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Abstract

Let F be a finite extension of Qp, k the algebraic closure of Fpr for some r, and G = SL2(F ).
In the context of the mod-p Local Langlands correspondence, it is natural to study the
pro-p Iwahori Hecke algebra H := Endk[G](k[G/I], k[G/I]) attached to the pro-p Iwahori
subgroup I ≤ G. One reason is that when F = Qp, there is an equivalence between the
category of H-modules and the category of smooth k-representations of G generated by
their I-fixed vectors. Unfortunately, this equivalence fails when F is a proper extension of
Qp.

We overcome this obstacle somewhat by passing to the derived setting. When F is
a proper extension and I is a torsion free group, it was shown by Schneider that we can
obtain an equivalence between the derived category of smooth representations and a certain
derived category associated to H. Relatively little is known about this equivalence. In
understanding more, we can consider the cohomology algebra E∗ := Ext∗(k[G/I], k[G/I]).
The goal of this thesis is to study the related algebra E∗P := Ext∗Repk(G)(k[G/P], k[G/P])
when P is taken to be either the Iwahori subgroup J of G or the maximal compact subgroup
K = SL2(Zp), both of which contain I. We are able to give explicit descriptions of these
algebras, including the full product. Surprisingly, we deduce that E∗K is commutative (not
graded commutative) and that it is isomorphic to the centre of E∗J .
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Lay Summary

A square is a highly symmetric object; it has both rotational and reflectional symmetry.
In mathematics, the set of symmetries of an object is called a group. Given a group, can
we represent the symmetries as matrices? If so, how? These are the basic questions which
underlie the branch of mathematics known as representation theory.

The mod-p Local Langlands conjecture is an important unsolved problem which con-
nects representation theory to other areas of mathematics. It posits that there is a cor-
respondence between certain mod-p representations of the group Gal(Qp/F ) and certain
mod-p representations of the group GLn(F ). Recently it has become clear that there is a
family of algebraic objects, called the parahoric Hecke Ext-algebras, which may be useful
in studying this conjecture. The goal of this thesis is to write down explicit descriptions of
two distinguished parahoric Hecke Ext-algebras.
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Preface

This thesis is comprised of three chapters. Chapter 1 gives a very brief historical account
of the mod-p Local Langlands program, and explains how the work presented here fits
into the bigger picture. Chapter 2 mostly consists of background material. Its purpose is
twofold: first, to ensure that the thesis is somewhat self-contained, and second, to define
the notation which we shall often refer to in Chapter 3. Much of this chapter is standard
material and was drawn from [BH06], [Her08], [Her13], [Hum90], [Mil20], and [Ser73],
though the exposition is original. Finally, in Chapter 3 we present the original work of the
author. These results build on previous work of Ollivier and Schneider (mainly [OS19] and
[OS21]) as well as work of Ollivier currently in preparation. We plan to submit a version
of Chapter 3 for publication as a part of [OS].
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Chapter 1

Introduction and background

Let Qp be the field of p-adic numbers, where p is a prime number, and let Fp be the field
with p elements. Denote by Qp and Fp their respective algebraic closures. We fix F to be
a finite extension of Qp. Then F admits a discrete valuation extending the one on Qp; in
particular, the residue field of F is a finite extension of Fp. Roughly speaking, the goal of
the classical local Langlands correspondence for G = GLn(F ) is to establish some sort of
“natural” correspondence{certain n-dimensional representations

of Gal(Qp/F ) over Q`-vector spaces
(up to isomorphism)

}
←→

{
certain representations

of GLn(F ) over Q`-vector
spaces (up to isomorphism)

}

where ` is a fixed prime. Part of the challenge is that we do not know a priori exactly what
form the correspondence should take. For example, which representations do we actually
want to consider on both sides? And what does “natural” mean in this context?

The case ` 6= p was essentially solved in the early 2000’s through the work of Henniart
[Hen00] and Harris and Taylor [HT01], who describe a correspondence between isomor-
phism classes of certain n-dimensional continuous representations of Gal(Qp/F ) over Q`-
vector spaces and isomorphism classes of certain smooth and irreducible representations of
GLn(F ) over Q`-vector spaces. Here, smooth (sometimes called locally constant) represen-
tations of G = GLn(F ) are representations for which the set StabG(v) := {g ∈ G | g ·v = v}
is open in G for all v. Their correspondence is also compatible with “reduction modulo `”,
namely, we retain a correspondence after reducing to representations over F`-vector spaces
(see [Vig01]).

In contrast, when ` = p the situation is much more complicated and no analogous
correspondence is fully understood in general beyond the case of G = GL2(Qp). The ` = p
case is often called the p-adic local Langlands correspondence and, just like in the ` 6= p
case, we would also like to find a correspondence which is compatible with reduction modulo
p, this latter correspondence being called the mod-p local Langlands correspondence. The
mod-p version is largely what we concern ourselves with here; specifically, we would like a
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correspondence of the form certain n-dimensional Fp-
representations of Gal(Qp/F )

(up to isomorphism)

←→
{

certain Fp-representations of
GLn(F ) (up to isomorphism)

}
.

Generally speaking, classifying the objects on the left-hand side is “easy”, and all of the
hard work must be done on the right-hand side. In 1995, Barthel and Livné [BL95] made
significant progress in the case where n = 2 and F = Qp by classifying the smooth irre-
ducible representations of GL2(Qp) over Fp (really, over any algebraically closed field of
characteristic p) arising from parabolic induction. In passing, they also come across an ex-
otic family of irreducible smooth representations called “supersingular” for which they were
unable to say much about. In 2003, Breuil [Bre03] finished off the classification of smooth
irreducible representations of GL2(Qp) by describing explicitly what these aforementioned
supersingular representations look like. Moreover Breuil was able to establish a mod-p cor-
respondence between the supersingular Fp-representations of GL2(Qp) and 2-dimensional
irreducible Fp-representations of Gal(Qp/F ). Finally, in 2013, Colmez, Dospinescu, and
Paskunas [CDP14] determine the p-adic version of the correspondence, essentially finishing
off the case F = Qp and n = 2. Remarkably, the p-adic and mod-p correspondences for
GL2(Qp) are induced by a functor.

The cases F 6= Qp or n ≥ 3 are more difficult and remain largely a mystery. For
example, the irreducible smooth representations of GLn(F ) have not yet been classified.
In the next section we discuss tools valid for any p-adic reductive group G over a p-adic
field F .

Hecke algebras Let G be the F -rational points of a p-adic reductive group over a p-
adic field F . We fix a pro-p-Iwahori subgroup I of G contained in a maximal compact
subgroup K. Denote by Repk(G) the abelian category of smooth representations of G
over a fixed algebraically closed field k of characteristic p. Part of the difficulty in un-
derstanding Repk(G) for F 6= Qp comes from the fact that there are more supersingular
representations than when F = Qp (in the sense that they outnumber the 2-dimensional
irreducible representations of Gal(Qp/F ), see [BP12]), and they have not been classified as
of now. One approach is to instead study the category Mod(H) of modules over the pro-p
Iwahori Hecke algebra H = Endk[G](k[G/I], k[G/I]) attached to I. The reason for doing
so is that there exists a left exact functor h : Repk(G) → Mod(H), which, when F = Qp,
becomes an equivalence of categories between Mod(H) and ModI(G) ([Oll09], [Koz16]).
(Here, ModI(G) is the subcategory of all smooth representations of G generated by their
I-fixed vectors.) Even when the functor is not an equivalence of categories, it appears that
the category Mod(H) encodes a lot of information about Repk(G) and may play an im-
portant role in the local Langlands correspondence: for example, when G = GLn(F ) there
is a numerical correspondence between the set of n-dimensional irreducible supersingular
H-modules and the set of n-dimensional irreducible Galois representations ([Oll10]).
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The Spherical Hecke algebra HK is also of particular importance in the representation
theory of p-adic reductive groups. It was used by Barthel and Livné in their classification
of irreducible smooth representations of GL2(Qp). Their idea was that any such repre-
sentation in characteristic p is a quotient of the compact induction c-indGKZ(σ) (where σ
is an irreducible representation of K and Z is the centre of G) by a Hecke operator T .
This was eventually generalized by Herzig in [Her11]. It should also be pointed out that
both the Iwahori and Spherical Hecke algebras are natural objects considered in geometric
representation theory, so their study may enlighten a geometric perspective of the mod-p
local Langlands correspondence.

Hecke Ext-algebras The functor h introduced previously fails to induce an equivalence
of categories in general. Since h = HomG(X,−), we see that h is left exact and its left
adjoint is

t : Mod(H) −→ ModI(G)

M 7−→ X⊗H M,

where X denotes the compact induction of the trivial character of I. In general, h will not
be right exact, so it makes sense to study its right derived functors. Recently, Schneider
[Sch15] justified this approach by showing that, when I is a torsionfree pro-p group (so,
for example, for I the pro-p Iwahori subgroup of SL2(Qp) and p ≥ 5), there exist derived
versions of h and t which give an equivalence between the derived category of smooth
representations of G and the derived category of differential graded modules over a certain
differential graded pro-p Iwahori-Hecke algebra H•.

Unfortunately, not much is known about the derived categories in question, and under-
standing them is an active area of research. In [OS19], the graded cohomology algebra

E∗ := Ext∗Repk(G)(X,X)

of H•, dubbed the pro-p Iwahori Hecke Ext-algebra, is studied and the first results about
its structure emerged. Its product is described explicitly and it is deduced that E∗ is only
supported in degrees 0 ≤ i ≤ d when I is an Iwahori pro-p subgroup with dimension d as
a p-adic Lie group (really, for I any Poincaré group of dimension d). When F = Qp, for
example, one has d = 3. Moreover, a certain duality is present between the Ei and Ed−i

graded pieces whereby Ed−i can be realized as the finite vector space dual of Ei.
Let P be a parahoric subgroup of G = SL2(Qp) containing the Iwahori subgroup J .

The main goal of this thesis is to study the parahoric Hecke Ext-algebra

E∗P := Ext∗Repk(G)(XP,XP)

where XP is the compact induction of the trivial character of P.

3



The structure of this thesis

Chapter 2 is expository in nature. In particular, we introduce the field of p-adic numbers
Qp, discuss smooth representations of locally profinite groups, and define some of the
language used to describe the modern theory. It should be noted that our treatment of
locally profinite groups includes a heavy emphasis on the examples GLn(Qp) and SLn(Qp)
even though things can often be stated in greater generality; we attempt to point out
some of these generalizations when appropriate. Finally, Chapter 3 contains the main new
results. We are able to describe fully the Iwahori and Spherical Hecke Ext-algebras E∗J
and E∗K in the case G = SL2(Qp), p ≥ 5, when k is algebraically closed of characteristic
p. We find many familiar properties inherited from the pro-p Iwahori Hecke Ext-algebra;
for example, E∗K and E∗J are supported in d degrees, there is a duality, and so on. At the
same time, many intriguing properties are discovered: one of the main results we present
is that E∗K is commutative and moreover we deduce that it is isomorphic to the centre of
E∗J .

Further questions

As work progresses, we are also met with many new and exciting questions. It is believed
that several results obtained here can be extended much beyond the case G = SL2(Qp).
It should be pointed out that in characteristic different from p, Venkatesh [Ven19] intro-
duced the Spherical Hecke Ext-algebra in the context of cohomology of arithmetic groups.
Relatively little is yet known about the Spherical algebra in our context, although there is
certainly some promise. For instance Ronchetti [Ron19] recently described a derived ver-
sion of the Satake isomorphism. Furthermore, we suspect that understanding the Spherical
Hecke Ext-algebra will allow us to extend the notion of supersingularity to Mod(E∗I ), and
perhaps even to the derived category of differential graded modules over H•. An eventual
goal is to have a concrete understanding of Schneider’s equivalence in the derived setting
and its role in the mod-p Langlands correspondence.
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Chapter 2

Smooth representations

2.1 Representations of finite groups

We begin with the basics. Let G be a group, k a field, and V a finite-dimensional vector
space over k. Denote by GL(V ) the group of linear automorphisms of V . For now, we
impose no restrictions (e.g. finiteness) on G.

