
Efficient Computations on Uncertain Graphs by Group
Testing, Streaming and Recycling

by

Glenn Steven Bevilacqua

B.Sc., The University of British Columbia, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

April 2022

© Glenn Steven Bevilacqua, 2022

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Efficient Computations on Uncertain Graphs by Group Testing, Stream-
ing and Recycling

submitted by Glenn Steven Bevilacqua in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science.

Examining Committee:

Laks V.S. Lakshmanan, Professor, Computer Science, UBC
Supervisor

Raymond Ng, Professor, Computer Science, UBC
Supervisory Committee Member

David Poole, Professor, Computer Science, UBC
Supervisory Committee Member

William Evans, Professor, Computer Science, UBC
University Examiner

Daniel J. McDonald, Associate Professor, Statistics, UBC
University Examiner

Sourav S. Bhowmick, Associate Professor, Nanyang Technological University
External Examiner

ii

Abstract

Uncertain graphs, where the presence of connections between nodes is probabilis-

tic, have received a great deal of attention in a wide range of fields. Despite the

progress made by prior works, the application of existing algorithms to solve the

important problems of coverage maximization, also known as Influence Maxi-

mization (IM), and reachability estimation, also known as reliability, on uncertain

graphs remains constrained by their computational costs in the form of both the

running time and memory needed for one to achieve high quality solutions. In

Chapter 2 we address the issue that when performing sampling on large networks

the majority of random draws of edges are being effectively wasted as the majority

of edges will not be live. We resolve this by introducing an approach that through

the application of group testing of edges scales only logarithmically with the num-

ber of failed edges in the worst case as opposed to linearly. In Chapter 3 we tackle

the problem of the exorbitant memory required to store the Reverse Influence Sam-

ple (RIS) collection used by existing approaches to solve the IM problem becoming

prohibitive. We avoid this by developing a new non-greedy approach that avoids

storing the RIS collection by streaming it instead. In Chapter 4 we note that a key

cause of Monte Carlo simulation, along with existing approaches that build upon

it, becoming ineffective for estimating low probability reachability is caused by

the number of samples it needs to attain a desired relative error depending on the

probability that is being estimated. We remedy this by developing a technique of

recycling of random draws which enables us to develop an algorithm whose rela-

tive error does not depend on the probability being estimated and as such does not

suffer from this limitation. In all cases we perform experiments on real datasets to

empirically validate the effectiveness of the algorithms and techniques we develop.

iii

Lay Summary

Many real networks such as protein-protein interaction (PPI) networks, peer-to-

peer (P2P) networks and social networks exhibit uncertainty: each connection from

one node, be it a computer or person, to another has an associated probability that

it is live. Reachability estimation involves determining with what probability there

exists a path connecting a source node to a target node. Example applications are

estimating the probability two nodes in a computer network can reach each other

and determining to whom information may spread in a social network. Coverage

maximization requires identifying a set of source nodes that reach the maximum

number of nodes in the network in expectation. This is critical for the placement

of information sources in viral marketing or sensors for outbreak detection. We

develop efficient algorithms that improve on the state-of-the-art and enable ad-

dressing these important problems using less computer running time and memory.

iv

Preface

All research presented in this dissertation was done under the supervision of Prof.

Laks V.S. Lakshmanan. Chapter 2 and Chapter 3 contain material that has been

published [6] in the June 2021 Special Issue on Big Graph Data Management and

Processing in The VLDB Journal. I designed the algorithm presented, developed

the associated theory, and conducted the experiments under the guidance of Prof.

Laks V.S. Lakshmanan.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Acknowledgments . xv

1 Introduction . 1
1.1 Reachability and Diffusion on Uncertain Graphs 2

1.2 Challenges and Key Contributions 12

1.2.1 Group Testing for Efficient Sample Generation 13

1.2.2 Memory Efficient Influence Maximization via Streaming . 14

1.2.3 Recycling random draws for Efficient Reachability Esti-

mation . 15

1.3 Outline . 16

2 Efficient Sample Generation . 17
2.1 Introduction . 17

2.2 Related Work . 20

vi

2.3 Our Approach . 21

2.3.1 Group Test Construction 23

2.3.2 Group Test Application 25

2.4 Experiments . 29

2.5 Discussion and Conclusions . 32

3 Memory Efficient Influence Maximization 35
3.1 Introduction . 35

3.2 Preliminaries . 40

3.2.1 Influence Maximization 40

3.2.2 Fractional Objectives . 43

3.3 Approach . 44

3.4 Theory . 47

3.4.1 Bounds Derivation . 48

3.4.2 Bounds Failure Probability 54

3.4.3 Parameters . 55

3.5 Algorithm . 56

3.6 Efficient Implementation . 62

3.6.1 Lazy Update . 62

3.6.2 Parallel Implementation 65

3.7 Experiments . 67

3.7.1 Experimental Configurations 68

3.7.2 IM Experiments: Online Setting 69

3.7.3 IM Experiments: Conventional Setting 77

3.7.4 Summary of IM experiments 82

3.7.5 Effect of Efficient Implementation 83

3.8 Related Work . 84

3.9 Discussion and Conclusions . 87

4 Edge Sample Recycling for Reachability Estimation 89
4.1 Introduction . 89

4.2 Related Work . 91

4.3 Our Approach . 94

vii

4.3.1 Edge Draw Recycling 95

4.4 Theory . 99

4.4.1 Unbiased Estimation . 100

4.4.2 Variance Characterization 103

4.5 Algorithm . 107

4.5.1 Success Indices Sampling 112

4.6 Implementation Details . 116

4.7 Experiments . 120

4.7.1 Experimental Configuration 121

4.7.2 Average Performance . 125

4.7.3 Relative Error Distribution 131

4.7.4 Impact of s-t Reach Probability on Relative Error 134

4.8 Discussion and Conclusions . 138

5 Summary and Future Research . 140
5.1 Summary . 140

5.2 Limitations . 142

5.3 Future Research . 143

Bibliography . 145

A Supporting Materials . 154
A.1 Additional Proofs . 154

viii

List of Tables

Table 2.1 Datasets (M = Million, G = Billion) 29

Table 2.2 Summary of speedups of proposed group edge testing compared

to independent testing of edges across datasets. Average, min

and max reported is over the range of time horizons considered

for each dataset. 32

Table 3.1 Notation for Sections 3.3, 3.4 and 3.5 45

Table 3.2 Additional Notation for Section 3.5 59

Table 3.3 Online Processing expected influence (in hundreds of thousands)

at 213×1000 samples on Orkut. 76

Table 3.4 Online Processing expected influence (in hundreds of thousands)

at 213×1000 samples on Twitter. 76

Table 4.1 Datasets . 121

Table 4.2 Maximum memory usage in MB 128

Table 4.3 Maximum memory usage in GB 131

Table 4.4 Average running time in seconds per s-t pair for each algo-

rithm’s relative errors reported in Figure 4.6. The selection

of the number of samples/repetitions used ensures the running

times of all algorithms are within one doubling of the time taken

by WIR-G/WIR-E. 134

ix

List of Figures

Figure 1.1 Independent Cascade (IC) Model Example 3

Figure 1.2 Continuous-time Independent Cascade (CTIC) Model Example 5

Figure 2.1 Group edge testing Example showing the interaction of the ap-

plicability test, group test and direction test as the edges that

succeed are identified. Edges associated with nodes 3 and 4 do

not need to be tested directly as the group test failing rules out

the possibility that either has an edge length less than the time

limit. 24

Figure 2.2 Size distribution of 1M Influence Samples 30

Figure 2.3 Effect of time horizon on Influence Sample size. 31

Figure 2.4 Speedup of proposed group edge testing compared to indepen-

dent testing of edges. Speedup is assessed w.r.t. time horizon

which controls the length of time diffusion occurs for. Higher

time horizons yield larger RIS samples. 33

Figure 3.1 Overview of applying the multi-linear extension (ME) and frac-

tional relaxation (FR) to influence maximization. 46

x

Figure 3.2 Online processing results on Orkut with k= 625 (Plots in columns

share x-axis, every second marker is omitted). Top: Shows the

expected influence spread and the associated upper and lower

bounds of our and the competing approach. Middle: Shows the

empirical guarantees that each approach can certify using their

upper and lower bounds. Bottom: Shows the running time and

memory used. 70

Figure 3.3 Online processing results on Orkut with k = 15,625 (Plots in

columns share x-axis, every second marker is omitted). Top:

Shows the expected influence spread and the associated upper

and lower bounds of our and the competing approach. Mid-

dle: Shows the empirical guarantees that each approach can

certify using their upper and lower bounds. Bottom: Shows

the running time and memory used. 71

Figure 3.4 Online processing results on Twitter with k = 625 (Plots in

columns share x-axis, every second marker is omitted). Top:

Shows the expected influence spread and the associated upper

and lower bounds of our and the competing approach. Mid-

dle: Shows the empirical guarantees that each approach can

certify using their upper and lower bounds. Bottom: Shows

the running time and memory used. 72

Figure 3.5 Online processing results on Twitter with k = 15,625 (Plots in

columns share x-axis, every second marker is omitted). Top:

Shows the expected influence spread and the associated upper

and lower bounds of our and the competing approach. Mid-

dle: Shows the empirical guarantees that each approach can

certify using their upper and lower bounds. Bottom: Shows

the running time and memory used. 73

xi

Figure 3.6 Online processing results on Orkut with k= 25 (Plots in columns

share x-axis, every second marker is omitted) Top: Shows the

expected influence spread and the associated upper and lower

bounds of our and the competing approach. Middle: Shows the

empirical guarantees that each approach can certify using their

upper and lower bounds. Bottom: Shows the running time and

memory used. 74

Figure 3.7 Online processing results on Twitter with k= 25 (Plots in columns

share x-axis, every second marker is omitted). Top: Shows the

expected influence spread and the associated upper and lower

bounds of our and the competing approach. Middle: Shows the

empirical guarantees that each approach can certify using their

upper and lower bounds. Bottom: Shows the running time and

memory used. 75

Figure 3.8 Running time and memory usage (left) and expected influ-

ence spread attained (right) in conventional setting on Youtube

dataset where all algorithms are set to have ε = 0.1 and δ =

1/n. n is the number of nodes in the network. 77

Figure 3.9 Running time and memory usage (left) and expected influence

spread attained (right) in conventional setting on Pokec dataset

where all algorithms are set to have ε = 0.1 and δ = 1/n. n is

the number of nodes in the network. 78

Figure 3.10 Running time and memory usage (left) and expected influence

spread attained (right) in conventional setting on Pokec dataset

where all algorithms are set to have ε = 0.1 and δ = 1/n. n is

the number of nodes in the network. 79

Figure 3.11 Running time and memory usage (left) and expected influence

spread attained (right) in conventional setting on LiveJournal

dataset where all algorithms are set to have ε = 0.1 and δ =

1/n. n is the number of nodes in the network. 80

xii

Figure 3.12 Running time and memory usage (left) and expected influence

spread attained (right) in conventional setting on Orkut dataset

where all algorithms are set to have ε = 0.1 and δ = 1/n. n is

the number of nodes in the network. 81

Figure 3.13 Running time and memory usage (left) and expected influ-

ence spread attained (right) in conventional setting on Twit-

ter dataset where all algorithms are set to have ε = 0.1 and

δ = 1/n. n is the number of nodes in the network. 82

Figure 3.14 Relative Expected Influence w.r.t. FAIM in conventional set-

ting where all algorithms are set to have ε = 0.1 and δ = 1/n.

n is the number of nodes in the network. 83

Figure 3.15 LiveJournal T=0.18 Parallelization test results 84

Figure 4.1 Toy example for comparing amount of random draws performed

by BFS MC, Geometric sampling, and Edge Draw Recycling

(our approach). 96

Figure 4.2 Edge Draw Recycling Example 100

Figure 4.3 Toy example for demonstrating the algorithm. 111

Figure 4.4 Toy example for demonstrating deduplication. 117

Figure 4.5 Impact of varying the desired number of success indices hyper-

parameter, ℓ, on the NetHept dataset. 125

Figure 4.6 Average relative error over all s-t pairs with respect to running

time on LastFM (left) and NetHept (right). 126

Figure 4.7 Average relative error over all s-t pairs with respect to running

time on DBLP (left) and BioMine (right). 129

Figure 4.8 Average relative error over all s-t pairs with respect to running

time on LiveJournal with uniform 0 to 0.01 edge weights (left)

and one-over in-degree edge weights (right). 131

Figure 4.9 Relative error cumulative distribution over s-t pairs on LastFM

(left) and NetHept (right). 132

Figure 4.10 Relative error cumulative distribution over s-t pairs on DBLP

(left) and BioMine (right). 132

xiii

Figure 4.11 Relative error cumulative distribution over s-t pairs on Live-

Journal Uniform(0,0.01) edge weights (left) and 1/in-degree

edge weights (right). 133

Figure 4.12 s-t reach probability distribution of the s-t pairs considered on

each dataset. 135

Figure 4.13 Relative error vs. s-t reach probability on LastFM (left) and

NetHept (right). 136

Figure 4.14 Relative error vs. s-t reach probability on DBLP (left) and

BioMine (right). 136

Figure 4.15 Relative error vs. s-t reach probability on LiveJournal Uni-

form(0,0.01) edge weights (left) and 1/in-degree edge weights

(right). 137

xiv

Acknowledgments

I would like to express my gratitude to my supervisor Professor Laks V.S. Laksh-

manan. I am indebted to him for his patience and willingness to spend time every

week to work through challenges together. This dissertation would not have been

possible without his supervision and continuous guidance.

I must also thank my supervisory committee members Professor David Poole

and Professor Raymond Ng for their time and feedback. I am very thankful for

Professor William Evans, Professor Daniel J. McDonald and Professor Sourav

Bhowmick examining my dissertation and providing very helpful comments. Pro-

fessor Mark Schmidt, who chaired my thesis proposal defense, and Professor Boris

Stoeber, who chaired my final defense, I thank for their time and help.

I must also acknowledge all of the DMM lab members through the years and

everyone that attended our reading group who accompanied me on this journey.

Most importantly, I am greatly indebted to my parents whose support enabled me

to focus on completing this dissertation and without whom none of this would have

been possible.

xv

Chapter 1

Introduction

Uncertain graphs, where the presence of connections between nodes is probabilis-

tic, have received attention from a wide range of fields. The ability to express

uncertainty inherent in data is valuable in a wide range of settings including sensor

networks [30], protein-protein interaction (PPI) networks [48, 56], road networks

[44], peer-to-peer (P2P) networks [48] and social networks [56]. Fundamental

problems are those of reachability and coverage.

Reachability, also known as reliability, on uncertain graphs is not a simple YES

/ NO query but rather asks with what probability does a path exist connecting two

nodes of interest. Estimating the probability of two nodes being connected is of

importance for many applications. In particular, it may be used to capture the

probability of a route existing from a source to a destination in sensor, computer or

road networks [30, 44]. In addition, it provides valuable information on how fre-

quently nodes may interact in a direct or indirect manner. This is of importance for

analysis of protein-protein interaction (PPI) networks and social networks [48, 56].

In the typically studied setting, where connections between nodes of the network

are present (i.e. live) or absent (dead) with independent probability, the exact cal-

culation of the reachability probability is known to be #P-hard [86]. Consequently,

focus is instead given to approximation algorithms that can scale to realistic size

networks.

Coverage, or spread, is defined to be the expected number of nodes in the net-

work that are reachable from a source node or set of source nodes. Estimation of

1

coverage is critical for assessing the effectiveness of a placement of information

sources for viral marketing [55] or sensors for outbreak detection [61] in uncertain

networks. Exact calculation of coverage under standard diffusion models, which

characterize the probability with which nodes reach each other, is also known to be

#P-hard [15, 87]. As with reachability, the goal is development of efficient approxi-

mation algorithms. Optimization of the selection of nodes so to maximize coverage

gives rise to the extensively studied problem known as influence maximization.

The problem of influence maximization (IM), introduced as a discrete opti-

mization problem by Kempe et. al. [55], has found a wide range of applications

including infection containment [61], feed ranking [46], personalized recommen-

dation [82] and regulatory cell cycle analysis [31] beyond its initial application to

viral marketing [20, 77]. The IM problem asks: subject to a given upper limit

cardinality constraint on the number of nodes that may be selected, find the set of

nodes, referred to as a ‘seed set’, that achieves maximum coverage, also known as

the influence spread. Even if one were to have an oracle that could provide the ex-

act coverage of a set of nodes, finding the optimal seed set that achieves maximum

coverage is known to be NP-hard [55]. Despite this, the coverage of sets of nodes

under typical diffusion models exhibits properties that enable a simple greedy algo-

rithm to attain a constant factor approximation. Unfortunately the effectiveness of

the greedy algorithm does nothing to address the underlying difficulty of coverage

estimation. Kempe et al. [55] initially tackled this using Monte-Carlo (MC) sim-

ulation but this approach does not scale to large networks and seed set sizes [84].

Reverse influence sampling (RIS) introduced by Borgs et al. [7] has led to a class

of current state-of-the-art algorithms [45, 71, 83–85]. While these approaches can

often scale to large networks they become very memory intensive.

The focus of this dissertation is on addressing key efficiency challenges in-

volved in coverage estimation, influence maximization and reachability estimation.

1.1 Reachability and Diffusion on Uncertain Graphs
Given a graph a diffusion model specifies how and with what probability nodes

may reach each other. For reliability estimation the standard setting involves each

edge having an associated independent probability with which transmission may

2

Figure 1.1: Independent Cascade (IC) Model Example

occur over it [86]. Existing literature in influence maximization (IM) primarily

focuses on the Independent Cascade (IC) and Linear Threshold (LT) discrete time

models [55]. The IC model studied in the literature on IM is equivalent to the

setting considered in the literature on reliability estimation.

It has been argued that a continuous time model may be more appropriate for

modeling diffusion of product adoptions and infections and that it is significantly

more accurate than discrete time models [21, 35–37]. Discrete time models lack

the ability to capture the time needed for propagation to occur across links, which

can differ between links. As such, if the goal is to attain a desired influence spread

within a given time frame, discrete time models lack the ability to capture this

precisely.

Diffusion Models. Here we will consider the independent cascade (IC) model,

as it pertains to a variety of reachability applications, and the continuous-time in-

dependent cascade (CTIC) model for coverage estimation as needed for influence

maximization. These models are formally defined in the literature as follows.

Definition 1 (Independent Cascade (IC) Model [55]). Given a directed graph, G =

(V,E), the IC model includes a function, p : E→ [0,1], that assigns an independent

probability to each edge of the graph. The probability p((u,v)) associated with an

edge (u,v) ∈ E specifies the probability with which the edge (u,v) is present in

the graph. Equivalently, it can be understood as the probability with which node

3

u can transmit to v over the edge. The resulting uncertain graph can be seen

as a probability distribution, G , over deterministic graphs, also known as possible

worlds, where the probability associated with a graph, G′ = (V,E ′), G′ ∼ G , where

E ′ ⊆ E is:

Pr[G′] = ∏
e∈E ′

p(e) ∏
e∈E\E ′

(1− p(e)) (1.1)

As each possible world is deterministic, one can then find for a source node

s the set of nodes that are reachable from it in the possible world. Shown in Fig-

ure 1.1 is a toy example of an uncertain graph on the left and a possible world

drawn from it on the right. The nodes that are reachable from node 2 in this possi-

ble world are highlighted in green.

The IC model is a fundamental model that has been studied extensively in the

literature on Influence Maximization[7, 55, 71, 83–85, 87] originating from the

context of marketing[33, 34]. The IC model has the property that the probabilities

that edges are present in the graph are independent of each other. It is also the case

that the IC model corresponds to the setting studied in the literature on reliability[4,

48, 54, 86], which we refer to as reachability estimation, where it is standard to

assume that the events of individual links being present or absent are independent.

Problem 1 (Reachability Estimation). Let, IG′ [s, t], be an indicator function that is

1 if s can reach the node t in a given deterministic graph G′ and 0 otherwise. Then

the reachability probability, R(s, t), (also known as the reliability) of s reaching t

on the uncertain graph characterized by G is:

R(s, t) = EG′∼G [IG′ [s, t]] (1.2)

where each deterministic graph, G′, is drawn according to its probability, Pr[G′].

It has been argued in the literature that a continuous time model may be more

appropriate for modeling diffusion and that it can be significantly more accurate

than discrete time models [21, 35–37]. Specifically, discrete time models lack the

ability to capture the time needed for propagation to occur across links, which can

differ for different links. As such, if the goal is to reach some coverage within a

given time frame, discrete time models lack the ability to capture this precisely.

4

Figure 1.2: Continuous-time Independent Cascade (CTIC) Model Example

Definition 2 (Continuous-time Independent Cascade (CTIC) Model [35, 78]). Given

a directed graph, G= (V,E), the CTIC model associates an edge length probability

distribution L (e) with each edge e ∈ E. Under the CTIC model a possible world

corresponds to an edge length being drawn for each edge, e, from its associated

edge length distribution, L (e). Each edge length that is drawn specifies how much

time is required for propagation to occur across that edge in the possible world.

For instance the exponential distribution may be used to specify the time needed

for diffusion to occur across each edge, L (e), as done in [78]. Each edge, e, then

has an associated rate parameter, λe, which parametrizes its edge length distribu-

tion, L (e), which is specified by Exp(λe). The probability density, f (G′), associ-

ated with a possible world, G′ = (V,E, t(·)), for which each edge has an associated

time length, t(e), to traverse then is:

f (G′) = ∏
e∈E

λe exp(−λet(e)) (1.3)

Definition 3 (Coverage [78]). Let, I(G′,T)[S,v], be an indicator function that is 1

if there is a node in the set of nodes, S, that can reach the node v via a path in

the deterministic graph G′ whose edges’ total time length is less that T and 0

otherwise. The coverage, σ(S;T), also known as spread or influence spread, of the

5

set of nodes S under the CTIC model is then:

σ(S;T) = ∑
v∈V

[
EG′∼G

[
I(G′,T)[S,v]

]]
(1.4)

where each deterministic graph is drawn by performing an edge length draw for

each edge of the uncertain graph. The parameter T , which is implicit in the context,

is often dropped and the coverage is referred to as simply, σ(S).

Although the CTIC model was previously proposed [35, 78] in a manner that

involves time, the time horizon, T , can also be understood as the maximum path

length and the time needed for propagation to occur across an edge in a possible

world as its edge length. The coverage, σ(S;T), is then the expected number of

nodes that can be reached from S with a path length less than T .

Shown in Figure 1.2 is a toy example of an uncertain graph which has expo-

nentially distributed edge lengths (left) and a possible world drawn from it (right).

For a time horizon of T = 3, there are a total 4 nodes covered (shown highlighted

in green) by the source node 2 in the possible world.

Diffusion Approximation. Since exact calculation of the reachability probability

and coverage is known to be #P-hard [15, 86, 87] it is critical to have an efficient

means to approximate the diffusion. It is worth noting that the reachability prob-

ability is not the same as the probability of the source reaching the target via a

random walk. At an intuitive level, random walks allow each path taken by the

random walk to redraw the edges encountered (i.e. for different paths that share

the same edge some paths may find the edge to be live while others find it to be

dead). In the context of diffusion analysis, existing applications of the multivari-

ate Hawkes process exhibit this behavior (e.g. [25]). In contrast, in reachability

all paths share the same edge draw result (i.e. if the edge is dead then all paths

through it also fail). It is this sharing of edge results among paths that makes the

reachability probability more realistic but also is the underlying cause of it being

difficult to estimate. The most immediate means to address this is to utilize the

connection to possible worlds.

This results in the Monte Carlo sampling approach that is used as a baseline and

a building block for reachability estimation [48, 54]. This approach is sometimes

referred to as ‘direct’ or ‘crude’ Monte Carlo to distinguish it for other Monte Carlo

6

based techniques [27, 57]. This also is the approach applied by [55] for influence

spread estimation that is referred to Monte Carlo simulation by subsequent works,

e.g. [14, 15, 84, 87].

Definition 4 (Monte Carlo (MC) Simulation [14, 27, 55]). Monte Carlo simula-

tion (also called Monte Carlo sampling) samples K possible worlds, G′ ∼ G , from

the distribution over graphs, which are used to estimate the expectation over the

distribution. For instance, let G′1, ...,G
′
K ∼ G then the estimate:

R̂(s, t) =
1
K

K

∑
i=1

[
IG′i [s, t]

]
(1.5)

may be used to approximate the reachability probability, R(s, t) (see Problem 1).

MC simulation also can be understood as running several simulations of the

diffusion process and averaging their results. Each simulation of the diffusion pro-

cess is equivalent to sampling one possible world.

While the approximation may be made as accurate as needed, doing so comes

at a very high computational cost. In the following we elaborate on why this is the

case. A significant limitation of MC simulation for reachability estimation is that

the relative error of the approximation is impacted by the value of the probability

being estimated. We focus on relative error because an absolute error that may be

acceptable when the quantity being estimated is large can make the estimate useless

when the quantity being estimated is small. It is known [76] that the relative error

of MC sampling when using a number of possible world samples, K, that satisfies,

K ≥ 3
ε2R(s,t) ln

(2
δ

)
is,

Pr[|R̂(s, t)−R(s, t)| ≥ εR(s, t)]≤ δ (1.6)

That is, using this result, we can certify a relative error of at most ε , with prob-

ability 1− δ , using a sample of 3
ε2R(s,t) ln

(2
δ

)
possible worlds. However, this is

problematic because R(s, t) is not known and is in fact the quantity that we are esti-

mating. Furthermore, if R(s, t) is small, it can result in a greatly inflated number of

possible world samples needed. This is because the number of possible world sam-

ples which is needed is inversely proportional to R(s, t). If the number of possible

7

world samples used is not increased accordingly then the relative error will not be

ε and instead will be much greater. For instance, if one were to use K = 3
ε2 ln

(2
δ

)
this result implies that the resulting relative error will be ε/

√
R(s, t), which can be

much larger than ε if R(s, t) is small.

