
Reinforcement Learning in the Presence of Sensing Costs

by

Tzu-Yun Ariel Shann

B.Sc., National Tsing Hua University, 2017

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

April 2022

© Tzu-Yun Ariel Shann, 2022



The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Reinforcement Learning in the Presence of Sensing Costs

submitted by Tzu-Yun Ariel Shann in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science.

Examining Committee:

Leonid Sigal, Associate Professor, Computer Science, UBC
Supervisor

Michiel van de Panne, Professor, Computer Science, UBC
Co-Supervisor

Jeff Clune, Associate Professor, Computer Science, UBC
Supervisory Committee Member

ii



Abstract

In recent years, reinforcement learning (RL) has become an increasingly popular

framework for formalizing decision-making problems. Despite its popularity, the

use of RL has remained relatively limited in challenging real-world scenarios, due

to various unrealistic assumptions made about the environment, such as assum-

ing sufficiently accurate models to train on in simulation, or no significant delays

between the execution of an action and receiving the next observation. Such as-

sumptions unavoidably make RL algorithms suffer from poor generalization. In

this work, we aim to take a closer look at how incorporating realistic constraints

impact the behaviour of RL agents. In particular, we consider the cost in time and

energy of making observations and taking a decision, which is an important aspect

of natural environments that is typically overlooked in a traditional RL setup. As a

first attempt, we propose to explicitly incorporate the cost of sensing the environ-

ment into the RL training loop, and analyze the emerging behaviours of the agent

on a suite of simulated gridworld environments.

iii



Lay Summary

Reinforcement learning (RL) is a popular framework to model decision making,

where an agent learns by interacting with the environment. In a typical RL setup, at

each time step, the agent receives an observation, decides on an action, and receives

feedback from the environment. However, RL remains relatively limited in real-

world scenarios, as natural complications such as delays in time or costs in energy

are typically ignored in standard setups. In this work, we explore the possibility

of exploiting these complications as learning cues. By explicitly incorporating

sensing costs into the RL problem, we show that it allows the agent to learn to

make “smarter” decision, using less time and less resources. We argue that the

problem setting we explore is particularly suitable for real-world challenges, where

efficiency is crucial.

iv



Preface

The presented work is originally and entirely done by the author, Tzu-Yun Ariel

Shann, at the University of British Columbia, under the supervision of Prof. Leonid

Sigal and Prof. Michiel van de Panne.

Model design, code implementation, experiments and writing are done by the

author alone, with useful and constructive feedback from Prof. Leonid Sigal and

Prof. Michiel van de Panne. Specifically, Prof. Leonid Sigal kindly shared his

advice on model design, as well as debugging tips. Prof. Michiel van de Panne

provided his expertise in reinforcement learning and shared insights along every

step. Both of them also helped with revising the draft of this thesis.

This study does not involve any human subjects and is done entirely by me,

hence no Ethics Board approval was required.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Temporal abstraction . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Frame-skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 RL with State-sensing Costs . . . . . . . . . . . . . . . . . . . . 9

3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Frame-skipping as a Proxy . . . . . . . . . . . . . . . . . . . . . 11

3.2 Observation and its Cost . . . . . . . . . . . . . . . . . . . . . . 12

3.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vi



4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.3 Implementation Details . . . . . . . . . . . . . . . . . . . 17

4.2 Cliff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 ZigZag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Analysis on Hyperparameters . . . . . . . . . . . . . . . . . . . . 22

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



List of Tables

Table 4.1 Results in cliff environments. We report (a) the mean re-

ward and (b) the number of steps after 10k training episodes

averaged over 20 random seeds. . . . . . . . . . . . . . . . . . 19

Table 4.2 Results in zigzag environments. We report (a) the mean

reward and (b) the number of steps after 10k training episodes

averaged over 20 random seeds. . . . . . . . . . . . . . . . . . 22

viii



List of Figures

Figure 2.1 A typical perception-action-learning loop of reinforcement
learning. At each timestep, the agent perceives a state St , and

chooses an action At according to its current policy. The envi-

ronment then transitions into a next state St+1 and provides a

reward Rt+1. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.2 An instance of recent hierarchical RL methods. In hierar-

chical RL, the lower-level policy (µ lo) interacts directly with

the environment. The high-level policy (µhi) instructs the low-

level policy via high-level actions or goals. Figure borrowed

from [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3 An schematic overview of dynamic-frame skipping in Fi-
GAR, borrowed from [20]. The arrows represent the action

