
 

 

ASSESSMENT OF SOURCE WATER MICROBIAL QUALITY USING BAYESIAN BELIEF 

NETWORKS AND DATA BALANCING ALGORITHMS 

 
by 

Atefeh Aliashrafi Zagi 

 

B.Sc., University of Tabriz, 2016 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF APPLIED SCIENCE 

in 

THE COLLEGE OF GRADUATE STUDIES 

(Civil Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Okanagan) 

May 2022 

 

© Atefeh Aliashrafi Zagi, 2022



ii 

 

The following individuals certify that they have read, and recommend to the College of Graduate 

Studies for acceptance, a thesis entitled: 

ASSESSMENT OF SOURCE WATER MICROBIAL QUALITY USING BAYESIAN BELIEF 

NETWORKS AND DATA BALANCING ALGORITHMS 

submitted by Atefeh Aliashrafi Zagi  in partial fulfillment of the requirements of  

the degree of Master of Applied Science. 

 

 

Dr. Nicolas Peleato, School of Engineering 

Supervisor 

Dr. Cigdem Eskicioglu, School of Engineering 

Supervisory Committee Member 

Dr. Rehan Sadiq, School of Engineering 

Supervisory Committee Member 

Dr. Abbas Milani, School of Engineering 

University Examiner 

Click or tap here to enter text. 



iii 

 

Abstract 

Cryptosporidium and E. coli are recognized as critical pathogens in source water with mortality 

risk. In order to protect public health from waterborne risks, monitoring of Cryptosporidium and 

E. coli in drinking water sources is essential. However, direct measurement of these 

pathogens is expensive and labor-intensive, resulting in limited information and time-delays 

for risk-based management of water systems. While these challenges slow down the real-

time monitoring of pathogens’ levels in ambient waters, AI-based techniques offer a fast and 

effective alternative for direct measurements.  

 Bayesian Belief Networks (BBNs) is one of these data-driven methods gaining traction 

in modelling environmental systems and capturing their uncertainties. BBNs can assist the 

decision-makers by visualizing the interaction of variables in the complex systems. In this thesis, 

BBNs have been used to estimate Cryptosporidium and E. coli levels to provide a real-time 

assessment of the microbial quality of source water and fill the time gap required for direct 

measurement. 

However, available Cryptosporidium data are rare and unbalanced, mainly indicating 

absence or non-detectable levels of Cryptosporidium. To overcome this challenge, two data 

balancing algorithms, Adaptive Synthesized Sampling (ADASYN) and Synthetic Over 

Sampling Technique (SMOTE) have been utilized. The objective was to eliminate unbalanced 

features of the dataset and train the model in a way that can predict both presence and 

absence of Cryptosporidium based on unbalanced and real measurements. In current work, 

the BBN model has been used for Cryptosporidium prediction and trained for the first time with 

a balanced dataset generated through ADASYN and SMOTE algorithms. The application of 

balancing algorithms increased the prediction accuracy to more than 60%, compared with 

models developed by unbalanced datasets.  

Furthermore, the sensitivity of pathogen’s level to different water quality and weather 

parameters was also investigated with the aim of improving the information regarding factors 

influencing source waters quality. Although precipitation and temperature indicated a 

significant impact on target parameters, the scale of the impact was very site-specific. The 

observation indicated that besides weather and water quality characteristics, different 

characteristics of each monitoring site seem to affect the level of Cryptosporidium and E. coli 

in studied water sources. 
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Lay Summary 

 

This thesis focuses on predicting the concentration of Cryptosporidium and E. coli in 

drinking water sources using data-driven models. The development of data-driven models 

requires the historical data of understudied pathogens. However, the persistent challenge in the 

measurement of Cryptosporidium has made the recorded data of its presence in ambient waters 

limited. Therefore, different algorithms have been developed in this work to synthesize new data 

of Cryptosporidium’s presence based on real observations and improve the performance of the 

predictive models. Furthermore, the integration of different water quality and weather parameters 

to predict the presence of Cryptosporidium and E. coli in source water was also evaluated and 

discussed in this thesis. Statistical analyses and the developed predictive models were used to 

better understand which parameters are required to be controlled or monitored to manage the 

risk of the pathogens. 
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Chapter 1: Introduction 

1.1 Background 

The most critical ingredient for human life is water. Source waters, including lakes, rivers, 

groundwaters and reservoirs, are crucial sources for life and industry (Zhan et al., 2021). The 

quality of water sources is affected by several factors related to human activities or natural and 

climatic events. Examples of anthropogenic pressure on source water can be the use of fertilizer 

in agricultural land and establishing nitrogen or phosphorus pollution in aquatic systems (Mainali 

& Chang, 2018) as well as industrial or municipal wastewater discharges. Furthermore, the 

population increase accentuates these negative impacts on source waters by raising the demands 

on land and food suppliers.  

Climatic events and weather conditions noticeably can impact water sources (Mainali & 

Chang, 2018). The changes in water temperature, runoff and flooding or draughts in different 

regions have the potential for affecting all available water sources. For instance, the resulting 

variations of precipitation patterns due to climate change could  influence the stress level on water 

supply and quality on a global scale (Qiu et al., 2019). Therefore, not only the scarcity of fresh 

water on the earth but also the high sensitivity of the available clean water supplies makes the 

monitoring of source waters important. In order to have a better understanding of source waters’ 

condition as well as enhanced monitoring over the scale of the pressure on water supply, it is 

necessary to have an appropriate water quality assessment. 

Water quality can be defined by a broad spectrum of indexes such as chemical, physical, 

or biological characteristics. An acceptable range of these parameters represents water quality, 

and exceedance from the permissible standard can result in water with low quality. Although the 

undesirable changes over each of these properties can impact water quality, public health risk is 

most influenced by pathogen levels in the water supply. Therefore, assessing the pathogen level 

in the water source is essential because the presence of some bacteria and parasites can cause 

illness through drinking water if not properly treated.  

The microbial contamination of drinking water sources, as well as recreational waters, is 

the main route for transmitting waterborne diseases and outbreaks. Waterborne outbreaks are 

one of the main mortalities (more than 2.2 million deaths per year) and even more morbidity in 

both developed and developing countries worldwide (Gleick, 2002). Based on a recent UNICEF 

report, 41.7% of people globally are at least at the medium risk of using unimproved water in their 

households (Islam et al., 2020). Also, a study on waterborne diseases resulting from recreational 
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waters estimates almost 4 billion events in surface waters, resulting in 90 million illnesses and 

$2.2-$ 3.7 billion costs in the United States. This study reports that 8% and 65% of the economic 

burden was attributed to treating the resulting moderate and severe illnesses, respectively 

(DeFlorio-Barker et al., 2018). Therefore, it is well-known that the impact of waterborne outbreaks 

can be serious and costly for all communities (Ma et al., 2022). In order to prevent the spread of 

waterborne outbreaks and reduce this risk on public health, it is of great importance to have an 

appropriate evaluation of the microbial quality of drinking water sources and recreational waters.   

An important pathogen that commonly drives public health risk associated with drinking 

water treatment and delivery is the protozoa Cryptosporidium spp. (Omarova et al., 2018). 

Outbreaks of Cryptosporidium can impact a large proportion of the population in a short time 

frame due to its persistence in aquatic environments (Swaffer et al., 2018) and high probability of 

infection at low doses (Lal et al., 2015). A review of waterborne protozoa outbreaks has reported 

381 outbreaks between 2011 and 2016, with Cryptosporidium identified as the most common 

cause (63% of cases) (Efstratiou et al., 2017a; Ligda et al., 2020a). In Africa and South Asia, 

Cryptosporidium is recognized as the second leading cause of diarrhea and mortality in infants 

(Kotloff et al., 2013). Also, a well-known example of a Cryptosporidium outbreak occurred in 

Milwaukee, Wisconsin, in 1993, resulting in approximately 400,000 cases of illnesses (Rosell et 

al., 1994). In addition, there are numerous other reports of outbreaks caused by Cryptosporidium 

in both developed and developing countries (Mason et al., 2010; Wallis et al., 2003; Wheeler et 

al., 1999). 

Water is one of the main transmission routes for Cryptosporidium, and drinking water is a 

significant pathway for outbreaks (SMITH, 1992). These protozoa are particularly important to 

consider when setting water treatment objectives since they are small enough to pass through 

some physical treatment barriers and are particularly resistant to disinfection by chlorine 

(Lechevallier & Au, 2004). While Cryptosporidium is often a major source of public health risk 

associated with the drinking water (Baldursson & Karanis, 2011a) information on source water 

concentrations and facility-specific removal efficiencies is usually unknown. In part, the lack of 

information on source water concentrations is due to significant sampling and measurement 

challenges. Quantification requires several steps, including concentration and manual detection, 

which are pretty challenging considering the typically low amount of Cryptosporidium in the 

samples (Usepa, 2005). For example, cyst counts are often reported per 100 L volume to account 

for low numbers. However, due to measurement and treatment challenges, it is likely that elevated 

cyst levels are present in both source and drinking waters in many systems, as suggested by 
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studies showing improvements to water treatment (like adding to regulations and intervening with 

facilities such as the filtration process) can reduce reported sporadic cases of cryptosporidiosis in 

served populations (Goh et al., 2004; Lake et al., 2007; Petterson & Ashbolt, 2016).  

Although Cryptosporidium is among the most common reasons for waterborne outbreaks, 

due to the mentioned challenges, other indicator bacteria are used for reporting the microbial 

quality of water bodies. For instance, compared to the other pathogens such as Giardia or 

Cryptosporidium, it is easier to measure E. coli. Therefore, E. coli as a Fecal Indicator Bacteria 

(FIB) is considered an essential indicator of fecal contamination in water and is commonly used 

for the microbial assessment of drinking and recreation water. Also, E. coli is a human pathogen 

(Riley et al., 1983) that can survive in the gastrointestinal system and easily transmit or impact 

the surface/ground, recreational and stream waters (Khan et al., 2021). Epidemiological 

investigation in gastrointestinal illness in 1980 in the United States showed a correlation between 

these diseases with the level of E. coli in recreational water. (Edberg et al., 2000). These 

investigations resulted in using E. coli as an index of fecal contamination in the freshwater of 

beaches (Jang et al., 2017; USEPA., 1986). Therefore, most guidelines and regulations evaluate 

the microbial quality of water bodies based on E. coli levels. However, the permissible level of E. 

coli depends on different factors, including the sampling frequency and the kind of water under 

assessment. For instance, in order to exempt the filtration of drinking water, the level of E. coli 

per 100 ml should be less than 20 CFU in 90% of the weekly samples of the source water during 

the last six months (Drinking Water Officers’ Guide, BC, 2017). Also, according to the USEPA, 

the level of E. coli shall not exceed 235 CFU per 100 ml for a single sample in beaches’ freshwater 

(Jang et al., 2017).  

Sewage discharges are one of the primary sources of transmitting pathogens such as E. 

coli into water sources that contribute to lack of microbial quality of water (Cheng et al., 2013). 

Storm events can intensify the sewer overflows and wash out livestock feces from soil into the 

water bodies. Climatic incidents seem to be one of the main parameters that impacts the microbial 

quality of source waters because it can indirectly affect all chemical and physical parameters of 

the water. There are several studies showing the significant impact of weather events on 

pathogens such as E. coli (e.g., Allende et al., 2017; Edge et al., 2021; Tolouei et al., 2019). For 

instance, one common factor in many historical pathogen outbreaks is extreme rainfall (Mac 

Kenzie et al., 1994) or other hydrometeorological events (Markó, 2005; Sylvestre et al., 2021).  

Although the changes in the level of pathogens in source waters are expected to be rapid 

and transient, there is limited ability to assess pathogen risk in short time frames because direct 
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measurement of the quality and quantity parameters require at least more than 24 hours and 

more. As such, there is a need for increased source-specific monitoring of pathogens in short time 

frames in order to inform treatment operations better and reduce the associated public health risk 

associated with drinking water.  

The application of data-driven models and statistical methods seems a promising 

approach to fill the time gap required for direct and day-to-day measurement of different water 

quality parameters. Data-driven models can be a faster substitution for the traditional solution of 

water quality managements because 1) they can learn the complex relationship between 

physiochemical or climatic parameters that are non-linear and highly complex, 2) the result and 

output of these models can be helpful with other risk-based assessment methods, 3) the methods 

offer the ability of simultaneous monitoring of water quality without the demand of real-time 

information about the parameters (Vasquez et al., 2000), 4) can significantly reduce the required 

costs of onsite measurement facilities (Al-Adhaileh & Alsaade, 2021). Therefore, the application 

of different data-driven models has triggered the attention of many researchers to examine these 

models’ capability in predicting water quality and quantity.  

However, one of the main challenges regarding applying data-driven models is the lack of 

available data since they completely rely on historical data to evaluate target parameters. In 

contrast to water quantity parameters widely available, the data for some of the water quality 

parameters are scarce due to logistical challenges and analytical complexities associated with 

frequent measurement. Data generation algorithms could be used to address the lack of data by 

synthesizing additional artificial data based on real-time and measured data. These algorithms 

are reported to compensate the demand for high-quality data and improve the performance of 

data-driven based models even for parameters with a low number of samples. 

1.2 Objectives 

The objective of this work was to use data-driven models for improving the risk-based 

management of source water quality and addressing the associated challenges of direct 

measurement of pathogens. The specific objectives of this thesis are listed below: 

 

1) Predict the presence and absence of Cryptosporidium and E. coli as two pathogens of 

concern using Bayesian Belief Networks (BBNs). 
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Presence of Cryptosporidium and E. coli can pose a severe public health and real time 

assessment of these pathogens can prevent or reduce this associate risk. While several 

challenges are associated with conventional monitoring of these pathogens, data-based 

models can offer a faster and continues assessment compared to direct measurements 

and conventional methods.  

Several parameters can impact the level of E. coli and Cryptosporidium in source 

waters and the diversity of these parameters makes assessment of these pathogens a 

complex system. BBNs as one of the data-based models allows for graphical 

representation of parameters interaction in such complex systems and have been reported 

to present a good performance in modeling environmental systems and capturing their 

associated uncertainty. Therefore, the capability of this model in estimating the presence 

of E. coli and Cryptosporidium has been assessed in this thesis. The reason for 

considering these pathogens included the persistent challenges and time delay in their 

direct measurement, the resistance to common disinfection processes, and the associated 

risk of their presence to public health. Furthermore, the presence of E. coli can be an 

indicator of fecal contamination, and this pathogen is the basis of most water quality 

monitoring regulations. Also, besides the prediction of pathogens, the capability of the 

developed models in unfolding the interaction between weather characteristics and water 

quality parameters was examined. In order to explore how weather parameters such as 

precipitation and temperature can impact the microbial quality parameter or/and how 

microbial quality indicators will react to the different climatic scenarios,  

 

2) Investigate the capability of data balancing algorithms in compensating the deficiency of 

Cryptosporidium observation and the lack of data in developing data-based models. 

 

The direct measurement of Cryptosporidium is a more complex, expensive, and labor-

intensive process compared to the measurement of other pathogens. These persistent 

challenges in direct measurement of Cryptosporidium have resulted in lower observation 

and record of this parasite in source waters. In this work, the impact of data synthesizing 

algorithms on generating artificial data based on real data was investigated because the 

availability of balance data is crucial in developing data-driven models. The objective was 

to see if the data-balancing algorithms could improve the performance of BBN models in 

predicting Cryptosporidium or not.  
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The body of this thesis is structured as follows. The second chapter has included a broad literature 

review of the topics that have been covered in this work. The detail of methods that were used in 

deriving the results, including the source of employed data, BBN model, SMOTE, ADASYN and 

efficiency criteria of model performances, have been described in the 3rd chapter. The result of 

predicting and modelling Cryptosporidium and E. coli have been presented in chapters 4 and 5 

respectively, followed by the analysis of variables interaction that has been reported in chapter 6. 

Finally, chapter 7 has summarized the conclusion of the thesis and discussed the future works 

that can be done in this area. 
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Chapter 2: Literature Review 

2.1 Assessment of Microbial Quality in Source Waters 

Population increases in the modern world are followed by urbanization, industrialization and 

agricultural activities (Poonam et al., 2013). All of these anthropogenic activities put extra 

pressure on limited water sources and introduced more pollution to water supplies. Therefore, it 

is of great importance to assess the quality of available water sources to prevent future risks to 

public health, especially while climate change makes the risks even more tangible.  

 The assessment of surface water quality started in the early twentieth century because 

population and industrial booming prompted people to protect available water sources. 

Meanwhile, the wastewater effluents were contaminating the river water, which triggered more 

assessment on the biological quality of water sources because sewage flows were affecting the 

overall quality of water bodies by introducing different microorganisms and reducing the oxygen 

level. Before this time, the outbreak incidents were attributed to the lack of wastewater treatment 

because it was believed that running water could purify itself. However, the increment of 

waterborne diseases such as a typhoid outbreak in Butler in Pennsylvania forced public health 

regulations to develop more protocols on limiting the discharge of untreated wastewater effluent 

to water sources. Still, the only guidelines on source water quality evaluation were limited to 

quantity assessment such as flood control. However, the development of filtration and chlorination 

offered a cheaper and more effective approach than only limiting the sewage effluent in water 

sources and helped in initiating more regulations over the assessment of the drinking water (Tarr, 

1996).  

Since the early twentieth century several quality indexes or parameters have been 

developed to assess water quality. One of the challenging aspects of quality assessment of water 

sources is the evaluation of biological or microbial quality indicators. Several natural and 

anthropogenic activities such as animal manure, weather events, agricultural and industrial 

activities can introduce new viruses, bacteria, or parasites to drinking water systems, and some 

of these microorganisms are resistant to disinfection of the treatment system. Therefore, it is 

essential to have a microbial quality assessment over the water supplies to better plan for 

developing treatment systems or controlling drinking water quality. The microbial quality 

assessment of water refers to the evaluation of pathogens that can potentially infect people and 

develop diseases or cause mortality. These pathogens can be categorized into three groups: 

bacteria, protozoans, and viruses. According to the US Environmental Protection Agency (EPA), 
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the important bacterial pathogens include E. coli Shigella and Salmonella. Also, Cryptosporidium 

and Giardia are the main parasites of concern. Each of the mentioned parameters has a specific 

permissible level in source water, and this level also can vary for intended water uses such as 

drinking, recreational or irrigation purposes (Jamieson et al., 2004). 

2.1.1 Assessment of E. coli in Source Waters 

Although each specific pathogen has a specific permissible level or infection rate, the difficulties 

in measuring each parameter have led to selecting one indicator organism. Most regulations rely 

on indicator organisms to estimate the concentration and persistence of other pathogens in the 

water body. One of these indicator organisms is E. coli which the USEPA recommends as the 

principal indicator organism in freshwaters (Jamieson et al., 2004). E. coli can pose a serious risk 

to public health, and the presence of E. coli can be an alert for having other fecal contaminants 

in the environment. Although the mere presence of this bacteria does not necessarily indicate the 

existence of other pathogens, it can imply the possible contamination of water with other fecal-

related microorganisms such as Salmonella and hepatitis (Odonkor & Mahami, 2020).  

Several studies or research with the objective of microbial assessment of water quality 

have focused on assessing E. coli levels in specific source waters: lake, river, revisors, etc. Also, 

some research, such as a study conducted by Odonkor and Mahami (2020), has considered 

several drinking water sources such as dams, rivers, streams, and underground water sources 

(in Dangme West District in Ghana) for assessment of E. coli concentration. Although the study 

has reported the contamination of all investigated locations to fecal bacteria, the concentration 

was observed to be different for each monitoring site. Samples recorded from the dams were 

reported to have the highest risk, and samples from the groundwater were found to have the 

lowest risk of contamination. The study has suggested anthropogenic activities as the main 

source of fecal contamination (Odonkor & Mahami, 2020).  

