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Abstract 

 

As the transmission dynamics of HIV change in response to public health action and other 

external factors, rapid, scalable and unbiased methods of transmission monitoring become 

increasingly crucial to gaining and maintaining epidemic control. Analyses of transmission 

dynamics can direct allocation of public health resources expediently, monitor public health 

program effectiveness, and identify both existing and developing gaps in prevention. 

Investigation of lineage-level diversification rate, a phylogenetic approximation of transmission, 

as a measure for prioritization of transmission clusters for public health intervention was 

conducted. Both empirical and simulated data were used to compare lineage-level diversification 

rate-based measures to commonly used non-phylogenetic prioritization measures in ability to 

statistically separate high and low priority populations, strength of relationship with future 

growth and number of downstream transmissions produced by prioritized clusters. Further 

analyses employ phylogenetic methods in the detection of cluster-level transmission changes 

associated with reductions in access to HIV services related to SARS-CoV-2 restrictions in 

British Columbia. Cluster growth, branching events and change in lineage-level diversification 

rates quantify transmission across three sixty-day periods representing “pre-lockdown”, 

“lockdown” and “post-lockdown”. Results reveal that lineage-level diversification rate-based 

measures frequently outperform non-phylogenetic measures in prioritizing transmission clusters 

with the greatest growth potential, while remaining more robust to the effects of missing data. 

Change in lineage-level diversification rates, in combination with branching events and cluster 

growth, also indicate increased transmission in clusters associated with people who inject drugs 

(PWID) relative to clusters associated with men who have sex with men (MSM) during the 
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period of time following SARS-CoV-2 restriction implementation. Overall, lineage-level 

diversification rates provide a quantitative and consistent approach to transmission cluster 

prioritization free of need for external data and aid in the formation of a multi-faceted 

phylogenetic approach to detecting broader trends in transmission. Phylogenetic methods offer 

valuable insights crucial to epidemic control in the modern epidemiological landscape of HIV. 
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Lay Summary 

 

Public health officials faced with more HIV-transmitting groups than can be immediately 

addressed require an efficient way to identify gaps in prevention and prioritize limited resources 

in order to maximize their benefit. Existing commonly used methods of transmission monitoring 

can be hindered by their subjectivity and reliance on historical data, but phylogenetic methods 

derived purely from viral sequence data can circumvent these faults. Viral sequence data is often 

collected during routine clinical care and can thus be easily repurposed by phylogenetic methods 

to approximate transmission magnitude, timing and rate. The work presented in this thesis 

demonstrates the advantages of employing phylogenetic methods over commonly used non-

phylogenetic methods in the prioritization of small groups for public health intervention and 

reveals the ability of phylogenetic methods that approximate transmission magnitude, timing and 

rate to detect changes in transmission trends over time. 
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Chapter 1: Introduction 

 

1.1 Global challenges in epidemiology and public health 

1.1.1 Human-pathogen equilibrium 

The evolution of the human population is invariably and intricately linked to the evolution of the 

pathogens that infect us. Pathogens have always been a threat to human survival and thus a 

strong selective force, but as modern medicine advances, we become better equipped to dampen 

the negative effects of pathogen infection. However, as the tools we have to combat infection 

evolve, concomitantly, we enforce stronger selection on pathogens, forcing them to advance in 

turn. The evolution of drug resistance illustrates this phenomenon, demonstrating the constant 

alternation in ability of either modern pharmaceuticals or pathogen mutations to overpower the 

other1. Multiple viral2,3 and microbial1 pathogens have developed survival mechanisms in the 

presence of drugs that could once reliably eliminate them, but the corresponding ability of 

medical research to develop novel effective drugs perpetuates the cycle. However, as drug-

resistance continues to emerge and known mechanisms of treatment not yet blocked by drug-

resistance dwindle1,4,5, infection control measures become the most viable way to actively restrict 

pathogen spread and its resulting cost to human survival and resources. Thus, methods of 

monitoring and characterizing the transmission of both existing and emergent pathogens hold 

significant value, as the insight they provide can allow public health teams to cut transmission 

chains short before their exponential growth reaches an uncontrollable magnitude. 
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1.1.2 Modern challenges in pathogen control 

As the human population grows and becomes increasingly interconnected, the opportunity for 

widespread pathogen transmission increases, creating a wider platform for mutation and potential 

pathogen evolution as traditional infection control methods become progressively more complex 

and unwieldy. Furthermore, as expansion of the human population drives us to encroach further 

into previously unoccupied natural ecosystems and stimulate climate change, human-wildlife 

interactions increase and viral vectors expand their range6, thus increasing the frequency of 

opportunity for pathogen mutation7 and crossover into humans6,8,9. Monitoring of pathogen 

transmission trends already provides a method of focusing limited health resources on 

populations experiencing elevated transmission, and as the number of pathogens we face 

increases, such methods will become increasingly critical to the health of human societies.  

Additionally, as our control of existing epidemics increases and high-transmission 

populations shrink, methods of monitoring transmission that enact more fine-grained 

characterization will be necessary for the advancement of epidemic suppression. Both existing 

and emergent pathogens pose a threat to the health of human society, and as the modern 

pathogen landscape develops, methods that allow focused characterization and tracking of 

pathogen transmission are becoming increasingly valuable.  

 

1.2 The HIV epidemic 

1.2.1 The global burden of HIV 

Since it’s putative crossover into humans in the 1920s10, HIV has infected an estimated 79.3 

million people and been linked to the deaths of 36.3 million, making it a significant global public 

health challenge11. In 2020, the WHO reported that 37.7 million people were living with HIV11, 
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although the burden of HIV and level of epidemic control varies markedly between different 

countries and regions. In regions that facilitate access to antiretroviral therapy (ART), pre-

exposure prophylaxis (PrEP), regular HIV diagnostic testing and harm reduction materials such 

as condoms and safe injection supplies, HIV transmission can be drastically reduced12. However, 

these approaches are not only expensive and difficult to implement quickly, but may also be 

deprioritized or actively obstructed by policy-makers13,14. Even in locations with relatively high 

levels of epidemic control, such as British Columbia (BC), hundreds of new transmissions are 

still occurring each year12, indicating that the methods and allocation of prevention strategies 

could still be improved. 

 

1.2.2 Methods of HIV treatment and prevention 

Well-controlled HIV epidemics are commonly achieved by a comprehensive assortment of 

treatment and prevention methods12. As shown by several studies published in the past decade, 

individuals who maintain viral suppression via ART have effectively zero risk of transmitting 

HIV to a sexual partner15,16, thus making connecting infected individuals with consistent 

treatment a cornerstone of prevention. The goal of viral suppression also makes regular 

diagnostic testing critical, as expeditious detection of HIV infection leaves less opportunity for 

viral replication, therefore shortening the path to suppression. Further elements of prevention 

include provision of condoms, safe injection supplies, point-of-care testing, PrEP, post-exposure 

prophylaxis (PEP) and community education. However, providing all of these components is 

costly and requires time, labour and public health infrastructure to distribute. In order to 

maximize the benefits of limited resources, many jurisdictions apply prioritization approaches to 
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the infected and at-risk population in order to focus prevention on groups with the largest 

potential for downstream negative impact. 

 

1.2.3 The epidemiology of HIV in British Columbia 

The HIV epidemic in the province of BC, Canada, is currently relatively well-controlled due to a 

combination of cohesive public health initiatives. Provision of ART has been consistently 

increased since 199617, with additional efforts to expand ART availability beginning in 2010. 

Diagnostic testing, viral load testing and drug-resistance testing are part of routine clinical care, 

as is the provision of harm reduction materials such as condoms and safe infection supplies to at 

risk individuals. Near real-time phylogenetic monitoring of the local HIV-1 epidemic has been 

employed since 2013 to detect and prioritize groups with the highest risk of transmission18. 

These focused interventions have allowed public health resources to be allocated with greater 

efficiency and nearly a decade of using this method to track and respond to the epidemic has 

contributed to substantial decreases in new HIV diagnoses12. Decreasing diagnoses are likely 

also driven in part by improved access to ART, the expansion of harm reduction strategies19, and 

increased uptake of PrEP following the 2018 decision to allow provision to eligible individuals at 

no cost20. 

 

1.2.3.1 Data collection by the BC Centre for Excellence in HIV/AIDS 

In BC, routine clinical care following every new HIV diagnosis includes drug resistance 

genotype testing performed by the BC Centre for Excellence in HIV/AIDS (BC-CfE). Viral 

RNA extracted from patient blood samples is used to amplify and sequence the partial pol region 

of the HIV genome, which is then used to determine which antiretroviral drugs will be most 
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effective for each individual based on observed viral surveillance drug resistance mutations 

(SDRMs)21. After this information is reported back to the primary care clinicians, the BC-CfE 

retains both the HIV sequence data and associated metadata. As this process has been part of 

routine clinical care since 1996, it has led to the creation of a comprehensive dataset representing 

greater than 75% of the prevalence of HIV in BC22. This dataset is extremely valuable because it 

is repurposed by BC-CfE scientists and local medical health officers to conduct regular 

molecular monitoring of transmission, thus bypassing what would otherwise be a complex data 

collection process. 

 

1.3 Molecular epidemiology and HIV 

1.3.1 Phylodynamics and viral epidemiology 

Viral phylodynamics, the study of the evolutionary forces of selection that influence the structure 

of viral phylogenies, can provide useful insights highly relevant to public health. Differing 

population characteristics and trends in transmission will enact differing selection on viral 

populations, thus creating distinct patterns in the accumulation of genetic variation. Patterns in 

genetic variation may manifest as differences in phylogenetic branch lengths, clustering or tree 

balance23. Phylodynamic analyses can use such phylogenetic features to make inferences about 

viral characteristics such as rate of evolution, date of origin or infection, basic reproduction 

number, geographic spread and strength of selection23, thus making them an invaluable tool in 

the epidemiological characterization of many viruses including influenza24, H1N125, hepatitis C 

virus (HCV)26, rabies27, HIV28 and SARS-CoV-229. Phylodynamics can also be useful in 

identifying changes in epidemic trends that might signal effectiveness of public health 

interventions aiming to control viral transmission23.  
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1.3.2 Molecular monitoring and transmission cluster inference 

Molecular epidemiology, the application of evolutionary patterns derived from population-level 

pathogen genetic sequence data, provides a route to epidemic monitoring that bypasses several 

drawbacks of traditional epidemiological methods. Traditional methods that rely on contact 

tracing, interviews, and assignment of coarse metadata can not only be time consuming, but also 

prone to error and bias from both the data-collecting and data-providing parties. Pathogen 

sequence datasets are much less likely to be perturbed by such inaccuracies, and in the case of 

HIV, often already exist as a byproduct of drug-resistance testing.  

Viral pathogen sequence data, in particular HIV sequence data, is amenable to molecular 

epidemiological methods because viral pathogens constantly accumulate genetic variation. 

Patterns in genetic variation are heavily influenced by patterns in transmission and selection, and 

thus the characteristics of a viral epidemic will be reflected in the structure of its’ phylogeny. 

This is particularly true for HIV due to it’s rapid rate of evolution, which ensures that viral 

populations harbored by different individuals rapidly diverge following transmission30,31. 

The level of genetic divergence separating two viral sequences can be phylogenetically 

quantified via patristic distance, the sum of the lengths of branches linking a pair of tips on a 

phylogenetic tree. By setting a patristic distance threshold, individuals can be delineated into 

groups termed “transmission clusters” based on the genetic similarity of the viruses they 

harbor32. The threshold is set such that distances below it are characteristic of distances seen 

within a single patient and likely indicate relation by recent transmission events if seen between 

individuals18. Importantly, due to the uncertainty introduced by incomplete sampling of the 
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infected population, phylogenetic methods can never be used to definitively infer transmission 

directionality between two individuals or cluster members.  

