming languages have been well-studied. For

example, Richards et al performed a large-scale study on the usage of eval in

JavaScript [73]. Prior to that work, they carried out a more general analysis on

more dynamic features of JavaScript [72]. The low-level functions in Solidity are

similar to the eval call in JavaScript, which allows developers to convert strings

into executable code. Similarly, Holkner and Harland [41] found that dynamic

code execution is also widely adopted in Python. Livshits et al [52] conducted

static analysis on Java reflection, including reflective calls whose functionality is

similar to Solidity Low-level call (LC). Insecure calls in C code are frequent

as well, e.g., Austin et alproposed a source-to-source code transformation tool to

address the point and array access errors, and LibSafePlus [11] provides runtime

protection against buffer overflows. However, low-level functions in Solidity are

fundamentally different.

2.3 Summary
The native support of value transfer in Ethereum blockchain and the customizable

Solidity smart contracts make them one of the best candidates for financial infras-

tructure. However, the emerging issues of Solidity smart contracts reflect a huge

gap between the security and dependability expectation of financial infrastructure

and the reality of the imperfect Ethereum blockchain and Solidity language. To

address these issues, researchers carried out extensive studies in testing smart con-

tracts and in detecting their vulnerabilities.

To date, most of the previous work in vulnerability detection against Solid-

ity smart contract has been confined to detecting potential attacks [28, 35, 53, 80,

84, 89, 94], instead of providing patching. Furthermore, the detection techniques

21

report many false positives [26, 32, 37]. Existing work also shows that using high-

level features in Solidity [88, 90] and following the documentation of the latest

Solidity compiler with high-level features supported [42] help secure smart con-

tracts. However, to the best of our knowledge, there are no tools for automated

enforcing the documentation recommended features at the source code level. We

aim to fill this gap with our GoHigh which enables the replacement of low-level

functions with their high-level and documentation recommended alternatives, thus

providing the capability to strengthen the existing smart contracts. In Chapter 3,

we present the definition of low-level functions, and the analysis of their usage

based on a smart contracts dataset.

22

Chapter 3

Low-Level Functions: Definition
and Empirical Study

In this chapter, we start by presenting the definition and selection criteria of low-

level functions. We follow up with the empirical study on the use of them. We

conclude with the key observations we derived from the empirical study.

3.1 Definition
In this section, we first define low-level functions, and present the criteria of our

selection of the same by distilling the Solidity documentation. We then delve into

the three categories of low-level functions considered in this thesis, namely Dep-

recated send, Low-level call and Inline Assembly. Finally, we outline potential

vulnerabilities of low-level functions with examples.

3.1.1 Selection and Definition of Low-level Functions

We define a low-level function as one that has a warning against its use in the So-

lidity documentation, and can be detected and replaced by syntax-level analysis.

To extract low-level functions, we systematically study the official Solidity docu-

mentation1 and collect all the alerts highlighted in warning boxes in the Language

Description section of the documentation (the other sections have to do with tu-

1https://docs.soliditylang.org/en/v0.8.6

23

Figure 3.1: An example of a warning box in Solidity documentation.

torials for beginners and implementation details of the EVM, neither of which are

relevant for us).

We find that there are 28 warning boxes in total in the documentation1. Of the

28 warnings, we observe that seven warnings (W2-3, W7, W16, W19, W24-25) are

constrained to a specific range of compiler versions. We exclude such warnings as

they can be eliminated with later versions of Solidity compilers. For example, in

Figure 3.1, the W2 says “Before version 0.5.0, a right shift . . . ”, which means that

it is confined to Solidity compilers version 0.4.x or earlier.

1We assign numbers to the warnings in the order of their appearance.

24

Table 3.1: Different categories of warnings in the Solidity documentation, and their characteristics for inclusion in our
study.

Name Included Vulnerabilities Warnings Criteria for Inclusion
No Mature Solutions Real-world Exploits No Semantic Knowledge

AO ✗ Underflow/overflow W1, W4, W17 ✗ ✓ ✓

DS ✓ Mishandled exception
Existent check
Out-of-gas

W5, W10, W21 ✓ ✓ ✓

LC ✓ Mishandled exception
Reentrancy
Existent check
Argument Invalid

W6, W11-13, W18 ✓ ✓ ✓

IA ✓ Same as LC’s W26-28 ✓ ✓ ✓

CF ✗ Not unique signature W8 ✓ ✗ ✓

BT ✗ Bad randomness W14 ✓ ✓ ✗

CS ✗ Balance mismatch
Hidden state exposure
Unexpected copy be-
havior

W15, W20, W22-23 ✓ ✓ ✗

25

We then group the remaining 21 warnings into seven categories, i.e., Arithmetic

Operation (AO), Deprecated send (DS), LC, Inline Assembly (IA), Cryptographic

Function (CF), Block Timestamp (BT) and Contract State (CS). Table 3.1 shows

these categories. These categories are based on the corresponding operations. For

example, warnings about the send function fall into the DS category, and warnings

about arithmetic operations (e.g., add, subtract, shift and etc.) fall into the AO cat-

egory (I1). The LC category includes warnings about low-level call family, while

the IA category contains all warnings from the Inline Assembly subsection. The

CF category and BT category are about the misuse of the block.timestamp

attribute and the ecrecover cryptographic function, respectively. The CS cat-

egory includes operations that influence the contract states, such as the contract’s

balance, state visibility, and self-destruct function.

We follow three criteria to select the low-level functions to focus on in this

work. First, there should be no widely available, mature solutions to the prob-

lem, e.g., a practical and widely-used library. Second, the category should have

real-world exploits. Some vulnerabilities are in functions that are seldom used by

developers, and thus have no real-world exploits. Third, the problem must be ad-

dressable with simple syntactic replacement, and not require semantic knowledge

of the contract. This is because, as a static analysis technique, our technique has

no information about the contract’s semantics beyond the source code.

Based on the above criteria, we choose three categories of warnings as low-

level functions, namely DS, LC, IA. DS and LC both operate on address in Solid-

ity, and share many similarities in their vulnerabilities, i.e., missing return values

and existence check (I3). The documentation also suggests alternatives (e.g., trans-

fer for send, high-level calls that operate on contract instances for low-level calls)

to replace them. There have also been real-world vulnerabilities in both of these

categories. For example, the DAO attack2 exploited the reentrancy vulnerability

(I2) in a low-level call and resulted in a hard-fork in Ethereum. Therefore, we in-

clude the DS and LC categories. We also include the IA category, as there is also a

call instruction in inline assembly which is similar to the LC category, and thus it

shares the same vulnerabilities as LC. Although there are no real-world exploits in

2https://www.coindesk.com/understanding-dao-hack-journalists

26

the IA category, many attacks in the DS and LC categories also apply to it.

We briefly describe why we exclude the other categories. AO (I1) has been ex-

tensively studied in the research community [8, 46], and can be easily mitigated by

using the arithmetic functions in the Solidity math library named SafeMath [39] or

by upgrading to Solidity version 0.8.x. There has also been extensive work on byte-

code level rewriting [12, 31] to use such techniques. BT requires understandings

of a contract’s semantics for its mitigation. A block timestamp is a number filled

by the block miner, and can be modified during block generation, which makes it

vulnerable to malicious miners. While it is recommended to avoid using BT as a

source of randomness, the specifics of when such use is acceptable depends on the

contract’s semantics. Similarly, CS require semantic knowledge for mitigation to

determine whether a state of the contract is hidden. Therefore, we exclude these

categories. Finally, we exclude CF as we could not find any real-world exploits in

this category (at the time of writing).

In the following subsection, we describe the three categories of warnings in our

definition of low-level functions in this thesis: DS, LC, and IA. In the rest of this

thesis, we refer to the warnings to avoid low-level functions as Solidity guidelines.

3.1.2 Low-Level Functions Included

Deprecated send. Deprecated send is a member function of an address object

that is used to send ETH to an address. Address is a built-in data type of Solidity,

which supports a series of functions that directly interact with this address. By

invoking DS, the contract sends ETH to the targeted Ethereum account (address

receiver in Fig.3.2a). However, a failed transaction via DS does not trigger a

rollback. Instead, it returns false, so the execution continues even though the

transaction fails (I3). As a result, from the Solidity version 0.4.10 onwards, the

documentation recommends that developers use a safer replacement for DS (e.g.,

transfer).

Low-level call. Low-level call is a member function of an address to call a

function in this address (if any). It is used to call an arbitrary function, similar to a

function pointer in C and C++. It is primarily used to interact with contracts that do

not adhere to the Application Binary Interface (ABI), or to get more direct control

27

over the encoding. There are three functions for performing such LCs, namely

call, staticcall and delegatecall. Figure 3.2b shows an example of an

LC: it takes a single byte memory parameter (payload in the example) and returns

the success condition as well as the data (I3). We focus on the call function, as it

is used by 98.7% of contracts using the call functions in our smart contract dataset

(Section 3.2).

Inline Assembly. Solidity allows developers to have fine-grained control on

the memory allocation in contracts via IA, which is close to the EVM. Developers

leverage this feature to save gas cost, especially for frequently-used contracts. IA

also provides a call instruction. Figure 3.2c shows an example of a call in IA

- it calls a contract using a hand-crafted payload (calldata) at a given address

(childContract), returning 0 on error (e.g., out of gas) and 1 on success(I3)3.

Crafting the payload may result in corrupted data if the encoding is not correctly

implemented. Moreover, the call instruction can also be used to invoke arbitrary

function calls by the smart contract, which lead to the same issues as LCs.

1 address payable receiver = address(0x123);
2 receiver.send(10);

(a) An example of DS.

1 address nameRegister = address(0x123);
2 bytes memory payload = abi.encodeWithSignature("register(string)"

, "John");
3 nameRegister.call(payload);

(b) An example of LC.

1 //0x095ea7b3 == "approve(address,uint256)"
2 bytes memory calldata = abi.encodeWithSelector(0x095ea7b3, this,

_childTokenId);
3 assembly {
4 let success := call(gas, childContract, 0, add(calldata, 0x20

), mload(calldata), calldata, 0)
5 }

(c) An example of IA.

Figure 3.2: Examples of low-level functions.

3https://docs.soliditylang.org/en/v0.8.6/yul.html#yul-call-return-area

28

3.2 Empirical Study
In this section, we perform an empirical study of smart contracts deployed on the

Ethereum blockchain. We first describe the Solidity smart contract dataset and the

underlying tools that we used to collect the data. Then, we study the frequency

and the usage of low-level functions utilizing the dataset, followed by the results.

Finally, we present two key observations that we derive from the results on the

low-level functions.

3.2.1 Dataset

We use a real-world smart contracts published to the Ethereum blockchain, from

March 1, 2016 to September 30, 20194. Of the 16 million contracts in this dataset,

149,363 contracts have their source code available - these constitute our dataset.

All of the contracts specify Solidity compiler versions from 0.4.0 to 0.5.4. The

version information for a contract is important, as the contract will not compile if

the compiler version does not match the declared one (in some cases, no compiler

version is specified, and so we try compiling it with different versions to see if

there is a match). Note that the guidelines in the documentation were introduced

for Solidity compiler 0.4.0 and evolved from 2016 to 2018, before being finalized

in November 2018 with the release of Solidity 0.5.0. Thus, these contracts were

developed more or less simultaneously with the guidelines in the documentation.

We determine whether a contract is unique based on its MD5 checksum, as

it has been shown that many contracts in Ethereum are duplicated [21, 86]. We

find that there are 61,444 unique contracts in our dataset (41% of the dataset).

Therefore, we present results for both the unique and overall contracts.