This issue is somewhat less problematic for coverage estimation, since the se-

lected nodes themselves count towards the coverage. The coverage of a set of

nodes, S, is trivially lower bounded by |S| thus preventing the possibility of the

quantity to be estimated being arbitrarily small. However, when one is interested

in finding a set of nodes that attains maximum coverage simply estimating the

spread of one set of nodes is insufficient. This is because MC simulation, as used

by [55] and subsequent works [61], needs to start from scratch when estimating the

coverage of a new set of nodes. Due to overlap between the coverage of nodes it

is not possible to compute the coverage of a set of nodes simply from the expected

coverage that the nodes attain individually. A way around this is to keep all of the

sampled possible worlds in memory instead of only storing the number of nodes

that were reached in the world. While such an approach has been considered in

[73] the number of sampled possible worlds that can be practically stored in mem-

ory (at most several hundred) limits the estimation accuracy such an approach can

attain. Meanwhile the approach of rerunning the MC simulation quickly requires

a prohibitive amount of computation time, especially if one wishes to select a seed

set that isn’t very small. Specifically, prior works focus on sets of nodes of size

less than one hundred. In contrast, more recent works consider sets of sizes up to

tens of thousands [71].

Reverse influence sampling (RIS) introduced by Borgs et al. [7], also referred

to as rr-sets [84], provides an alternative means for obtaining an estimate of cover-

age in a manner that allows the samples drawn to be used repeatedly to estimate the

coverage of various sets of nodes. It is based on equivalently representing the cov-

erage attained on the graph under the diffusion model as instead the fraction of sets

covered (see Lemma 1) drawn from an appropriately constructed distribution of

sets. Specifically, the sets, known as reverse influence sets or reverse reachability

sets, are constructed as follows:

Definition 5 (Reverse influence sampling (RIS) [7, 84]). Let v be a node randomly

8

selected from V . Let G′ be a possible world sampled from G . Then the resulting

RIS sample, also known as a reverse reachable set or rr-set, is:

R = {u ∈V | IG′ [u,v] = 1} (1.7)

where IG′ [u,v] is 1 if u reaches v in G′ and 0 otherwise. Each rr-set is generated

by resampling both v and G′. Let the resulting distribution over rr-sets be, D , (i.e.

R ∼ D).

The coverage under the IC and CTIC models along with other diffusion models

that have been considered in the literature has been shown to be representable in

this manner [85]. When this is the case, the coverage σ(S), of a set S under the

diffusion model and the associated probability distribution over reverse influence

sets, D , satisfies:

Lemma 1 (Corollary 1 [84]). σ(S)/n = ER∼DI[R∩S ̸= /0] = Er∼D [min(⟨s,r⟩,1)],
where r and s are binary vector representations of R and S, ⟨·, ·⟩ is the inner prod-

uct, σ(S)/n is the normalized influence spread and n is the number of nodes in the

network.

What this means is that the fraction of rr-sets that contain at least one of the

nodes in S may be used to estimate the normalized coverage, σ(S)/n, which is

the same as the normalized influence spread considered in [84]. The probability

distribution over sets that satisfies this is sampled by using the procedure described

in Definition 5. The key advantage of this approach compared to MC simulation

(see Definition 4) is that the RIS collection may be used to estimate the coverage

of any given set of nodes. This allows them to be reused for multiple different sets

of nodes. In contrast, the simulations performed by MC simulation only give the

coverage achieved by the source node set that the diffusion simulation was started

from, and as such cannot be used to determine the coverage of other node sets.

Influence Maximization. Optimization of the selection of nodes so to maximize

coverage gives rise to the extensively studied problem known influence maximiza-

tion.

Problem 2 (Influence Maximization [55]). Given a coverage function, σ(S), also

known as the spread or influence spread, that applies to a graph, G = (V,E), and

9

an integer k, find S∗ such that:

S∗ ∈ argmax
S⊆V s.t. |S|≤k

σ(S) (1.8)

There exists a vast array of existing works on the influence maximization (IM)

problem ranging from more efficient versions of Kempe et. al. approach such

as [61] to a wide array of heuristics developed for specific diffusion models such

as [15, 87]. Recently developed approaches based on reverse influence sampling

(RIS) have consistently achieved state-of-the-art results [45, 71, 83–85] out-competing

existing approaches not just in computational running time but also in solution

quality, as measured by achieved coverage of returned solutions, theoretical guar-

antees and empirical guarantees. Furthermore, RIS acts as an abstraction layer that

enables algorithms developed for one propagation model to be easily applied to

others simply by providing the appropriately generated rr-set. In particular, it is

straightforward to adapt RIS based algorithms for the CTIC model [85]. In con-

trast, algorithms specifically designed for a particular diffusion model (e.g. the IC

model) would need to be rebuilt from scratch and may not even be applicable at all

if one were to want to apply them to the CTIC model. This is a consequence of de-

pendence of these algorithms on properties that are unique to the diffusion model

they were designed for. For these reasons the portion of this dissertation that dis-

cusses influence maximization will focus on these state-of-the-art approaches that

are built on reverse influence sampling.

The use of RIS to solve the IM problem by existing works may be summarized

as: 1) Determining the appropriate number of RIS samples, for a desired relative

error of coverage estimation. 2) Constructing and storing a collection of the said

number of RIS samples. 3) Applying the Greedy algorithm to select a set of nodes

that achieve high coverage, using the RIS collection for node set coverage estima-

tion. The Greedy algorithm is a simple myopic approach that incrementally builds

up the set of nodes starting from the empty set and at each step adding the node to

the set that has the greatest marginal gain. The marginal gain of a node, u, is de-

fined as the increase in the coverage that results from adding it to the selected set,

S, which is σ(S∪{u})−σ(S). While simple it has been shown that the greedy al-

gorithm attains a (1−1/e)-approximation of the optimal solution in the case of no

10

coverage estimation inaccuracy [55]. Furthermore, this approximation guarantee is

in effect optimal due to an inapproximability result by Feige [26], which states that

for any ε > 0, it is NP-hard to approximate the optimal coverage within a factor of

(1−1/e+ ε).

It may be noted that the RIS perspective produces a max-k cover instance that

in expectation is equivalent to the IM instance.

Problem 3 (Max-k Cover [43]). The max-k cover problem, also known as the

maximum coverage problem, is a classic problem where one is given an integer k

and a collection of sets A= {A1,A2, . . . ,An} and the objective is to find a collection

A∗ of k sets in A such that their union has the largest cardinality, i.e.,

A∗ ∈ argmax
A′⊆A s.t. |A′|≤k

∣∣∣∣∣ ⋃
Ai∈A′

Ai

∣∣∣∣∣ (1.9)

The mapping to the max-k cover problem is as follows. According to Corol-

lary 1 if one samples a RIS collection, R, the coverage of a set of nodes, S, may

be estimated by, σ̂(S) = 1/|R|∑R∈R I[R∩ S ̸= /0]. As such, for each node, u, one

can identify the set of RIS samples that it covers, Au = {R ∈ R | u ∈ R}. This is

the mapping from the nodes of the IM problem, as represented using RIS sam-

pling, to the sets of the max-k cover problem. Notice that, for a set of nodes S,
|
⋃

u∈S Au| = ∑R∈R I[R∩ S ̸= /0]. The cardinality constraint, k, is the same as that

from the IM problem. As each set, Au, corresponds to a node the set of sets that is

the solution to the max-k cover problem can be directly mapped backed to the set

of nodes that are the corresponding solution to the IM problem.

The max-k cover problem objective function has the key properties of mono-

tonicity and submodularity. Monotonicity is the property that the coverage can

only be increased by selecting more nodes.

Definition 6 (Monotonic). A set function, f : 2V → R, is said to be monotonic if

whenever, A⊆ B, for A,B⊆V , then f (A)≤ f (B).

Submodularity is the property of diminishing returns. Adding a node to a set

of nodes can only have an equal or smaller marginal gain as adding that node to a

subset of that set.

11

Definition 7 (Submodular). A set function, f : 2V → R, is said to be submodular

if for every A,B⊆V , if A⊆ B for all u ∈V \B, f (A∪{u})− f (A)≥ f (B∪{u})−
f (B).

As noted by [55] these properties are sufficient for the Greedy algorithm to

provide the approximation guarantee. Consequently any diffusion model repre-

sentable by RIS sampling permits the resulting IM problem to be solved to within

a (1− 1/e− ε)-approximation using the Greedy algorithm, where the additional

loss comes from the RIS sampling error. As a result this approach is taken by the

majority of existing approximation algorithms for IM.

1.2 Challenges and Key Contributions
Despite the progress made by prior works, the application of existing algorithms

remains constrained by their computational costs in the form of both the running

time and memory needed for one to achieve high quality solutions for the impor-

tant problems of coverage maximization and reachability estimation on uncertain

graphs.

We identify and develop new approaches to address key inefficiencies that limit

existing approaches. Specifically we: i) Identify that when performing sampling

on large networks the majority of random draws are being effectively wasted as

the majority of edges will not be live (i.e. do not enable diffusion to occur across

them). We address this by introducing an approach that, in the worst case, scales

only logarithmically with the number of failed edges as opposed to linearly; ii)

Observe that the memory required to store the RIS collection used by existing

approaches to solve the IM problem can become prohibitive. We resolve this by

developing a new non-greedy approach that avoids storing the RIS collection by

streaming it instead; iii) Determine that a key cause of MC simulation becoming

ineffective for estimating low probability reachability is that the number of samples

needed to attain a desired relative error depends on the probability being estimated.

We remedy this by developing a technique whose relative error does not depend on

the probability being estimated and as such does not suffer from this limitation.

12

1.2.1 Group Testing for Efficient Sample Generation

Sampling is a core tool used when performing estimation on uncertain graphs.

While it is may be simplest to sample a full possible world and only check reach-

ability after, no practical implementation of MC simulation (see Definition 4) or

RIS sampling (see Definition 5) does this. Typically the state of many edges are

not needed when determining what nodes are reachable. This is leveraged by only

sampling edges when they are encountered. ‘Forwards’ diffusion simulation, as is

typically the case when using MC simulation to sample the outcome on a possible

world, involve random trials of edge out of nodes reached so far to identify the set

of nodes that are reachable. Similarly, ‘reverse’ reachability simulation, as used in

RIS generation, involves random trials of edge into nodes reached so far to identify

the set of nodes that are reverse reachable. The most direct manner that this may be

implemented is that whenever an edge is encountered a random trial is performed

so as to determine whether or not the diffusion successfully traverses the edge or

not. In the case of the IC model this involves performing a random trial to check

if the edge is live or dead and for the CTIC model it involves drawing the edge’s

time length and checking if it is less than time remaining until the time horizon.

A clear lower bound on the computational cost of constructing a sample is

the number of nodes that are reached as this is the size of the set that must be

returned in the case that we are constructing an rr-set. However, the computation

time needed to construct such a sample can be more than an order of magnitude

greater than this. This is because of the computation time spent on testing edges

that fail which do not add to the reachable set size and yet can dominate the running

time. Existing works have tackled this problem for the IC model [41, 65] however

these techniques are specific to this model and do not generalize to the CTIC model.

In Chapter 2, we develop a more general approach that is based on efficiently

testing groups of edges together to determine if any edge in the group succeeds. By

assembling these group tests into a hierarchy we are able to efficiently identify the

edges that succeed. Our approach has time complexity that scales linearly with the

number of edges that succeed but only logarithmically with the number of edges

that fail. This is in contrast with the standard approach of testing each edge inde-

pendently which results in a time complexity that scales linearly with the number

13

of edges that fail. We apply our technique to the CTIC model to accelerate the edge

testing needed to generate RIS samples. We demonstrate the practical effectiveness

of our approach on a variety of real world data sets where we achieve a speedup

of over an order of magnitude compared to independently testing the encountered

edges. The ability to greatly accelerate RIS sample generation is valuable for effi-

ciently solving the IM problem, as the running time of the existing state-of-the-art

algorithms is dominated by the time needed to generate the collection of RIS sam-

ples required, as we report in Section 3.7.

1.2.2 Memory Efficient Influence Maximization via Streaming

Existing RIS based approaches [45, 71, 83–85] fundamentally depend on storing

a large collection of RIS samples so that the greedy algorithm may be applied to

solve the resulting max-k cover problem instance that is produced. Despite the

successes that the application of RIS for solving the IM problem has enjoyed, it is

prone to becoming highly memory intensive under certain circumstances. Specifi-

cally, the worst case memory complexity is known to scale linearly with the number

of nodes one wants to select, as such doubling the number of nodes one wants to

select will result in the require memory being doubled. This may not be viewed

as a concern in the traditional setting of viral marketing that typically only consid-

ers seed sets of sizes of up to a hundred. However, if one wants to extend the the

problem of IM to considering the impact of online advertising, which can easily

involve thousands or tens of thousands of impressions, existing algorithms will be

prone to running out of memory unless solution quality is sacrificed as we show in

Section 3.7.

In Chapter 3, we present a novel algorithm based on optimization of a pair of

fractional objectives that enables us to process the RIS samples as a stream and in

doing so completely avoid the need to store them. In addition, we establish a means

to compute both a lower bound on the coverage of the set of nodes our algorithm

returns as well as an instance specific upper bound on the coverage of the optimal

solution. This upper bound enables us to provide instance specific guarantees on

the quality of the returned solution compared to the optimal solution. In our exper-

iments that we perform on a variety of real data sets we show that not only does

14

our approach completely eliminate the large memory cost associated with storing

the large RIS collection but it does so in a manner that its running time and attained

coverage remains competitive with existing state-of-the-art algorithms. In addition,

the instance specific guarantees that we are able to provide are found to be superior

to that which the best existing approach achieves. This is attributed to the upper

bound on the optimal solution that we are able to establish via the optimization of a

fractional objective being tighter than the best upper bound on the optimal solution

that can be established using information from the greedy algorithm.

1.2.3 Recycling random draws for Efficient Reachability Estimation

Reachability estimation, also known as reliability, has primarily been addressed

via MC simulation with more advanced approaches hybridizing sampling with an-

alytical diffusion accounting [48, 62]. While such approaches achieve substantial

efficiency improvements over simply applying MC simulation they are ultimately

still subject to the same limitation, namely the relative error of their estimates being

impacted by reachability probability being estimated. Interestingly, a technique of

utilizing geometric sampling to perform sampling under the IC model [65] more ef-

ficiently was found to be surprisingly competitive with other approaches designed

specifically for reliability in [54]. Note that this approach is not fundamentally

different than MC simulation. It simply makes the generation of samples much

more efficient by avoiding needing to perform repeated Bernoulli draws and in-

stead drawing from a geometric variable which determines the next trial on which

the edge will be live. However, it turns out that the amount of random trials that do

not need to be performed as a result of utilizing geometric sampling in the place of

Bernoulli draws increases the smaller the edge probabilities are. As a consequence

the MC simulation samples require less computational work to construct which

helps to offset the need for more such samples.

In Chapter 4, we develop a novel approach that is designed to have the key

property that both it’s relative error and running time is not impacted by the prob-

ability that is being estimated. To do this we take inspiration from how geometric

sampling successfully achieves this property at the edge level (i.e. the number of

geometric samples from an edge needed to produce an estimate with a desired rel-

15

ative error is not impacted by the edge’s probability). This is made possible by

only successful samples, i.e. when the edge is live, contributing to the running

time; cases were the edge is dead incur no running time cost. We successfully

achieve similar behavior for graph reachability using a technique that we refer to

as random draw recycling. Specifically, we are able to efficiently generate unbi-

ased samples of the indices of the first ℓ possible worlds in which the source node

reaches the target node in a manner that the computation cost scales only with ℓ,

not the probability of the source reaching the target. As with geometric sampling

the success indices, i.e. indices of worlds in which the source reaches the target,

can be used to estimate the probability of the source reaching the target. We per-

form experiments on a variety of real datasets and demonstrate the effectiveness

of our approach. In particular, we investigate not only the average relative error,

as done by prior works, but also the distribution of relative errors over a variety

of randomly selected source-target (s-t) pairs. This highlights the ability of our

approach to not only achieve low average relative error but to achieve consistently

low relative error over all s-t pairs, in contrast to existing approaches.

1.3 Outline
In Chapter 2 we present our approach to accelerate sample generation on uncertain

graphs through the use of testing groups of edges together. In Chapter 3 we de-

scribe our novel approach to the IM problem that enables processing RIS samples

as a stream and in doing so avoid the large memory cost incurred by existing ap-

proaches that require storing a collection of RIS samples. In Chapter 4 we propose

a novel technique for estimating reachability in a manner that provides consistently

accurate estimates whose relative error does not depend on the probability being

estimated, in contrast with existing approaches. Finally, in Chapter 5 a summary

of the dissertation is given and future research directions are discussed.

16

Chapter 2

Efficient Sample Generation

2.1 Introduction
Sampling provides a fundamental way to operate on uncertain graphs in a tractable

manner. Under the possible world semantics an uncertain graph may be under-

stood as a distribution over deterministic graphs. A deterministic graph has no

uncertainty in what edges are present and which nodes each node can reach. Sam-

pling amounts to drawing a possible world (i.e. deterministic graph) at random

from this distribution. Importantly, the graph properties of reachability, does there

exist a path from a source node to a destination node, and coverage, how many

nodes does a source node set reach, can be efficiently computed on a deterministic

graph. In contrast, exact computation of the reachability probability, also known as

reliability, as well as the coverage, or spread, of a node or node set on an uncertain

graph are both known to be #P-hard [15, 86, 87]. Hence, evaluating the expec-

tation over the distribution of deterministic graphs, represented by the uncertain

graph, is intractable to compute. However, we can approximate this quantity by

draw samples of possible worlds and computing an average across these possible

worlds.

Some Context. Monte Carlo (MC) simulation (see Definition 4), as used by

Kempe et al. [55] and subsequent works for tackling the influence maximiza-

tion (IM) problem (see Problem 2), corresponds to sampling possible worlds so

to identify for a given set of source nodes how many other nodes in the graph they

17

are able to reach. This enables approximation of the coverage, also known as influ-

ence spread, of a candidate set of sources. This is fundamentally needed to solve

the IM problem, which asks one to find a set of nodes, referred to as a seed set, sub-

ject to a cardinality constraint that achieves maximum coverage. Unfortunately, the

coverage estimation of each new set of sources restarts from scratch. The standard

application of the greedy algorithm to solve the IM problem [55] requires coverage

estimation of many candidate source sets to find the candidate source node that

when added to the currently seed set results in the largest marginal gain in cov-

erage. Consequently, the use of MC simulation for coverage estimation quickly

become very computationally expensive.

Recently, reverse influence sampling (RIS) (see Definition 5), also referred to

as rr-sets [84], introduced by Borgs et al. [7] has provided a new perspective for

coverage approximation and led to a class of current state-of-the-art algorithms for

the IM problem [45, 71, 83–85]. MC simulation may be viewed as simulating dif-

fusion through the graph in the ‘forward’ direction; starting from the set of source

nodes the nodes that they are able to reach are identified. In contrast, RIS sam-

pling operates in the ‘reverse’ direction; for a randomly selected target node the

set of nodes that are able to reach it in the sampled possible world are identified.

Interestingly, the coverage of set of nodes can be approximated by its coverage of

RIS samples as shown by [7, 84] (see Lemma 1). The critical advantage of RIS

over direct application of MC simulation is the ability to reuse the RIS samples to

approximate the coverage of any given set of nodes. In this chapter we will focus

on improving the efficiency of generating RIS samples. However, due to the sym-

metry between performing forward and reverse diffusion simulation the techniques

developed in this chapter are also applicable to accelerating MC simulation.

Efficient Sampling. To begin with, it is important to notice that it is not necessary

to sample a full possible world to determine the set of nodes that can reach the

RIS target node. This is leveraged in existing works by only performing random

trials when edges are encountered by the reverse graph traversal that is started at

the target node. In the case of the independent cascade (IC) model this involves

performing a random trial to check if the edge succeeds, (i.e. it is ‘live’) or fails

(is dead). For the continuous-time independent cascade (CTIC) model it involves

drawing the edge’s time length and checking if it is less than the time remaining to

18

the time horizon. As such, the fundamental operation that needs to be performed

for each newly reverse-reached node is: determine the subset of the edges in-bound

on the node that succeed (i.e. enable diffusion to occur across them).

The simplest way to do this is test each edge independently. However, this

can become highly inefficient on large graphs if the vast majority of edges do not

succeed. Such a situation is in fact not unlikely given that large social networks

are highly connected yet one does not expect a single user to be able to typically

start a spread of information that reaches the majority of users in the network.

Hence, it can be inferred that, on average, edges have a low chance of succeeding.

Ideally, the time complexity of constructing an RIS sample should only scale with

the number of reverse reached nodes, or similarly the number of edges that succeed.

This is a straightforward lower bound on the required compute time as the set of

reverse reached nodes must be returned. In contrast, the approach of testing each

edge independently has a time complexity that scales with the total number of

edges encountered. In particular, it scales linearly with the number of failed edges,

which may vastly outnumber the number of succeeding edges. This causes the time

needed to test failed edges to dominate the running time.

The key to addressing this and enabling sampling to be performed in an ef-

ficient manner is to structure edge trials so as to be able to efficiently determine

and eliminate the cases where edges fail without needing to consider each case

individually. Existing works have tackled this problem for the IC model, which

we discuss in more detail in Section 2.2. However, these approaches depend on

specific properties of the IC model and as such cannot be extended to the CTIC

model. In Section 2.3 we will present a more general approach that is based on the

notion of testing a group of edges together in a manner that enables determining if

there is any edge in the group of edges that succeeds. By structuring these group

tests into a hierarchy we develop an approach that enables efficiently identifying

the edges that succeed in a manner only depends logarithmically on the number of

failed edges. In Section 2.4 to demonstrate the effectiveness of our technique we

apply it to accelerating RIS sample generation under the CTIC model on a variety

of real networks.

19

2.2 Related Work
Here we will review existing techniques for accelerating sampling under the IC

model. These prior works also tackled this problem for the purpose of improving

the efficiency of RIS sample generation.

Geometric Sampling. Li et al. [65] proposed an approach that they refer to as

lazy propagation sampling which only probes the edges when they are activated

(i.e. succeed). This is built on being able to determine the next trial on which each

edge will be active. The drawing of geometric random variables from distributions

parametrized by each edge’s probability of being live enables directly sampling on

which trial the edge’s next activation will occur. It is straightforward to show that

there is no statistical difference between using this technique compared to repeat-

edly performing Bernoulli trials to test if the edge is active or not. This is because

of the Geometric distribution’s definition which is based on Bernoulli trials. Ob-

serve that this approach cannot be extended to the CTIC model as it depends on

the probability of an edge activating each time it is tested being identical. This is

not the case for the CTIC model as the probability of an edge succeeding depends

on the amount of time remaining until the time horizon is reached. The amount of

time remaining will vary between cases where an edge is encountered. As such,

the probability that an edge succeeds will also vary. This prohibits the technique

of geometric sampling from being successfully extended to the CTIC model.

Subset Sampling. In [41] a connection is made between subset sampling and the

determining of which edges to a node’s in-neighbors are live. In the case that all

of the in-neighbor edges have the same probability of being live the problem of

identifying the live edges can be mapped directly to the subset sampling problem.

Furthermore the authors observe that when the probabilities are the same, the sub-

set sampling can be effectively solved with geometric distribution sampling. The

main advantage is that this enables skipping nodes that are not sampled (i.e. the

edges that are dead), saving computational time. The authors mention that this ap-

proach may be extended to general edge weights by adding an edge pre-processing

step. However, this fundamentally relies on the probability of an edge being live

each time it is encountered being the same. As has already been discussed this is

not the case under the CTIC model and as such this approach is not applicable to

20

it.

2.3 Our Approach
Reverse influence sampling (RIS) involves the construction of samples (also re-

ferred to as rr-sets). Under the continuous-time independent cascade (CTIC) model

the core operation that this requires is drawing an edge’s edge length from its as-

sociated edge length distribution and checking if the drawn length is less than the

remaining time horizon. This determines whether or not the edge is traversed and

then the reverse-reached node is added to the set of reverse-reachable nodes that

make up the RIS sample. We will say an edge test succeeds if its edge length is

less then the remaining time horizon; otherwise it fails. Ideally, the construction

cost of an influence sample should be proportional to its size. However, when the

probability of an edge succeeding is low, the time spent on testing edges that fail

can dominate the running time. Only each succeeding edge can add a node to the

sample (i.e. the set of reverse reachable nodes), hence the construction cost of an

influence sample can be much greater than its size if each edge is tested indepen-

dently. To mitigate this, we present an approach for efficiently finding the edges

that succeed.

The key idea is to form a binary hierarchy of edge groups, with each hierarchy

node corresponding to a test to see whether any edge in the group succeeds. The

root corresponds to the set of all in-bound edges Eu of a current node u. The left and

right child of a node x represent a disjoint partition of the group of edges associated

with x, and so on recursively (example in Figure 2.1). This tree will enable us to

find all succeeding in-bound edges of node u efficiently:

Theorem 1. Group edge testing enables identification of the succeeding in-bound

edges of node u in time O(b log2 |Eu|), where b is the number of edges that succeed,

provided each group test is a constant time operation.

Proof. To see this, consider starting from an instance where all edges fail. Observe

that this base case requires only one group test as the root group test immediately

determines all edges in the group to be dead. We will now bound the number

of additional group tests that are performed as the number of succeeding edges

is increased. Observe that the addition of a succeeding edge results in a path of

21

succeeding group tests from the root of the tree to the leaf that represents that edge.

The length of a path from the root of the tree to a leaf is log2 |Eu|. Hence, at most

O(log2 |Eu|) additional group tests succeed for each succeeding edge that is added.

Note that as more succeeding edges are added the number of additional succeeding

group tests added per additional succeeding edge can only be less than this amount

due to their paths overlapping. Furthermore, for each succeeding group test there

is at most one additional failing group test. This failing group test rules out the

branch of the tree that the succeeding edge is not in and prevents further group

tests from being needed. It follows that if there are b succeeding edges they can be

identified by performing O(b log2 |Eu|) group test. If each group test is performed

in constant time then the overall running time is O(b log2 |Eu|).