Transmission clusters can also be determined non-phylogenetically, by similarly applying 

a threshold to raw nucleotide distances between pairs of aligned sequences, but this method is 

hampered by the fact that it doesn’t consider the difference between two sequences in the greater 

evolutionary context of the population of sampled sequences. By ignoring the historic 

relationships between sequences, non-phylogenetic methods fail to account for differences in 

evolutionary rate between sites, thus creating opportunity for incorrect assumptions about 

divergence time33. Phylogenetic methods use more of the information available in the alignment 

by considering how sequences are related by common ancestry32 and adjusting the distances 

between them accordingly. Sequence divergence may be better captured by phylogenetic 

distance matrices, hence giving them an advantage as a starting point for transmission cluster 

inference. Such advantages have been demonstrated by Balaban et al.34, who showed via 

simulated data that phylogenetically-defined clusters consistently include individuals with 

greater transmission potential than clusters defined using genetic distance alone, although the 

difference is not extreme. 

Once a set of transmission clusters has been identified, they provide a mechanism for 

investigating trends in subsets of the transmitting population that may share non-genetic 

characteristics. One use of partitioning individuals in this way is that they can be prioritized such 

that limited public health resources can be allocated most rapidly to clusters with the greatest 

potential for future growth, in order to quickly quell the greatest number of transmissions before 

shifting focus to less urgent clusters. Transmission clusters can also be useful on a broader level, 
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in the investigation of differences in transmission rates between populations characterized by 

differing attributes of interest such as risk factor, ethnicity, gender or location.  

 

1.3.3 Non-phylogenetic methods of transmission cluster prioritization 

Recently, the use of non-phylogenetic measures, either in combination with phylogenetic 

clustering18,35, non-phylogenetic clustering36-38 or without directly considering clustering39 have 

been proposed to enhance prioritization processes. The addition of quantitative measures such as 

cluster size, previous cluster growth, or mean cluster viral load can make the prioritization 

procedure less subjective. However, there are no established cutoffs defining when such 

measures reach a level warranting rapid intervention, nor are there established methods for 

estimating the combined effects of multiple measures. Consequently, cluster prioritization 

processes remain heavily reliant upon local expertise and subjective interpretation and are thus 

limited in their ability to be consistent and widely applicable. Furthermore, use of measures such 

as previous cluster growth or average cluster viral load rely on data collected in previous years or 

additional linked data, both of which may not always be available. However, phylogenetically 

derived measures may be able to offer a method of transmission cluster prioritization that 

circumvents these disadvantages, as they are quantitative and can be calculated consistently from 

that same dataset used to infer transmission clusters. 

 

1.3.4 Phylogenetic methods of prioritization 

The use of phylogenetic methods in prioritization is much less common than the use of non-

phylogenetic methods, although recent research40 provides justification for further development 

of this field. A method proposed by Moshiri et al.40 that prioritizes individuals based on their 
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phylogenetic terminal branch lengths was shown to outperform prioritization based on previous 

transmission cluster growth, demonstrating the potential advantages of using phylogenetic 

measures in prioritization. However, this method focuses prioritization on individuals rather than 

transmission clusters, which may be in conflict with ethical considerations and privacy laws in 

some jurisdictions41. Additionally, focusing on individuals rather than groups disregards the 

context surrounding the individual and may overlook group trends that could inform effective 

prevention. Furthermore, focusing on terminal branch lengths ignores the historical information 

contained earlier in the phylogeny and places a coarse threshold on branching that may exclude 

recent and relevant internal branch lengths. Nevertheless, this method reveals the value of 

phylogenetic measures of prioritization and validates the exploration of alternative phylogenetic 

methods that aim to improve upon this starting point. 

 

1.3.5 Lineage-level diversification rate 

One possible phylogenetic route to transmission cluster prioritization is through consideration of 

lineage-level diversification rates. Lineage-level diversification rate is a phylogenetically-derived 

measure first described by Jetz et al.42 that tracks the historical branching rate of tips in the 

phylogeny, thus serving as an approximation of transmission rate. Lineage-level diversification 

rate is the inverse of the equal splits measure, which was initially used to determine genetic 

distinctness of species in the context of conservation43.  

Lineage-level diversification rate accounts for both the number of branching events and 

the branch lengths in a phylogenetic tree, and as a tip-weighted measure, it emphasizes recent 

events. Tips sharing very recent common ancestry with many other lineages will have higher 

diversification rates, providing evidence for rapid transmission and or increased sampling. The 
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opposite is true for tips existing in areas of the tree where fewer lineages stem from fewer recent 

branching events – these tips will have lower diversification rates, suggesting slower 

transmission rates, or possibly poorer sampling.  

Lineage-level diversification rate is advantageous in a prioritization context because it is 

quantitative, consistent and can be calculated from the sequence data alone, making it a 

convenient option less likely to be perturbed by human bias. In 2019, McLaughlin et al. 

demonstrated that geographically aggregated lineage-level diversification rates were predictive 

of new HIV cases44 and concordant in the identification of clustering risk factors45, thus making 

them useful in the detection of populations at high risk for transmission. 

 

1.4 Insight derived from phylogenetic HIV transmission clusters informs public health 

decisions         

1.4.1 Research questions 

In this thesis, I investigate the use of phylogenetic methods in the detection of transmission 

trends relevant to public health decision-making. This work seeks to quantify the strength of the 

relationship between lineage-level diversification rate and potential future growth of a 

transmission cluster and identify differences in how well lineage-level diversification rate-based 

measures and non-phylogenetic measures stratify clusters by future cluster growth potential over 

time. I also aim to determine differences in how well lineage-level diversification rate-based 

measures and non-phylogenetic measures stratify clusters by future cluster growth potential at 

different levels of sampling. The ability of phylogenetic analyses including transmission cluster 

growth, branching events and lineage-level diversification rate to detect recent changes in cluster 

transmission associated with changes in epidemiological context is also addressed. Finally, this 
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work investigates the possibility of differential impacts of SARS-CoV-2 lockdown on 

transmission in cluster associated with different key population. 

 

1.4.2 Hypotheses 

Two main hypotheses motivate the research questions stated above. The first is that HIV 

transmission cluster prioritization based on phylogenetically derived lineage-level diversification 

rates will be at least as effective as commonly used non-phylogenetic measures in stratifying 

clusters by future growth potential, without need for historical data or subjective interpretation. 

The second hypothesis is that following the initial implementation of SARS-CoV-2 lockdown 

restrictions and reduced access to HIV management and prevention services in BC, key 

populations of individuals at risk for HIV will demonstrate differential trends in rates of 

transmission detectable via phylogenetic analyses that quantitatively approximate transmission 

preceding, during and following the implementations of restrictions. 
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Chapter 2: Phylogenetic prioritization of transmission clusters using lineage-

level diversification rates 

 

2.1  Introduction 

The strategies employed in BC have not only resulted in a more rapid decline in cases relative to 

other Canadian provinces46, but have also helped BC make exceptional progress towards the 

UNAIDS 95-95-95 targets12,22. Additionally, phylogenetic monitoring has allowed fine-grained 

inferences about trends in the BC epidemic, such as the number of new cases joining clusters 

over time, a metric quantifying local transmission that has consistently declined since 2013 

(Figure 2.1C). Although the methods used in BC are highly effective, networks of transmission 

still exist and more comprehensive characterization and prioritization of transmission groups 

could improve epidemic control.  

Although the addition of quantitative non-phylogenetic measures such as cluster size or 

previous cluster growth can provide some benefit to prioritization procedures, they can be 

subjective, inconsistent and reliant on historical data or expert interpretation.   

In this chapter, both empirical and simulated data are employed to evaluate the 

hypothesis that cluster prioritization measures based on phylogenetically-derived lineage-level 

diversification rates will perform at least equally as well as commonly-used non-phylogenetic 

prioritization measures in stratifying clusters based on transmission activity, while remaining 

free of need for additional assumptions, data or historical interpretation. We use BC empirical 

data to compare phylogenetic diversification rate-based measures to non-phylogenetic measures 

in their ability to separate clusters labelled by BC public health protocol as “priority” from the 
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remaining clusters. We further compare prioritization measure performance through a simulation 

study to reduce the effects of biases that hinder empirical data, such as incomplete sampling and 

differential cluster intervention. Thus, simulation facilitates direct comparison of the relationship 

between each prioritization measure and future cluster growth, as well as the direct number of 

transmissions resulting from prioritized clusters. 

 

2.2 Methods 

2.2.1 Empirical data analysis pipeline 

The study dataset was restricted to sequence data and linked metadata collected by the 

BC-CfE between May 1996 and December 2018 inclusive, totaling 35,752 partial pol HIV 

sequences derived from viruses sampled from 9,822 patients. All data were doubly-anonymized 

prior to analysis. The University of British Columbia – Providence Health Care Research Ethics 

Board granted ethical approval for this study. 

 All 35,752 anonymized sequences were aligned with MAFFT v7.31047. Known SDRM 

codons were masked before inference of a phylogenetic tree with 100 bootstraps using FastTree 

v2.1.1048. The full trees were pruned to create 10 subtrees, each containing all sequences 

collected by the end of each of the 10 years preceding 2019. Each subtree was rooted using the 

residual-mean-squared function in TempEst v1.5.349 and pruned to contain only the earliest 

sequence available for each individual, leaving 9822 sequences in the largest trees. Transmission 

clusters were inferred from the full 2018 trees using a patristic distance threshold of 0.02 

nucleotide substitutions/site, as described by Poon et al.18, and a 50% bootstrap threshold. The 

minimum transmission cluster size was set to five individuals to further maintain confidentiality 

beyond double anonymization of the data. Lineage-level diversification rates were calculated for 
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all tips in all bootstraps and the median value associated with each tip was kept for use in 

downstream analyses. In order to quantify the distribution of diversification rates for tips across 

the 100 bootstraps, the median difference in diversification rate between a tip in a given 

bootstrap and the same tip in all other bootstraps was calculated. In general, the median 

difference in diversification rate across bootstraps was very small, although some outlier tips did 

show greater variation (Figure 2.1).  

 

Figure 2.1 Distribution of the median difference diversification rates across bootstraps for each tip. Boxplots 
represent the median and IQR of the median difference in tip diversification rate in a given bootstrap versus 
all other bootstraps. In general, the median difference in diversification rate is very small across bootstraps, 
but some tips show greater variation. 
 

Comparison of cluster median diversification rate to cluster size was also conducted. A 

positive relationship between median diversification rate across tips in a cluster and cluster size 

appears to exist at smaller cluster sizes, but weakens as cluster size increases (Figure 2.2), 

suggesting that elevated diversification rates in larger clusters are not necessarily solely a 

reflection of increased cluster size.  
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Figure 2.2 Transmission cluster size versus diversification rate. Each dot represents the median 
lineage-level diversification rate for a cluster of a particular size. Panel A shows the DR distribution by 
cluster sizes in the empirical data. Panels B-H show the same, but based on simulated data generated by 
different parameter sets. Parameter sets include variations from the base set that differ in number of seed 
individuals, time between infection and the initiation of ART (startART) and the expected degree (Ed) of 
connectedness within the contact network. 
 

The diversification rate-based measures assessed include cluster mean (MeanDR), 

median (MedianDR), maximum (MaxDR) and most recent diversification rate (MostRecentDR), 

as well as the mean of the top three (Top3MeanDR) and top five diversification rates 

(Top5MeanDR) in a cluster. Non-phylogenetic measures assessed include previous year 

(PrevYrGrowth), three year (Prev3YrGrowth) and five year growth (PrevYrGrowth), as well as 

cluster size (ClustSize), previous year cluster growth squared (ClustGrowthSq) and whether or 

not more than five cases have joined a cluster in the previous year (PrevYr5CasePlus). 