3.2.2 Tools

We quantify the usage of low-level functions by collecting smart contract addresses

using Ethereum-ETL [1] and performing offline analysis subsequently. The source

code of the contracts is collected from Etherscan [2], a public platform that mon-

itors every transaction recorded in Ethereum, including the creation of smart con-

tracts and users’ interaction with them.
4We use more recent datasets to evaluate GoHigh in Chapter 5.

29

3.2.3 Results

We start by studying the frequency of low-level functions in the smart contracts in

the dataset. Shown in Fig.3.3a, We find that among 149,363 contracts, 13.8% use

low-level functions. The percentage increases slightly to 17.2% if we consider the

set of unique contracts, as shown in Fig.3.3b. These figures show that low-level

functions are widely used in smart contracts.

13.8

86.2

17.2

82.8
Low-level Functions
No Low-level Functions

Figure 3.3: Low-level functions usage in the base dataset in (a) all contracts,
and (b) unique contracts

We further perform detailed analysis of low-level functions. Before doing so,

we subdivide LC into two sub-categories: (1) constant string LC and (2) arbitrary

LC. The former refers to cases where the developer hard-codes the function to be

called into a constant string, and invokes the function using an LC. The latter refers

to cases where the call is made to an arbitrary function whose address is difficult to

determine at compile-time. Figures 3.4 shows examples of the constant string LC

and the arbitrary LC.

1 function constant_string_call() public{
2 address hardcode_address = address(0x123);
3 bytes memory hardcode_payload = abi.encodeWithSignature(
4 "register(string)", "John");
5 hardcode_address.call(hardcode_payload);
6 }

(a) An example of constant string LC.

1 function arbitrary_call(address arbitrary_address, bytes memory
arbitrary_payload) public{

2 arbitrary_address.call(arbitrary_payload);
3 }

(b) An example of arbitrary LC.

Figure 3.4: Examples of two subcategories of LCs.

We calculate a more detailed usage statistics of low-level functions in Fig.3.5,

30

49.9
27.0

15.1
2.98.0

46.7
39.8

6.73.73.1

Constant string LC

DS

IA

Arbitrary LC

Other

Figure 3.5: The distribution of low-level functions in the base dataset in (a)
all contracts, and (b) unique contracts.

including the two sub-categories of LCs. We only consider the contracts that use

at least one low-level function in this figure. As shown in Fig.3.5a, the constant

string LC is used by the dominant fraction (49.9%) of all the contracts that use

low-level functions. The DS is in second place at 27.0% and the IA is at 15.1%.

“Other” in this figure stands for the contracts that include more than one low-level

function categories. Note that the arbitrary LC is only found in 2.9% of the dataset.

If projected to the entire dataset of smart contracts on Ethereum, the percentage of

contracts that use arbitrary LC is only 0.40% (2.9%×13.8%).

Figure 3.5b shows the detailed breakdown of low-level function usage among

the unique contracts. We find that the percentage of DS increases from 27.0% to

39.8% in this dataset, while the percentage of IA halves, representing 6.7%. The

percentage of arbitrary LC slightly increases from 2.9% to 3.7%, but it is still the

least prevalent among the four categories, as was the case with the overall contracts.

3.3 Summary
We can make two key observations from the results.

1. Low-level functions are widely used in real contracts.

2. The majority of low-level functions are gratuitous and can be replaced by

high-level ones.

The first observation follows directly from the results on the prevalence of low-

level functions in both the overall contract set as well as the set of unique contracts

on Ethereum that have their source code available. The second observation follows

from the distribution of the low-level function usage in the dataset. For example,

31

most of the low-level functions are in the constant string LC category, and can hence

be replaced using high-level alternatives that directly call the function encoded in

the constant string. Similarly, the DS calls can be replaced by the transfer

function. Together, these two categories constitute 76.9% of the set of all contracts,

and 86.5% of the set of unique contracts on Ethereum. If we include the Other

category, the percentage of contracts using low-level functions that can be statically

replaced increases to 82%.

Therefore, only 18.0% of smart contracts using low-level functions cannot be

statically replaced with high-level alternatives (15.1% IAs plus 2.9% arbitrary

LCs). With that said, not all contracts in the remaining 82% are straight-forward

to replace, as we describe in the next chapter (Chapter 4).

32

Chapter 4

Methodology

In this Chapter, we present GoHigh, an automated technique to transform the

source code of Ethereum smart contracts, and replace low-level functions with

their high-level alternatives. GoHigh has three steps. First, it converts the Solidity

source codes of smart contract into AST. Then, it searches the AST for 11 patterns

of DS and constant string LC, which we extracted from the dataset of contracts con-

taining low-level functions. Finally, GoHigh replaces the matching sub-tree in the

AST with high-level alternatives. We start by explaining the challenges in replacing

the low-level functions by GoHigh. We then explain each of the above steps, and

finally provide an example of how GoHigh works.

4.1 Challenge and Contribution
Challenge:. Developers tend to use customized checks to prevent the vulnerabili-

ties of low-level functions. For instance, developers may require the return value of

an LC to be true, and revert the whole transaction if the call fails. However, these

checks may be incomplete or seem right but shadow other vulnerabilities. One

general issue is that the patterns do not check the existence of the callee function.

If callee functions do not exist, the return value of the LC is always True, which

bypasses all the customized checks. Moreover, hard-encoded strings may also be

incorrect (e.g., typos, missing parameters, and incorrect encoding).

The main challenge is that one replacement does not work on all patterns of use

33

of the low-level functions. Figure 4.1 shows an example, where a direct replace-

ment works for the first pattern but does not work for the second pattern. For the

first pattern (Fig.4.1a), the replacement strategy is to extract the function name and

the parameters and reassemble them into a high-level call. However, if the same

replacement strategy is applied to the second pattern (Fig.4.1b), the expression in

the if-clause is replaced with a high-level call. Unfortunately, the new if-statement

may not pass compilation because the return value of the high-level call may not

be a Boolean value (or there may be no return value), and thus cannot serve as

the operand of the logical negation operator. Therefore, we need to come up with

custom replacement strategies for each pattern.

1 address(0x123).call(abi.encodeWithSignature("register(string)", "
John")); //before

2 address(0x123).register("John"); //after

(a) A simple pattern and its replacement.

1 if(!address(0x123).call(abi.encodeWithSignature("register(string)
", "John"))){revert();} //before

2 if(!address(0x123).register("John")){ //fail compilation
3 revert();} //after

(b) Applying the direct replacement to a complex pattern.

Figure 4.1: One replacement does not apply to every pattern.

Our Contribution: We distill the patterns of low-level functions manually

from our dataset, so that GoHigh can automatically identify the patterns at the AST

level. The 11 patterns are combinations of three representations (shown in Table

4.1) and five patterns (shown in Table 4.2). Three of the five patterns exist in all

three representations, resulting in nine combinations; two of five patterns exist only

in the send representation, resulting in the remaining two combinations.

4.2 AST Generation
To extract the patterns, GoHigh first converts the source code into an AST repre-

sentation using the Solidity compiler, solc. An example AST is shown in Fig.4.2.

The root node of the tree is a SourceUnit, and its nodes correspond to different

syntactic elements in the smart contract.

34

Source

. . .

CD

. . .

FD

For

If

ES

VD

PD

Figure 4.2: The structure of an AST of a Solidity smart contract.
* PD stands for PragmaDirective, CD stands for ContractDefinition, VD stands for

VariableDeclaration, FD stands for FunctionDefinition, and ES stands for ExpressionStatement.

4.3 Pattern Matching

Table 4.1: The representations of DS and constant string LC.

Category Name Example

DS Direct
addr.send(10ether);

Constant String LC Direct Encoded

addr.call(bytes4(bytes256(keccak256
("register(string)", "John"))))
;

Constant String LC ABI Encoded
addr.call(abi.encodeWithSignature("

register(string)", "John"));

GoHigh searches the AST extracted in the previous step for known patterns of

low-level functions that we manually extracted from the dataset. To extract the

patterns of low-level functions, we first find all possible representations of DS and

constant string LC (as mentioned in Section 3.3, we focus on these two categories

of low-level functions). We present examples of these representations in Table 4.1.

We find that there are two methods to encode constant string LCs in our dataset. The

first method, “direct encode”, encodes it manually by calculating the keccak256

digest of the function name, and truncating the bytes after the 4 leading bytes.

The second method invokes a built-in function, abi.encodeWithSignature,

and thus we call this method “ABI encode”. Solidity also provides other encod-

ing functions, e.g., abi.encode and abi.encodeWithSelector; however,

only abi.encodeWithSignature encodes the function signature, while the

35

others work with a short byte format of function signature (known as “selector”

in Solidity). On the other hand, there is only one method for DS, and we call this

“Direct”.

Second, we iteratively distill the patterns in our dataset of DSs and constant

string LCs. For each contract, we write a regular expression to match the low-level

functions. The regular expression is as narrow as possible to avoid capturing other

patterns. We then remove all contracts that match the regular expression, and repeat

this process until there is no contract left. Thus, we formulate regular expressions

for the patterns of low-level functions.

Finally, we inspect the above regular expressions to condense them into a

smaller set. To do so, we develop ASTs for the patterns distilled in the previous

step. We then identify similar AST pairs and attempt to merge them into a new

AST. For example, the second example shown in the Require pattern in Table 4.2

adds a string node (message) to the first example’s AST. We group these two pat-

terns together due to their similarity. We iteratively repeat the process until we

converge. Finally, we obtain the patterns shown in Table 4.2. GoHigh looks for

these patterns in the AST of the extracted contract, and performs targeted replace-

ments of the same.

4.4 Replacement
Table 4.2 shows the replacement for each pattern identified in the previous section,

in terms of the AST transformation. Each pattern has a custom replacement based

on its AST. For example, though the if-clause pattern and the if-not pattern both

protect the statements located in the if block, they require different replacement

patterns as their behaviors differ.

Fig. 4.3a shows an example of if-not pattern, while Fig. 4.3b shows an example

of if-clause pattern. Both examples call the register() function and roll back

if the call fails. In addition, the if-clause pattern performs extra operations (e.g.,

sending receipt to the caller) in the if statement, which must be preserved after the

replacement. Therefore, we keep the if statement in the if-clause pattern, and only

replace the expression with a Boolean value True. The call to register is moved to

the line before the if statement. However, in the if-not pattern, the operations after

36

a successful call are located outside of the body of the if clause. Thus, there is no

need to preserve any statements after the replacement.

1 if(!address(0x123).call(abi.encodeWithSignature("register(string)
", "John"))) revert(); //before

2 address(0x123).register("John"); //after

(a) The If-not pattern.

1 if(address(0x123).call(abi.encodeWithSignature("register(string)"
, "John"))) send_receipt();

2 else revert(); //before
3 address(0x123).register("John");
4 if(True){send_receipt();} else{revert();} //after

(b) The If-clause pattern.

Figure 4.3: Difference between if-not and if-clause pattern.

37

Table 4.2: The patterns of DS and LC for replacement, and the percentages of their occurrence in the base dataset.

Exists In Name %age Example AST Representation Replacement

Both Stand Alone 21.7%*

1 address(0x123).send(10ether);

2
address(0x123).call(abi.

encodeWithSignature(
"register(string)", my_name));

FD
LL†

. . .
FD

HL‡

. . .

Both If Clause 41.1%

1 if(address(0x123).send(10ether)){...}

2
if(address(0x123).call(abi.

encodeWithSignature(
"register(string)", my_name))){...}

FD
if

block

LL

. . .
FD

block

HL

. . .

DS Only If Not Clause 15.4%
1 if(!address(0x123).send(10ether)){revert()

;}

2 if(!address(0x123).send(10ether)){throw;}

FD

if
block

cond
LL

NOT

. . .

FD
HL

. . .