In order to realize this, we must be able to pre-compute a test that can be used

to check, in constant time, whether there exists any edge in a group that succeeds.

The details of this test depend on the edge length distribution at hand. We consider

the Weibull distribution that has been previously used in works on CTIC model

[22, 85]. The Weibull distribution also has often been used in survival analy-

sis to model lifetime events [24]. The Weibull distribution is a generalization of

both the exponential and the rayleigh distributions. The exponential distribution

in survival analysis corresponds to a constant hazard rate (i.e. the instantaneous

probability of an active node activating a neighbor node is constant over time).

The shape parameter of the Weibull distribution enables representation of a hazard

rate that either increases or decreases with time. This gives it more flexibility and

expressive power. Prior work has applied the exponential, rayleigh and power-law

distributions for modeling the spread of information (specifically ‘memes’; short

textual phrases) in social media [37]. In Section 2.5 we will discuss the possibility

of extending our techniques to other distributions.

22

2.3.1 Group Test Construction

The Weibull distribution probability density (pdf) and cumulative density functions

(cdf) with parameters λ , ℓ, are,

f (x) = ℓ
λ

(x
λ

)ℓ−1 e−(x/λ)ℓ (2.1)

F(x) = 1− e−(x/λ)ℓ if x≥ 0, and 0 otherwise. (2.2)

Weibull distributions have the following property.

Lemma 2 ([8]). If Xi ∼Weibull(λi, ℓ), for i = 1,2, ...,n and X1,X2, ...,Xn are inde-

pendent random variables, then,

min{X1,X2, ...,Xn} ∼Weibull
([

∑
n
i=1(1/λi)

ℓ
]−1/ℓ

, ℓ
)

Using this property for Weibull distributions that have different scale param-

eters λi, but the same shape parameter ℓ, we can construct an efficient group test

using the probability Pr[min{X1,X2, ...,Xn} > T], where T is the remaining time

until the time horizon. Clearly, if the minimum edge length in a group of edges

exceeds the threshold (remaining time), it implies that all edges fail and so none

of the edges needs to be considered further (e.g., see step 8 , Figure 2.1). We will

refer to the scale parameter of the Weibull distribution that results from taking the

minimum over the Weibull random variables in the group (i.e.
[
∑

n
i=1(1/λi)

ℓ
]−1/ℓ)

as the group edge length scale.

By pre-computing the group edge length scales, groups of edges can be tested

in constant time. For an arbitrary group node in the hierarchy (see Figure 2.1 for an

example), let L and R be the set of edges of its left and right children respectively.

Then we can pre-compute the following:

aL = ∑i∈L(1/λi)
ℓ, aR = ∑i∈R(1/λi)

ℓ

Having these quantities precomputed enables the group test, i.e., checking

whether the group’s minimum edge length is less than a given remaining time limit,

to be done in constant time. This is done using a random value r in U(0,1), repre-

senting the randomness in length of the minimum edge, which we can then use in

23

Figure 2.1: Group edge testing Example showing the interaction of the appli-
cability test, group test and direction test as the edges that succeed are
identified. Edges associated with nodes 3 and 4 do not need to be tested
directly as the group test failing rules out the possibility that either has
an edge length less than the time limit.

the following test:

Pr[min{X1,X2, ...,Xn}> T]< r where, (2.3)

Pr[min{X1,X2, ...,Xn}> T] = exp(−T ℓ
∑i∈L∪R(1/λi)

ℓ)

= exp(−(aL +aR)T ℓ)

In general, the shape parameters may not be the same. To deal with this, we can

use the fact that for any λ parameterizing, for a random variable X ∼Weibull(λ , ℓ),

the probability that the edge length is greater than the time limit T , is Pr[X > T] =

e−(T/λ)ℓ , which is monotonically increasing in ℓ when (T/λ) < 1. As such, we

may consider random variables, Yi ∼Weibull(λi,min j ℓ j) for which we have,

Pr[min{Y1,Y2, ...,Yn}> T]≤ Pr[min{X1,X2, ...,Xn}> T]

24

provided, T · [∑n
i=1(1/λi)

ℓ]1/ℓ < 1 or equivalently,1

(aL +aR)T ℓ < 1 (2.4)

Below, we will refer to the condition in Eq. 2.4 as the group test applicability con-

dition. This should not be confused with the group test itself. The minimum shape

can only underestimate the minimum edge length when this property is satisfied.

This ensures that the group test retains the property that it succeeds whenever there

is an edge in the group that succeeds. In addition, we have the following result:

Lemma 3. If the group test applicability condition succeeds for a group it also

succeeds for all of its subgroups.

Proof. Without lost of generality we will consider the left child of a group. From

the applicability condition succeeding we have, T · [∑i∈L∪R(1/λi)
ℓ]1/ℓ < 1. Us-

ing this and the fact that the scale parameters are non-negative we have that, T ·
[∑i∈L(1/λi)

ℓ]1/ℓ < 1. What remains to be shown is that increasing ℓ can only de-

crease the left hand side (the minimum shape of a child group may only be equal

to or larger than the minimum shape of the parent group).

Consider ℓ′ such that ℓ≤ ℓ′ and let ∑i∈L(1/λi)
ℓ]1/ℓ< c for c> 0 then, ∑i∈L(1/λi)

ℓ<

cℓ. For all i, (1/λi)
ℓ < cℓ must hold, since all terms are positive, and hence (1/λi)<

c must also hold. Now multiplying both sides by cℓ
′−ℓ gives, ∑i∈L(1/λi)

ℓcℓ
′−ℓ < cℓ

′
.

Since (1/λi) < c for all i it follows that (1/λi)
ℓ′−ℓ < cℓ

′−ℓ. From this we have,

∑i∈L(1/λi)
ℓ′ < cℓ

′
, which gives, [∑i∈L(1/λi)

ℓ′]1/ℓ
′
< c.

2.3.2 Group Test Application

Algorithm 1 makes use of the group test hierarchy to efficiently find the edges that

do succeed, i.e., they have time lengths less than the given time horizon, T , as well

as the time lengths of these edges. Recall, as an influence sample is constructed

it repeatedly needs to identify the edges that can be traversed from a node within

the remaining time. As opposed to naively checking each edge from a node in-

dependently, group edge testing (Algorithm 1) is used. No further changes to the

1Notice that 1/λ = [∑n
i=1(1/λi)

ℓ]1/ℓ.

25

Algorithm 1 GroupTest
Input: A,T,r,check applicability
Output: E

1: E← /0;
2: if is leaf(A) then
3: (v,λ , ℓ) = A; {Expand node as tuple}
4: τ = λ (− log(r))1/ℓ;
5: if τ < T then {Edge Length Test}
6: E← E ∪{(v,τ)};
7: else
8: if check applicability then
9: (AL,AR,aL,aR, ℓmin) = A; {Expand node as tuple}

10: if (aL +aR)T ℓmin < 1 then {Applicability Test (Eq. 2.4)}
11: E← E ∪GroupTest(A,T,re, false);
12: else
13: rL ∼U [0,1]; rR ∼U [0,1];
14: E← E ∪GroupTest(AL,T,rL, true);
15: E← E ∪GroupTest(AR,T,rR, true);
16: else
17: (AL,AR,aL,aR, ℓmin) = A; {Expand node as tuple}
18: if r > exp(−(aL +aR)T ℓmin) then {Group Test (Eq. 2.3)}
19: rL = exp(log(r) ·aL/(aL +aR));
20: rR = exp(log(r) ·aR/(aL +aR));
21: rd ∼U [0,1];
22: if rd < aL/(aL +aR) then {Direction Test (Eq. 2.5)}
23: E← E ∪GroupTest(AL,T,rL, false);
24: re ∼ rR ·U [0,1];
25: E← E ∪GroupTest(AR,T,re, false);
26: else
27: E← E ∪GroupTest(AR,T,rR, false);
28: re ∼ rL ·U [0,1];
29: E← E ∪GroupTest(AL,T,re, false);

rest of influence sample generation algorithm are needed. A group test node A in

the hierarchy is represented by the tuple (AL,AR,aL,aR, ℓmin) where AL and AR are

the left and right children of the group node and the values aL,aR, ℓmin have been

precomputed as described in §2.3.1. Notice that a leaf node of the tree corresponds

to an edge of the original influence graph G and is represented by the tuple (v,λ , ℓ)

26

where v is the id of the node of G that the edge is out-bound from, and λ and ℓ

are the scale and shape parameters of the Weibull distributions. The argument r

of Algorithm 1 is set to a random value drawn from U [0,1] by the initial invoca-

tion. This argument is important for the recursive calls as the hierarchy is traversed,

which we will describe below.

Algorithm 1 checks the group test applicability condition on line 10 (the con-

dition is the same as Eq. 2.4). If the applicability test fails, the group is split and

handled by recursive calls on the children of the group (lines 13-15). If the applica-

bility test succeeds, then the check applicability flag is cleared enabling the group

test to performed on the following recursive call. Line 18 checks the group test

condition. If this condition fails, then the minimum length edge out of all of those

that make up the current group exceeds the time limit and as such the group does

not need to be considered any further. This is the key step that allows ruling out

groups of edges without needing to test edges individually.

As Algorithm 1 is performing the group tests, the random draw that is ini-

tially provided must be propagated down the tree as it specifies the length of the

minimum length edge. However, we must identify which edge in the group it

corresponds to. To propagate the min length edge down the tree at each node

it must be determined which branch it originates from. This is decided accord-

ing to the probability Pr[τL < τR], i.e., the probability that the min length edge in

the left group is less than the min length edge from the right group. We have,

τL ∼Weibull(a−1/ℓ
L , ℓ), τR ∼Weibull(a−1/ℓ

R , ℓ), where ℓ= mini∈L∪R ℓi. Notice that

ℓ= ℓmin. As such,

Pr[τL < τR] =
∫

∞

0
∫

∞

x fL(x) fR(y)dydx

=
∫

∞

0 fL(x)(1−FR(x))dx

=
∫

∞

0 aLℓxℓ−1e−aLxℓe−aRxℓdx

=−aL/(aR +aL)e−(aL+aR)xℓ
∣∣∞
0

= aL/(aR +aL) (2.5)

A new random draw is used to determine the branch that the min edge is from

according to this probability. This direction test is performed on line 22 and steps

27

3 and 5 in Figure 2.1.

Given the branch that the min edge came from, the random drawn value must

be rescaled to ensure that the min length retains the same length even though it

is now determined to be from a different distribution. Without loss of generality,

assume the min length edge came from the left branch. Let r be the random value

that was used in the group test at the parent node. Then the random value that will

be used in the left branch group, rL, must satisfy, S−1
L (rL) = S−1

L∪R(r) where SL(x) =

1−FL(x) and S−1
L (x) = (− log(x)/aL)

1/ℓ, which gives the time length produced by

the Weibull distribution from a random value x∼ [0,1]. Solving for rL in terms of

r,

(− log(rL)/aL)
1/ℓ = (− log(r)/(aL +aR))

1/ℓ

log(rL)/aL = log(r)/(aL +aR)

rL = exp(log(r) ·aL/(aL +aR)) (2.6)

This is used to compute the value passed in step 3 of Figure 2.1 (the symmetric

right case is used for step 5).

In addition, we must condition the other branch on the fact that its minimum

edge length now must be larger than this minimum edge length. This is done by

restricting the range that the random values are drawn from. Similar to rL, we have

rR, which is the random value that would produce the minimum edge length.

rR = exp(log(r) ·aR/(aL +aR)) (2.7)

Instead of drawing the random value for the right branch from [0,1] we will now

draw from [0,rR] which will ensure that random edge lengths that can be produce

satisfy the condition. This is shown by range of the draws performed in steps 7

and 8 of Figure 2.1. These values are computed on lines 19-20. The branch that

contains the min edge is recursed on using the existing random value while the

branch that doesn’t contain the min edge is recursed on as a new group with the

the new random value re drawn such that all possible edge lengths from this group

satisfy the length lower bound.

Once a random draw has been propagated down to a leaf node it is used to

28

Dataset type nodes edges memory
Youtube undirected 1.1M 3.0M 120MB
Pokec directed 1.6M 30.6M 410MB

LiveJournal directed 4.8M 69.0M 1.0GB
Orkut undirected 3.1M 117.2M 2.8GB

Twitter directed 41.7M 1.5G 18.3GB

Table 2.1: Datasets (M = Million, G = Billion)

compute the edge length to the edge’s source node (Lines 3-6 and steps 6 and 7

of Figure 2.1).

τ = λ (− log(r))1/ℓ (2.8)

Since ℓmin increases as the hierarchy is descended even though the upper level

group tests determined there was an edge that is below the threshold in a group it

may be ruled out by the lower level group tests or the final leaf level test that checks

the final edge length against the threshold (line 5). All of the edges that succeed

and their associated time lengths are collected in the set E which on completion of

the group test is returned to the sample construction algorithm.

2.4 Experiments
The goal of our experiments is to assess the effectiveness of our proposed group

edge testing approach at accelerating reverse influence sampling (RIS) sample gen-

eration under the continuous-time independent cascade model (CTIC). As the main

application of RIS is for tackling the problem of influence maximization (IM) our

experiments focus on real world social networks and configure the diffusion model

to align with non-trivial instances of the IM problem. In particular, it is necessary

to avoid configurations that results in very little diffusion occurring or cases where

diffusion saturates, i.e. covers the entire network.

Datasets. We perform experiments on five real and public social networks (see Ta-

ble 2.1). For the undirected networks, Youtube and Orkut, we replace each edge by

two directed edges enabling each direction to have different parameters. YouTube,

Pokec, LiveJournal and Orkut can be obtained from [60] and Twitter from [58].

29

(a) LiveJournal T=0.42
(Avg. Inf. Sample Size 256)

(b) YouTube T=0.6
(Avg. Inf. Sample Size 1024)

Figure 2.2: Size distribution of 1M Influence Samples

Diffusion Model. Under the CTIC model [35] each edge has an associated length

distribution. We use the Weibull distribution as done in [22, 85], which has the

following probability density function: f (x) = ℓ
λ

(x
λ

)ℓ−1 e−(x/λ)ℓ . For each directed

edge we sample uniformly at random the parameter ℓ from [1,10] and λ from

[0,10]. Figure 2.2 shows examples of the resulting influence sample frequency

distributions. The distribution should be non-degenerate (i.e., singleton samples

should not dominate) as such a situation corresponds to a trivial instance of very

little diffusion occurring. Furthermore, if the distribution is skewed right (i.e., large

samples dominate) such a situation corresponds to network saturation, which is the

other case we wish to avoid. In [22, 85] ℓ (referred to as a) was selected from

[0,10], which was perhaps appropriate for the small networks they considered.

However, we observed that on large networks this resulted in irregular influence

sample frequency distributions, having multiple modes, due to a non-negligible

number of edges having extremely short time lengths with high probability. This

corresponds to one of the undesirable cases of large samples dominating, which

is indicative of the network saturating. Consequently, we sample ℓ uniformly at

random from [1,10], which we found to avoid this issue.

In addition to edge lengths, the CTIC model also has a time horizon parameter

T . For given edge length distributions and network structure, increasing the time

horizon T increases the expected depth to which influence will propagate from

the seed set. To investigate the effect of this on the performance of the sample

30

10-2 10-1 100

Time Horizon

100

101

102

103

A
vg

. I
nf

lu
en

ce
 S

am
pl

e
S

iz
e

Pokec
LiveJournal

YouTube
Orkut

Twitter

Figure 2.3: Effect of time horizon on Influence Sample size.

generation, we consider a range of time horizons for each dataset. Importantly, a

reasonable range of time horizons must be identified specifically for each network

and associated edge length distributions. An inappropriate range of time horizons

would result in increasing from very little coverage to network saturation in a single

increment, providing little insight into the performance in the intermediate regime.

To avoid these issues, we calibrate the time horizons using the average RIS sample

size. The time horizons considered for each dataset are those that yield average

sample sizes of approximately {21,22, ...,29}. The use of exponentially spaced

average sample sizes is to enable efficiently investigate a wide range of configura-

tions. Figure 2.3 shows the correspondence between average influence sample size

and the time horizon for each dataset. It is apparent that the time horizons that are

appropriate for the smaller datasets (e.g. Pokec), if used on the larger datasets (e.g.

Twitter), would yield impractically large RIS sample sizes, which corresponds to

network saturation.

It is worth noting that increasing the time horizon under the CTIC model has

an equivalent effect as scaling the time length distributions of the edges. As such,

considering a range of time horizons is sufficient to investigate the effectiveness of

the proposed sample generation in such situations. Ultimately what impacts how

sample generation behaves is how far through the network diffusion propagates

which is impacted in an identical manner by edge length scaling and time horizon

31

Pokec LiveJournal Youtube Orkut Twitter
Average 2.3 3.8 4.3 9.1 32.2
Min 2.0 2.3 2.3 6.9 16.3
Max 3.1 4.7 5.8 10.9 46.1

Table 2.2: Summary of speedups of proposed group edge testing compared
to independent testing of edges across datasets. Average, min and max
reported is over the range of time horizons considered for each dataset.

scaling.

Figures 2.4a, 2.4b and 2.4c show the speedup achieved by our proposed ap-

proach compared to the prior existing approach, which involves testing edges in-

dependently. The speedup is measured by comparing the time required to generate

one million influence samples. It can be observed that our approach achieves a sub-

stantial speedup on all datasets across the wide range of time horizons considered.

Although the speedup is observed to decrease at high time horizons the speedup

remains appreciable. Furthermore, this is expected as once the fraction of encoun-

tered edges that fail begins to diminish the benefit of avoiding testing edges that

fail will diminish.

Table 2.2 summarizes the speedups attained on each dataset over the range of

time horizons considered for that dataset. Recall that the running time of our ap-

proach only scales linearly with the number of succeeding edges (not the failed

edges) while the baseline also scales linearly with the number of failed edges.

As such, the larger the fraction of the edges in the graph that fail the greater the

speedup of our approach may be expected to be. It can be inferred that a large frac-

tion of the edges in the large graphs must fail otherwise the diffusion would satu-

rate. Consistent with this, it is observed that group edge testing yields the greatest

benefit on the larger datasets. The speedup on these datasets is very substantial –

nearly an order of magnitude for Orkut and well over that for Twitter.

2.5 Discussion and Conclusions
We have proposed a technique, that we refer to as group edge testing, for improv-

ing the efficiency with which sampling can be performed on uncertain graphs. We

have demonstrated its effectiveness in speeding up the generation of RIS samples

32

0.2 0.4 0.6 0.8 1
Time Horizon

100

101

S
pe

ed
up

0.2 0.3 0.4 0.5 0.6
Time Horizon

100

101

S
pe

ed
up

(a) Speedup on Pokec (left) and Youtube (right).

0.2 0.3 0.4 0.5
Time Horizon

100

101

S
pe

ed
up

0.03 0.04 0.05 0.06 0.07 0.080.090.1
Time Horizon

100

101

102

S
pe

ed
up

(b) Speedup on Live Journal (left) and Orkut (right).

0.01 0.015 0.02 0.025
Time Horizon

100

101

102

S
pe

ed
up

(c) Speedup on Twitter.

Figure 2.4: Speedup of proposed group edge testing compared to indepen-
dent testing of edges. Speedup is assessed w.r.t. time horizon which
controls the length of time diffusion occurs for. Higher time horizons
yield larger RIS samples.

33

under the CTIC model. Efficient RIS sample generation is valuable for improving

the state-of-the-art approaches to solving the influence maximization (IM) prob-

lem. As will be shown in Section 3.7 state-of-the-art approaches for IM have a

running time that is dominated by the time needed to generate RIS samples. Con-

sequently, the speedups that we attain for RIS generation will directly translate

to nearly equivalent speedups of IM algorithms based on RIS. Although there are

existing works that tackle accelerating RIS sample generation none of them are

applicable to the CTIC model. It is also worth noting that the technique proposed

here is not limited to RIS sample generation. For instance identifying the success-

ful edges is also the fundamental operation required by ‘forward’ MC simulation

of diffusion from a source node set. As such it would benefit in a similar manner.

Although MC simulation is not used as a component of state-of-the-art approaches

to IM it remains a useful technique for evaluating the coverage of a specific set of

nodes of interest.

While we chose to focus on the CTIC model and the Weibull distribution for

specifying the edge lengths the technique of group testing is not fundamentally

dependent on these particular choices. The key property that is needed is the

ability to establish an efficient test that checks if there is no edge in a predefined

group of edges that succeeds. For the CTIC model this more concretely amounts to

being able to sample the shortest edge length from a group of edges using compute

time that does not scale with the number of edges in the group. We expect that

the required group tests can be constructed for any edge length distributions for

which this is the case in a similar manner as we have done here for the Weibull

distribution. Furthermore, this is not a property that is fundamentally linked to

the CTIC model. For instance, it would not be difficult to apply our technique

to the IC model. It is straightforward to pre-compute the probability that every

edge in a group of edges under the IC model does not succeed, which is sufficient

information to establish the needed group test. We have chosen to focus on the

CTIC model as it is not handled by prior works where as the IC model is already

sufficiently addressed by simpler existing techniques.

34

Chapter 3

Memory Efficient Influence
Maximization

3.1 Introduction
The problem of Influence maximization (IM) is to find k nodes in a network G =

(V,E), with vertices V and edges E, which can recursively influence the largest

number of nodes, in expectation, under a given stochastic diffusion model. The k

nodes are known as seeds or initial adoptors. This problem is motivated by appli-

cations such as viral marketing [20, 77], infection containment [61], feed ranking

[46], personalized recommendation [82], and regulatory cell cycle analysis [31].

Since the seminal study of IM by Kempe et al. [55] as a discrete optimization

problem, this problem has become popular in network analysis and has been ex-

tensively studied [7, 13–15, 17, 22, 38, 45, 49, 61, 63, 71, 73, 83–85, 87].

Some background. Kempe et al. [55] studied IM under discrete time diffusion

models including the independent cascade (IC) model and the linear threshold

(LT) model and their variants, drawn from the sociological and marketing liter-

ature [33, 34, 39]. It has been argued that a continuous time model may be more

appropriate for modeling diffusion of product adoptions and infections and that it

is significantly more accurate than discrete time models [21, 35–37]. In particular,

discrete time models lack the ability to capture the time needed for propagation to

35

occur across links, which can differ for different links. As such, if the goal is to

reach some influence spread within a given time frame, discrete time models lack

the ability to capture this precisely.

IM is well known to be a computationally hard problem (see below). While

scalable approximation algorithms have been proposed for IM over discrete time

diffusion models, there are relatively few works that develop such algorithms for

continuous time models [22, 85]. Unfortunately, even their performance evalua-

tion has been restricted to relatively small networks. A recent study found that

approaches that perform well on particular diffusion models (e.g., LT or IC with

1/in-degree edge weights) do not necessarily do so on others (e.g., IC with con-

stant edge weights) [2]. In particular, the memory footprint of many algorithms

was found to be prohibitive. Our experiments on the continuous time independent

cascade (CTIC) model reveal similar memory limitations of the existing approxi-

mation algorithms, as observed in prior work [2, 74]. In this chapter, we propose

a novel approach that resolves this memory limitation, without sacrificing running

time and solution quality guarantee.

Hardness and Approximation. The IM problem is known to be NP-hard in gen-

eral [55]. However, the objective function of expected number of influenced nodes,

called expected spread or just spread, under these diffusion models, satisfies the

key properties of monotonicity and submodularity. These properties enable a sim-

ple Greedy algorithm to attain a (1− 1/e)-approximation to IM, if the exact ex-

pected spread for a given seed set is known. However, computing the spread of

a given seed set is a hard problem, shown to be #P-hard [15, 87]. Kempe et

al. [55] estimate the spread using Monte-Carlo (MC) simulations, thus ensuring a

(1−1/e− ε)-approximation to the optimal solution to IM, but this approach does

not scale to large networks and seed set sizes [84]. Reverse influence sampling

(RIS) introduced by Borgs et al. [7] has led to a class of current state-of-the-art al-

gorithms, which retain the (1−1/e− ε)-approximation guarantee [45, 71, 83–85]

while often scaling to large networks. The main line of this series of works has

been refining the theory that prescribes how many samples are required to attain a

(1−1/e− ε)-approximate solution.

Online IM. In a recent paper, Tang et al. [83] study online influence maximiza-

36

tion, where they track an empirical solution quality guarantee w.r.t. the number

of influence samples used. While they refer to their approach as using the reverse

influence samples in a “streaming fashion”, it involves storing all of the samples

received. In this chapter, we use the term streaming in its standard usage [68],

whereby each sample is processed right after it is received, then it is removed from

memory. It has been observed in experiments that the attainable empirical guaran-

tees can greatly exceed the theoretical worst case [61, 83]. Thus, merely aiming

for a solution quality of (1−1/e− ε) can result in solutions that significantly un-

derperform what is efficiently attainable. As such, we will primarily focus on this

online IM setting. We develop a fundamentally different approach to computing

the empirical guarantee, which we empirically find to be superior.

Large seed sets. Traditionally, seeding a user for viral marketing is viewed as

being expensive (e.g., providing a free product to the user), arguing for a small

seed set size. On the other hand, online display advertising in social networks

coupled with the lower cost of ad impressions, enables an advertiser to reach a

substantially larger set of users, at a relatively small cost. E.g., typical CPM (Cost-

per-thousand impressions) for Instagram ad and Facebook Ads is around $5 and

$10 respectively [81]. Targeting of online display ads in social networks relies

not only on the response of individual users, but also leverages the ripple effect

produced by social influence [59, 88, 89]. As such, scaling influence maximization

to be able to handle targeting of ad campaigns that involve placement of large

numbers of impressions requires handling of very large seed sets.

Memory bottleneck. All existing algorithms that utilize influence sampling are

prone to prohibitive memory usage as they need to store all the samples generated.

The worst case memory complexity is known to be O(k(m+n) log(n)/ε2) where n

and m are respectively the number of nodes and edges in the network [71, 83–85].