taken between frames, the thunderbolt indicates the firing ac-

tion, and the numbers indicates the number of time steps for

which the action was repeated. . . . . . . . . . . . . . . . . . 8

Figure 2.4 The computation graph borrowed from [7]. As depicted

in the graph, there are two pathways for perception: one that

goes through the encoder φ (marked in blue), and the other

that passes through the predictor f (marked in red). The two

pathways are assumed to have different costs, and the gating

network πg determines which pathway should be followed. . . 10

ix



Figure 3.1 Computation graph for our model. The agent consists of

2 policies: πa and πk, which operates sequentially. πa first

determines the action given the current state, and πk outputs

the skip number given current state and action. Dashed line

indicates that the agent may skip making decisions at some

time steps. In case πk predicts to execute the same action over

multiple timesteps, the previous predicted action will be reused

(indicated by the blue loop). . . . . . . . . . . . . . . . . . . 13

Figure 3.2 A systematic overview of our method. In this example, at

timestep t0, the behaviour policy πa outputs an action UP, and

the skip policy πk chooses the number of skips 3. Thus, the

action UP is executed 3 times, regardless of intermediate states

s1 and s2. Since no observation is made at timesteps t1 and t2,

an intrinsic reward rint is awarded to the agent. At timestep

t3, the agent again makes an observation and determines new

action-skip pair (a3,k3). . . . . . . . . . . . . . . . . . . . . 14

Figure 4.1 Some example environments. . . . . . . . . . . . . . . . . . 16

Figure 4.2 Learning curves in cliff, averaged over 20 random seeds.
(a) Ours (green) learns significantly faster than the Q learning

baseline (orange). . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 4.3 Visualization results in cliff2. The arrows indicate the

trajectories taken by the agent, over the length of 10 episodes.

The more opaque it is, the more frequent the agent takes the

same step. The number in each grid represents the state visita-

tion count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 4.4 Learning curves in zigzag, averaged over 20 random seeds.
(a) Ours (green) learns significantly faster than the Q learning

baseline (orange). . . . . . . . . . . . . . . . . . . . . . . . . 21

x



Figure 4.5 Visualization results in zigzag2. The arrows indicate the

trajectories taken by the agent, as observed during 10 episodes.

The more opaque it is, the more frequent the agent takes the

same step. The number in each grid represents the state visita-

tion count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.6 Effects of hyperparameters. We show the learning curves (a)

using different intrinsic rewards, and (b) using different num-

ber of maximum skips. . . . . . . . . . . . . . . . . . . . . . 24

xi



Chapter 1

Introduction

Reinforcement learning (RL) is a general paradigm for solving sequential decision-

making problems, where an agent interacts with an environment in a sequence of

actions, observations and rewards. Unlike supervised learning wherein explicit su-

pervision is provided, an RL algorithm must instead learn from feedback in the

form of rewards, which is frequently sparse, noisy and delayed, and in a trial-and-

error fashion. An optimal policy can be learned by maximizing expected cumula-

tive rewards. However, traditional RL methods are limited to tabular settings, and

thus are infeasible to deal with high-dimensional or continuous state spaces, lim-

iting generalization. In the last few years, equipped with deep neural networks as

function approximators and through representation learning, RL has been success-

fully applied to more complex environments, e.g., using pixel observations, and

has achieved remarkable success in a wide range of sequential decision making

problems, such as game-playing [15, 22], robotics [13], self-driving cars [12], and

natural language processing [27, 29].

Despite the progress in various domains, there are still a number of limitations

and challenges that hinder the applicability of RL. It has been shown that existing

RL algorithms exhibit high sensitivity to the choice of hyperparameters [14]. Re-

tuning these hyperparameters may thus be necessary for every new task, which can

become expensive both in terms of time and computational costs. This is especially

undesirable in real-world scenarios where sample efficiency is crucial. Another

major barrier to broader applicability comes from the design of reward functions–

1



many real-world tasks have complex reward structures that humans understand via

high-level concepts, but it may be difficult or prohibitively expensive to design

such a reward function by hand. For example, consider a driving task in a busy city,

where humans know the importance of the high-level concept of safety. However,

there are many underlying objectives we need to trade off, such as maintaining

safe distance, not changing lane too often, staying far from any pedestrians, and

so on, which will be hard to specify manually for an agent. Moreover, current

RL algorithms have been shown to suffer from poor sample efficiency– it can take

tens to hundreds of millions of samples to train an RL agent, which makes many

practical applications infeasible, especially in real-world control problems where

data collection is expensive.

Thus far, most RL successes depend on the availability of a simulator, which

makes a series of assumptions that are not always satisfied in practice. One promi-

nent difference between such simulations and real sensorimotor systems lies in

time delays, in either the sensing of the state, the actuators, or the reward feed-

back [1, 8]. Indeed, such sensorimotor delays are inherent in many systems, in both

humans and animals, and our ability to move or control our actions is constrained

by this time-sensitive relationship between sensations and motor outputs. Consider

the scenario where an animal is trying to flee from its predator– the time required

to perceive a stimulus (predator) and to produce a response (escape) is crucial to

its survival. Thus, such sensorimotor delays have been shown to impact motion

strategies. For example, additional mechanisms, such as sensorimotor prediction,

using “efficient copies” of motor commands may be needed to compensate for sen-

sorimotor delays. Apart from the different dynamics, the observation discrepancy

between simulated environments and the real world also makes it challenging for

RL to generalize [18].