Definition (Group representation). A k-representation of G is a pair (ρ, V ) where V is a
k-vector space and ρ is a group homomorphism ρ : G→ GL(V ).

We will often omit the k in k-representation when the coefficient field is clear from
context. A morphism of k-representations T : (ρ, V ) → (τ,W ) is a linear map V → W
such that the following diagram commutes for all g ∈ G:

V W

V W

T

ρ(g) τ(g)

T

(2.1)

Such a map T is also often called a G-equivariant map. In any case, we can now make
sense of the category of all k-representations of G, which we denote Repk(G). It is an
abelian category.

On the other hand, let k[G] be the group algebra of G over k. As a vector space, it is
the set of finite formal k-linear combinations of elements of G. Its product is induced by
the product in the group; in other words, we set g · h = gh and extend linearly. Letting
Mod(k[G]) denote the category of (left) k[G]-modules, we have a functor

Repk(G) −→ Mod(k[G])

(ρ, V ) 7−→ V, (2.2)

5



where we define the k[G]-module structure on V via g · v := ρ(g)(v), extending linearly.
Conversely, given a k[G]-module M , we obtain a k-representation of (τ,M) by defining
τ(g)(m) := g ·m. One surmises that the functor (2.2) is an equivalence of categories (it
is, though what we have here is even a little stronger). With this in mind, we will often
identify the representation (ρ, V ) with its underlying vector space V and write g · v for
ρ(g)(v). A subrepresentation of V is then simply a submodule of the k[G]-module V .

Remark 1. Given a group G, we always have the representation of G defined by viewing
k[G] as a module over itself. This is called the (left) regular representation. The field k
can also be made into a representation by defining g ·α = α for all α ∈ k; this is the trivial
representation (or trivial character) and we denote it 1G.

For the remainder of this section, we suppose that G is finite. Given a subgroup H of
a group G, there is a functor turning representations of H into representations of G.

Definition (Induced representation). Let G be a finite group, H a subgroup of G, and V
a representation of H. Then

k[G]⊗k[H] V

is a representation of G, with g · (h ⊗ v) = gh ⊗ v. It is called the induced representation
and is denoted indGH(V ).

Remark 2. Note that one can still make sense of the above definition even if G is not
finite. In the context of smooth representations, for example, this functor is called compact
induction. Refer to §2.3.

If H is a subgroup of G and V is a representation of G, then denote by V |H the
representation of H obtained by restricting V to H.

Proposition 3 (Frobenius reciprocity for finite groups). Let G be a finite group, H a
subgroup of G, and V a representation of H and W a representation of G. We have

Homk[G](indGH V,W ) ∼= Homk[H](V,W |H) (2.3)

as vector spaces.

Proof. Consider the map

T : Homk[G](indGH V,W ) −→ Homk[H](V,W |H)

ϕ 7−→ (v 7→ ϕ(1⊗ v)). (2.4)

First, note that the map v 7→ ϕ(1⊗ v) is H-equivariant since ϕ(1⊗ αh · v) = ϕ(αh⊗ v) =
αh · ϕ(1 ⊗ v) for any h ∈ H and α ∈ k. Therefore T is well-defined. Linearity of T is
clear. If ϕ ∈ ker(T ), then ϕ(1 ⊗ v) = 0 for all v ∈ V which implies that ϕ(αg ⊗ v) = 0
for all α ∈ k and g ∈ G since ϕ is G-equivariant. So T is injective. For surjectivity, if
ψ ∈ Homk[H](V,W |H) then T (ϕ) = ψ where ϕ is defined by ϕ(αg ⊗ v) = αg · ψ(v). It is
straightforward to verify that this ϕ is well-defined.
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Remark 4. It is not so hard to check that in fact the isomorphism (2.4) is functorial in both
V andW . In other words, indGH(−) is left adjoint to (−)H . Alternatively, notice that for V a
representation of G there is a natural isomorphism of k[H]-modules VH ∼= Homk[G](k[G], V )
sending v ∈ VH to the map 1 7→ v. (Here, k[G] is viewed as a (k[G], k[H])-bimodule.) Then,
by the hom-tensor adjunction, one recovers the content of Frobenius reciprocity.

Remark 5. More generally, let R and S be arbitrary rings and let f : R → S be a
morphism of rings. There is a functor HomR(S,−) : Mod(R)→ Mod(S), sometimes called
coinduction. It is the right adjoint of the restriction functor (−)R : Mod(S) → Mod(R)
which takes an S-module M and defines r ·m := f(r) ·m for r ∈ R. Taking f to be the
inclusion k[H] ↪→ k[G], where H ≤ G, we have the adjunctions

indGH(−) a (−)H a coindGH(−) = Homk[H](k[G],−).

When G is finite, the coinduction and induction functors coincide, so that induction is
both left and right adjoint to restriction. This is not true in general.

2.2 The field Qp

In this section we introduce the field of p-adic numbers Qp. We first briefly recall the
notion of an inverse limit of a sequence rings. Given a sequence of rings (An)∞n=1 together
with ring homomorphisms

· · · fn+1−→ An
fn−→ An−1

fn−1−→ · · · f2−→ A1

for all n, we define the inverse limit of (An, fn)n∈N to be

lim
←−

(An, fn) :=

{
a = (an)∞n=1 ∈

∞∏
n=1

An | fn(an) = an−1 for all n ≥ 2

}
.

The inverse limit A = lim←− (An, fn) is in particular a subring of
∏∞
n=1An, with addition

and multiplication defined component-wise. It comes with the map εn : A → An which
extracts the nth component of a ∈ A. We will often abbreviate εn(a) by an.

We now let An = Z/pnZ for a fixed prime p. For all n ≥ 1, there is a natural (surjective)
map πn : Z/pn+1Z→ Z/pnZ.

Definition (The p-adic integers). Let p be a prime. The ring of p-adic integers Zp is the
inverse limit of (Z/pnZ, πn).

Remark 6. There is a natural inclusion Z ↪→ Zp. Its image is the set of all eventually
constant sequences.

Proposition 7. We have Z×p = Zp \ pZp, i.e. x ∈ Zp is a unit if and only if it is not
divisible by p.

7



Proof. It is clear that Z×p ⊂ Zp \ pZp. Conversely, suppose x /∈ pZp. Then xn is invertible
in Z/pnZ for any n. Hence let yn ∈ Z/pnZ be such that xnyn = 1. It remains only to show
that the sequence (. . . , y2, y1) lies in Zp, namely, that πn(yn) = yn−1 for all n. Indeed,
since xnyn = 1 we have πn(xnyn) = 1 in Z/pn−1Z i.e. xn−1πn(yn) = 1. Since inverses are
unique, πn(yn) = yn−1, as desired.

Proposition 8. We have Zp/pnZp ∼= Z/pnZ for n ≥ 0.

Proof. Simply note that the map εn : Zp → Z/pnZ has kernel pnZp.

In Zp we have the infinite chain of ideals

Zp ⊃ pZp ⊃ p2Zp ⊃ p3Z ⊃ · · · (2.5)

with
⋂
n≥0 p

nZp = {0}. For any nonzero x ∈ Zp, there exists an integer N such that

x ∈ pNZp but x /∈ pkZp for all k > N . This integer N is called the p-adic valuation of x.
More precisely, we define the p-adic valuation νp : Zp → Z to be

νp(x) :=

{
max{n ∈ N : pn | x}, if x 6= 0

∞, otherwise.

The p-adic valuation determines an absolute value | · |p on Zp by setting

|x|p = p−νp(x) (2.6)

and |0|p = 0. This, in turn, defines a topology on Zp, where two elements of Zp are
considered close if their difference is divisible by a large power of p. The sets pnZp for n ∈ N
are therefore open balls centred at 0; we see that the sequence (2.5) forms a neighbourhood
basis of 0, meaning that any neighbourhood of 0 contains pnZp for some n. In fact, any
point x ∈ Zp has the neighbourhood basis {x+ pnZ}n∈N.

We also remark that the copy of Z lying in Zp from Remark 6 is dense, and that Zp is
the completion of Z with respect to the p-adic absolute value.

Proposition 9. The p-adic valuation satisfies the following properties: for all x, y ∈ Zp,

(i) νp(xy) = νp(x) + νp(y); and

(ii) νp(x+ y) ≥ min(νp(x), νp(y)).

Proof. This follows immediately by the definition of νp.

Proposition 10. Zp is an integral domain.

Proof. Suppose xy = 0 in Zp. By property (i) above, ∞ = νp(x) + νp(y) so that either
x = 0 or y = 0.

8



Definition (The p-adic numbers). The field of p-adic numbers Qp is defined to be the field
of fractions of Zp.

One extends νp to Qp by defining νp(x/y) = νp(x)−νp(y) for all x ∈ Zp and y ∈ Zp\{0}.
This defines a topology on Qp via the p-adic absolute value | · |p defined in (2.6). The set
pnZp corresponds to the closed ball {x ∈ Qp : |x|p ≤ pn} which is also open Qp.

Proposition 11. Qp with | · |p is locally compact.

Proof. Every point x ∈ Qp has the open neighbourhood x + Zp. It remains only to show
that x + Zp is compact; though it suffices to only show that Zp is compact as translation
preserves compactness. Since Zp is complete, this amounts to showing that Zp is totally
bounded.

To that end, let ε > 0. Choose n so that pnZp is a ball of radius less than ε. For any
x ∈ Zp, the ball x + pnZp is also of radius less than ε. The set of open balls {x + pnZp :
x ∈ Zp} evidently covers Zp; moreover, it is finite by Proposition 8. This shows that Zp is
totally bounded, as desired.

A brief note on local fields The field Qp, as well as its finite extensions, are important
examples of what are called local fields. A local field is a topological field1 F with a
non-trivial absolute value | · | such that F is locally compact in the induced topology.
Here we have shown that Qp is a local field with respect to the p-adic absolute value
| · |p. Furthermore, Qp is non-Archimedean as a local field. This means that | · |p satisfies
a stronger version of the triangle inequality: namely, |x + y|p ≤ max(|x|p, |y|p) for all
x, y ∈ Qp. This fact follows from Proposition 9 (ii).

For any non-Archimedean local field F , its ring of integers O is a local ring with unique
maximal ideal m and finite residue field O/m. In the case of Qp we can see this directly.
Its ring of integers, Zp, is a local ring with maximal ideal pZp (c.f. Proposition 7). Then
Zp/pZp ∼= Z/pZ by Proposition 8.

If π ∈ O generates the maximal ideal m, then π is called a uniformizing parameter, or
simply a uniformizer, of O. With Qp we will almost always take π = p.

As an aside, it is of note that there are only three classes of local fields: the non-
Archimedean local fields of characteristic zero (Qp and its finite extensions), the non-
Archimedean local fields of positive characteristic (the Formal Laurent series Fq((T )) with
q a prime power), and the Archimedean local fields R and C.

1A topological field is a field in which the field operations (addition, multiplication, inversion) are
continuous.
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2.3 Smooth representations of GLn(F )

Definition (Topological group). A topological group is a group G together with a topology
on G such that the maps

G×G −→ G G −→ G

(g, h) 7−→ gh, g 7−→ g−1

are continuous. (Here, G×G is given the product topology.)

Remark 12. Continuity of the maps (g, h) 7→ gh and g 7→ g−1 is equivalent to the
continuity of the map (g, h) 7→ gh−1.