 The ability of non-phylogenetic measures and diversification rate-based measures to 

stratify transmission clusters based on transmission activity was evaluated based on the ability of 

each measure to separate clusters marked as “priority” by the BC public health protocol in a 
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given year from the remainder. Prioritization decisions made by the BC protocol can be a result 

of rapid cluster growth, rapid symptom onset seen in one or more cluster members, or 

combinations of other factors recognized by the public health team as concerning. Successful 

distinction between these two groups of transmission clusters was assessed using Mann-Whitney 

U tests. 

 

2.2.2 Epidemic simulation in the FAVITES framework 

The need for simulation of the BC epidemic is motivated by two factors. First, intervention 

decreasing transmission would be expected to reduce lineage-level diversification rate for a 

transmission cluster, meaning that clusters known to be consistently labelled as priority may 

display decelerating diversification rates despite having high potential for transmission. 

Secondly, evaluating novel methods using the set of labels defined by the BC public health 

protocol as a benchmark assumes that this method accurately captures the true set of clusters 

with the greatest potential for transmission, which may not necessarily be the case. Simulated 

epidemics allow evaluation under circumstances where intervention is not applied differentially 

between clusters and the true clusters with the greatest potential for propagating future 

transmissions are known.  

Simulation was performed using the FAVITES framework50 to create a contact network, 

seed infected individuals, generate transmission events and the viral evolution between them, and 

subsequently sample viral sequences. Simulations were set to run over a 10-year period 

beginning in 2009, with a base set of parameters adapted from Moshiri et al. (2019)50 and six 

variations of this set designed to encapsulate a range of reasonable matches to the characteristics 

of the BC epidemic while still containing enough variation in epidemic parameters to retain 
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generalizability to epidemics in other locations. Importantly, transmission clusters were not 

explicitly set or controlled during parameter selection and were instead inferred from the output 

data following the simulation process. As such, differences occurring in cluster characteristics 

that drive differences in transmission rate occur as a byproduct of other parameter choices rather 

than being directly specified and are thus likely to be somewhat inconsistent between replicates. 

Full description of the parameter selection process can be found in Appendix A. 

 

2.2.3 Simulated data analysis pipeline 

For each replicate of each of the seven parameter sets, simulated sequences spanning the full 10-

year simulation period were aligned in MAFFT and phylogenies were inferred with FastTree. 

After rooting on all branches via LSD251, each phylogeny was pruned to 10 subtrees, each 

representing the data collected by the end of a given simulation year. Transmission clusters were 

inferred for each subtree and lineage-level diversification rates were calculated for all tips. As in 

the empirical data, a positive relationship between median diversification rate across tips in a 

cluster and cluster size appears to exist at smaller cluster sizes, but weakens as cluster size 

increases (Figure 2.2). However, ability to investigate this relationship varies between parameter 

sets, as parameter configurations vary in the distribution of resulting cluster sizes. Cluster-level 

prioritization measures were calculated for each subtree such that the Spearman correlation 

between a prioritization measure in a given year and the amount of cluster growth in a given 

future year or period of years could be determined and summarized across replicates. 

Additionally, clusters were ranked by each prioritization measure and individuals from the top 

clusters (up to inclusion of 100 individuals, or the size of the top cluster, if its size exceeded 100) 

were used to determine the number of direct resulting transmissions, for comparison to the 
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number of transmissions produced by a random sample of lower-ranked clusters containing the 

same number of individuals.  

 

2.3 Results 

2.3.1 Empirical data 

2.3.1.1 BC HIV Transmission Clusters 

The numbers of both clustered and non-clustered cases decreased over time, as did the 

number of new cases (Figure 2.3C). In more recent years, a larger proportion of the new cases 

being diagnosed were non-clustered, further suggesting that more sensitive methods will be 

required to appropriately address all cases going forward. However, clusters capture pockets of 

closely related transmissions, and as comparison of diversification rates from un-clustered versus 

clustered tips suggests (Figure 2.4), the potential for rapid transmission is significantly greater 

within clusters (Mann-Whitney p < 0.001), thus rationalizing the focus on these groups as 

primary public health targets. Even within clusters, hundreds of cases occur each year that could 

be prevented if the accuracy and resolution of prioritization was increased. The right-tailed log 

distribution of diversification rates highlights the ability of this measure to allow more focused 

prioritization, as there are very few diversification rates that are very high relative to the majority 

of the measurements (Figure 2.3B).  
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Figure 2.3 Diversification rate distribution, phylogeny and clustering over time. A) 95% majority-rule 
consensus tree for 2018, with tips and pendant edges colored by lineage-level diversification rate (DR). 
Warmer colors and thicker edges highlight high diversification rates, suggesting rapid transmission. B) The 
distribution of lineage-level diversification rates for all individuals. The right-tailed distribution indicates that 
stratifying by diversification rate is likely to be effective in distinguishing a small top-priority population of 
individuals. C) Change in total cases, total clustered cases, newly diagnosed cases and newly clustered cases 
over time. Although total cases and total clustered cases are increasing over time, the yearly numbers of 
newly diagnosed cases and cases joining clusters have been consistently declining since 2011. 
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Figure 2.4 Diversification rates in clustered vs. not clustered individuals. Boxplot comparing the median and 
IQR of the diversification rates from all clustered tips versus all non-clustered tips. Significance of the 
difference between the two groups was assessed via a Mann-Whitney test. The increased diversification rates 
within clusters suggest potential for more rapid transmission within these groups, and further justify their 
position as a public health focus.  
 
 
 
2.3.1.2 Non-Phylogenetic vs. Diversification Rate-based Measures 

Some non-phylogenetic measures and some diversification rate-based measures were effective in 

distinguishing priority from non-priority clusters, as labelled by the current BC public health 

protocol. Using the year 2018 as a representative example, four of the six non-phylogenetic 

measures tested (Prev3YrGrowth, Prev5YrGrowth, ClustSize and PrevYr5CasePlus) showed a 

significant difference between priority and non-priority clusters (Mann-Whitney p = 0.024, 

0.076, 0.0073, 0.017), although none of these four demonstrated clearly defined separation 

between the two populations of clusters (Figure 2.5B). Using these four measures consistently 

generates low values for low priority clusters, but values for the high priority clusters frequently 

form a wide distribution, making the two populations of clusters difficult to distinguish (Figure 

2.5B).  

In 2018, all six of the diversification rate-based measures (MeanDR, MedianDR, 

MaxDR, Top3MeanDR, Top5MeanDR, MostRecentDR) tested showed a significant difference 
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between priority and non-priority clusters (Mann-Whitney p = 0.0033, 0.0016, 0.00086, 0.0019, 

0.0011, 0.0016). All tested measures except for the MostRecentDR created two clearly distinct 

peaks between the two groups of clusters, with the most obvious visual distinction between 

populations occurring for MeanDR, MaxDR, Top3MeanDR and Top5MeanDR (Figure 2.5A).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5 Comparison of prioritization measures between priority and non-priority groups, using empirical 
data. Density plots showing the difference in A) phylogenetic diversification rate-based measures (DRbased) 
in 2018 or B) non-phylogenetic measures (nonphylo) in 2018 between clusters defined as “priority” by the 
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current public health protocol for immediate intervention and the remainder of the clusters to next be 
addressed, marked here for the purpose of comparison as “not priority”. Only clusters that had newly 
diagnoses cases added in the previous year are shown. Infinite values created by the log10 transformation 
were forced to 0 for visualization purposes. C) Heatmap of significance (as per Mann-Whitney U tests) of the 
separation between priority and lower priority groups, as produced by the measures we examined. P-values 
of 0.05 or higher are shown in purple. Rows represent different measures, and columns represent years. 
Diversification rate-based measures often show greater consistency in their ability to reveal a statistically 
significant difference between top priority and lower priority clusters across the ten year period investigated 
than the non-phylogenetic measures. 
 

Assessing the tested measures over a 10-year period illuminated differences in consistency 

between measures and highlighted need for longitudinal testing of novel prioritization measures. 

Although many of the measures were relatively consistent over time, none achieved statistical 

separation in all ten years (Figure 2.5C). The most consistently effective non-phylogenetic 

measure, PrevYr5CasePlus, creates statistical separation in nine years, but never creates two 

clearly visually distinct population peaks, possibly due to it’s binary nature. 

The next most consistent non-phylogenetic measure, Prev3YrGrowth, creates statistical 

separation in eight years and provides somewhat clearer separation between the populations 

suggesting that this may be the best non-phylogenetic candidate. However, all diversification rate 

measures except MostRecentDR offer clearer visual separation between the populations while 

still achieving statistical separation in eight years, meaning that these measures are at least 

similarly effective in differentiating the two populations, while potentially offering clearer 

boundaries. 

 

2.3.2 Simulated data 

Phylogenies inferred from simulated data further demonstrated the strength of the 

relationship between phylogenetic diversification rate-based prioritization measures and future 

cluster growth, while also revealing differences in this relationship between the two groups of 



 

 

23 

prioritization measures as the cluster growth period is extended. In general, across parameter 

sets, the correlation between a prioritization measure and cluster growth in the next year was 

slightly stronger for the diversification rate-based measures than for the non-phylogenetic 

measures (median Spearman r = 0.34 vs. 0.29; Figure 2.6). The difference between the two  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 Comparison of correlation between prioritization measures and growth in the next year, using 
simulated data. Each box represents all growth periods from 2009-2018 for a given prioritization measure 
and parameter set, showing the median and IQR Spearman correlation. The tested parameter sets include 
variations from the base set that differ in number of seed individuals, time between infection and the 
initiation of ART (startART) and the expected degree (Ed) of connectedness within the contact network. In 
general, diversification rate-based measures showed slightly stronger correlations with growth in the next 
year non-phylogenetic measures. 
 
 

groups of prioritization measures becomes more striking when considering total future growth of 

a cluster across the remainder of the simulation period, with the diversification rate-based 

measures clearly showing stronger correlations across all parameter sets (median Spearman r = 

0.39 vs. 0.17; Figure 2.7). 
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Figure 2.7 Comparison of correlation between prioritization measures and total future growth, using 
simulated data. Each box represents the median and IQR of the Spearman correlation between a given 
prioritization measure and parameter set combination and total future cluster growth from each simulation 
year to the end of the simulation period, across all growth periods from 2009-2018. Parameter set 
abbreviations are as defined in Figure 2.6. In general, diversification rate-based measures showed stronger 
correlations with total future cluster growth than non-phylogenetic measures. 
 

Downsampled datasets revealed that as sampling proportion decreases to 75%, 50% and 

25%, the positive relationship between diversification rate-based measures and growth in the 

next year weakens and, in some cases, becomes almost non-existent (median Spearman r = 0.15, 

0.08, 0.04), suggesting that these measures are limited in the benefit they can confer in heavily 

under-sampled epidemics (Figure 2.8). However, the correlation between non-phylogenetic 

measures and next year growth not only experiences weakening in response to downsampling, 

but also reversal (median Spearman r = -0.15, -0.21, -0.35; Figure 2.8), meaning that without 

careful interpretation, non-phylogenetic measures have the potential to become actively 

misleading in a poorly sampled epidemic.  