Elevated E. coli or microbial contamination of source waters can impact treated drinking 

water quality and safety. Not all treatment systems are equipped with a filtration process, and 

some regulations allow for an exception for the filtration process. An investigation by Barragan et 

al. (2021) concluded that structural deficiencies in treatment, distribution, and storage as the 

reason for poor microbial quality in Villapanizon, Columbia. This study has evaluated the health 

risk associated with drinking water systems and used E. coli as a microbial quality indicator. The 

implemented QMRA method in the work estimated the risk of exposure to pathogenic E. coli for 

the population of the region. Different regions have been evaluated, and the resulting 
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observations show that the quality guidelines have not been fulfilled, and E. coli has been 

observed in samples from all testing locations (Barragán et al., 2021). Also, another study that 

investigates the E. coli and FIB contamination in all drinking water sources of Rohingya camps in 

Bangladesh has reported that 34.7% of households were contaminated with E. coli and 73.96% 

with fecal coliforms. The study has indicated that although the decontaminating drinking water 

treatment plant efficiently removed these pathogens, secondary contamination still occurs during 

storage or collection.  The lack of personal knowledge and domestic hygienic practices were 

identified responsible for this contamination (Mahmud et al., 2019).  

 Due to the mentioned reasons, E. coli was the source of several serious outbreaks during 

history. For example, the Burdine Township, Missouri outbreak was recorded between 15 

December 1989 and 20 January 1990. Four people died, and 3126,243 people were exposed to 

and developed diseases from E. coli, with 36 persons hospitalized (Swerdlow et al. 1992).  The 

reason has been reported to be the overflow of sewage and inadequate sewage treatment. Also, 

a water break that occurred after the outbreak intensified the contamination and resulted in the 

main peak (Swerdlow et al. 1992). Similarly, the contaminated and unprotected water supply in 

the Highland region of Scotland (Licence et al. 2001) resulted in another outbreak in the region 

as the animals were permitted to graze in the region of water supply and have resulted in fecal 

contamination (mainly E. coli) to the water. There is even more report of E. coli contamination in 

both developed and developing countries, such as the Wyoming outbreak during 1998, the 

Swaziland outbreak during 1992 in South Africa and the E. coli outbreak in Grampian in Scotland 

during 1990, were all due to lack of microbial quality of water. However, the largest and most 

serious outbreak was the Walkerton outbreak occurred during May and June 2000 in Ontario 

(Hunter, 2003). More than thousands of people were infected, with six fatalities and 65 people 

hospitalized. This outbreak was also associated with the contamination of source water with cattle 

feces. When most of these outbreaks could have been prevented if the source water quality had 

been adequately monitored and the treatment or distribution systems were improved.  

Followed by this outbreak, new provisions were developed for preventing similar events 

in the future. For instance, Walkerton Clean Water Centre (WCWC) is developed in this way to 

improve safe water management and more research and preparedness over water supplies 

(Lisnyj & Dickson-Anderson, 2018). Although regulations have been improved due to the past 

incidents, there is still some weakness that can pose a risk to public health. For instance, most of 

the provisions rely only on E. coli levels to evaluate the microbial quality of water. In this matter, 

an investigation was conducted in Brazil on the Alto Pranayama River basin to see if E. coli solely 
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can be a potential microbial quality indicator of water sources. The sampling location of this study 

was from a region of the basin where the populations of neotropical otters were high, and the 

possibility of having fecal contamination was high consequently. However, among the 26 

samples, only 30% of samples were E. coli positive. This observation indicated that E. coli cannot 

represent other pathogens that, with a high probability, are present in samples (Oliveira et al., 

2017). Also, in the study conducted by Reinoso et al. (2008), the relationship between indicator 

organisms such as E. coli and pathogenic parasites such as Cryptosporidium and Giardia was 

investigated. The testing samples were collected from different points/regions of wastewater 

treatment facilities, such as effluent during the treatment process and effluent. The observation 

of the study indicated that although there was a correlation between fecal bacteria (E. coli) and 

other pathogens of concern (such as Giardia and Cryptosporidium),  this correlation between 

indicator bacteria and other pathogens was varied along with the system due to the changes in 

the survival rate of pathogens (Reinoso et al., 2008). Therefore, the study recommends a more 

specific assessment of the pathogens in order to improve the protection of public health 

adequately (Harwood Valerie J. et al., 2005). Also, the study by Kartim et al. (2004) found different 

“die-off rates” for indicator bacteria and other pathogens in constructed surface-flow wetland. This 

observation indicated that each microorganism can have a specific trend in aquatic systems, and 

surrogating other pathogens with indicator bacteria could be an optimistic approach (Karim et al., 

2004). Waterborne diseases can be caused by bacteria and because of viruses and protozoa and 

relying only on fecal coliforms or E. coli as indicator organisms result in misleading information 

(Gordon, 2001). In part, several experiments have indicated a very poor relationship between E. 

coli or indicator organisms with Cryptosporidium (Payment et al., 2000; Fu et al., 2010; Isaac- 

Renton et al., 2005).  

Therefore, microbial quality assessment depending on indicator organisms is likely to miss 

pathogens such as Giardia, Cryptosporidium, Salmonella, etc. (Pandey et al., 2014). Therefore, 

other pathogens are required to be monitored besides indicator bacteria to address the limitations 

in identifying other water contaminants (Price & Wildeboer, 2017). 

2.1.2 Assessment of Cryptosporidium in Source Waters 

Cryptosporidium is one of the important intestinal pathogens that can cause long-lasting illnesses 

and nutritional disorders such as diarrhea in the case of digesting contaminated food or drinking/ 

recreational waters. The resulting disease by Cryptosporidium is one of the leading causes of 

morbidity and mortality in the world, specifically in developing countries that have higher 
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populations and lower quality sanitation systems (Fletcher et al., 2012; Khalil et al., 2018). One 

of the main reasons for frequent waterborne outbreaks was reported to be Cryptosporidium 

(Baldursson & Karanis, 2011b; Gallas-Lindemann et al., 2013; Breternitz et al., 2020). Similarly, 

a review of historical protozoan outbreaks conducted by Efstratiou et al. (2017) has reported 

Cryptosporidium was responsible for 63% of worldwide waterborne parasite protozoan outbreaks. 

Some of these outbreaks that have occurred in British Columbia have been presented in Table 

2.1. Thus, the presence of this pathogen in the water supply should be considered a severe risk 

to the public health (Efstratiou et al., 2017).  

Table 2.1 Example of waterborne outbreaks occurred in British Columbia. 

Location Causing Pathogen Source 
Year of 

Outbreak 

Cranbrook Cryptosporidium 
Watershed contaminated by 

Cattle 
1996 

Kelowna Cryptosporidium Wastewater Discharge 1996 

Chilliwack Cryptosporidium 
Watershed contaminated by 

Wildlife 
1998 

 

In addition to the increasing number of waters transmitted outbreaks caused by Cryptosporidium, 

the magnitude of the resulted illnesses is underreported due to lower number of reports from 

underdeveloped communities. This poor reporting and deficiency of data in these regions imply 

an even higher number of illnesses caused by Cryptosporidium worldwide. 

The primary reason for surface water contamination with Cryptosporidium are 

1) Wastewater discharge and sewage overflow (Santos & Daniel, 2017; Sato et al., 

2013),  

2) Climatic incidents, including temperature variation or heavy precipitation (Lal et al., 

2013),  

3) Resistance of Cryptosporidium to regular disinfection processes (Carmena, 2010) 

However, the difficulties in measuring Cryptosporidium, make it even more challenging to be 

monitored or studied. Therefore, the available literature on how Cryptosporidium can be studied 

as the representative of microbial quality assessment of water sources is limited. One of these 

studies is conducted by Kui et al. (2021) that has evaluated drinking water quality for regions with 

high populations in China, based on the Cryptosporidium and quantitative microbial risk 

assessment (QMRA). The study has investigated 45 samples from source water and 45 samples 



12 

 

from the effluent of the water treatment plant. The observation indicated that the probability of 

infection exceeds the permitted limit (10-4) recommended by US EPA (CAO et al., 2021). Also, 

Breternitz et al. (2020) have evaluated the risk of Cryptosporidium occurrence in water sources 

based on the land use and coverages around watersheds. The study has examined 11 distinct 

municipalities of Sao Paulo in Brazil and reported more Cryptosporidium occurrence in 

watersheds covered with higher populations and the lands with livestock application. In contrast, 

the watersheds close to the urban areas without any livestock activities have shown the lowest 

frequency and concentration of Cryptosporidium presence (Breternitz et al., 2020). In another 

study, Xiao et al. (2021) have investigated the relationship between the occurrence of the parasite 

and discharge of wastewater treatment plant effluent into surface waters. A QMRA to analyze 

was conducted to evaluate the associated risk of Cryptosporidium presence in the drinking water 

supply. The study's observation indicated that due to the high concentration of Cryptosporidium 

in the effluent, the associated risk of discharging sewage effluent is higher than the threshold of 

10-6  that is released by WHO (Hu et al., 2018).   

Despite the reported wide range of contamination sources, a common element to previous 

studies focusing on the occurrence of Cryptosporidium in the environment is the high level of 

uncertainty and consistent influence of various factors between watersheds. Also, the observation 

of the literature indicates that the possibility of Cryptosporidium in water suppliers is quite high, 

and this pathogen can cause serious risk for public health in the case of intaking to water 

treatment systems. Therefore, it is of critical importance to monitor and evaluate the concentration 

and presence of Cryptosporidium in source waters. 

2.2 Impact of Weather events on Microbial Quality of Source Waters 

One of the main challenges regarding the assessment of source water quality is their sensitivity 

to various factors, including climatic changes. The studies on how weather or climate events can 

impact water quality are quite a few because this impact depends on different factors such as the 

nature of water sources (if it is considered groundwater, river or reservoirs, etc.), the geographical 

condition and the “hydro-climatic” condition of the water (Goderniaux et al., 2011; Macdonald et 

al., 2009).  

Understanding of how natural water quality will respond to the climatic changes is in very 

early stages (Howard et al., 2010; Levy et al., 2009a; Sadik et al., 2017; Taylor et al., 2009; Wu 

et al., 2009). Although there is not a good understanding of the relationship between weather 

conditions and water quality, historical outbreaks caused by heavy rainfalls or temperature 
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flocculation indicate the existence of a dependency. For instance, one of the early E. coli 

outbreaks during 1992 was due to extreme rainfall after a drought period. The heavy precipitation 

washed out fertilizers and animal feces into surface waters in South Africa and Swaziland 

(Isaacson et al. 1993). Similarly, the heavy rainfall in Walkerton during 2000 in Canada resulted 

in a serious outbreak in which more than 2000 people were infected with E. coli (Hrudey et al., 

2002). The outbreak happened following heavy spring precipitation (143 mm in 5 days). Rainfall 

with this magnitude was estimated to occur 1 in 60 years (O’Connor, 2002). The source of E. coli 

contamination was the cattle manure or agricultural lands that were washed out with the rainfall 

flow and resulted in the failure of the treatment system (Hrudey et al., 2002). 

The occurrence of such unexpected precipitation and rainfalls of this kind can become 

increasing common due to climate change. These non-regular droughts or precipitation events 

are potential of contaminating the waters sources. E. coli outbreaks in Grampian, Scotland, are 

an example of how low precipitation and high temperature during summer can eliminate a drinking 

water supply of the community (Dev et al. 1991).  For instance, a study conducted by Jacklin in 

2015 investigated the factors that are involved in the microbial quality of groundwaters. The 

statistical analysis has indicated that E. coli levels were highest during the wet seasons, likely due 

to concurrent high temperatures that increased the growth rate and survival of E. coli in the water 

(Jacklin, 2016). A similar observation was reported by Abia et al. (2015) in Australia that has 

reported a higher level of E. coli during the season with higher precipitation because of the direct 

relationship of E. coli with the air temperature (Abia et al., 2015). However, Balleste et al. (2019) 

discussed that the influence of environmental parameters such as rainfall depends on the source 

of natural water and pollution. For instance, the investigation in their study has indicated that 

higher precipitation in “human polluted” areas can dilute the fecal contamination. At the same 

time, in the case of the agricultural regions, runoff can decrease the quality in terms of fecal 

pollution (Ballesté et al., 2019).   

A similar observation has also been observed in a study conducted by Levy et al. (2009), 

which examined the impact of seasonal changes on the variation of microbial quality of water and 

E. coli levels. Like other studies, it was also observed that the impact of rainfall on E. coli is 

stronger during the wet season than the dry season. As such, the study suggested that a 1 cm 

increase of rainfall was associated with a 3% decrease in E. coli counts in source waters during 

the dry season and a 6% reduction during the wet season. According to the finding of the study, 

soil moisture can be a reason for this variation as it can impact the microbial processes during 

rainfall (Levy et al., 2009b). Also, this study has explored the different time scales (hourly, daily, 
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and weekly scales) to measure E. coli and reported more variability and quality flocculation based 

on an hourly scale that is again explainable due to the flushing feature of rainfalls. Therefore, 

observation of this investigation indicates that the impact of weather events on microbial quality 

of water can vary based on runoff effect, dilution effect and the time scales consideration (Levy 

et al., 2009b).  

Not only are E. coli levels or fecal contaminations affected by climatic features, but other 

contaminants and pathogens such as Cryptosporidium levels are sensitive to weather variations. 

For instance, a study conducted by Atherholt et al. (1998) has examined the impact of seasonal 

changes and rainfall on the concentration of Giardia and Cryptosporidium. Delaware river has 

been selected as the sampling location, and the recorded data was representative of four 

seasons. The highest concentration of Cryptosporidium was observed in winter and fall within the 

samples that have the highest flow rate and turbidity. This observation shows a direct relationship 

between precipitation and parasite level in the tested area. Therefore, the study concluded the 

elevated runoff and sediment resuspension (as the reflection of seasonal changes) as the reason 

for Cryptosporidium increase (Atherholt et al., 1998). In addition, a study by Craun et al. (1998) 

reviews the historical Cryptosporidium outbreaks in the United States, United Kingdom and 

Canada. Investigating the several outbreaks in studied countries, the study has reported sewage 

discharge and runoff from agricultural land as the primary contamination source of 

Cryptosporidium. Also, this review has indicated that heavy rainfalls by worsening these 

contamination sources can lead to lifted parasite concentration in source waters and impaired 

treatment systems. Therefore, most of the studied outbreaks, such as Carrollton in 1987; Sheffeld 

in 1986; North Humberside in 1990; Isle of Thanet in 1991; Bradford in 1992, have occurred during 

heavy rainfalls (Craun et al., 1998).  

Other climatic changes such as frequency and duration of droughts and high temperature 

can impact parasite levels in the source water. For instance, Leland et al. (1993) investigated one 

of the Cryptosporidium outbreaks that has happened in Talent in 1992. The study has reported 

the drought condition and associated low flow as one of the possible reasons that can result in 

less diluted sewage discharge in the Bear Creek water supply and higher parasite concentration 

(Leland et al., 1993). Also, Masina et al. (2019) have studied the level of Cryptosporidium and 

Giardia with environmental conditions such as precipitation and air/water temperature in Iqaluit. 

The study reported an increase in number of protozoa because of the increased air and water 

temperature in the Arctic (sampling region). However, despite other studies, this investigation has 

not observed any association between Cryptosporidium and precipitation. The main reason could 
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be the difference in wildlife and the lower human population in Northern Canada. Also, because 

there are very few sources of Cryptosporidium in Iqaluit and rainfall cannot introduce carry over 

or increase its level consequently. 

As the result of studies indicates, different case studies with varying sampling sites can 

change the impact of weather conditions on microbial contamination of source water. These 

observations from literature studies imply sophistication of the relationship between climatic 

events and E. coli/Cryptosporidium level. Therefore, there is more demand on studying this 

correlation because now the outcomes of global change such as heavy rainfalls, non-regular 

flooding, precipitation, and high temperatures are getting more tangible.   

2.3 Modeling Microbial Quality of Water Sources 

Water quality modelling can be a helpful approach to estimate the associated impact of climate 

change or the risk of new pollutants in the source waters (Feng et al., 2013).  Water quality 

modelling simulates the interaction between different water quality characteristics and can provide 

a quantitative basis to better understand and interpret their relationship (Reichert et al., 2001). 

However, generating accurate knowledge about the water environment can be quite challenging 

because there are several complex processes involved, such as eutrophication, chemical and 

biological pollutant transport and diffusion, algal blooms, weather events, etc. While these 

scenarios can be simulated and predicted by the water quality modelling (Kim et al., 2021).  Two 

approaches can be employed in modelling water quality. One classical modelling method uses 

physical models that can simulate the mechanisms of underlying processes in the monitoring 

environment. Physically based models are based on detailed knowledge and information of the 

system, which should be achieved by exact measurement and analysis. Therefore, these 

methods require extensive cost and time to be developed. However, data-based models offer a 

faster and more cost-efficient approach for modelling environmental systems such as source 

water quality. Furthermore, the fast growth of computer and monitoring techniques such as the 

application of wireless sensors are improving the availability of the data (Aliashrafi et al., 2021). 

Besides, the successful report of applying data-driven models in other fields of science and 

engineering (Gilpin et al., 2018; Montáns et al., 2019), has resulted in the development of more 

data-based models for assessment of water quality. These types of models can generate timely 

and accurate information of the system, which can be of great help for decision-makers and 

regulation developments (Telci et al., 2009). 
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2.3.1 Application of Machine Learning Methods in Assessment of Source Water Quality 

The rapid improvements to computational power and advances in developing new machine 

learning algorithms have resulted in numerous examples of data-driven or machine learning 

models (Bishop, 2006). Due to the ability of these models in tackling the time and cost challenges, 

several data-driven models have been implemented in predicting water quality.  

There are a number of studies with the application of data-driven models in predicting 

source and drinking water quality. Among them, a review study conducted by Tyralis et al. (2019) 

claims artificial neural networks (ANNs) as the most applied method in forecasting water quality 

(Tyralis et al., 2019). Although predicting quality indicators is the same objective in most of these 

studies, the case study, the selected target parameter and the input variables are different for 

each investigation (Al-Adhaileh & Alsaade, 2021; Gazzaz et al., 2012; Kim et al., 2021; Sarkar et 

al., 2021). For instance, Palani et al. (2008) have used the ANN algorithm to predict the seawater 

quality parameters (DO), salinity and temperature in Singapore coastal waters (Palani et al., 

2008). Kalin et al. have applied the same method for predicting the total dissolved solids (TDS) 

and total suspended solids (TSS) as the water quality indicators in Western Georgia (Kalin et al., 

2010). Similarly, Seo et al. (2016) have successfully applied the ANN algorithm on Cheongpyeong 

dam in Korea and were able to predict a wide range of quality parameters (temperature, DO, pH, 

Electric Conductivity, TN, TP, Turbidity and Chlorophyll-a) (Seo et al., 2016). Besides quality 

indicators, ANNs have been widely applied to predict disinfection by-products (DBPs) in the 

drinking water systems (Hong et al., 2020; Peleato et al., 2018; Xu & Liu, 2013).  In addition to  

ANNs, linear or non-linear regression methods (Chen & Liu, 2015; Harvey et al., 2009; Yang et 

al., 2017),  Adaptive Neuro-Fuzzy Inference Systems (ANFIS) (Deng et al., 2015; Solgi et al., 

2017) and Support Vector Machines (SVM) (King et al., 2000; S. Liu et al., 2013; Xiang & Jiang, 

2009) are examples of classical approaches that are commonly applied to predict water quality 

indicators.  

In terms of microbial quality, the real-time estimation capability of data-driven models can 

compensate for the time delay of measuring pathogen concentration in source waters because 

the measurement of present microorganisms in water can take even more than 24 hours, and 

during this time gap, there is a possibility for pathogen levels to exceed the permitted standard. 