The groups (C×, ·) and (Cn,+) are both familiar examples of topological groups (with
respect to the standard topology on C). Note that any ordinary group can be made into
a topological group by giving it the discrete topology. Our main example of a topological
group, however, is GLn(Qp). We have already seen that (Qp,+) and (Zp,+) are topological
groups with the topology induced by the p-adic valuation. If G = GLn(Qp) or SLn(Qp),

then we give G the topology induced by its inclusion in Qn2

p . Since inversion in G is a
continuous operation, G is a topological group.

One of the goals of this section is to lay the groundwork needed in order to study the
so-called smooth representations of G = GLn(Qp) or SLn(Qp).

Definition. A representation V of G is smooth if

V =
⋃
H≤G
H open

V H

where V H := {v ∈ V : h · v = v for all h ∈ H} is the subspace of H-fixed vectors.

One checks that if T : V1 → V2 is a G-equivariant map between smooth representations
(i.e. it is linear and satisfies (2.1)), then its kernel and image will again be smooth.
The class of smooth representations together with G-equivariant maps forms an abelian
category. It is a full subcategory of Repk(G). By abuse of notation, we refer to the category
of smooth representations by Repk(G), replacing our earlier notation. All representations
are assumed to be smooth from this point forward.

Lemma 13. If H is an open subgroup of a topological group G, then so are the cosets gH
and Hg for all g ∈ G.

Proof. Let g ∈ G and let ϕg be the continuous map G × G → G defined by ϕg(h) = gh.
Then Hg = ϕ−1

g−1(H) is open. Similarly, gH is open.

Proposition 14. Let V be a representation of G. The following are equivalent:

10



(i) V is smooth,

(ii) the map ϕ : G × V → V given by ϕ(g, v) = g · v is continuous, where V is given the
discrete topology,

(iii) the set StabG(v) := {g ∈ G | g · v = v} is open in G for all v.

Proof.

(ii) =⇒ (iii). Let v ∈ V . The set StabG(v) is the preimage of the open set {v} ⊂ V under
the restriction of G× V → V to G× {v}.
(iii) =⇒ (i). If v ∈ V , then v ∈ V StabG(v) and StabG(v) is open.

(i) =⇒ (ii). Suppose W ⊆ V and (g, v) ∈ ϕ−1(W ). By assumption, there exists an open
subgroup H such that h · v = v for all h ∈ H. Then (g, v) ∈ gH × {v} ⊂ ϕ−1(W ). But
gH × {v} is open by Lemma 13. Therefore, ϕ−1(W ) contains a neighbourhood of each of
its points, and so it is open.

Definition. A locally profinite group is a topological group G in which every neighbour-
hood of the identity contains a compact open subgroup.

Proposition 15. (Qp,+), (Q×p , ·) and GLn(Qp) are all locally profinite groups.

Proof. In fact we have already seen that (Qp,+) and (Q×p , ·) are locally profinite; the
sets {pnZp}n∈N and {1 + pnZp}n∈N, respectively, form neighbourhood bases of the iden-
tity consisting of open compact subgroups. For GLn(Qp), we have the following (open)
neighbourhoods of the identity:

GLn(Zp) ⊃ 1 + pMn(Zp) ⊃ 1 + p2 Mn(Zp) ⊃ · · · . (2.7)

These are open balls in GLn(Qp), so any open neighbourhood of the identity must contain
one of them. It remains to show that GLn(Zp) is compact. Note that we can realize
GLn(Zp) as the inverse image of Z×p under the continuous map det : GLn(Qp) → Q×p . By
Proposition 11 and its proof, Zp is compact, hence GLn(Zp) is compact.

Remark 16. Proposition 15 remains true if we replace Qp with a finite extension of Qp

or GLn with SLn. The proof is similar.

Induction

LetG be a locally profinite group, H a closed subgroup ofG, and V a smooth representation
of H. One needs to be careful when attempting to define the induced representation of V .
In the case of finite groups, for instance, recall that we have

indGH(V ) := k[G]⊗k[H] V︸ ︷︷ ︸
(∗)

∼= {f : G→ V | f(hg) = h · f(g) for all h ∈ H}︸ ︷︷ ︸
(∗∗)

11



where the action of G on (∗∗) is given by g · f(x) = f(xg). This isomorphism is non-
canonical and indeed fails in general for infinite groups; we have a strict inclusion of (∗)
in (∗∗) whose image is functions which are of finite support modulo H. This gives us two
different versions of induction.

Definition (Induced representation). Let G be a locally profinite group and H a closed
subgroup of G. For a smooth representation V of H, define

IndGH(V ) := {f : G→ V | f(hg) = h · f(g) for all h ∈ H, g ∈ G}∞

where (−)∞ denotes the largest smooth subrepresentation of (−).

The action of G on (∗∗) is usually not smooth, which is why we instead take (∗∗)∞
above.

Definition (Compactly induced representation). Let G be a locally profinite group and
H a closed subgroup of G. For a smooth representation V of H, define

c-indGH(V ) := {f ∈ IndGH(V ) | the image of supp(f) in H\G is compact}.

Remark 17. The fact that H\ supp(f) is compact in the definition of compact induction
implies that c-indGH(V ) ∼= k[G]⊗k[H] V , just like with finite groups.

Proposition 18 (Frobenius reciprocity for smooth representations). Let H be a closed
subgroup of G, V a smooth representation of H, and W a smooth representation of G.
Then

Homk[G](c-indGH(V ),W ) ∼= Homk[H](V,W |H), and

Homk[G](W, IndGH V ) ∼= Homk[H](W |H , V )

as vector spaces. Moreover, this isomorphism is functorial in both V and W .

Proof. The proof is similar to the case of finite groups; we refer the reader to Proposition
3 and its proof or to [BH06].

2.4 Decompositions of GLn(F )

The purpose of this section is to give a brief overview on Weyl groups as they relate to
GLn. Few proofs are given; we refer the reader to [IM65], [Vig05], [Hum90]. As usual, the
main example we will have in mind is G = GL2(Qp) or G = SL2(Qp).

We begin with the following definition.

Definition (Coxeter system). A Coxeter system is a pair (W,S) where W is a group and
S = {s1, s2, . . . , sn} generates W subject only to relations of the form (sisj)

mij = 1 where
mii = 1 and mij ≥ 2 for i 6= j. If there is no relation involving sisj , we write mij = ∞.
The group W is called a Coxeter group.
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An immediate consequence of the definition is that each generator has order 2. Reflec-
tion groups (groups generated by reflections in Euclidean space) are an important class of
examples of Coxeter groups, and Coxeter groups are in some sense a generalization of this
concept. Another prototypical example is Sn, the symmetric group on n letters, generated
by the set of transpositions (i, i+ 1) for 1 ≤ i ≤ n− 1.

Given a Coxeter system (W,S), there is a natural notion of “length” on W , described
as follows. Let 1 6= w ∈ W . Since S generates W and every element of S has order 2, we
may decompose w as the product w = si1si2 · · · sin for some sij ∈ S. Define the length of
w, denoted `(w), to be the smallest possible value of n in such a decomposition of w. We
then define `(1) = 0. Immediately, we see that `(w) = `(w−1) and `(ww′) ≤ `(w) + `(w′)
for all w,w′ ∈W .

2.4.1 The Bruhat decomposition

Let k be a field and G = GLn(k) or SLn(k). Let B be the subgroup of GLn or SLn
consisting of upper triangular matrices, i.e.

B :=


∗ ∗ ∗ · · · ∗
∗ ∗ · · · ∗

. . .
. . .

...

0
. . . ∗

∗

 (2.8)

(with non-zero entries on the diagonal, and which multiply to 1 in the case of SLn). We
call B the (standard) Borel subgroup of G.

Proposition 19 (Bruhat decomposition for GLn). Let k be any field. We have the disjoint
union

GLn(k) =
⋃
w∈W

BwB

where W is the set of permutation matrices.

Proof. The process of decomposing a matrix g into the product b1wb2 ∈ BwB essentially
reduces to row-reducing g using a sequence of elementary row operations. The finer details
are left for the reader.

Remark 20. The set of permutation matrices is not a subgroup of SLn(k) since any odd
permutation will have determinant −1. However, we can rectify this by replacing a single
1 with −1 in every odd permutation. This gives the Bruhat decomposition for SLn.

Notice that in the Bruhat decomposition for GLn, W ∼= Sn can be given the structure of
a Coxeter group. It is in fact an example of a Weyl group, a class of Coxeter groups which
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arise naturally in the study of Lie groups and Lie algebras. The goal for the remainder of
this section will be to investigate extensions of the Bruhat decomposition, each indexed by
a particular Weyl group, when G = GLn(F ) and F is a finite extension of Qp.

To that end, let F be a finite extension of Qp with ring of integers O and maximal ideal
m. Let G = GLn(F ) (resp. SLn(F )), K := GLn(O) (resp. SLn(O)), and T the subgroup
of G of diagonal matrices. The subgroup K is a maximal compact subgroup of G.

Definition (Finite Weyl group). Define the finite Weyl group W0 of G to be N(T )/T ,
where N(T ) is the normalizer of T in G.

One computes that N(T ) is the set of generalized permutation matrices (with determi-
nant one in the case of SLn), i.e. N(T ) = W n T . We conclude the following.

Proposition 21. We have

(i) W0
∼= Sn;

(ii) The coset BwB is well-defined for w ∈W0;

(iii) G =
⋃
w∈W0

BwB.

Proof. Since N(T ) is the set of generalized permutation matrices, the map N(T ) → Sn
sending a matrix to its permutation type has kernel T . For (ii), note that if g1T = g2T
in W0 then g1B = g2B since B contains T . In particular, Bg1B = Bg2B. Finally, (iii)
follows from the Bruhat decomposition.

Remark 22. When G = GLn(F ) we can view the finite Weyl group as a subgroup of G
(via set of permutation matrices). This is not the case for SLn(F ). Indeed, if g is an odd
permutation matrix, then the coset gT has order 2 in W0 but any element of gT has order
4 in SLn(F ).

2.4.2 The Bruhat-Tits decompositions

For simplicity, we now focus on G = GLn(F ). We suppose that the field O/m has charac-
teristic p. Fix the following unipotent subgroup of GLn:

U :=


1 ∗ ∗ · · · ∗

1 ∗ · · · ∗
. . .

. . .
...

0
. . . ∗

1

 .

It is a subgroup of the Borel subgroup B.
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Definition. The Iwahori (resp. pro-p Iwahori) subgroup of G is the inverse image of
B(O/m) (resp. U(O/m)) under the map GLn(O)→ GLn(O/m).

Let J and I be the Iwahori and pro-p Iwahori subgroups of G, respectively. Our goal
is to find an analog of the Bruhat decomposition for J and I. In other words, we want to
decompose G into the disjoint union of the cosets JwJ and IwI.

Definition. The extended affine Weyl group W of G is defined to be N(T )/(T ∩K).

We may view the finite Weyl group as a subgroup of the extended affine Weyl group.
We have the following.

Proposition 23 (Bruhat-tits decomposition for J). For w ∈ W the cosets JwJ is well-
defined and we have the disjoint union

GLn(F ) =
⋃
w∈W

JwJ.

Proof. See [IM65, Theorem 2.16].

The extended affine Weyl group is generated by the transpositions s1, . . . , sn−1 of W0

along with the element

r :=



0 1 0 · · · 0

0
. . . 1 · · · 0

...
. . .

. . .
...

0
. . . 1

p 0 0 · · · 0


. (2.9)

Despite no longer being a Coxeter group (r2 6= 1), we can still define a length function on
W as follows. Let s1 ∈W0 be a generator of W0 and Waff be the subgroup2 of W generated
by W0 and the element rs1r

−1. It is a Coxeter group. Furthermore, it is normal in W and
we have the semi-direct product W = Waff o R where R is the subgroup generated by r.
For wrk ∈W we then define `(wrk) = `(w).