In this work, however, instead of trying to find a way to be robust to these

natural complications, we are instead interested in whether they might serve as
important constraints for an agent when learning to act optimally in the envi-
ronments?

An essential aspect of natural environments that is typically overlooked is the

cost in time and energy of making an observation. In RL, it is commonly assumed

that the observation of the next state comes instantaneously and at no cost, which

2



is generally not true in practice. Furthermore, while it is possible to sense the

environment at every single timestep, it might not be necessary for optimal per-

formance if the environment can already be easily predicted. Instead, it might be

better to conserve resources in preparation of future events.

Specifically, we consider the scenario where there is a cost associated with

making an observation. At each timestep, the agent can either choose to observe

at a cost, or to skip sensing the environment (at no cost). We use frame-skipping

as a proxy of not observing, and implement a two-part policy, where there is an

actor for action selection and another policy to determine the number of skips. To

effectively incorporate sensing costs into the problem, we express it as an intrin-

sic reward function, in which choosing to skip is a less costly operation. Under

this assumption, we hypothesize the optimal strategy for the agent is to skip more

(save resources) when the environment can be easily predicted, and alternatively,

to choose to pay the cost of frequent observations in regions of uncertainty. We

experiment in a variety of grid-world environments with varying degrees of diffi-

culty and stochasticity, and analyze how agents learn to observe only when it is

necessary, thus making fewer decision steps compared to traditional RL baselines.

3



Chapter 2

Related Work

2.1 Reinforcement learning
Reinforcement learning (RL) is a popular formulation for solving sequential deci-

sion making problems [24]. In the RL setup, an agent observes a state St from its

environment E at timestep t, and then chooses an action At in state St based on its

policy πθ . Once the action is executed, the environment transitions to a new state

St+1 and provides feedback in the form of a reward Rt+1. The agent thus learns

to alter its behaviours in response to the rewards received. This perception-action-

learning loop is illustrated in Figure 2.1.

Formally, the environment E is usually characterized by a Markov decision

process (MDP):

M = (S,A,P,r,s0,γ,T ),

with state space S, action space A, transition probability P : S× A× S→ [0,1],

reward function r : S×A→ R, initial state distribution s0, discount factor γ ∈ [0,1),
and horizon T . The goal of the agent is to learn a policy πθ : S×A→ R+ such that

it maximizes the expected return:

Gτ = Eτ

[
T

∑
t=0

γ
kr(St ,At)

]
,

where τ denotes the trajectory generated by πθ parameterized by θ .

4



Figure 2.1: A typical perception-action-learning loop of reinforcement
learning. At each timestep, the agent perceives a state St , and chooses
an action At according to its current policy. The environment then tran-
sitions into a next state St+1 and provides a reward Rt+1.

Recently, with the breakthrough of deep learning, there is also a renewed inter-

est in RL. A plethora of deep RL algorithms and techniques have been proposed

to tackle more challenging problems [13, 15, 22]. We discuss distinctions between

some general categories of RL algorithms in the following.

Model-based and model-free methods. In model-based approaches, a predictive

model of the environment is used to learn the control policy. While in model-free

methods, the modeling step is bypassed and a control policy is learned directly.

On-policy and off-policy methods. In on-policy learning, the algorithm is trained

using samples produced by the current policy, whereas off-policy methods are in-

dependent of the policy used to generate behaviours.

Value-based and policy-based methods. Value-based methods rely on the value

function– the value (expected return) of being in a given state. The policy is im-

plicit and can be derived by choosing the action that results in the best value. On

the other hand, policy-based approaches do not maintain a value function, but have

an explicit representation of the policy and directly searches for an optimal policy.

It is possible to combine value functions with an explicit policy, which results in

actor-critic methods, where the “actor” (policy) learns by using feedback from the

“critic” (value function).

5



2.1.1 Q-learning

In this work, we focus primarily on Q-learning, which is a model-free, off-policy

and value-based RL algorithm. Q-learning is based on Q-value, or state-action

value, which is the expected return of a state-action pair (st ,at) at timestep t:

Qπ(s,a) = Eπ [Gt | St = s,At = a] .

The best policy can be found by choosing a greedily at every state, i.e. argmaxa Qπ(s,a).

To actually learn Qπ , we exploit the Markov property and define the function as a

Bellman equation [4], which has the following recursive form:

Qπ(St ,At) = ESt+1 [Rt+1 + γQπ(St+1,π(St+1))] .