The relationships with total future growth in the remainder of the simulation period as  
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Figure 2.8 Downsampled comparison of correlation between prioritization measures and growth in the next 
year. Boxplots show the median and IQR of the Spearman correlations between a given prioritization 
measure and cluster growth in the next year at A) 75% sampling, B) 50% sampling, and C) 25% sampling. 
Parameter set abbreviations are as defined in Figure 2.6. As sampling proportion decreases, the positive 
relationship between diversification rate-based measures and growth in the next year weakens and, in some 
cases, becomes almost non-existent. However, the correlation between non-phylogenetic measures and next 
year growth not only experiences weakening, but also reversal. 
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Figure 2.9 Downsampled comparison of correlation between prioritization measures and total future growth. 
Boxplot comparing the median and IQR of the Spearman correlations between a given prioritization 
measures and total future cluster growth at A) 75% sampling, B) 50% sampling and C) 25% sampling. 
Parameter set abbreviations are as defined in Figure 2.6. Diversification rate-based measures demonstrate 
very little change in correlation with future growth as sampling proportion is decreased, and although some 
non-phylogenetic measures such as previous year growth again show inverted correlations, other measures 
such as cluster size and cluster growth squared retain a relatively similar effect size, particularly when time 
to start ART or the number of contacts is increased from the base parameter set. 
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sampling proportion decreases are more robust for both groups of measures (Figure 2.9). 

Diversification rate-based measures demonstrate very little change in correlation with future 

growth as sampling proportion is decreased (median Spearman r = 0.41, 0.40, 0.33), and  

although some non-phylogenetic measures such as PrevYrGrowth again show inverted 

correlations, other measures such as ClustSize and ClustGrowthSq retain a relatively similar 

effect size, particularly when the time to start ART or the number of contacts is increased from 

the base parameter set (Figure 2.9). 

Considering a longer time period of cluster growth also reveals opposing temporal trends 

in the two groups of measures. Comparing the correlations between prioritization measures and 

next year growth versus total future growth revealed that effect sizes for diversification rate-

based measures strengthened as the length of the cluster growth period was extended, but the 

opposite trend was seen for non-phylogenetic measures (Figure 2.10), suggesting that 

diversification rate-based measures may have a stronger relationship with long-term cluster 

growth. Furthermore, as the starting year for the cluster growth period becomes closer to the 

present, the strength of correlation for diversification rate measures remains relatively stable, but 

the strength of correlation for non-phylogenetic measures weakens slightly (Figure 2.10). 

Downsampled analyses showed that as sampling proportion decreases, the overall relationship 

between future growth and diversification rate-based measures weakens, but the increasing trend 

in effect size as the cluster growth period is extended is maintained (Figure 2.11). The 

weakening of this relationship is notably smaller for the total cluster growth periods than for 

those including only the next year after prioritization. The relationship between non-phylogenetic 

measures and future growth also weakens as sampling proportion decreases, but with the greatest 

decrease occurring for the next-year periods, such that the previous trend of weakening  
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Figure 2.10 Spearman correlation between each prioritization measure and cluster growth over time. Growth 
periods end either in the year following prioritization measure calculation or the final year of the simulation 
(anywhere from one to nine years after prioritization, depending on the starting year). Boxes show the 
median and IQR of the effect sizes for each growth period, across all parameter sets. Boxes are colored based 
on the starting year of the growth period, ie. the year of prioritization. Diversification rate measures showed a 
small increase in effect size as the growth period was extended from the next year to the full simulation 
period, but the opposite trend was seen for non-phylogenetic measures. 
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Figure 2.11 Downsampled Spearman correlation between each prioritization measure and cluster growth 
over time. Mean Spearman correlation between each prioritization measure with future cluster growth, 
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sampled at A) 75%, B) 50% and C) 25%. Growth periods end either in the year following prioritization 
measure calculation or the final year of the simulation (anywhere from one to nine years after prioritization, 
depending on the starting year). Boxes show the median and IQR of the effect sizes for each growth period, 
across all parameter sets. Boxes are colored based on the starting year of the growth period, ie. the year of 
prioritization.  
 
 
correlations as the growth period extends is reversed. As observed with diversification rate 

measures, the relationship between future growth and non-phylogenetic measures was also most 

robust to decreasing sampling proportion when considering total future growth (Figure 2.11). 

 Differences in the relationship between prioritization measures and future growth also 

exist across parameter sets. Regardless of growth period, both diversification rate and non-

phylogenetic measures show much weaker correlations with cluster growth when the time to 

start ART is reduced to 0.5 years (Figure 2.6, 2.7). Conversely, as the time to start ART is 

increased to two years, correlations strengthen, even relative to the base parameter set. This trend 

continues even further when the average level of connectedness of individuals within the contact 

network increases. Additionally, when the time to start ART is increased or the expected degree 

of connectivity is increased, correlations with total future growth are more robust to 

downsampling. Together, these results suggest that prioritization measures as a whole may be at 

their most useful in epidemics with longer delays in connection to care, more connected at-risk 

populations and more barriers to treatment and prevention. 

 Analysis of the difference between the number of transmissions resulting from top-

ranking prioritized clusters and a random sample of lower-ranking clusters containing the same 

number of individuals demonstrated additional benefits of using diversification rate-based 

measures. Without adjusting for cluster size, the difference in direct transmissions stemming 

from prioritized versus not prioritized clusters was higher for non-phylogenetic measures for all 

parameter sets (except when time to start ART is 0.5 years). However, when the number of direct 
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transmissions was adjusted for current cluster size, diversification rate-based measures showed 

larger differences in direct transmissions (Mann-Whitney p < 0.001) in the majority of parameter 

sets, with a notably larger disparity for parameter sets with increased time to start ART or 

contact network connections (Figure 2.12). The shift in outcome after adjusting for cluster size 

perhaps suggests that diversification rate-based measures are more likely to prioritize smaller 

 

 

 

 

 

 

 

Figure 2.12 Difference in downstream transmissions across all prioritization measure and parameter set 
combinations. Each box represents the median and IQR of the difference in mean direct transmissions per 
cluster member between the top prioritized clusters, up to inclusion of 100 individuals (or the size of the top 
cluster, if its size exceeds 100), according to a given prioritization measure and a random sample of lower-
ranking clusters containing the same number of individuals, across all clusters. The difference in mean direct 
transmissions was, in general, slightly higher for diversification rate-based measures than for non-
phylogenetic measures, with the exception of previous year cluster growth in some parameter sets. Parameter 
set abbreviations are as defined in Figure 2.6. 
 

transmission clusters, capturing individuals with potential for rapid transmission that may 

otherwise go undetected until the cluster undergoes an amount of growth large enough to result 

in non-phylogenetic prioritization. Indeed, median cluster sizes were significantly smaller 

(Mann-Whitney p < 0.001) for clusters prioritized by diversification rate measures (median size  
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Figure 2.13 Comparison of prioritized cluster size across prioritization measures. Boxplot comparing the 
median and IQR of the median size of the clusters prioritized by each prioritization measure. In most cases, 
median cluster sizes are smaller for clusters prioritized by diversification rate measures than for clusters 
prioritized by non-phylogenetic measures. 
 

= 41) than for clusters prioritized by non-phylogenetic measures (median size = 99; Figure 2.13), 

with the exception of PrevYr5CasePlus, which is biased by the fact that cluster initiation begins 

with a jump in size from zero to five. Diversification rate measures also showed greater 

consistency across parameter sets, indicating their ability to retain relevance in a wider range of 

scenarios. Downsampling demonstrated a similar trend to that of previous analyses, showing that 

decreases in sampling proportion generally result in maintenance of difference in transmissions 

for diversification rate measures (with the exception of one parameter set at 25% sampling) 

while the non-phylogenetic measures undergo a decline (median difference in transmissions = 

0.16, 0.16, 0.13 vs. 0.13, 0.12, 0.08; Figure 2.14). 
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Figure 2.14 Downsampled difference in direct downstream transmissions across all prioritization measure 
and parameter set combinations. Boxplot comparing the median and IQR of the difference in mean direct 
transmissions per cluster member between the top prioritized clusters, up to inclusion of 100 individuals, 
according to a given prioritization measure and a random sample of lower-ranking clusters containing the 
same number of individuals, at A) 75% sampling, B) 50% sampling and C) 25% sampling. Parameter set 
abbreviations are as defined in Figure 2.6. in sampling proportion generally result in maintenance of 
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difference in transmissions for diversification rate measures (with the exception of one parameter set at 25% 
sampling) while the non-phylogenetic measures undergo a decline.  
 

2.4 Discussion 

This study revealed differences in the effectiveness of multiple lineage-level diversification rate-

based and non-phylogenetic prioritization measures in identifying potential for future 

transmission, via both empirical and simulated data approaches. Phylogenetic clustering of viral 

sequences provides a platform for prioritization of groups that aims to maximize the benefits of 

limited public health resources while still maintaining patient confidentiality. However, existing 

methods of prioritization are limited by their subjectivity and reliance on historical or linked 

data. Previous studies have demonstrated the advantages of prioritizing transmission clusters 

based on non-phylogenetic measures such as the square of cluster growth37 and phylogenetic 

measures such as the terminal branch length40. In concordance with Moshiri et al. (2021)40, we 

find phylogenetically derived measures, specifically those derived from lineage-level 

diversification rates, confer several advantages. 

In the empirical BC dataset, measures based on phylogenetically derived lineage-level 

diversification rates demonstrated relatively similar ability to delineate prioritized clusters from 

less urgent clusters relative to non-phylogenetic measures overall. Simulated data further 

supported this, revealing a stronger relationship between the large majority of diversification 

rate-based measures and future cluster growth than seen for non-phylogenetic measures. The 

disparity in the strength of this relationship between diversification rate and non-phylogenetic 

measures becomes greater when the growth period under study is extended from only the next 

year to all future years remaining in the simulation period, suggesting that diversification rate-

based measures are more closely associated with long-term growth. This confers an additional 
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advantage to diversification rate-based measures, as a strong relationship with long-term growth 

could further maximize the downstream benefit of the public health resources distributed 

following prioritization. However, diversification rates may be limited in that they are responsive 

to branch length differences that may result from differences in cluster transmission rates or 

sampling rates, rather than directly measuring individual or cluster characteristics that drive 

differences in transmission. Despite this, diversification rates remain useful in that they are 

reflective of historical transmission dynamics associated with individuals. Other work has shown 

that similar phylogenetic measures capture sexual contact network features in the absence of any 

direct information about the network40, indicating that some detection of non-phylogenetic 

factors linked to potential for transmission is possible without direct measurement. Analyses of 

decreased sampling proportion revealed further advantages of diversification rate-based 

measures, which were more consistently robust to the effects of missing data than non-

phylogenetic measures. The practical implications of this finding are important as even the most 

well-sampled epidemics rarely come close to 100% sampling, so in order to be widely 

applicable, a prioritization measure needs to be robust to the effects of missing data in a wide 

range of epidemic circumstances. However, it should be noted that random downsampling will 

not provide an exact recapitulation of natural sampling bias, and the true effects of lower 

sampling proportion may differ from our findings. Another potential advantage of diversification 

rate measures is that in the case of larger clusters, they could be used to reveal subpopulations 

within a cluster in need of rapid intervention, even in cases where the cluster as a whole may not 

be prioritized.  

 Both empirical and simulated data revealed similar trends in the overall abilities of 

individual measures. Measures based on the most recent diversification rate(s) consistently 
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performed considerably worse relative to other measures, further demonstrating the limited 

abilities of measures failing to capture long-term trends. In contrast, MaxDR, MeanDR, 

Top3MeanDR and Top5MeanDR offered the most consistency, achieving statistically significant 

separation between the urgent priority and remaining population of clusters in eight of the years 

studied. Although two non-phylogenetic measures (PrevYr5CasePlus, Prev3YrGrowth) meet this 

standard, they rely entirely on the existence of historical data, a shortcoming that could be 

eliminated by use of diversification rate-based measures. One such measure, Top5MeanDR, not 

only achieves statistically significant separation in eight of the ten years studied in the BC 

dataset, but also shows the strongest relationship with cluster growth across all simulated growth 

periods and parameter sets studied of all tested prioritization measures. This is in concordance 

with analyses conducted by McLaughlin et al. in 201944, which find the mean of the top five log 

diversification rates in a geographic area to be a significant predictor of new HIV cases in BC. 