Also, rapid changes in microbial activities demand a real-time assessment of their concentration. 

Therefore, to address the challenges of time delay in monitoring the quality indicators, 

mathematical and data data-driven models based on historical data have been used to predict 
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pathogen concentrations on a day-to-day basis (Benham, 2006; Coffey et al., 2010; Nevers & 

Whitman, 2011; Nicholas et al., 2016). 

  Due to the large variety of data-based techniques and availability of wide datasets, the 

selection of the modelling techniques is important and challenging. Therefore, besides utilizing 

the predictive models, the focus of research in literature was on comparing the predictive powers 

and performance of different algorithms. For example, Brooks et al. (2016) have compared 14 

distinct regression techniques for predicting E. coli concentration in recreational water of 

Wisconsin. The study denoted the superiority of multi-linear regression algorithms (MLR) over 

other methods (Brooks et al., 2016). Similarly, Malzer et al. (2016) have compared ANN, logistic 

and process-based modelling performance in predicting E. coli of Ruhr River in Germany and 

reported the higher performance of the ANN method for all sampling sites over the river (Mälzer 

et al., 2016). Tousi et al. (2021) have developed SVM, logistic regression and ridge classifier 

methods to predict E. coli level in agricultural water and reports the outperform of SVM algorithms 

for this purpose. Another recent study conducted by Sokolova et al. (2022) has compared different 

data-based predictive models’ performance in predicting E. coli and evaluating the impact of each 

predictor variable on the pathogen level. The study has utilized the Exponential Smoothing and 

Autoregressive Integrated Moving Average (ARIMA), Regression and RF models and denoted 

the superiority of the RF model compared to the other techniques (Sokolova et al., 2022a). Some 

example of availble litreture that have employed machine learning algorithms for predicting water 

quality has been summorized in Table 2.2. 

In addition, another successful application of the RF model has been reported by 

Mohammed et al. (2017), which has utilized these algorithms for predicting FIB, E. coli and 

Intestinal enterococci in the Svartdiket water treatment plant in Norway. Although the study has 

used a wide range of physio-chemical characteristics of water (pH, colour, turbidity, conductivity), 

the colour of water and the season of the year were still the most significant variables in predicting 

these pathogens (Mohammed et al., 2017). Evaluating the impact of predictor variables on target 

parameters has also received attention. One of the main advantages of data-driven methods is 

their capability to capture the complex relationship between parameters of the dynamic systems 

that are hard to learn by conventional approaches. Therefore, the application of data-driven 

methods not only provides a real-time prediction of microbial contaminants but also can be helpful 

in investigating the underlying relationship of water quality parameters or the impact of different 

environmental systems such as weather events on pathogen levels. For instance, in order to 

assess the effect of precipitation on E. coli Clostridium and coliforms’ levels in source water, 
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Tornevi et al. (2014) have utilized the time series, regression model. The study has denoted that 

the heavy rainfalls (>15mm/day) are associated with a higher concentration of E. coli and FIB and 

can capture a strong correlation between precipitation over two days with microbial contamination 

of the water (Tornevi et al., 2014).  

Table 2.2 Summary of literature examples that have used the machine learning algorithms for 

predicting water quality. 

Water System Applied Model 
Predicted Water 

Quality Indicator 
Reference 

Marine Water ANN DO Palani et al. (2008) 

River Water ANN TDS Kalin et al. (2010) 

Tap Water RBFS-ANN DBPs Xu et al. (2013) 

River Water ANN-Logistic E. coli Malzer et al. (2016) 

Recreational water 
None-Linear 

Regression 
E. coli 

Brooks et al. (2016) 

Reservoir Water ANN Do, pH, TN, TP Seo et al. (2016) 

River Water ANFIS - SVR BOD Solgi et al. (2017) 

Drinking Water 

Treatment Effluent 
RF 

E. coli - Intestinal 

enterococci 

Mohammed et al. 

(2017) 

Drinking Water 

Treatment Effluent 
ANN DBPs Hon et al. (2020) 

Agricultural ponds SVM-logistic E. coli Tousi et al. (2021) 

Groundwater ANN E. coli Khan et el. (2021) 

Groundwater ANN E. coli Khan et el. (2021) 

Marine water ANN-SVR Turbidity Kumar et al. (2022) 

River Water RF- ARIMA E. coli Sokolova et al. (2022) 
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Furthermore, by application of RF methods, Sokolova et al. (2022) were able to show that 

the water temperature, microbial concentration upstream of testing point and precipitation have 

the highest importance in predicting E. coli (Sokolova et al., 2022b). Khan et el.,(2021) have 

developed a superposition-based learning algorithm (SLA) and ANN model for the same purpose. 

The study's observation reports the high importance of pH and the low impact of DO in predicting 

E. coli concentration of groundwater. The result of the study has indicated that the ANN model 

developed for predicting E. coli achieved the best performance by having pH, Turbidity, TDS and 

Electrical conductivity (Khan et al., 2021). Similarly, Rossi et al. (2020) reported successful use 

of multivariate regression to predict E. coli levels above and below a threshold level and identified 

the influence of relevant factors such as pH, temperature, and turbidity variations in E. coli levels 

(Rossi et al., 2020).   

The available literature review indicates that the impact of the predictor can vary based on 

the monitoring source waters or the availability of parameters. For instance, Tousi et al. (2021) 

have evaluated the impact of incorporating sediment characteristics in improving the prediction 

power of SVM, logistic regression and ridge classifier methods. The study has revealed that the 

inclusion of sediment information can result in a more accurate prediction of E. coli in agricultural 

waters (Tousi et al., 2021). However, monitoring the estuarine waters, Gonzalez et al. (2012) 

have found the weather and water quality data, including precipitation over five days, DO and 

salinity, the most impactful parameters for predicting E. coli and enterococci (Gonzalez et al., 

2012). Also, Fancy et al. (2013) reported the impact of streamflow and air temperature on E. coli 

levels in freshwater beaches (Francy et al., 2019). Therefore, it can be observed that the nature 

of the monitoring source water and environmental condition can play a major role in the 

determination of variables that can explain the concentration of pathogens (Francy et al., 2020). 

Water quality regulations mainly consider E. coli and Fecal Indicator Bacteria or 

Organisms (FIB/FIO) as indicators for overall microbial quality due to their prevalence and ease 

of enumeration. As such, the majority of previous studies have focused on predicting these 

indicator organisms (Dorner et al., 2004; Francy et al., 2013; Nevers & Whitman, 2011). However, 

a study by  Lalancetter et al. (2014), which has studied the ratio of E. coli to Cryptorpsodium for 

different water sources, has reported that E. coli was a poor microbial quality indicator for drinking 

water intakes (Lalancette et al., 2014b). Not only for drinking water but also an investigation on 

source waters has indicated the poor correlation of E. coli as an indicator bacteria with 

Cryptosporidium in surface waters (Payment & Locas, 2011; Wohlsen et al., 2006a).  However, 

there are limited studies that focus on the prediction of Cryptosporidium. These could be due to 
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the lack of available data representing Cryptosprodium presence and difficulty in measuring the 

parasite in research labs. Most of the attempts in the field were to elucidate factors driving the 

occurrence of Cryptosporidium in water bodies or modelling this pathogen with the Soil and Water 

Assessment Tool (SWAT) (Bergion et al., 2017; Coffey et al., 2010; Tang et al., 2011) or 

Quantitative Microbial Risk Assessment (QMRA) Models. For instance, Liu et al. (2018) have 

studied the fate and transport dynamics of Cryptosporidium in the Daning River using SWAT and 

reported Cryptosporidium variation among different seasons, without specific relationships to co-

occurrence with heavy rainfalls (Liu et al., 2018). The study emphasized a combined impact of 

rainfall and regional fertilization on the level of the Cryptosporidium.  Coffey et al. (2010) utilized 

a similar methodology and found that fertilization usage significantly impacts the Cryptosporidium 

level in a watershed in Ireland. Xiao et al. (2018) developed a QMRA model of Cryptosporidium 

and reported its strong relationship with the flooding frequency (Xiao et al., 2018). Hunter et al. 

(2011) incorporated the QMRA method with Bayesian Belief Network (BBN) to improve the risk 

assessment of Cryptosporidium and Giardia in private water supplies in England and France. The 

employed BBN model in the study was reported to be able to prioritize the involved factors in 

health risks associated with Cryptosporidium and Giardia  (Hunter et al., 2010). While the 

efficiency of BBNs’ integration with QMRA models in the assessment of relationships among 

microbial and physiochemical variables have been investigated in literature (e.g., Beaudequin et 

al., 2016a; Goulding et al., 2012; Gronewold et al., 2011; P. Hunter et al., 2010; Staley et al., 

2012), the studies with direct application of this method for predicting the level of pathogens in 

source waters is quite a few.  

2.3.1.1 Application of BBN Methods in Assessment of Source Water Quality 

A promising approach that is well suited to modelling systems with high levels of uncertainty is 

the Bayesian Belief Networks (BBNs) (Bertone et al., 2016a; Herrig et al., 2019; Uusitalo, 2007a).  

BBNs make probabilistic graphical models that can explicitly define a dependency between 

variables and represent the probability of a given observation based on connected variable states 

(Aguilera et al., 2011; Fenton & Neil, 2012). BBNs construct these probabilities that are called 

conditional probabilities based on Bayes Theorem. Initiated by Reverend Thomas Bayes, this 

theorem is a rule for calculating the conditional probability of an outcome without knowing the joint 

probabilities (Grover, 2013). Therefore, Bayes Theorem allows for inferring the probability of 

causes based on the information of dependent effects and updating the probabilities based on 

new observations (Pressini, 2018). For instance, Figure 2.1 indicates an example of a simplified 
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BBNs and shows how the mark of a random student can be defined by other random variables: 

presence in the class and the talent of the student in that subject.  

 

 

Figure 2.1 Example of BBNs and the Simplified Probability Tables. (Performance of a Student in 

an Exam). 

BBNs are also called directed acyclic graphs due to the direct arcs pointing out from the 

parent node toward the child nodes without any loops (Hassall et al., 2019). Set of probabilities 

for each child nodes based on the occurrence of different states of parent nodes formes the CPTs 

and by the increase of node numbers and their states the resulted CPTs can be larger 

consequently. Considering the mentioned example, the probability of passing or failing an exam 

can be different based on a distinct state’s combination of the parent nodes (Hassall et al., 2019). 

Thus, BBNs allow for considering different states for predicting an outcome of interests and 

provide an insight over the sensitivity of variables’ relationship in a complex system. 

Due to the advantages of BBNs, this method has gained traction in different fields with 

diverse objectives, such as scoping and intuitive presentation of relationships in the natural 

systems (McCann et al., 2006; Ban et al., 2014; Andriyas & McKee, 2015; Avilés et al., 2016; 

Forio et al., 2021; Frizzle et al., 2022;) and risk assessments in environmental structures (Avila et 

al., 2018a; Baldock et al., 2019; Laurila-Pant et al., 2019). Also, BBNs have efficiently been 

employed for monitoring and assessment of drinking and source waters quality and quantity. Such 

as classifying the level of lead in the drinking water systems (Fasaee et al., 2021b), quality 

assessment of groundwaters (Aguilera et al., 2013), evaluating the impacting factors on 

chlorophyll dynamics in the river water (Alameddine et al., 2011), determination of required 
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sanitation for water suppliers (Dondeynaz et al., 2013), evaluating the formation of DBPs in 

drinking water systems (Li et al., 2021) and predicting water quality indicators such as total 

nitrogen and phosphorus (Yu & Zhang, 2021).  

Despite being popular and a widely applied method in different water quality aspects, 

BBNs have seen a limited application of this model has been reported for predicting pathogens 

in source waters. Donald et al. (2009), utilized this approach as a supplementary analysis to 

determine the most critical variables in increasing the health risk of waterborne pathogens 

(Donald et al., 2009). Since then, BBNs have been used to integrate the QMRA method for 

evaluating the microbial risk of water sources (Beaudequin et al., 2016b; P. Hunter et al., 2010). 

A few studies have employed this method to predict E. coli and FIB. Avila et al. (2018) have 

compared different data-based models for predicting the E. coli counts for recreation water across 

bathing sites of Southland, New Zealand. This investigation reported the superiority of BBN 

models compared to none-linear regression, logistic regression, regression tree and RF models. 

Besides high accuracy in predicting E. coli, this study indicated the efficiency of BBN models in 

handling the missing data (Avila et al., 2018b).  Similarly, Herrig et al. (2019) used Bayesian linear 

regression models to predict E. coli and FIO, highlighting the importance of considering 

relationships of weather parameters such as rainfall, temperature and solar radiance on E. coli 

concentrations (Herrig et al., 2019). Improved performance of BBNs in predicting E. coli/FIB  by 

integrating weather characteristics has also been reported in a study by Pandihapu et al. (2020). 

This study has compared the BBNs’ performance with conventional models such as RF, logistic 

regression and Naïve Bayes. The results denoted that BBNs not only successfully predicted E. 

coli/FIB for all seven monitoring sites but demonstrateed a meaningful prediction based on an 

incomplete data (Panidhapu et al., 2020).  

 Despite the established efficiency of the BBN approach in modelling complex systems, 

the implementation of this model for studying Cryptorpsdirum in source waters is limited to the 

study by Bertone et al. (216). This study focused on a risk assessment based on stakeholders’ 

inputs and developed a BBN for evaluating the impact of different weather-related parameters 

and factors on levels of Cryptosporidium, colour, and turbidity (Bertone et al., 2016). 

2.3.1.2 Structure Learning of BBNs Method   

The connection between variables and CPT of BBNs is constructed based on the initiated 

structure of the models. Therefore, defining the optimal topology of the network prior to training 

the model is important but challenging. Several algorithms have been used and proposed for this 
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purpose from the early stage of BBNs development during the 1980s. Earlier, the algorithms fell 

into two groups of score-based and constraint-based algorithms (Beretta et al., 2018). More 

recently hybrid algorithms that combine score-based, and constraint-based algorithms have been 

created (Guo & Li, 2022). Consequently, there are several methods for learning BBN structure, 

and the number of these methods is increasing with the augmented number of BBN applications. 

The high number of possible structures based on potential connections has made learning 

the optimal structure an NP-hard problem. Furthermore, the increasing number of variables can 

make these possible connection even more complicated. Therefore, in order to find the optimal 

answers, most of the studies in the literature have proposed optimization approaches such as 

genetic algorithms to find the best structure. For instance, Hesar (2013) introduced a simulated 

annealing algorithm that is based on an evolutionary-based method (Hesar, 2013), and Yan and 

Cercone (2010) have proposed E-Algorithm for developing BBN models (Yan & Cercone, 2010). 

In addition, some researchers have coupled statistical methods such as PCA to improve the 

efficiency of genetic algorithms in learning the best structure (Rezaei Tabar et al., 2016).  

  Despite the high number of proposed approaches, some studies in the literature have 

indicated that none of the available algorithms can be universally the best approach for all 

datasets. For instance, Mittal and Maskara (2011) have compared six different structures learning 

methods commonly used in literature: Greedy Search; Greedy Equivalent Search; Bayesian 

Network Power Constructor; PC Algorithm; Minimum Weighted Spanning Tree and K2 algorithms. 

The study has applied these algorithms on two different datasets and has observed that none of 

the approaches is necessarily efficient for all datasets (Mittal & Maskara, 2011a). This finding was 

also aligned with the conflicting observations in other studies. As such, the study conducted by 

Scutari et al. (2019) has compared several approaches, including PC algorithm, Greedy Search, 

K2 and Max-Min hill Climbing algorithms, and reported PC algorithm as one of the fastest learning 

algorithms. 

In contrast, a similar study conducted by Tsamardinose et al.(2006) has denoted the lower 

speed of the PC algorithm compared to other methods such a tabu search Max-Min hill Climbing 

algorithms (Tsamardinos et al., 2006). These observations imply that no unique generalized 

approach for developing the topology of the BBNs can be the best method, and the effectiveness 

of the structure learning algorithm can be specific to each case study. Parameters such as the 

number of considered variables or the structure of data (if the data continues or discredited) can 

impact the efficiency of the learning algorithms (Beretta et al., 2018). Sensitivity of the learning 

structures to different elements can be why most of the developed BBN structures with the 
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objective of water quality modelling in literature mainly rely on expert Knowledge instead of using 

structure learning algorithms (e.g., Aguilera et al., 2013; Phan et al., 2019; Forio et al., 2021). 

Since the number of involved factors affecting the quality of water sources is very diverse, this 

complexity between variables’ interconnection is likely to make learning the optimal structure 

more complicated.  

2.3.1.3 Application of Data Balancing Methods in Assessment of Source Water Quality 

A persistent challenge in modelling and monitoring the water quality with data-driven models is 

the low number of samples. This challenge is particularly salient for Cryptosporidium monitoring 

since the measurement is expensive and labour-intensive. Furthermore, the proportion of non-

detects or zero values in Cryptosporidium monitoring datasets is high. Unbalanced datasets will 

significantly reduce the ability of data-driven models to learn variable relationships and limit the 

ability to predict positive cases when protozoa will be present.  

In order to address this issue, balancing algorithms have been used in different fields to 

overcome the drawback of data-based algorithms in learning the variety of samples with minority 

classes. Although a wide range of balancing algorithms has developed (Batista et al., 2004; Han 

et al., 2005a), the SMOTE algorithm is the most commonly used approach for this purpose. 

SMOTE was developed by Chawla et al. (2002) and since then has been utilized as the base 

algorithm for generating other data balancing methods (Luengo et al., 2011a). One of these 

algorithms which are gaining more attention in the practical research field is the ADASYN 

algorithm. The generated data by this algorithm can reduce the introduced bias by class 

impabalan and can shift the capability of the models to better learn the samples that are hard to 

be learned (He et al., 2008).  

Although several studies have reported improved prediction accuracy by balancing 

datasets with various balancing algorithms (Gosain & Sardana, 2017; Yang Bai, 2008; Han et al., 

2005b; Luengo et al., 2011b), there are rare examples of utilizing these methods in improving the 

modelling of environmental or natural systems. As such, Kim et al. (2021) have used Adaptive 

Synthetic Sampling Algorithm (ADASYN) for improving the performance of two ANN and SVM 

models in predicting alga Bloom. The study reported that employing a data balancing algorithm 

could lift the accuracy of the prediction model by more than 33.7% (Kim et al., 2021). Also, another 

successful application of the ADASYN method has been reported by Xu et.,(2020). The study has 

applied the generated data by ADASYN in different AI_based models, including k-mean nearest 

neighbour, boosting decision tree, SVM and multi-layer perceptron (MLP) for five various bathing 
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sites in Auckland of Newzealand. Aside from the applied model, the employment of ADASYN is 

denoted to increase the accuracy to more than 90% (Xu et al., 2020). Due to the reported 

efficiency of data balancing algorithms and the aforementioned challenges in handling the 

Cryptosporidium data, the SMOTE and ADASYN method has been employed in this study to 

generate new synthetics samples of Cryptosporidium presence. Therefore, the current work aims 

to predict the presence or absence of Cryptosporidium for Kensico Reservoir, which supplies 

drinking water in New York City. A novel application of two widely applied balancing algorithms, 

SMOTE and ADASYN, are investigated to address issues with collecting Cryptosporidium 

samples and resulting unbalanced datasets. Model have been trained using synthetic samples 

are examined with BBNs. The performance of this method is assessed on a test set of data 

comprising only real samples. 