DS Only Require 26.3%

1 require(address(0x123).send(10ether));

2 require(address(0x123).send(10ether),
"ERROR_MESSAGE");

3 assert(address(0x123).send(10ether));

FD
require LL

. . .
FD

HL

. . .

Both Return 2.4%

1 return address(0x123).send(10ether);

2
return address(0x123).call(abi.

encodeWithSignature(
"register(string)", my_name));

FD
return LL

. . .
FD

return True

HL

. . .

*They do not add up to 100% as some contracts have multiple patterns.
†LL stands for low-level function.

‡HL stands for high-level alternative to LL.

38

To perform the replacement, we perform a level order traversal of the AST,

which is a breath-first traversal of the tree. For each expression node, the function

iteratively replaces the node or the sub-tree with the high-level expression node

until it reaches the leaf node.

4.5 Implementation
We implemented GoHigh using a JSONPath-NG package, and SIF [68], a frame-

work of contract instrumentation, to decompile AST form of the contract into its

source code form. We have made GoHigh’s source code publicly available1.

4.6 Example
We provide an example to demonstrate how our replacement works - the source

code is shown in Fig. 4.4. The example is extracted from a real-world con-

tract called the Buttonwood Agreement 2, which has more than 1,000 transaction

records in Ethereum. The example contains a contract with one vulnerable func-

tion. The function approveAndCall can increase a user’s allowance and send it

a message via receiveApproval function, whose address and function name

are hard coded into the spender variable (Line 5) and the payload (Line 6).

Then, an LC is used in the require statement in Line 6. At the end of the function,

the return statement returns True if the LC is correctly invoked. Thus, there is a

constant string LC in Line 6 of the contract.

1 contract StandardToken is Token {
2 function approveAndCall(address _spender, uint256 _value,

bytes _extraData) returns (bool success) {
3 allowed[msg.sender][_spender] = _value;
4 Approval(msg.sender, _spender, _value);
5 require(_spender.call(
6 bytes4(bytes32(sha3("receiveApproval(address,uint256,

address,bytes)"))), msg.sender, _value, this,
_extraData));

7 return true;}}

Figure 4.4: The example before replacement.

1https://github.com/DependableSystemsLab/GoHigh.
20x2a6a1521a43601c847dd853cbc5f25d5d6505dad

39

The AST of the example is shown in Fig. 4.5a. The root node is the contract

(Source). It has only one child node, approveAndCall (FunctionDefinition,

FD), because it has only one member function. There are four children of the func-

tion declaration: value assignment node (VA), approval event node (AE), require

statement node, and return node.

Source

CD FD

return True

require LL

parameters

payload

address

AE

VA

PD

(a)

Source

CD FD

return True

HL
AE

VA

PD

(b)

Figure 4.5: Example’s AST (a) before replacement, and (b) after replace-
ment.

*LL stands for the low-level function and HL stands for the high-level alternative.

After obtaining the AST, we traverse it from the root node, and check if the

tree matches the patterns listed in Table 4.2. In the example, the require statement

matches the require pattern of constant string LC. Therefore, GoHigh extracts the

address (spender), the payload and the parameter list of the low-level function.

The extracted components are then reconstructed into a new statement that uses

high-level function as per Table 4.2. After replacement, the AST of the example

is shown in Fig. 4.5b. Finally, the replaced AST is converted to the source code

shown in Figure 4.6. The high-level alternative is in Line 5.

Note that the above replacement leads to a gas cost reduction during contract

execution. The original version shown in Fig. 4.4 costs 24,491 gas units, while

the replaced version in Fig. 4.6 costs only 24,262 gas units, which is 229 gas units

less than that of the original.

4.7 Summary
GoHigh provides a pattern-based automated replacement to capture all low-level

function representations in different patterns. The AST representation condensed

from the regular expressions ensures the accuracy of the capture. Moreover, Go-

40

1 contract StandardToken is Token {
2 function approveAndCall(address _spender, uint256 _value,

bytes _extraData) returns (bool success) {
3 allowed[msg.sender][_spender] = _value;
4 Approval(msg.sender, _spender, _value);
5 ITokenReceiver(_spender).receiveApproval(msg.sender,

_value, this, _extraData);
6 return true;}}
7 interface ITokenReceiver{
8 function receiveApproval(address a,uint256 b,address c,bytes

d);}

Figure 4.6: The example after replacement.

High performs the replacement in the expression level by leveraging the AST sub-

tree, which guarantees the replacement does not break the syntax correctness of

the replaced smart contracts. In Chapter 5, we verify our observations derived in

Chapter 3.2 and evaluate the effectiveness of GoHigh on two more recent datasets.

41

Chapter 5

Results

In this chapter, we discuss the experimental setup, followed by the research ques-

tions (RQs) we ask. Then, we present the results of the experiments to answer the

RQs.

5.1 Experimental Setup
To demonstrate the experimental setup, we first present the datasets we used in the

experiments, followed by the procedure of processing them. Then, we present the

hardware and software we use to collect the datasets and conduct the experiments.

5.1.1 Datasets

Because our technique operates at the source code level, we need contracts that

are open-source. However, not all smart contract addresses have their source code

available in the Ethereum. To obtain the open-source dataset, we followed a two-

stage process. First, we obtained a full list of smart contract addresses from a

local Ethereum full node with a Ethereum node query package, Ethereum-ETL [1].

Next, we queried the source code from Etherscan [2] using its public API.

We used three non-overlapping datasets using the above method for our exper-

iments, as shown in Table 5.1 1. The first is the dataset that we analyzed in Chapter

3.2, which has all the contracts on Etherscan from March 1, 2016 to September 30,

1We have made all datasets publicly available in [91].

42

2019. We refer to this as “base dataset”. This set includes 149,363 open-source

smart contracts from a total 17,919,421 smart contracts deployed in Ethereum in

this time period (0.83%).

The second dataset has the contracts created between October 1, 2019, and

December 31, 2020. We refer to this dataset as “recent dataset”. This dataset

consists of 170,304 contracts. The total number of contracts deployed on Ethereum

in this time period is 18,736,340, in which 0.91% of contracts are captured. Note

that the contracts in the recent dataset were released almost a year after the Solidity

guidelines were finalized in November 2018.

The third dataset includes the contracts created between January 1, 2021, and

December 31, 2021. We refer to this dataset as “latest dataset”. This dataset

consists of 1,831,971 contracts out of 11,213,714 smart contracts deployed in

Ethereum in this time period (16.33%). The contracts in the latest dataset were

released two years after the Solidity guidelines were finalized.

In the recent dataset and the latest datasets, we observed that Etherscan intro-

duced JSON format in their source code upload, and so we implement a unified

source code parser for both plain text format and JSON format. While only 800

contracts (5%) in the recent dataset are in the JSON format, there are more than

10,000 contracts in the latest dataset in the JSON format. Omitting these contracts

will thus affect the comprehensiveness of our study.

From the above numbers, we can observe an increasing trend in both the num-

ber of total contracts deployed on Ethereum, and the number of contracts on Ether-

scan (i.e., Ethereum contracts whose source code is available). The average number

of contracts per year deployed from 2016 to 2019 is about 5 million. In 2021, the

number of contracts deployed increased to 11 million, which is more than double

that of previous years. A similar trend is observed on Etherscan, where the number

of contracts more than doubled in this time period. We also observe that the source

code availability increased from less than 1% in the base and recent datasets to

16.33% in the latest dataset. This is because the UpgradeableProxy contract

has been widely used in 2021 to upgrade existing smart contracts in the Ethereum.

An example is given in Fig.5.1 - we elaborate on it in the experiment of RQ1.

We also collect the Ethereum transactions on the set of contracts used in all

three datasets, from March 1, 2016 to December 31, 2021. We extract the subset

43

Table 5.1: The datasets used in the experiments.

Name Date Compiler Versions No. of Contracts No. of All Contracts

Base Mar 1, 2016 - Sep 30, 2019 0.4.0 - 0.5.4 149,363 17,919,421
Recent Oct 1,2019 - Dec 31,2020 0.4.16-0.7.2 170,304 18,736,340
Latest Jan 1,2021 - Dec 31,2021 0.3.2-0.8.9 1,831,971 11,213,714

of the transactions whose destination address matches a contract’s address in any

of our datasets. These transactions are used to determine if the replacement by

GoHigh had any unintended changes to the contract’s behavior.

5.1.2 Hardware and Software

We run all experiments on an Intel(R) Core(TM) i7-7700 @ 3.6GHz processor

with 32 GB of RAM running Ubuntu 20.04 LTS. The Solidity compilers we use are

downloaded from the official website2. We also use a private Ethereum blockchain

node for testing. This node uses Geth 1.10.9-stable. The EVM version is Byzan-

tium.

5.2 Research Questions (RQs)
We pose six RQs that we attempt to answer with our evaluation:

• RQ1: How do the characteristics of the recent datasets in terms of low-level

functions compare to the base dataset?

• RQ2: What is the coverage of GoHigh in replacing the low-level functions

in all datasets?

• RQ3: How many compiler warnings are eliminated in the contracts due to

GoHigh’s replacement?

• RQ4: Does the replacement by GoHigh introduce any unintended side-

effects in the contracts?

• RQ5: What’s the change in gas cost of the contracts after replacement with

GoHigh?
2https://binaries.soliditylang.org/

44

• RQ6: What’s the time taken by GoHigh to perform the replacements?

To answer RQ1, we repeat the analysis in Section 3.2 on the recent and the lat-

est datasets, and compare the results with those we obtained from the base dataset.

As before, we considered both the overall contracts and the unique contracts in

both datasets.

To answer RQ2, we first run GoHigh on the contracts, and then run a sub-

string matching script (derived from Table 4.1) on the contracts replaced by Go-

High to determine how many low-level functions are still left in the contracts after

replacement. We measure the coverage of GoHigh on the datasets (i.e., how many

contracts it was able to replace successfully).

To answer RQ3, we compile the contracts after they have been replaced with

GoHigh in all datasets. We then collect the compiler warnings, and determine if

there are differences between these and the warnings collected when compiling

the original contracts (we remove the original contracts that do not compile even

before replacement from the datasets).

To answer RQ4, we compare the external states of the smart contract. We first

extract the public variables of each contract (i.e., variables declared with either the

public modifier and external modifier) along with its balance to determine

the state of the contract. Then, we deploy both the original and replaced contracts

on a private Ethereum blockchain node, after removing the original contracts that

fail to deploy in our node. Finally, we replay the transactions in the transaction

logs, and compare the external states of the contracts with each other. We say a

replacement has “succeeded” if the states match each other after the replay, as this

suggests that no unintended side-effect was introduced by GoHigh. We measure

the success rate for all datasets.

To answer RQ5, we use two methods to estimate the gas used by the contract.

The first method is static estimation via the Solidity compiler, and the second is

runtime estimation based on gas used in transactions. We use both methods to gen-

erate a more comprehensive picture of the influence on gas introduced by GoHigh.

The static estimation calculates the sum of gas used for all operations in a given

function, while the runtime estimation records the gas used for each transaction

that we replay in RQ4. We use the average gas used per function to calculate the

45

change in gas consumption due to the replacement by GoHigh.

Finally, to answer RQ6, we measure the minimum, maximum, and average

times taken by GoHigh for all datasets.

5.3 Results
We organize the results by the RQs.

5.3.1 RQ1: Observations from Recent and Latest Datasets

Table 5.2: The distribution of low-level function.

Name Use Low-level Function Replaceable Low-level Function

Base 13.8% 82.0%
Recent 37.8% 77.0%
Latest 40.9% 96.9%

Weighted Average 40.0% 95.1%

The results of RQ1 are summarized in Table 5.2. We report the weighted av-

erage distribution of low-level function usage and replaceable low-level function

over all datasets by X̄ = ∑i∈DWiXi, where D denotes three datasets, Wi denotes the

percentage of contracts of the corresponding dataset, and Xi denotes the percentage

in low-level function usage of the corresponding dataset. Overall, we find that 40%

of the contracts use low-level functions, and that 95% of the uses are gratuitous,

and hence replaceable.