However, several other measures displayed consistent ability to delineate clusters based on 

priority status in addition to showing relatively strong relationships with future cluster growth, 

and as suggested by McLaughlin et al., it is likely that prioritization could be further optimized 

beyond the reaches of a single measure via a model combining multiple factors44,45. Furthermore, 

as mentioned by Moshiri et al.40, even a combined measure is unlikely to capture the full context 

of the epidemic, and measures that aim to improve the prioritization process should still be 

considered in the context of other supporting knowledge. 

 

2.5 Conclusions 

Overall, we find that diversification rate-based measures not only frequently outperform 

non-phylogenetic measures in their ability to identify groups with the highest potential for future 
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growth, particularly long-term future growth, but are also less likely to be perturbed by missing 

data and remain free of need for historical data and subjective interpretation. In contrast, 

although non-phylogenetic measures can sometimes be equally effective as measures based on 

phylogenetic diversification rates, they have the potential to become misleading in cases of lower 

sampling proportion. In combination with phylogenetic clustering, phylogenetically-derived 

lineage-level diversification rates can provide a simple, widely applicable and robust solution to 

focus prioritization of transmission clusters contributing the most to an ongoing epidemic.  
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Chapter 3: Expansion of HIV transmission clusters among key populations in 

association with SARS-CoV-2 lockdown  

 

3.1 Introduction 

As transmission of SARS-CoV-2 became a global public health crisis in early 2020, the initial 

defense strategy chosen by many regions was to recommend and implement restrictions designed 

to drastically reduce levels of connectivity within and between communities. In order to interrupt 

transmission chains quickly and curtail exponential spread, restrictions are often constructed with 

broad application in mind and can have unintended consequences52. Broad restrictions have been 

shown to disproportionately affect vulnerable subpopulations who rely on social, economic and 

medical supports, the disruption of which can further exacerbate challenges such as food 

insecurity53,54, gender-based violence55,56, management of medical conditions57,58 and drug 

use59,60. The population of individuals living with or at-risk of HIV infection is also vulnerable to 

such impacts, as the successful management and prevention of HIV often requires access to 

clinics and services that may be shut down or limited in capacity as a result of COVID-19 

restrictions. Without access, individuals may be left without diagnostic testing, viral load testing, 

ART, pre-exposure prophylaxis (PrEP), safe injection materials, condoms and other resources 

crucial to keeping pathogen transmission controlled within at-risk communities. Reduced 

engagement with and availability of HIV treatment and prevention services in association with 

COVID-19 and its related restrictions has been documented in many countries60-67, in some cases 

coinciding with worsening HIV outcomes such as viral load rebound66 or progression to AIDS65. 

Even in locations such as Australia with very few early interruptions to HIV care68, both HIV 
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tests69 and PrEP use70 reportedly decreased, perhaps due to reduced risk behaviours or hesitancy 

to risk COVID-19 infection by visiting a hospital or clinic. The effects of the COVID-19 

pandemic on HIV care and epidemic control present a complicated challenge to global public 

health systems, and quantification of the downstream effects of this disruption is necessary for 

design of effective countervailing strategies. 

In the province of BC, Canada, several different types of restrictions amounting to the 

region’s first “lockdown” were announced during March 202071, culminating on March 21st 

(Figure 3.1A). On March 16th, health officials banned gatherings of more than 50 people and 

ordered bars and nightclubs to close. On March 17th, public schools were ordered to close and 

the province declared a public health emergency. March 20th saw the closure of dine-in 

establishments and playgrounds, and personal service establishments were shut on March 21st. 

Although no official work-from-home order was put in place, many employers shifted their 

employees out of the office during mid-March, further contributing to reduced contact rates. 

During this time, many sites offering health-related services reduced their capacity and hours of 

operation. Even essential services that were encouraged to stay open, such as safe injection sites, 

underwent notable declines in availability as the necessary adaptations to reduce the chance of 

SARS-CoV-2 transmission were put in place. After approximately two months of lockdown, the 

reopening of shops, restaurants and public spaces was announced on May 19th, and public 

schools reopened June 1st. By June 24th, BC was entering the third phase of its reopening plan, 

marking the beginning of an approximately three-month period with minimal restrictions before 

the “second wave” of transmission began in October 2020.  

A potential positive side effect of the restrictions enacted in BC being followed by a 

dramatic increase in amount of time spent at home is that for some populations at risk of HIV  



 

 

40 

Figure 3.1 Timeline of COVID-19-related events in British Columbia. The majority of restrictions were put in 
place during mid-March, 2020, culminating on March 21st. (B) Reduction in engagement with HIV 
prevention and management services following the implementation of lockdown restrictions coincides with 
increases in the amount of change to time spent in residential locations. The grey dashed line marks March 
21st. Abbreviated markers of engagement include viral load (VL) tests yielding undetectable viral load, pre-
exposure prophylaxis (PrEP) prescriptions, antiretroviral therapy (ART) initiations, and visits to overdose 
prevention services (OPS) and safe consumption sites (SCS). Change in time spent at home was assessed using 
the Google COVID-19 Mobility Reports data. Data describing monthly engagement with HIV prevention and 
management services were collected by the BC-CfE Drug Treatment Program and the BC Centre for Disease 
Control (BCCDC). Data describing visits to OPS and SCS originated from the BCCDC Overdose Response 
Indicator Report. 
 

infection, contact rates were likely reduced, thus reducing the chance of transmission. This 

phenomenon has been documented in MSM in Australia72 and the UK73, where reductions in 

number of sexual partners were reported in association with COVID-19 awareness and 

restrictions. In BC, a study of sexual health service clients found that 31% reported a reduction in 

partners during the pandemic74. However, populations characterized by non-sexual transmission 
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routes such as shared needles may have experienced increased transmission risk as facilities such 

as safe injection sites reduced capacities whilst drug use60,75, overdose calls76,77 and risky 

transactional sex78 increased, possibly due to pandemic-related stressors79,80 and increased 

financial instability78. Pandemic-related disruptions to health services have also been shown to 

contribute to increases in HCV transmission81 which is primarily transmitted by PWID82. 

Additionally, willingness to seek sexual health services may have decreased, as described in a 

BC study where 66% of participants reported avoiding or delaying interaction with sexual health 

services during the pandemic74. Consequently, we hypothesize that following the initial 

implementation of lockdown restrictions and reduced access to HIV management and prevention 

services in BC, key populations of individuals at increased risk for HIV acquisition will 

demonstrate differential trends in rates of transmission, some of which may not be outweighed 

by the effects of reduced contact rates. We therefore undertook a series of phylogenetic analyses 

to quantitatively approximate transmission preceding, during and following the implementations 

of restrictions. 

 

3.2 Methods 

3.2.1 Supporting data and statistical analyses 

Data describing monthly engagement with HIV prevention and management services were 

collected by the BC-CfE Drug Treatment Program and the BC Centre for Disease Control 

(BCCDC). Data describing visits to Overdose Prevention Services (OPS) and Safe Consumption 

Sites (SCS) originated from the BCCDC Overdose Response Indicator Report83. Movement 

trends were assessed using the Google COVID-19 Mobility Reports data84. Pandemic-related 

events used in the timeline seen in Figure 1A were selected from a similar timeline published by 
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CTV News71. Mann-Whitney tests quantified changes in service engagement from monthly data 

spanning August 2019 to March 2020 versus April to July, 2020. The relationship between 

cluster growth and cluster risk factor composition was quantified via Spearman correlation. All 

statistical analyses were performed in version 3.6.1 of the R statistical framework85. R packages 

used include ape, cowplot, ggtree, lubridate, phangorn, phylobase, phytools, tidyverse, reshape2 

and scales. 

 

3.2.2 Phylogenetic analyses 

38,408 partial pol HIV-1 sequences were collected from 10,386 individuals during drug-

resistance genotyping tests performed by the BC-CfE as part of routine clinical care following 

diagnosis between May 30th, 1996 and June 4th, 2021. The full sequence dataset was aligned with 

MAFFT47 and filtered to contain only the earliest sequence per individual, in order to focus 

phylogenetic inference on between-host evolution. Surveillance drug resistance mutations were 

masked before maximum likelihood inference of 100 bootstrap phylogenies in IQ-TREE86 under 

a GTR+F+R10 model, as determined with ModelFinder87. Transmission clusters were 

determined using a minimum size threshold of five, a 90% bootstrap threshold and a 

phylogenetic distance threshold of 0.02 substitutions/site, as defined by Poon et al.18. Cluster 

growth, branching events and diversification rates were assessed in three sixty-day time periods, 

including “pre-lockdown” (January 22 – March 21, 2020), “lockdown” (March 22 – May 20, 

2020) and “post-lockdown” (May 21 – July 19, 2020).  

Adjusted cluster growth was calculated as the number of new cases in a cluster, 

normalized by cluster size and total new diagnoses during a given time period. Total adjusted 
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cluster growth was determined by summing the adjusted cluster growth of clusters classified as 

MSM or PWID. 

Daily median branching events, tree bifurcations that suggest transmission, were 

determined from the ten most likely of 100 bootstraps inferred from alignments excluding all 

sequences predating 2017, done to increase the precision of time-scaling in LSD251. Rooting in 

LSD2 was done on all branches using constraints and single variance on branch lengths. 

Adjusted branching events were calculated as the daily median number of branching events 

across bootstraps, normalized by size of the linked cluster and total diagnoses in a given time 

period. The adjusted sum of daily median branching events was calculated by totaling the 

median number of daily branching events inferred to be associated with clusters classified as 

each risk factor, normalized by cluster size and new diagnoses during a given time period. 

In order to approximate transmission rate, lineage-level diversification rates were 

calculated as in Jetz et al.42 for each phylogenetic tip in the ten most likely bootstraps and 

median tip-level change in diversification rate between time periods was summarized by cluster. 

Changes in lineage-level diversification rates were used to approximate increases in transmission 

rather than raw diversification rate because diversification rate is expected to increase over time 

as the likelihood of new sequences being in close phylogenetic proximity to existing sequences 

rises with increased sampling. Thus, it is more appropriate to compare the magnitude of increase 

rather than the raw value when making comparisons across time. The ten highest likelihood trees 

were pruned into four subtrees, representing the beginning, end and time-period divisions within 

the total time range studied. Diversification rates were calculated for all tips in all subtrees, such 

that change in median diversification rate across bootstraps for an individual’s virus between 

time periods could be determined. Then, clusters were summarized by determining the median 
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change in diversification rate across cluster tips in each time period and normalizing by cluster 

size and time period diagnoses. Total adjusted median change in diversification rate was 

determined by summing the adjusted median change in diversification rate associated with 

clusters classified as being associated with each risk factor.  

Cluster risk composition was calculated as the proportion of PWID minus the proportion 

of MSM individuals in a cluster, such that a risk composition of 1 indicates 100% PWID 

reporting with no reporting of MSM and a risk composition of -1 suggests the opposite. 

Members of the same cluster may report different risk factors, and a single individual may report 

multiple risk factors, meaning that some clusters contain substantial risk factor overlap. 

Stratifying clusters by risk composition allows analysis of trends across the distribution of risk-

factor homogeneity and facilitates exclusion of ambiguous clusters when necessary. The 

University of British Columbia – Providence Health Care Research Ethics Board granted ethical 

approval for this study (H17-01812). 