It can then be learned iteratively by:

Qπ(St ,At)← Qπ(St ,At)+α

[
Rt+1 + γ max

a∈A
Qπ(St+1,a)−Qπ(St ,At)

]
,

where α is the learning rate.

Recently, Deep Q-Networks [16] (DQN) makes use of machine learning mod-

els to approximate Q values, which brings together classic RL algorithms and deep

learning. With some innovative mechanisms, such as experience replay that allows

more efficient use of previous experience, DQN is shown to improve and stabilize

Q-learning.

2.2 Temporal abstraction
Learning and operating over different levels of temporal abstraction is a long-

standing challenge in RL, especially for tasks that require long-term planning. A

common framework for temporal abstractions is the options framework [19, 25],

which involves two levels of abstractions over actions. The bottom level is called

an option, which is a sub-policy with a termination condition. It takes in observa-

tions, and outputs actions until the termination condition is met. The top level, on

the other hand, is a policy over options, which picks an option to follow until its ter-

mination. There is a large body of works on techniques for learning options. How-

6



ever, many existing methods make assumptions about the task structures, and/or

the skills needed to solve the tasks, thus they may require intermediate supervisory

signals such as pseudo-rewards [10, 21] or pre-defined subgoals [6]. To avoid de-

pendence on prior knowledge and manual design in the task space, some methods

of automatic options discovery have also been proposed to learn these abstractions

from scratch [28].

Recently, many works on hierarchical RL have made a departure from the op-

tions framework [17, 26]. Instead of having a policy over options as the top level,

these approaches learn the higher-level policy that produces meaningful and ex-

plicit goals for the bottom level to achieve (Figure 2.2).

Figure 2.2: An instance of recent hierarchical RL methods. In hierarchical
RL, the lower-level policy (µ lo) interacts directly with the environment.
The high-level policy (µhi) instructs the low-level policy via high-level
actions or goals. Figure borrowed from [17].

7



Figure 2.3: An schematic overview of dynamic-frame skipping in FiGAR,
borrowed from [20]. The arrows represent the action taken between
frames, the thunderbolt indicates the firing action, and the numbers in-
dicates the number of time steps for which the action was repeated.

2.3 Frame-skipping
Frame-skipping is a technique commonly used in deep RL algorithms, where a

chosen action is repeated for a fixed number of timesteps k. If at represents the

action taken at timestep t, then a1 = a2 = · · ·= ak, ak+1 = ak+2 = · · ·= a2k and so

on. This allows deep RL algorithms to compute the action once every k timesteps,

reducing computational cost [9, 20], and can also be viewed as an alternative and

naive way to achieving temporal abstractions. On the popular Atari benchmark [2],

frame-skipping is first applied with the intent to alleviate the computation load

caused by sensing pixel observations. However, subsequent research has shown

that better performance can be achieved by skipping up to 180 frames in some

games [5]. In the past, the number of frame skips has largely been static, but

recently there are a few works that explore dynamic frame skips and show that it

leads to significant improvement in some simulated environments [23].

FiGAR [20] is one generic framework that enables deep RL algorithms to learn

temporal abstractions in the form of temporally extended macro-actions (Figure

2.3). Instead of setting a pre-specified k, FiGAR decouples the policy into two

8



independent components: one for choosing the action, and the other for selecting

the number of frame skips. The authors have shown that FiGAR can be used to im-

prove current deep RL algorithms, and learns better control policies by discovering

optimal sequences of temporally elogated macro-actions.

2.4 RL with State-sensing Costs
Standard RL algorithms assume that the observation of the next state comes in-

stantaneously and at no cost. However, this is generally not true in natural environ-

ments, where making an observation often has its associated cost in both time and

energy. In such scenarios, efficient decision making is especially crucial, and sens-

ing the environment might not be necessary if it can already be easily predicted. It

may be a better strategy to save energy whenever possible instead for future uses.

While costs are inherent in real-world systems, to the best of our knowledge, there

has been little work that explores the roles of such sensing costs in the scope of

RL.

Some related papers in this direction view the problem through the lens of

active learning [3, 11]. Bellinger et al. [3] study active RL (ARL), a modification to

traditional RL. As in active learning which aims to select only informative samples

to improve the network, an ARL agent chooses when to observe the reward signal

(sample). If the agent chooses to observe the reward, it has to pay the “query cost”.

The agent’s goal is to maximize total reward minus total query cost, instead of

learning the reward function. In a similar vein, Krueger et al. [11] consider an MDP

with one or multiple classes of observations, each with their explicit associated

costs. They propose the active measure RL (AMRL) framework, where the agent

chooses which class to observe. However, their current experiments are limited to

only one class of observation.