2.4 Research Gaps 

2.4.1 Previous Work 

BBNs have established a successful performance in capturing the associated uncertainties in the 

environmental systems since their initiation during the 1980s (Newton, 2009). BBNs’ capability in 

visualizing the systems with a high degree of uncertainty is considered an asset for decision-

makers. As their probabilistic graphical features improve the transparency of the model and assist 

all involved parties to have an enhanced understanding of the system and consider possible 

affecting factors (Laurila-Pant et al., 2019). Therefore, the method has been widely applied in 

modelling water quality and quantity with various objectives such as predicting the quality 

indicators (Aguilera et al., 2013) and identifying the relationship between the water characteristics 

(Daniel et al., 2020). The method was previously used in some research as a predictive model 

and forecasting the pathogens in source and drinking waters. However, Cryptosporidium, one of 

the critical pathogens that are associated with several serious outbreaks worldwide, has not been 

modelled by this method. Predicting Cryptosporidium by rigorous and probabilisitic methods such 

as BBNs could be an effective solution to the difficulties in its direct measurement of this pathogen.  

2.4.2 Research Challenges 

The challenges in the measurement of pathogens have led the water quality regulations to rely 

only on a limited number of indicator bacteria for assessing the microbial quality of water. While 

some research has reported the poor connection between the presence of pathogens such as 

Giardia and Cryptosporidium to the existence of indicator bacteria (Lalancette et al., 2014). 



26 

 

Therefore, several studies have aimed to explore this relationship with different methods and case 

studies. However, the diversity of answers indicates the dependency of this relationship to 

different features of the case studies.  

The application of data-driven models such as BBNs is gaining attention in this matter due 

to their capability in rapidly identifying the connection between water quality variables. However, 

the lack of available data and the associated challenges of measuring some parameters make 

data availability an obstacle in developing data-based models. In order to overcome this issue, 

data balancing algorithms have been newly introduced to enhance the predictive and data-based 

models by generating new samples based on real observations (Xu et al., 2020). The generated 

data can reduce the pressure on demands of data and the related costs of measurements. 
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Chapter 3: Prediction of Cryptosporidium using Bayesian Networks and Balancing 

Algorithms 

3.1 Introduction 

Cryptosporidium is a widespread pathogen in source waters imposing risk to the public and 

environmental health (Hamilton et al., 2018). This pathogen was responsible for several 

worldwide outbreaks as it can cause infection even in low doses (Brion et al., 2001). The source 

of Cryptosporidium causing these outbreaks was reported to be mainly from agricultural runoff, 

fecal inputs and human wastes (Brion et al., 2001; Craun et al., 1998). One of the main features 

of this protozoa is its resistance to the natural decay in the environment and a very high survival 

rate in cold and dark conditions. Compared to the other waterborne pathogens, Cryptosporidium 

has one of the highest resistance to chemical treatments and other common disinfection 

processes in treatment systems (Kim et al., 2004). Investigations in the fate of Cryptosporidium 

in the environment, have reported that it can survive for months and even years in these favorable 

conditions (Cryptosporidium: Drinking Water Health Advisory, 2001).  

However, the main challenge of assessing Cryptosporidium in water bodies is the 

measurement difficulties. Since the required advanced molecular techniques and sufficient 

expertise can cause a high cost and time gap. Hence, early warning systems that can rapidly 

detect the presence of Cryptosporidium can be an effective surrogate for direct measurements. 

Prediction of Cryptosporidium in source water based on available data can detect and mitigate 

the risk before plant intake. Therefore, monitoring this pathogen before intaking it into water 

utilities is of critical importance to prevent potential health risks. 

Bayesian Belief Networks (BBNs) is a promising method that can be utilized to model the 

complex interconnection between different characteristics involved in source water quality and 

predict the Cryptosporidium’s absence or presence (Christophersen et al., 2018). BBNs are 

probabilistic graphical models well suited to represent the probability of a given observation based 

on the connected variable states (de Vries et al., 2021; McCann et al., 2006). BBNs are 

increasingly used for simulating environmental systems because they can capture the uncertainty 

associated with the natural systems by predicting the outcome of interest as likelihoods (Death et 

al., 2015; Uusitalo, 2007b). One of the advantages of using BBNs is being able to simulate 

different scenarios by defining possible cause-effect relations based on available knowledge 

(Landuyt et al., 2013; McCann et al., 2006). Furthermore, this method provides a visualization of 

these cause-effect relationships, making them an efficient communication tool for decision-
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makers to better understand the systems under study. However, although BBNs are capable of 

learning the relationship of different variables from incomplete data, they cannot compensate for 

the lack of data from natural systems. Especially considering the evaluation of pathogens such 

as Cryptosporidium, the difficulty and cost of measurement techniques have resulted in databases 

without balanced information of both absence and presence of pathogens. Therefore, although 

this technique can be a powerful tool for assessing Cryptosporidium levels in source water, the 

issue of lacking data can significantly impact the prediction performance.  

Data balancing algorithms can lift the limitation of data-driven methods in modelling 

systems with unbalanced data. These algorithms generate new synthetic data (based on the initial 

data distribution) of samples in low numbers to balance both minority and majority classes. 

Therefore, the use of synthesized datasets has been reported to improve the prediction capability 

and performance of the models (Luengo et al., 2011a; Xu & Liu, 2013). In the context of this work, 

the persistent challenge regarding modelling pathogens level and predicting Cryptosporidium is 

the lack of samples indicating the presence of Cryptosporidium and the high proportion of non-

detects or zero values in Cryptosporidium monitoring datasets. These unbalanced datasets will 

significantly reduce the ability of data-driven models to learn variable relationships and limit the 

ability to predict positive cases when protozoa will be present.  

Therefore, two commonly applied data balancing algorithms, Adaptive Synthetic Sampling 

Algorithms (ADASYN) and Synthetic Minority Over-sampling Technique (SMOTE) have been 

utilized to generate the samples indicating the presence of Cryptosporidium. The generated data 

using these algorithms were then utilized for developing BBNs model to predict the 

absence/presence of Cryptosporidium. The following sections present the applied steps and the 

observed results. 

3.2 Material and Methods  

3.2.1 Data Preparation and Discretization  

This study utilized datasets for developing prediction models belong to four different monitoring 

sites. One of these datasets included Cryptosprodium concentrations, and the other three have 

contained the records of  E. coli concentration. The dataset including Cryptosporidium was 

obtained from New York City’s open database reported from the Department of Environmental 

Protection (NYC, Department of Environmental Protection, OpenData, 2020). The parameters 

and Cryptosporidium observation in this dataset were recorded from the effluent of the Kensico 

reservoir as the drinking water provider of New York City. This reservoir was constructed in 1915  

https://data.cityofnewyork.us/Environment/DEP-Cryptosporidium-And-Giardia-Data-Set/x2s6-6d2j
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with the capacity of holding 30.6 billion gallons. The primary water source of Kensico reservoir is 

from Catskill and Delaware Aqueducts, but it also receives 2% of the water from its own 

watershed. This reservoir is the last station of the other reservoirs making the drinking waters 

available for daily consumption of New York City. The location of the reservoir is 15 miles north 

of New York and 3 miles of white plains with a latitude of 41.0737078 and -73.7659656 longitude 

(NYC Environmental Protection). The samples were taken from the effluent of the reservoir before 

intaking to drinking water and before the disinfection process (NYC Environmental Protection). 

Besides Cryptospridoum, fecal coliform and turbidity as another representative of water quality 

indicators were extracted for the same case study. In addition to water quality parameters, 

weather variables were also obtained from the Westchester County Airport station (National 

Centers For Environmental Information,2020) as the closest weather station to Kensinco 

Reservior. The extracted weather parameters of this dataset have included precipitation on the 

sampling day, over three days prior, maximum air temperature, and minimum air temperature 

(average of minimum and maximum temperature was considered in this study as the indicator of 

sampling temperature). Therefore, the final considered parameters for the Kensinco Reservior 

were: turbidity, fecal coliforms (measured based on CFU/100 mL), and Cryptosporidium, with a 

total of 238 samples from the summer of 2015 up to the summer of 2020.  

 The BBN models were developed using GeNIe (Bayesfusion LLC, Pittsburgh,PA) 

software. However, before developing the BBN models the following steps were employed to 

prepare the models; Step 1) Excel software were used to make sure data and prameters are 

orgnized ( i.e., all data has their own label such as turbidity, temperature etc.); Step 2) Data set 

imported to the GeNIe software and discretized based on uniform counts in each bin. In this work, 

the objective was a binary prediction of the pathogens. Therefore, the reported values of 

Cryptosporidium concentration were divided into two classes. The presence has included the 

dates that had more than zero (oo) cysts/100 liter, and the absence of Cryptosporidium was 

indicating a zero report of Cryptosporidium on that specific date. Turbidity, fecal coliform, 

temperature were disctretized to 3 bins and precipitation on sampling day and over three days 

were discretized to 2 bins. All parameters were discretized to have an equal number of data in 

each bin. These two parameters were discretized to 2 bins because recorded data were zero for 

most of the samples, and it was aimed to have an equal number of samples in each bin. These 

discretized data for each monitoring site were used for training the structures. The reason for 

discretizing data before developing BBN models is that discretization of variables helps with the 

complexity of the models by removing the need for assuming continuous probability distribution. 

https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/locations/FIPS:36119/detail
https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/locations/FIPS:36119/detail
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Also, speeding up the model performance reduces the computation costs for large-scale 

applications. Furthermore, most microbial parameters are usually assessed based on specific 

thresholds and classified ranges. However, discretizing causes missing some information that 

could be obtained from continues variables and data and it can be of future interest to initiate the 

models without discretizing the data; Step 3) Based on the explained details in section 3.2.4 

structure of BBNs were created each parameters’ data in training set were assigned to the 

appropriate nodes and model was trained based on discretized training data set. The performance 

of the model was assessed using test dataset and comparing the number of accurate predictions 

to the measured values.  

3.2.2 Over Sampling Data with Balancing Algorithms 

One of the main barriers to applying machine learning algorithms to environmental systems is 

class imbalance. In the dataset used for predicting Cryptosporidium, most reported were ‘zero’ 

concentrations of protozoa or below the detection limit (92% of all data) and there was a significant 

difference between the samples indicating the presence and absence of Cryptosporidium (n=18 

and n=220). The small subset of data is called the minority class (nminority = 18) and, 92% of 

samples make the majority class of the data ( 𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 = 220). Unbalanced datasets with small 

minority classes (i.e., presence of the organism) are challenging to use and often result in poor-

performing models. Data-driven models aim to reduce error and increase the accuracy of 

predicting both positive and negative classes, the algorithms will work better when the number of 

classes is equal. Also, an imbalanced data set can increase the chance of the model being 

overfitted with one class because the model only summarizes and repeats one specific class 

regardless of what other information is coming from input parameters. To address this issue, the 

capability of two data balancing algorithms to generate a number of positive samples and balance 

the dataset was investigated.  

 

3.2.2.1   Synthetic Minority Oversampling Technique (SMOTE) 

The core objective of data balancing algorithms is to generate artificial samples to make the 

number of all classes equal. SMOTE is one of the basic and initial algorithms proposed for 

balancing imbalanced data.  The algorithm randomly selects some examples from the minority 

class (𝑥𝑖) and then determines 𝑘-nearest neighbours of the selected samples. The distance 

between the nearest neighbour and the sample from the minority class gets multiplied to a random 
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number between 0 and 1 (𝑤). The following equation simply shows how a new sample (𝑧) can be 

generated based on the selected sample: 

𝑧 = 𝑥𝑖 + 𝑤( 𝑥𝑖𝑧 − 𝑥𝑖)                                                                                                                                  (𝑒𝑞. 3.1) 

      Here 𝑤 is a random number in the range of 0 and 1, 𝑥𝑖 is the chosen sample and 𝑥𝑖𝑧 is one of 

its, 𝑘 neighbours.  

SMOTE selects the samples and generates data based on them until the number of samples in 

both minority and majority classes gets equal. However, the algorithm selects the samples without 

paying attention to the overlaps between minority and majority classes and can choose solo 

samples of minority classes among the majority ones. This approach for some datasets can be a 

source of concern because the resulting high number of minor samples among the majority class 

makes the classification models confused and can decrease the model's performance. To 

overcome this concern, another balancing algorithm has been proposed based on SMOTE 

algorithm. These modified methods force the algorithm to be selective of the particular examples 

that are used from minority classes to generate the data. One of these algorithms is described in 

the following section. 

3.2.2.2   Adaptive Synthetic Sampling Algorithms (ADASYN) 

One of the most reliable data balancing algorithms is ADASYN, a modified version of the SMOTE 

method. The only difference of this method with its origin algorithm (SMOTE) is in the way of 

selecting samples in the minority class. Opposite to the SMOTE, which selects the sample 

arbitrarily, ADASYN selects data proportional to the density of samples in the minority class. For 

instance, in a region with a lower number of samples, ADASYN generates more samples as the 

density is low and fewer samples would be generated in regions of high density. This feature of 

using density distribution can help achieve more uniform balancing rather than over-replicating 

samples in already dense areas.  

ADASYN, prior to selecting the samples, calculates the density distribution for each 

sample in minority class based on the following equation (He et al., 2008): 

          

r𝑖 =
∆𝑖

𝑘
                                                                                                                            (𝑒𝑞. 3.2) 
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Here the 𝑘  and ∆𝑖 are indicating the number of 𝑘 -nearest neighbors of the selected sample (𝑥𝑖) 

in the minority and majority classes, respectively. The overall number of samples that need to be 

generated for balancing the data is calculated based on the following equation: 

 

𝐺 = (𝑛𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 − 𝑛𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦) × 𝛼                                                                                    (𝑒𝑞. 3.3) 

 

 Where 𝛼 is again a number randomly assigned in a range of 0 and 1, determining the 

degree of generalization.  However, ADASYN modifies the number of required data by: 

 

       g𝑖 = r𝑖 × 𝐺                                                                                                                   (𝑒𝑞. 3.4)   

Therefore, for each sample (𝑥𝑖) in the minority class g𝑖 samples can be generated in the same 

way of SMOTE algorithm indicated in (𝑒𝑞. 3.1). 

 It should be mentioned that evaluating model performance using synthetic samples 

could be misleading since generated samples were not truly observed. As such, only actual 

observed data were included in the test set, and synthetic samples were only used for training 

purposes. Furthermore, the data being used to generate synthetic data should be carefully 

considered because the new samples are generated based on the real data and having wide 

representative samples likely impacts balancing algorithms in generating more conclusive data.  

Therefore, splitting the training and testing subsets of the data can be important. In this study, two 

approaches were used to derive a set of data used to generate synthetic data for balancing. First, 

all the samples with the initial degree of imbalance (the difference of major and minor class) have 

been used to synthesize the samples with ADASYN and SMOTE. As a first approach, the same 

minority class data used to generate samples was then reused in the test or validation set for 

evaluating performance, although exact samples were not reused between splits. This approach 

maximizes the ability to generate a wide range of representative synthetic samples since all 

minority samples were considered. However, bias may be introduced this way since synthetic 

data will be influenced by real data used in testing and accuracy specific to the minority class may 

be overemphasized. Therefore, to compare results and provide a measure of performance without 

the influence of the synthetic data generation on true test data, a second approach was taken 

where training and test data split is prior to synthesizing samples when 50% of samples in the 

minority and around 70% of samples in majority classes were separated and used for generation 

and training the model. As such, the remaining true data in the test were not either in synthesizing 

data or training the models. Figure 3.1 depicts a flow chart visualizing how the dataset is split and 
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used for generating synthetic data and training the models. These training and testing datasets, 

as well as the original unbalanced dataset, were used for developing BBN models. 

 

 

Figure 3.1 Flow chart of the modelling framework a) test data used in balancing b) test data not 

used in balancing. Notice that n minority and n majority indicate the number of samples in minority 

and majority classes, respectively. 
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3.2.3 Statistical Analysis of Variables 

In order to better understand the flocculation of parameters over time and to identify any existing 

trend or pattern in data, the time series of each variable were depicted and presented in Figure 

3.2. Time series of weather parameters shows repetitive pattern in temperature and precipitation 

which was expected due to the seasonal nature of climatic features. While these repetitive 

flocculation over time can be leveraged in predicting the future changes, microbial parameters 

(Cryptosporidium and fecal coliform) lack any meaningful pattern. This can be due to the diversity 

of parameters that can impact the presence or absence of pathogens in environmental systems.  

 

 

 

Figure 3.2 Visualization of the time series for weather and water quality parameters of Kensico 

reservoirs. 

To gain more in-depth insight over parameters’ historical variation, Autocorrelation 

Function (ACF) was used to explain the similarity between parameters observation in a function 

of lagged time. This function allows to estimate how the parameter’s state in current time is 

affected by its observation in the previous time steps (Bocquet, 2022).  ACF is a statistical tool to 

extract variable’s feature based on their movement frequency (Zarei & Mohammadzadeh Asl, 

2020). For example, a higher ACF can be indicator of a meaningful frequency over the function 

of time (Dwivedi et al., 2016) .The resulted analysis is illustrated in Figure 3.3 for all considered 

parameters.  
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Figure 3.3 Autocorrelation of all parameters based on one month time lag and confidence interval 

of 95%. 

As it can be observed from graph, temperature seems to have a repeating pattern over 

first 2 months and 12 months. Besides temperature, the repetitive pattern can be observed from 

ACF plot of turbidity and fecal coliform. A similar observation for E. coli (as a fecal coliform) 

seasonality was also reported by Dwivedi et al. (2016). Based on ACF analysis of E. coli 

occurrence in groundwater, the study indicated a repeating pattern of 7 and 10 months due to the 
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impact of climatic factors (Dwivedi et al., 2016). Similarly, since a strong ACF (>0.5) was observed 

here for temperature in one month, the repeating pattern for turbidity and fecal coliform can be 

due to these flocculation of weather parameters which seems to impact water quality indicators. 

Although Muchiri et al., (2009) has indicated a seasonal pattern for Cryptosporidium peaking in 

surface waters, in this study not any considerable repeating pattern was observed for 

Cryptosporidium based on ACF (Muchiri et al., 2009). This can be due to the difficulties in 

measuring Cryptosporidium that has resulted in a poor dataset when most of the samples include 

“non-detects” and the frequency of samples indicating Cryptosporidium is very low. Therefore, it 

is possible that correlation between observed Cryptosporidium with its lagged value be very poor.  

In order to identify these underlying relationships between parameters the linear 

correlations between variables were also determined (Figure 3.4). Furthermore, to visualize the 

spread of variables and their dependency to each other, the scatterplot for each pair of variables 

have been illustrated. Due to the higher number of resulted graphs, Figure 3.7 only indicates the 

scatterplot of turbidity with all other parameters and the remaining graphs are presented in 

appendix.  

As the scatterplot in Figure 3.6 and correlation results in Figure 3.3 indicates, linear 

dependency between all parameters and Cryptosporidium were poor (R < 0.3), and only fecal 

coliforms and turbidity were observed to have positive correlations with Cryptosporidium levels. It 

was expected that weather parameters (precipitation and temperature) could be correlated with 

Cryptosporidium based on the previous reports of changes in surface water protozoa 

concentrations during and after severe weather conditions (Duris et al., 2013a; Young et al., 

2015). However, weak linear correlations between Cryptosporidium and weather parameters 

were found in this dataset. This finding is aligned with the result of the review study conducted by 

Young et al. (2015).  This review has indicated that the correlation between precipitation and 

Cryptosporidium was non-consistent and site-specific in different studies. Therefore, it seems that 

linear observations cannot capture the complicated relationship between Cryptosporidium and 

weather events.  

The strongest correlation compared to other variables was observed between precipitation 

over three days and fecal coliforms used as indicator organisms (R = 0.27). However, correlations 

between Cryptosporidium and fecal coliforms/turbidity were low (R = 0.006/0.0045). The 

observation of poor correlations between Cryptosporidium and fecal coliforms or turbidity supports 

the idea that these indicators are insufficient to assess microbial water quality. While stronger 

relationships were expected between these parameters, this observation is aligned with several 
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previous studies that concluded E. coli and fecal coliforms are not robust indicators of protozoa 

in surface waters (Lalancette et al., 2014a; Wohlsen et al., 2006b).  