 

3.2.3 Risk factor classification  

The proportions of individuals reporting different risk factors in a cluster were calculated using 

data collected after 2016, in order to appropriately represent current trends in transmission for 

each cluster. In order to capture the branching events more likely to be associated with 

individuals with a certain risk factor, each event was assigned the risk factor composition of the 

cluster its descendants were members of. Because clusters are often not entirely homogenous in 

terms of reported risk factors, this means some branching events will have some descendants 

reporting risk factors that differ from the overall risk factor classification of the event. There 

were no cases of descendants being split between multiple clusters, although some descendant 



 

 

45 

groups contained non-clustered sequences in addition to clustered sequences. In analyses that 

sum cluster outcomes, binary classification of cluster risk factors was done by labelling all 

clusters with a cluster risk composition of -0.5 or less as MSM and all clusters with a cluster risk 

composition of 0.5 or more as PWID. Ambiguous clusters in between these thresholds were not 

included. 

 

3.3 Results 

3.3.1 Reduction in HIV service engagement following lockdown 

Individual movement data revealed that following the lockdown restriction announcements 

culminating on March 21st, time spent at home increased markedly, likely leading to reduced 

contact rates (Figure 3.1B). Also in April, there were statistically significant reductions in 

markers of engagement with HIV services, including ART initiation (Mann-Whitney p = 0.030), 

PrEP prescription dispensations (Mann-Whitney p = 0.00026), undetectable plasma viral load 

tests (Mann-Whitney p = 0.0037), HIV tests (Mann-Whitney p = 0.0057), new HIV diagnoses 

(Mann-Whitney p = 0.049) and visits to Overdose Prevention Services (OPS) and Safe 

Consumption Sites (SCS) (Mann-Whitney p = 0.00017) (Figure 3.1B). Importantly, as the 

lockdown period began, the BC-CfE recommended reduction in viral load testing frequency in 

patients with long-term viral load suppression, in order to preserve SARS-CoV-2 testing 

capacity. This directive is likely responsible for at least some of the reduction in undetectable 

viral load tests. Post-lockdown, all markers of engagement rebounded to below pre-lockdown 

levels. New HIV diagnoses in the province remained on an overall declining course.  
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3.3.2 Transmission changes following lockdown 

New diagnoses decreased from 44 during the pre-lockdown period to 18 during lockdown and 

began to rebound thereafter (26 post-lockdown). As suggested by the dip in service engagement 

during lockdown, it is likely that sampling proportion of newly diagnosed infections also 

declined during this time, meaning that the decrease in diagnoses does not necessarily indicate a 

proportional decrease in transmission. Further phylogenetic analyses support this idea and 

suggest that the magnitude of transmission occurring differs between risk groups.  

When normalized by cluster size and total number of new diagnoses in each month, 

cluster growth demonstrated a peak in the strength of its relationship with cluster risk factor 

proportion during the lockdown period (Figure 3.2A). Although not significant, the pre-

lockdown and post-lockdown periods show negative correlations between adjusted cluster 

growth and cluster risk composition (Spearman r = -0.044, -0.21; p = 0.87, 0.55), while a strong 

positive correlation exists during the lockdown period (Spearman r = 0.8, p = 0.13), indicating 

higher growth as cluster risk composition shifts towards 100% PWID. Furthermore, a strong 

positive correlation is not seen in any of the three equivalent time periods during the previous 

three years (Figure 3.3). Analyses of both total and median adjusted cluster growth reveal that 

MSM-dominant clusters experience a notable decline to near zero during lockdown, while PWID 

populations peak at a level unseen during any of the equivalent time periods in the previous three 

years (Figure 3.2B, 3.4).  
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Figure 3.2 Differences in adjusted cluster growth by risk factor composition. A) Adjusted cluster growth 
versus cluster risk composition, defined as the proportion of PWID cluster members minus the proportion of 
MSM cluster members. Observations are coloured by cluster risk composition, such that the reddest clusters 
have the highest proportion of MSM individuals and the bluest clusters have the highest proportion PWID 
individuals. Adjusted cluster growth refers to the amount of cluster growth, normalized by cluster size and 
new diagnoses during a given time period. Only clusters that experienced growth during a given time period 
are shown. B) Bars represent total adjusted cluster growth seen in all clusters associated with each risk factor 
in a given time period. In this analysis, binary classification of cluster risk factors was done by labelling 
clusters with a risk composition of -0.5 or less as MSM and clusters with a risk composition of 0.5 or more as 
PWID. Ambiguous clusters in between these thresholds, marked by open circles, were not included in the 
group totals. Closed circles represent clusters contributing to the risk group totals. Black horizontal lines 
represent the median adjusted cluster growth of the closed circles associated with each risk group in each 
time period. 
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Figure 3.3 Differences in adjusted cluster growth by cluster risk factor composition in 2017 to 2019. Adjusted 
cluster growth versus cluster risk composition, defined as the proportion of PWID cluster members minus the 
proportion of MSM cluster members. Observations were selected from periods between the same dates as the 
time periods studied in 2020, creating three “equivalent” time periods. Observations are coloured by relative 
risk proportion, such that the red-hued clusters have the highest proportion of MSM and the blue-hued 
clusters have the highest proportion PWID. Adjusted cluster growth refers to the number of new cases in a 
cluster, normalized by cluster size and total new diagnoses during a given time period. 
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Figure 3.4. Differences in total adjusted cluster growth by risk factor composition in 2017 to 2019. Bars 
represent the total adjusted cluster growth seen in all clusters associated with each risk factor in a given time 
period. Observations were selected from periods between the same dates as the time periods studied in 2020, 
creating three “equivalent” time periods. Binary classification of cluster risk factors was done by labelling all 
clusters with a proportion of PWID minus proportion MSM of -0.5 or less as MSM and all clusters with a 
proportion of PWID minus proportion MSM of 0.5 or more as PWID. Ambiguous clusters in between these 
thresholds were not included in the group totals. Closed circles represent clusters contributing to the risk 
group totals. Black horizontal lines represent the median adjusted cluster growth of the closed circles 
associated with each risk group in each time period. 
 

Looking at individual clusters on a more long-term scale reveals similar trends – of all 

the clusters that grew by four or more cases between March 21st, 2020 and June 4th, 2021, those 

with higher PWID risk composition generally underwent greater percentage growth (Figure 3.5).  

Furthermore, the only new clusters identified during this time display PWID-rich risk 

composition (0.75, 1). Notably, many of these clusters continued to experience elevated growth  
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Figure 3.5 Long-term cluster growth for all clusters that grew by four cases or more following lockdown in 
March 2020 until June 2021. The plots are shown in ascending order, based on the percent increase in cluster 
size seen between March 1st, 2020 and June 4th, 2021. Unlike the previous figures, raw unadjusted cluster 
growth is shown. Colour indicates cluster risk composition of reported risk factors within a cluster, 
specifically the proportion of MSM subtracted from the proportion of PWID, such that the red-hued clusters 
have the highest proportion of MSM individuals and the blue-hued clusters have the highest proportion 
PWID individuals. Arbitrary cluster identification labels are shown in the strip label. The clusters marked 
with an asterisk were initially identified after the implementation of lockdown restrictions.  
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well beyond the initial period of instability in health service availability, indicating that the 

effects of such gaps can be long-term and difficult to counterbalance, thus expanding the 

potential for negative impact. It is also important to note that although 38 clusters ranging in risk 

composition experienced some level of sampled growth during the period between March 21st, 

2020 and June 4th 2021, 176 clusters also ranging in risk composition experienced no observed 

growth at all, indicating that sampled growth is not purely a function of time, at least in well-

controlled epidemic settings such as BC (Figure 3.6). 

 

 

 

 

 

 

 

 

Figure 3.6 Initial cluster size versus observed growth. Each dot represents a cluster. Observations are 
coloured by cluster risk composition, such that the reddest clusters have the highest proportion of MSM 
individuals and the bluest clusters have the highest proportion PWID individuals. Initial size was measured 
on March 21st, 2020. Growth was measured between March 21st, 2020 and June 4th, 2021. 
 

The level of transmission occurring in association with MSM populations versus PWID 

populations was further explored via calculation of the number of cluster-associated branching 

events during each time period. When adjusted by cluster size and the total number of new 

diagnoses in each time period, the total number of putative transmissions associated with clusters 

showing higher PWID composition increased markedly during lockdown and continued to 
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increase post-lockdown, although median adjusted cluster growth decreased post-lockdown 

(Figure 3.7A).  Analysis of individual clusters reveals the post-lockdown increase in branching 

events to be driven by a single rapidly growing cluster, while the remainder return to 

approximately pre-lockdown levels (Figure 3.7A). The levels of branching events seen during 

lockdown and post-lockdown were unmatched during the equivalent time periods in the previous 

three years (Figure 3.7A, 3.8). Clusters showing higher MSM composition were linked to similar 

numbers of branching events across the three time periods (Figure 3.7A).   

Accelerated growth in clusters characterized by PWID versus MSM populations was 

further demonstrated by comparison of total median change in lineage-level diversification rates 

shown by cluster members following the announcement of lockdown restrictions, relative to 

cluster size and the total number of new diagnoses (Figure 3.7B). Total median adjusted change 

in diversification rate in PWID-associated clusters demonstrated a stark peak during lockdown, 

reaching a level 4.7 times higher than previously seen in either group of clusters in the equivalent 

time periods over the preceding three years (Figure 3.7B, 3.9). Conversely, although total change  

in diversification rate for MSM-associated clusters did not differ drastically between time 

periods, it did dip slightly during lockdown (Figure 3.7B). 
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Figure 3.7 Branching events and cluster change in diversification rate by risk factor composition. Bars 
represent the total number of A) total daily median branching events inferred to be associated with clusters 
of each risk factor, normalized by cluster size and new diagnoses during a given time period or B) total 
cluster median change in individual diversification rate between the beginning and end dates of a given time 
period, adjusted for cluster size and new diagnoses in that time period. Only non-zero values are shown. 
Binary classification of cluster risk factors was done by labelling clusters with a risk composition of -0.5 or 
less as MSM and those with a risk composition of 0.5 or more as PWID. Ambiguous clusters in between these 
thresholds, marked by open circles, were not included in the group totals. Closed circles represent clusters 
contributing to the risk group totals. Black horizontal lines represent the median of the closed circles 
associated with each risk group in each time period. In order to capture the branching events more likely to 
be associated with a certain risk factor, each event was assigned the risk factor composition of the cluster its 
descendants were members of, effectively linking each branching event to a cluster. 
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Figure 3.8 Branching events in 2017 to 2019 by risk factor. Bars represent the total number of daily median 
branching events inferred to be associated with clusters of each risk factor, normalized by cluster size and 
new diagnoses during a given time period. Observations were selected from periods between the same dates 
as the time periods studied in 2020, creating three “equivalent” time periods.  In order to capture the 
branching events more likely to be associated with a certain risk factor, each event was assigned the risk 
factor composition of the cluster its descendants were members of. Following this, binary classification of 
cluster risk factors was done by labelling events assigned a risk composition of -0.5 or less as MSM and those 
with a risk composition of 0.5 or more as PWID. Ambiguous events assigned risk composition in between 
these thresholds were not included in the group totals. Closed circles represent clusters linked to events 
contributing to the risk group totals. Black horizontal lines represent the median of the closed circles 
associated with each risk group in each time period. 
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Figure 3.9 Cluster change in diversification rates within each time period in 2017 to 2019, by risk factor 
composition. Cluster median change in individual diversification rate between the beginning and end dates of 
a given time period, adjusted for cluster size and new diagnoses in that time period. Observations were 
selected from periods between the same dates as the time periods studied in 2020, creating three “equivalent” 
time periods. Binary classification of cluster risk factors was done by labelling clusters with a risk 
composition of -0.5 or less as MSM and those with a risk composition of 0.5 or more as PWID. Ambiguous 
clusters in between these thresholds were not included in the group totals. Closed circles represent clusters 
contributing to the risk group totals. Black horizontal lines represent the median of the closed circles 
associated with each risk group in each time period. 
 