The closest related work to our own is [7]. The authors consider a setting in

which the environment is asynchronous, and operations such as observation, pre-

diction and action selection have their associated costs, which necessitates a trade-

off between them while learning to solve tasks. As illustrated in Figure 2.4, there

are two pathways for perception: an encoder φ that encodes observations directly,

and a predictor f that predicts the latent representation of the current state given

9



Figure 2.4: The computation graph borrowed from [7]. As depicted in the
graph, there are two pathways for perception: one that goes through
the encoder φ (marked in blue), and the other that passes through the
predictor f (marked in red). The two pathways are assumed to have
different costs, and the gating network πg determines which pathway
should be followed.

the past hidden state and action. It is assumed that making an observation is more

costly than predicting, and this “observation cost” is incorporated by including an

intrinsic reward in the learning setting.

In contrast to these works, our work focuses on learning a policy that predicts

when to observe what. Specifically, instead of predicting whether to observe per

timestep, ours directly outputs a number of timesteps that determines when and

what to observe next. In other words, our agent makes fewer decisions, and is

more efficient in terms of computation. Ours also does not require training an extra

encoder, although it is possible to incorporate one as well.

10



Chapter 3

Method

The objective of this thesis is to take a look at how real-world constraints play a

role in policy learning. In particular, we consider the sensing costs– one that the

agent has to pay in order to sense the environment. Under this setting, the agent’s

goal is to maximize its accumulated rewards minus the costs. Thus, the agent has

to learn to observe only at states where observations are critical for succeeding the

task. We propose strategies to realize such a problem setup, including the use of

frame-skipping as a proxy for not making observations, and defining an intrinsic

reward function to incorporate the notion of sensing costs into the RL problem.

In this section, we begin by describing how frame-skipping can be viewed as a

proxy for not making observations. We then show how the cost is incorporated into

the problem setup through the use of intrinsic rewards. And finally, we introduce

a specific model instantiation for learning not only which action to take, but also

when to make a new decision.

3.1 Frame-skipping as a Proxy
While frame-skipping is commonly used in RL algorithms, we view it from the per-

spective of temporal abstraction, and argue that repeating the same action regard-

less of real environment states is analogous to not making an observation. Hence,

to provide the agent with the flexibility of choosing when to observe, we propose

to employ frame-skipping as a proxy, which is simple to implement yet effective.

11



3.2 Observation and its Cost
We consider the scenario where there is a sensing cost c associated with making

an observation. In such scenarios, the agent’s goal is to maximize its accumulated

reward, while simultaneously minimizing the cost. To incorporate c, we express it

in the form of intrinsic rewards:

rint(t) =

0, if observing at timestep t

c, otherwise
(3.1)

where c is a hyperparameter. Hence, the total reward function can be expressed as:

r = rext(st)+ rint(t), (3.2)

where rext is the external reward returned by the environment.

3.3 The Model
Our model consists of the two policies below:

• The behaviour policy πa : S→ A, which is a standard RL policy that com-

putes the optimal action given the current state.

• The skip policy πk : S×A→ R, which outputs the number of timesteps k =

{1,2, . . . ,kmax} to repeat the previous action, where kmax is a hyperparameter.

We set kmax = 7 in most of our experiments.

A computation graph of our model is given in Figure 3.1. While we focus ex-

clusively on Q-learning for policy learning in this work, our framework can in

principle be used to extend any RL algorithms.

12



Figure 3.1: Computation graph for our model. The agent consists of 2
policies: πa and πk, which operates sequentially. πa first determines
the action given the current state, and πk outputs the skip number given
current state and action. Dashed line indicates that the agent may skip
making decisions at some time steps. In case πk predicts to execute the
same action over multiple timesteps, the previous predicted action will
be reused (indicated by the blue loop).

We summarize how our method operates as follows:

1. In the very first state s0, the actor πa predicts an action a0, and the action

repetition policy πk predicts the number of timesteps k0 to repeat a0.

2. From timestep 0 until k0, the agent executes a0, regardless of intermediate

states s j, and receives an intrinsic reward rint during intermediate timesteps.

3. At timestep k0, the agent again decides a new action ak0 to execute, as well

as the number of timesteps kk0 to repeat it.

An illustrative example can be found in Figure 3.2. In this example, the be-

haviour policy πa outputs the action UP, and the skip policy πk outputs 3 as the

number of skips. As a result, the agent will perform UP for 3 consecutive timesteps,

without sensing the actual states s1 and s2 in intermediate timesteps t1 and t2.

13



Figure 3.2: A systematic overview of our method. In this example, at
timestep t0, the behaviour policy πa outputs an action UP, and the skip
policy πk chooses the number of skips 3. Thus, the action UP is executed
3 times, regardless of intermediate states s1 and s2. Since no observa-
tion is made at timesteps t1 and t2, an intrinsic reward rint is awarded
to the agent. At timestep t3, the agent again makes an observation and
determines new action-skip pair (a3,k3).

14



Chapter 4

Results

In this chapter, we aim to look into the following questions through our experi-

ments:

1. How does the sensing cost affect the agent’s behaviour, especially in the face

of uncertainty.