 

Figure 3.4 Correlation coefficients (R) of water quality and weather parameters. 

It was hypothesized that the weak correlations observed in this dataset might be due to 

the design of the sampled reservoir, sample location within the reservoir, or the probability that 

samples were not taken during extreme weather events. The sampled reservoir has been 

designed and maintained to protect New York City's drinking water quality, even under severe 

weather conditions (National Academies of Sciences, Engineering, and Medicine. 2020). For 

example, flow into the reservoir is reduced to always maintain turbidity under 5 NTU (Nicholas et 

al., 2016). Other design features of the reservoir and the surrounding area, including soil type, 

vegetation, and the slope of the banks, can also affect how rainfall affects water quality (Duris et 

al., 2013a; Mavimbela et al., 2019). The sampling point within the reservoir should be considered, 

and previous reports have indicated the effects of sampling points on measured levels of 

Cryptosporidium by more than 58% (Ligda et al., 2020b). The sensitivity of the pathogen levels to 

the sampling location is not limited to Cryptosporidium but also to measured levels of E. coli and 

fecal coliforms that may be used as indicators (Herrig et al., 2019).  



38 

 

 

 

Figure 3.5 Frequency Histogram of normalized yearly and sampled precipitation level. (Although 

the precipitation on sampling day is a subset of annual precipitation, it should be noticed that the 

fraction and ratio are normalized.) 

It is possible that the samples were taken during non-representative weather conditions 

(i.e., low precipitation days), which could influence the overall distribution of Cryptosporidium 

concentrations. Therefore, precipitation on all days over the sampling period (1977 days) was 

also collected to consider any possible differences between actual precipitation distribution and 

sampled precipitation distributions (from the 238 sample days). The two precipitation datasets 

were compared using the non-parametric Kruskal Wallis test to assess similarity. It was found 

that there was a difference between precipitation on sample days and expected precipitation 

during the sample period (95% confidence level). The normalized frequency of precipitation of 

both yearly and sampled datasets is shown in Figure 3.5. Sampled days slightly overrepresented 

low or no precipitation days (66% of sampled days vs 63% of all days) and overrepresented heavy 

rainfalls > 50 mm/day (10% of sampled days vs 7% of all days).  

Furthermore, the poor correlation coefficient between Cryptosporidium with both weather 

and water parameters Indicates that dependency of pathogens to other variables can hardly be 

captured by linear analysis such as correlation coefficient or even linear regression coefficients 

analysis. For instance, regression coefficient tries to explain the variation in the Cryptosporidium 

based on the changes in turbidity or other parameters, while Figure 3.6 indicates that the 

association between the spread/variation of Cryptosporidium over turbidity is very poor and 
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finding an optimal regression coefficient that defines the best line for predicting future 

concentration of Cryptosporidium based on turbidity can be challenging.  

 

 

Figure 3.6 Example of scatterplots developed to visualize parameters and their relationship with 

turbidity as an example. The remaining graphs for all other parameters have been presented in 

appendix. 

 The analysis in this section were implemented using pandas, seaborn and matplot libraries 

of python 3.9. The matplot and seaborn libraries were used for generating plots from the results 

and the Pandas library was used for calculating the correlation coefficient and autocorrelation 

between variables. 
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3.2.4   Bayesian Belief Networks (BBNs) 

Bayesian Belief Networks are constructed based on the Bayes theorem that can capture variable 

relationships in a probabilistic structure (Bertone et al., 2016b). Based on the conditional 

dependencies, BBNs can describe and calculate the probability distributions of variables and 

represent other factors’ impact on the probability of an outcome. BBNs can be defined by a 

“Directed Acyclic Graphs (DAGs)” graph in which nodes represent the variables, and their 

connecting arcs indicates these variables’ probabilistic influences. More precisely, arcs point out 

from the parent node toward a child node can define the conditional dependency of these two 

nodes. Therefore, the absence of an arc between two nodes indicates their independence. This 

graphical representation of variable relationships in DAGs is the main advantage of BBNs where 

each node (variable) can be connected to another node indicating a one-way dependence 

(Fasaee et al., 2021a). The number of connections or condition probabilities is dictated by the 

number of variables and the developed structure. Each variable contains two or more states, and 

each state has a prior probability 𝑃(𝑥1) for an event 𝑥1  and the summation of the prior probability 

of all states is equal to 1 for each node. These prior probabilities for each state and node normally 

are introduced to the model by training data (Woolf, 2009). The prior probability can be updated 

by introducing new evidence or observation of 𝑥1like 𝑥2 and the further probability would be 

𝑃(𝑥1|𝑥2) which is called posterior probability. Basically, BBNs calculate the probability of some 

variable of interest by introducing evidence or the condition on the parent nodes. Based on the 

conditions over the variables, conditional probability tables can be developed for each node 

simply based on the following formula (Han & Kamber, 2019) : 

 

𝑃(𝑥1|𝑥2) =
𝑃(𝑥2|𝑥1)𝑃(𝑥1)

𝑃(𝑥2)
                                                                                                    (𝑒𝑞. 3.5)   

      

Where 𝑃(𝑥2|𝑥1) shows the conditional probability for 𝑥2 given 𝑥1 which can be re-written 

in terms of joint probability distribution as follows:  

 

𝑃(𝑥2, 𝑥1) = 𝑃(𝑥2|𝑥1)𝑃(𝑥1)                                                                                                (𝑒𝑞. 3.6)   

 

By identifying the “key parents”, BBN calculates the joint probability only for these 

variables and simplifies the calculation required for developing the conditional probability for n 

number of variables as follow (Panidhapu et al., 2020):  
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𝑃(𝑥1, … 𝑥2) = ∏ 𝑃𝑛
𝑖=1 (𝑥i|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑥i))                                                                          (𝑒𝑞. 3.7)   

 

In this study, GeNIe software was used for calculating and updating the conditional 

probabilities after establishing the variables, defining their connection, and developing the BBN 

structures. Creating BBN structures due to including the variable’s connection can be critical 

because the CPTs are constructed based on the network’s topology. The following section 

explains the detail of the employed approaches for developing the BBN structures and initiating 

the prediction models.  

3.2.5   Structure Development of BBN 

The primary step in developing BBN is learning the structures of the model and defining parent 

and child nodes based on the feature parameters because BBNs develop the conditional 

probability tables based on the established connection between nodes. Therefore, it is important 

to include all possible connections of variables in a correct way and create an optimal structure 

that is computationally feasible. 

Developing the graph or learning structure is normally done with two main categories of 

constraint-based and score-based methods and hybrid algorithms (Scutari et al., 2019). The 

structures developed based on constraint-based methods identify the independencies. In the case 

of dealing with the data in small size (<20 variables), the constrain-based techniques are reported 

to be faster and more accurate. One of the common algorithms of the constraint-based method 

is the PC algorithm. This algorithm is shown to be one of the fastest algorithms commonly used 

for structure learning. The algorithm constructs a complete graph with a full edge between 

variables and removes the connections based on conditional independence of parameters (Mittal 

& Maskara, 2011b).  

One of the structure learning algorithms that are known for having simple structures, easy 

construction and fast learning, is Naïve Bayes algorithms. As the name indicates, this method is 

a naïve method of developing BBN structures because instead of learning structures from data, 

Naïve Bayes builds the network's topology by assumptions. This approach considers the target 

node as the solo parent of all other predictors/variables and assumes that all features are 

independent. This feature makes it a good candidate when there is no significant correlation 

between variables (Menti et al., 2016). Although the Naïve Bayes is a straightforward and fast 

method, it misses and possible dependency between predictors. In order to overcome this 
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shortcoming, Tree Augmented Naïve Bayes was introduced and normally developed beside 

Naïve Bayes for developing BBN structures in the literature studies (Downs & Tang, 2004; Jiang 

et al., 2005; Li & Abdul Rahman, 2018). This algorithm creates the initial structure based on the 

Naïve Bayes but adds to the connection between parameters based on their dependency. This 

algorithm relaxes the assumption of no dependencies between features and builds the edge 

between parameters based on a tree structure (Jongsawat & Road, 2017). The class node (or 

target parameter) is defined as the root of the structure, and other edges are formed “pointing 

outwards” and form a tree structure in a way that the root node cannot have any parent. As 

mentioned, Naïve Bayes assumes one parent for all parameters (the class variable or target node) 

and Tree Augmented Naïve Bayes allows all parameters to have one more parent than class 

nodes. While these algorithms limit the number of parents for each variable to only two parents, 

Augmented Naïve Bayes algorithms lift the limit on having parent nodes. It should be mentioned 

that, although Augmented Naïve Bayes improves the accuracy more than the later ones, it can 

add to the complexity of the structure accordingly. More computational detail of these structure 

learning algorithms can be found in the study conducted by Singharoy, 2018. 

In addition to the three approaches of Naïve Bayes, Tree Augmented Naïve Bayes and 

Augmented Naïve Bayes that are developed in this study as complementary algorithms, other two 

structure learning algorithms are employed: Bayesian Search and Greedy Thick Thinning 

Algorithm. Bayesian Search is one of earlier score-based algorithms that starts with a random 

structure and updates the connection based on the relative posterior probabilities (Heckerman et 

al., 1995). Initiated by Bayesian Search, Greedy Thick Thinning Algorithm includes two-steps of 

thickening the structures and the step of thinning. In the earlier step, the algorithm creates 

structures without any arcs and builds the arcs that increase the marginal likelihood. The algorithm 

continues to build arcs until the marginal likelihood connection stays unchanged. Then during the 

thinning step, the algorithm removes the arcs that cause increased marginal likelihood until the 

marginal likelihood remains unaffected. 

In this study, structure learning algorithms are used to find the relatively best performance 

in predicting pathogen’s presence and the objective was 1) to provide a base of comparison for 

the prediction models and 2) analyze the sensitivity of model performance and target variable to 

the connection between each parameter. 
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Figure 3.7 Learned BBN structures based on a) Naïve Bayes b) Augmented Naïve Bayes c) 

Augmented Tree d) Greedy Thick Thinning e) PC f) Bayesian Search algorithms. 

Learning BBN’s structure is considered an NP-hard problem and studying all possible 

algorithms and the detail of algorithms requires a separate study with an in-depth analysis of the 

algorithms. As such, there is still several studies and debate about the best method of learning 

and developing BBN structures (Jongh, 2014; Scutari et al., 2019) because the number of 

possible structures increases with number of variables, and each structural learning algorithm can 

identify varying connection. Therefore, selecting one graph for developing a model among many 

potential candidates can be a challenging practice (Mittal & Maskara, 2011b). Therefore, the 

models in this work were initially developed based on the popular structural learning algorithms 

(Figure 3.7) which was applicable through GenNIe software (BayesFusion LLC, Pittsburgh, PA): 

Bayesian Search, Naïve Bayes, Augmented Naïve Bayes, and Tree Augmented Naïve Bayes. In 

addition to structural learning, prior/ expert knowledge was also used in the current work to 

develop the BBNs and prediction models. Using expert knowledge allows the decision-makers 

and modelers to reflect the potential physical dependency and connection between variables for 

assessing their influence on the outcome of interest. The results of the implemented networks are 

presented in the results and discussion section.  
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Figure 3.8 BBN Structures were developed based on expert knowledge. 

As expected, the datasets generated by different balancing algorithms have developed 

distinct structures due to algorithmic and generated data differences. The exception to this was 

Naïve Bayes since this approach connects all variables independently to the dependent variable 

in all cases.  

Besides the structures learned based on the given data and algorithms, two other 

structures were developed based on a priori knowledge or expert knowledge of expected 

relationships between variables. The dependencies of variables can be represented in BBNs’ 

structures. For instance, it was anticipated that temperature impacts the turbidity regime because 

an increase in temperature can result in thawing permafrost or snow melting, which in turn can 

increase turbidity (Jolivel & Allard, 2017). Similar to the temperature, increased precipitation can 

also generate or wash out more sediments or particles to the flow and add to the turbidity level. 

Turbidity increase can also be an indicator of microorganisms’ presence, including fecal coliforms 

or Cryptosporidium.  

As shown in Figure 3.8 (a), direct connections have been defined between weather 

parameters and Cryptosporidium. In contrast, in the second structure (Figure 3.8. b), these 

connections have been indirectly applied to the target parameters. This approach has been 

employed to see if the weather condition directly contributes to the microbial concentration of 

source water or their main impact is on other characteristics of water such as turbidity and 
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hardness, while the variation on these characteristics provides an opportunity for microorganism's 

growth or activity. 

In order to examine the approach of surrogating fecal bacteria for Cryptosporidium, a third 

structure has been developed for predicting Cryptosporidium in which the only predictor variable 

is fecal bacteria, and the other parameters only impact this variable. The modelling results for 

each structure and prediction of Cryptosporidium have been reported in the following sections. 

3.2.6 Assessment of Model Performance 

The available data for each case study was divided into two subsets of training and testing 

datasets. The models were tested based on predicting the target variable in testing data, and the 

performance of the model was assessed based on the correct number of these predictions 

(accuracy of the model). The model's accuracy can be computed based on a confusion matrix 

that describes the number of accurate predictions versus the total number of predictions, including 

the false predictions (W. Li & Guo, 2013). Table 3.1 indicates a binary example of a confusion 

matrix where the diagonal indicates all the correct predictions. 

Table 3.1 Confusion Matrix to assess model performance (a binary example for predicting the 

absence or presence of pathogens) 

 Real-Time Measurement 

Presence Absence 

O
b

s
e
rv

e
d
 

P
re

d
ic

ti
o

n
 Presence True Positive False Positive 

Absence False Negative True Negative 

 

The accuracy of prediction is basically the diagonal of the confusion matrix or the total number of 

accurate predictions over the total number of predictions (N) and can be calculated based on the 

following formula:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑢𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑡𝑢𝑟𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁
                                                                               (𝑒𝑞. 3.8)   
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3.3 Result and Discussion 

3.3.1 Prediction of Cryptosporidium with Balanced and Un-Balanced Data using BBN 

This section represents the result of predicting the presence and absence of Cryptosporidium. 

The learned and developed structures explained in the previous part were trained by unbalanced 

datasets. Then the models were tested by an unmodified test dataset, and the prediction results 

are shown in Table 3.2. The overall accuracy was high (> 90%); however, models generally did 

not predict the presence of Cryptosporidium for any sample.  

Table 3.2 Prediction accuracy of Cryptosporidium with BBN using the unmodified dataset. 

Prediction results are based on a randomly separated test set (15%) of data 

Model Structure 
Overall 

accuracy 

Prediction 

accuracy of 

Absence 

Prediction  

accuracy of  

Presence 

B
B

N
 

Structure 1 92% 100% 0% 

Structure 2 92% 99% 0% 

Structure 3 90% 98% 0% 

Structure 4 90% 97% 0% 

Structure 5 90% 97% 0% 

Structure 6 90% 97% 0% 

 

The reason for poor accuracy in predicting the presence of Cryptosporidium was that the 

dataset included a significant number of non-detects resulting in overfitting with absence samples. 

Furthermore, it cannot be concluded that the model was performing well in predicting the absence 

of Cryptosporidium either. Since both training and testing datasets has included a high proportion 

of absence samples and it is likely the model has been overfitted and only produces predictions 

of the majority class, regardless of information inputted from other variables. 

It is unreasonable to expect that the model has learned the true decision boundaries or 

would generalize well to future data. The observed results using unbalanced data illustrate the 

common motivating challenge of this work, where models built on highly imbalanced data are 

overfitting to the majority class. Furthermore, the results demonstrate that simple performance 

metrics, such as overall accuracy, can mislead the interpretation of performance. The results 

shown in Table 3.3 indicate improvements in predicting the presence of Cryptosporidium using 

balancing algorithms. Regardless of data splits, balancing algorithms, and classification methods, 
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the overall accuracy could be lifted to more than 60% without having overfitting issues for either 

of the classes.  

Table 3.3 The prediction of Cryptosporidium with ADASYN-BBN and SMOTE-BBN. Performance 

is evaluated both on (a) Scheme where all minority samples were used to generate synthetic 

training data. b) Subset of data not used to generate synthetic samples. The number of correct 

predictions over all made predictions are presented in parenthesis.  

  (a) Test data used in balancing (b) Test data not used in balancing 

M
o

d
e

l 

Structure 
Overall 

Accuracy 

Prediction 

Accuracy of 

Absence 

Prediction 

Accuracy 

of  

Presence 

Overall 

Accuracy 

 

Prediction 

Accuracy of 

Absence 

Prediction 

Accuracy of 

Presence 

A
D

A
-B

B
N

 

Naïve 

Bayes 69%(
51

74
) 66% (

37

56
) 88%(

16

18
) 58%(

41

70
) 60%(

37

61
) 22%(

2

9
) 

Augmented 55%(
41

74
) 50%(

26

56
) 88%(
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) 66% (

46

70
) 79% (
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61
) 22%(

2

9
) 

Tree 66%(
49

74
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12
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) 61% (

43

70
) 64% (
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) 
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61
) 22%(
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2
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In order to compare the accuracy result of BBN models with a simpler linear method, 

logistic regression model was developed with the same balanced data of the case study (using 

Sklearn library of python 3.9). This model classified the presence and absence of Cryptosporidium 

based on the linear function (Bishop, 2006). Logistic regression model trained with generated 

data by ADASYN and SMOTE resulted in the same overall accuracy of 60%, and accuracy of 

55% and 72% for prediction of absence and presence of Cryptosporidium respectively. Achieving 

the same accuracy and performance regardless of how data was generated can be due to the 

reason that the model was not very sensitive to the difference of generated data.  In addition, 

comparing the result indicates that while BBNs were able to promote the accuracy of 

Cryptosporidium presence to 88% in first generated data set, logistic regression resulted in 72% 

accuracy. Similarly, BBNs achieved 66% accuracy in predicting absence of Cryptosporidium while 

logistic regression indicated slightly weaker performance by 55% of accuracy. Although the 

change is not very large it should be considered that in the case of using generated data of second 

scenario (dataset balanced by excluding test set prior to data generation) by ADASYN, logistic 

regression resulted in only 10% accuracy while BBNs by using the same data set outperformed 

logistic regression. BBNs seems to outperform classical linear methods not only because of more 

accurate results, but also because they allow to assess different assumptions about the 

parameters relationship. While the volatile interaction between environmental factors can hardly 

be captured by linear models.  

For instance, different structures were defined to assess the interaction of variables. 

Comparing the accuracy of the group of datasets, the developed structure did not show a 

considerable impact on the model performance. Furthermore, the performance of the models with 

specific structures was none consistent for each dataset. For instance, Naïve Bayes has resulted 

in 69% accuracy for the ADA-BBN model while considering SMOTE-BBN models with the same 

structures, the accuracy dropped to less than 60%. This observation indicated that the best model 

structure depends on the nature of data and any given structure learning algorithm is unlikely to 

be universally the best method for varying datasets. 

The same observation was also seen in structures developed by expert knowledge. For 

instance, although Structure 8 showed a better performance than structure 7 for models 

developed by the ADA-BBN dataset, this model has shown less accurate results than structure 7 

for models developed by SMOTE-BBN. However, structure 9 consistently performed poorly. 

Structure 9 has included only one parent node, fecal coliform, connected to the dependent 

https://www.sciencedirect.com/science/article/pii/S0043135419311236?via%3Dihub#bib9
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variable, Cryptosporidium. This approach was to consider the impacts of precipitation and turbidity 

on fecal coliforms and use fecal coliform counts to inform Cryptosporidium levels. This parent-to-

child relationship implies that Cryptosporidium levels are independent of turbidity and 

precipitation, given fecal coliform counts. This observation denoted that the measures of fecal 

coliform counts cannot adequately predict Cryptosporidium alone, and regulations or guidelines 

that rely on only indicator bacteria to evaluate the microbial quality of source water could be 

misleading. It is also well established that indicator bacteria such as fecal coliforms and E. coli do 

not have a consistent and well-defined relationship with protozoa levels in the source waters 

(Lalancette et al., 2014b). 