The seed set size k has the most pronounced effect on the required memory.

We find that existing algorithms become infeasible at large seed set sizes un-

less solution quality is sacrificed. This memory complexity is a consequence of the

number of samples required to accurately estimate the influence function. As such,

even on “easy” instances, where empirical solution quality greatly exceeds the the-

oretical worst case guarantee, a relatively large number of samples are needed for

37

the empirical solution quality to saturate. Furthermore, to attain higher influence

spread under the CTIC model, one may wish to allow the diffusion to continue to

occur for a longer duration. However, this results in significantly larger reverse

influence samples which exacerbates the memory bottleneck.

While a number of techniques have been proposed to address the memory over-

head, they either rely on specific properties of the diffusion process [70, 75] or they

incur additional inaccuracy in simplifying the IM instance, which can further de-

grade the solution quality[74]. We discuss these approaches in greater detail in

§3.8. In this chapter, we seek to address this memory limitation by developing

an approach that does not need to store the generated influence samples. Instead,

they are processed as they are generated and then removed from memory (i.e., in a

streaming manner). By doing so, our proposed approach has memory complexity

that is independent of the desired solution quality, diffusion process, and seed set

size, in contrast to existing works.

Breaking away from Greedy. To accomplish this, we need an algorithm that

can progressively improve the solution quality (i.e., increase its expected spread),

while it is running. The Greedy algorithm, used by the vast majority of existing

works, is based on sequential selection which is not amenable to progressive im-

provement; once a node is added to the seed set it can not be removed. We thus

break away from the Greedy approach and propose a novel algorithm, a Fractional

Approach to Influence Maximization (FAIM), that builds on two fractional objec-

tives – the multi-linear extension and the fractional relaxation, of the expected

influence spread objective. The fractional relaxation (FR) is a concave function

and its optimal solution upper bounds the optimal binary solution. On the other

hand, the multi-linear extension (ME) is non-concave, its local optima are binary,

and its global optimum coincides with the optimal binary solution, i.e., the optimal

expected spread. Although the ME solution converges towards a local optimal bi-

nary solution, the FR solution converges towards its global optimal solution. We

leverage the latter to ensure that the ME solution does not get stuck in an arbitrarily

poor local optimum.

Our approach. To provide an online instance-dependent empirical guarantee, we

must maintain an upper bound on the influence spread attained by the optimal

38

solution and a lower bound on that attained by our best candidate solution. The

FR objective, being concave and having an optimal solution that upper bounds the

optimal binary solution, provides a means to upper bound the optimal expected

spread. However, prior to convergence, the current fractional solution to FR

objective is not a valid upper bound. The gradient at the current solution could

be used to compute a first-order Taylor approximation of the function, which by

concavity overestimates the objective function everywhere. The optimal solution

to the resulting constrained linear maximization problem can be easily obtained

and would yield an upper bound. However, we only have an approximation of

the influence function via influence samples, and do not have access to the exact

gradient. We address this challenge by deriving an upper bound that holds with

high probability and only requires a cumulative over the gradients produced by

the influence samples. In addition, we maintain a lower bound by generating and

evaluating candidate solutions to the IM problem.

Interestingly, we can leverage the linear maximization, used for computing the

upper bound, for both generating candidate solutions and optimizing the fractional

solutions. As we will show, the solution is always a binary vector that represents

a seed set of size k. This may be interpreted as a candidate solution to the IM

problem. In addition, we can construct the current fractional solution as the aver-

age over rounds of the linear maximization. Doing so ensures that the fractional

solutions always remains feasible.

An important consideration is the time needed to process an influence sample

and update the current solution. Ideally we would like sample processing to be

sufficiently efficient to be dominated by its construction time (i.e., proportional to

its construction cost). Since the seed set size can exceed the average influence sam-

ple size, a naive approach to adding a selected seed set to the cumulative solution

would be impractical for large seed sets. To address this, we develop an efficient

lazy update that is equivalent, but only requires time proportional to the influence

sample size and at worst logarithmic in the seed set size.

Existing approaches have their time complexity dominated by influence sam-

ple construction cost. Applying the Greedy algorithm requires at most time pro-

portional to the aggregate size of the samples. We observed that the running time

needed to construct influence samples by naively testing each edge independently

39

could be dominated by testing a large number of edges that do not succeed. To

address this we will make use of the efficient sample generation approach we de-

veloped in Chapter 2.

Our main contributions are as follows:

1. A non-greedy algorithm, FAIM, based on optimizing a pair of fractional ob-

jectives that avoids storing influence samples by processing them as a stream

(§3.3 and §3.5). This resolves the memory bottleneck of existing approaches.

2. A high-probability upper bound on the optimal solution using the fractional

relaxation and concentration bounds. This bound is found to be tighter than

the best existing bound and yields instance-specific solution quality guaran-

tees that far exceed the theoretical worst case (§3.4).

3. An efficient parallel implementation of FAIM (§3.6).

4. We conduct extensive experiments using a variety of diffusion models on

networks of sizes up to 41M nodes and 1.5B edges. We test online processing

performance of various algorithms and instance guarantee certificates for

seed sets of over 70K nodes. Our experiments demonstrate the effiency and

effectiveness of FAIM (§3.7).

Preliminary notions used in the paper are provided in §3.2, while related work is

discussed in §3.8. We summarize the paper and discuss future work in §3.9.

3.2 Preliminaries

3.2.1 Influence Maximization

We review background on influence maximization (IM) and the problem as formu-

lated under state-of-the-art approaches.

Influence Diffusion and Maximization. Given a graph G = (V,E), a diffusion

model is used to specify how propagation of influence occurs in the network G.

Existing large scale IM experiments have primarily focused on the Independent

Cascade (IC) and Linear Threshold (LT) discrete time models [55], where influence

weights or probabilities are associated with edges. For a given set of seeds, the

40

(expected) influence spread (or just spread) is defined as the expected number of

nodes that activate at the end of the propagation, as governed by the underlying

diffusion model. Unfortunately, exact computation of the expected spread is #P-

hard [15, 87].

A continuous time version of the IC model, the CTIC model (see Definition 2),

has been studied in the papers [21, 35–37]. Under the CTIC model, each directed

edge e in the graph is associated with an edge length probability distribution, L (e).

Diffusion occurs up until a specified time horizon T ; edges are traversed (by influ-

ence) so long as the total length traversed from a seed node is less than the horizon.

As such, the spread of a seed set for a specified time horizon is the number of

nodes reached by paths of length less than the horizon, in expectation. Expected

spread under the aforementioned diffusion models is monotone (see Definition 6)

and submodular (see Definition 7).

The IM problem requires finding a seed set of size at most k, for a given number

k, that attains the maximum spread over a given network, under a given diffusion

model (see Problem 2).

Reverse Influence Sampling. The key property of reverse influence sampling

(RIS) (see Definition 5) is that the reverse samples, also referred to as rr-sets [84],

provide a means for obtaining an unbiased estimate of the influence function (see

Lemma 1).

Applying RIS to the influence function produces a max-k set cover problem

(see Problem 3). As the number of samples used in this problem instance is in-

creased its optimal solution approaches that of the IM problem instance. Impor-

tantly, any IM problem where the underlying diffusion model admits reverse influ-

ence sampling can be solved using a unified max-k set cover representation. Not

only do RIS based techniques lead to state-of-the-art efficient approximation al-

gorithms, they even admit extension beyond the discrete time models they were

initially designed for. Indeed, we extend [71] and [83], current state-of-the-art

algorithms for discrete-time models, to the CTIC model using the technique devel-

oped in [85], for the purpose of comparison against our proposed algorithm.

Influence Maximization as Max-k Cover. The RIS perspective produces a max-k

cover instance that is equivalent in expectation to the IM instance. Max-k cover is

41

solved to within a (1− 1/e)-approximation using the standard Greedy algorithm

to sequentially select nodes. The approximation guarantee is in effect optimal

due to an inapproximability result by Feige [26]. This achieves a (1− 1/e− ε)-

approximation of the original IM problem with the additional loss coming from

the RIS estimation accuracy. This approach is taken by the majority of existing

approximation algorithms for IM. In principle one could utilize any technique that

is capable of solving max-k cover. For example TipTop [63] utilized integer lin-

ear programming, whereas most previous work uses the classic Greedy approach

for solving the max-k cover [71, 83–85]. However, any approach that requires the

max-k cover instance to be materialized suffers from the space overhead of storing

all the generated influence samples. As an example, on the twitter dataset (41M

nodes and 1.5B edges), selecting 15,625 seeds while guaranteeing a solution qual-

ity of ε = 0.1 with high probability, takes up to 237GB memory, approximately

13× that of the input graph.

Streaming Max-k Cover. Given that the storage required to materialize the max-k

cover can be substantial, we consider a setting where the interface to the max-k

cover instance is in the form of a stream. Variants of streaming coverage prob-

lems have been considered in the literature: e.g., streaming set cover is studied in

[10, 19, 42] and streaming max-k cover is considered in [3, 79]. However, they

focus on the case where the objects to be selected are streaming. In the problem

we are interested in, it is the sets of objects to be covered (i.e., reverse influence

samples) that are streaming. A more general, edge-arrival, streaming setting is first

considered in [5], which could in principle be applied to our problem. However,

it involves constructing and storing an intermediate sketch. The space required

by this sketch rapidly grows as the error tolerance required of the solution, ε , de-

creases, specifically as O(1/ε3). In addition, large constant factors make its appli-

cation to our problem impractical. E.g., on the Twitter (n = 41.7M nodes) dataset

we experimented on, for an error tolerance of ε = 0.1, the sketch required by

Algorithm 3 of [5] would contain more than 24 · (12/ε)3 ·n edges (approximately

1.7×1015). This would require more memory than available on our machine used

to run experiments by several orders of magnitude! Our goal is to devise a solution

whose memory usage does not depend on the desired solution quality, properties

of the diffusion process, and seed set size.

42

3.2.2 Fractional Objectives

We introduce two fractional objective functions as well as some of their known

properties which we will make use of.

Multi-Linear Extension. We first consider the multi-linear extension (ME) to

the objective function in Problem 2. It treats a fractional solution as a probability

distribution over seed sets. Each fractional entry x[i] is rounded to 1 (i.e. node i is

selected) w.p. x[i] and rounded down to 0 w.p. 1−x[i].

M(x) = ES∼x[σ(S)/n] = Es∼xEr∼D [min(⟨s,r⟩,1)] (3.1)

= Er∼D(1−∏i|r[i]=1(1−x[i]))

Let M(x;r) = (1−∏i|r[i]=1(1−x[i])).

Then M(x) = Er∼DM(x;r)

This approach of interpreting a fractional solution as a probability distribution has

been previously considered for general submodular functions in [9]. Importantly,

it preserves the value of binary solutions. Furthermore, any local/global optimal

solution is binary (see [9], Lemma 3). As such, the multi-linear objective retains

the same optimal solutions as the original objective. Unfortunately, the objective

is non-concave. Due to the presence of local optima, direct optimization of this

objective could lead to poor solutions.

Fractional Relaxation. The fractional relaxation (FR) naturally arises from for-

mulating the maximum coverage problem as an integer linear program (ILP) and

then dropping the integrality constraint on the solution.

F(x) = Er∼D min(⟨r,x⟩,1) (3.2)

Let F(x;r) = min(⟨r,x⟩,1).

Then F(x) = Er∼DF(x;r)

The min operation ensures that no extra credit is given for covering a set more

than once. Since the fractional relaxation relaxes the integrality constraint on the

solution, it follows that the optimal fractional solution is an upper bound on the

optimal binary solution. Furthermore, the objective is concave enabling the optimal

43

solution to found efficiently. In addition, for any fractional solution x, M(x) ≥
(1−1/e)F(x). This result has previously appeared in [1, 32].

3.3 Approach
We present an overview of our approach, deferring technical details, algorithm

design, and efficient implementation considerations to §3.4, §3.5, and §3.6 respec-

tively.

Application of Fractional Objectives. The multi-linear extension (ME) of Prob-

lem 2 results in a fractional objective, which retains the same optimal solution

as the original objective, i.e., its optimal solutions are binary. However, we must

overcome the limitations caused by its non-concavity. On the other hand, unlike

the ME objective, the fractional relaxation (FR) is concave. Hence, a (1− ε)-

approximation to the optimal solution to the FR objective can be found efficiently,

as the only unavoidable loss is the influence function approximation error. How-

ever, in general the optimal solution to the FR objective is fractional, which cannot

be used as a solution to the original IM problem. We propose to optimize both

fractional objectives together so that they complement each other.

Optimization of Fractional Objectives. Our choice of technique for optimizing

the fractional objectives is driven by two main considerations: (1) To provide an

online instance dependent empirical guarantee we must maintain an upper bound

on the optimal solution. (2) We need candidate solutions that are feasible w.r.t. the

original IM problem, not just the fractional objectives, i.e., the solutions must be

binary seed sets of size ≤ k.

The FR objective, being concave and having an optimal solution that upper

bounds the optimal binary solution, partially achieves the first goal. However, a

challenge is that prior to convergence, the current fractional solution is not a valid

upper bound. To resolve this, we could use the gradient at the current solution to

compute a first-order Taylor approximation of the function, which by concavity

overestimates the objective function everywhere. The optimal solution to the re-

sulting constrained linear maximization problem can be efficiently found (details in

§3.6), and it yields an upper bound. The challenge is that we only have an approxi-

mation of the influence function via influence samples, so we do not have access to

44

Symbol Meaning
G = (V,E) Graph with nodes V , edges E.

L (e) Edge length distribution.
n Number of nodes in G, n = |V |
k Seed set size control parameter
ε Solution quality control parameter.
δ Failure probability control parameter.
s Seed set (binary vector format).

σ(·) Expected influence objective.
r Influence sample (binary vector format).
D RIS distribution from diffusion model on G.

M(·),M(·;r) Multi-linear extension (ME) objective (Eq. 3.1).
F(·),F(·;r) Fractional relaxation (FR) objective (Eq. 3.2).

x,z FR, ME solution.
x̄, z̄ FR, ME cumulative solution.
r̄, ḡ FR, ME cumulative of stochastic gradients.

x∗,z∗ Optimal solution to FR, ME objective.
S∗ Optimal solution to influence objective.
ν Optimal FR value, ν = F(x∗).

ν− High probability lower bound on F(x∗).
ν+ High probability upper bound on F(x∗).

∇F(·;r),∇M(·;r) FR, ME gradient w.r.t. r.

φ(·;r)
Offset function satisfying:
∀x,rF(x;r) = ⟨x,∇F(x;r)⟩+φ(x;r)

Table 3.1: Notation for Sections 3.3, 3.4 and 3.5

the exact gradient. We address this by deriving an upper bound which holds with

high probability and which only requires a cumulative over the gradients produced

by the influence samples (see §3.4).

The constrained linear maximization when used against the ME objective also

provides a means to generate candidate binary solutions to the original IM prob-

lem. This is because the linear maximization amounts to identifying the top-k

coordinates in the cumulative gradient (see §3.6.1). Thus, although the solution is

not constrained to be binary, as a consequence of the linear maximization it always

will be. This provides a means to generate a candidate binary solution even when

45

Influence
Maximization

(Streaming)
Max-k Cover

Fractional
Relaxation

Multi-Linear
Extension

reverse

influence samping

z

x

(concave)

(non-concave)

Figure 3.1: Overview of applying the multi-linear extension (ME) and frac-
tional relaxation (FR) to influence maximization.

the current solution to the ME objective is not binary. Efficiently generating can-

didate binary solutions which can then be evaluated is key to measuring empirical

progress of the algorithm online.

Finally, the solutions to the constrained linear maximization can be used to

construct and update the fractional as the cumulative of these solutions. A valuable

property this has is that since each individual solution satisfies the constraints, the

resulting fractional solution produced by normalizing their cumulative will also

always be a feasible fractional solution. This avoids the need to perform a po-

tentially computationally expensive operation to project an infeasible fractional

solution back on to the feasible space.

Combined Optimization. Simultaneously optimizing the ME objective with

the FR objective provides a means to escape any poor local optima encountered.

This is made possible by the connection between the ME objective and the FR

objective indicated in Figure 3.1, namely for any fractional solution x, M(x) ≥
(1−1/e)F(x). Notice that finding x that approaches the value of F(x∗) is tractable,

46

due to concavity of F(·), and that F(x∗) ≥ σ(S∗)/n. Hence, taking the max of x
and z on M(·) helps ensure that M(z) ≥ (1− 1/e)σ(S∗)/n. In addition, the FR

objective will provide a means to assess the quality of the solution attained by way

of providing an upper bound on the optimal solution.

Even though z is optimized against the ME objective, M(·), since M(·) is non-

concave it may happen that x attains higher value on M(·), i.e., M(x)> M(z). All

binary vectors are local attractors of M(·) and may trap z in a poor local optima.

In contrast, as x is being optimized on F(·), it will converge to the global optimal

solution on this objective and the loss in value when considering this solution’s

value on the ME objective is limited by M(x) ≥ (1− 1/e)F(x). We estimate the

values that the running fractional solutions attain on the ME objective. Should the

fractional solution to the ME objective under-perform that of the FR objective, the

solution to the ME objective is overwritten by that of the FR objective. This is

enables the optimization of the ME objective to continue at a point that is past the

local optima.

3.4 Theory
Here we discuss the upper and lower bounds that are used by the instance-dependent

empirical guarantee and for assessing convergence of the fractional solution. We

consider the FR objective (Eq. 3.2): its optimal solution upper bounds the optimal

solution to the original binary objective of Problem 2. Furthermore, its value coin-

cides with that of the original objective on solutions that are binary. Let ν be the

optimal solution value of the FR objective.

ν = max
x∈[0,1]n,∥x∥1≤k

Er∼DF(x;r) where F(x;r) = min(⟨r,x⟩,1) (3.3)

The FAIM algorithm processes a sequence of samples r1,r2, ...,rt , and pro-

duces a sequence of fractional seed sets x̄i, where x̄i is a function of r1, ...,ri−1.

From this, we attain upper and lower bounds on ν that can be computed online.

47

3.4.1 Bounds Derivation

To compute upper and lower bounds on the values of the optimal FR objective so-

lution and candidate solutions, we will make use of martingale bounds on the influ-

ence sample coverage estimates. Recall that this is needed for providing empirical

guarantees. We first introduce the concept of a martingale difference sequence and

show that the influence sample coverage estimates form a martingale difference

sequence. Previously, Tang et al. [85] used martingale sequences in their analy-

sis. Their analysis is not applicable here since the running solution x̄i depends on

previous influence samples. We use martingale difference sequence instead, which

then enables the application of the associated concentration bounds.

Definition 8 (Martingale Difference Sequence). A sequence of random variables

Y1,Y2, ...,Yt is a martingale difference sequence w.r.t. the sequence of random vari-

ables Z1,Z2, ...,Zt if for all i:

1. E[|Yi|]< ∞.

2. there exists a deterministic function gi(·) such that,

Yi = gi(Z1,Z2, ...,Zi)

3. E[Yi|Z1,Z2, ...,Zi−1] = 0.

To establish the correspondence between the sampling results and a martingale

difference sequence, let R be a sequence of samples, r1, ...,rt . We now define a

sequence of random variables, Yi := F(x̄i;ri)−Er[F(x̄i;r)] where x̄i may depend

on r1, ...,ri−1. In this section, we will abbreviate the expectation taken over the dis-

tribution of all influence samples, Er∼D [·], as Er[·], since all influence samples are

drawn from the same distribution. We will also use Er1:t [·] to represent expectation

under a sequence of t influence samples being drawn.

Lemma 4. Y1, ...,Yt is a martingale difference sequence w.r.t. r1, ...,rt .

Proof. We verify the three conditions to be a martingale difference sequence be-

low:

48

1. Er1:i [|Yi|]< ∞:

Er1:i [|Yi|] = Er1:i [|F(x̄i;ri)−Er[F(x̄i;r)]|]≤ 1

since F(x̄i;ri) is bounded between 0 and 1.

2. Yi = gi(r1, ...,ri) for deterministic function gt(·):

Yi = F(x̄i,ri)−Er[F(x̄i;r)].

Notice that x̄i is determined with r1, ...,ri−1 specified, and

with ri also specified, F(x̄i,ri) is determined.

3. E[Yi|r1, ...,ri−1] = 0:

E[Yi|r1, ...,ri−1] = Eri [F(x̄i;ri)−Er[F(x̄i;r)]] = 0

Only ri is unspecified and bound by the outer expectation. The two terms are then

identical and cancel.

Lemma 4 enables the application of the concentration bounds associated with

martingale difference sequences, specifically McDiarmid’s inequality, as specified

below in Lemma 5.

Lemma 5 (Theorem 3.12 [66]). Let Y1,Y2, ...,Yt be a martingale difference se-

quence with −ai ≤ Yi ≤ 1− ai for each i, for suitable constants ai; and let a =
1
t ∑

t
i=1 ai.

1. For any b≥ 0, Pr[|∑t
i=1Yi| ≥ b]≤ 2e−2b2/t

2. For any ε > 0, Pr[∑t
i=1Yi ≥ εat]≤ e−

ε2at
2(1+ε/3)

3. For any ε > 0, Pr[∑t
i=1Yi ≤−εat]≤ e−

1
2 ε2at

Using the definition of the martingale random variables Yi, and letting ai :=

Er[F(x̄i;r)] then immediately −ai ≤ Yi ≤ 1− ai holds by observing that Yi + ai =

F(x̄i;ri) and recalling that F(x̄i;r) is bounded between 0 and 1. From this, Corol-

lary 1 immediately follows by renaming of a to µ , replacing Yi with its definition, to

give ∑
t
i=1Yi = ∑

t
i=1 F(x̄i;ri)−µ , and adding µ to both sides inside the probability.

49

Corollary 1 (Concentration). Let µ = 1
t ∑

t
i=1Er[F(x̄i;r)] then,

Pr[∑t
i=1 F(x̄i;ri)≥ (1+ ε)µt]≤ e−

ε2µt
2(1+ε/3)

Pr[∑t
i=1 F(x̄i;ri)≤ (1− ε)µt]≤ e−

1
2 ε2µt

Recall that, the purpose of these bounds is to determine online what the current

error is at runtime. Importantly, at runtime we will know the sampling estimate,

∑
t
i=1 F(x̄i;ri). The following Lemma 6 and Lemma 7 can be derived by alge-

braic manipulation of the bounds in Corollary 1. At a high level, one solves (the

quadratic equation) for ε in terms of X and δ with X = ∑
t
i=1 F(x̄i;ri). The detailed

proof is provided in Appendix A.1.

Lemma 6. If Pr[X ≥ (1+ ε)µt]≤ e−
ε2µt

2(1+ε/3) = δ then,

Pr[µ > LB(X ,δ)/t]≥ 1−δ

where LB(X ,δ) := X + 2
3 log(1

δ
)−
√

2
9 log(1

δ
)(9X +2log(1

δ
)

Lemma 7. If Pr[X ≤ (1− ε)µt]≤ e−
1
2 ε2µt = δ then,

Pr[µ < UB(X ,δ)/t]≥ 1−δ

where UB(X ,δ) := X + log(1
δ
)+
√

log(1
δ
)(2X + log(1

δ
))

Using these results we now introduce our lower bound (Theorem 2) and upper

bound (Theorem 3) which enable us to assess the convergence of the current frac-

tional solution towards to the optimal fractional solution. This will also provide a

means to give an empirical solution quality guarantee and judge when the desired

quality has been attained. We will begin by stating and proving the lower bound.

Theorem 2 (Lower bound). Let r1, ...,rt be a sequence of samples and x̄i be se-

quence of fractional seeds where x̄i may depend on r1, ...,ri−1. Define,

ν̂
−
t := ∑

t
i=1 F(x̄i;ri)/t

ν
−
t := LB

(
t · ν̂−t ,δ

)
/t

50

then, Pr[Er1:t [ν̂
−
t]> ν

−
t]≥ 1−δ and ν ≥ Er1:t [ν̂

−
t].

Recall, ν is defined to be the value attained by the optimal factional solution

(see Eq. 3.3). ν
−
t is the lower bound that we compute online which holds with

at least probability 1− δ . Er1:t [ν̂
−
t] = 1

t ∑
t
i=1Eri [F(x̄i;ri)] is the average expected

value of the sequence of fractional solutions, x̄1, ..., x̄t .

Proof. Using Corollary 1 and Lemma 6 where we have

X = ∑
t
i=1 F(x̄i;ri) = t · ν̂−t and µ = 1

t ∑
t
i=1Er[F(x̄i;r)],

Pr
[1

t ∑
t
i=1Er[F(x̄i;r)]> LB

(
t · ν̂−t ,δ

)
/t
]
≥ 1−δ (3.4)

Pr
[1

t ∑
t
i=1Eri [F(x̄i;ri)]> ν

−
t
]
≥ 1−δ (3.5)

Pr
[
Er1:t [ν̂

−
t]> ν

−
t
]
≥ 1−δ (3.6)

Since x̄i doesn’t depend on ri, Er[F(x̄i;r)] is the same as Eri [F(x̄i;ri)]. Equa-

tion 3.5 and 3.6 are then equivalent to equation 3.4 as they are simply using the

definitions of ν
−
t and Er1:t [ν̂

−
t] respectively.

We now need to establish a connection between
1
t ∑

t
i=1Er[F(x̄i;r)] and the optimal fractional value ν .

ν = max
x∈[0,1]n,∥x∥1≤k

Er[F(x;r)] (3.7)

≥ 1
t ∑

t
i=1Er[F(x̄i;r)], ∵ no x̄i can exceed optimal x. (3.8)

It follows that ν ≥ Er1:t [ν̂
−
t]

Notice, the lower bound in Eq. 3.8 is also valid for the case that the x̄i’s are

binary. As such, in addition to providing a means for lower bounding the value

attained by the fractional solution it may also be used to lower bound the value

attained by a given binary solution.

Before introducing the upper bound, we will first prove a step that enables us to

upper bound the optimal fractional solution using only a given number of samples.