3.4 Discussion 

Our results support the idea that public health measures aiming to reduce transmission of 

SARS-CoV-2 early in the pandemic resulted in an increase in time spent at home, coinciding 

with an unintended significant reduction in engagement in HIV prevention and management 
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services. Our analyses further reveal increased transmission following the implementation of said 

public health measures in a limited number of PWID-associated transmission clusters. These 

clusters showed peaks in growth, increased number of phylogenetically-derived branching 

events, and elevate cluster median change in individual viral diversification rates during the 

lockdown period. 

An important caveat of this study is that the dataset consists of one sequence for each 

new diagnosis, not for each new transmission. The missing data, which may be at an increased 

proportion relative to pre-pandemic levels88, means that our approximations of transmission are 

uncertain and likely to be underestimates. Furthermore, the effect of under-sampling may have 

greater impact on the observed growth of smaller clusters versus larger clusters, as the likelihood 

of capturing members of a cluster increases with its size. Another possible source of bias stems 

from the fact that both clusters and the lineage-level diversification rates used to describe them 

are phylogenetically derived. By definition, a cluster is composed of at least five individuals 

close in phylogenetic distance, meaning that clusters will frequently demonstrate rapid growth or 

increase in diversification rate relative to their size at the time of initial detection. Although these 

changes may truly represent rapid transmission, they may also indicate pockets of successful 

contact tracing that do not fully describe transmission dynamics. Additionally, differences or 

pandemic-related changes in contact tracing success may have had differential influence on key 

population sampling rates. Despite these factors, the level of transmission detected in several key 

population clusters remains concerning. A second caveat is that due to the fact that sequences 

were collected as part of routine clinical care, the dates associated with the sequences relate to 

the date of first detectable viral load rather than the date of diagnosis or the date of infection and 

thus may introduce some uncertainty in coalescent analyses in terms of the timing of 
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transmissions. Finally, although we aimed to consider risk factor overlap via cluster risk 

composition, increases in overlapping risk behaviours linked to pandemic pressures (eg. 

increased risky sex among PWID78) may not necessarily be captured by the dataset. 

Differential transmission trends between MSM and PWID clusters here identified are 

likely due to differences in the risk-behaviour patterns and medical supports required by 

individuals in these populations. While many MSM have been shown to reduce behaviour 

associated with possible transmission as a response to the pandemic and its related public health 

measures72,73, PWID have shown increases in transmission-related behaviours60,75-77. A 

modelling study focused on the impacts of COVID-19 on the MSM population further supports 

the idea that opposing trends in new infections may result from different levels of risk-

behaviour89. The study found that a 25% reduction in sexual partners resulted in a 12.2% drop in 

new HIV infections over the following year, but in the absence of changes to sexual behaviour, 

the combined effect of disruptions to prevention-related services and behaviours was a 10.5% 

increase in new HIV infections89. Similarly, a recent report from West Virginia, USA showed 

that the 2018 suspension of a county syringe service program and COVID-19-related closures to 

other services needed by PWID were followed notable local increases in HIV diagnoses90. 

Another possible reason for differences in transmission between key populations is that although 

all groups experienced reductions in the availability of the services they access, services such as 

safe injection sites are designed to be accessed with much greater frequency than other services 

such as clinics or testing sites, meaning the daily impact of closure or reduced capacity could 

accumulate much faster.  

Evidence from other locations indicates that when restrictions are minimized, adjusted or 

adapted to, the reduction in access to services needed by PWID may be smaller. In Sweden, 
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where the initial response to COVID-19 was much less restrictive than in other countries, HIV 

tests did decrease, but multiple measures of engagement with needle exchange programs 

remained stable or increased; 85.3% of participants reported sufficient access to safe injection 

equipment during the COVID-19 pandemic and only 10.3% reported less access to out-patient 

appointments91. This suggests that although demand for support services during the initial 

months of the pandemic may have increased, the absence of a Swedish lockdown minimized 

interference with the medical needs of the population. Similarly, in Austria, regulations 

regarding opioid substitution therapy (OST) prescriptions were temporarily eased during 

lockdown in order to allow continued adherence, a choice thus far followed by no observed 

change in OST-related consumption patterns92. However, minimizing or targeted loosening of 

restrictions may be unfeasible depending on the level of government cooperation and pandemic 

severity. A 2020 survey found that syringe service programs in the USA are maintaining service 

provision by prepacking supplies before distribution, providing delivery services and increasing 

the amount of supplies given out at once67.  

Although the long-term effects of disruptions to engagement with HIV care services are 

yet to be seen, a multitude of mathematical modelling studies estimate the negative impacts to be 

substantial93-96. An estimated 10% to 60% increase in HIV-related deaths could stem from 

disruptions to ART93,94 and viral suppression95. Increases in HIV infection rates ranging from 5% 

to 15.7% have also been predicted in relation to reductions in health services96 and condom 

use95. Due to the exponential nature of viral transmission, increase of any magnitude in HIV 

infections can have downstream effects requiring much more resources to control than would be 

necessary for primary prevention and thus preserving engagement with HIV care is crucial to 

resource-efficient protection that limits the harm experienced by the at-risk community. 
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3.5 Conclusions 

Maintaining engagement with HIV prevention and management services is crucial to preventing 

regression in epidemic control and unnecessary detriment to at-risk populations. In particular, 

differing pressures, behaviours and needs between key populations should be carefully 

considered prospectively, ideally at the point of restriction design, but at minimum as a rapid 

response to restriction implementation. Increased vigilance and innovative targeted solutions are 

critical to offset potential negative impacts on HIV treatment and prevention stemming from not 

only COVID-19 restrictions, but also restrictions related to future pandemics or other major 

public health events.  
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Chapter 4: Conclusion 

 

4.1 Analysis of results in the context of current research 

Overall, the findings presented in this thesis demonstrate the value of phylogenetic methods in 

monitoring HIV transmission. Results in Chapter 2 demonstrate that phylogenetically derived 

lineage-level diversification rates are comparable to non-phylogenetic measures of prioritization 

in separating priority clusters from the remainder when considering empirical data and frequently 

highlight clusters more strongly correlated with future transmission and clusters that result in 

more downstream transmissions when considering simulated data. These analyses intentionally 

include non-phylogenetic prioritization measures used in other recent literature37,97 in order to 

facilitate direct comparison. Furthermore, these findings are in concordance with previous 

research that showed lineage-level diversification rates to be predictive of future transmission44, 

although not in the context of transmission clusters. Results also showed an additional advantage 

of diversification rate measures, which is that they are frequently more robust to downsampling. 

Recent research on lineage-level diversification rates45 and terminal branch lengths40 reports 

similar robustness in response to downsampling, which taken together with our findings perhaps 

suggests that phylogenetically-derived measures, and in particular those weighted towards the 

present, are more robust in their recovery of ongoing transmission trends in the face of missing 

data. 

 Results in Chapter 3 provided phylogenetic evidence of changing HIV transmission 

trends in association with the COVID-19 pandemic and its related restrictions. Changes in 

transmission related to reductions in health service capacity and availability have also been 

documented in relation to other infectious diseases such as malaria98, syphilis99, chlamydia and 
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gonorrhea100,101. Disruptions likely to lead to increased transmission of hepatitis B virus (HBV) 

and HCV have also been observed81, although direct quantification of transmission changes has 

yet to be shown. Furthermore, recent research suggests that the impact of reductions in health 

service availability may be greater than the impact of COVID-19 itself, in terms of deaths102. 

Together, these findings suggest that potential downstream impacts of restrictions may be both 

widespread and extensive, thus necessitating careful consideration by public health teams and 

health service providers when implementing and adapting to restrictions 

Recent reports show that the BC HIV epidemic has become relatively well-controlled12, 

partially due to the use of transmission monitoring. However, as demonstrated by the impacts of 

the COVID-19 pandemic, transmission dynamics can be influenced by unexpected and 

unfamiliar external forces, and the ability to reveal a comprehensive picture of transmission 

trends over time is highly valuable. Furthermore, even in the absence of extenuating 

circumstances, transmitting groups persist, making the exploration of refined prioritization 

measures a worthwhile pursuit. 

 

4.2 Evaluation of hypotheses 

Both hypotheses outlined at the outset of this work are supported by the findings described here. 

The first hypothesis was that HIV transmission cluster prioritization based on phylogenetically 

derived lineage-level diversification rates would be at least as effective as commonly used non-

phylogenetic measures in stratifying clusters by future growth potential, without need for 

historical data or subjective interpretation. This statement is in agreement with the results 

described in Chapter 2, whereby lineage-level diversification rate based measures were not only 

found to be equally as effective as commonly used non-phylogenetic measures in the separation 
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of high priority clusters from the remainder, but also found to highlight clusters more closely 

associated with future growth and clusters with more downstream transmissions. The second 

hypothesis was that following implementation of SARS-CoV-2 restrictions and reduced access 

to HIV management and prevention services in BC, key populations at risk for HIV would 

demonstrate differential trends in rates of transmission detectable via phylogenetic analyses. This 

is congruent with the findings outlined and discussed in Chapter 3, which demonstrate 

differential changes in transmission between MSM-associated and PWID-associated clusters, as 

quantified by cluster growth, branching event timing and change in lineage-level diversification 

rates. 

 

4.3 Significance and contribution 

This research contributes new insights to the field of HIV transmission monitoring and is 

consistent with and supportive of previous findings. The simulation analyses described here form 

the first evaluation of lineage-level diversification rates as a transmission cluster prioritization 

measure in the absence of biases such as differential cluster intervention and incomplete 

sampling. Furthermore, as discussed in Section 4.1, the findings from our simulated data concur 

with results previously published by McLaughlin et al.44,45 and Moshiri et al.40, thus contributing 

to the body of literature that demonstrates the value and advantages of employing phylogenetic 

measures in transmission monitoring.   

The results presented here also form the first predominantly phylogenetically-informed 

quantification of differential impacts of SARS-CoV-2 related restrictions on HIV transmission 

between key populations. By demonstrating the disproportionate negative impacts experienced 

by PWID-associated populations, we offer evidence crucial to the design of both counteractive 
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strategies and the implementation of future restrictions. Additionally, these findings serve to alert 

other regions to the possibility of similar outcomes in their own HIV-transmitting populations 

and provide a straightforward, replicable method of quantifying changes in transmission across 

groups associated with differing risk factors. 

 

4.4 Strengths and limitations 

The major strengths of this research are its underlying dataset, it’s generalizability and it’s 

novelty. As the BC-CfE has collected sequence data and linked metadata from all individuals 

receiving drug-resistance testing since 1996, the number of individuals with viral sequences and 

the sampling proportion of the dataset are uncommonly high relative to other sampled epidemics. 

This is of particular advantage not only due to the large sample size, but also because one of the 

primary sources of error during phylogenetic tree inference is missing taxa103. The epidemic 

simulations also confer strength to our findings, as they provide a platform for evaluation of 

different prioritization measures where the clusters with the highest growth potential are known 

and biases including uneven sampling and differential intervention are removed. Furthermore, 

simulation allowed easy adjustment of parameters, such that several possible epidemic scenarios 

with different characteristics were able to be used as platforms for evaluation, conferring greater 

transferability to the results. Finally, particularly in the case of Chapter 3, the analyses conducted 

reveal unaddressed pandemic-related gaps in HIV prevention in BC that have not previously 

been phylogenetically demonstrated, making this work a valuable piece of evidence in the 

construction of counteractive public health strategies. 