We further extend W by defining W̃ := N(T )/(T ∩I). Let Ω := (T ∩J)/(T ∩I). It can

be viewed as a subgroup of W̃ and is isomorphic to the set of diagonal matrices with entries
in O/m, so it is abelian and normal in W̃ . We have W̃ = W n Ω. This is summarized by
the existence of an exact sequence

0 −→ Ω −→ W̃ −→W −→ 0.

Although W̃ is again not a Coxeter group (in the sense we have defined here), the

length of W may be used to define a length on W̃ via `(wω) = `(w) for w ∈W and ω ∈ Ω
(see [Vig05]). All elements of Ω have length zero.

2Waff is called the affine Weyl group.
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Proposition 24 (Bruhat-tits decomposition for I). For w ∈ W̃ , the coset IwI is well-
defined and we have the disjoint union

GLn(F ) =
⋃
w∈W̃

IwI.

Proof. This follows by using the semi-direct product W̃ = W n Ω along with Proposition
23.

Remark 25. Versions of Proposition 23 and 24 hold identically for SLn(F ). The generators

of W̃ are given by the transpositions s1, . . . , sn−1 and r, appropriately modified to be
elements of SLn(F ) instead of GLn(F ). (For example we replace a 1 in r by p−1.) We
investigate the example SL2(Qp) below.

Example (Decompositions of SL2(Qp)). Let us be explicit and determine the Bruhat-Tits

decompositions of G = SL2(Qp). We do so by computing the Weyl groups W and W̃ . In
this case, we have

I =

(
1 + pZp Zp
pZp 1 + pZp

)
⊂
(
Z×p Zp
pZp Z×p

)
= J

where all matrices are assumed to have determinant 1. The normalizer of T here is the
subgroup of diagonal matrices together with the anti-diagonal matrices. From this, it
is straightforward to compute that a set of coset representatives for T ∩ K in N(T ) is
(s0s1)Z ∪ (s1s0)Z where

s0 :=

(
0 1
−1 0

)
, and s1 :=

(
0 −p−1

p 0

)
.

This gives us the extended affine Weyl group W . Meanwhile, recall that in general we have
Ω ∼= T(Fq) where T(Fq) is the set of diagonal matrices in SL2(Fp). Specifically,

Ω =

{(
ωx 0
0 ω−1

x

)
: x ∈ F×p

}
where ωx denotes a lift of x ∈ Fp in Zp. Then W̃ = W n Ω.

2.5 The pro-p Iwahori Hecke algebra

Recall that in the representation theory of finite groups, there is an equivalence between
the category of representations of G and the category of k[G]-modules. This equivalence of
course fails if we replace the category of k-representations of G with the category of smooth
k-representations. Indeed, there is no need for an arbitrary k[G]-module to correspond to
a smooth representation. For smooth representations, it is useful to instead study modules
over the Hecke algebra, as we shall see.
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Definition. Let G be a locally profinite group and U an open subgroup of G. The Hecke
algebra HU associated to U is defined to be

HU := Endk[G](XU)op,

where XU := c-indGU (1U) is the compact induction of the trivial character of U.

Consider the k-vector space k[U\G/U] with basis the set of double cosets U\G/U. One
may view it as the vector space of U-biinvariant functions G→ k (i.e. functions such that
f(u1gu2) = f(g) for all g ∈ G and u1, u2 ∈ U) with compact support. We can turn it into
a k-algebra by giving it the convolution product

(ϕ · ψ)(x) :=
∑
g∈G/U

ϕ(g)ψ(g−1x) =
∑
g∈U\G

ϕ(xg−1)ψ(g) (2.10)

for ϕ,ψ ∈ k[U\G/U].

Proposition 26. As k-algebras, HU is isomorphic to (k[U\G/U], ·)op, where · is the con-
volution product (2.10).

Proof. Consider the G-representation k[G/U]; as a vector space it has basis the cosets
G/U, and the action of G is given by the usual action of G on G/U. So k[G/U] identifies
naturally with XU as representations of G. A function f ∈ XU corresponds to∑

g∈G/U

f(g)gU ∈ k[G/U],

and the fact that we use compact induction ensures that this is a well-defined element of
k[G/U]. By Frobenius reciprocity, we have

Endk[G](XU) ∼= Homk[U](1U,XU|U) ∼= Homk[U ](1U, k[G/U])

as vector spaces. However, Homk[U ](1U, k[G/U]) is just the space k[G/U]U of U-fixed vec-
tors; i.e. k[U\G/U]. The fact that the products coincide follows by a straightforward
computation.

Remark 27. Recall that the group algebra k[G] as the set of finite formal k-linear com-
binations of elements in G. There is, however, a natural identification (as vector spaces)
between k[G] and the the space of functions G→ k with finite support. Tracing the product
of k[G] through this identification, we find that the product of two functions ϕ,ψ : G→ k
is given by the convolution

(ϕ · ψ)(x) :=
∑
g∈G

ϕ(g)ψ(g−1x), (2.11)

which resembles the convolution product (2.10).
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The pro-p Iwahori Hecke algebra We now let G = SLn(Qp) and I to be its pro-p
Iwahori subgroup. Suppose k has characteristic p. The pro-p Iwahori Hecke algebra is
HI ; as is tradition we often write H for HI and X for XI . Recall that the Weyl group
W̃ = W n Ω indexes the set of double cosets I\G/I. For w ∈ W̃ , denote by τw the
characteristic function of IwI. We have

H =
⊕
w∈W̃

kτw.

The extended affine Weyl group is generated by the transpositions s1, . . . , sn−1 as well as
the element r (see §2.4 and in particular Remark 25). If s is one of these generators and

v, w ∈ W̃ , then

τvτw = τvw, if `(vw) = `(v) + `(w) (braid relations)

τ2
s = −e1τs (quadratic relations)

where
e1 := −

∑
ω∈Ω

τω.

The element e1 is a central idempotent (see [OS19]).
In the context of the mod-p Local Langlands correspondence, the importance of the

pro-p Iwahori Hecke algebra is due in part to the existence of the functor

h : Repk(G) −→ Mod(H)

V 7−→ V I ,

where V I is the set of I-fixed vectors.

Proposition 28. The functor h sends non-zero representations to non-zero modules.

Proof. We will prove this for G = GLn(Qp) from which the result for SLn(Qp) will follow.
Write an element of I in the form 1 + A where A ∈ Mn(Zp) and define the map I →
(Mn(Z/pZ),+) by 1 +A 7→ A where A denotes the matrix A with entries reduced modulo
pZp. This map is well-defined with kernel 1 + pMn(Zp). Likewise, for k ≥ 1, the map
1 + pk Mn(Zp)→ (Mn(Z/pZ),+) defined by 1 + pkA 7→ A has kernel 1 + pk+1 Mn(Zp). We
conclude that the subgroups

1 + pMn(Zp) ⊃ 1 + p2 Mn(Zp) ⊃ · · · (2.12)

are open neighbourhoods of the identity, each normal in I and of p-power index.
Now, let V be a smooth representation of I. Fix 0 6= v ∈ V , and choose an open

subgroup H of I which fixes v. Since H contains one of the neighbourhoods (2.12), we
may simply assume H is normal and of p-power index. Then the representation V descends
to a representation of the p-group I/H. Any representation of a p-group over a field of
characteristic p admits fixed vectors (see [Ser77, Prop. 26]). Since a I/H-fixed vector will
be an I-fixed vector of V , we are done.
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Remark 29. More generally, a pro-p group is a compact Hausdorff topological group which
contains a neighbourhood basis of the identity consisting of normal subgroups of p-power
index. Here we have shown that I is a pro-p group, hence its name.

Proposition 30 ([Koz16]). Let F = Qp and k be an algebraically closed field of charac-
teristic p. Then the functor h induces an equivalence of categories between RepIk(G) and
Mod(H), where RepIk(G) is the category of smooth representations which are generated by
their I-fixed vectors.

Note that the left action of H on V I is given by the following right action of Endk[G](X)

on V I . We have V I ∼= Homk[I](1I , V ), so V I ∼= Homk[G](X, V ) by Frobenius reciprocity.

Let φv be the element of Homk[G](X, V ) corresponding to v ∈ V I (namely, so that φv(1I) =
v where 1I is the characteristic function of I). Finally, for T ∈ Endk[G](X), define v · T =
φv ◦ T (1I).

In the next chapter, we discuss the failure of this functor to induce an equivalence for
more general F , and introduce the parahoric Hecke Ext-algebras.
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Chapter 3

Parahoric Hecke Ext-algebras

Let F be a finite extension of Qp, G = GLn(F ), and k a field of characteristic p. We saw
earlier that it is helpful to study the functor

h : Repk(G) −→ Mod(H)

V 7−→ V I ,

where I is the pro-p Iwahori subgroup of G. Since h = Homk[G](X,−), this functor is left
exact and has the right adjoint

t : Mod(H) −→ RepIk(G)

M 7−→ X⊗H M

where RepIk(G) denotes the category of all smooth representations which are generated
by their I-fixed vectors. In general, h fails to be an equivalence and furthermore as it
is not usually right exact. It makes sense, then, to consider the derived picture, where
the situation improves somewhat. In [Sch15], Schneider shows when p ≥ 5 that there
are derived versions of h and t which induce an equivalence between the derived category
of smooth representations and the derived category of differential graded modules over a
certain differential graded pro-p Iwahori Hecke algebra H•. Unfortunately, the derived
categories in question, and even the algebra H•, are still quite poorly understood.

One thing we can do is study its cohomology algebra E∗ := Ext∗Repk(G)(X,X)op. In

[OS19], Ollivier and Schneider describe its product explicitly and deduce, in particular,
that it is only supported in degrees 0 to d when I is a pro-p Iwahori subgroup of dimension
d as a p-adic Lie group.

For the remainder of this chapter, we let G = SL2(Qp), p ≥ 5, and take k to be the
algebraic closure of a finite extension of Fp. Let P be a parahoric subgroup containing
J , which means that P is the union of double cosets JwJ . In [OS] the parahoric Hecke
Ext-algebra

E∗P := Ext∗Repk(G)(XP,XP)op
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is introduced. In this chapter we study the Iwahori and Spherical versions of E∗P, namely,
the algebras

E∗J := Ext∗Repk(G)(XJ ,XJ)op, and

E∗K := Ext∗Repk(G)(XK ,XK)op

where J is the Iwahori subgroup J and K is the maximal compact subgroup SL2(Zp).
In [OS], the following result is shown.

Proposition 31 ([OS]). Let P be a parahoric subgroup of G containing J . There exists
an idempotent eP ∈ HP such that ePE

∗eP and E∗P are isomorphic as k-algebras.

In light of this result, we are able to study E∗K and E∗J as algebras1 inside E∗. The
assumption p ≥ 5 allows us to say, among other things, that E∗ is supported in degrees 0
to 3. The same will be true for E∗J and E∗K .

3.1 Preliminaries

We first recall the key objects in this context. Refer to §2.4 and [OS21] §2.3.
Fix uniformizer π = p of Zp. There is a nested sequence of open compact subgroups

I ⊂ J ⊂ K in G consisting of the Iwahori subgroup J , its pro-p Iwahori subgroup I, and
the maximal compact subgroup K. When G = SL2(Qp), we can be explicit and write
K = SL2(Zp),

I =

(
1 + pZp Zp
pZp 1 + pZp

)
, and J =

(
Z×p Zp
pZp Z×p

)
,

where (by abuse of notation) all matrices are understood to have determinant 1.
Let T ⊂ G be the torus of diagonal matrices, T 0 its maximal compact subgroup,

T 1 its maximal pro-p subgroup, and N(T ) its normalizer. We set W̃ := N(T )/T 1 and
W := N(T )/T 0. These are the affine and extended affine Weyl groups, respectively, and
they are related via the short exact sequence

0 −→ Ω −→ W̃ −→W −→ 0

where Ω := T 0/T 1 can be identified with the torus of diagonal matrices in SL2(Fp). Here,
W is generated by the two elements

s0 :=

(
0 1
−1 0

)
, s1 :=

(
0 −p−1

p 0

)
.