Let,

FR(x) := 1
t ∑

t
i=1 F(x;ri) (3.9)

51

be the estimated coverage of a fractional solution x using the samples in R. We

now consider the fractional solution that attains the maximum value on FR(x), i.e.,

the optimal solution of FR(·). Let this optimal fractional solution be x+. The key

point that we use is that with respect to the samples considered, R, x+ has at least

as much coverage as x∗, i.e., FR(x+) ≥ FR(x∗), which follows by construction.1

This then can be related back to the optimal influence coverage, ν = F(x∗), via the

concentration result: the following result follows from Corollary 1.

Lemma 8. Let x+ ∈ argmaxx∈[0,1]n,∥x∥1≤k FR(x) then,

Pr[FR(x+)≤ (1− ε)F(x∗)]≤ e−
1
2 ε2tF(x∗)

Proof. Using the second bound of Corollary 1 and setting all x̄i to x∗ we have,

Pr[∑t
i=1 F(x∗;ri)≤ (1− ε)µt]≤ e−

1
2 ε2µt (3.10)

where µ = 1
t ∑

t
i=1Er[F(x∗;r)] =Er[F(x∗;r)]. Notice that tFR(x∗)=∑

t
i=1 F(x∗;ri),

which follows from the definition in Equation 3.9. In addition, F(x∗)=Er[F(x∗;r)]=
µ . From this, we have

Pr[tFR(x∗)≤ (1− ε)tF(x∗)]≤ e−
1
2 ε2tF(x∗) (3.11)

By dividing both sides inside the probability by t and using the fact that FR(x+)≥
FR(x∗) we have the following.

Pr[FR(x+)≤ (1− ε)F(x∗)]≤ e−
1
2 ε2tF(x∗)

While from Lemma 8, FR(x+) can be used to upper bound the optimal frac-

tional solution, ν , x+ cannot be easily determined, especially since we are not

storing R, but rather streaming it. To derive an easily computable upper bound

for ν , we use a linear overestimate to the concave objective. For this purpose, let

∇F(x;r) = I[⟨x,r⟩ ≤ 1] · r and φ(x;r) = I[⟨x,r⟩ > 1]. Using this we can express

1Recall that x∗ is the optimal fractional solution to F (see Eq. 3.2).

52

F(x;r) as

F(x;r) = ⟨x,∇F(x;r)⟩+φ(x;r) (3.12)

We will now show how ν
+
t , used in Theorem 3, which is easily computed, is a valid

upper bound, by relating it to FR(x+).

Theorem 3 (Upper bound). Let r1, ...,rt be a sequence of samples and x̄i be a

sequence of fractional seeds where x̄i may depend on r1, ...,ri−1. Define,

ν̂
+
t :=

1
t

(
max

x∈[0,1]n,∥x∥1≤k
⟨x,

t

∑
i=1

∇F(x̄i;ri)⟩+
t

∑
i=1

φ(x̄i;ri)

)
ν
+
t := UB

(
t · ν̂+

t ,δ
)
/t

then, Pr[ν < ν
+
t]≥ 1−δ

Proof. Applying Lemma 7 with Lemma 8 using X = FR(x+) and µ = F(x∗) = ν

yields,

Pr
[
ν < UB(t ·FR(x+),δ)/t

]
≥ 1−δ (3.13)

We now establish a connection between FR(x+) and ν̂
+
t .

tFR(x+) = max
x∈[0,1]n,∥x∥1≤k

∑
t
i=1 F(x;ri) (3.14)

Recall that φ(x;ri) is defined such that:

F(x;ri) = ⟨x,∇F(x;ri)⟩+φ(x;ri). Thus,

tFR(x+) = max
x∈[0,1]n,∥x∥1≤k

∑
t
i=1(⟨x,∇F(x;ri)⟩+φ(x;ri)) (3.15)

53

Since F(x;ri) is concave, the value that x attains on a linearization of F(x;ri) at

any point y, which is of the form ⟨x,∇F(y;r)⟩+φ(y;r), is minimized when y = x.

Hence,

tFR(x+) = max
x∈[0,1]n,
∥x∥1≤k

∑
t
i=1 min

y∈[0,1]n
(⟨x,∇F(y;ri)⟩+φ(y;ri)) (3.16)

Now, using x̄i for y instead of the minimizer results in the upper bound below. The

last equality in Eq. 3.17 follows by pushing the sum inward and using the definition

of ν̂
+
t .

tFR(x+)≤ max
x∈[0,1]n,
∥x∥1≤k

∑
t
i=1(⟨x,∇F(x̄i;ri)⟩+φ(x̄i;ri)) (3.17)

= t · ν̂+
t (3.18)

In addition, UB(X ,δ) is monotone increasing in X . Thus, UB(t ·FR(x+),δ)≤
UB(t · ν̂+

t ,δ). Hence,

Pr[ν < UB(t · ν̂+
t ,δ)/t = ν

+
t]≥ 1−δ

3.4.2 Bounds Failure Probability

We make repeated use of these upper and lower bounds throughout our algorithm

in order to assess online, the progress made on both the empirical guarantee and

the fractional solution optimality gap. Since each individual bound only holds

with high probably it is essential to ensure that the probability of any of the bounds

failing to hold is accounted for. By applying the union bound, we can upper bound

the probability of any of the bounds failing to hold, by the sum of their failure

probabilities. However, to apply this requires knowing the number of times they

will be invoked.

At each stopping test, the empirical guarantee and the fractional solution op-

timality gap are determined, for which all of the bounds involved must hold with

high probability. To limit the number of stopping tests performed, and hence num-

ber of bounds which must hold, we will consider the number of samples processed

to be doubled between tests. This strategy of sample doubling has been used in

54

prior works [71, 85] and is a common technique to ensure only a small number of

stopping tests are needed. Let δ be the tolerated probability of any of the stop-

ping tests being incorrect. Then we need to identify δ ′ the probability with which

each individual upper and lower bound needs to hold. Assume Λ0 is the number of

samples processed before the first test and θ0 is the maximum number of samples

that are to be processed. Then the number of doublings, and hence stopping tests

performed, is log2(2θ0/Λ0). Each stopping test will require 3 bounds – 2 lower

bounds (one fractional solution and one binary solution lower bound) and 1 upper

bound – to simultaneously hold, and each of them fails to hold with probability

δ ′. By the union bound, the probability of any of these bounds failing to hold is at

most 3 log2(2θ0/Λ0)δ
′. Hence, setting δ ′= δ/(3log2(2θ0/Λ0)) ensures an overall

failure probability of at most δ .

Even if we do not know θ0, the maximum number of samples that may be used,

we can start with an initial guess value of θ0 ≥ Λ0 and still ensure that all bounds

required by the stopping tests hold with high probability by doing the following.

First, we set δ ′ as,

δ
′ = δ/(6log2(2θ0/Λ0)) (3.19)

This ensures that δ/2 failure probability is left after θ0 samples. Then in the

event that the number of samples needed exceeds θ0, δ ′ is reduced such that

the total failure probability will always remain below δ . This is accomplished

by reducing δ ′ in such a manner that it follows a geometric series: each run of

log2(2θ0/Λ0) stopping tests results in the failure probability of any bound in the

run to be δ

6 ,
δ

12 ,
δ

24 , ... As such, the probability of any bound in any run failing is at

most 6 log2(2θ0/Λ0)δ
′ ≤ δ .

3.4.3 Parameters

The number of samples processed before the first stopping test, Λ0, is set as the

minimum number of samples that could potentially enable the stopping criteria

to pass. This corresponds to the minimum number of samples the Stopping Rule

Algorithm [18] would require in the case that k = 1 and all samples that are drawn

55

are covered. This gives,

Λ0 = (1+(1+ ε
′) log(2/δ)) · ε ′−2 (3.20)

where ε ′ = ε/(1−1/e) and ε and δ are input parameters. A smaller value for Λ0

would result in unnecessary stopping tests being performed. A larger value may

result in the use of more samples than are needed to reduce the error to ε .

The setting of θ , which is used to guess an upper limit on the number of sam-

ples needed, is based on Lemma 3 in [84]. Here we replace unknown influence of

the optimal binary solution with the trivial lower bound of k, which gives,

θ0 =
n
k · (8+2ε)(log 2

δ
+ log

(n
k

)
+ log2) · ε−2 (3.21)

As a result, this upper bound is highly pessimistic. However, this is intentional

so that θ0 will not be exceeded in practice. Although in §3.4.2 we ensured that

we can handle cases where θ0 is exceeded, doing so requires reducing δ ′. This

is undesirable as it results in the gap between the the upper and lower bounds

being increased. This is a consequence of the bounds being required to hold with

higher probability: it forces the bounds to be further from the true value due to the

uncertainty associated with it.

3.5 Algorithm
The FAIM algorithm is divided into Algorithms 2-5. Algorithm 2 is the main al-

gorithm which invokes Algorithms 3-4, which handle initialization and processing

a new influence sample respectively. Algorithm 5 is a subroutine used by Algo-

rithm 4 for updating the solutions to the FR and ME objectives. We describe these

algorithms in detail below.

Initialization. Algorithm 3 initializes a number of variables and constants used

by the FAIM algorithm. The variables ḡ and r̄ store the cumulative stochastic

gradients while z̄ and x̄ are the cumulative solution of the ME and FR objective

functions respectively. Furthermore, M̂x, M̂z, F̂x, F̂s are used to approximate M(x̄),
M(z̄), F(x̂) and F(ŝ) respectively. φ̂ is needed for the upper bound calculation: it

counts the number of samples that have been completely covered by the fractional

56

Algorithm 2 FAIM

Input: G,k,ε,δ
Output: ŝ,α

1: Initialization(); {Algorithm 3}
2: repeat
3: ŝ← argmaxx∈[0,1]n,∥x∥1≤k⟨x, ḡ⟩; x̂← x̄/t;
4: F̂s, F̂x, i← 0;
5: while i < Λ do
6: r← Generate an Influence Sample from graph G;
7: ProcessSample(r); {Algorithm 4}
8: i← i+1; t← t +1;
9: ν−s = LB(F̂s,δ

′)/Λ; ν−x = LB(F̂x,δ
′)/Λ;

10: ν− = max(ν−x ,ν−s);
11: ν+ = UB(maxx∈[0,1]n,∥x∥1≤k⟨x, r̄⟩+ φ̂ ,δ ′)/t;
12: if M̂z < M̂x then ḡ← r̄; (z̄,M̂z)← (x̄,M̂x);
13: if t ≥ θ then δ ′← δ ′/2; θ ← (θ0/Λ0) ·θ ;
14: Λ← 2 ·Λ;
15: until ν+−ν− ≤ ε ′ ·ν− and (1−1/e− ε)ν+ ≤ ν−s
16: return (ŝ,ν−s /ν+)

solution at the iteration in which the sample was generated. The parameters Λ0,

Λ, θ0, θ and δ ′ represent the number of samples that are to be processed in the

initial round, the number of samples that are to be processed in the current round,

the initial maximum number of samples, the revised maximum number of samples,

and the allowed bound failure probability respectively. The parameters Λ0, θ0 and

δ ′ are set as discussed in §3.4.2 and §3.4.3.

Sample Processing. Shown in Algorithm 4 is an iteration used to process a new

influence sample, r. φ̂ , which maintains ∑
t
i=1 φ(x̄i;ri), is updated as needed by the

upper bound (Theorem 3). F̂x and F̂s estimate the value attained by the fractional

and binary solutions, x̂ and ŝ, that are to be evaluated. The terms F̂x and F̂s, which

are used in the lower bounds, are of the form ∑
t
i=1 F(x̄i;ri). Each has a new term

added to it by evaluating x̂ and ŝ on the FR objective using the new influence

sample. In the same manner, the terms M̂x and M̂z are updated using the values

attained by x̄ and z̄ on the ME objective respectively. Algorithm 5 is then used

(lines 4 and 5, Algorithm 4) to update the current solutions to the ME and FR

57

Algorithm 3 Initialization

1: ḡ, r̄← 0; z̄, x̄← 0; i, t,M̂x,M̂z, φ̂ , F̂x, F̂s← 0;
2: ε ′ = ε/(1−1/e);
3: Λ0 = (1+(1+ ε ′) log 2

δ
) · ε ′−2; Λ← Λ0;

4: θ0 =
n
k · (8+2ε)(log 2

δ
+ log

(n
k

)
+ log2) · ε−2; θ ← θ0;

5: δ ′← δ/(6 · log2(θ0/Λ0));

Algorithm 4 ProcessSample
Input: r

1: φ̂ ← φ̂ +φ(x̄/t;r);
2: F̂x← F̂x +F(x̂;r); F̂s← F̂s +F(ŝ;r);
3: M̂x← M̂x +M(x̄/t;r); M̂z← M̂z +M(z̄/t;r);
4: (z̄, ḡ)← FractionalUpdate(M(·), z̄, ḡ,r, t); {Algorithm 5}
5: (x̄, r̄)← FractionalUpdate(F(·), x̄, r̄,r, t); {Algorithm 5}

Algorithm 5 FractionalUpdate

Input: H(·), w̄, f̄,r, t
Output: w̄, f̄

1: f̄← f̄+∇H(w̄/t;r); {Alg. 6 used to read lazily maintained w̄.}
2: s← argmaxx∈[0,1]n,∥x∥1≤k⟨x, f̄⟩; {In §3.6 lines 2-3 are replaced

with call to Alg. 7}3: w̄← w̄+ s;

objectives.

Fractional Solution Update. Algorithm 5 shows the fractional update procedure.

It is used to update the current solutions to both the ME and FR objective func-

tions. The first parameter to the procedure, H(·), is the objective that is to be

updated and can be either M(·) or F(·). Similarly, w̄ and f̄ take on the value of

either z̄ or x̄ and either ḡ or r̄ respectively. The stochastic gradient induced by the

given influence sample is calculated (line 1). The stochastic gradient for F(x;r)
is simply r · I[⟨x,r⟩ ≤ 1]. For M(z;r) it is constructed as i s.t. r[i] = 1 is set to

(∏ j|r[j]=1(1− z[j]))/(1− z[i]) and all other coordinates are 0. The product in the

numerator can be computed once and the result reused for all coordinates of the

gradient. Using this, the cumulative stochastic gradient is updated to give an

updated approximation of the gradient. Following this, using the approximate gra-

dient as a linearization of the objective, the optimal solution against this under the

constraints is found (line 2). Note the solution to the maximization is simply a

58

Symbol Meaning
i # of influence samples so far in current round.
Λ Current round influence sample limit.
t Total # of influence samples processed.

ŝ, x̂ Candidate binary and fractional solutions.
F̂x, F̂s Cumulative estimate of F(x̂),F(ŝ).

M̂z,M̂x Cumulative estimate of M(z̄),M(x̄).
φ̂ Cumulative estimate of Er∼D [φ(x̄;r)]

ν−s High probability lower bound on F(ŝ).
ν−x High probability lower bound on F(x̂).
α Empirical guarantee: σ(ŝ)≥ α ·F(x∗).

Table 3.2: Additional Notation for Section 3.5

binary vector with the coordinates that correspond to the Top-k entries in ḡ set to

1 and all others to 0. In §3.6.1 we discuss this in more detail and show how it can

be efficiently computed. Finally, this solution is added to the cumulative solution

which makes up the current solution to the fractional objective H(·) (line 3).

FAIM Algorithm. Having discussed the subroutines we now go over Algorithm 2.

ŝ and x̂ are the current candidate binary and fractional solution respectively. F̂x and

F̂s maintain the estimated value of these candidate solutions through the round.

Lines 5-8 generate and process influence samples until the number of samples that

have been processed in the round reaches Λ, the current round sample limit. Pro-

cessSample (Algorithm 4) revises the current fractional solutions, z̄ and x̄, as well

as the cumulative of stochastic gradients, ḡ and r̄, as influence samples are pro-

cessed. In addition, it also maintains the estimates F̂x, F̂s, M̂x and M̂z.

Following this, the upper and lower bounds are updated using the resulting

estimates produced by the processed samples. ν−s and ν−x are lower bounds on

the value of the candidate binary solution and the candidate fractional solution

respectively. These are calculated according to Theorem 2 which makes use of the

LB(·) function introduced in Lemma 6. As both of these are valid lower bounds

to the optimal fractional solutions, ν− is set to be the maximum of the two. The

upper bound, ν+, is calculated according to Theorem 3 which makes use of the

UB(·) function introduced in Lemma 7.

59

In lines 12-13 the estimated values of fractional solutions to the FR and ME

objectives, evaluated on the ME objective, i.e., M̂x and M̂z, are compared. Should

M̂z have lower value than M̂x, then the current solution to the ME objective, z̄, and

its cumulative gradient, ḡ, are replaced by those of the FR objective. This ensures

that z can escape poor local optima, as discussed in §3.3. Line 14 handles updating

of δ ′ should θ be exceeded. After each round, the number of samples to process

on the next round is doubled (line 15). This is done according to §3.4.2.

Termination is based on the conjunction of two conditions. The primary termi-

nation condition checks if the relative gap between the fractional upper and lower

bounds is at most ε ′, i.e., ν+− ν− ≤ ε ′ · ν−. The second termination condition,

(1−1/e− ε)ν+ ≤ ν−s , ensures that the candidate binary solution meets the worst-

case approximation guarantee of (1− 1/e− ε) times the optimum. On the other

hand, the first stopping criterion prevents the algorithm from stopping prematurely

on instances on which solutions vastly superior to the theoretical worst case can be

easily obtained within a reasonable number of rounds. More specifically, it aims

to ensure that the solution quality lost due to inaccuracy in the influence function

approximation is small such that any sub-optimality of the returned solution in ex-

cess of ε ′ is due to the combinatorial hardness the problem, and as such cannot be

easily reduced further.

Theorem 4. On termination, Algorithm 2 ensures that the returned seed set ŝ sat-

isfies σ(ŝ)≥ (1−1/e− ε)σ(s∗) with probability at least 1−δ .

Proof. In §3.4.1, we established ν−s to be a lower bound on F(ŝ) (see Theorem 2)

and similarly ν+ to be an upper bound on ν (see Theorem 3). Recall, ν = F(x∗)
where x∗ is the optimal fractional solution and that F(x∗)≥ σ(s∗)/n. Also we have

that F(ŝ) = σ(ŝ)/n since ŝ is binary. Furthermore, in §3.4.2 we ensured that the

probability of any of these bounds failing to hold on any iteration is at most δ . As

such, it follows from the second termination condition, namely (1−1/e− ε)ν+ ≤
ν−s , that on termination, σ(ŝ)/n = F(ŝ) ≥ ν−s ≥ (1− 1/e− ε)ν+ ≥ (1− 1/e−
ε)F(x∗)≥ (1−1/e− ε)σ(s∗)/n, holds with probability at least 1−δ .

Time Complexity. The time complexity of Algorithm 2 may be decomposed into

(i) the time required to generate an influence sample along with the time needed to

60

process the sample, which make up the per iteration computation cost; and (ii) the

iteration complexity of attaining a desired solution quality. We address efficient

construction of influences samples in Chapter 2. Naive sample processing has a

time complexity of O(max(k, |R|)) due to the computational cost of updating the

fractional solutions, which is problematic for large k. In §3.6.1 we improve this

to being only logarithmic in k, specifically O(|R| log2(k)), by lazily updating the

fractional solutions. Together, the per iteration time complexity is upper bounded

by O(|R|(log2(k)+ log2(dmax))).

Unfortunately characterizing the iteration complexity of the FAIM algorithm

is an open problem. A major challenge here is that the FR objective function is

non-smooth, making the convergence rate of the fractional solution unamenable

to standard convex analysis techniques. There are also significant similarities to

the Fictitious Play algorithm from game theory: specifically, two-player zero-

sum games where the maximizer chooses seed nodes and the minimizer decides

whether or not to play a drawn influence sample. The Fictitious Play algorithm has

been conjectured (over 60 years ago!) to have a convergence rate of O(t−1/2) [53].

However, the only rate that has been proven to date is O(t−1/(p+q+2)) [80]. As the

action space (size of p and q) in our problem is Ω(n) where n is the number of

nodes in the network, this convergence rate has no value for the IM application.

One could alter the FAIM algorithm to make its convergence rate easier to analyze.

However, several natural modifications that we tried tend to degrade its empirical

performance.

Memory Complexity. The memory required by Algorithm 2 remains constant.

As the algorithm runs, only existing state is updated, no additional state is added

over iterations. The vectors representing the fractional solutions, x̄ and z̄, and the

gradient approximations, ḡ and r̄, are all of length n and so require O(n) memory.

Since only one sample needs to be held at a time, it requires at most O(n) memory

as well. As a result, the memory complexity is dominated by that needed to hold

the graph, which requires O(n+m) memory.

61

3.6 Efficient Implementation
In this section, we describe an efficient implementation of the algorithm outlined

in the previous section. Existing state-of-the-art algorithms based on RIS simply

store all the generated influence samples, with the final greedy max-k cover taking

a small fraction of the time needed for generating influence samples. To be com-

petitive with this, in our approach, the total per-iteration computation cost needs

to be comparable to the time needed to generate one influence sample.

We also describe a parallel implementation. The influence sample generation

phase of existing approaches is perfectly parallelizable on a shared-memory multi-

processor, as all influence samples may be constructed independently. Since our

approach streams the influence samples, a major challenge is that our proposed

algorithm needs to share information between threads. Despite this, we devise an

approach that attains comparable speed-up from multi-threading.

3.6.1 Lazy Update

The minimum per-iteration compute time is lower bounded by the time needed

to generate a single influence sample, which is proportional to its size. We aim to

have the per-iteration computation scale at most linearly in the size of the influence

sample generated in that iteration. We now discuss an efficient means to implement

lines 2-3 in Algorithm 5.

Line 2 amounts to identifying the Top-k entries in the cumulative stochastic

gradient. This can be observed by noting that the gradient of ⟨x, f̄⟩ with respect to

x is simply f̄. As such, under the constraints x ∈ [0,1]n,∥x∥1 ≤ k the coordinates

that correspond to the highest entries in f̄ will be increased to their maximum value

first. Since k is an integer, each coordinate of x has a maximum of 1 under the

constraints, and all coordinates of f̄ are non-negative, the vector x that sets the

coordinates that correspond to the Top-k entries in f̄ to 1 and all other entries to 0

attains the maximum value under constraints. Despite this, recomputing the Top-k

from scratch in each iteration is expensive, since it costs at a minimum Ω(k) and

more realistically O(n logk) time. Line 3, which simply adds the Top-k seed set to

the cumulative solution is also an O(k) operation. Thus, the operations on line 2

and 3 are both expensive: notice that k may be far larger than the influence sample

62

size and as such these operations could dominate the overall running time.

To speed up line 2, we maintain a Top-k set across iterations and detect when

swaps are required by the additions to the cumulative stochastic gradient. For line

3, we will only update the cumulative solution when a node is swapped out of the

Top-k. By doing this, we can still compute the correct cumulative solution value

for any coordinate. This is done by adjusting the cumulative solution value by how

long (i.e., for how many iterations) the currently selected Top-k nodes have been in

the Top-k set. To support this, we use a vector h that records the iteration on which

every node currently in the Top-k set entered the Top-k. This efficient implementa-

tion is captured by Algorithms 6 and 7 which are used to improve Algorithm 5. In

place of Algorithm 5 line 1, which reads the vector w̄ directly, we use Algorithm 6.

In addition, Algorithm 5 lines 2-3 are replaced by a call to Algorithm 7.

To efficiently maintain the Top-k nodes on the cumulative stochastic gradient

we utilize a min-heap, H , of the current Top-k nodes. When a non-Top-k node

has its value increased, it is tested against the minimum value in the min-heap and

a swap occurs if it exceeds it. Note that all stochastic gradient coordinates of both

fractional objective functions (i.e., the ME and FR objectives) are non-negative.

Moreover, the number of coordinates that are increased is precisely the number of

nodes in the influence sample.

Algorithm 7 performs the updates required to process an addition to the cu-

mulative stochastic gradient. As with Algorithm 5, the same procedure applies to

updating the current solutions to both the ME and FR objectives. We illustrate this

algorithm with a toy example, which will serve as a running example.

Example 1 (Illustrating Lazy Update). Consider an instance containing 5 nodes.

Suppose nodes 1 and 2 are currently selected (i.e., k = 2) and the influence sample

to be processed, r, is {3,4}. Suppose the current solution to the FR objective is

being updated (i.e., H(·) = F(·), w̄ = x̄, f̄ = r̄). Let the entry iteration of node 1

be iteration 0 and node 2’s be iteration 3 (i.e., h[1] = 0,h[2] = 3, for a node, i,

not in the current Top-k, the entry iteration is not defined, i.e., h[i] = ⊥). Let the

current iteration be 5, with f̄ = [1,2,1,0,1] and w̄ = [0,0,0,0,3]. To begin with, the

nodes in the influence sample will have their values in the cumulative stochastic

gradient updated (Line 1 in Algorithm 5). As the cumulative solution is updated

63

Algorithm 6 Lazy-Read (replacing read access to w̄[i])

1: if i ∈H then
2: return w̄[i]+ t−h[i];
3: else
4: return w̄[i];

Algorithm 7 Lazy-Update (replacing Alg. 5 Lines 2-3)

1: for i s.t. ∇H(w̄/t;r)[i]> 0 do
2: if i /∈H then
3: while f̄[i]> H .minValue() do
4: j←H .minKey();
5: if H .minValue() = f̄[j] then
6: w̄[j]← w̄[j]+ t−h[j]; h[i]← t;
7: H .pop(); H .push(i, f̄[i]);
8: break;
9: else

10: H .update(j, f̄[j]);

in a lazy manner, Algorithm 6 is used instead of reading entries in w̄ directly, for

retrieving the correct value. This adds a correction accounting for how long nodes

have been in the current Top-k, using their entry iteration recorded in h. Doing

so provides the same value as if the cumulative solution had been incremented

on each iteration. In our example, the effective w̄ used in the stochastic gradient

calculation is [5,2,0,0,3]. After adding ∇H(w̄/t;r) the updated f̄ is [1,2,2,1,1].