 One important limitation to note is that because the sequence dataset was collected for the 

purpose of drug resistance testing, the dates associated with each of the sequences reflect the date 
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of the first detectable viral load, not the date of diagnosis or infection and thus may introduce 

some uncertainty into processes that rely on date information such as rooting or branching event 

timing. Furthermore, in the version of the dataset that extends beyond the end of 2019, reduced 

sampling due to the effects of the SARS-CoV-2 pandemic introduces further uncertainty into tree 

inference and quantifications of cluster growth, branching events and lineage-level 

diversification rates. Another potential source of inaccuracy is the risk factor data, which uses 

broad labels to categorize the context of transmission, and can thus inappropriately describe 

complex risk factor combinations or risk factors that may have changed over time. A further 

caveat to consider is that although there are advantages to the use of simulated data, its dynamics 

are generated by drawing from fixed distributions and models and our simulation parameters 

assume a certain level of predictability that may not always be in line with fluctuations and 

exceptions occurring in the real world, thus resulting in data that approximates real 

circumstances in general rather than providing an exact replica of the truth. Additionally, the 

random downsampling undertaken to imitate reduced sampling proportion will not provide an 

exact recapitulation of natural sampling bias, and the true effects of lower sampling proportion 

may differ from our findings. 

 

4.5 Potential applications and future work 

The results presented in this thesis could be built upon in several ways. Transmission cluster 

prioritization methods could potentially be further refined via exploration of a model that 

combines multiple prioritization measures, including phylogenetic measures such as lineage-

level diversification rate. Including multiple measures and taking other supporting knowledge 

into account may be able to more accurately reflect the intricacies of transmission dynamics, thus 
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facilitating further optimization of prioritization processes. Further study could also investigate 

the use of phylogenetic prioritization measures like lineage-level diversification rate to highlight 

subpopulations within larger clusters that may be transmitting more rapidly than the remainder of 

the cluster. This within-cluster prioritization could be a particularly powerful approach when 

considering large clusters comprising hundreds of individuals. Furthermore, now that a 

reasonable set of simulation parameters designed to mimic the BC epidemic have been defined, 

barriers to further exploration of epidemic trends in the province via simulated data are reduced. 

Additionally, the approach to quantifying changes in cluster transmission over time described 

here could be applied to HIV epidemics in other regions, in order to identify possible disparities 

in the fit of care provision during the SARS-CoV-2 pandemic. Finally, the same approach may 

also be useful in quantifying similar outcomes in the case of future pandemics or other events 

resulting in major public health restrictions. 
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Appendix: Selection and optimization of FAVITES parameters 

 

Simulations were performed using the FAVITES framework50. Initial estimates of parameter 

choices were iteratively refined to concurrently optimize the number of output sequences (Figure 

A.1), phylogeny branch lengths and structure (Figure A.2, A.5, A.6), the diversification rate 

(Figure A.4) distribution and the transmission cluster size distribution (Figure A.7) to best mimic 

the BC epidemic. Each variation on the base parameter set changes only one parameter, either 

the number of seed individuals (and corresponding contact network size), the length of time to 

begin ART, or the number of contacts each individual has within the contact network. A full list 

of parameter choices can be found in Table A.1. 

Parameters not mentioned going forward can be assumed to follow the parameter choices 

and justification seen in Moshiri et al. 2019. In all parameter sets, the contact network was 

generated under a Barabási-Albert model, which generates scale-free networks reflective of the 

connectivity of social or sexual networks50,104,105. The three values chosen for the number of seed 

individuals were selected to represent the sum of undiagnosed plus untreated diagnosed 

individuals (i.e. not virologically suppressed infected population), where the diagnosed 

population yet to begin treatment was assumed to be approximately 15% of the total diagnosed 

population12. This assumption is based on values estimated for 2013, as this marks the middle of 

the simulation period. Contact network sizes corresponding to the chosen seed values, and the 

three values chosen for the expected degree of connection of each contact network node were 

selected based on 2008 estimates regarding the BC epidemic106. Seed selection from the contact 

network was conducted at random. 
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Figure A.1 Number of sequences output by each parameter set. Boxplot showing the median and IQR of the 
number of sequences output by each simulation parameter set, after subtraction of seed individuals and 
across 20 replicates. The orange dashed line indicates the target number of output sequences. As. intended, 
the chosen parameter sets resulted in a range of outcomes in number of output sequences, some a closer 
match to the empirical BC data, and some more representative of other epidemics with different 
characteristics. Parameter set abbreviations are as defined in Figure 2.6. 

 

Transmissions occurred under an adapted version of the HIV-ART model described by 

Granich et al. in 2009107. Expected time to transition from an untreated state to a treated state 

was set to either 0.5, 1 or 2 years. Expected time to transition from a treated state back to an 

untreated state was set to 10 years, to represent BC’s relatively high rate of ART retention108.  

 In the BC dataset, which has been estimated to achieve approximately 75% sampling of 

the total prevalent population12 3,094 new sequences were collected in the 2009-2018 period. 

Thus, transmission rates were scaled such that the number of new infections generated during the 

simulation period for the lowest number of seeds was equal to the sum of the number of seeds 

plus approximately 3,868 new infections (Figure A.1). 

A subset of the BC epidemic phylogeny containing only subtype B sequences collected 

during 2009 and onwards was used to infer parameters related to sequence evolution and 

mutation rates. Mutation rates were sampled from a truncated (0, ¥) normal distribution. LSD251 
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Figure A.2 Comparison of simulated to real patristic distances and branch lengths. Shown for a 
representative replicate of the base parameter set. Differences between real and simulated patristic distances 
and branch length distributions were iteratively minimized based on Jensen-Shannon Divergence (JSD) 
scores.  
 

was used to determine an initial estimate of the mutation rate, which was then used in 

combination with patristic distance distributions to refine the location and scale parameters of the 

mutation rate distribution such that Jensen-Shannon Divergence (JSD) scores comparing the real 

and simulated patristic distance distributions were minimized (Figure A.2). The opposing subset 

of the BC phylogeny containing only sequences collected before 2009 was used to estimate the 

time to most recent common ancestor (tMRCA), as this parameter is used to build the seed tree 

of individuals already infected at time zero. Using LSD2, the tMRCA from the end of 2008 was 

estimated to be 1946. The speciation rate of the seed tree was optimized to match the 

accumulation of lineages over time seen in the BC dataset before 2009 (Figure A.3). Potential 

rate functions demonstrating exponential decay were scaled for comparison in TreeSAP and the 

best match was confirmed to be appropriate via visual evaluation of similarity between the 

median lineage through time (LTT) plot of 20 FAVITES replicates versus the BC LTT plot. 

Sequence evolution was set to occur under the generalized time-reversible (GTR) substitution 

model with gamma rate heterogeneity and the associated parameters were inferred from the post- 
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Figure A.3 Comparison of possible rate functions. A) Comparison of the mean accumulation of lineages 
through time (LTT) for several possible rate functions, scaled to a 1 year time period in TreeSAP. The LTT 
line representing the real data is shown in black. B) Accumulation of lineages through time resulting from 
simulation in FAVITES for the selected rate function, shown for 20 replicates. The most appropriate rate 
function was selected via visual evaluation of similarity between the median LTT line of 20 FAVITES 
replicates versus the BC LTT line. 
 

 2008 BC alignment using IQ-TREE v1.61 86.  

Sampling was done at the time of ART initiation, meaning that 100% sampling indicates 

100% of diagnosed cases, not 100% of infections. Each fully sampled sequence dataset was also 

randomly downsampled by year to 75%, 50% and 25% of diagnoses to investigate the impact of 

missing data. In order to account for the variation between FAVITES runs, 20 replicates were 

run for each of the seven parameter sets.  

Initial FAVITES parameters were selected based on the literature or inferred from the BC 

dataset and optimized iteratively in order to achieve a closer match to the characteristics of the 

BC data. As there are many characteristics to consider in tandem, some were prioritized over 

others. In particular, the difference between the distribution of diversification rates in the real 

data versus the simulated data, quantified by JSD score, was minimized (Figure A.4), as the  
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Figure A.4 Comparison of simulated to real diversification rates. Boxplot showing the median and IQR of the 
Jensen-Shannon Divergence (JSD) scores between the simulated and real distribution of diversification rates 
across 20 replicates. Differences between real and simulated lineage-level diversification rates were iteratively 
minimized based on JSD scores. Parameter set abbreviations are as defined in Figure 2.6. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.5 Comparison of simulated tree structure to real tree structure. Difference was quantified by D2 
distance109 across 20 replicates. Boxplots show the median and IQR D2 distance. Parameter set abbreviations 
are as defined in Figure 2.6. 
 
prioritization measures under study rely heavily on these values. Other characteristics considered 

in the optimization of parameters were the tree structure, branch lengths, root-to-tip distance, and 

the distribution of transmission cluster sizes (Figures A.5-7).  
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Figure A.6 Comparison of simulated to real branch lengths. Boxplots showing the median and IQR of the 
Kolmogorov-Smirnov test statistic evaluating the similarity of simulated versus empirical A) branch lengths, 
B) internal branch lengths, C) root-to-tip distance and D) terminal branch lengths. As intended, the chosen 
parameter sets resulted in a range of outcomes in number of output sequences, some a closer match to the 
empirical BC data, and some more representative of other epidemics with different characteristics. 
Parameter set abbreviations are as defined in Figure 2.6. 
 

Despite efforts to capture the characteristics of the BC epidemic in our simulations, we 

recognize that by drawing from fixed distributions and models, our simulation parameters 

assume a certain level of predictability that may not always be in line with fluctuations and 

exceptions occurring in the real world, thus resulting in data that approximates real 

circumstances in general rather than providing an exact replica truth. It should also be noted that 

the list of prioritization measures studied here is not exhaustive and study of additional measures 

may allow further optimization of prioritization.  
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Figure A.7 Comparison of cluster size distributions. Cluster size distributions are shown for the final year of 
each simulated parameter set, compared to cluster size distributions from empirical data from the same year. 
Counts of cluster sizes represent the mean counts across 20 simulation replicates. As intended, the chosen 
parameter sets resulted in a range of cluster size distribution outcomes, some a closer match to the empirical 
BC data, and some more representative of epidemics with different characteristics. Parameter set 
abbreviations are as defined in Figure 2.6. 
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Parameter  Value 
ContactNetworkGenerator Barabasi-Albert 

num_cn_nodes (26746, 45322, 63898) 
num_edges_from_new (9, 18, 27) 

SeedSelection Random 
num_seeds (3110, 5270, 7430) 

SeedSequence VirusNonHomYuleHeightGTRGamma 
seed_height 62 
viral_sequence_type HIV1-B-DNA-POL-LITTLE 
seed_speciation_rate_func 0.1+1/(1+exp(t-5.5)) 

TransmissionTimeSample HIVARTGranichGEMF 
hiv_a1_to_a2 4.333333 
hiv_a1_to_i1 0.096 
hiv_a2_to_i2 0.096 
hiv_i1_to_a1 (0.5, 1, 2) 
hiv_i1_to_i2 8.666667 
hiv_i2_to_a2 (0.5, 1, 2) 
hiv_s_to_i1_by_a1 0.002 
hiv_s_to_i1_by_i1 0.04 
hiv_s_to_i1_by_i2 0.008 
end_time 10 

TreeUnit Truncated Normal 
tree_mutation_loc 0.0003 
tree_mutation_scale 0.0008 
tree_mutation_min 0 
tree_mutation_max Inf 

SequenceEvolution GTRGammaSeqGen 
GTR state frequencies [A: 0.395, C:0.171, T: 0.211, G:0.222] 
GTR transition rates [λAC: 1.75637, λAG: 8.32038, λAT: 0.629219, 

λCG: 0.71545, λCT: 8.32038, λGT: 1] 
seqgen_gamma_shape 0.4237896 

NodeEvolution VirusTreeSimulator 
vts_model logistic 
vts_no 1 
vts_growthRate 2.851904 
vts_t50 -2 

TimeSample GranichFirstART 
NumTimeSample Once 

 
Table A.1 FAVITES simulation parameters. Parameters in bold were varied across parameter sets. 
 
 
 
 
 