(By abuse of notation, here and throughout, we write elements of W̃ as matrices in G.)

Meanwhile, W̃ is generated by s0, s1, and ω for ω ranging over Ω. Setting θ := s0s1, the

1We do not call ePE
∗eP a subalgebra of E∗ as the units are not the same. The unit in ePE

∗eP is eP.
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length function ` on W can be pulled back to W̃ yielding `(θi) = |2i| and `(s0θ
i) = |1−2i|.

Elements in Ω ⊂ W̃ have zero length.
We have the following decompositions into disjoint cosets:

G =
⋃
w∈W

JwJ =
⋃
w∈W̃

IwI, K = J ∪ Js0J =
⋃
ω∈Ω
i∈{0,1}

Iωsi0I, J =
⋃
ω∈Ω

IωI.

(3.1)

Since the elements of W̃ index a set of double coset representatives for I\G/I, the charac-

teristic functions of IwI for w ∈ W̃ forms a basis for the pro-p Iwahori Hecke algebra H.
We denote by τw the characteristic function of IwI.

One obtains the decomposition of vector spaces

E∗ = H∗(I,X) =
⊕
w∈W̃

H∗(I,X(w))

where X(w) := indIwII (1I). For each i, define also the decreasing filtration

FnEi :=
⊕
w∈W̃
`(w)≥n

H i(I,X(w)) (3.2)

and the increasing filtration

FnE
i :=

⊕
w∈W̃
`(w)≤n

H i(I,X(w)) (3.3)

(see [OS21] §2.2.4).

3.1.1 Idempotents

We also define the following class of idempotents. To a k-character λ : Ω→ k×, define

eλ := −
∑
ω∈Ω

λ(ω−1)τω ∈ H.

Then eλ is an idempotent. Recall that we have the isomorphism

F×p
∼=−→ Ω (3.4)

x 7−→
(
ωx 0

0 ω−1
x

)
T 1
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where ωx denotes a lift of x in Zp. When k has characteristic p, the inclusion F×p → k×

composes with the inverse of (3.4) to produce the following family of k-characters of Ω
(indexed by m ∈ Z):

idm : Ω
∼=−→F×p −→ k×

x 7−→ xm.

One may verify that {eidm}p−2
m=0 is a family of orthogonal idempotents with sum equal to

1. Of particular importance to us here will be the central idempotent

eγ0 := eid1 + eid−1 . (3.5)

By orthogonality, we have eJ · eγ0 = eγ0 · eJ = 0 as long as p 6= 2.
The idempotents eJ and eK as defined in Proposition 31 are given by

eJ = −
∑
ω∈Ω

τω, eK = −
∑
ω∈Ω
i∈{0,1}

τωsi0
= eJ + τs0eJ . (3.6)

The idempotent eJ is in fact central in H. It is the same as the idempotent e1 of [OS19].

3.1.2 Finite duals

Recall the anti-automorphism J of E∗ (see [OS19] §6) with the property that J(α · β) =
(−1)ijJ(β) · J(α) for α ∈ Ei and β ∈ Ej . It acts on E∗ by the following

J(τw) = τw−1 , J((0, c0, 0)w) = (−1)`(w)(0, c0, 0)w−1 (3.7)

J(φw) = φw−1 , J((0,α0, 0)w) = (−1)`(w)(0,α0, 0)w−1 . (3.8)

Also, J(eJ) = eJ and J(eK) = eK .

If V is a vector space which decomposes into a direct sum indexed by W̃ , we denote
by V ∨,f its finite dual as defined in [OS19, §7]. For 0 ≤ i ≤ 3 we have an isomorphism of
H-bimodules ∆i : Ei → (J(Ed−i)J)∨,f (see [OS19] §7.2.4). Here (J(Ed−i)J)∨,f is the finite
dual of J(Ed−i)J, and this latter space denotes the twisted H-bimodule obtained by taking
the space Ed−i and defining the action of H via (τ, β, τ ′) 7→ J(τ ′) · β · J(τ) for τ, τ ′ ∈ H
and β ∈ Ed−i.

For any parahoric subgroup P containing J , the restriction map (Ei)∨,f → (ePE
ieP)∨

is a homomorphism of H-bimodules. We denote by (ePE
0eP)∨,f the image of this map.

From [OS] we have the following.

Lemma 32 ([OS]). We have an isomorphism of ePHeP-bimodules

ePE
ieP

'−→ eP(J(Ed−i)J)∨,feP ∼= (J(ePE
d−ieP)J)∨,f (3.9)

eP · x · eP 7−→ eP · x∨ · eP.
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3.1.3 The H-bimodule structure of E1

The H-bimodule structure of E1 is studied in [OS21] §4 and §7. We recall a few results
here.

The elements of E1 can be represented as triples (refer to [OS21] §4). Briefly, for

w ∈ W̃ , abbreviate the subspace H1(I,X(w)) of E1 by h1(w). There is a decomposition

h1(w) = h1
−(w)⊕ h1

0(w)⊕ h1
+(w) (3.10)

with

h1
−(w) ∼= Hom(Zp/pZp, k)

h1
0(w) ∼=

{
Hom((1 + pZp)/(1 + p2Zp), k), if `(w) ≥ 1

0, if `(w) = 0
(3.11)

h1
+(w) ∼= Hom(Zp/pZp, k)

obtained via the Shapiro isomorphism h1(w) ∼= Hom((Iw)Φ, k) (see in particular [OS21]
Remark 4.2). Here (Iw)Φ refers to the Frattini quotient of Iw. For c± ∈ Hom(Zp/pZp, k)
and c0 ∈ Hom((1 +pZp)/(1 +p2Zp), k), we denote by (c−, c0, c+)w the corresponding triple
in h1(w) under the isomorphisms (3.11).

The H-bimodule action on these triples is given in [OS21] §4.4-4.6. In particular, we
highlight the following. By equation (70) loc. cit. the right action of eidm on an element
of E1 satisfies the following identity:

(c−, c0, c+)w·eidm = e
idm(−1)`(w)−2 ·(c−, 0, 0)w+e

idm(−1)`(w) ·(0, c0, 0)w+e
idm(−1)`(w)+2 ·(0, 0, c+)w.

(3.12)
We set some notation. There is an isomorphism

ι : (1 + pZp)/(1 + p2Zp)
∼=−→ Zp/pZp

1 + px 7−→ x (mod pZp)

which we use to fix once and for all elements α,α0, c, and c0 which satisfy

α ∈ Zp/pZp \ {0}, α0 = ι−1(α), c ∈ Hom(Zp/pZp, k) such that c(α) = 1, c0 := cι
(3.13)

(see [OS21] §4.2.3). For w ∈ W̃ , we make note of the element (0, c0, 0)w ∈ h1(w). We also
set

W̃ 0 := {w ∈ W̃ | `(s0w) = `(w) + 1}, W 0 := {w ∈W | `(s0w) = `(w) + 1}, (3.14)

W̃ 1 := {w ∈ W̃ | `(s1w) = `(w) + 1}, W 1 := {w ∈W | `(s1w) = `(w) + 1}. (3.15)
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For the remainder of this subsection, refer to [OS21] §7. The element

ζ := (τs0 + eJ)(τs1 + eJ) + τs1τs0 (3.16)

is central in H. We use it to define the following H-bimodule endomorphisms f and g of
E∗:

f(c) = ζ · c · ζ − c
and

g(c) = ζ · c− c · ζ
for all c ∈ E∗. Denote by fi and gi the maps f and g, respectively, when restricted to the
graded pieces Ei. Evidently ker(f0) = {0} and ker(g0) = E0.

We now recall a few useful technical results regarding the two submodules ker(f1) and
ker(g1) of E1. First, when p 6= 2, 3, there is the exact sequence of H-bimodules

0 −→ ker(f1)⊕ ker(g1) −→ E1 −→ E1/(ker(f1)⊕ ker(g1)) −→ 0 (3.17)

where E1/(ker(f1) ⊕ ker(g1)) is four-dimensional as an H-bimodule. It has k-basis the
cosets of x, y, x · τs1 , y · τs0 where

x = eid · (0, 0, c)1 · eid−1 (3.18)

y = eid−1 · (c, 0, 0)1 · eid (3.19)

with c as in (3.13). Second, we have

(1− eγ0) · ker(f1) = (1− eγ0) · h1
±(W̃ ) (3.20)

by [OS21] Remark 7.8. By the orthogonality of the idempotents eidm , multiplying both

sides of (3.20) by eJ = e1 gives eJ · ker(f1) = eJ · h1
±(W̃ ). However, the right-hand side

here is zero by (3.12). Therefore eJ · ker(f1) = ker(f1) · eJ = 0.
A useful corollary is the following:

Lemma 33. We have eP · ker(f1) = ker(f1) · eP = 0 for any parahoric subgroup P of G
which contains J .

Proof. This is immediate by the previous paragraph after using the fact that eP = eJ ·eP =
eP · eJ .

We will also need:

Lemma 34 ([OS21] Proposition 7.3). The map

F 1H −→ ker(g1)

τw 7−→


(0, c0, 0)w, if `(w) ≥ 2 and w ∈W 0

−(0, c0, 0)w, if `(w) ≥ 2 and w ∈W 1

(0, c0, 0)s1ω − eid · (0, 0, c0ι−1)ω, if w = s1ω ∈ s1Ω

−(0, c0, 0)s0ω − eid−1 · (c0ι−1, 0, 0)ω, if w = s0ω ∈ s0Ω.

(3.21)

is an isomorphism of H-bimodules.
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Lemma 35. For any parahoric subgroup P containing J , we have ePE
1eP ∼= eP(F 1H)eP

as ePHeP-bimodules.

Proof. The exact sequence (3.17) yields the exact sequence

0 −→ eP(ker(f1)⊕ ker(g1))eP −→ ePE1eP −→ eP(E1/(ker(f1)⊕ ker(g1)))eP −→ 0.

Some simplification is possible. On the left, we have eP(ker(f1)⊕ker(g1))eP = eP ker(g1)eP
as a consequence of Lemma 33. Meanwhile, recall that E1/(ker(f1)⊕ ker(g1)) has basis x,
y, x · τs1 , and y · τs1 (refer to (3.18), (3.19)) which are all killed on the left (and right) by eJ
(in particular by eP). Therefore eP(E1/(ker(f1)⊕ker(g1)))eP = 0. The resulting simplified
exact sequence shows that ePE

1eP = eP ker(g1)eP. Conclude by applying Lemma 34.

3.1.4 The H-bimodule structure of E2

Recall the isomorphism ∆2 : E2 → (J(E1)J)∨,f . In light of (3.11), and given the natural
identification between the dual of a HomFp space and tensor over Fp, the element α ∈
(h1(w))∨ corresponding to c = (c−, c0, c+)w ∈ h1(w) can be viewed as the triple

(α−, α0, α+)w ∈ Zp/pZp ⊗Fp k × (1 + pZp)/(1 + p2Zp)⊗Fp k × Zp/pZp ⊗Fp k

for `(w) ≥ 1 (with middle term zero if `(w) = 0). We have α(c) = c−(α−)+c0(α0)+c+(α+).

For w ∈ W̃ , the elements (0, c0, 0)w ∈ E1 and (0,α0, 0)w ∈ (J(E1)J)∨,f ∼= E2 are dual to
each other. The left action of H on these triples is given in [OS21] Prop. 5.5.