Next, the nodes that have increased in value are considered for being swapped into

the Top-k.

The value of a node j in the Top-k min-heap, H , is only refreshed to its current

value in the cumulative stochastic gradient, f̄[j], when it is under consideration for

removal (Line 10). If the min-heap’s node with minimum value matches its value in

f̄ and is still exceeded by the candidate node’s value then a swap occurs (Lines 4-

8). Node 1 will appear at the top of the min-heap with a value of 1. Node 3 now

has a higher value than that of node 1 and a swap will occur where by node 1 is

removed from the min-heap and node 3 is added. The node that is removed has its

cumulative solution value, w̄[j], updated using how long the node has been in the

Top-k (Line 6). The number of iterations is determined from the current iteration,

64

t, and the iteration on which the node entered the Top-k, which is recorded in

h[j]. The current iteration is recorded as the entry iteration for the node that is

swapped into the Top-k (Line 6) and it is entered into H with its current value in

the cumulative stochastic gradient (Line 7). To finish the example, using the entry

iteration of node 1 w̄ is updated to be [5,0,0,0,3] and the entry iteration of node 3

is recorded to be iteration 5 (i.e., h[3] = 5).

The worst case processing time for an influence sample, r, is O(∥r∥1 logk),

which occurs in the case that all increases trigger swaps. In practice, very few of

the increases are found to trigger swaps. Moreover, because cumulative increases

are of limited size (max 1) a newly swapped in node taking the place of the worst

node is unlikely to move many positions, making the logk cost for a swap highly

pessimistic. By using a binary vector indicating whether each node is currently

in the Top-k, reading a corrected element of w̄ via Algorithm 6 remains an O(1)

operation and as such does not affect the running time complexity.

3.6.2 Parallel Implementation

We next describe a multi-threaded implementation of the FAIM algorithm. Our

first observation is that the threads need to share some information. Otherwise,

they will end up doing redundant work. We have two basic pieces of information:

min-heap and cumulative of stochastic gradients. Swaps in the seed set will need

to be synchronized with the min-heap, so if it is shared, it will result in excessive

communication and contention. Thus, each thread maintains a local version of the

min-heap, H , representing what it determines to be the Top-k nodes in the cumu-

lative of stochastic gradients. Hence, each thread also maintains a local version

of w̄, as the local Top-k sets can differ, producing different cumulative solutions.

We make the threads share the cumulative of stochastic gradients, f̄. This choice

is motivated by the observation that on an average, each influence sample gradient

hits only a tiny fraction of the nodes. As such, contention resulting from possible

simultaneous access to f̄ by multiple threads is expected to be rare and limited.

Recall, w̄ (resp. f̄) is used as a generic variable that can represent z̄ or x̄ (resp. ḡ
or r̄), depending on whether the ME or FR objective is being considered. As such,

each of the two objectives has a copy of the discussed data structures associated

65

with it to help maintain its current solution.

The main challenge is to keep the local Top-k set that each thread has from de-

viating too long from the true global Top-k. Should this happen then in the extreme

case it would be as if each thread were progressing independently, resulting in large

amounts of redundant computation. This would prevent parallelization from yield-

ing any speedup. Discrepancies can occur due to the fact that the Top-k sets are

maintained by checking whether nodes that have had their value increased in the

cumulative gradient are now in the Top-k. With multiple threads incrementing the

globally shared cumulative of stochastic gradients, the global Top-k can change

due to increments caused by other threads. To account for this, we use a globally

shared queue, Q, that all the threads use, to propose nodes that they swap into their

local Top-k. We now demonstrate this by extending Example 1.

Example 2 (Illustrating Parallel Update). Consider there to be 2 threads both of

which initially have the same Top-k set (nodes 1 and 2). Let thread 1 generate

and process the influence sample considered previously in Example 1. This results

in the true Top-k changing, as the global f̄ has changed, but so far only thread

1 that caused the change will have revised its Top-k. In addition to performing

the swap handling discussed previously, thread 1 now also enters node 3 in to the

global queue. Since a critical increment that changes the Top-k is performed by

one of the threads, it will locally trigger a swap and propose the associated node

in the globally shared queue. All threads check whether nodes placed in the queue

are either in their Top-k or are worse than those in their Top-k. When thread 2

checks for newly proposed nodes in the queue it will see node 3 and test whether

it exceeds the value of its local worst Top-k node. This enables thread 2 to then

also recognize that node 3 needs to be swapped into its Top-k, replacing node 1

and enabling it to update to the true Top-k. Once a proposed Top-k node has been

checked by all threads it is removed from the queue. This ensures that if influence

sample generation is stopped and all threads are caught up on checking proposed

nodes (i.e., the shared queue is empty), they will arrive at Top-k sets that have total

value equal to the true Top-k and will match each other, as long as the Top-k is

unique.

Empirically, we have found this approach to be highly effective. Our approach

66

has running time competitive with state-of-the-art baselines even when both are

run with 16 threads (see §3.7). This is despite the baselines being trivially paral-

lelizable, achieving effectively linear speed-up.

Importantly, the proposed approach to parallelization does not adversely affect

the calculation of the upper or lower bounds. The upper bound is not affected as the

true Top-k can be found on the shared cumulative stochastic gradient at the check

points. As such the upper bound calculation doesn’t change. The lower bound

only requires a sum over results from testing candidate solutions against generated

influence samples. Since the candidate solutions are chosen at the start of each

round, each thread can compute local aggregates over the influence samples that

they individually processed. These local aggregates are then accumulated when

a checkpoint is reached, enabling the computation of the lower bounds using the

results from all of the threads.

3.7 Experiments
The aim of our experiments is to assess the computational resource efficiency (time

and memory) and solution quality attained by major state-of-the-art approximation

algorithms on challenging instances of the IM problem. We test the algorithms on

a variety of large networks, over a wide range of seed set sizes as well as on a range

of expected diffusion depths. All these factors greatly impact the performance of

IM algorithms. To our knowledge, the last of of these factors has received little

attention.

We expect FAIM to use dramatically less memory than existing algorithms on

account of not storing the generated influence samples. As such, a key question is:

Can FAIM find seed sets with comparable or better guarantees and solution qual-

ity, without increasing the number of influence samples processed and the running

time, in spite of streaming the samples?

Our experiments have been designed to answer the above question. The rest of

this section is organized as follows. (1) In §3.7.2, we evaluate the online processing

performance of the algorithms and their empirical guarantee. (2) In §3.7.3, we

consider performance in the conventional setting, where a specific solution quality

target is specified. (3) In §3.7.4, we summarize the findings from §3.7.2 and §3.7.3

67

about the relative pros and cons of the compared algorithms. (4) In §3.7.5, we

assess the effect of our efficient implementation strategies – parallelization and

group testing. We begin by describing the experimental configurations in the next

section.

3.7.1 Experimental Configurations

Datasets. We perform experiments on the five real and public social networks

considered in Chapter 2 (see Table 2.1).

Diffusion Model. We focus on the continuous time independent cascade (CTIC)

model [35]. The CTIC model is configured in the same manner as described in

Chapter 2 Section 2.4.

Algorithms. Our goal is to compare our algorithm, FAIM, with state-of-the-art

scalable approximation algorithms for IM, namely IMM [85], DSSA [71] and

OPIM [83]. Of these, only IMM has been proposed and tested on the CTIC model

and attained state-of-the-art performance2. However, DSSA and OPIM have been

shown to outperform IMM on discrete time models. Since they share the same

sampling framework as IMM, we note that they can be extended to the CTIC

model in the same manner, which we do for the sake of comparison. Prior work

[71, 83, 85] has shown these approaches to be state-of-the-art, not only attaining

superior solution quality but also lower running time than all other approaches,

including heuristics. Despite there being a wide range of heuristics designed for

discrete time models [13–16, 29, 38, 49] there does not appear to be a clear way to

apply them to the CTIC model, as they don’t allow a notion of a time horizon.

Influence Sample Generation. All the algorithms compared involve influence

sample (i.e., rr-set) generation and on large datasets such as Orkut and Twitter, this

can take a long time. To enable fair comparisons between all IM approaches, we

give equal advantage to all, i.e., allow the existing approaches to use our efficient

influence sample generation (see Chapter 2).

In addition, to further accelerate all of the algorithms, we run influence sample

generation in parallel for FAIM, DSSA and OPIM on the shared memory multi-

processor on which we conducted experiments. As sample generation constitutes

2We utilize a version of IMM that corrects the issue raised by [12].

68

the bulk of the running time for DSSA and OPIM on large datasets and is trivially

perfectly parallizable, they receive near linear speed-up with the number of threads

used. The time needed for Greedy selection that is run sequentially was found to be

still dominated by the sample generation time even with sample generation being

run in parallel on 16 threads. As a representative example, for DSSA on Twitter

with T = 0.017, the sample generation made up 77%, 72%, 83%, 96.5% of the

total running time for seed set sizes 5, 125, 3,125, 78,125. The total running times

were 84s, 57s, 143s, 3,234s respectively.

Seed Set Evaluation. The influence spread attained by the seed sets output by the

various algorithms is assessed using influence sampling in conjunction with the

Stopping Rule algorithm proposed in [18]. Each reported influence spread estimate

is unbiased and has at most 0.01 relative error with probability at least 1−10−6.

Test Environment. All algorithms were run on an Intel(R) Xeon(R) CPU E5-2690

@ 2.90GHz server with 16 physical cores and 256GB of RAM running openSUSE

Leap 15.0. FAIM and our implementations of OPIM and DSSA, as well as the code

for IMM are in C++3. The time needed to load the dataset into memory is excluded

from reported running times, as it is common among all considered algorithms.

3.7.2 IM Experiments: Online Setting

One approach for measuring the accuracy-efficiency tradeoff is to vary the accu-

racy parameter ε and study its impact on the running time and memory. Here, ε

essentially affects how many samples the various algorithms use. However, ε is

interpreted differently by different algorithms, and the solution quality achieved by

the algorithms can differ considerably, for a given ε . Consequently, we believe that

measuring the empirical solution quality w.r.t. the number of samples processed

is a more precise and useful way of calibrating the algorithms on how they ad-

dress the accuracy-efficiency tradeoff, as has also been noted by [72]. Thus, we

directly measure how the solution quality is affected by the number of samples

processed. Indeed, the solution quality of IMM, DSSA, and OPIM only differs

due to their stopping criteria and how it is determined. Thus, for a given number

of samples to be processed, their solution quality behaves identically. OPIM was

3All implementations were compiled using Intel compiler ICC 18.0.1 using optimization level
-O3. OpenMP is used for parallel execution.

69

FAIM OPIM+ FAIM Upper Bound FAIM Lower Bound OPIM+ Upper Bound

0.5

1

1.5

2

E
xp

ec
te

d
In

flu
en

ce
105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 20.0

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

5

10

15

20

25

30

M
em

or
y

(G
B

)

(a) T = 0.072

1

1.5

2

2.5

3

3.5

E
xp

ec
te

d
In

flu
en

ce

105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 20.0

 25.0

210.0

215.0

R
un

ni
ng

 T
im

e
(s

)

0

20

40

60

80

100

M
em

or
y

(G
B

)
(b) T = 0.11

Figure 3.2: Online processing results on Orkut with k = 625 (Plots in
columns share x-axis, every second marker is omitted). Top: Shows the
expected influence spread and the associated upper and lower bounds of
our and the competing approach. Middle: Shows the empirical guaran-
tees that each approach can certify using their upper and lower bounds.
Bottom: Shows the running time and memory used.

indeed proposed for this setting and we use it as the representative of this family of

algorithms.

Figures 3.2-3.7 (a-b) are each organized column-wise. Each column corre-

sponds to specific values of seed set size k and time horizon T , and shows: the

empirical solution quality along with its upper and lower bounds (top); empirical

70

FAIM OPIM+ FAIM Upper Bound FAIM Lower Bound OPIM+ Upper Bound

1

2

3

4

E
xp

ec
te

d
In

flu
en

ce
105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 20.0

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

5

10

15

20

25

M
em

or
y

(G
B

)

(a) T = 0.072

2

4

6

8

E
xp

ec
te

d
In

flu
en

ce

105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 20.0

 25.0

210.0

215.0

R
un

ni
ng

 T
im

e
(s

)

0

20

40

60

80

100

M
em

or
y

(G
B

)
(b) T = 0.11

Figure 3.3: Online processing results on Orkut with k = 15,625 (Plots in
columns share x-axis, every second marker is omitted). Top: Shows the
expected influence spread and the associated upper and lower bounds of
our and the competing approach. Middle: Shows the empirical guaran-
tees that each approach can certify using their upper and lower bounds.
Bottom: Shows the running time and memory used.

guarantee (middle); and running time / memory used, w.r.t. the number of samples

processed4 (bottom). Running time is reported by a black line and memory by a red

line. All plots in a column have a common x-axis (number of samples processed)

and a shared legend above the figure.

4Samples that OPIM uses in its validation phase are not counted.

71

FAIM OPIM+ FAIM Upper Bound FAIM Lower Bound OPIM+ Upper Bound

2

4

6

8

10

E
xp

ec
te

d
In

flu
en

ce
105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

50

60

70

80

M
em

or
y

(G
B

)

(a) T = 0.017

0.5

1

1.5

2

E
xp

ec
te

d
In

flu
en

ce

106

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

40

60

80

100

120

M
em

or
y

(G
B

)
(b) T = 0.029

Figure 3.4: Online processing results on Twitter with k = 625 (Plots in
columns share x-axis, every second marker is omitted). Top: Shows the
expected influence spread and the associated upper and lower bounds of
our and the competing approach. Middle: Shows the empirical guaran-
tees that each approach can certify using their upper and lower bounds.
Bottom: Shows the running time and memory used.

The main property of interest is what can be regarded as sample efficiency: how

quickly the expected influence of the seed set output by each algorithm improves as

the number of samples processed by the algorithm is increased. It is worth noting

that the number of samples processed determines the running time – the generation

of samples constitutes the bulk of the computational work for all algorithms, as

72

FAIM OPIM+ FAIM Upper Bound FAIM Lower Bound OPIM+ Upper Bound

5

10

15

E
xp

ec
te

d
In

flu
en

ce
105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

50

55

60

65

70

75

M
em

or
y

(G
B

)

(a) T = 0.017

0.5

1

1.5

2

2.5

E
xp

ec
te

d
In

flu
en

ce

106

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

40

60

80

100

120

M
em

or
y

(G
B

)
(b) T = 0.029

Figure 3.5: Online processing results on Twitter with k = 15,625 (Plots in
columns share x-axis, every second marker is omitted). Top: Shows the
expected influence spread and the associated upper and lower bounds of
our and the competing approach. Middle: Shows the empirical guaran-
tees that each approach can certify using their upper and lower bounds.
Bottom: Shows the running time and memory used.

noted earlier. It also determines the memory usage, for those algorithms that need

the samples to be stored. Furthermore, given that FAIM does not store the gener-

ated samples, an important question is whether this adversely affects the sample

efficiency of FAIM. We can see that the empirical solution quality of FAIM is

consistently comparable to that of OPIM across different configurations (see Fig-

73

FAIM OPIM+ FAIM Upper Bound FAIM Lower Bound OPIM+ Upper Bound

4

6

8

10

E
xp

ec
te

d
In

flu
en

ce
104

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 20.0

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

5

10

15

20

25

30

M
em

or
y

(G
B

)

(a) k = 25,T = 0.072

1

1.5

2

2.5

E
xp

ec
te

d
In

flu
en

ce

105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 20.0

 25.0

210.0

215.0

R
un

ni
ng

 T
im

e
(s

)

0

20

40

60

80

100

M
em

or
y

(G
B

)
(b) k = 25,T = 0.11

Figure 3.6: Online processing results on Orkut with k = 25 (Plots in columns
share x-axis, every second marker is omitted) Top: Shows the expected
influence spread and the associated upper and lower bounds of our and
the competing approach. Middle: Shows the empirical guarantees that
each approach can certify using their upper and lower bounds. Bottom:
Shows the running time and memory used.

ures 3.2-3.7 (a-b) (top)). Tables 3.3 and 3.4 shows the expected spread and bounds

at the maximum number of samples that the algorithms successfully complete for

all seed set sizes and time horizons considered. We can conclude that there is no

noticeable difference in their sample efficiency, even though FAIM, unlike OPIM,

does not store the samples and streams them.

74

FAIM OPIM+ FAIM Upper Bound FAIM Lower Bound OPIM+ Upper Bound

1

2

3

4
E

xp
ec

te
d

In
flu

en
ce

105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

50

60

70

80

M
em

or
y

(G
B

)

(a) k = 25,T = 0.017

4

6

8

E
xp

ec
te

d
In

flu
en

ce

105

0

0.2

0.4

0.6

0.8

1

E
m

pi
ric

al
 G

ua
ra

nt
ee

 21 26 211 216

Number of Samples (x1000)

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

40

60

80

100

120

M
em

or
y

(G
B

)
(b) k = 25,T = 0.029

Figure 3.7: Online processing results on Twitter with k = 25 (Plots in
columns share x-axis, every second marker is omitted). Top: Shows the
expected influence spread and the associated upper and lower bounds of
our and the competing approach. Middle: Shows the empirical guaran-
tees that each approach can certify using their upper and lower bounds.
Bottom: Shows the running time and memory used.

FAIM is capable of providing empirical optimality guarantee certificates that

are vastly better than the (1−1/e)≈ 0.63-approximation guarantee that is the best

attainable in the theoretical worst case. In fact, the upper bound is seen to nearly

converge to the lower bound. The final empirical guarantees attained by FAIM

(resp., OPIM) on the seed set sizes and time horizons shown in Figures 3.2-3.3 (a-

75

k 25 625 15,625
T 0.072 0.11 0.072 0.11 0.072 0.11

Expected
Influence
×105

FAIM 0.827 1.83 1.42 2.70 3.39 5.57
OPIM 0.827 1.83 1.43 2.72 3.46 5.64
FAIM Upper Bound 0.846 1.86 1.48 2.78 3.89 6.19
OPIM Upper Bound 0.978 2.02 1.64 3.04 4.39 6.95
FAIM Lower Bound 0.807 1.81 1.39 2.66 3.25 5.42

Table 3.3: Online Processing expected influence (in hundreds of thousands)
at 213×1000 samples on Orkut.

k 25 625 15,625
T 0.017 0.029 0.017 0.029 0.017 0.029

Expected
Influence
×105

FAIM 2.98 6.38 8.20 14.2 10.4 17.3
OPIM 2.98 6.37 8.23 14.2 10.2 17.2
FAIM Upper Bound 3.08 6.53 8.49 14.5 12.8 19.7
OPIM Upper Bound 3.56 7.13 9.12 15.4 12.9 19.9
FAIM Lower Bound 2.87 6.23 8.00 13.9 9.83 16.5

Table 3.4: Online Processing expected influence (in hundreds of thousands)
at 213×1000 samples on Twitter.

b) are: 0.969 (0.875), 0.979 (0.888), 0.929 (0.811), 0.944 (0.815); and those shown

in Figures 3.4-3.5 (a-b) are: 0.973 (0.899), 0.970 (0.907), 0.907 (0.874), 0.901
(0.828). The empirical guarantee provided by FAIM exceeds that which OPIM can

certify by an appreciable margin in many cases. This improved empirical guarantee

is a result of the tighter upper bound provided by FAIM compared to OPIM. While

in some plots they are comparable, namely Figure 3.5, it is apparent that in others,

e.g., Figures 3.2-3.3, the upper bound from FAIM is asymptotically considerably

tighter than that of OPIM. This is reflected in the empirical guarantee that FAIM

can certify compared to that of OPIM. The lower bound of OPIM is omitted to

reduce clutter as it was found to be very close to that of FAIM.

The memory efficiency of FAIM over OPIM is clear from the bottom plot of

each figure. While the memory needed by OPIM grows rapidly with the number

of samples processed, that of FAIM remains constant. On both Orkut (Figures 3.2-

3.3 (b)) and Twitter (Figure 3.4-3.5 (b)) the run of OPIM had to be cut short since

76

the memory needed to store influence samples exceeded 256GB. This is a substan-

tial limitation of OPIM considering that processing further samples can continue

to improve both the empirical guarantee and empirical solution quality, e.g., see

Figures 3.4-3.5 (b). In addition, the running time of FAIM is consistently compa-

rable to that of OPIM for any given number of samples to be processed. This is

made possible by our efficient lazy updates to the fractional solutions maintained

by FAIM.

FAIM IMM

0.2 0.3 0.4 0.5

Time Horizon

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

0

5

10

15

M
em

or
y

(G
B

)

0.2 0.3 0.4 0.5
Time Horizon

1

2

3

4

5

6

E
xp

ec
te

d
In

flu
en

ce

104

(a) k = 25

0.2 0.3 0.4 0.5

Time Horizon

 24.0

 26.0

 28.0

210.0

212.0

214.0

R
un

ni
ng

 T
im

e
(s

)

0

5

10

15

20

25

M
em

or
y

(G
B

)

0.2 0.3 0.4 0.5
Time Horizon

2

4

6

8

E
xp

ec
te

d
In

flu
en

ce

104

(b) k = 625

Figure 3.8: Running time and memory usage (left) and expected influence
spread attained (right) in conventional setting on Youtube dataset where
all algorithms are set to have ε = 0.1 and δ = 1/n. n is the number of
nodes in the network.

3.7.3 IM Experiments: Conventional Setting

We consider seed set sizes that are powers of 5 ranging from 5 up to 78,125 seeds.

In accordance with previous work [71, 83], for all algorithms, we set ε = 0.1 and

δ = 1/n, where n is the number of nodes in the network. However, it is worth

noting that equal ε does not equate to equivalent empirical solution quality. This

77

FAIM IMM

101 102 103 104

Seed Set Size

 24.0

 26.0

 28.0

210.0

212.0
R

un
ni

ng
 T

im
e

(s
)

0

5

10

15

20

25

M
em

or
y

(G
B

)

2 4 6
Seed Set Size 104

1

2

3

4

E
xp

ec
te

d
In

flu
en

ce

105

(a) T = 0.29

101 102 103 104

Seed Set Size

 24.0

 26.0

 28.0

210.0

212.0

214.0

R
un

ni
ng

 T
im

e
(s

)

0

5

10

15

20

25

M
em

or
y

(G
B

)

2 4 6
Seed Set Size 104

2

4

6

E
xp

ec
te

d
In

flu
en

ce

105

(b) T = 0.64

Figure 3.9: Running time and memory usage (left) and expected influence
spread attained (right) in conventional setting on Pokec dataset where
all algorithms are set to have ε = 0.1 and δ = 1/n. n is the number of
nodes in the network.

is primarily because different algorithms determine the number of samples to be

processed for a given ε , in different ways.

It was shown in [85] that IMM incurs more running time and memory com-

pared to DSSA and OPIM and is thus dominated by those algorithms. Nevertheless

we first compare FAIM with IMM in this section, given that of these algorithms,

only IMM has been formally proposed for continuous time models. For these tests,

because IMM is single-threaded, FAIM is also run single threaded for fair compar-

ison. As this takes a relatively large running time, we restrict this comparison to

the smaller datasets Pokec and Youtube.

In Figures 3.8 and 3.9, IMM is observed to generally require (22-26) × more

time and memory than FAIM. In addition, the memory usage of IMM increases

with respect to both the seed set size and the time horizon, while that of FAIM

is constant and much smaller. In these tests, a CPU time limit of 3 hours was

78

FAIM DSSA OPIM-C+

101 102 103 104

Seed Set Size

20.0

22.0

24.0

26.0

28.0

R
un

ni
ng

 T
im

e
(s

)

2

4

6

8

M
em

or
y

(G
B

)

2 4 6
Seed Set Size 104

2

4

6

E
xp

ec
te

d
In

flu
en

ce

105

(a) T = 0.64

0.2 0.4 0.6 0.8 1

Time Horizon

20.0

22.0

24.0

26.0

R
un

ni
ng

 T
im

e
(s

)

2

2.5

3

3.5

4

4.5

M
em

or
y

(G
B

)

0.2 0.4 0.6 0.8 1
Time Horizon

1

2

3

4

E
xp

ec
te

d
In

flu
en

ce

105

(b) k = 625

Figure 3.10: Running time and memory usage (left) and expected influence
spread attained (right) in conventional setting on Pokec dataset where
all algorithms are set to have ε = 0.1 and δ = 1/n. n is the number of
nodes in the network.

enforced, which resulted in IMM timing out on some of the larger seed set sizes and

higher time horizons (see 3.8b and Figures 3.9b). IMM does attain a marginally

better influence spread, albeit at much high computational cost. For instance, in

Figure 3.9a, for k = 78,125 the influence spread attained by IMM is 3.3% higher

than that of FAIM; however IMM incurs 28× the running time and uses 26× the

memory.

We now compare FAIM, against DSSA and OPIM. All algorithms are imple-

mented using 16 threads to generate influence samples in parallel; making use of

all available physical cores. We allow 72 hours of CPU time (approx. 5 hours real

time) and all 256GB of memory. As seen in Figures 3.10-3.13, we find that FAIM

generally requires approximately 2× the running time of DSSA, while its memory

usage is constant. In contrast, DSSA is observed to typically require 2-4× more

79

FAIM DSSA OPIM-C+

101 102 103 104

Seed Set Size

 22.0

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

0

5

10

15

M
em

or
y

(G
B

)

2 4 6
Seed Set Size 104

2

4

6

E
xp

ec
te

d
In

flu
en

ce

105

(a) T = 0.31

0.2 0.3 0.4 0.5

Time Horizon

 22.0

 24.0

 26.0

 28.0

210.0

R
un

ni
ng

 T
im

e
(s

)

2

4

6

8

10

M
em

or
y

(G
B

)

0.2 0.3 0.4 0.5
Time Horizon

1

2

3

4

E
xp

ec
te

d
In

flu
en

ce

105

(b) k = 625

Figure 3.11: Running time and memory usage (left) and expected influence
spread attained (right) in conventional setting on LiveJournal dataset
where all algorithms are set to have ε = 0.1 and δ = 1/n. n is the
number of nodes in the network.

memory in cases when the seed set size is large or the time horizon is high. How-

ever, the difference can be much higher. For instance, on Youtube for T = 0.62

k = 78,125, DSSA used more than 32× the memory. This trend would continue,

hence providing more compute time to handle larger seed set sizes or higher time

horizons would further enlarge the memory usage difference.