The probability of Cryptosporidium presence and how it reacts to variations in turbidity, 

fecal coliforms, and precipitation can be inferred from the BBN (Figure 3.9). The probability output 

of BBN was concurrent with the pattern of turbidity and fecal coliform. However, the output was 

also modulated lower during periods of low rainfall, which indicates that the model has been 

making the decision by considering all parameters, not only fecal coliform levels. For instance, 

the highest probability of presence was achieved in the day within the maximum level of 

experienced turbidity in the observed dataset. Also, Figure 3.10 shows that the probability was 

rarely increased for the days with low precipitation, while during the second half of 2018, the 

model has been estimating a higher probability for the presence of Cryptosporidium when the 

fecal coliform level was not elevated. As such 70% of presence prediction (more than 50% 

probability of presence) was for the dates that had at least 1 mm precipitation over three days, 

while only 46% of the presence predictions (more than 50% probability of presence) was for the 

days with fecal coliform presence. Furthermore, this concurrent increase in the probability of 

presence and precipitation level highlights Cryptosporidium's dependency on rainfall or weather 

events. Therefore, in the case of extreme weather events considering a wide range of 

characteristics instead of relying on only fecal coliform seem more logical. However, it should be 

mentioned that the observation here is based on a historical and small record of a source water 

dataset. While the studied reservoir is designed by considering climate change scenarios and is 

developed in such a way to tolerate/alleviate its' impact. Therefore, it is possible that other normal 

water sources that experience a more severe impact of weather conditions have more microbial 

contamination or experience more variation on quality characteristics.  

The approach of separating validation datasets before balancing has been shown to 

impact model accuracy. The main impact of this approach was reflected in the capability of the 

model in predicting the presence of Cryptosporidium. As previously mentioned, two different 
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approaches were used to decide which portion of real measurements and which combination of 

minor and major samples can be used to balance the data. Results in Table 3.3 demonstrate that 

the highest accuracy for the prediction of Cryptosporidium presence can be achieved by balancing 

the data with all samples in the minority and majority classes (Table 3.3 a). Although only real 

samples were used to test the model, data used in the training set has influenced the test set 

since the test data were used to synthesize training samples. Therefore, an alternative approach 

was used to alleviate possible issues with test set bias, where 30% of minority and majority 

samples are kept intact for validating the model and have never been used for data balancing 

(Table 3.3 b). Results using this second method showed that the accuracy stays high in predicting 

the absence of Cryptosporidium but is reduced for presence prediction. A reduction in 

performance could result from the lower number of samples in the minority class used for 

generating the data (only 9 samples). In this case, the model was being tested on a relatively 

smaller set of true test samples. The increase in performance when using all minority samples to 

generate data may be due to introducing carry-over influence between the test set and training 

set and/or the improved generation of synthetic samples.  

In the case of having all minority classes included, the algorithm will consider the full range 

of parameters in generating the new samples. However, once using only 50% of samples, it is 

not possible to reflect the full range of parameters. For instance, the range of precipitation was 

between 0 and 24.5 in the dataset including all samples from minority classes, and the range of 

the same parameter in the dataset with 50% of samples was between 0 and 13. Therefore, 

increasing the number of presence samples to build synthetic data can result in the representation 

of a broader range of possible conditions such as heavy rainfall or severe microbial contamination. 

Although the ADASYN algorithm generates data preferentially in low-density regions or at 

decision boundaries and was expected to result in a more realistic decision boundary (He et al., 

2008), the observation here indicates that with regards to predicting Cryptosporidium, none of the 

pre-processing methods considerably outperforms the other one. The results do however show 

that among all models the three structures/models that were trained and tested by the data 

generated with the ADASYN algorithm could predict the presence of Cryptosporidium with ≥ 30% 

accuracy while only two models developed by SMOTE had comparable performance. Also, the 

highest accuracy in predicting Cryptosporidium presence was observed using ADASYN 

(accuracy of presence: 88%), showing a minor improvement over SMOTE (77%). Still, these 

observation does not imply that ADASYN can consistently be more favorable than SMOTE pre-

processing method. 
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Figure 3.9 Probability distribution of Cryptosporidium presence and rainfall level versus 

normalized Turbidity and Fecal Coliform. The graph is based on structure 8 using data balanced 

by SMOTE. The probabilities indicated in the box denotes the correct predictions made by the 

model. 
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The observation of comparing the accuracy results of the model developed by data 

generated with SMOTE and ADASYN with different structures indicates that the efficiency of the 

employed balancing method or a specific structure is highly dependent on the employed dataset. 

It was observed that both SMOTE and ADASYN contributed to the improvement of the model 

performance, however, the degree of this improvement for both SMOTE and ADASYN was 

different for the dataset that contained all samples from minority classes and the ones including 

only 50% of the samples in this class. These findings are also aligned with the observation of 

(Chawla et al., 2002), where improvements to the model performance using SMOTE are highly 

dependent on the dataset and learning model applied. Therefore, it can be concluded that 

although the application of balancing algorithms can add to model performance, the most proper 

method should be selected based on the type/availability of the data intended to be studied. The 

specific pre-processing method does not seem to be consistently the best for all datasets because 

the ratio of unbalancing and the way that data is scattered can impact their function. 

Furthermore, a specific balancing algorithm cannot consistently outperform the other 

algorithms for all classification/prediction models. For instance, a study conducted by Brandt and 

Lanzen (2020) has studied the performance of SMOTE and ADASYN techniques and compared 

their superiority considering different classification models. However, the study concludes that 

although both SMOTE and ADASYN improve the classification performance, none consistently 

outperformed the other for all models. For example, the study indicates that although SMOTE 

increases the classification accuracy of the SVM model, ADASYN contributes to better 

performance in developing random forests (Brandt & Lanzén, 2021). The focus of this study was 

to explore the capability of balancing algorithms in improving BBNs in predicting Cryptosporidium 

and in-depth investigation of how to choose the best pre-processing algorithms based on the 

dataset and for the desired models can be planned for future work by comparing different AI-

based models.  

3.4 Summary 

The persistent challenges in the real-time measurement of Cryptosporidium have resulted in a 

lack of available data for developing prediction models for this pathogen. Two commonly applied 

data balancing algorithms, ADASYN, and SMOTE methods were developed to generate new 

samples based on observed real data. The BBN method was utilized to predict the level of 

Cryptosporidium in the Kensico reservoir. The model was trained by generated data and tested 

over the real measurements. The results indicated the capability of BBN approach in predicting 
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the Cryptosporidium and also denoted the efficiency of both ADASYN and SMOTE algorithms in 

lifting the performance of the BBN model. Coupled application of BBN and data balancing 

methods was indicated to address the time and cost challenges of indirect measurement of 

Cryptosporidium by predicting its absence of presence with more than 60% accuracy.  

In addition, developing distinct structures of BBN besides analyzing the correlation 

coefficient between variables and the probabilistic output of BBN indicated the dependency of 

Cryptosporidium to temperature and precipitation as well as turbidity and fecal coliform. The 

resulted poor performance of the structure with the only connection between Cryptosporidium and 

fecal coliform denoted that the assumption of using fecal indicator bacteria as the surrogate for 

other pathogens measurement can be misleading and should be used with caution. 
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Chapter 4: Prediction of E. coli using Bayesian Networks and Balancing Algorithms 

4.1 Introduction  

The rapid changes in pathogen levels in source waters complicate both the real-time assessment 

of water quality and optimization of the treatment facilities (Sokolova et al., 2022b). E. coli is one 

of these pathogens of concerned recognized as the principal indicator organism in freshwaters 

(Jamieson et al., 2004). Several regulations consider E. coli. as a surrogate for other pathogens 

such as Cryptosporidium because although a low dosage of this bacteria cannot cause infection 

in the human body, the presence of E. coli indicates contamination of water to fecal pollution. At 

the same time, a high concentration of E. coli in the water supply is capable of posing serious 

risks to public health. During the history, the presence of E. coli was the source of several 

worldwide outbreaks (such as the Wyoming outbreak during 1998, the Swaziland outbreak during 

1992 in South Africa or the E. coli outbreak in Grampian in Scotland during 1990 and the 

Walkerton outbreak in Ontario during 200).  

 Therefore, E. coli is considered one of the main microbial quality parameters required to 

be monitored. However, the obstacle in real-time assessment of E. coli level is the needed time 

to measure this bacteria because measurement of E. coli can take more than 24 hours. While its 

concentration can exceed the standard limit during this time gap. In order to overcome this time 

delay, data-driven methods can provide a real-time prediction of E. coli based on historical 

observation and recorded data. Furthermore, AI-based methods can provide an understanding of 

E. coli sensitivity to other weather and water quality parameters. In this section, similar to the 

previous chapter, the BBN method has been applied for predicting E. coli. BBN was used to 

capture the uncertainty of different environmental factors that are involved and can impact the 

pathogen level in the water. This section includes the implemented steps for modelling E. coli and 

the discussion of the observed results. 

4.1 Material and Methods 

4.2.1 Data Preparation and Discretization 

In this chapter, the case studies were three monitoring sites located in British Columbia, 

Cheakamus, Salmon and Peace River. The data was selected based on the availability of E. coli 

records and consistent measurement of other water quality parameters. The water quality data 

for these three case studies in Canada was obtained from (Environment and Climate Change 

Canada, 2019). 
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The Cheakamus River is located in Daisy Lake Forest in British Columbia. This River is a 

tributary of the Squamish River and initiates from Cheakamus lake and enters Daisy Lake dam in 

the Whistler area (BC Hydro, 2012). The sampling site (BC08GA0010) is reported to be 200m 

upstream of Daisy Lake Forest Road bridge, with a latitude of 5005890 and longitude of -

123.09678. One of the flows upstream of Cheakamus river is the Callaghan creek that enters 5.5 

km upstream from Daisy Lake. Similarly, the whistler wastewater effluent discharge, 100 m above 

Millar Creek, enters Cheakamus River, which can possibly impact quality parameters. The 

weather data for this case study was also achieved from Callaghan Valley (Climate Id: 1101300) 

as the closest weather station.  

Salmon River (BC08LE0004), located in the Shuswap region in British Columbia, has a  

120 in km length and drains approximately 1500 km2 area with an average of 1.17 × 108  m3 water 

flow per year.  The River extends from the Salmon watershed into the Salmon Arm and Shuswap 

Lake with a latitude of 50.6926 and longitude of -119.3304. The area is covered with a 

combination of mainly agricultural and  forest lands, and the main activities besides agricultural 

activities are cattle and poultry farms and forage production. Also, one of the features of this 

watershed is the air barrier created by Coast, Cascade and Columbia mountains between 

Kelowna and Kamplooms city that prevents the flowing air from Pacific ocean and impacts the 

climatic condition of the region (Zhu et al., 2012). Similarly, weather parameters were obtained 

from the closest station of the case study, Salmon Arm Cs. (Climate ID: 116FRMN). 

The last case study is Peace River originated in the borders of British Columbia and Alberta with 

a latitude of 56.1261. and longitude of -120.0564. The River flows into the Peace-Athabasca Delta 

from Willison Reservoir in northeast British Columbia and Bennett Dam draining an area of 118 

000 km2. The sampling location was above Alces River (BC07FD005), one of Peace River’s 

tributary. The sewage discharge of the City of Fort St. John close to the monitoring station can 

possibly impact the water quality parameters in the region. Besides, the agricultural and irrigation 

activities can also affect this River's water, which supplies the drinking water for Taylor and 

Hudson’s Hope (Water Quality Assessment of Peace River Above Alces River, 2003). The 

weather data for this case study was also achieved from Peace River A. station (Climate id of 

3075041).  

The data for each three location were used for developing BBN model using GeNIe 

software (Bayesfusion LLC, Pittsburgh,PA). Also, before developing the BBN models, the 

following steps were employed to prepare the models; Step 1) Excel Microsoft software was used 

to clean and analyze the dataset of each location and the date without the complete record of the 

https://climate.weather.gc.ca/climate_data/hourly_data_e.html?hlyRange=2005-01-18%7C2022-01-30&dlyRange=2005-06-13%7C2022-01-30&mlyRange=2005-11-01%7C2007-02-01&StationID=43500&Prov=BC&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=1840&EndYear=2022&selRowPerPage=25&Line=0&searchMethod=contains&Month=1&Day=30&txtStationName=Callaghan&timeframe=1&Year=2022
https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=1994-02-01%7C2022-01-26&dlyRange=1991-01-01%7C2022-01-26&mlyRange=1991-02-01%7C2006-10-01&StationID=6843&Prov=BC&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=1840&EndYear=2022&selRowPerPage=25&Line=5&searchMethod=contains&Month=1&Day=26&txtStationName=salmon&timeframe=2&Year=2022
https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=2014-05-27%7C2022-01-26&dlyRange=2014-05-29%7C2022-01-26&mlyRange=%7C&StationID=52258&Prov=AB&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=1840&EndYear=2022&selRowPerPage=25&Line=2&searchMethod=contains&Month=1&Day=26&txtStationName=PEACE+RIVER&timeframe=2&Year=2022
https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=2014-05-27%7C2022-01-26&dlyRange=2014-05-29%7C2022-01-26&mlyRange=%7C&StationID=52258&Prov=AB&urlExtension=_e.html&searchType=stnName&optLimit=yearRange&StartYear=1840&EndYear=2022&selRowPerPage=25&Line=2&searchMethod=contains&Month=1&Day=26&txtStationName=PEACE+RIVER&timeframe=2&Year=2022
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desired parameters was removed from the dataset. In addition, to prevent the loss of information 

and keep more samples of E. coli some parameters that only had a smaller number of samples 

for a shorter period were also excluded from the dataset. It is worth mentioning that E. coli is a 

specific species of fecal contaminates and are normally used as an alternative pathogen for the 

measurement of fecal coliform. However, it was assumed that considering a wider diversity of 

parameters (including fecal coliform information) from available data can result in more 

comprehensive models that allow for investigating their relationship and evaluate the efficiency of 

considering only fecal coliform or E. coli as the fecal contamination indicator. Finally, besides the 

E. coli record, turbidity, pH, hardness, fecal coliform, and weather parameters including 

temperature, precipitation on sampling day and over three days formed the datasets for this 

chapter. The E. coli and fecal coliform were reported based on CFU/100 mL in all of three 

locations. The number of samples and recorded dates for each location are presented in Table 

4.1. 

Table 4.1 Details of the utilized dataset for E. coli Prediction 

Location/Data Source Total number of samples Recorded Dates  

Cheakamus River 349 Samples 2004-2021 

Salmon River 406 Samples 2000-2021 

Peace River 290 Samples 2000-2021 

 

Step 2) Before training the model with the dataset, each of the variables was discretized into 

different classes. Although some information can be lost in the case of discretizing the variables, 

developing BBN with continuous data requires assuming continuous probability distribution, which 

is unavailable in current BBN software due to complicated the computation of probability tables 

complicated and the drop in speeds of calculation (Nojavan A. et al., 2017; Panidhapu et al., 

2020b). Furthermore, the objective of this chapter was a binary prediction of E. coli. Therefore, 

the measured and reported levels of E. coli were divided into two classes. The threshold of this 

classification was chosen 20 CFU E. coli/100 ml due to the filtration deferral regulations in British 

Columbia (B.C.Ministry of Health, 2012). The days with less than 20 CFU E. coli/100 ml were 

considered the absence class, and the days having above the 20 thresholds implied the presence 

of E. coli. Based on this policy, the source water monitoring station can differ the filtration process 

if 90% of weekly samples report less than 20 CFU E. coli/100 ml over six months (Panidhapu et 
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al., 2020b). All other parameters were discretized in a way to have an equal number of data in 

each bin. The parameters were discretized into 3 bins, except precipitation on the day and over 

three days. These two parameters were discretized to two bins because recorded data were 

mainly zero for most of the samples, and it was aimed to have an equal number of samples in 

each bin; Step 3) discretized data for each monitoring site were used for training the structures 

that were developed based on the following two sections. Each parameters’ data in training set 

were assigned to the appropriate node and model was trained based on discretized training data 

set. The performance of the model was assessed using testing dataset and comparing the 

number of accurate predictions to the measured values. 

4.2.2 Relationship between Water quality, Weather and E. coli  

One of the main challenges in understanding both water quality or hydrological phenomena is 

that these environmental systems are impacted by several stochastic processes (Stegen et al., 

2012). Sensitivity of these models to the wide range of parameters such as population growth, 

land cover or economic development has made it difficult to anticipate future changes  (Taheri 

Tizro et al., 2014). Therefore, prior to developing BBN models for E. coli prediction, the time series 

of available data for all three locations were illustrated to assess the determinant trends or long -

term dynamics in last 4 years. As an example, the spread of all parameters in last 4 years in 

Salmon River are depicted in Figure 4.1. 

While in previous section both of Cryptosporidium and fecal coliform as the microbial 

characteristics of water, lacked any meaningful time specific changes. Figure 4.1 indicates that 

there is a seasonal trend in E. coli and fecal coliform concentration, with a promoted E. coli 

concentration in summer and autumn and decrease in winter and spring time. This observation 

also aligned with the result of a study conducted by Oliver and Page (2016) which shows the peak 

of E. coli in both fall and summer due to optimal weather conditions. For instance, the higher 

temperature in summer and “rehydration” from precipitation can promote the fecal contaminant 

concentration (Oliver & Page, 2016). 

 The reason that this seasonality was not observed in time series of Cryptosporidium in 

previous section can be due to the high number of “non-detects” and zero value of 

Cryptosporidium. Including mainly the absence of a parameter in a time series makes it difficult 

to extract meaningful trends over time. The observed seasonal flocculation in temperature, 

hardness and turbidity can be identified here as well. Also, an increasing trend can be seen from 
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the precipitation data that can be explained by the impacts of climate changes and the reported 

promoting rainfall over the time.  

 

 

Figure 4.1 Visualization of the time series for weather and water quality parameters of Salmon 

River. The time interval is equal (one month) for all parameters. The time series for Cheakamus 

River and Peace River can be found in appendix. 

Similar to the section 3, the linear correlation between the earlier value and present value 

of parameters were analyzed through ACF graphs for Salmon River. As it can be seen from Figure 

4.2 while there is a repetitive pattern between observed turbidity, hardness, and pH in one month, 

the value of E. coli was not affected by previous values.  However, Dwivedi et al. (2016) have 

indicated a correlation between E. coli in one, 7 and 10 months (Dwivedi et al., 2016). Although 

the repeating patter was also observed in over 6 months in the simple time series graph (Figure 

4.1), it should be considered that ACF measures the linear correlation between parameters value 

in each time lag, and due to the complexity of microbial activities, linear analysis fail to reflect the 

dynamic of the system. However, comparing the result of ACF for each location indicates that the 

behavior of pathogens such as E. coli can be highly site specific. For instance, the correlation 

between current E. coli and its concentration in one month earlier, were more than 0.5 in Peace 
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and Cheakamus Rivers. This observation again emphasizes the dependency of microbial 

communities to other site-specific parameters such as landcover, climatic conditions or human 

activates around the area. 

 

Figure 4.2 Autocorrelation of all parameters based on monthly lag and confidence interval of 

95% for Salmon River. The autocorrelation graph of Peace and Cheakamus River can be found 

in Appendix. 