Lemma 36. The map

ker(g2) −→ J((F 1H)∨,f )J (3.22)

(0,α0, 0) 7−→

{
τ∨w |F 1H , if w ∈W 0

−τ∨w |F 1H , if w ∈W 1
(3.23)

is an isomorphism of H-bimodules.

Proof. See [OS21] Proposition 7.14 and its proof.

We define (F 1H)∨,f to be the image of the restriction map H∨,f → (F 1H)∨. The
following is the analog of Lemma 35 for E2.

Lemma 37. For any parahoric subgroup P containing J , we have ePE
2eP ∼= eP(F 1H)∨,feP

as HP-bimodules.

Proof. Recall that E2 = ker(f2)⊕ker(g2) by [OS21] Proposition 7.12. By Corollary 7.19 loc.
cit. ker(f1) and ker(f2) are isomorphic as Hζ-modules, where Hζ denotes the localization
of H in ζ. In particular, they are isomorphic as H-modules and so by Lemma 33 we have
that eP · ker(f2) = ker(f2) · eP = 0. Therefore ePE

2eP = eP ker(g2)eP. However, by Lemma
36, we have

eP ker(g2)eP ∼= eP
J((F 1H)∨,f )JeP ∼= eP(F 1H)∨,feP

where the second isomorphism is obtained by applying J : H → H.
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3.1.5 The H-bimodule structure of E3

Given a basis (τw)
w∈W̃ for E0 we naturally obtain the dual basis (τ∨w )

w∈W̃ for (J(E0)J)∨,f ∼=
E3. We denote by φw the element in E3 corresponding to τ∨w . The formulas for the H-
bimodule action on (J(E0)J)∨,f are given in [OS19] Prop. 8.2.

Remark 38. For any w ∈ W̃ with `(w) ≥ 1 there exists a unique ε ∈ {0, 1} with w ∈ W̃ ε.
We define ψw := τ1−ε · φw = φs1−εw − eJ · φw. The set of all ψw generates the subspace
ker(S3) of E3 (see [OS21] Remark 2.12). By the proof of Prop. 8.6 in [OS19] we have the
decomposition E3 = ker(S3)⊕ ke1 · φ1.

3.2 The Iwahori Ext-algebra

Let P be a parahoric subgroup containing J . There exists a subgroup WP of W such that
P =

⋃
w∈WP

JwJ .

Lemma 39 ([OS]). Each double coset WPwWP for w ∈ W contains a unique element of
minimal length d.

We call the set of all such minimal length elements PDP. They index the set of double
cosets WP\W/WP.

Let τPw denote the characteristic function of PwP in HP. We then have the following.

Proposition 40 ([OS]). The map ePHeP → HP of k-algebras induced by the map

H −→ Hp

τw 7−→

{
0, if w /∈ P̃DP

[P : I]τPw , if w ∈ P̃DP

is an isomorphism. Moreover, [P : I] 6= 0 in k.

By Proposition 40, a basis for HJ is given by the set of all τJd for d ∈ JDJ . Since
WJ = {1}, we have JDJ

∼= W . It follows that a basis for eJHeJ is {eJτweJ}w∈W .

A basis for eJE
1eJ By Lemma 35, we have that eJE

1
JeJ = eJ ker(g1)eJ ∼= eJ(F 1H)eJ

as H-bimodules. This isomorphism is induced by (3.21), which we temporarily call f .
We may obtain a basis for eJ ker(g1)eJ by studying the action of f on a basis of F 1H.

The submodule F 1H of H has basis {τw : w ∈ W̃ , `(w) ≥ 1}. The image of f simplifies
somewhat when restricted to eJF

1HeJ . Since eJHeJ has basis {eJτweJ : w ∈W}, a basis
element of eJF

1HeJ is of the form eJτweJ with w ∈W and `(w) ≥ 1. For such an element,
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we have

f(eJτweJ) = eJf(τw)eJ

=


eJ(0, c0, 0)weJ , if `(w) ≥ 2 and `(s0w) = `(w) + 1

−eJ(0, c0, 0)weJ , if `(w) ≥ 2 and `(s1w) = `(w) + 1

eJ(0, c0, 0)weJ , if w ∈ s1Ω

−eJ(0, c0, 0)weJ , if w ∈ s0Ω.

(3.24)

It follows that a basis for eJE
1eJ = eJ ker(g1)eJ is

{eJ(0, c0, 0)weJ | w ∈W, `(w) ≥ 1}. (3.25)

Remark 41. Let w ∈ W̃ \ W . Then by the above, eJ(0, c0, 0)weJ = 0 and in fact
eJh

1(w)eJ = 0. In particular H1(Jw, k) = 0. Since H1(Jw, I) = Hom((Jw)Φ, k), where
(Jw)Φ is the Frattini quotient of Jw, we conclude that (Jw)Φ = 0.

The above suggests that the Frattini quotient of J itself is trivial. We record this now
and present an alternate (direct) proof.

Proposition 42. The Frattini quotient of J is trivial.

Proof. We proceed analogously to the proof of [OS18] Proposition 3.62. Recall the Iwahori
factorization J =

(
1 0
pZp 1

)
T 0
(

1 Zp
0 1

)
. For t ∈ Z×p and b, c ∈ Zp, one computes[(

t 0
0 t−1

)
,
(

1 Zp
0 1

)]
=
(

1 (t2−1)Zp
0 1

)
[(

t 0
0 t−1

)
,
(

1 0
pZp 1

)]
=
(

1 0
(t−2−1)pZp 1

)
[(

1 0
pc 1

)
,
(

1 b
0 1

)]
=
(

1−pbc pb2c
−p2bc2 1+pbc+p2b2c2

)
∈
(

1 0
p2Zp 1

)(
1−pbc 0

0 (1−pbc)−1

) (
1 pZp
0 1

)
.

Since p ≥ 5, (t2 − 1)Zp = Zp and (t−2 − 1)Zp = Zp. (If t = 2 then evidently t2 − 1
is invertible in Zp for p ≥ 5. Moreover t−2 − 1 ≡ 4−1 − 1 6≡ 0 (mod pZp), so it too
is invertible in Zp.) Therefore Φ(J) contains I =

(
1 0
pZp 1

)
T 1
(

1 Zp
0 1

)
. We then have the

formula [J : I] = [J : Φ(J)][Φ(J) : I]. The left-hand side is p− 1, and since [J : Φ(J)] is a
power of p, this forces [J : Φ(J)] = 1.

A basis for eJE
2eJ We proceed in an analogous way compared to eJE

1eJ . By Lemma
37, we have eJE

2eJ ∼= eJ(F 1H)∨,feJ as H-bimodules. This isomorphism can be written
explicitly using Lemma 36 and simplifying. Since a basis for eJ(F 1H)∨,feJ is the set of
eJ(τ∨w |F 1H)eJ with w ranging over W with `(w) ≥ 1, a basis for eJE

2eJ is

{eJ(0,α0, 0)weJ | w ∈W, `(w) ≥ 1}. (3.26)
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A basis for eJE
3eJ By Lemma 32, the H-bimodule isomorphism ∆3 : E3 → (J(E0)J)∨,f

sending φw to τ∨w restricts to an isomorphism eJE
3eJ → eJ(J(E0)J)∨,feJ and moreover we

have the identification eJ(J(E0)J)∨,feJ ∼= (J(eJE
0eJ)J)∨,f . A basis for eJE

3eJ is therefore
given by

{eJφweJ | w ∈W}. (3.27)

Remark 43. By Lemma 35 and Lemma 37, eJE
1eJ ∼= eJF

1HeJ and eJE
2eJ ∼= eJ(F 1H)∨,feJ

as H-bimodules. We then have the following injective H-bimodule homomorphisms:

eJE
1eJ

'−→ eJF
1HeJ ↪→ eJHeJ (3.28)

eJE
2eJ

'−→ eJ(F 1H)∨,feJ (3.29)

eJE
3eJ

'−→ J(eJH
∨,feJ)J

'−→ eJH
∨,feJ (3.30)

where the first arrow in (3.30) is the restriction of ∆3 and the second arrow is induced by
induced by the isomorphism J : H → H. The restriction map eJH

∨,feJ → eJ(F 1H)∨,feJ
shows that in fact eJ(F 1H)∨,feJ is a quotient of eJH

∨,feJ modulo the subspace generated
by eJτ

∨
1 . We conclude that for each 0 ≤ i ≤ 3, there exists an injective H-bimodule map

sending eJE
ieJ to one of eJHeJ , eJH

∨,feJ , or a quotient of eJH
∨,feJ .

3.2.1 The product in eJE
∗eJ

The left action of H = E0 on Ei for i = 1, 2, 3 is given in [OS21] Prop. 4.9, 5.5, and [OS19]
Prop 8.2, respectively. The action simplifies when restricted to eJE

ieJ . For ε ∈ {0, 1} and
w ∈W with `(w) ≥ 1, we have

τsε · eJ(0, c0, 0)weJ =

{
−eJ(0, c0, 0)sεweJ , if w ∈W ε

−eJ(0, c0, 0)weJ , if w ∈W 1−ε,
(3.31)

τsε · eJ(0,α0, 0)weJ =


0, if w ∈W ε

−eJ
(
(0,α0, 0)w − (0,α0, 0)sεw

)
eJ , if w ∈W 1−ε with `(w) ≥ 2

−eJ(0,α0, 0)weJ if w ∈W 1−ε with `(w) = 1.

(3.32)

And for w ∈W , ω ∈ Ω

τsε · eJτ∨weJ =

{
eJ(τ∨sw − τ∨w )eJ , if w ∈W 1−ε

0, otherwise,
(3.33)

where the element τ∨w ∈ J(H∨,f )J ∼= E3 denotes the dual of τw. Using the anti-involution
J, one then readily obtains the right action of H on eJE

∗eJ .
We now investigate the full product in the algebra eJE

∗eJ . The product of E∗ in
CE∗(Z), the commutator of the centre of H, is described explicitly in §9 of [OS21]. It is
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Prop. 9.1 loc. cit. that CE∗(Z) coincides with ker(g), in which case we see that eJE
∗eJ is

fully contained in CE∗ . This implies in particular that eJ commutes with ker(g1). Define
the map

eJF
1HeJ ⊗H eJF

1HeJ −→ eJ
J((F 1H)∨,f )JeJ

eJ(τv ⊗ τw)eJ 7−→

{
−eJ(τv · τ∨w |F 1H)eJ , if `(w) = 1

0, if `(w) ≥ 2
(3.34)

Remark 44 ([OS21] Remark 9.4). In fact the map above has eJ(τv⊗τw)eJ 7→ 0 if `(v) ≥ 2
or `(w) ≥ 2.