OPIM has considerably lower running time than FAIM and DSSA but the out-

put seed set attains lower expected influence spread. This is most pronounced when

the seed set size is large. While the influence spread is comparable for small seed

sets, for the two largest seed set sizes considered, 15,625 and 78,125, OPIM is

observed to attain approximately 5-10% less influence spread than that of FAIM

and DSSA. For instance, in Figure 3.13a, when k = 15,625 and k = 78,125, FAIM

achieves 9.6% and 11.1% more influence spread than OPIM, while using 94%

80

FAIM DSSA OPIM-C+

101 102 103 104

Seed Set Size

22.0

24.0

26.0

28.0

R
un

ni
ng

 T
im

e
(s

)

5

10

15

20

M
em

or
y

(G
B

)

2 4 6
Seed Set Size 104

1

2

3

4

5

6

E
xp

ec
te

d
In

flu
en

ce

105

(a) T = 0.072

0.04 0.06 0.08 0.1

Time Horizon

20.0

22.0

24.0

26.0

28.0

R
un

ni
ng

 T
im

e
(s

)

7

8

9

10

11

12

M
em

or
y

(G
B

)

0.04 0.06 0.08 0.1
Time Horizon

0.5

1

1.5

2

2.5

E
xp

ec
te

d
In

flu
en

ce

105

(b) k = 625

Figure 3.12: Running time and memory usage (left) and expected influence
spread attained (right) in conventional setting on Orkut dataset where
all algorithms are set to have ε = 0.1 and δ = 1/n. n is the number of
nodes in the network.

and 76% of the memory; however it requires 5.4× and 5.1× the running time.

The relative influence spread of OPIM and DSSA compared to FAIM is shown in

Figure 3.14. OPIM consistently attaining 5-10% less influence than FAIM, par-

ticularly at large seed set sizes, is significant as it cannot be explained simply by

randomness in the influence estimates because they are accurate to within 1%, with

high probability. Since it has been seen in §3.7.2 that FAIM and OPIM produce

solutions of comparable quality when processing the same number of samples, it

can be concluded that OPIM’s reduced computation cost is entirely due to opting

for lower solution quality.

81

FAIM DSSA OPIM-C+

101 102 103 104

Seed Set Size

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

50

100

150

200

M
em

or
y

(G
B

)

2 4 6
Seed Set Size 104

2

4

6

8

10

12

E
xp

ec
te

d
In

flu
en

ce

105

(a) T = 0.017

0.01 0.015 0.02 0.025

Time Horizon

 24.0

 26.0

 28.0

210.0

212.0

214.0

R
un

ni
ng

 T
im

e
(s

)

50

100

150

200

250

M
em

or
y

(G
B

)

0.01 0.015 0.02 0.025
Time Horizon

0.6

0.8

1

1.2

1.4

1.6

E
xp

ec
te

d
In

flu
en

ce

106

(b) k = 15,625

Figure 3.13: Running time and memory usage (left) and expected influence
spread attained (right) in conventional setting on Twitter dataset where
all algorithms are set to have ε = 0.1 and δ = 1/n. n is the number of
nodes in the network.

3.7.4 Summary of IM experiments

We can broadly divide the space of IM problem configurations into online vs con-

ventional setting; and easier instances vs challenging instances (e.g., large graph,

large seed set size, high time horizon). In the conventional setting, DSSA may not

be applicable on challenging instances, unless large amounts of memory are avail-

able: it can require 100’s of GB of memory, as seen on Twitter for large seed set

sizes (see Figure 3.13). OPIM is unlikely to run into memory issues, however it

avoids the issues at the expense of reduced solution quality. As for the online set-

ting, OPIM is the only existing algorithm that is applicable. In this setting, OPIM

can run out of memory: as the required empirical quality guarantee increases, the

amount of memory needed to store the corresponding number of samples grows.

82

DSSA OPIM-C+

101 102 103 104

Seed Set Size

0.9

0.92

0.94

0.96

0.98

1

R
el

at
iv

e
E

xp
ec

te
d

In
flu

en
ce

(a) Pokec (T = 0.64)

101 102 103 104

Seed Set Size

0.85

0.9

0.95

1

1.05

R
el

at
iv

e
E

xp
ec

te
d

In
flu

en
ce

(b) LiveJournal (T = 0.32)

101 102 103 104

Seed Set Size

0.85

0.9

0.95

1

1.05

R
el

at
iv

e
E

xp
ec

te
d

In
flu

en
ce

(c) Orkut (T = 0.072)

101 102 103 104

Seed Set Size

0.9

0.95

1

1.05

R
el

at
iv

e
E

xp
ec

te
d

In
flu

en
ce

(d) Twitter (T = 0.017)

Figure 3.14: Relative Expected Influence w.r.t. FAIM in conventional setting
where all algorithms are set to have ε = 0.1 and δ = 1/n. n is the
number of nodes in the network.

For both online and conventional settings, the advantages of FAIM are most ap-

parent when the problem instance is challenging or when a high quality solution

and a corresponding empirical guarantee are required. In sum, FAIM fills the void

where OPIM and DSSA become inoperable due to memory limitations, while also

providing a competitive alternative in less challenging settings (online or conven-

tional) and offering an improved empirical guarantee.

3.7.5 Effect of Efficient Implementation

We conducted additional experiments to gauge the effect of efficient implementa-

tion strategies, namely parallel implementation and group edge testing.

Parallelization Tests. For existing IM algorithms, the sample generation can be

83

20 21 22 23 24

Threads

 22.0

 24.0

 26.0

 28.0

210.0

212.0

R
un

ni
ng

 T
im

e
(s

)

k=25
k=125
k=625
k=3,125
k=15,625
k=78,125

Figure 3.15: LiveJournal T=0.18 Parallelization test results

trivially run in parallel. However, FAIM needs to process the samples on the fly,

i.e., as they are generated, which can potentially impact the speed-up attained. We

next test the effectiveness of our parallel implementation of FAIM. Figure 3.15

provides a representative example of the effect of increasing the number of threads

used by FAIM on its running time. We can see that our technique of integrating

samples generated in parallel into a single fractional solution attains near linear

speed-up at the level of parallelism considered: 1−16 threads. It can also be seen

that the speed-up is similar regardless of the size of the seed set to be selected.

We did not find any noticeable impact of parallelization on the quality of the final

output seed set.

3.8 Related Work
Research in a diverse set of topics is relevant to efficient influence maximization,

which we discuss below.

Influence Estimation. Influence of a candidate seed set can be estimated using

Monte-Carlo (MC) simulation or using reverse influence sampling. The classic

CELF approach of Leskovec et al. [61] seeks to reduce the number of MC sim-

ulations, exploiting submodularity of the objective function. However, it fails to

scale to large networks. This prompted the development of a plethora of heuristics

84

[13–15, 38, 49, 87] that trade worst-case solution guarantees for improved compu-

tational efficiency. The development of reverse influence sampling (RIS) by Borgs

et al. [7], subsequently refined by a series of works [45, 71, 84, 85], has led to

approaches with solution quality guarantees and computational efficiency that is

superior to many existing heuristics. The sample construction cost of RIS can be

non-trivial. Recent works have improved the efficiency of RIS construction under

discrete time models [40, 64]. However, these approaches rely on properties of dis-

crete time diffusion and as such are not applicable to the continuous time setting

that this work addresses. An alternative approach to influence estimation resorts

to sampling possible worlds [17, 22, 73], sometimes referred to as snapshots. Al-

though their empirical results suggest that these approaches can be competitive

when the number of possible worlds sampled is set heuristically, doing so would

sacrifice the theoretical solution quality guarantee. In fact, recent work comparing

the empirical solution quality w.r.t. running time indicates that RIS is significantly

more efficient than sampling possible worlds for large graphs [72].

Continuous Submodular Maximization. There are a number of existing tech-

niques that approach submodular maximization as a continuous optimization prob-

lem. However, many require the objective function to be smooth (e.g., [67] [11])

while the fractional relaxation in our setting is not smooth owing to the presence

of the min function. There exist methods to smooth a given objective function,

e.g., [23]. However, smoothing this way introduces unnecessary inefficiency: a

direct application to our setting would introduce a large scaling of the perturbation

according to the seed set size, k. This would degrade practical performance since

the noise added to the cumulative gradient would dominate the added stochastic

gradients for a non-negligible number of iterations and delay progress towards the

optimal solution. One approach that is applicable in principle is [52]: in fact, the

authors even consider IM as a possible application. Unfortunately, their approach

incurs a very expensive projection step on each iteration, which limits their ap-

proach to very small networks and renders it completely impractical in our setting.

An important property of our approach is that an update never takes the solution

outside of the feasible space, obviating the need for the expensive projection step.

It shares this property with the Frank-Wolfe optimization algorithm [28, 47]. A

key difference, however, is that unlike Frank-Wolfe, we only have an approxima-

85

tion of the influence function as estimated via influence samples, and as such do

not have access to the exact gradient. Consequently, the upper bound on the opti-

mal solution produced by the Frank-Wolfe algorithm does not hold. Hence, there

is a need for deriving a new upper bound.

Memory Usage Reduction. Given that RIS based methods are highly memory

intensive [2, 72, 74], recently there have been efforts at trimming their memory

requirements. It has been observed that under certain diffusion models and edge

probabilities, a large number of the samples contain only a single node. We can

either avoid storing such samples [75] or avoid generating them [70]. However,

the memory savings from doing away with singleton samples in this way is highly

sensitive to the manner in which diffusion occurs. E.g., singleton samples represent

a failure of any diffusion to occur. To illustrate the limitation of approaches like

SKIS, consider the two test cases for which the sample size distribution is shown in

Figure 3. Despite making up 80.1% and 67.6% of the samples, because the average

sample size is 606 and 288 nodes respectively for cases a) and b), the memory

savings of not storing singleton samples would be just 0.1% and 0.2%! In [75],

the authors use web-graph node id compression to reduce the memory required to

store the samples. For the resulting savings to be significant, this requires the

frequency of node ids in RIS samples to be near power-law distributed and align

with their frequency in the original graph, a property that may not always hold. An

alternative approach taken by [74] is to coarsen the network before applying IM.

While this makes the IM problem easier to solve, it introduces another source of

inaccuracy, the extent of which is not easily determined, which can degrade the

quality of the returned solution. In contrast to existing works that only reduce the

memory used by influence samples by a constant factor, our approach completely

eliminates the need to store them by processing them in a streaming manner.

Empirical Guarantees. One can straightforwardly produce lower bounds on the

optimal solution quality by evaluating generated candidate seed sets. Hence, the

key to attaining instance-dependent empirical guarantees is to upper bound the

value of the optimal solution. In [61], this is done using the value attained by the

final Greedy solution and the remaining highest marginal gains. This is at most

twice the true value of the optimal solution. The upper bound used in [83] is sim-

ilarly based on the Greedy solution but considers all prefixes of it and in doing

86

so tightens the bound to at most 1/(1− 1/e) times optimal. The ratio between a

candidate seed set’s lower bound and the upper bound yields the empirical guar-

antee. In practice, the upper bounds have been found to be much tighter than their

theoretical worst case. This is what enables the empirical guarantees produced in

this manner in [61] and [83] to significantly exceed (1− 1/e). By using an ILP

solver, [63] is also able to provide empirical guarantees that exceed the theoretical

worst case. While use of ILP is elegant, this approach has its limitations. The

resulting ILPs fall well outside typical ILP solver use-cases due to their exorbitant

size: reaching 10’s of millions of variables and 100’s of millions of non-zeros in

the constraint matrix. This is caused by the large number of influence samples that

they must represent. Our upper bound, which comes from the fractional relaxation,

is theoretically at least as tight as that of [83] and is empirically found to be supe-

rior. Furthermore, all existing approaches require storing the influence samples,

incurring high memory overhead, while ours does not.

3.9 Discussion and Conclusions
In this chapter, we present FAIM, an efficient IM algorithm that provides a worst-

case theoretical guarantee of (1− 1/e− ε) like previous work, and an empiri-

cal solution quality guarantee that is superior to previous work. FAIM achieves

this while incurring small, constant memory overhead, which does not depend on

the desired solution quality, properties of the diffusion process, and seed set size,

thanks to its novel approach that breaks away from the Greedy paradigm. We use

two fractional objective functions, namely a fractional relaxation and a multi-linear

extension, which enable us to process RIS samples as a stream, avoiding the need

to store them. We derive an upper bound on the optimal solution which is empir-

ically found to be tighter than the best existing upper bound. FAIM can be run

in online mode, and with very strong instance-specific solution quality guarantees.

Our experiments demonstrate the effectiveness of our algorithm on a variety of

large networks and settings.

Our approach is built on the RIS technique which we improve for the CTIC

model by greatly reducing the time required to generate RIS samples. Further-

more, the RIS abstraction enables our approach, developed to process samples as a

87

stream, to be straightforwardly extended to other influence models for which RIS

samples can be efficiently generated. Notably, this is the case for the discrete time

models IC and LT. The value of avoiding the need to store RIS becomes more

pronounced the larger the average RIS gets, as seen by the effect of varying the

time horizon under the CTIC model. Under discrete time models, the graph edge

probabilities can dramatically impact the average RIS size. We expect that settings

that yield similar average RIS sizes as those considered here will benefit from our

approach, which enables processing the samples as a stream.

88

Chapter 4

Edge Sample Recycling for
Reachability Estimation

4.1 Introduction
Reachability is a fundamental problem in graph analysis that asks if there exists

a path from a source node to a target node in the graph. This problem becomes

dramatically more challenging on uncertain graphs. As each edge in an uncertain

graph exists only with a specified probability, the question of reachability becomes

a probabilistic one: With what probability does there exist a path that connects the

source to the target?

This probability of interest can be formalized by viewing the uncertain graph

using the perspective of possible worlds. A possible world corresponds to one in-

stantiation of the edges of the graph to being either live or dead. Each possible

world occurs with a probability determined from its edge states and the probabili-

ties associated with these edges. In each possible world, a path of live edges from

the source to the target either does or doesn’t exists. The probabilistic reachability

then is the aggregate probability of all of the possible worlds in which such a path

exists.

Many real life networks have edges that are uncertain. Examples include com-

puter networks [30], protein interaction networks [48, 56] and social networks [56].

In these settings reachability on the corresponding uncertain graph may be used to

89

address important questions such as measuring the reliability of connections be-

tween two terminals, finding other proteins that are highly probable to be connected

with a particular protein of interest or estimating how information may diffuse by

the word-of-mouth effect.

Unfortunately, exact calculation of this probability is known to be #P-Hard

[86]. As such, to tackle real-world scale graphs it is necessary to turn our attention

to approximate solutions. Of particular importance are unbiased estimators for

which the expectation of the estimator is equal to the reachability probability. The

error of approximate solutions generated by such estimators is then solely due to

their variance.

Monte Carlo (MC) sampling (see Definition 4) is a fundamental approach that

can provide such approximate solutions. However, it is prone to requiring exorbi-

tant amounts of computational running time to reduce the variance of the estimate

to an acceptable level. Subsequently, more advanced sampling methods have been

proposed [48, 62, 65]. These seek to either reduce the variance by more intelligent

allocation of sampling work or make sample generation more efficient.

While these approaches improve substantially over MC sampling they remain

susceptible to either producing poor quality estimates or requiring a prohibitive

amount of computational running time. In particular, we care about producing es-

timates that have low relative error. While a moderate variance may be acceptable

when the reachability probability to be estimated happens to be large the same

variance can make the estimate useless if the true probability is in fact small. As

opposed to focusing on variance, which is comparable to the squared error of the

estimate, we argue the focus should be on the relative error of the estimate or sim-

ilarly the coefficient of variation. The coefficient of variation is the ratio of the

standard deviation to the mean. We find that existing approaches produce highly

inconsistent quality solutions with respect to this criteria. This is a consequence of

them being ineffective at estimating the reachability probability when the source

only reaches the target with a low probability.

In this chapter we present unbiased estimators that avoid this shortcoming of

existing work. We present an approach for which its relative error does not depend

on the probability of the source reaching the target. As a consequence, it is able to

provide consistently accurate estimates. To do this efficiently, the relative error of

90

intermediate nodes will be controlled by ensuring that edges are not oversampled,

in which case they would be estimated to unnecessarily high accuracy. Existing

approaches are prone to wasting computational work estimating the reachability

of intermediate nodes, that have substantially higher probability of being reached

than the target, to a lower relative error than is necessary. To see this, consider

a trivial case of a path composed of four edges of probability 0.5 connecting the

source to the target. Observe that under MC simulation for every time the fourth

edge is reached and found to succeed (i.e. the full path is formed and the source

reaches the target) the first edge will have in expectation succeeded 8 times and

been tested 16 times. Consequently, the reachability probability estimate of the

first intermediate node will be far more accurate than that of the target node. We

find the work spent repeatedly testing the first edge to be wasteful.

To avoid this we introduce a technique that we refer to as edge sample recy-

cling. Edge sample recycling allows us to only sample an edge to a desired level

of accuracy after which we efficiently emulate further samples using those drawn

so far. We show that the resulting estimator remains unbiased. In addition we

demonstrate experimentally that its relative error is not impacted by reachability

probability, in contrast to existing approaches.

The contributions of this work are,

• We present the novel concept of recycling random draws which we prove to

yield an unbiased estimator.

• We show empirically that our approach is highly effective and achieves more

consistent accuracy as measured by relative error. The existing state-of-the-

art suffers from inconsistent s-t accuracy depending on the reachability prob-

ability of s-t pair that is chosen for evaluation.

4.2 Related Work
Monte Carlo Simulation. As discussed in Section 1.1 the most direct way one

can tackle approximating the reachability probability is through the connection to

possible worlds. Sampling possible worlds and then averaging over whether the

source reaches the target in each possible world provides an unbiased estimate of

91

the reachability probability. This naive approach can be improved by avoiding

sampling full possible worlds and instead only testing an edge when it is encoun-

tered by a forward traversal from the source. It is easy to see that this will yield the

same reachability result for each possible world as if the entire possible world were

realized however at a much lower computational cost, as in practice only a small

fraction of the edges of the graph will typically need to be tested. Unfortunately,

it remains the case that the number of possible worlds that one must sample for

a desired relative error depends on the reachability probability (see Section 1.1).

Clearly this is undesirable as it means that one cannot know how many possible

world samples are needed beforehand, since the reachability probability is what we

are trying to approximate. Furthermore the computation time needed to achieve a

desired relative error may be greatly inflated if the probability to be estimated is

small. Despite these limitations Monte Carlo (MC) simulation remains a key build-

ing block to the existing approaches to reachability probability estimation.

Recursive Sampling. Recursive sampling [48] improves on MC sampling by fol-

lowing a divide-and-conquer technique. An edge is said to be expandable if it

starts from a reached node. Initially the source is the only reached node. The al-

gorithm proceeds by repeatedly picking an extendable edge e and then dividing

the samples into two groups: one group where the edge is live (in which case the

destination node becomes reachable) and the other where it is dead. Let K be the

number of samples. As opposed to sampling the edge K times the samples are

analytically divided into the two cases according to the edge’s probability.1 When

the remaining samples allocated to a branch is below a pre-defined threshold, a

non-recursive sampling method such as the basic Monte Carlo, which is equivalent

to the optimal Hassen-Hurvitz estimator, (this is referred to as RHH) or a more

sophisticated Horvitz-Thomson estimator (referred to RHT) is used to sample the

remaining edges [48, 50].

Recursive stratified sampling [62] may be viewed as a generalization of recur-

sive sampling. Instead of having a branching factor of 2, as is the case for recursive

1In [48] Algorithm 2 shows the number of samples being divided according to ⌊K p(e)⌋ and
K−⌊K p(e)⌋ however this results in the introduction of bias into the estimate as the floored branch
can be systematically under-weighted. The actual implementation provided by the authors does not
have this issue as it uses randomized rounding instead of floor.

92

sampling since there are always two cases when dividing on edges one at a time, re-

cursive stratified sampling considers the general case of having a branching factor

of 2r, which results from dividing on r edges simultaneously. r is a hyper parameter

of recursive stratified sampling. Note that when r = 1 it follows the same division

as recursive sampling.

The effectiveness of both recursive sampling approaches are heavily dependent

on the selection of edges to expand. Consequently, while selection of the next

edge to expanded may be done randomly, in [48] it is guided using a selection

procedure that favors expanding edges if they are near the target. Unfortunately

it can be noted that if the probability of reaching the target is small, regardless of

the edge expansion order, the branch that contains the live edges needed to reach

the target will be prone to having its number of remaining samples falling below

the threshold. This follows from the remaining samples being at most the initial

samples multiplied by the probabilities of the edges needed to form a path from the

source to the target, which can potentially be very small. Due to reverting back to

MC sampling when this occurs these approaches still have their accuracy severely

degraded if the probability to be estimated is small.

Geometric Sampling. The geometric sampling based approach proposed by Li et

al. [65] was found to be surprisingly competitive with other approaches designed

specifically for reachability estimation (i.e. reliability) in [54]. The approach is

not fundamentally different than MC simulation. However, it makes the generation

of samples much more efficient by avoiding needing to perform repeated Bernoulli

draws by instead drawing from a geometric distribution, which determines the next

trial on which the edge will be live. It turns out that the amount of random trials

that do not need to be performed as a result of utilizing geometric sampling in the

place of Bernoulli draws increases the smaller the edge probabilities are. As a con-

sequence the MC simulation samples require less computational work to construct

on low probability graphs, which helps to offset the need for more such samples.

However, this advantageous speedup only occurs at the level of edges not paths.

This limitation will be demonstrated in Figure 4.1 where we will show that while

geometric sampling can efficiently handle the presence of one low probability edge

as soon as there are multiple such edges it too becomes inefficient.

93

4.3 Our Approach
A key goal of our approach is to be able to achieve consistent relative error regard-

less of the value of the reachability probability that is to be estimated. Importantly

this should be attained without the running time being dramatically increased when

the reachability probability is small. To achieve this we take inspiration from geo-

metric sampling.

Geometric sampling when used to estimate the probability of a single edge has

the property that the number of sample draws needed to achieve a desired relative

error does not depend on the edge’s probability. Geometric sampling is equivalent

to performing Bernoulli trails except only the occurrence of successful cases are

drawn. This is done by way of the geometric draws specifying the number of trials

until the next successful trial. As such, the expected number of geometric draws

needed to be equivalent to K Bernoulli draws is p(e)K, where p(e) is the probabil-

ity of the edge being live (i.e., succeeding). Recall that if K ≥ 3
ε2 p(e) ln

(2
δ

)
Monte

Carlo simulation trials (i.e. Bernoulli draws) are performed then the estimate has

ε relative error with probability at least 1− δ (see Section 1 Diffusion Approx-

imation). It follows that the expected number of geometric draws that would be

needed is 3
ε2 ln

(2
δ

)
. Observe that the required geometric draws, i.e. the number of

successful trials, required is independent of the probability to be estimated, p(e).

We seek to extend this to the general problem of reachability estimation.

The key intuition is to only sample the worlds that are successful. That is, the

worlds in which the source node has a path to the target node. If we can identify

the points at which a desired number of successful worlds occur without spend-

ing computation work that depends on the number of failed worlds between them

then we will be able to achieve the goal of efficiently attaining consistent relative

error regardless of the reachability probability. As discussed, geometric sampling

achieves this for a single edge but extending this behavior to reachability is non-

trivial. A key problem when extending to paths is that the expected number of

times prior edges in a path need to succeed before the entire path succeeds grows

exponentially with the path length. Consequently, just identifying when individ-

ual edges are successful is insufficient. Notice that because the earlier edges in

the path have to succeed far more times than the later edges it is the case that the

94

reachability probability of these intermediate nodes in the path will have far lower

relative error under existing approaches than the relative error of the reachability

probability of the target. A key insight is that since we do not care about the reach-

ability probability to these intermediate nodes other than as a means to estimate the

reachability probability to the target, estimating them to such excessive accuracy

can be seen as a massive waste of computational work. This raises the question,

how to minimize this wasted computational work?

4.3.1 Edge Draw Recycling

To address this, we propose a technique that we refer to as edge draw recycling.

Notice that the reason we need to draw the earlier edges so many times is that they

must succeed many times before the later edges do. Instead of repeatedly sampling

these earlier edges, we propose to emulate doing so using a limited number of

samples. Specifically, consider determining the state of an edge for some number

of worlds, K′, through sampling. Now assume we want to know if the edge is live

for world i where i > K′. Instead of performing a new edge draw, we will reuse the

samples that have already been performed by replicating the K′ draw results. Doing

so is equivalent to taking i mod K′ and then using the result to index into the K′

samples. It is obvious that the replicated draw results remain an unbiased estimate

of the edge’s probability as the results they are copying from are unbiased. Observe

that this provides a means to efficiently emulate the edge’s state at any number

of worlds without needing to perform any further actual draws. Armed with this

technique it becomes easy to efficiently address the simple case of a path. We need

to know how many tries each edge needs to succeed in, which we can efficiently

get from geometric sampling. In addition, we need to know after how many worlds

the edge will be tried this many times. This is what edge draw recycling enables

us to do efficiently. Specifically, we know how many times the edge is reached in

the limited number of samples. As such, we can efficiently determine how many

replications are needed for the edge to be reached the required number of times.