2. Is the proposed framework sensitive to the choice of hyperparameters, in

particular the choices of intrinsic rewards and the number of skips.

For the first question, we hypothesize that incorporating the sensing cost will

encourage the agent to only make observations at states that are most critical to

completing the task. For example, in a navigation task, it might require more

frequent observations at areas that are cluttered or at corridor turns, but less so

at regions that can be easily predicted.

4.1 Setup

4.1.1 Environment

We benchmark on a variety of classic grid-world environments, as illustrated in

Figure 4.1. The agent’s overall goal is to navigate from the start location (S) to the

goal location (G), without falling into the pits (black cells). At each timestep,

the agent can choose among four available actions: UP, DOWN, LEFT, and

15



(a) Cliff1 (b) ZigZag1

(c) Cliff2 (d) ZigZag2

Figure 4.1: Some example environments.

RIGHT. A negative reward of −1 is given if the agent falls into the pit, and the

episode immediately terminates. A positive reward of 1 is awarded once the agent

arrives at the fixed goal location. There is no penalty if the agent bumps into the

wall, and the maximum timesteps allowed per episode is set to 100 unless other-

wise specified.

To test the proposed framework, we specifically include environments that are

strictly deterministic, as well as ones that are (partially) stochastic. As an example,

in Figure 4.1, only the right regions with blue cells are stochastic. When the agent

is in one of these cells, there is 10% chance that a random action may be executed

instead of the chosen one.

16



4.1.2 Evaluation

Throughout this thesis, all the experimental results are averaged results over 20 ran-

dom seeds, unless stated otherwise. We highlight the effectiveness of our method

using a mixture of different evaluation criteria. Quantitatively, we report the learn-

ing curves, mean rewards, and the mean number of steps taken, averaged over 20

random seeds. For qualitative results, we directly visualize the agent’s trajectories

on the map, as well as state visitation counts to show how frequent the agent visits a

specific state. We also describe how the sensing cost plays a role in policy learning

in terms of learned behaviours.

4.1.3 Implementation Details

Unless otherwise specified, we set the maximum number of skips to be 7 in all

our experiments. Both ours and the baseline model are trained using the same ε-

greedy strategy, where ε is linearly decayed from 1.0 to 0.0 over all episodes. We

use γ = 1 for all our experiments. In tabular cases, the Q-table for πa and πk is of

sizes (|S|, |A|) and (|S|× |A|, |K|) respectively.

17



(a) Cliff1 (deterministic) (b) Cliff1 (stochastic)

(c) Cliff2 (deterministic) (d) Cliff2 (stochastic)

Figure 4.2: Learning curves in cliff, averaged over 20 random seeds.
(a) Ours (green) learns significantly faster than the Q learning baseline
(orange).

4.2 Cliff
Figure. 4.2 illustrates the learning curves in the cliff environment. It can be seen

that ours not only learns significantly faster than the vanilla Q-learning baseline

(i.e., k = 1), but also requires fewer decision steps to reach the goal, regardless of

whether the environment is strictly deterministic or partially stochastic. Similar

observations can be made in Table 4.2b.

In Figure 4.3, we provide visualization of the trajectories taken by the agent in

both deterministic and stochastic settings. In Figure 4.3b, we can observe that the

agent learns to maximize #skips. It takes the action UP with the skip number of

5, and then decides on a new action again at the top-left corner of the map, with

18



Table 4.1: Results in cliff environments. We report (a) the mean reward
and (b) the number of steps after 10k training episodes averaged over 20
random seeds.

(a) Average rewards

Q Ours

cliff1
deterministic 0.148 0.942
stochastic 0.039 0.637

cliff2
deterministic 0.161 0.948
stochastic 0.087 0.702

(b) Average steps

Q Ours

cliff1
deterministic 80.430 4.800
stochastic 88.081 15.801

cliff2
deterministic 80.164 5.167
stochastic 85.682 14.408

a skip number of 7 this time. Compared to the baseline model in Figure 4.3a, it

can be seen that a new decision of which action to take is only made at certain

states, instead of every step. Meanwhile, the agent appears to be more “cautious”

in Figure 4.3c, it opts to take smaller steps, especially in the stochastic region, and

stays in the farthest column away from the pits.

19



(a) Baseline (kmax = 1) (b) Ours (kmax = 7, deterministic)

(c) Ours (kmax = 7, stochastic)

Figure 4.3: Visualization results in cliff2. The arrows indicate the tra-
jectories taken by the agent, over the length of 10 episodes. The more
opaque it is, the more frequent the agent takes the same step. The num-
ber in each grid represents the state visitation count.