In order to see dependencies between parameters, the linear correlations between 

Cheakamus, Peace and Salmon River variables were analyzed. While BBN models were based 

on the discretized class of variables, the correlation coefficient has been calculated for each 
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parameter based on the continuous data. Figure 4.3 indicates the correlation matrix for the three 

monitored locations. As was expected, the results show a very strong correlation between E. coli 

and fecal coliform for all three sites (>80%). However, none of the other correlations between 

water quality parameters and E. coli were consistent for each location. For instance, the 

correlation of turbidity with E. coli or fecal coliform ranged from -0.06 to 0.33 for Cheakamus and 

Peace River, respectively. Similarly, the correlation between hardness and turbidity was strong 

for the Salmon River (-0.69), while it was very poor (0.04) for Peace River.  

(a)                                                                                    (b) 

 

 (c) 

 

Figure 4.3 Correlation coefficients (R) of water quality and weather parameters in the a) 

Cheakamus River, b) Salmon River, c) Peace River. 
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Figure 4.3 Correlation coefficients (R) of water quality and weather parameters in the a) 

Cheakamus River, b) Salmon River, c) Peace River. 

Other variables were observed to have a variable positive and negative correlation with E. 

coli and fecal coliform. The observation in this study aligns with investigations in the study by 

(Panidhapu et al., 2020b), which reported non-consistent correlations for similar monitoring sites 

in British Columbia. These site-specific results have indicated that several parameters such as 

climatic patterns or land usage in the region can contribute to the dynamics of the water quality. 

For instance, while a strong positive correlation between temperature and E. coli was 

expected because of the possible increase in the activities of microorganisms (Cha et al., 2016), 

a moderate positive correlation (0.20 – 0.27) was observed for Peace and Salmon River and a 

moderate negative (-0.25) for Cheakamus River. When the surrounding area of the Peace and 

Salmon River is agricultural, and the Cheakamus River is mainly covered by forest.  

Despite the site-specific variation of other parameters, the correlation between fecal 

coliform and precipitation (both on the sampling day and over three days) was positive for all three 

sites, with differing strengths. For example, for the Salmon River, the correlation of precipitation 

on the day and fecal coliform was 0.32, which is relatively strong considering the data being 

analyzed. The positive correlation between fecal coliform and precipitation was also noted in the 

analysis of Cryptosporidium data. Therefore, it can be included that there is an underlying 

relationship between the characteristics of weather events.  

Still, due to the uncertainty and complexity of climatic systems and the interaction between 

pathogens in a watershed, their relationships cannot be reflected thoroughly by simplistic 

analysis, such as linear correlations. 

4.2.3 Structure Development of BBN for E. coli Prediction 

BBN structures can be developed based on prior and expert knowledge or defined structure 

development algorithms. While both approaches have been widely applied and have been 

reported to result in accurate models, there is still a debate on the best approach for defining the 

BBN structures (Scutari et al., 2019). The focus of this chapter was to evaluate the E. coli level 

as a microbial quality indicator and explore the capability of BBN models in predicting quality 

indicators of source water. A more in-depth investigation on how the structure developments can 

impact the prediction capability of BBN models is another field of study that can be of future 

interest.  
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Figure 4.4 Learned BBN structures based on Bayesian Search structure-learning algorithm. 

Therefore, in this work, similar to the models developed for predicting Cryptosporidium, 

both algorithm-based structures besides expert knowledge were developed. Although structure 

learning algorithms resulted in topologies that were logical and reflected the expected 

relationships based on expert knowledge for Cryptosporidium, these algorithms produced 

unexpected structures when built based on the E. coli dataset. Furthermore, the same algorithms 

excluded some of the weather and water quality variables, and this exclusion was observed in all 

three employed datasets. For instance, Figure 4.4 indicates a sample structure developed by 

Bayesian search and shows that the precipitation on day and Hardness are excluded. Also, pH 

and precipitation over three days are in no connection with E. coli. 

Therefore, the structures for predicting E. coli were developed only based on prior 

knowledge and similar structures that have been reported to have a good performance in previous 

studies (Panidhapu et al., 2020a). As it can be observed from Figure 4.5, two other structures 

were developed for E. coli. In the first structure, (shown in Figure 4.5 a), the connection between 

weather parameters and E. coli has been defined indirectly and through turbidity. While in the 

second structure (Figure 4.5 b) a direct connection between all of the considered parameters and 

target variable have been defined. This approach has been employed to see if the weather 

condition directly contributes to the microbial concentration of source water or their main impact 

is on other characteristics of water such as turbidity and hardness, while the variation on these 

characteristics provides an opportunity for microorganism's growth or activity. 
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Figure 4.5 Learned BBN structures for prediction of E. coli based on expert knowledge. 

4.3 Result and Discussion  

4.3.1 Prediction of E. coli using Bayesian Networks 

The previous chapter indicated the capability of BBNs in predicting Cryptosporidium 

presence/absence in a drinking water reservoir. This section similarly evaluates the capability of  

BBNs in predicting E. coli in three different monitoring sites (Cheakamus, Salmon, and Peace 

River) in BC, Canada.  

Similar to modelling Cryptosporidium, for predicting E. coli, both weather and water quality 

parameters were included and discretized based on details in section 4.2.1. The sites were 

selected based on the availability of both weather and water quality data as well as E. coli records 

for the considered period. The data was used to train the BBN models that were developed based 

on the shown structures in Figure 4.5 and section 4.2.3. The employed structures were developed 

based on expert knowledge and logical relationships between parameters. As mentioned earlier, 

two structures have been used for all model developments to compare the results for each dataset 

and location. Table 4.2 indicates the result of prediction models for each site. Besides, BBNs the 
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same data were used for developing with a simple logistic regression model. While the overall 

accuracy of model performance was higher than 50% for all structures and locations, using BBN 

prediction model, simple models like logistic regression failed to predict the absence of E. coli. 

For instance, despite BBN which resulted in more than 70% accuracy in predicting both E. coli 

presence and absence, logistic regression model resulted in less than 10 % accuracy for 

predicting E. coli absence (<20 CFU/100 L). Logistic regression resulted in an acceptable 

performance only for Peace River with overall prediction accuracy of 88%, and accuracy of 92% 

and 50% for predicting E. coli higher and lower than >20 CFU/100 mL respectively. However, 

BBN was successful in achieving accurate predictions not only for Peace River, but also for all 

monitoring sites regardless of their data and location difference. This observation indicates that 

the complexity of interaction between environmental parameters and microbial activities cannot 

be captured by linear models in all instances. BBNs not only seems to be stronger in reflecting 

such dynamic systems but also allows for assessing possible interactions.  

Regarding the optimum structure, it can be seen form Table 4.2 that structure 1 resulted 

in a better performance for all three datasets than structure 2. Structure 1 consistently resulted in 

the prediction of presence accuracies greater than 50%; however, there was a decrease in 

prediction accuracy of presence with structure 2 (3% - 11% decrease). Overall, it was concluded 

that structure 1 is a better approach to developing BBN models for E. coli prediction since the 

improvements in presence prediction (>20 CFU/100 L), were more significant compared to the 

minor deterioration in the accuracy of absence prediction.  

As described in the previous section, structure 1 (indicated in Figure 4.5 a) has included 

the indirect connection between precipitation on day/ precipitation over three days prior and E. 

coli. It was expected that the direct impacts of precipitation on E. coli would be more 

representative. This can be due to the reason that high rainfall intensities can wash out more fecal 

contaminants from the surrounding landscape. Also, studies have shown the increase in fecal 

contamination after several stream flows in regions covered by farmlands (Kay et al., 2008; 

Lyautey et al., 2007) and the agricultural cover was reported to be one of the factors involved in 

the presence of fecal bacteria (Laurent & Mazumder, 2012). While the Salmon and Peace River 

were surrounded by agricultural land and likely to be affected by feces and agricultural waste after 

rainfalls, the result indicated that the model makes a better decision considering the reflection of 

precipitation on turbidity and hardness and not directly on the target variable. 
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Table 4.2 Prediction accuracy of E. coli with BBN. Prediction results are based on a randomly 

separated test set (15%) of data. 

Model Location Structure 

Overall 

accuracy 

 

Prediction 

Accuracy of  

E.coli>20 

CFU/100 

Prediction 

Accuracy of 

E.coli<20 

CFU/100 

B
B

N
 

Cheakamus 

River 

Structure 1 69% 51% 88% 

Structure 2 55% 22% 92% 

Salmon  

River 

Structure 1 72% 75% 70% 

Structure 2 56% 29% 81% 

Peace  

River 

Structure 1 77% 52% 86% 

Structure 2 74% 19% 92% 

 

It was observed in the previous chapter that in terms of predicting Cryptosporidium, the 

model presented lower accuracy for the structures that had the indirect connection between 

weather parameters and Cryptosporidium. Regarding this contrast, it should be noticed that the 

fecal coliform was the only predictor in predicting Cryptosporidium (Figure 3.8 c). In contrast, here 

for predicting E. coli (Figure 4.5 a), all other water quality parameters, besides fecal coliform, were 

connected to the target parameters. Therefore, it seems that the presence of water quality 

parameters is crucial in achieving a reliable model for predicting microbial quality. This 

observation is also aligned with the observation of a previous study conducted by Pandihapu et 

al. (2020) that reports a 25 % reduced accuracy in the case of excluding water quality parameters 

in predicting the E. coli (Panidhapu et al., 2020a).  

It is worth mentioning that the objective of machine learning approaches is minimizing the 

required time for direct measurement of pathogens and enabling a timely manner risk 

assessment. The distinct feature of BBNs that can be leveraged for this objective is their capability 

in using incomplete data. This advantage of BBNs can compensate for the incompleteness in 

measuring some parameters, which is a persistent challenge in modeling environmental systems. 

In order to assess this ability of BBNs, and to predict E. coli threshold only based on easy-to-

measure parameters, the developed models were used for predicting the E. coli exceeding the 

20 CFU/100mL threshold by using incomplete observation of fecal coliform parameter. The results 

in Table 4.3 indicates that excluding the fecal coliform impacted the predicting accuracy, which 

was expected due to the same origin of E. coli and fecal coliform parameters. However, this 

impact was different for each monitoring sites and structures. For instance, despite the previous 
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observation in which structure 1 consistently resulted in a higher accuracy, here, structure 2 

resulted in a lower reduction in prediction accuracy (less than 10%) compared to the reduced 

accuracy (>20%) by structure 1. 

Table 4.3 Prediction accuracy of E. coli with BBN  

Model Location Structure 

Overall 

Accuracy 

 

Prediction 

Accuracy of 

E.coli>20 

CFU/100 

Prediction 

Accuracy of  

E.coli<20 

CFU/100 

B
B

N
 

Cheakamus 

River 

Structure 1 51% 77% 24% 

Structure 2 55% 72% 40% 

Salmon  

River 

Structure 1 49% 3% 100% 

Structure 2 47% 48% 45% 

Peace  

River 

Structure 1 69% 78% 42% 

Structure 2 67% 81% 23% 

 

Although the accuracy of the E. coli absence was observed to be reduced by structure 2, 

the model's performance in predicting the presence (E. coli>20 CFU/100) was improved 

compared to the models tested with complete data. As shown in Figure 5.3 b structure, 2 contains 

direct connection from all variables, including weather parameters to the E. coli, while structure 1 

only had direct connections between water quality parameters. Excluding the observation of fecal 

coliforms reduced the number of direct predictors in structure 1. Therefore, the limited number of 

predictors could be responsible for the observed sharp accuracy reduction in this structure 

compared to the minor accuracy drops in structure 2. Furthermore, the model's sensitivity to each 

monitoring site can be observed from the accuracy result of structure 2. For instance, the overall 

accuracy has not been changed for data of Cheakamus River while it has dropped in a similar 

range (7% and 9%) for Salmon and Peace River, with a similar land cover pattern.  

These observations have confirmed the capability of BBNs in making predictions by using 

incomplete data, which implies the compatibility of this approach in modeling environmental 

systems with missing observations. Still, the results of using incomplete data for predicting E. coli 

threshold besides the previous observations in this chapter, emphasize the complexity of the 

relationship between variables and the diversity of factors such as land cover that potentially 

impact the pathogens’ level in source waters. In order to have a better understanding of the impact 

of each predictor and variable on target parameters of E. coli and Cryptosporidium, the analysis 

of parameters relationship has been presented in the next section. 
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4.4 Summary 

E. coli is one of the leading causes of water-borne illness and worldwide outbreaks. The presence 

of this pathogen is the basis for microbial quality assessment in some regulations. For instance, 

the source water monitoring policy in British Columbia differs the filtration process if 90% of weekly 

samples of E. coli report less than 20 CFU E. coli/100 ml over six months (Panidhapu et al., 

2020b). This filtration differation has been a base for this section, and the BBNs method has been 

developed to predict the E. coli absence and presence based on 20 CFU E. coli/100 ml threshold 

in three monitoring sites in Canada. Successful performance of BBN was observed in predicting 

E. coli presence in all three monitoring sites. Although the prediction results were close for all 

three case studies, the correlation coefficient between employed weather and water quality 

parameters was observed to be very site-specific and dependent on different land or climatic 

characteristics of each site. Therefore, it seems broader parameters representing a wide feature 

of each case study, such as land cover, can provide even more information on the E. coli variation 

in source waters, and the probabilistic feature of BBN can aid in reflecting these involved 

uncertainties.   
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Chapter 5: Variable Importance in Assessment of the Microbial Quality of Source Waters 

5.1 Introduction 

The previous chapters were an attempt to improve the quality assessment of drinking water 

sources by predicting two important pathogens in a timely manner. However, the persistent 

challenge in terms of modelling environmental systems is their complexity. Natural processes, 

such as variation of microorganism’s level in source waters, are sensitive to a wide range of 

factors including climatic parameters. Therefore, instead of facing steady-state processes, 

environmental systems demonstrate a dynamic behavior that was tried to be captured by the 

applied models (Rutten et al., 2020).  

The observed results in previous chapters indicated that the correlation coefficient 

between E. coli and other considered parameters were different for each case study depending 

on the features of the locations. Also, it was observed that besides water quality parameters, 

weather features such as precipitation could impact the model's decision in predicting 

Cryptosporidium. Besides the observation of this study, several other pieces of research have 

unfolded the dependency of waterborne pathogens such as E. coli and Cryptosporidium to 

climatic conditions and other water quality indicators (Atherholt et al., 1998; M. M. M. Islam et al., 

2017; Kleinheinz et al., 2010; Young et al., 2015). In this matter, awareness of the factors that 

potentially impact the level of pathogens and quality indicators can provide a better insight into 

the steps required to mitigate the possible risks.  

Therefore, this chapter was developed to draw a more detailed understanding of each 

parameter’s contribution to E. coli or Cryptosporidium prediction. This has been done by 

evaluating their strength of influence on the model's decision and analyzing the model's sensitivity 

to each of the variables. In addition, the developed probability distributions of BBN models have 

been interpreted to evaluate the projected variations in microbial quality of water bodies under 

different scenarios.  

5.2 Materials and Methods 

5.2.1 Strength of Influence and Sensitivity Analysis 

The DAG or BBN structures, as described earlier, include several connections between variables. 

The strength of variables and sensitivity analysis allows quantifying these connections and 

relationships between variables (Canova Calori et al., 2007). The strength of influence measures 
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the distance of conditional probability distributions. More precisely, this method by calculating the 

distance between the probability distribution of the child node with and without evidence or 

condition of its parent indicates the magnitude of influence that parent node may have on child 

node (Koiter, 2006). Therefore, the influence of all predictors on the target node (presence or 

absence of pathogens) can be quantified, and the most impactful parameters can be identified. 

GeNIe software allows the calculation of the distance between CPT of nodes using different 

methods (Euclidean, Hellinger, J-Divergence and CDF methods). In this study Euclidean 

approach was used to compute the strength of influence of two random variables. Assuming A as 

one node and random variable with probabilities of 𝑎𝑖 ([0,1]) and similarly B with probabilities of 

𝑏𝑖  the Euclidean distance can be computed as:  

  

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐴, 𝐵) = √∑ (𝑎𝑖 − 𝑏𝑖)2𝑛
𝑖=1                                                                    (𝑒𝑞. 5.1)   

 

Similar to the strength of Influence, the sensitivity analysis is associated with validation of 

parameters probability and assesses the impact of changes in variables probability on the 

outcome of interest. The sensitivity analysis computes this impact by calculating the derivative of 

the target node’s posterior probability distributions over each one of the predictors/variables 

(Chan & Darwiche, 2004). The resulting small derivative for a random variable indicates that the 

changes in this variable are unlikely to impact the probability distribution of the target parameter. 

On the other hand, any changes on variables with larger derivatives can result in significant 

changes in the posterior probabilities (Kjærulff & Van Der Gaag, 2013). Both sensitivity analysis 

and strength of influence were developed after training prediction models to explore and identify 

the most critical factors in predicting E. coli and Cryptosporidium. The criteria and description of 

the selected models are discussed in the following section. 

5.2.2 Selection of BBN Model and Structure 

BBN models were developed in the previous chapters to predict Cryptosporidium and E. coli. Two 

of these developed BBN models were chosen for evaluating the impact of the considered water 

quality and weather parameters on predicting the target node. Since each model was different in 

terms of structures and applied data, the models that resulted in a relatively better performance 

were selected. Among these chosen models, those structures that have included connections/arc 

from all of the predictors to the target node were used since these structures could provide an 

equal opportunity for all variables to be considered in the sensitivity analysis. For instance, 
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structures 7 and 8 that were developed by data generated with SMOTE algorithm had similar 

performance in predicting Cryptosporidium (Figure 3.2 a and b); however, structure 7 has included 

all the links/arcs from the predictor to the target parameters. Therefore, this structure was selected 

for the analysis in this chapter for Cryptosporidium analysis. Similarly, Structure 1, indicated in 

Figure 4.2 a, was chosen for investigating the impact of variables on predicting E. coli. 

5.3 Result and Discussion   

5.3.1 Factors affecting Cryptosporidium Assessment  

In the previous section, considering both weather and water quality parameters, BBN models 

could predict the presence of Cryptosporidium. To garner insight into how impactful each variable 

was in predicting the target pathogen, the impact of varying each parameter individually on the 

probability distribution of Cryptosporidium was calculated.  

Being DAGs, BBNs allow to investigate the strength of the variable’s influence on the 

Cryptosporidium and quantity the sensitivity of the pathogen to each predictor parameter. Both 

methods can be computed based on the probability distributions of the variables. The strength of 

influence measures the magnitude of impact that parent node leaves on Cryptosporidium by 

calculating the distance between the probability distribution of the child node with and without 

evidence or condition of its parent. However, the sensitivity analysis computes this impact by 

calculating the derivative of the target node’s posterior probability distributions over each one of 

the predictors/variables (Chan & Darwiche, 2004). The results of both strength of influence and 

sensitivity analysis are presented in Figure 5.1 and Figure 5.2, respectively.  As the effects of both 

methods are in a relative base, the results were normalized between 0 and 1 to easily compare 

and interpret the rank of all parameters. 

It was expected that fecal coliform would show a higher impact as this bacteria’s presence 

can be an indicator of a favorable environment for microorganisms’ presence or growth. However, 

both sensitivity and strength of influence analysis show a poor interconnection between these two 

pathogens. It should be mentioned that besides some literature research that indicates an existing 

relationship between indicator organisms and parasites like Cryptosporidium (e.g., Lipp et al., 

2001; Burnet et al., 2014; Devane et al., 2014; Korajkic et al., 2018;), others have established a 

poor dependency between these two pathogens. For instance, Hogan et al. (2012) have shown 

that the presence of FIB can be associated with Cryptosporidium’s presence in wetlands in 

California surrounded by agricultural activities. In contrast, Lemarchand and Lebaron (2003) have 
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indicated that fecal indicator bacteria cannot be a good representative for Cryptosporidium 

presence on the coastal watershed in France (Lemarchand & Lebaron, 2003). 