We observe that the percentage of contracts that contain low-level functions in

the recent dataset is 37.8% (shown in Fig.5.2a), which is 24.0% higher than that the

base dataset. The percentage of unique contracts also increases from 17.2% in base

dataset to 23.5% in the recent dataset, as shown in Fig.5.2b. In the latest dataset,

we observed that the percentage of contracts that contain low-level functions is

40.9% (shown in Fig.5.4a), which is 3.1% higher than that the recent dataset. Yet,

the percentage of unique contracts decreases from 23.5% in base dataset to 11.9%

in the recent dataset, as shown in Fig.5.4b. Thus, low-level functions are actually

increasing in number in both the recent and latest datasets despite the publication

of the guidelines.

46

Fig.5.3 shows the distribution of the low-level functions in the recent dataset.

The most significant change is that the major category changes from constant string

LC to DS in the recent dataset (at 71.7%). An in-depth analysis of the contracts in

the recent dataset reveals that one-fourth of the contracts are Forwarder con-

tracts and Proxy contracts. Figure 5.1 shows examples of a Proxy contract

(Fig. 5.1(a)) and a Forwarder contract (Fig. 5.1(b)). The Forwarder contract

serves as a payment forwarder to a user’s wallet (Line 3), and contain DSs. Further,

many of the contracts are Proxy contracts. The Proxy contract uses arbitrary LCs

(Line 3) to dynamically invoke functions defined in the implementation [62].

It is used to redirect function calls as it is not possible to upgrade a smart con-

tract once it is deployed on the blockchain [40]. This is why DS and arbitrary LC

are more prevalent than constant string LC in the recent dataset. In total, GoHigh

can still replace more than 75% of the low-level functions in the recent dataset

(71.7%DS + 4.9%CSLC + 0.4%Other = 77.0%).

Fig.5.5 shows the distribution of the low-level functions in the latest dataset.

Compared with the recent dataset, the major category changes from DS to con-

stant string LC (at 90.4%)., which is aligned with the observation from the base

dataset. However, it does not mean that the use of constant string LC in the latest

dataset is the same as that in the base dataset. A deep dive into the latest dataset

reveals that the majority of the constant string LC contracts are Forwarder con-

tracts. We term these ForwarderERC20 contracts. Fig. 5.1(c) shows an ex-

ample of a typical ForwarderERC20 contract. Different from Forwarder in

Fig. 5.1(a), ForwarderERC20 contract forward the ERC-20 token [85] trans-

fer instead of ETH transfer. It hard-codes the signatures of ERC-20 interfaces (e.g.,

transfer()) (Line 5), and thus is classified into our constant string LC category.

This also explains why constant string LC is the most prevalent in the latest dataset.

We can draw a similar conclusion that GoHigh can still replace more than 96% of

the low-level functions in the latest dataset (6.5%DS + 90.4%CSLC = 96.9%).

5.3.2 RQ2: Coverage of GoHigh’s replacement

All the DS and constant string LC contracts in all three datasets are correctly iden-

tified by GoHigh. After replacement by GoHigh, none of the target contracts con-

47

1 contract UpgradeableProxy {
2 function _delegate(address implementation, bytes data)

internal {
3 (bool res, bytes returnData) = implementation.

delegatecall(data);
4 require(res); return returnData;}}

(a) Proxy contract
1 contract Forwarder {
2 address public destinationAddress;
3 receive() public payable {destinationAddress.send(msg.value)

;}}
(b) Forwarder contract

1 contract ForwarderERC20 {
2 address public destinationAddress;
3 function flushTokens(address ERC20TokenAddress, uint amount)

public {
4 ERC20TokenAddress.call(
5 abi.encodeWithSignature("transfer(address,uint256)",

destinationAddress, amount));}}
(c) ForwardERC20 contract

Figure 5.1: Examples of (a) Proxy contract, (b) Forwarder contract and
(c) ForwardERC20 contract.

37.8
62.2

23.5

76.9
Low-level Functions
No Low-level Functions

Figure 5.2: Low-level functions usage in the recent dataset for (a) all con-
tracts and (b) unique contracts.

11.9

71.7

6.510.10.4
24.2

6.4
4.161.9

3.4

Constant string LC

DS

IA

Arbitrary LC

Other

Figure 5.3: The distribution of low-level functions in the recent dataset for
(a) all contracts and (b) unique contracts.

48

40.959.1

11.9

88.1
Low-level Functions
No Low-level Functions

Figure 5.4: Low-level functions usage in the latest dataset for (a) all contracts
and (b) unique contracts.

90.4

6.50.32.70.3
28.9

19.0
4.3

44.8

2.9

Constant string LC

DS

IA

Arbitrary LC

Other

Figure 5.5: The distribution of low-level functions in the latest dataset for (a)
all contracts and (b) unique contracts.

tain either DS or constant string LC low-level functions. While this result is not

surprising for the base dataset (as we used it to identify the replacement patters in

Table 4.2), the recent dataset and the latest dataset were also completely covered by

the patterns identified from the base dataset despite neither of them being used for

pattern extraction. Therefore, GoHigh has an overall coverage of 100% in identify-

ing the patterns of low-level functions in both the recent and latest datasets. Recall

from RQ1 that this constitutes 82% of the contracts using low-level functions in

the base dataset (Section 3.2), 77% in the recent dataset, and 96.9% in the latest

dataset(RQ1).

Note that we observed that six contracts in the recent dataset used “send” even

after replacement. However, these are not missed cases because the “send” function

is overridden in their code, and thus they do not belong to the DS category. GoHigh

correctly identified these cases and did not perform the replacement.

5.3.3 RQ3: Compiler Warnings before and after Replacement

Table 5.3 shows the results of RQ3. We report the weighted average distribution

of compiler warnings changes over all datasets in the last column using the same

equation in RQ1. Overall, we find that GoHigh removes warnings in 4.9% of the

49

Table 5.3: The distribution of complier warnings change before and after re-
placement.

Name Unchanged Remove Add

Base 82.1% 16.4% 1.5%
Recent 80.5% 17.6% 1.9%
Latest 96.2% 3.7% 0.1%

Weighted Average 94.8% 4.9% 0.3%

smart contracts.

In the base dataset, all contracts passed compilation after replacement by Go-

High. Figure 5.6 shows the changes in warnings for contracts using DS and con-

stant string LC before and after replacement in the base dataset. As can be seen, the

majority of compiler warnings are unchanged as they do not pertain to low-level

functions. Further, there is a 16% reduction in warnings due to the replacement of

low-level functions (shown as “Remove” in the figure).

For example, the compiler expects developers to check the return value of LCs,

and will output a warning if the check is missing. Because GoHigh replaces LCs,

the compiler will not emit this warning. Similarly, using DS anywhere in the con-

tract results in a warning. GoHigh removes all DSs in contracts, and so the warnings

due to the use of DSs are also removed.

However, a few new warnings are added due to the replacement of low-level

functions in some cases (shown as “Add” in the figure). Most of these are due to

unused variables in the contract after the replacement. For example, in Fig. 5.7,

replacing the LC does not remove the declaration of the Boolean variable result

in Line 5. However, these are benign warnings as they affect neither the contract’s

correctness nor its security.

82.1

16.4
1.5

73.5

22.3
4.2

Unchanged

Remove
Add

Figure 5.6: Change in compiler warnings for the base dataset for (a) DS, and
(b) Constant String LC.

50

1 bool result;
2 result = address(0x123).call(
3 abi.encodeWithSignature(
4 "register(string)", "John")); //before
5 bool result; //warning: Variable declared but unused
6 address(0x123).register("John"); //after

Figure 5.7: Warning Added after replacement by GoHigh.

For the recent dataset, 99.9% of the DS contracts and 95.4% of constant string

LCs successfully passed compilation after replacement by GoHigh. It is not 100%

due to a recently introduced modifier in Solidity regarding the storage location of

dynamic-sized arrays (e.g., string, byte array). Our analysis does not currently

handle this modifier, and hence the replacement by GoHigh results in compilation

errors.

The results of the changes in compilation warnings for the recent dataset are

shown in Fig.5.9. As can be seen, the reductions in warnings for contracts using

DS is consistent with that of the base dataset, i.e., 17% warning decrease. How-

ever, there is a 38.2% decrease in the compiler warnings in the constant string LC

contracts, which is 16% higher than the decrease in warnings in the base dataset.

This is because Solidity version 0.5.0 disallows the use of sha3 function (a hash

function) in favour of keccak256 function [14], and using sha3 function results

in compiler warnings. The sha3 function and keccak256 function are used to

manually encode the function signatures in constant string LCs (see “Direct En-

coded” in Table 4.1). The removal of constant string LCs by GoHigh removes

warnings on using the sha3 function.

1 // solhint-disable-next-line avoid-low-level-calls
2 (bool result,) = to.call(abi.encodeWithSignature("register(string

)", name));

Figure 5.8: An example on special comment that disables low-level calls.

For the latest dataset, 97.1% of the DS contracts and 96.2% of constant string

LCs successfully passed compilation after replacement by GoHigh. It is not 100%

due to the same issue as that with the recent dataset. Figure 5.10 shows the re-

sults of the changes in compilation warnings for the latest dataset. The reduction

in warnings for contracts decreases in both DS and constant string LC contracts,

51

which are 3.7% and 6.7%, respectively. Compared with the reduction in warnings

in the base and recent datasets, the reduction in warnings in the latest dataset de-

creases by about 10%. This is because developers intentionally disable warning

output via special comments in the source code. Figure 5.8 shows an example of

a special comment that disables compiler warnings on using low-level calls. With

this special comment, even though GoHigh replaces DS and LC, the warnings are

suppressed, and so this case is included in the “Unchanged” category (blue part).

Overall, GoHigh significantly decreases the number of compilation warnings

in the smart contracts by 4.9% after replacement.

80.5

17.6
1.9

59.238.2

2.6

Unchanged

Remove
Add

Figure 5.9: Change in compiler warnings for the recent dataset for (a) DS, (b)
Constant String LC.

96.2

3.70.1

92.8

6.70.5

Unchanged

Remove
Add

Figure 5.10: Change in compiler warnings for the latest dataset for (a) DS,
(b) Constant String LC.

5.3.4 RQ4: Unintended Side-Effects After Replacement

Table 5.4 shows the results of transaction replay for the three datasets. As be-

fore, we report the weighted average success rate using the equation in RQ1. The

weighted average success rates of the base dataset, the recent dataset and the latest

dataset are 95.1%, 92.4%, and 79.8%, respectively. The decrease in the success

rate across three datasets is mainly due to the increase of external contract de-

pendency in Solidity smart contracts, which we explain in the discussion to RQ4.

52

These were all due to cases where we could not verify if the replacement suc-

ceeded, and hence could not label it as a success. However, we did not observe any

case for which there was a state mismatch after the replacement.

Table 5.4: The success rate in replaying transactions to replaced contracts.

Name Base Dataset Recent Dataset Latest Dataset Weighted Average
Category DS CSLC DS CSLC DS CSLC DS CSLC

Success Rate (%) 98.7% 94.1% 68.6% 96.5% 94.6% 70.5% 92.8% 72.4%

Weighted Average Success Rate (%) 95.1% 92.4% 79.8% 80.6%

The reason why some contracts do not succeed is that their transactions use

arbitrary calls to functions defined in external contracts. We cannot confirm that

the state matches for these contracts if the external contracts modify the state of

the tested contracts in arbitrary calls, as we cannot deploy the external contracts on

our private blockchain (because it is non-trivial to decode their address based on

the call and to replicate them). We manually investigated all the contracts in which

GoHigh did not succeed, and found that all of them fall into this category. Thus,

there was no contract for which there was a state mismatch.