4.3 ZigZag
As can be seen in Figure 4.4, our method once again learns significantly faster

than the baseline model, consistently reaching an average reward of 0 nearly im-

mediately after training starts, regardless of environments. Similarly, in terms of

the number of decision steps, it can be seen in Table 4.2 that ours requires fewer

steps compared to the Q learning baseline. However, we would also like to point

out that both methods fail to learn a meaningful policy at the end of training in the

stochastic versions of Zigzag environments (Figure 4.4b and 4.4d).

In Figure 4.5, we visualize the behaviours of the agent by plotting the trajec-

20



(a) Zigzag1 (deterministic) (b) Zigzag1 (stochastic)

(c) Zigzag2 (deterministic) (d) Zigzag2 (stochastic)

Figure 4.4: Learning curves in zigzag, averaged over 20 random seeds.
(a) Ours (green) learns significantly faster than the Q learning baseline
(orange).

tories over 10 episodes. From Figures 4.5a and 4.5b, we can observe that ours

succeeds to learn to take the minimum number of decision steps, while still man-

aging to complete the task. Compared to the baseline that requires 21 steps to

reach the goal, ours only needs 5, which is a significant improvement in terms of

efficiency. Even in stochastic settings where both methods fail to learn the optimal

policy, ours still manages to use fewer steps (Figure 4.5c).

21



Table 4.2: Results in zigzag environments. We report (a) the mean reward
and (b) the number of steps after 10k training episodes averaged over 20
random seeds.

(a) Average rewards

Q Ours

zigzag1
deterministic 0.191 0.820
stochastic -0.069 -0.000

zigzag2
deterministic 0.265 0.858
stochastic -0.050 0.247

(b) Average steps

Q Ours

zigzag1
deterministic 80.025 7.909
stochastic 97.564 34.985

zigzag2
deterministic 75.970 7.481
stochastic 96.098 25.208

4.4 Analysis on Hyperparameters
In this section, we look into the effects of hyperparameters on our model. We

experiment on the cliff2 environment, with the maximum environmental steps

set at 100 and for 10k episodes. Similar to previous experiments, all results shown

here are averaged over 20 random seeds.

Intrinsic rewards. As shown in Figure 4.6a, setting different intrinsic rewards

does not seem to have a noticeable effect performance-wise, as all of the models

are able to achieve similar average rewards at the end of training. However, we

would also like to point out it does effect how fast the agent learns.

Number of skips. Unlike intrinsic rewards, setting an appropriate maximum num-

ber of skips has a much more prominent effect on learning. In Figure 4.6b, it can

be seen that even with #skips set at a small number of 3 (marked in brown), it en-

ables the agent to learn significantly faster than the no-skipping baseline (marked

in green). Furthermore, as we increase #skips, we can observe a certain level of

speed-up.

22



(a) Ba4seline (kmax = 1) (b) Ours (kmax = 7, deterministic)

(c) Ours (kmax = 7, stochastic)

Figure 4.5: Visualization results in zigzag2. The arrows indicate the tra-
jectories taken by the agent, as observed during 10 episodes. The more
opaque it is, the more frequent the agent takes the same step. The num-
ber in each grid represents the state visitation count.

23



(a) Intrinsic rewards. (b) Number of skips.

Figure 4.6: Effects of hyperparameters. We show the learning curves (a)
using different intrinsic rewards, and (b) using different number of max-
imum skips.

24



Chapter 5

Conclusions

In this thesis, we propose to explicitly incorporate the sensing cost– one that the

agent has to pay to observe the true state of the environment– into the reinforcement

learning training loop. The agent’s objective is thus to make as few observations

as possible, while still managing to succeed the task. To achieve this, we describe

a general framework with two major components, an intrinsic reward function to

represent the sensing cost, as well as a two-part policy that uses frame-skipping

as a proxy for not making observations. We benchmark on a suite of gridworld

environments, and highlight the effectiveness of our proposed framework by both

quantitative and qualitative results. We find that the agent is able to learn more

efficiently compared to the vanilla Q-learning baseline. Moreover, we show that

the agent learns to trade off accuracy and cost by only observing the environment

at important states, without any prior knowledge about the environment.

5.1 Limitations and Future Work
The proposed method does not come without limitations, and there remain many

directions for future work.

We only explore how the sensing costs influence decision making. However,

we focus mostly on when to observe, but there is more to be done on what to ob-

serve. For example, is it possible to let the agent choose how many bits of informa-

tion it needs every time step. In an alternative setting, if there are multiple classes

25



of observations with different associated costs, how would the agent trade off costs

and which class to observe? Furthermore, it may be worthwhile to incorporate

memory into control policy to allow for an “internal model” of the dynamics, as

postulated in the motor control literature. We would also like to extend the cur-

rent framework to continuous states and actions. Last but not least, it would be

interesting to understand how the results might be predictive of human behaviour

in similar settings.