We also introduce the map eJE
2eJ → eJ(F 1H)∨,feJ which is given via the composite

eJE
2eJ

∆2|
eJE2eJ−−−−−−→ eJ

J((ker(g1))∨,f )JeJ
∼=−→ eJ

J((F 1H)∨,f )JeJ (3.35)

Here the second map is induced by the inverse of (3.21). We see that the element
eJτ

∨
w |F 1HeJ ∈ eJ J((F 1H)∨,f )JeJ on the right-hand side corresponds to eJ(0,α0, 0)weJ ∈

eJE
2eJ on the left-hand side if w ∈W 0 and −eJ(0,α0, 0)weJ otherwise.
We then have the following commutative diagrams of H-bimodules ([OS21] Prop. 9.5

and 9.6):

eJE
1eJ ⊗ eJE1eJ eJE

2eJ

eJF
1HeJ ⊗H eJF

1HeJ eJ
J((F 1H)∨,f )JeJ

(3.21)−1⊗(3.21)−1

Yoneda product

(3.35)

(3.34)

(3.36)

eJE
1eJ ⊗ eJE2eJ eJE

3eJ

eJF
1HeJ ⊗H eJ

J((F 1H)∨,f )JeJ eJ
J((H)∨,f )JeJ

(3.21)−1⊗(3.35)

Yoneda product

∆3|eJE3

τ⊗α7→−α(J(τ)−)

(3.37)

eJE
2eJ ⊗ eJE1eJ eJE

3eJ

eJ
J((F 1H)∨,f )JeJ ⊗H eJF

1HeJ eJ
J((H)∨,f )JeJ

(3.35)⊗(3.21)−1

Yoneda product

∆3|eJE3

α⊗τ 7→−α(−J(τ))

(3.38)

In the proofs of [OS21] Prop. 9.5 and 9.6, the product on the generators of CEi(Z) is

computed. Restricted to eJE
∗eJ , they are as follows. For ε ∈ {0, 1} and w ∈ W̃ with
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`(w) ≥ 1, we have

eJ(0, c0, 0)sε · (0, c0, 0)s1−εeJ = 0 (3.39)

eJ(0, c0, 0)sε · (0, c0, 0)sεeJ = (−1)1−εeJ(0,α0, 0)sε (3.40)

eJ(0, c0, 0)sε · (0,α0, 0)weJ =

{
eJ(−φsεw + φw), if w ∈ W̃ 1−ε

0, otherwise
(3.41)

eJ(0,α0, 0)w · (0, c0, 0)sεeJ =

{
(−1)`(w)+1eJ(−φwsε + φw), if w−1 ∈ W̃ 1−ε

0, otherwise
(3.42)

In light of Remark 44, the product eJE
1eJ⊗HeJE1eJ → eJE

2eJ is fully described by (3.39)
and (3.40). We now write down the formula for the products eJE

2eJ⊗H eJE1eJ → eJE
3eJ

and eJE
1eJ ⊗H eJE

2eJ → eJE
3eJ .

Proposition 45. Let v ∈W ε, v−1 ∈W δ, w ∈W with `(w) ≥ 1. We have

eJ(0,c0, 0)sεv · (0,α0, 0)weJ (3.43)

=

{
(−1)`(sεv)+1eJ(−φsεvw + φvw)eJ , if `(sεvw) < `(sεv) + `(w) and `(sεv) ≤ `(w)

0, otherwise

eJ(0,α0, 0)w · (0, c0, 0)vsδeJ (3.44)

=

{
(−1)`(w)+1eJ(−φwvsδ + φwv)eJ , if `(wvsδ) < `(w) + `(vsδ) and `(vsδ) ≤ `(w)

0, otherwise

Proof. We check (3.43) first. Proceed by induction on `(v). The case `(v) = 0 is already
covered by (3.41). Next, assume that (3.43) holds for sεv; we will show it holds for s1−εsεv.
We have

eJ · (0, c0, 0)s1−εsεv · (0,α0, 0)w

= −eJτs1−ε · (0, c0, 0)sεv · (0,α0, 0)w

=

{
−(−1)`(sεv)+1eJτs1−ε · (−φsεvw + φvw), if `(sεvw) < `(sεv) + `(w) and `(sεv) ≤ `(w)

0, otherwise

This can be simplified using [OS21] §2.3.9 and equation (40) therein. We have three cases.

Case 1 (`(sεv) < `(w)). In this case we have sεvw ∈W ε and vw ∈W 1−ε. We get

−(−1)`(v)eJτs1−ε · (−φsεvw + φvw) = (−1)`(sεv)eJ(−φs1−εsεvw + φsεvw),

as desired.
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Case 2 (`(sεv) = `(w)). In this case we wish to show eJτs1−ε · (−φsεvw + φvw) = 0.
Indeed, `(sεvw) = 0 so that both sεvw ∈ W 1−ε and vw ∈ W 1−ε. This proves the
result.

Case 3 (`(sεv) > `(w)). Evidently the product is zero here by the induction hy-
pothesis.

This shows (3.43). The equation (3.44) follows by using the fact that J(α·β) = J(β)·J(α)
for α ∈ E2 and β ∈ E1 along with the equations J((0,α0, 0)w) = (−1)`(w)(0,α0, 0)w−1 and
J((0, c0, 0)w) = (−1)`(w)(0, c0, 0)w−1

3.2.2 The centre of eJE
∗eJ

In this section we will compute the centre (not the graded centre) of eJE
∗eJ . Recall the

central element ζ in (3.16). The element eJζ is again central and in fact the centre of
eJHeJ is eJk[ζ].

Recall the elements ψw ∈ E3 defined in Remark 38. We denote by E3
odd the linear

subspace of E3 generated by elements of the form ψs1(s0s1)n + ψs0(s1s0)n for n ≥ 0.

Lemma 46. The component of the centre of eJE
∗eJ lying in eJE

3eJ is eJ(E3
odd⊕ kφ1)eJ .

Proof. By Remark 38, it suffices to show that the component of the centre in eJ ker(S3)eJ
is generated by the elements eJ(ψs1(s0s1)n + ψs0(s1s0)n)eJ for n ≥ 0. Suppose that x ∈
eJ ker(S3)eJ is a central element of eJE

∗. We write

x =

n∑
i=1

eJαiψwi , (3.45)

with αi ∈ k and wi ∈W . For w ∈W and ε ∈ {0, 1}, the element τsε acts on ψw as follows

eJ(τsε · ψw) =


−eJψw, if w ∈W 1−ε

0, if w ∈W ε and `(w) = 1

eJψs1−εw, if w ∈W ε and `(w) ≥ 2

(3.46)

eJ(ψw · τsε) =


0, if w−1 ∈W ε

−eJψw, if w−1 ∈W 1−ε and `(w) = 1

eJ(ψwsε − ψw), if w−1 ∈W 1−ε and `(w) ≥ 2.

(3.47)

To simplify the notation of what follows, for ε, η ∈ {0, 1} let W ε
η denote the subset of

W ε consisting of elements w with w−1 ∈W η.
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As x is central and τ2
s1 = −eJτs1 we have −τs1 · x = τs1 · x · τs1 . Expanding both sides,

eJ

−
∑
wi s.t.
wi∈W 1

`(wi)≥2

αiψs0wi +
∑
wi s.t.
wi∈W 0

αiψwi



= eJ


∑
wi s.t.
wi∈W 1

0
`(wi)≥3

αiψs0wis1 −
∑
wi s.t.
wi∈W 1

0
`(wi)≥2

αiψs0wi −
∑
wi s.t.
wi∈W 0

0

αiψwis1 +
∑
wi s.t.
wi∈W 0

0

αiψwi


and canceling,

eJ

−
∑
wi s.t.,
wi∈W 1

1
`(wi)≥2

αiψs0wi +
∑
wi s.t.
wi∈W 0

1

αiψwi

 = eJ


∑
wi s.t.
wi∈W 1

0
`(wi)≥3

αiψs0wis1 −
∑
wi s.t.
wi∈W 0

0
`(wi)≥2

αiψwis1

 . (3.48)

Similarly, using the equation τs0 · x = τs0 · x · τs1 , we obtain

eJ

−
∑
wi s.t.
wi∈W 0

0
`(wi)≥2

αiψs1wi +
∑
wi s.t.
wi∈W 1

0

αiψwi

 = eJ


∑
wi s.t.
wi∈W 0

1
`(wi)≥3

αiψs1wis0 −
∑
wi s.t.
wi∈W 1

1
`(wi)≥2

αiψwis0

 . (3.49)

Let n ≥ 0. From (3.48), we conclude that the coefficient of ψ(s1s0)n in (3.45) must be
the same as the coefficient of ψs0(s1s0)ns1 ; likewise, (3.49) shows that the coefficient of
ψ(s0s1)n must be the same as the coefficient of τs1(s0s1)ns0 . Therefore if `(w) is even then
the coefficient of ψw is zero.

Now, using (3.48) again, we see that the coefficient of ψs0(s1s0)n must be the same
as the coefficient of ψs1(s0s1)n . This shows that the component of the centre in eJE

3eJ
is contained in eJE

3
oddeJ . The opposite inclusion holds as one readily checks using the

formulas (3.46) and (3.47). For n ≥ 0 and ε ∈ {0, 1}, we see that

τsε · (ψs1(s0s1)n + ψs0(s1s0)n) = ψ(sεs1−ε)n − ψsε(s1−εsε)n = (ψs1(s0s1)n + ψs0(s1s0)n) · τsε .
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Lemma 47. We have eJE
2eJ ∼= eJ ker(S3)eJ as H-bimodules.

Proof. We chain together the following H-bimodule isomorphisms

eJE
2eJ

'−→
(3.29)

(eJF
1HeJ)∨,f ∼= (eJE

0eJ)∨,f/keJτ
∨
1

'−→
(∆3)−1

eJE
3eJ/keJφ1

∼= eJ ker(S3)eJ ,

(3.50)
where the last isomorphism is due to the fact that there is the decomposition of H-
bimodules eJE

3eJ = eJ ker(S3)eJ ⊕ keJφ1.

Remark 48. We denote by eJE
2
oddeJ the preimage of eJE

3
oddeJ in eJE

2eJ via (3.50). For
w ∈W ε and w−1 ∈W η, the isomorphism acts on basis elements as follows

eJ(0,α0, 0)weJ 7→ (−1)1−εeJ(ψw + ψs1−εw + ψsεs1−εw + · · ·+ ψs1−η)eJ ,

with inverse eJψweJ 7→ (−1)1−εeJ [(0,α0, 0)w + (0,α0, 0)s1−εw]eJ . The subspace eJE
2
oddeJ

therefore has as a basis the set of elements

eJ
(
−(0,α0, 0)s1(s0s1)n − (0,α0, 0)(s0s1)n + (0,α0, 0)s0(s1s0)n + (0,α0, 0)(s1s0)n

)
eJ (3.51)

for n ≥ 0.

Let f be the isomorphism eJF
1H → eJE

1 induced by (3.21).

Proposition 49. For 0 ≤ i ≤ 3, let Zi(eJE
∗eJ) denote the component of the centre of

eJE
∗eJ lying in eJE

ieJ . The centre of eJE
∗eJ is given component-wise as follows

(i) Z0(eJE
∗eJ) = eJk[ζ],

(ii) Z1(eJE
∗eJ) = eJf(ζ − 1)k[ζ],

(iii) Z2(eJE
∗eJ) = eJE

2
oddeJ ,

(iv) Z3(eJE
∗eJ) = eJ(E3

odd ⊕ kφ1)eJ .

Proof. (i) Evidently Z0(eJE
∗eJ) ⊂ eJk[ζ] as eJk[ζ] is the centre of eJHeJ ⊂ eJE

∗eJ .
On the other hand, let x ∈ eJk[ζ]. By Remark 43, for any z ∈ eJE

∗eJ there is
an injective H-bimodule homomorphism sending z to an element in either eJHeJ ,
(eJHeJ)∨,f , or a quotient of (eJHeJ)∨,f . It remains only to check that eJζ commutes
with (eJHeJ)∨,f . Using the formula (3.33) we compute that for any eJτ

∨
w ∈ eJH∨,f

with w ∈W ε and w−1 ∈W η,

eJτ
∨
w · ζJ =


τ∨w , if `(w) = 0,

τ∨1 , if `(w) = 1,

τ∨ws1−ηsη , if `(w) ≥ 2,

ζJ · eJτ∨w =


τ∨w , if `(w) = 0,

τ∨1 , if `(w) = 1,

τ∨sεs1−εw, if `(w) ≥ 2.

Indeed, the elements ws1−ηsη and sεs1−εw are equal for `(w) ≥ 2.