Overall, none of the contracts in which GoHigh performed replacements failed

to match the states of the original contracts, for the replayed transactions. However,

some of them could not be verified due to external dependencies.

The success rate of GoHigh is 80.6% across the three datasets.

1 contract Avatar {
2 function externalTokenTransfer(IERC20 _externalToken, address

_to, uint256 _value)
3 public onlyOwner returns(bool){
4 address(_externalToken).safeTransfer(_to, _value);
5 emit ExternalTokenTransfer(address(_externalToken), _to,

_value);
6 return true; }}

Figure 5.11: An example of a Solidity smart contract that contains external
dependency.

Why replaying is difficult for contracts with external dependencies? Re-

playing an existing transaction on the Ethereum mainnet (the primary public Ethereum

53

production blockchain) is difficult for contracts with external dependencies. To

elaborate further on the difficulty, an example is given in Fig. 5.11. The example is

a real-world contract3 in our dataset, named Avatar, which is a reputation man-

agement system. The goal of the function externalTokenTransfer() is to

transfer ERC-20 token (defined in externalToken) to a given address (defined

in to).

First, we try to directly replay the original transaction without other settings,

i.e., pass the same ERC-20 token address (externalToken) and receiver ad-

dress (to). The transaction reverts because of the onlyOwner modifier. It re-

quires that the caller of the function is the same account as its owner. Then, we

define another owner address in our local Ethereum network and deploy Avatar

again, and we replay the transaction using the new owner’s address. The trans-

action passes the onlyOwner check, but it reverts again because of the missing

externalToken implementation in the given address. Recall that we are run-

ning the experiments on our local network which has no externalToken im-

plementation. When the EVM tries to look for the safeTransfer() method

defined in externalToken, the result is empty and thus EVM revert the execu-

tion.

Next, we deploy the missing externalToken implementation to the local

network. The implementation can be retrieved from the contract creation trans-

action, i.e., the first transaction of externalToken contract. We replay the

original transaction again. With the implementation of externalToken, EVM

successfully finds the safeTransfer() method. However, calling the method

reverts the execution because the token sender, i.e., contract Avatar, does not

have sufficient amount of token to transfer. The token amount of all token holders

are kept in externalToken contract’s state. In the Ethereum mainnet, the to-

ken may be sent from another EOA or contract in a separate transaction. However,

in the local net, the token is zero because we have not replayed the initial token

transfer.

Finally, if we can find the initial token transfer transaction, we can process the

original transaction. However, the token transfer may be from any source. For

30xf8aeeac857ccb59020acc821aa27cad92765addd

54

example, it can be transferred from another contract or be minted from the user.

Unfortunately, we have no indication of where to find the initial token transfer

transaction.

The above example shows that it is difficult to resolve the reverts in replaying

transactions that have external dependencies. What is more, there are no existing

tools that provide seamless transaction replay functionality for contracts that have

external dependencies. Therefore, we skip the validation of these 19.4% of con-

tracts because of their dependencies on the external contracts and the underlying

transactions, and hence the overall success rate is 80.6%.

5.3.5 RQ5: Gas Cost Overhead of GoHigh

Table 5.5: The gas used overhead introduced by GoHigh.

Name Static Estimation Runtime Estimation
Increase(%) Avg. Change Increase(%) Avg. Change

Base -1.81* -176 -3.42 -29,823
Recent +0.24 +19 -0.00 -1
Latest -5.10 -431 -5.74 -17,869

Weighted Average -4.69 -396.96 -5.32 -16,961.23

*Negative value in overhead means decrease in gas used, which means the GoHigh saves gas.

Table 5.5 shows the average gas changes (both as percentages and absolute

values) using the two gas estimation settings for each of the datasets. A positive

value indicates that GoHigh increases the gas consumption of the contract, while a

negative value indicates that GoHigh decreases the gas consumption. We report the

weighted average gas saving both in percentage and in gas units using the equation

in RQ1.

We find that GoHigh is able to reduce the gas consumption by 4.69% based

on static estimates, and by 5.32% based on runtime estimates across the three

datasets. As can be seen, in the majority of cases, the gas used decreases after

replacement by GoHigh. The highest decrease is recorded in the latest dataset,

which has more than 5% gas savings in both static and runtime estimation.

The gas reduction achieved by GoHigh is due to pruning unnecessary require

clauses and if clauses in the function body, which then removes the JUMP, EQ op-

55

eration in the EVM opcodes that consume gas. The only increase in gas consump-

tion is in the static estimation of the recent dataset. However, the run time estimate

on the same dataset shows that the gas consumed decreases. The contradiction may

result from the redundant returns introduced by GoHigh. Recall that the replace-

ment of Return pattern (in Chapter 4), the replacement may add return true;

to match the interface after replacement. As a result, it introduces more operations

to the contract, and leads to a small gas overhead in statics estimation. However,

the Return pattern function is not executed frequently (at 2.4%), and hence there is

a net decrease in the runtime estimation.

We find the overall gas used decreases after GoHigh’s replacement, regardless

of whether we use static or runtime estimation. The average gas used reduces over

5% (−5.01% = (−4.69% static+−5.32% runtime)/2 estimations) after replace-

ment. This shows that replacement of low-level functions is actually beneficial for

gas consumption (in most cases).

Why use two methods for gas estimation? We use two methods for gas es-

timation as there are different advantages and drawbacks of each technique. The

static estimation provides an accurate theoretical lower bound of the gas used in

a function. The rationale is that static estimation calculates the gas used by ex-

amining the compiled opcodes of the smart contract, which guarantees that the

estimation does not miss any operations in the contract. However, a static estima-

tion is often inaccurate as it fails to handle dynamic gas usage, i.e., loop over a

dynamic array.

Figure 5.12 shows a smart contract, Swapper4 that has a function with loop.

The for-clause iterates over a dynamic array commission. Given that the length

of commission is determined on the fly, the static estimation cannot give an

accurate estimate of the gas used. If the user passes a long commission array into

this function, it will lead to significantly higher gas consumption than what was

statically estimated.

On the other hand, the runtime estimation is based on the real-world transac-

tions that are executed on the Ethereum mainnet, and thus reflects a more compre-

hensive view of the gas used in real user behaviors. However, the shortcoming of

40xfb774ac09c2cb7a6f47b4d8367293820e4b4c660

56

1 function takeCommission(Swapper swapper, address token,
Commission[] memory commission

2) internal onlyAdmin() {
3 for (uint i = 0; i < commission.length; i++) {
4 require(swapper.getBalance(token) > commission[i

].amount, ’Swapper balance not enough for
commission’);

5 swapper.claim(commission[i].destination, token,
commission[i].amount);}}

Figure 5.12: An example when Solidity compiler cannot estimate the actual
gas used.

runtime estimation is the bias against infrequently-used functions. For example,

contract executions to privileged functions are less frequent in transactions of a

contract. Therefore, the gas overhead of privileged functions introduced by Go-

High is less significant to the commonly-used functions. This is reflected in the

lower gas costs of GoHigh’s replacement due to runtime estimation.

Therefore, we use both static and runtime estimation for understanding the gas

cost of GoHigh’s replacement.

5.3.6 RQ6: Performance of GoHigh

The average time taken by GoHigh to perform replacement in a smart contract

is 6.59 seconds across all datasets. The minimum time is 0.11 seconds, and the

maximum is 60 seconds. Overall GoHigh had a replacement time of under 10

seconds for more than 80% of the contracts across all the datasets. Figure 5.13

shows the histogram of the time taken by GoHigh across smart contracts.

5.4 Summary
In this chapter, we describe how low-level functions are used in two more recent

datasets, i.e., the recent dataset, and the latest dataset, followed by the evaluation

of the effectiveness, gas efficiency, and performance of GoHigh’s replacement.

We employ the compiler outputs of both original smart contracts and their replaced

ones to evaluate GoHigh’s effectiveness in eliminating compiler warnings. Further-

more, we replay the historical transactions on Ethereum main net to verify whether

57

0 10 20 30 40 50
Time (second)

0

50000

100000

150000

200000

250000

300000

350000

N
um

be
r o

f C
on

tra
ct

s

Figure 5.13: The histogram of GoHigh’s performance across smart contracts.

GoHigh’s replacement leads to unintended changes. Finally, we estimate the gas

cost of original smart contracts and their replaced ones and calculate GoHigh’s

runtime performance.

We demonstrate the effectiveness, gas efficiency, and performance of GoHigh,

and the main results are as follows: (a) 40% of the smart contracts still use low-

level functions, and 95% of the uses are gratuitous and replaceable; (b) GoHigh

achieves 100% coverage in identifying the patterns of low-level functions; (c) Go-

High reduces 4.9% of the compiler warning after replacement; (d) we verify 80.6%

of the replaced smart contracts and confirm that no unintended side-effects are in-

troduced by GoHigh- the remaining 19.4% are not verifiable due to their external

dependency; (e) GoHigh reduces the gas cost by 5% on average after replacement;

and (f) GoHigh takes an average of 6.59 seconds to perform replacement of a con-

tract. We further elaborate the limitations on our evaluations in Chapter 6.2 and

discuss potential reasons why developers violate the guidelines in Chapter 6.

58

Chapter 6

Discussion

In this chapter, we start by speculating possible reasons why developers intention-

ally violate the guideline and use low-level functions. We then delve into the threat

to validity of this thesis.

6.1 Possible Reasons Why Developers Violate the
Guideline

Our results show that there is widespread use of low-level functions in real-world

smart contracts, despite the publication of the Solidity guidelines discouraging

their use. Furthermore, we found that many of these uses are gratuitous for the

smart contract’s functionality, and can be replaced with high-level alternatives,

without any change in the contract’s functionality or increasing its gas consump-

tion. However, the question remains as to why developers did not follow the guide-

lines in the first place. In this chapter, we speculate on some of the reasons why

developers do not follow the guidelines, based on our results.

6.1.1 Gas Consumption Misunderstanding

There is a misunderstanding among programmers that a Low-level Call (LC)

and an Inline Assembly call (IA) are more gas-efficient than a High-Level one (HL).

However, it is not always the case in Solidity smart contracts. We compare the gas

consumption of calling a frequently-used ERC-20 transfer() function using

59

1 function highLevelCallTransfer(uint amount) public {
2 token.transfer(dest, amount); }

(a) High-level Call (HL)
1 function lowevelCallTransfer(uint amount) public {
2 (bool res,) = address(token).call(
3 abi.encodeWithSignature("transfer(address,uint256)", dest

, amount));
4 require(res, "Transfer failed"); }

(b) Low-level Call (LC)
1 function assemblyCallTransfer(address token_, address dest_, uint

amount) public {
2 bytes4 sig = bytes4(keccak256("transfer(address,uint256)"));
3 bool res;
4 assembly{
5 let x := mload(0x40)
6 mstore(x, sig)
7 mstore(add(x,0x04), dest_)
8 mstore(add(x,0x24), amount)
9 res := call(gas(), token_, 0, x, 0x44, x, 0x0)}

10 require(res, "Transfer failed"); }
(c) Inline Assembly call (IA)

Figure 6.1: An example of calling ERC-20 transfer() in three different
methods.

Table 6.1: The gas consumption of calling ERC-20 transfer() in three
different methods.