26



Bibliography

[1] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner,
J. Brandstetter, and S. Hochreiter. Rudder: Return decomposition for
delayed rewards. arXiv preprint arXiv:1806.07857, 2018. → page 2

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013. → page 8

[3] C. Bellinger, R. Coles, M. Crowley, and I. Tamblyn. Active measure
reinforcement learning for observation cost minimization. arXiv preprint
arXiv:2005.12697, 2020. → page 9

[4] R. E. Bellman and S. E. Dreyfus. Applied dynamic programming. Princeton
university press, 2015. → page 6

[5] A. Braylan, M. Hollenbeck, E. Meyerson, and R. Miikkulainen. Frame skip
is a powerful parameter for learning to play atari. In Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. → page 8

[6] T. G. Dietterich. Hierarchical reinforcement learning with the maxq value
function decomposition. Journal of artificial intelligence research, 13:
227–303, 2000. → page 7

[7] Y. Fu. The cost of OPS in reinforcement learning. 2021. → pages ix, 9, 10

[8] T. Hester and P. Stone. Texplore: real-time sample-efficient reinforcement
learning for robots. Machine learning, 90(3):385–429, 2013. → page 2

[9] S. Kalyanakrishnan, S. Aravindan, V. Bagdawat, V. Bhatt, H. Goka,
A. Gupta, K. Krishna, and V. Piratla. An analysis of frame-skipping in
reinforcement learning. arXiv preprint arXiv:2102.03718, 2021. → page 8

27



[10] G. Konidaris and A. Barto. Skill discovery in continuous reinforcement
learning domains using skill chaining. Advances in neural information
processing systems, 22:1015–1023, 2009. → page 7

[11] D. Krueger, J. Leike, O. Evans, and J. Salvatier. Active reinforcement
learning: Observing rewards at a cost. arXiv preprint arXiv:2011.06709,
2020. → page 9

[12] X. Liang, T. Wang, L. Yang, and E. Xing. CIRL: Controllable imitative
reinforcement learning for vision-based self-driving. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 584–599, 2018.
→ page 1

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015. → pages 1, 5

[14] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots. In
A. Billard, A. Dragan, J. Peters, and J. Morimoto, editors, Proceedings of
The 2nd Conference on Robot Learning, volume 87 of Proceedings of
Machine Learning Research, pages 561–591. PMLR, 29–31 Oct 2018. URL
https://proceedings.mlr.press/v87/mahmood18a.html. → page 1

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013. → pages 1, 5

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518
(7540):529–533, 2015. → page 6

[17] O. Nachum, S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical
reinforcement learning. arXiv preprint arXiv:1805.08296, 2018. → pages
ix, 7

[18] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE
international conference on robotics and automation (ICRA), pages
3803–3810. IEEE, 2018. → page 2

[19] D. Precup. Temporal abstraction in reinforcement learning. University of
Massachusetts Amherst, 2000. → page 6

28

https://proceedings.mlr.press/v87/mahmood18a.html


[20] S. Sharma, A. Srinivas, and B. Ravindran. Learning to repeat: Fine grained
action repetition for deep reinforcement learning. arXiv preprint
arXiv:1702.06054, 2017. → pages ix, 8

[21] D. Silver and K. Ciosek. Compositional planning using optimal option
models. arXiv preprint arXiv:1206.6473, 2012. → page 7

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484–489, 2016. → pages 1, 5

[23] A. Srinivas, S. Sharma, and B. Ravindran. Dynamic frame skip deep q
network. arXiv preprint arXiv:1605.05365, 2016. → page 8

[24] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018. → page 4

[25] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999. → page 6

[26] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver,
and K. Kavukcuoglu. Feudal networks for hierarchical reinforcement
learning. In International Conference on Machine Learning, pages
3540–3549. PMLR, 2017. → page 7

[27] W. Xiong, T. Hoang, and W. Y. Wang. Deeppath: A reinforcement learning
method for knowledge graph reasoning. arXiv preprint arXiv:1707.06690,
2017. → page 1

[28] J. Zhang, H. Yu, and W. Xu. Hierarchical reinforcement learning by
discovering intrinsic options. arXiv preprint arXiv:2101.06521, 2021. →
page 7

[29] V. Zhong, C. Xiong, and R. Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint
arXiv:1709.00103, 2017. → page 1

29


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Reinforcement learning
	2.1.1 Q-learning

	2.2 Temporal abstraction
	2.3 Frame-skipping
	2.4 RL with State-sensing Costs

	3 Method
	3.1 Frame-skipping as a Proxy
	3.2 Observation and its Cost
	3.3 The Model

	4 Results
	4.1 Setup
	4.1.1 Environment
	4.1.2 Evaluation
	4.1.3 Implementation Details

	4.2 Cliff
	4.3 ZigZag
	4.4 Analysis on Hyperparameters

	5 Conclusions
	5.1 Limitations and Future Work

	Bibliography