34



(ii) Let y ∈ Z1(eJE
∗eJ). Then the pre-image of y in eJF

1H under f is central in
eJHeJ and thus lies in eJk[ζ]. It is a straightforward computation to verify that
eJF

1H ∩ eJk[ζ] = eJ(ζJ − 1)k[ζ], which gives Z1(eJE
∗eJ) ⊆ eJf(ζJ − 1)k[ζ]. On the

other hand, note that

f(eJ(ζ − 1)) = eJ
[
−(0, c0, 0)s0 + (0, c0, 0)s1 − τs1(0, c0, 0)s0 + τs0(0, c0, 0)s1

]
= eJ

[
−(0, c0, 0)s0 + (0, c0, 0)s1 − (0, c0, 0)s0τs1 + (0, c0, 0)s1τs0

]
Using (3.39) and (3.40), one computes

eJ(0, c0, 0)sε ·
[
−(0, c0, 0)s0 + (0, c0, 0)s1−(0, c0, 0)s0τs1 + (0, c0, 0)s1τs0

]
= eJ(0,α0, 0)sε + eJ(0,α0, 0)sετs1−ε

= eJ(0,α0, 0)sε ,

and[
−(0, c0, 0)s0 + (0, c0, 0)s1 − τs1(0, c0, 0)s0+τs0(0, c0, 0)s1

]
· eJ(0, c0, 0)sε

= eJ(0,α0, 0)sε + eJτs1−ε(0,α
0, 0)sε

= eJ(0,α0, 0)sε .

Meanwhile, for w ∈W ε, w−1 ∈W δ we have

eJ(0,α0, 0)w ·
[
−(0, c0,0)s0 + (0, c0, 0)s1 − (0, c0, 0)s0τs1 + (0, c0, 0)s1τs0

]
=

{
eJ · (φws1−δ − φw + φws1−δsδ − φws1−δ), if `(w) ≥ 2

eJ · (−φw + φ1), if `(w) = 1

=

{
eJ · (−φw + φws1−δsδ), if `(w) ≥ 2

eJ · (−φw + φ1), if `(w) = 1

and[
−(0, c0, 0)s0 + (0, c0, 0)s1−τs1(0, c0, 0)s0 + τs0(0, c0, 0)s1

]
· eJ(0,α0, 0)w

=

{
eJ · (φs1−εw − φw + φs1−εsεw − φs1−εw), if `(w) ≥ 2

eJ · (−φw + φ1), if `(w) = 1

=

{
eJ · (−φw + φs1−εsεw), if `(w) ≥ 2

eJ · (−φw + φ1), if `(w) = 1

The elements ws1−δsδ and s1−εsεw are of course the same. Therefore the element
eJf(ζ − 1) is central.
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(iii) If z ∈ eJE2eJ is central, then its image in eJE
3eJ via (3.50) is central in eJE

∗eJ ;
hence Z2(eJE

∗eJ) ⊆ eJE
2
oddeJ . To show the opposite inclusion, we simply check

that the basis of eJE
2
oddeJ commutes with eJE

1eJ . Because eJE
1eJ is generated

by eJ(0, c0, 0)s0eJ and eJ(0, c0, 0)s1eJ as an H-bimodule, it suffices to only check
commutativity on these elements. For n ≥ 0, we have

(0, c0, 0)s0 · [−(0,α0, 0)s1(s0s1)n − (0,α0, 0)(s0s1)n + (0,α0, 0)s0(s1s0)n + (0,α0, 0)(s1s0)n ]

= eJ(φs1(s0s1)n−1 − φ(s0s1)n − φ(s1s0)n + φs0(s1s0)n)

= [−(0,α0, 0)s1(s0s1)n − (0,α0, 0)(s0s1)n + (0,α0, 0)s0(s1s0)n + (0,α0, 0)(s1s0)n ] · (0, c0, 0)s0

and

(0, c0, 0)s1 · [−(0,α0, 0)s1(s0s1)n − (0,α0, 0)(s0s1)n + (0,α0, 0)s0(s1s0)n + (0,α0, 0)(s1s0)n ]

= eJ(−φs0(s1s0)n−1 + φ(s0s1)n + φ(s1s0)n − φs1(s0s1)n)

= [−(0,α0, 0)s1(s0s1)n − (0,α0, 0)(s0s1)n + (0,α0, 0)s0(s1s0)n + (0,α0, 0)(s1s0)n ] · (0, c0, 0)s1 .

(iv) By Lemma 46.

Remark 50. We have really computed the centre here rather than the graded centre, and
the fact that the centre contains a nontrivial square (see (3.40)) shows that they are not
the same.

3.3 The Spherical Ext-algebra

In this section we describe the Spherical Ext-algebra E∗K .
A basis for HK is the set of all τKd for d ∈ KDK , where KDK consists of elements

d ∈W which have minimal length in their coset WK dWK . We compute KDK explicitly.

Lemma 51. We have KDK = {w ∈ W : `(s0w) = `(ws0) = `(w) + 1} = {s1(s0s1)n | n ≥
0} ∪ {1}.

Proof. Recall that WK = {1, s0}. Therefore w ∈ W has minimal length in the coset
WK wWK if and only if `(s0w) = `(ws0) = `(w) + 1. Moreover, each coset has exactly
one element such that `(s0w) = `(ws0) = `(w) + 1. This proves the first equality. For the
second equality, simply note that an arbitrary element w ∈W is either of the form (s0s1)n

or (s0s1)ns0 for n ∈ Z.

Recall that E∗K identifies with eKE
∗eK where eK is the idempotent defined in (3.6).

The degree 0 component of the isomorphism is given explicitly in Proposition 40. It follows
that a basis for eKHeK is {eKτweK}w∈K̃DK

.
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A basis for eKE
1eK We proceed in an analogous way to §3.2. By Lemma 35, we

have that eKE
1
KeK = eK ker(g1)eK ∼= eK(F 1H)eK as H-bimodules. This isomorphism is

induced by the isomorphism f : F 1H → ker(g1) described in (3.21). A basis for eKF
1HeK

is {eKτweK | w ∈ K̃DK , `(w) ≥ 1}. Since all elements w ∈ K̃DK have `(s0w) = `(ws0) =

`(w) + 1, for w ∈ K̃DK with `(w) ≥ 1 we get

f(eKτweK) = eKf(τw)eK

=


eK(0, c0, 0)weK , if `(w) ≥ 2 and `(s0w) = `(w) + 1

−eK(0, c0, 0)weK , if `(w) ≥ 2 and `(s1w) = `(w) + 1

eK(0, c0, 0)weK , if w ∈ s1Ω

−eK(0, c0, 0)weK , if w ∈ s0Ω

= eK(0, c0, 0)weK .

We conclude that a basis for eKE
1eK = eK ker(g1)eK is

{eK(0, c0, 0)weK | w ∈ K̃DK}. (3.52)

Remark 52. Similar to Remark 41, we conclude that H1(Kw, k) = 0 for any w ∈W \K̃DK

and that the Frattini quotient of K is trivial.

We record this latter fact here and provide an alternate proof.

Proposition 53. The Frattini quotient of K is trivial.

Proof. By Proposition 42, we have Φ(J) = J which yields the sequence of nested subgroups
J ⊆ Φ(K) ⊆ K. Therefore [K : J ] = [K : Φ(K)][Φ(K) : J ]. The left-hand side is p + 1
which forces [K : Φ(K)] = 1.

Remark 54. The proof above generalizes readily to any parahoric P subgroup containing
J due to the fact that [P : J ] ≡ 1 (mod p) for any P.

The following is again analogous to §3.2.

A basis for eKE
2eK A basis for eK(F 1H)∨,feK is {eK(τw|F 1H)eK | w ∈ K̃DK , `(w) ≥

1}. The isomorphism eKE
2eK ∼= eK(F 1H)∨,feK from Lemma 37 then naturally defines

the following basis for eKE
2eK :

{eK(0,α0, 0)weK | w ∈ K̃DK , `(w) ≥ 1}.
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A basis for eKE
3eK Using the isomorphism ∆3 : E3 → (J(E0)J)∨,f and restricting, we

obtain the following basis for eKE
3eK :

{eKφweK | w ∈ K̃DK}.

Proposition 55. The map

Z(eJE
∗eJ) −→ eKE

∗eK

z 7−→ eKzeK = eKz (3.53)

is a k-algebra isomorphism, where Z(eJE
∗eJ) is the centre of eJE

∗eJ .

Proof. This map is a homomorphism of k-algebras. We show that it is bijective on each
graded piece, i.e. on Zi(eJE

∗eJ) for 0 ≤ i ≤ 3.

• For i = 0, one computes that

eKζ
neK = eK(1 + τs1 + · · ·+ τs1(s0s1)n−1)eK .

Recall that the elements eKτs1(s0s1)neK , n ≥ 0, together with eK define a basis for
eKE

∗eK . Therefore the map (3.53) restricted to Z0(eJE
∗) is injective with image

eKE
0eK . Its inverse is eKτs1(s0s1)neK 7→ eJζ

n(ζ − 1).

• For i = 1, recall that eKE
1eK ∼= eKF

1HeK as H-bimodules by Lemma 35. The i = 1
component of (3.53) then factors through the following H-bimodule homomorphisms

Z1(eJE
∗eJ) = eJf(ζ − 1)k[ζ]eJ

'−→ eJ(ζ − 1)k[ζ]
eK ·−−→ eKF

1HeK
'−→ eKE

1eK
(3.54)

By the proof of the i = 0 case, we know that the second arrow is indeed bijective.

• We now check i = 3 (as we will need this for i = 2). Recall that we have eKφweK = 0
when w ∈W 1 or w−1 ∈W 1. Therefore, for n ≥ 0, (3.53) has

eJ
(
ψs1(s0s1)n + ψs0(s1s0)n

)
7−→ eKψs1(s0s1)neK = −eKφs1(s0s1)neK .

The elements eKτ
∨
s1(s0s1)neK for n ≥ 0 define a basis for (eKF

1HeK)∨,f . Therefore

(3.53) restricted to E3
odd is injective with image (eKF

1HeK)∨,f . Hence the restriction
to Z3(eJE

∗), i.e. the map Z3(eJE
∗eJ) = E3

odd ⊕ keJφ1 → (eKE
0eK)∨,f , is bijective.

• For i = 2, we proceed analogously to the i = 1 case. We have that eKE
2eK ∼=

(eKF
1HeK)∨,f by Lemma 37, so the i = 2 component of (3.53) factors through

Z2(eJE
∗eJ) = E2

odd
'−→

(3.50)
E3

odd
eK ·−−→ (eKF

1HeK)∨,f
'−→ eKE

2eK .

The second arrow is bijective by the i = 3 case.
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3.3.1 The anti-involution on eKE
∗eK

Recall the anti-involution J : E∗ → E∗ we introduced in §3.1.2. Its action on the basis
elements of eKE

∗eK is given therein. We denote by JK the map J restricted to eKE
∗eK .

It acts almost trivially:

Proposition 56. For α ∈ eKEieK , we have

JK(α) =

{
α, if i = 0, 3

−α, if i = 1, 2.

Proof. Let α ∈ H i(I,X(d)) where d ∈ K̃DK . Since d−1 = −d, the formulas (3.7) and (3.8)
then imply that eKJ(α)eK = eKαeK if i = 0, 3 or −eKαeK if i = 1, 2. Therefore the claim
holds on a basis for eKE

∗eK .

Remark 57. The somewhat surprising fact that E∗K is commutative (rather than graded
commutative) is implied directly by Proposition 56 as follows. If α ∈ eKE

ieK and β ∈
eKE

jeK then we can proceed by cases based on the values of i and j. For example, if
i = j = 1, then α · β ∈ H2(K,XK) and

α · β = JK(α) · JK(β)

= −JK(β · α)

= β · α

where we use Proposition 56 for the first and third equalities. The remaining cases are
similar.
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