Method IA LC High-level Call

Gas Consumption 56,349 43,409 43,027

three different methods, i.e., LC, IA and HL. Table 6.1 shows the gas used by the

methods. The demo code we used is shown in Fig. 6.1. The result shows that using

HL is the most gas-efficient method in transferring an ERC-20 token, costing only

43,027 units of gas. However, LC costs 43,409 units, which is 0.9% higher than

HL. IA is the most expensive method among the three calls, representing 56,349

units of gas, which is 31.0% higher than HL. The experiment is conducted on

Remix with a JavaScript EVM emulator with a gas profiler plugin.

The results reveal developers’ misunderstanding of the gas consumption of dif-

ferent calls: in fact, LC is not as gas-efficient as HL. Also, the gas efficiency of IA

depends heavily on the developer’s control over storage. For example, the IA allows

60

developers to pack input parameters according to the actual width of the variables

(e.g., 20 bytes for an address), instead of wasting gas in zero paddings (e.g., there

are 12 bytes zero paddings in a 32-byte-width address). Also, the return data of

IA can reuse the storage of input data, which avoids wasting gas in extra storage.

However, the frequently-used IA pattern (shown in the figure) fails to handle it and

thus leads to extra gas consumption. Only with fine-grain control to storage man-

agement can IA save gas for its users, otherwise it leads to extra gas consumption.

Thus, HL is the most gas efficient solution in practice.

6.1.2 Overly Restrictive Guidelines

The official guidelines are too restrictive, and thus developers have to violate the

guidelines to accomplish their desired use cases. One famous example is ETH

transfer, and there are three possible ways of transferring Ether, shown in Fig. 6.2,

i.e., Deprecated send (DS), guideline-recommended transfer and community-

recommended call{value: v}("") (LC).

The guideline-recommended transfer is the most secure method to transfer

ETH to an EOA because it prevents all kinds of reentrancy attacks by specifying

the gas limit to its receiver, which is 2300 units. However, the limit is so low that

it cannot support any interaction defined in smart contacts, and thus the receiver

can only be an EOA. HTherefore, if some ETH is transferring to a smart contract

that has complex calculations, using transfer leads to failure and the ETH is

not sent. This, the common method for sending ETH is to use LC1, instead of

the documentation-recommended transfer. LC forwards all available gas to

its destination, and thus supports complex interactions between contracts. Thus,

developers intentionally violate the official guidelines to extend the interoperability

of their smart contracts.

1 to.send(msg.value); //DS
2 to.transfer(msg.value); //transfer
3 to.call{value: msg.value}(""); //LC

Figure 6.2: The different methods in transferring Ether.

1https://solidity-by-example.org/sending-ether/

61

6.1.3 Vulnerable Access Control Library

1 contract WalletLibrary {
2 modifier only_uninitialized() { /* check if uninitialized */

}
3 modifier onlymanyowners(bytes32) { /* check if signed by

owners */ }
4 function initWallet(address[] _owners, uint _required, uint

_daylimit) only_uninitialized {
5 // initialization logics}
6 function kill(address _to) onlymanyowners(sha3(msg.data))

external {
7 suicide(_to);}}

(a) A library contract that provides initialization logics with access control.
1 contract Wallet {
2 function Wallet(address[] _owners, uint _required, uint

_daylimit) {
3 bytes4 sig = bytes4(sha3("initWallet(address[],uint256,

uint256)"));
4 address target = _walletLibrary;
5 uint argarraysize = (2 + _owners.length);
6 uint argsize = (2 + argarraysize) * 32;
7 assembly {
8 mstore(0x0, sig)
9 codecopy(0x4, sub(codesize, argsize), argsize)

10 delegatecall(sub(gas, 10000), target, 0x0, add(argsize, 0
x4), 0x0, 0x0)}}}

(b) A contract that use library function via Inline Assembly call (IA).

Figure 6.3: An example of a contract reusing logics in a library contract.

Developers trust the reliability of well-known libraries, and thus delegate calls

(using low-level functions) to the libraries and reuse the logic defined in the li-

braries. Reusing logic in existing libraries saves the gas fee in deployment, so it

is becoming a common practice in developing smart contracts. Figure 6.3 shows

an example of a smart contract that reuses initialization logic defined in the li-

brary. The constructor function of Wallet (Fig. 6.3(b) Line 2) use IA to call the

initWallet() function defined in WalletLibrary (Fig. 6.3(a) Line 4).

Some functions in a smart contract are designed to be dangerous, e.g., the sui-

cide function that will empty all the data in the contract address (Fig. 6.3(a) Line

6), the rescue function that will send all the ETH to a given EOA, and the pause

function that stops all other functions. These functions can be abused by malicious

62

users [96], and hence are discouraged by the Solidity guidelines. In practice, how-

ever, smart contracts often use access control mechanisms, so that only privileged

users have the capability to execute protected functions (e.g., only owners can call

kill() function in Fig. 6.3(a) Line 6). It means that even though some functions

violate guidelines, they are accessible to privileged users only, and thus the smart

contracts are secure from attacks.

Unfortunately, the access controls implemented in libraries are not always cor-

rect. The example shown in Figure 6.3 is from a real-attack to Parity Multi-Sig

library2. Although the library protects the kill() function with access control,

the owners field is not protected and thus the attackers can exploit it to kill the

library contract. As a result, all the underlying Wallet contracts are locked in

perpetuity, and can never be accessed.

Thus, developers are able to handle dangerous functions, which are discour-

aged by the guidelines using access control, and hence they intentionally violate

the guidelines to leverage the smart contract’s features (suicide, rescue, and pause).

Unfortunately, the access controls are not 100% reliable due to subtle bugs in their

implementations.

6.1.4 Upgradeability and Proxy

Because smart contracts are difficult to upgrade once deployed, developers use

the concept of “proxy” to upgrade existing smart contracts. With this mechanism,

it is possible for users to specify “the implementation” smart contract address to

dynamically invoke different versions of smart contracts. An upgradeable smart

contract consists of two parts. The first part is a Proxy contract (Fig. 5.1). The

Proxy contract is the gateway to all functions to the implementation contract,

which is the second part of the upgradeable smart contract. Users first pass the

address of the implementation contract and the payload to the Proxy contract

(Line 2). The Proxy contract then forwards the payload to the specific imple-

mentation (Line 3). The forwarding is made possible by the LCs. Specially, the

delegatecall LC preserves the original msg.sender information in the call

stack, and thus it is widely used in upgradeable smart contracts. EVMPatch [74]

20x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

63

also adopts the upgradeable proxy design to migrate the original contract to its

patched version.

In addition to violating the guidelines of not using low-level functions, em-

ploying an upgradeable proxy design also violates the recommended practice of

using the constructor function. A constructor function is a built-in feature of So-

lidity smart contracts, which allows users to initialize the state variables of a smart

contract. However, an upgradeable contract violates the above guideline, since the

constructor is bypassed in an implementation contract.

6.2 Threats to Validity
In this section, we consider external threats and internal threats to the validity of

the experiments.

6.2.1 External Threat

Sampling Bias in Dataset. An External threat to validity is dataset sampling bias

as we used only the open-source contracts to perform the evaluation experiments.

The total number of contracts submitted to Ethereum is 17 million, but our base

dataset has just under 150,000 contracts, which is less than 1% of all the contracts

in Ethereum. However, we do not consider the other contracts as it is non-trivial

to determine whether a contract uses a low-level function without having access to

its source code. Meanwhile, GoHigh is designed to be a tool for developers, who

have the access to the contract’s source code. Further, this problem is not unique

to GoHigh; for example, prior work SMARTSHIELD [98] has the same issue.

Verification without External Dependency. Another External threat to va-

lidity are external call transactions, which make it infeasible for our verification

process to check whether the state changes are the same for the replaced contract

as the original one. This is because we run the transactions on a private blockchain,

as we do not want to pay gas for running them on the public blockchain. This can be

alleviated by extracting these contracts and running them on the private blockchain,

but requires manual effort. We manually verify a contract by migrating all external

dependency in Chapter 5, however, the migration of a single contract’s external

dependency took about two days, and about 900 Gigabytes of storage space to

64

store the Ethereum snapshot, as we demonstrate in Section 5. Expanding the above

process to all the unverifiable contracts (at 163,400 contracts) is not practical.

6.2.2 Internal Threat

Differences between EVM Versions. The first Internal threat to validity is the

difference in the versions of EVM used for running the experiments. We run all the

experiments on the default EVM version of solc compiler, Byzantium. However,

some errors in deployment resulted from the mismatch of EVM version, as the

EVM versions of the contract vary. This issue can be alleviated by using different

versions of the EVM, but is logistically more challenging to deploy.

Inline Assembly Patterns. The second Internal threat to validity is that we do

not handle all IA categories. Although we included IA in Chapter 3, we currently

do not have a systematic understanding of developers’ use of this category. This is

because there is wide variation among the different uses of this category, and we

hence cannot distill patterns from the datasets to capture IAs.

Subjective Selection on Warnings from the Solidity Documentation. The

third Internal threat to validity is that we filter Solidity documentation warnings

subjectively. The warnings’ compliance with the criteria for inclusion is based on

our best knowledge. For the first and the second criteria, i.e., no mature solutions,

and real-world exploits, we examine the warnings based on our best knowledge.

Moreover, new solutions and new exploits may emerge in the future, and thus these

criteria may result in different warnings being chosen.

For the third criterion, i.e., no semantic knowledge, it is difficult to come up

with a clear line between “require semantic knowledge” and “do not require se-

mantic knowledge”, because all the expressions in a smart contract serve as a part

of the semantic knowledge of the contract. Hence, we cannot formally and quan-

titatively distinguish the degree of “the requirement of semantic knowledge”, and

thus do it based on our experience. For example, in one warning on BT, the warn-

ing says “Do not rely on block.timestamp or blockhash as a source of

randomness, unless you know what you are doing.” Whether or not using BT as a

source of randomness requires an understanding of how to use BT in the context

of the contract’s functionality, so we classify this warning as a “require semantic

65

knowledge” one. For instance, in an auction contract where its buyers can only

place a bid within a given time interval, using a BT is safe since it is not used

for generating random numbers. However, classifying whether a given contract is

an auction contract requires semantic knowledge, and hence we do not consider

BT-related warnings. For other warnings, e.g., LC, DS, and IA, they do not place

explicit restrictions on their usage, so we classify them as “do not require semantic

knowledge” warnings.

66

Chapter 7

Conclusion and Future Work

7.1 Conclusion
In this thesis, we defined low-level functions that lead to security vulnerabilities

in Ethereum smart contracts written in the Solidity language. We carried out a

large-scale empirical study of the use of low-level functions in Ethereum smart

contracts. We found that low-level functions are widely used in real-world smart

contracts (40.0%). Further, we find that more than 95% of the low-level functions

are gratuitous for the contract’s functionality.

We proposed GoHigh, an automated source-to-source transformation tool for

replacing low-level functions in smart contracts with their high-level alternatives.

We evaluated GoHigh on three datasets consisting of over 2,100,000 real-world

contracts deployed on Ethereum. The results show that GoHigh is able to replace

all the contracts that contain low-level functions that are amenable to be replaced,

and takes an average time of seven seconds per contract. Further, GoHigh reduces

4.9% of compiler warnings after replacement, and for all contracts that can be

verified, the changes introduced by GoHigh do not modify their external behav-

ior. Finally, GoHigh reduces 5% of the gas consumption of the contract after the

replacement, and takes 7 seconds on average per contract for the replacement.

67

7.2 Future Work
In this thesis, we find that while most uses of low-level functions are gratuitous,

they are important for some specific use cases (e.g., the upgradeable proxy we dis-

cussed in Chapter 6). However, the misuse of low-level functions leads to potential

vulnerabilities, which can be exploited by adversaries. There are three directions

in which this thesis can be extended.