 

 

Figure 5.1 Importance of Variables Based on their Strength of Influence in Predicting 

Cryptosporidium. 

Therefore, the sensitivity of pathogens’ relationship to the considered site or even the 

season makes it challenging to come to a uniform or inclusive conclusion. Thus, due to the 

different behavior of the pathogens in environmental systems (also indicated in the study by 

Wilkes et al. (2009)), the fecal indicator microorganism seems to be a poor surrogate for other 

pathogen’s presence, such as Cryptosporidium (Wilkes et al., 2009). 

Although the result of both methods was very close and almost the same for all 

parameters, turbidity was observed to have a higher strength of influence while showing a lower 

sensitivity. It should be considered that the strength of influence considers two probability 

distributions for the child node, with and without the evidence of parent node and then measures 

the distance of these probability distributions. However, the sensitivity analysis validates the 

variable’s probability and investigates the impact of predictors’ probability variation on the 

probability of child node. Sensitivity analysis does this by computing the derivatives of the child 

nods’ probability distribution over the probability distribution of other predictors. This subtle 

computational difference can be responsible for the distinct observation of turbidity. It was 

expected that turbidity would have a more substantial influence on the prediction of 

Cryptosporidium since turbidity can provide the required nutrients for microbiological activity 
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(Lozano et al., 2019; Muylaert et al., 2002). However, the lack of strong connections between 

turbidity and Cryptosporidium, based on influence analysis, aligned with the previously discussed 

poor linear correlations between turbidity and Cryptosporidium. 

 

 

Figure 5.2 Importance of Variables in Predicting Cryptosporidium based on Sensitivity Analysis 

These observations suggest that regulations and guidelines that solely rely on water 

quality indicators, such as turbidity, to define the requirement and disinfection processes in the 

water treatment system (Farrell et al., 2018) can be misleading. 

Despite the methodology differences, the temperature and precipitation on sampling day 

have been observed to leave the greatest influence on the Cryptosporidium’s prediction based on 

both analysis methods. This result reveals that including heavy rainfalls can be a critical 

parameter in changing the parasite concentration. This finding is also aligned with the literature 

observation that has reported the increase of pathogens such as Cryptosporidium in surface 

waters after heavy rainfalls (e.g., Duris et al., 2013b; Masina et al., 2018). Therefore, it seems 

more promising to consider both water quality and weather variables to maximize the prediction 

accuracy. An observation of interest was that weather parameters (i.e., precipitation, temperature) 

were shown to have relatively high and similar levels of impact on Cryptosporidium levels, despite 

previous observations that linear correlations with Cryptosporidium were weak (R < 0.5). Thus, 

the relationship of the weather or water quality parameters with microbial factors is unlikely to be 
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linear, and the influence of several factors in combination likely drives a higher or lower probability 

of protozoa presence. 

5.3.2 Factors affecting E. coli Assessment 

Similar to the previous section, the strength of influence for the considered connections/arcs 

between predictors and E. coli as the target variable was investigated for each case study (Figure 

5.3). In order to compare the results from a different perspective, the sensitivity of the E. coli to 

each of the variables was also depicted in Figure 5.4. The output of both strengths of influence 

and sensitivity analysis were normalized in a location-based between 0 and 1 (parameter’s 

influence were ranked and considered for each location separately). 

 

 

Figure 5.3 Importance of Variables Based on their Strength of Influence in Predicting E. coli for 

three surface water bodies in BC. 

Similar to the observation of parameter’s impact on Cryptosporidium prediction, weather 

parameters appeared to considerably influence E. coli concentrations based on both strengths of 

influence and sensitivity analysis shown in Figure 5.3 and Figure 5.4, respectively. Especially for 

the Peace and Cheakamus Rivers, precipitation on the day showed a very high impact on E. coli 

concentration. Similarly, precipitation over three days and temperature as weather variables were 
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observed to strongly influence the target variable in these locations. However, the result denoted 

that the variables' impact is specific to each monitoring site, as observed for linear correlation too. 

As indicated in Figure 5.3 and Figure 5.4, precipitation showed a small impact in the 

Salmon River based on both methods while highly impacting E. coli concentration in the other two 

sites. The excessive amounts of nutrients (nitrate/phosphates) and pesticides usually are 

generated from agricultural activity that can be washed out by rainfalls in the region (Sasakova et 

al., 2018). Therefore, due to the number of farmland and high agricultural activities around the 

Salmon River, precipitation on the sampling day and over three days were expected to contribute 

to the microbial contamination in this region. However, compared to Cheakamus, which is 

surrounded mainly by forests, weather events have the lowest influence on E. coli prediction in 

the Salmon River.   

 

 
Figure 5.4 Importance of Variables Based on their Analysis of Sensitivity in Predicting E. coli for 

three surface water bodies in BC. 

The relative importance of water quality parameters also showed significant variation over 

each monitoring site. For instance, hardness was denoted to be very impactful (>0.5) for 

Cheakamus River and moderately impactful for Salmon River but very poor (<0.1) for Peace 

River. On the other side, E. coli in Peace River seemed to be more affected by pH than hardness. 
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Although based on the sensitivity analysis, pH’s impact in Salmon and Cheakamus River was 

observed to be ignorable (Figure 5.4), considering the strength of influence (Figure 5.3), pH 

seemed to be critical for Salmon River. Therefore, it is possible that E. coli was not significantly 

affected by pH only in the Cheakamus River. The mentioned difference in land cover around the 

Cheakamus river and wide industrial and tourism activities in its forestry area (BC Conservation 

Foundation, 2009; Clague et al., 2003) can be responsible for the distinct reaction of E. coli and 

pH in this region. For instance, incidents such as the sodium hydroxide spill in 2005 due to 

industrial activities could highly influence the chemical and, consequently, the biological water 

balance in testing points.  

Furthermore, the relative impact of fecal coliform was observed for all monitoring sites 

based on the observations for the strength of influence (Figure 5.3). Considering the fact that E. 

coli is a major species of fecal coliforms this strong relationship was expected for all sites while 

only Peace and Salmon River have shown sensitivity to fecal coliform. The variation of fecal 

coliform and E. coli relationship in different case studies and locations has also been reported in 

the literature (Oliveira et al., 2017) which can be due to the different features of each monitoring 

site or measurement errors in the lab. For instance, the stronger influence of fecal coliform in the 

Peace and Salmon River was expected due to the agricultural activities and the higher livestock 

contamination of these areas. The impact of farming activities on the variation of E. coli and water 

quality parameters has also been studied in the literature. As such, Namugize etal. (2018) have 

studied E. coli and water-quality variations in different locations of Midmar Dam’s stream and 

indicated E. coli increase in the lands surrounded by agricultural practices (Namugize et al., 

2018). 

Similarly, Kibena et al. (2014) have indicated the contribution of land-use changes in 

increasing total phosphate and biological oxygen demand in the Zimbabwe River (Kibena et al., 

2014). The study also reported that the changes or impact of land cover seems to be more 

highlighted in the wet season than the dry season. The observations align with the variables' linear 

correlation, indicating that each site's surrounding land usage/cover can alleviate or maximize the 

weather and water quality parameter impact.  Therefore, besides the finding in the literature, the 

results here imply that the normally observed water quality factors are not a universal indicator of 

surface waters quality and cannot solely explain the complex relationship of the aquatic 

processes. Therefore, a more comprehensive analysis that can include most of the factors such 

as land usage, weather condition or seasonal changes is required for making decisions regarding 

the contamination of these watersheds.  
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5.3.3 Pathogen Levels under Different Scenarios  

The application of BBNs made it possible to quantify the interaction and the impact of different 

parameters using sensitivity and influence analysis in the previous section. Although the 

parameters and their impact on both Cryptosporidium and E. coli levels were captured earlier, the 

probabilistic nature of BBN models allows further analysis to see how changes in the recognized 

affecting factors will cause changes in the level of the pathogen. This feature of BBNs provides a 

robust tool for decision-makers to develop different scenarios and observe the reaction of source 

water quality indicators to the outcomes of the scenario. Therefore, being aware of the system’s 

behavior in diverse circumstances will garner a better preparation for risk managers.  

As weather parameters were observed in this study to affect the level of the considered 

pathogens, different scenarios have been defined in this section, and the probability of pathogen’s 

present under each scenario was examined. It should be mentioned that scenarios were basically 

assumptions made based on the available data, annual weather observation and climatic 

perspectives provided in the literature. The trained BBN models in the previous sections were 

used as the base models, and their probability distribution was updated based on the new 

scenarios. The specific feature of these scenarios was propagated throughout the model, and the 

variations on the probability of the pathogen’s presence were compared to the base models.  

Considering Cryptosporidium and E. coli as the target pathogens, the first scenario was 

an observation of heavy rainfalls (>10mm) since this parameter was observed to influence both 

target parameters based on sensitivity and influence analysis. Also, several studies in the 

literature have shown pathogen’s variation after a high precipitation rate (e.g., Duris et al., 2013b; 

Masina et al., 2018; Young et al., 2015). The second scenario was based on having the fecal 

coliform presence as the evidence; this scenario was defined only to evaluate the 

Cryptosporidium’s presence and examine how its probability distribution reacts to the presence 

or absence of fecal indicators. Finally, the third scenario was described to investigate the 

probability of both E. coli and Cryptosporidium’s presence to the projected climate changes over 

temperature and precipitation.  Since the reported expected changes were significantly different 

based on several climate models, a 1.9 oC increase in temperature and 7.5% increase in 

precipitation level were assumed for this scenario (McClure et al., 2022). Also, the annual 

precipitation and temperature of the case study were utilized to reflect these expected climatic 

changes over the parameters.  

The probability of the Cryptosporidium and E. coli was observed under each of these 

scenarios. Propagating the impact of the first scenarios on the Cryptosporidium model, the 
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probability of Cryptosporidium’s presence increased from 15% (probability of presence in the 

initial trained model) to 27%. While this increase of pathogens level under severe rainfall was 

expected, the reaction of E. coli was observed to be different under this scenario for each case 

study. As the land cover of Peace and Salmon River is close, a similar observation was expected 

for these two sites. However, the probability of E. coli’s presence increased from 43% to 50% only 

for Peace River and reduced from 55 to 49 and from 56 to 50 for Cheakamus and Salmon Rivers, 

respectively. These specific results, here again, could highlight the influence of land cover on the 

interconnection of parameters and implies that expecting the same behavior in pathogens 

transmission for the case studies with similar land features can be misleading. Since there was 

no other Cryptosporidium data available with the different case studies, it can be of future studies 

to compare the result of this study with varying sources of Cryptosporidium data to see if this 

pattern changes for each location or not. 

 Reflecting the second scenario, increased the Cryptosporidium’s presence probability 

from 15% to 16%. This minor increase in Cryptosporidium’s presence probability by only 

evidencing the fecal coliform’s presence, besides the previous observations of sensitivity and 

dependency analysis emphasized the need for a direct assessment of parasites such as 

Cryptosporidium rather than relying only on the presence of fecal indicator bacteria. 

The projected climate change scenario and propagating the intensified temperature and 

rainfall, resulted in an increased presence’s probability for Cryptosporidium from 15% to 29%. A 

sharper increase in presence probability was expected under this scenario because the increased 

temperature can consequently increase microorganism activity or provide a more favorable 

environment for their growth, and higher precipitation facilitates the transportation of the 

pathogen. A more pronounced increase in presence could be expected for future real-time cases 

since the scenarios in this work were developed based on projections from large scale data, and 

the real projected variations can be different. Also, the way of reflecting the projected change 

under climate change can likely impact the probability distribution of Cryptosporidium. While a 

linear modification on data was used to develop climate change scenario in this work, the 

availability of real data from projected changes extracted from climate change models possibly 

allow for a more accurate reflection. 

It can also be due to the same reason that the changes in E. coli presence probability for 

the third scenario were the same as the results observed for the first scenarios. Although severe 

rainfall was the only assumption in the first scenario, both temperature and precipitation were 

assumed to be changed in the third scenario. The requirement of discretizing the data for 
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developing BBNs can be another issue of reflecting the changes since the data will be classified 

into a specific number of bins. Therefore, further studies that can use continuous data to prevent 

information loss can help develop more practical scenario analysis. Also, taking the benefit of 

other climate change models that could generate real data proportion to the projected changes 

can be helpful in more accurate probability predictions. 

5.4 Summary 

The factors affecting the Cryptosporidium and E. coli level in source water were assessed using 

BBNs in this study. The developed BBN prediction models were used in this section to explore 

the relationship between weather and water quality parameters as the predictors and the 

Cryptosporidium and E. coli as the target variables. The strength of influence within the BBN 

models and sensitivity analysis were investigated in this section to garner an insight into how each 

parameter impacts the presence of Cryptosporidium and E. coli. Also, CPTs of BBN models 

allowed for analyzing different climatic scenarios to see how projected changes can worsen 

source water qualities in terms of pathogen’s presence.  

 Regarding the assessment of Cryptosporidium, both sensitivity analysis and strength of 

influence observations emphasized the importance of weather parameters on the decision made 

by the model for predicting the presence or absence of Cryptosporidium. Despite expecting a high 

dependency on fecal coliform, a poor interconnection between Cryptosporidium and fecal coliform 

implied that these indicators bacteria seem to be a poor universal indicator for other parasites’ 

presence. The observed increase in Cryptosporidium’s presence probability to more than 10%, 

under severe rainfall and climate change scenarios also aligned with the sensitivity analysis and 

strength of influence observation and reinforced the importance of considering weather 

parameters in water quality assessments. 

 The relationship between E. coli and other water quality/ weather parameters were 

observed to be very site-specific based on the employed approaches. For instance, the land cover 

around the case study seemed to impact the parameters’ dependency. The E. coli level in both 

Peace and Salmon Rivers were observed to be more sensitive to fecal coliform, possibly due to 

the surrounding agricultural lands. On the other hand, the pathogen’s concentration in the 

Cheakamus River presented a high dependency on hardness and weather parameters, as 

located in forestry areas. The analysis of scenarios also supported the site-specific variation of E. 

coli and the necessity of considering a wide range of parameters for evaluating the microbial 

quality of source waters. 
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Chapter 6: Conclusion 

6.1 Summary of Contributions 

 

In this thesis, Cryptosporidium and E. coli levels were assessed in different source waters using 

Bayesian Belief Network (BBN) models. The impacting parameters on the capability of the models 

in predicting microbial quality indicators was investigated to introduce a better approach in source 

water quality estimations. The lack of available data for microbial contamination, which was a 

limiting factor in developing prediction models, have been addressed. The contributions of this 

thesis can be summarized as follows. 

 

1. BBNs successfully applied for predicting the microbial quality indicators, and the 

application of data balancing algorithms was observed to improve the accuracy of 

prediction in the case of lacking complete data.   

Results from applying BBNs on four distinct source waters with different datasets, 

demonstrated the ability of these models to predict E. coli and Cryptosporidium as two 

pathogens of concern. However, it is well known that complete and extensive historical 

data is required to train data-driven models. The observations in this thesis indicate that 

data balancing and synthetic sampling algorithms, such as ADASYN and SMOTE, can 

address the lack of data and contribute to improving the accuracy of prediction models for 

source water quality assessments. 

Two different splitting approaches were tried in this work to see if including the test 

size in synthesizing the training dataset can cause an overfitting situation for the model or 

not. The observation showed that this inclusion could be deceptive since excluding test 

data in the data generation step showed a drop in the prediction capacity of the model 

developed with generated data. Although the application of data balancing algorithms was 

shown to improve the prediction accuracy for BBN models, the higher accuracy achieved 

for predicting E. coli than Cryptosporidium showed that these methods cannot completely 

compensate for the lack of real observed data.  

 

2. The impact of weather characteristics on E. coli and Cryptosporidium level in 

source waters investigated. 
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The underlying relationships between climatic parameters (temperature and precipitation) 

were analyzed through the linear method and BBN’s performance. The observation 

indicated the inefficiency of monitoring fecal bacteria as a representative of microbial 

contamination. The high dependency that denoted between precipitation and temperature 

for prediction on E. coli and Cryptosporidium indicated the necessity of considering 

weather events besides water quality parameters in microbial quality assessment of 

source waters before intaking to treatment systems. Also, the non-consistency of the 

relationship between E. coli and other variables for each monitoring site indicated that 

different characteristics of case studies should be considered and reflected in developing 

models for microbial quality assessments. Developing different climatic scenarios also 

reinforced these observations by indicating the distinct reaction of each pathogen to the 

projected variations of weather parameters such as precipitation. Although the presence’s 

probability of Cryptosporidium improved under heavy rainfalls and increased temperature 

and the likelihood of E. coli’s presence was observed to reduce for two monitoring sites. 

These findings highlight the impact of other features of the case study on pathogen 

concentration in source waters. 

6.2 Limitations and Suggestions for Future Works 

 

The Cryptosporidium dataset used in this study was from a reservoir with multiple regulation 

systems for alleviating the impact of severe weather on source water quality. However, applying 

the same models for different case studies with lower standards can give a more realistic dataset 

and observations in future works. The only available dataset for long-term observation of 

Cryptosporidium was used in this study. The difficulties in collecting Cryptosporidium data make 

it rare to find a comprehensive dataset that would probably be even more challenging for regions 

with lower standards. Therefore, it could be of future interest to consider other available datasets 

worldwide to assess the capability of BBN models in predicting Cryptosporidium. 

 BBNs allow for quantifying the relationship of variables and investigating the target 

parameters’ probability variation under different scenarios. However, the need for discretizing the 

data prior to developing the model can reduce the accuracy of the model when the real data are 

not available, and the scenarios should be reflected by modifying the data. Discretizing the 

modified data into a specific number of bins will result in missing some part of information and 

disable reflecting the associated changes of scenarios. Therefore, developing BBNs that are 



81 

 

capable of using continuous data can improve the capability of the model in the assessment of 

pathogens under different scenarios. 

Furthermore, the impact of weather characteristics on E. coli was observed to be very site-

specific. It seems that the land cover of the monitoring site can play an essential role in microbial 

contamination of the surrounding source waters. Therefore, besides considering the weather 

characteristics of the case study, propagating the feature of the land cover can contribute to 

developing more accurate and realistic BBN models. This can be of future interest to improve the 

BBN models developed here by considering other variables reflecting broader properties of the 

source waters. 
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Appendices 

Appendix A : Supplementary Data for Chapter 3 

 

 

Figure S1. Scatterplot of fecal coliform on sampling day with other parameters of Kensico 

Reservoirs. 
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Figure S2. Scatterplot of temperature with other parameters of Kensico Reservoirs. 
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Figure S3. Scatterplot of precipitation with other parameters of Kensico Reservoirs. 
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Figure S4. Scatterplot of precipitation over three days with other parameters of Kensico 

Reservoirs. 
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Table S.1.  Prediction accuracy of Cryptosporidium with simple Model (Logistic Regression) 

 (a) Test data used in balancing (b) Test data not used in balancing 
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Appendix B : Supplementary Data for Chapter 4 

 

 

Figure S5. Autocorrelation of all Cheakamus River parameters based on one month time 

lag and confidence interval of 95%. 
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Figure S6. Autocorrelation of all Peace River parameters based on one month time lag 

and confidence interval of 95%. 
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Figure S7. Monthly time series of all water quality and weather parameters of Cheakamus River. The 

time intervals are equal to one month.  

 

Figure S8. Monthly time series of all water quality and weather parameters of Peace River. The 

time intervals are equal to one month. 
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Table S.2.  Prediction accuracy of E. coli with simple Model (Logistic Regression) 

Model Location 

Overall 

Accuracy 

 

Prediction Accuracy of 

E. coli<20 CFU/100 

Prediction Accuracy 

of E. coli>20 CFU/100 

Logistic 

Regression 

Cheakamus River 71% 21% 97% 

Peace River 88% 92% 50% 

Salmon River  72% 2% 99% 

 