7.2.1 Inline Assembly (IA)

We highlight the wide use of vulnerable IA in Solidity smart contract in Chap-

ter 3.2 and Chapter 5. Although IA is one of the low-level functions, we do not

extensively study the behavior of IA in this thesis. However, IA plays an impor-

tant role in Solidity smart contracts, especially in frequently used library contracts.

Meanwhile, there has been limited work [48] on IA and its vulnerabilities. One

future work direction is to involve interpreting and optimizing the dependability

and gas efficiency of IA by translating the IA into its high-level alternatives. This

will significantly limit the attackers’ capabilities in exploiting the vulnerabilities in

IA, as the high-level alternatives benefit from compiler checks.

NLP models can be a good candidate for translating the IA to a more secure

form or its high-level alternative. Machine learning techniques have been shown

to be effective in translating and generating code [78, 95]. Furthermore, by lever-

aging the existing dataset, NLP models can be designed to achieve an end-to-end

translation, without manually rewriting the source code.

7.2.2 Upgradeable Proxy

We show that the upgradeable proxy pattern is widely uses for Solidity smart con-

tract updates, which may introduce vulnerabilities in the migration (e.g., the Parity

Wallet library suicide attack in Section 6). One way to mitigate upgradeable proxy

vulnerabilities is to automatically migrate existing smart contracts to upgradeable

contracts.

Similar to replacing low-level functions, migrating an existing smart contract

to an upgradeable contract without breaking its functionality requires non-trivial

effort. First, the migration affects all the constructor functions in smart contracts,

68

which requires developers to rewrite them into initialize functions. Second,

the implementation contracts must preserve their state variables layout during the

migration, otherwise, the upgraded implementation will not work properly.

Hence, one direction of future work is to focus on developing an automated mi-

gration technique to upgradeable smart contracts, which preserve the functionality

of the constructor function and the state variables layout.

7.2.3 Access Control

All the prior work in this domain has been confined to vulnerability detection and

testing. Once the vulnerability is detected, the tools throw a warning to the devel-

opers. However, such a vulnerability does not guarantee exploitation, as the access

controls actively block unauthenticated access to vulnerable functions. To date, it

is still unknown how well access controls are configured in existing smart contacts,

and how many existing vulnerabilities are protected by access controls.

Developing access control techniques in smart contracts will involve an em-

pirical study on the use and misuse of access controls. Existing Ownable access

control is effective in restricting the access to the self-destroy function in smart

contracts, but cannot handle complex access control models.

One future work direction is to develop access control techniques to support

complex access control models with additional capabilities to configure the privi-

lege of users. This will allow smart contracts to provide accurate protection to their

critical fields and serve the functionality despite the adversarial actions.

69

Bibliography

[1] Ethereum in bigquery: a public dataset for smart contract analytics, 2018.
URL https://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-public-dataset-smart-contract-analytics. → pages
1, 29, 42

[2] Ether market capitalization chart, 2022. URL
https://etherscan.io/chart/marketcap. → pages 1, 29, 42

[3] Swc-101 integer overflow and underflow, 2022. URL
https://swcregistry.io/docs/SWC-101. → page 13

[4] Swc-104 unchecked return value, 2022. URL
https://swcregistry.io/docs/SWC-104. → pages 3, 13

[5] Swc-107 reentrancy, 2022. URL https://swcregistry.io/docs/SWC-107. →
page 13

[6] Swc-128 dos with block gas limit, 2022. URL
https://swcregistry.io/docs/SWC-128. → page 13

[7] E. Albert, S. Grossman, N. Rinetzky, C. Rodrı́guez-Núñez, A. Rubio, and
M. Sagiv. Taming callbacks for smart contract modularity. Proceedings of
the ACM on Programming Languages, 4(OOPSLA):1–30, 2020. → page 20

[8] L. Alt and C. Reitwiessner. Smt-based verification of solidity smart
contracts. In International Symposium on Leveraging Applications of
Formal Methods, pages 376–388. Springer, 2018. → page 27

[9] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura. Eth2vec: learning
contract-wide code representations for vulnerability detection on ethereum
smart contracts. In Proceedings of the 3rd ACM International Symposium on
Blockchain and Secure Critical Infrastructure, pages 47–59, 2021. → page
18

70

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://etherscan.io/chart/marketcap
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-128

[10] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum
smart contracts (sok). In International conference on principles of security
and trust, pages 164–186. Springer, 2017. → pages 2, 3, 13, 14, 16

[11] K. Avijit, P. Gupta, and D. Gupta. Binary rewriting and call interception for
efficient runtime protection against buffer overflows. Software: Practice and
Experience, 36(9):971–998, 2006. → page 21

[12] G. Ayoade, E. Bauman, L. Khan, and K. Hamlen. Smart contract defense
through bytecode rewriting. In 2019 IEEE International Conference on
Blockchain (Blockchain), pages 384–389. IEEE, 2019. → page 27

[13] S. M. Beillahi, E. Keilty, K. Nelaturu, A. Veneris, and F. Long. Automated
auditing of price gouging tod vulnerabilities in smart contracts. → page 17

[14] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The keccak sha-3
submission, sha-3 competition (round 3), 2011. URL
https://keccak.team/files/Keccak-submission-3.pdf. → page 51

[15] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, et al.
Formal verification of smart contracts: Short paper. In Proceedings of the
2016 ACM workshop on programming languages and analysis for security,
pages 91–96, 2016. → page 20

[16] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna. Sailfish:
Vetting smart contract state-inconsistency bugs in seconds. arXiv preprint
arXiv:2104.08638, 2021. → page 17

[17] V. Buterin. Ethereum: A next-generation smart contract and decentralized
application platform. URL: https://ethereum.org/en/whitepaper/, 2014. →
page 1

[18] V. Buterin. Eip-150: Gas cost changes for io-heavy operations, 2016. URL
https://eips.ethereum.org/EIPS/eip-150. → page 11

[19] C. Cadar and A. F. Donaldson. Analysing the program analyser. In
Proceedings of the 38th International Conference on Software Engineering
Companion, pages 765–768, 2016. → page 18

[20] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen.
DEFECTCHECKER: Automated smart contract defect detection by
analyzing EVM bytecode. IEEE Transactions on Software Engineering,

71

https://keccak.team/files/Keccak-submission-3.pdf
https://eips.ethereum.org/EIPS/eip-150

pages 1–1, 2021. doi:10.1109/tse.2021.3054928. URL
https://doi.org/10.1109/tse.2021.3054928. → page 17

[21] X. Chen, P. Liao, Y. Zhang, Y. Huang, and Z. Zheng. Understanding code
reuse in smart contracts. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 470–479.
IEEE, 2021. → pages 6, 29

[22] Y. Chen and C. Bellavitis. Blockchain disruption and decentralized finance:
The rise of decentralized business models. Journal of Business Venturing
Insights, 13:e00151, 2020. → page 1

[23] Y. Chinen, N. Yanai, J. P. Cruz, and S. Okamura. Ra: Hunting for
re-entrancy attacks in ethereum smart contracts via static analysis. In 2020
IEEE International Conference on Blockchain (Blockchain), pages 327–336.
IEEE, 2020. → page 18

[24] ConsenSys. Mythril github repository, 2018. URL
https://github.com/ConsenSys/mythril. → pages 7, 13, 18, 19

[25] G. Danezis and S. Meiklejohn. Centrally banked cryptocurrencies. arXiv
preprint arXiv:1505.06895, 2015. → page 1

[26] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz. Empirical review of
automated analysis tools on 47,587 ethereum smart contracts. In
Proceedings of the ACM/IEEE 42nd International conference on software
engineering, pages 530–541, 2020. → pages 19, 22

[27] P. Dutta, T.-M. Choi, S. Somani, and R. Butala. Blockchain technology in
supply chain operations: Applications, challenges and research
opportunities. Transportation research part e: Logistics and transportation
review, 142:102067, 2020. → page 1

[28] J. Feist, G. Grieco, and A. Groce. Slither: a static analysis framework for
smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB), pages
8–15. IEEE, 2019. → pages 4, 17, 18, 19, 21

[29] Y. Feng, E. Torlak, and R. Bodik. Summary-based symbolic evaluation for
smart contracts. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, pages 1141–1152, 2020.
→ page 18

72

http://dx.doi.org/10.1109/tse.2021.3054928
https://doi.org/10.1109/tse.2021.3054928
https://github.com/ConsenSys/mythril

[30] J. Frank, C. Aschermann, and T. Holz. ETHBMC: A bounded model
checker for smart contracts. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2757–2774. USENIX Association, Aug. 2020. ISBN
978-1-939133-17-5. URL
https://www.usenix.org/conference/usenixsecurity20/presentation/frank. →
page 18

[31] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan, and Z. Chen. Easyflow: Keep
ethereum away from overflow. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 23–26. IEEE, 2019. → page 27

[32] A. Ghaleb and K. Pattabiraman. How effective are smart contract analysis
tools? evaluating smart contract static analysis tools using bug injection. In
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 415–427, 2020. → pages 4, 18, 22

[33] A. Ghaleb, J. Rubin, and K. Pattabiraman. etainter: Detecting gas-related
vulnerabilities in smart contracts. 2022. → page 17

[34] J.-R. Giesen, S. Andreina, M. Rodler, G. O. Karame, and L. Davi. Practical
mitigation of smart contract bugs. arXiv preprint arXiv:2203.00364, 2022.
→ page 21

[35] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis.
Madmax: Surviving out-of-gas conditions in ethereum smart contracts.
Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–27,
2018. → pages 17, 21

[36] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce. Echidna: effective,
usable, and fast fuzzing for smart contracts. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages
557–560, 2020. → page 19

[37] A. Groce, I. Ahmed, J. Feist, G. Grieco, J. Gesi, M. Meidani, and Q. Chen.
Evaluating and improving static analysis tools via differential mutation
analysis. In 2021 IEEE 21st International Conference on Software Quality,
Reliability and Security (QRS), pages 207–218. IEEE, 2021. → pages
4, 19, 22

[38] K. Hara, T. Takahashi, M. Ishimaki, and K. Omote. Machine-learning
approach using solidity bytecode for smart-contract honeypot detection in
the ethereum. In 2021 IEEE 21st International Conference on Software

73

https://www.usenix.org/conference/usenixsecurity20/presentation/frank

Quality, Reliability and Security Companion (QRS-C), pages 652–659.
IEEE, 2021. → page 18

[39] A. Hefele, U. Gallersdörfer, and F. Matthes. Library usage detection in
ethereum smart contracts. In OTM Confederated International Conferences”
On the Move to Meaningful Internet Systems”, pages 310–317. Springer,
2019. → page 27

[40] F. Hofmann, S. Wurster, E. Ron, and M. Böhmecke-Schwafert. The
immutability concept of blockchains and benefits of early standardization.
In 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K),
pages 1–8. IEEE, 2017. → page 47

[41] A. Holkner and J. Harland. Evaluating the dynamic behaviour of python
applications. In Proceedings of the Thirty-Second Australasian Conference
on Computer Science-Volume 91, pages 19–28, 2009. → page 21

[42] S. Hwang and S. Ryu. Gap between theory and practice: An empirical study
of security patches in solidity. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pages 542–553, 2020.
→ pages 5, 16, 22

[43] S. Jeon, G. Lee, H. Kim, and S. S. Woo. Smartcondetect: Highly accurate
smart contract code vulnerability detection mechanism using bert. 2021. →
page 18

[44] S. Ji, J. Dong, J. Qiu, B. Gu, Y. Wang, and T. Wang. Increasing fuzz testing
coverage for smart contracts with dynamic taint analysis. In 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
(QRS), pages 243–247. IEEE, 2021. → page 19

[45] B. Jiang, Y. Liu, and W. Chan. Contractfuzzer: Fuzzing smart contracts for
vulnerability detection. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 259–269. IEEE, 2018. →
page 19

[46] E. Lai and W. Luo. Static analysis of integer overflow of smart contracts in
ethereum. In Proceedings of the 2020 4th International Conference on
Cryptography, Security and Privacy, pages 110–115, 2020. → page 27

[47] A. Li, J. A. Choi, and F. Long. Securing smart contract with runtime
validation. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 438–453, 2020.
→ page 20

74

[48] Z. Liao, S. Song, H. Zhu, X. Luo, Z. He, R. Jiang, T. Chen, J. Chen,
T. Zhang, and X.-s. Zhang. Large-scale empirical study of inline assembly
on 7.6 million ethereum smart contracts. IEEE Transactions on Software
Engineering, 2022. → page 68

[49] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard: finding
reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion),
pages 65–68. IEEE, 2018. → page 19

[50] Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji. Smart contract
vulnerability detection: from pure neural network to interpretable graph
feature and expert pattern fusion. arXiv preprint arXiv:2106.09282, 2021.
→ page 18

[51] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang. Combining
graph neural networks with expert knowledge for smart contract
vulnerability detection. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2021. doi:10.1109/TKDE.2021.3095196. → page
18

[52] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for java. In Asian
Symposium on Programming Languages and Systems, pages 139–160.
Springer, 2005. → page 21

[53] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 254–269, 2016. → pages
4, 7, 17, 18, 19, 21

[54] A. Mavridou and A. Laszka. Tool demonstration: Fsolidm for designing
secure ethereum smart contracts. In International conference on principles
of security and trust, pages 270–277. Springer, 2018. → page 20

[55] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey. Verisolid:
Correct-by-design smart contracts for ethereum. In International Conference
on Financial Cryptography and Data Security, pages 446–465. Springer,
2019. → page 20

[56] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, and M. Laskowski. Understanding a revolutionary
and flawed grand experiment in blockchain: the dao attack. Journal of Cases
on Information Technology (JCIT), 21(1):19–32, 2019. → page 4

75

http://dx.doi.org/10.1109/TKDE.2021.3095196

[57] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg. Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 1186–1189. IEEE, 2019. → page 19

[58] S. Nakamoto. Bitcoin whitepaper. URL: https://bitcoin.org/bitcoin.pdf,
2008. → pages 1, 10

[59] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh. sfuzz: An
efficient adaptive fuzzer for solidity smart contracts. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pages
778–788, 2020. → page 19

[60] T. D. Nguyen, L. H. Pham, and J. Sun. Sguard: Towards fixing vulnerable
smart contracts automatically. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1215–1229. IEEE, 2021. → page 21

[61] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding the
greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th
Annual Computer Security Applications Conference, pages 653–663, 2018.
→ page 19

[62] openzeppelin. Proxy patterns, 2018. URL
https://blog.openzeppelin.com/proxy-patterns/. → page 47

[63] OpenZeppelin. Openzeppelin safemath library, 2022. URL
https://docs.openzeppelin.com/contracts/4.x/api/utils. → page 13

[64] S. Palladino. The parity wallet hack explained, 2017. URL https:
//blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7.
→ page 4

[65] Z. Pan, T. Hu, C. Qian, and B. Li. Redefender: A tool for detecting
reentrancy vulnerabilities in smart contracts effectively. In 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
(QRS), pages 915–925. IEEE, 2021. → page 19

[66] Paradigm. Foundry, 2021. URL https://github.com/foundry-rs/foundry. →
page 19

[67] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu. A formal verification
tool for ethereum vm bytecode. In Proceedings of the 2018 26th ACM joint

76

https://blog.openzeppelin.com/proxy-patterns/
https://docs.openzeppelin.com/contracts/4.x/api/utils
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://github.com/foundry-rs/foundry

meeting on european software engineering conference and symposium on
the foundations of software engineering, pages 912–915, 2018. → page 20

[68] C. Peng, S. Akca, and A. Rajan. Sif: A framework for solidity contract
instrumentation and analysis. In 2019 26th Asia-Pacific Software
Engineering Conference (APSEC), pages 466–473. IEEE, 2019. → page 39

[69] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev.
Verx: Safety verification of smart contracts. In 2020 IEEE symposium on
security and privacy (SP), pages 1661–1677. IEEE, 2020. → page 20

[70] A. Reyna, C. Martı́n, J. Chen, E. Soler, and M. Dı́az. On blockchain and its
integration with iot. challenges and opportunities. Future generation
computer systems, 88:173–190, 2018. → page 1

[71] M. Ribeiro, P. Adão, and P. Mateus. Formal verification of ethereum smart
contracts using isabelle/hol. In Logic, Language, and Security, pages 71–97.
Springer, 2020. → page 20

[72] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic
behavior of javascript programs. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
1–12, 2010. → page 21

[73] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do. In
European Conference on Object-Oriented Programming, pages 52–78.
Springer, 2011. → page 21

[74] M. Rodler, W. Li, G. O. Karame, and L. Davi. Evmpatch: timely and
automated patching of ethereum smart contracts. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021. → pages 4, 5, 20, 63

[75] S. So, S. Hong, and H. Oh. {SmarTest}: Effectively hunting vulnerable
transaction sequences in smart contracts through language {Model-Guided}
symbolic execution. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1361–1378, 2021. → pages 4, 18

[76] S. Srikant. Vulcan: classifying vulnerabilities in solidity smart contracts
using dependency-based deep program representations. PhD thesis,
Massachusetts Institute of Technology, 2020. → page 18

[77] T. Sun and W. Yu. A formal verification framework for security issues of
blockchain smart contracts. Electronics, 9(2):255, 2020. → page 20

77

[78] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan. Intellicode
compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1433–1443,
2020. → page 68

[79] B. Tan, B. Mariano, S. K. Lahiri, I. Dillig, and Y. Feng. Soltype: refinement
types for arithmetic overflow in solidity. Proceedings of the ACM on
Programming Languages, 6(POPL):1–29, 2022. → page 17

[80] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov. Smartcheck: Static analysis of ethereum
smart contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain, pages 9–16, 2018.
→ pages 17, 18, 19, 21

[81] C. F. Torres, J. Schütte, and R. State. Osiris: Hunting for integer bugs in
ethereum smart contracts. In Proceedings of the 34th Annual Computer
Security Applications Conference, pages 664–676, 2018.

[82] C. F. Torres, M. Steichen, et al. The art of the scam: Demystifying
honeypots in ethereum smart contracts. In 28th {USENIX} security
symposium ({USENIX} security 19), pages 1591–1607, 2019. → page 19

[83] C. F. Torres, H. Jonker, and R. State. Elysium: Automagically healing
vulnerable smart contracts using context-aware patching. arXiv preprint
arXiv:2108.10071, 2021. → page 20

[84] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev. Securify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 67–82, 2018. → pages 4, 7, 17, 18, 19, 21

[85] F. Vogelsteller and V. Buterin. Eip-20: Token standard, 2015. URL
https://eips.ethereum.org/EIPS/eip-20. → page 47

[86] Z. Wan, X. Xia, D. Lo, J. Chen, X. Luo, and X. Yang. Smart contract
security: a practitioners’ perspective. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 1410–1422. IEEE, 2021.
→ pages 4, 5, 6, 29

[87] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su. Contractward:
Automated vulnerability detection models for ethereum smart contracts.

78

https://eips.ethereum.org/EIPS/eip-20

IEEE Transactions on Network Science and Engineering, 8(2):1133–1144,
2020. → page 18

[88] Z. Wang, X. Chen, X. Zhou, Y. Huang, Z. Zheng, and J. Wu. An empirical
study of solidity language features. In 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security Companion
(QRS-C), pages 698–707. IEEE, 2021. → pages 5, 16, 22

[89] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and X. Mao.
Peculiar: Smart contract vulnerability detection based on crucial data flow
graph and pre-training techniques. In 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, pages
378–389, 2021. → pages 18, 21

[90] R. Xi and K. Pattabiraman. When they go low: Automated replacement of
low-level functions in ethereum smart contracts. In 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2022. → page 22

[91] R. Xi and K. Pattabiraman. Gohigh’s dataset, Jan. 2022. URL
https://doi.org/10.5281/zenodo.5843540. → page 42

[92] C. Xing, Z. Chen, L. Chen, X. Guo, Z. Zheng, and J. Li. A new scheme of
vulnerability analysis in smart contract with machine learning. Wireless
Networks, pages 1–10, 2020. → page 18

[93] Y. Xu, G. Hu, L. You, and C. Cao. A novel machine learning-based analysis
model for smart contract vulnerability. Security and Communication
Networks, 2021, 2021. → page 18

[94] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng. Cross-contract static
analysis for detecting practical reentrancy vulnerabilities in smart contracts.
In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1029–1040. IEEE, 2020. → pages 17, 21

[95] P. Yin and G. Neubig. A syntactic neural model for general-purpose code
generation. arXiv preprint arXiv:1704.01696, 2017. → page 68

[96] R. Yu, J. Shu, D. Yan, and X. Jia. Redetect: Reentrancy vulnerability
detection in smart contracts with high accuracy. In 2021 17th International
Conference on Mobility, Sensing and Networking (MSN), pages 412–419.
IEEE, 2021. → pages 19, 63

79

https://doi.org/10.5281/zenodo.5843540

[97] D. A. Zetzsche, D. W. Arner, and R. P. Buckley. Decentralized finance.
Journal of Financial Regulation, 6(2):172–203, 2020. → page 1

[98] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu. Smartshield: Automatic
smart contract protection made easy. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 23–34. IEEE, 2020. → pages 20, 64

80

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Smart Contract Vulnerability in Solidity
	1.2 Existing Patching Techniques
	1.3 Motivation
	1.4 Contribution and Summary

	2 Background and Related Work
	2.1 Background
	2.1.1 Blockchain
	2.1.2 Ethereum and Smart Contract
	2.1.3 Solidity Language
	2.1.4 Security Issues in Solidity Smart Contracts

	2.2 Related Work
	2.2.1 Empirical Study
	2.2.2 Detection
	2.2.3 Testing
	2.2.4 Patching
	2.2.5 Insecure Features in Other Languages

	2.3 Summary

	3 Low-Level Functions: Definition and Empirical Study
	3.1 Definition
	3.1.1 Selection and Definition of Low-level Functions
	3.1.2 Low-Level Functions Included

	3.2 Empirical Study
	3.2.1 Dataset
	3.2.2 Tools
	3.2.3 Results

	3.3 Summary

	4 Methodology
	4.1 Challenge and Contribution
	4.2 AST Generation
	4.3 Pattern Matching
	4.4 Replacement
	4.5 Implementation
	4.6 Example
	4.7 Summary

	5 Results
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Hardware and Software

	5.2 Research Questions (RQs)
	5.3 Results
	5.3.1 RQ1: Observations from Recent and Latest Datasets
	5.3.2 RQ2: Coverage of GoHigh's replacement
	5.3.3 RQ3: Compiler Warnings before and after Replacement
	5.3.4 RQ4: Unintended Side-Effects After Replacement
	5.3.5 RQ5: Gas Cost Overhead of GoHigh
	5.3.6 RQ6: Performance of GoHigh

	5.4 Summary

	6 Discussion
	6.1 Possible Reasons Why Developers Violate the Guideline
	6.1.1 Gas Consumption Misunderstanding
	6.1.2 Overly Restrictive Guidelines
	6.1.3 Vulnerable Access Control Library
	6.1.4 Upgradeability and Proxy

	6.2 Threats to Validity
	6.2.1 External Threat
	6.2.2 Internal Threat

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Inline Assembly (IA)
	7.2.2 Upgradeable Proxy
	7.2.3 Access Control

	Bibliography