To demonstrate the benefit of this technique consider the toy example in Fig-

ure 4.1. We will assess how many random draws are used by the various tech-

niques to estimate the probability that node 4 is reachable from node 1. Assume

95

Reach Set Probability Expected #
of BFS MC
Edge Draws

Expected #
of Geometric
Draws

Expected #
of Edge Draw
Recycling Draws

{1} 0.9 9,000 0 0
{1, 2} 0.09 1,800 900 0
{1, 2, 3} 0.009 270 180 0
{1, 2, 3, 4} 0.001 30 30 30
Total
Draws

11,100 1,110 30

Figure 4.1: Toy example for comparing amount of random draws performed
by BFS MC, Geometric sampling, and Edge Draw Recycling (our ap-
proach).

that we want to draw sufficiently many samples such that in expectation at least

10 of them succeed (i.e. the path from node 1 to node 4 is realized). For this toy

example it is easy to see that the probability of the path being formed is 0.001. As

such using K = 10,000 will result in 10 successful possible worlds in expectation.

Naive Monte Carlo, which samples all edges for every possible world, will per-

form 30,000 random Bernoulli draws. These random draws are used to determine

whether or not each of the 3 edges is live or dead in each world. For breadth-first

search Monte Carlo (BFS MC) the amount of random draws performed depends

on the set of nodes reached. In Figure 4.1 we show the expected number of edge

draws used on all reach set sizes. For instance the reach set containing {1,2} oc-

curs with probability 0.09 as the first edge must succeed and the second fail. As

such, there will in expectation be 900 such cases out of the 10,000 and on each

such case BFS MC will have tested 2 edges for a total of 1800 edge trials. The

total number of edge trials performed is the sum over all the reach set cases which

is 11,000 for BFS MC. Using geometric sampling in place of performing Bernoulli

edge trials reduces the number of random trials performed by an order of mag-

nitude. Notice that there are no occurrences of the reach set {1} for geometric

sampling as performing geometric draws will only draw the cases where an edge

96

is live. However, after that in 90% of the samples in which node 2 is reached node

3 will not be reached. This is because geometric sampling only ensures the suc-

cess at the level of individual edges. It does not extend to paths. Consequently,

900 of the samples will contain the reach set {1,2} and one geometric draw will

have been used on each of them. In contrast, with edge draw recycling, instead of

redrawing the edge (1,2) many times we will draw it only 10 times, after which

we will emulate further draws using recycling. For instance, assume we get the

following success indices {4,29,32,43,53,54,69,71,81,98} for the first edge out

of 100 worlds. Assume that the first success index of the edge from node 2 to node

3 is 14 then we determine that this occurs on world 143 by way of recycling the

draws from the first edge. Note that the success indices of the edge (1,2) need to be

recycled once for the node 2 to be reached 14 times, as there are only 10 success in-

dices in the 100 worlds. As such, the next 10 success indices produced by recycling

are {104,129,132,143,153,154,169,171,181,198}. It is on the 4th of these (i.e.

143) that the node 2 will have been reached 14 times. By only performing in ex-

pectation 10 draws on each edge we are able to construct the desired 10 successful

worlds where there exists a path from node 1 to node 4. Hence, our approach only

uses 30 random draws in contrast with BFS MC and geometric sampling which

need 11,100 and 1,110 respectively.

It is worth noting that the number of random draws required by both BFS MC

and geometric sampling to produce at least 10 successful samples in expectation

grows exponentially in the path length while that needed by our edge draw recy-

cling approach grows only linearly. To see this, consider adding a 5th node with

an edge of probability 0.1 to it from node 4 of this example. The probability of

the path from node 1 to the new node 5 is now 0.0001 and as such K = 100,000

is needed to attain 10 successful possible worlds in expectation. Consequently,

the number of random draws needed by BFS MC and geometric sampling rise to

111,110 and 11,110 respectively. This can be seen by noting that the number of

random draws in the first 3 rows of the table for BFS MC and geometric sampling

with be increased by 1 order of magnitude since K was increased by one order of

magnitude. The third row will be changed to occurring with probability 0.009 and

result in 270 and 180 random draws being used by BFS MC and geometric sam-

pling respectively. In addition, a new row is added corresponding to the case of

97

the path from node 1 to node 5 being formed. This occurs with probability 0.0001

and used 40 random draws for both BFS MC and geometric sampling. In contrast,

number of random draws need by edge recycling only increases to 40. This is

because we do not need to perform any additional random draws on the previous

edges and we only required an expected number of 10 successful trials of the newly

added edge which can be identified by performing 10 geometric random draws in

expectation.

We will now focus on the challenges that arise in the more general problem

that are not present when only considering the simple case of one path. The most

significant challenge is caused when paths from the source to the target overlap.

This is in fact the underlying cause of the problem being intractable to solve ex-

actly. It is necessary to correctly account for the correlation of the paths caused by

them sharing edges. This happens naturally under Monte Carlo simulation when

paths co-occur in worlds and only count once towards the reachability probability

estimate. We must ensure that this remains the case when we apply edge draw

recycling to ensure that the produced estimates remain unbiased. We find that we

can in fact do so, which we will prove to be the case in Section 4.4, however there

are two additional criteria that the application of edge draw recycling must satisfy.

The first we will refer to as the alignment property. The alignment property

requires that the number of worlds represented by each edge (i.e. K′, the number

of actual ‘real’ samples performed before the application of recycling) must divide

evenly into the number of worlds represented by any other edges. For instance it is

sufficient to make the number of worlds represented by each edge to be a power of

2, as we will do in our algorithm. This ensures that edge co-occurrence frequency

is preserved under edge recycling. The intuitive reason is that the set of live and

dead edges repeats every m steps where m is the largest common multiple of the

number of worlds represented by each edge. This is made more formal in Sec-

tion 4.4. The second criteria we will refer to as the edge consistency property. The

consistency property requires that when an edge’s draws are emulated using edge

draw recycling all occurrences of that edge’s draws must use edge draw recycling

and it must use the same underlying samples and hence number of worlds. This

ensures that whenever an edge’s state is queried for a given world the result is al-

ways the same. Together these allow us to prove that if we use edge draw recycling

98

to emulate edge draws the resulting estimates that we get for reachability are un-

biased. In fact, the result applies to any function computed from the edge states,

although we only focus on reachability in this work. The details of how we build

our algorithm that uses the edge recycling technique is discussed in Sections 4.5

and 4.6.

Edge draw recycling leaves open how one generates the underlying samples

that it then uses for replication. The main requirement is that we will want that

the underlying arrays that are replicated to contain a desired number of successes.

We will consider two approaches both of which will be proven to yield unbiased

estimates when used with edge draw recycling. The first is geometric sampling and

the second is an approach that we refer to as expectation matching sampling. Geo-

metric sampling is the obvious choice to consider because as already discussed it is

efficient for determining after how many trials the next success will occur. Further-

more we can set the number of worlds represented such that the expected number

of successes is in expectation the desired number. Where expectation matching

sampling differs from geometric sampling is that it will reduce the randomness

in the number of successes that occur. Specifically, expectation matching will

set the number of successes that occur to its expectation and then randomize on

which worlds these successes occur within the range of worlds considered. This

is in essence a variance reduction technique that removes a source of unnecessary

randomness. Empirically we find that it greatly reduces the relative error of the

produced estimates (see Section 4.7).

4.4 Theory
In this section we will first prove that edge draw recycling produces unbiased es-

timates and show that this applies to the two sampling approaches that we will

be using to generate the samples that edge draw recycling will replicate. We will

then discuss how the two requirements, the alignment property and consistency

property, are being used in the proof and their implications for the algorithm that

we design. Following this we attempt to characterize the variance and associated

relative error that results from applying edge draw recycling to estimate the reach-

ability probability.

99

Figure 4.2: Edge Draw Recycling Example

4.4.1 Unbiased Estimation

We will now prove that the reachability estimate produced when using edge draw

recycling is unbiased.

Theorem 5. Let G be the distribution over possible worlds (i.e. deterministic

graphs) represented by an uncertain graph, G ′ be the distribution over possible

worlds produced when each edge’s draws may be emulated through edge draw

recycling, and f (G) be a function that when given a possible world G evaluates

to one or zero (e.g. one if the source reaches the target and zero otherwise) then

EG∼G [f (G)] = EG∼G ′ [f (G)], i.e., edge draw recycling is unbiased.

Proof. We will prove this result through induction on the number of worlds (dis-

cretized into powers of two). To start off with, consider sorting all of the edges

according to the number of samples drawn from them (i.e., the number of worlds

their state is determined for) before the application of replication. Let ki correspond

to the i’th largest number of worlds represented in ascending order. (e.g. Suppose

100

there are 6 edges with array sizes [16,16,32,64,64,64], then k0 = 16, k1 = 32,

k3 = 64). As discussed in Section 4.3 all of the underlying numbers of worlds are

constructed to be divisible into each other. In the following it will be assumed that

this requirement is satisfied by all of the numbers of worlds being powers of 2,

as this is what we will be using in our algorithm. We will reference the example

diagram shown in Figure 4.2 which has the edges with shortest array length on the

bottom and longest on the top. Recall that edge draw recycling can be thought of as

replicating the smaller arrays of samples to produce full worlds up to the number

needed by the largest array length (e.g. the length 16 arrays will be replicated 4

times and the length 32 array twice to match the length 64 array).

Base Case. Observe that if we only consider the k0 first possible worlds these

worlds are generated identical to MC simulation as no edge draws have been re-

cycled yet (green boxed region in Figure 4.2). As MC simulation is known to be

unbiased the reachability probability estimate produced by averaging whether or

not s reaches t in each of these worlds is an unbiased estimate (same argument ap-

plies for an arbitrary function f (G)). It is important to note that for MC simulation

to provide an unbiased estimate it fundamentally depends on the assumption that

the possible worlds are independent. This is the case for the k0 first possible worlds

but this assumption is no longer satisfied once we begin recycling edge draws.

Inductive Step. Assume the estimate produced using worlds up to ki is unbiased.

Consider the worlds up to ki+1. Observe that the ki+1 worlds may be split evenly

into segments of length ki and that these segments are indistinguishable from each

other (i.e. the makeup of each segment in terms of the edge array replicas it con-

tains are identical). This perfect segmentation always happens because all array

lengths are powers of 2 and as such, it is always the case that 2c · ki = ki+1 for

some integer c. In Figure 4.2 the first application of the inductive step corresponds

to considering the green boxed region and the green dashed boxed region. By the

inductive hypothesis we already know the first segment provides an unbiased esti-

mate and since all segments are indistinguishable each segment individually also

provides an unbiased estimate. The estimate for the ki+1 worlds is equivalent to

averaging the estimates of the 2c segments. Since the estimate of each segment is

unbiased the resulting estimate from the ki+1 worlds is unbiased (i.e. the red boxed

region is unbiased).

101

Repeated application of the inductive step starting from the base case gives the

result that the estimate produced using as many worlds as the length of the largest

array provides an unbiased estimate.

This result showing that edge draw recycling is unbiased immediately implies

that edge draw recycling when using geometric sampling is also unbiased. It is only

necessary to show that geometric sampling is unbiased on the base case, which is

before any edge draw recycling has occurred. Geometric sampling being unbiased

on the base case (i.e. using Geometric sampling for MC simulation in the place of

Bernoulli draws) follows from the definition of the Geometric distribution in terms

of Bernoulli trials, which implies that whether Bernoulli or Geometric trials were

used is indistinguishable.

A similar argument also is sufficient to show that edge recycling using what

we refer to as expectation matching sampling is also unbiased. Observe that we

only need to revise the base case after which the same induction argument applies.

Notice that expectation matching results in the possible worlds becoming corre-

lated. This may be seen by considering that the knowledge that in the first world

an edge is dead increases the probability that the edges in the other worlds are live

as together the number of live edges is matched to the expectation. However, this

cross world correlation does not introduce any bias, as we will now explain. Con-

sider one of the possible worlds in isolation. Observe that the probability that an

edge is live in that world using the expectation matching sampling is equal to the

probability that it is live under independent sampling. This follows from the expec-

tation matching construction. As such each individual possible world provides an

unbiased estimate. Furthermore averaging unbiased estimates always produces an

unbiased average estimate. Importantly, the fact that the estimates that are being

averaged are correlated cannot introduce bias. It then follows that the base case

also holds for expectation matching sampling and hence edge draw recycling using

expectation matching sampling produces unbiased estimates.

In addition to the alignment property that is explicitly used in the proof it should

be noted that it is implicitly asserted that each edge also satisfies the consistency

property (i.e. when f (G) is applied it only sees edges through the edge draw re-

cycling). While this may seem obvious it results in some important limitations on

102

how the algorithm we develop can manipulate how it uses edge draw recycling.

The main consequence of the consistency requirement is that if we are to alter the

edge draw recycling of an edge (e.g. say we want to reduce the number of ‘real’

samples and increase replication for efficiency reasons) this must be reflected ev-

erywhere that edge’s success indices have been indirectly used.

4.4.2 Variance Characterization

We would like to characterize the variance so that we can understand how it de-

pends on the number of success indices, ℓ, used and the probability of source

reaching the target, R(s, t). In particular, we would like to be able to show that

the variance of our approach depends on R(s, t) in a manner that results in the rel-

ative error not depending on R(s, t). Recall that existing approaches suffer from

their relative error increasing as R(s, t) decreases unless more samples, and hence

more running time, are used.

Currently we are only able to formally characterize the variance that results

from the application of edge draw recycling for a path, which we present in the fol-

lowing. However it is likely the case that the variance of the reachability estimate

behaves similarly. Our experiments present in Section 4.7 also provide empirical

evidence to support this. The intuitive argument why the variance of the reachabil-

ity estimate should be similar is that it may be viewed as requiring the estimation

of the cardinality of a set of success indices, representing the worlds in which the

source reached the target, which is produced by taking the union of the success

indices of all paths from the source to the target. We show that each path’s set

of success indices has its cardinality variance bounded. Furthermore the corre-

sponding set of success indices that reach the target will in fact be known, not just

cardinality estimations. As such the union to find the number of success indices

present at the target, representing any of the paths succeeding, may be performed

explicitly.2 Consequently we conjecture that the variance of the cardinality of the

union is no more than that of the path with the maximum variance. In fact, we

2Paths’ success indices are unioned also at intermediate nodes. This corresponds to determining
the worlds in which intermediate nodes are reached by the source. The worlds in which a node’s
in-neighbours are reached by the source along with the corresponding edge’s success indices may be
used to determine in which worlds the node is reached by the source. Doing so avoids the presence
of exponentially many paths in general from becoming a problem.

103

believe it is likely to be closer to a weighted average of the variances of the paths

where the weight associated with each path’s variance is based on the number of

entries it contributes to the union.

Path Variance Analysis. Consider a path containing edges e1, ...,ei, ...,ed with

associated probabilities p(ei). Let ℓ be the number of success indices that is used.

This controls the number times edges are sampled before edge recycling is applied.

Consequently, the number of worlds, K, that the first edge, e1, is sampled in is at

least, K ≥ ℓ/p(ei). The algorithm will use this many worlds rounded up to nearest

power of 2.

Let Xi1,Xi2, ...XiK be the K independent Bernoulli random variables each with

E[Xi j] = p(ei) that correspond to the state of an edge ei in K worlds. Let Yi =

∑
K
j=1 Xi j/K be the resulting random variable representing the average. We will

analyze the variance of Yi.

As the variance of each independent Bernoulli random variable is Var(Xi j) =

p(ei)(1− p(ei)) if we consider the first edge we have:

Var(Y1) = p(e1)(1− p(e1))/K (4.1)

≤ p(e1)
2(1− p(e1))/ℓ (4.2)

≤ p(e1)
2/ℓ (4.3)

The first line follows from the variance of the average of K identically distributed

independent random variables, which is known to be the variance of the individual

random variables reduced by a factor of K. Following that, the inequality, K ≥
ℓ/p(ei), is used to substitute for K.

When the subsequent edges are considered the number of worlds considered

is increased according to Ki ≥ ℓ/∏
i
j=1 p(e j) for the number of worlds considered

at edge ei. This is done to compensate for later edges only being tested when the

edges before them succeed. It follows that the variance of the estimation of each

104

edge’s probability is also:

Var(Yi) = p(ei)(1− p(ei))/

(
Ki

i−1

∏
j=1

p(e j)

)
(4.4)

≤ p(ei)
2(1− p(ei))/ℓ (4.5)

= p(ei)
2(1− p(ei))/ℓ (4.6)

≤ p(ei)
2/ℓ (4.7)

The multiplier ∏
i−1
j=1 p(e j) is the probability that all edges prior to the edge i in

the path succeed. Only when this happens is the edge ei tested. The effect of this

multiplier is canceled out by Ki.

We will now analyze the variance of the estimate of the probability of the path

being formed, ∏
d
i=1Yi. Since the individual edges are independent the variance of

the path is:

Var(
d

∏
i=1

Yi) = E[
d

∏
i=1

Y 2
i]−E[

d

∏
i=1

Yi]
2 (4.8)

=
d

∏
i=1

E[Y 2
i]−

d

∏
i=1

E[Yi]
2 (4.9)

=
d

∏
i=1

(Var(Yi)+E[Yi]
2)−

d

∏
i=1

E[Yi]
2 (4.10)

≤
d

∏
i=1

(p(ei)
2/ℓ+ p(ei)

2)−
d

∏
i=1

p(ei)
2 (4.11)

=
d

∏
i=1

p(ei)
2
(
(1/ℓ+1)d−1

)
(4.12)

The first line follows from the definition of variance. The following line uses the

fact that the edges are independent. After that the definition of variance is used

again to replace E[Y 2
i]. The fact that E[Yi] = p(ei) along with the result for Var[Yi]

is then substituted in.

We can express the quantity, (1/ℓ+ 1)d − 1, using the Taylor series of the

105

binomial approximation:

(1/ℓ+1)d−1 =
∞

∑
i=1

i−1

∏
j=0

(d− j)/(i!ℓi) (4.13)

Provided d < ℓ, using infinite geometric series, this can be simplified to

∞

∑
i=1

i−1

∏
j=0

(d− j)/(i!ℓi)≤ 2
∞

∑
i=1

di/(2ℓ)i (4.14)

= (d/ℓ)/(1− (d/(2ℓ))) (4.15)

= 2d/(2ℓ−d) (4.16)

It can be observed that the variance is scaled by the square of the path’s probability,

∏
d
i=1 p(ei)

2. As such the coefficient of variation, defined as the standard deviation

divided by the expected value, is,

cv =
√

2d/(2ℓ−d) (4.17)

This characterizes how the relative error depends on the path’s probability, how-

ever, it can be observed that there is no dependence on path probability. This

happens because the variance depends on ∏
d
i=1 p(ei)

2, which is the square of the

probability of the full path being formed (i.e. the probability of the source reaching

the target). Consequence of the variance decreasing in this manner as the probabil-

ity of the path being formed decreases the relative error remains the same regardless

of the probability of the path being formed. There is however a dependence on the

length path, d. Notice that, d the path length, only grows linearly, in contrast to

the path probability that in general can decrease exponentially. What this means is

that for an approach who’s relative error depends inversely on the probability of the

path being formed, e.g. MC simulation, the amount of samples, and consequently

running time, needs to be increased exponentially with the path length for the re-

sulting relative error to not increase. In contrast, the number of success indices,

ℓ, used by our approach only needs to be increased linearly with the path length,

regardless of the edge probabilities, to keep the relative error from increasing.

106

4.5 Algorithm
Our algorithm, WIR, is divided into three main components: 1. The main loop

which selects the next node to process (Algorithm 8). 2. The node processing

procedure (Algorithm 9). 3. The success index sampling which may use either

Algorithm 10 or Algorithm 11. The input to the main algorithm (Algorithm 8) is

the source node, s, target node, t, probabilistic graph, G, desired number of success

indices, ℓ, and number of repetitions to average, K. The returned value, p̄, is the

estimated probability that there exists a path from s to t. Both ℓ and K control the

estimation accuracy with K increasing the accuracy at the cost of running time and

ℓ increasing the accuracy at the cost of less running time than K but also increasing

the memory used. This is investigated in our experiments (Section 4.7). We also

defer a number of implementation details and techniques to improve efficiency to

Section 4.6.

Algorithm 8 WIR
Input: s, t,G, ℓ,K
Output: p̄

1: for i = 1 to K do
2: for all u ∈V do
3: I [u] = /0; P[u] = /0;
4: Set rlimit according to numerical accuracy;

(e.g. if 64-bit integers are used for storing success indices, rlimit = 264)
5: Let A contain success index 0 and represent 1 world;

(i.e. A.indices = {0}, A.worlds = 1)
6: I [s]←I [s]∪{A};
7: H .push((1,s));
8: while !H .isempty() do
9: (r,u)←H .pop();

10: ExpandNode(u,min(r,rlimit),G,H ,I ,P, ℓ, t);
11: pi = p[t];
12: p̄ = ∑

K
i=1 pi/K

13: return p̄

The WIR algorithm performs K repetitions each of which produces an esti-

mate of the reachability probability, pi. These independent estimates are averaged

to produce the returned estimate, p̄, to reduce variance. We will now focus on

107

the creation of one such estimate (lines 2-11). The main data structures that are

used are referred to as success index sets. Each success index set, A, has a value

specifying the number of worlds that it represents, A.worlds, and a set of success

indices, A.indices, that indicates in which of these worlds a success occurred (i.e.

the source node reached the node that the success index set applies to). Each node,

u, has a set of success index sets, I [u], that together represent the worlds in which

the source node reaches the node u. As discussed in Section 4.3, even though each

success index set only represents a particular number of worlds through the use of

replication, whether a success occurs at at any given possible world is determined

by I [u]. In addition, each node has a set of success index sets, P[u], which are

the success index sets that have been processed. Processed success index sets con-

tain the success indices that have been considered for propagation to the node’s

neighbors. In addition, the success index sets in P[u] are maintained to be non-

overlapping. The implementation of this is discussed in detail in Section 4.6.

Initially, I [u] for all nodes except the source node are empty. The collection

of success index sets for the source, I [s], is initialized to contain one success in-

dex set which contain success index 0 and represents 1 world. Notice that this

success index set represents that the source reaches itself in all possible worlds as

every world in the success index set corresponds to a success index. We will say a

success index set of a node has been processed once its success indices have been

considered for propagation to neighbors of the node by Algorithm 9. The algorithm

is designed to process success index set in order of increasing number of worlds.

Intuitively, success index sets with smaller numbers of worlds correspond to higher

probability events. This processing order is also required for implementation rea-

sons that are discussed in Section 4.6 Success Index Deduplication. To support this

a min-heap, H , is used to order nodes by the minimum number of worlds one of

their unprocessed success index sets represents. To begin with the source is added

(line 7). Following this, the algorithm continues to remove the node that is at the

top of the min-heap and calls Algorithm 9 on it until the heap is empty. The vector

p[u] contains the estimate of the probability of the source reaching each node (i.e.

R(s,u) for each u). This will be incrementally updated each time a success index

set at a node is processed. Once all success index sets have been processed p[t]

contains the reachability probability that we wanted to estimate.

108

Algorithm 9 ExpandNode

Input: u,r,G,H ,I ,P, ℓ, t
1: if r < rlimit then
2: C = {A | A ∈I [u]∧A.worlds = r};
3: I =

⋃
A∈C A.indices;

4: else
5: I = {i | i ∈

⋃
A∈I [u] A.indices∧ i < rlimit};

6: Remove indices in I that overlap with those in the success index sets in P[u].
7: if I ̸= /0 then
8: Let P.indices = I and P.worlds = r;
9: P[u]←P[u]∪{P};

10: p[u]← p[u]+ |P.indices|/P.worlds;
11: if u ̸= t then
12: for all v ∈ G[u] do
13: Let w = p(u,v);
14: rnew = min(rlimit ,max(r,2⌈log2(ℓ·r/(w|I|))⌉));
15: Let A.indices = SampleIndices(I, r, rnew, w);
16: Let A.worlds = rnew;
17: I [v]←I [v]∪{A};
18: H .push((rnew,v));
19: if v == t then
20: rlimit ← rnew;

We will now discuss Algorithm 9, which handles the processing of success

index set and propagation of success indices to a node’s neighbors. To begin with,

if r < rlimit all of the success indices of the success index sets for the node u that

represent r worlds that haven’t been processed are merged into the set I. If r has

reached rlimit then all unprocessed success index set are merged into the set I. In

addition, any success indices exceeding rlimit are filtered out. By construction it is

not possible for there to be an unprocessed success index set that represents less

than r worlds as all nodes that contain such success index sets must be processed

before r can be increased. Furthermore when an success index set is processed it

can only create success index set with equal or higher rnew or with a rnew value equal

to rlimit , as will be discussed in the following. The success indices that overlap

with those already present in P[u] (i.e. corresponds to worlds where node u is

already reached by the source via an alternative path) are removed. The reason this

109

deduplication is only with respect to the processed success index sets is discussed

in Section 4.6 Success Index Deduplication. Provided I is not empty the success

a new processed success index set is created using the success indices and added

to P[u]. The probability estimate of u being reached by the source is updated

to reflect the newly processed success index set. Following this if u is not the

target node the success indices are considered for propagation to each neighbor

(v∈G[u]) of u (lines 10-20). Line 14 computes rnew which is the minimum number

of worlds that is a power of 2 that if considered ensures that the expected number

of success indices propagated across the edge is at least ℓ in expectation. This

follows from there being currently |I| success indices in r worlds and in expectation

p(u,v) will pass over the edge. Note that rnew is not allowed to be smaller than r.

As discussed in Section 4.4 the recycling pattern of edges may not be changed

unless it is changed globally. As such, the number of worlds represented must

be kept at r or higher unless it is lowered globally, as is done by rlimit . rlimit is

a global limit on the number of worlds considered that is initially set according

to technical limitations (see Algorithm 8 line 4) and then lowered once the target

node has been reached (line 20). Having determined how many worlds are need the

SampleIndices procedure is invoked to determine the success indices that pass over

the edge (i.e. in what worlds in which u has been reached by the source does u reach

v). We have two different techniques that may be applied to produce the success

indices (Algorithms 10 and 11) that will be discussed shortly. Once we have the

success indices these along with rnew are used to form A a new success index set.

The success index set is added I [v] and the node is added to the heap with its

corresponding value being the number of worlds of the newly created success index

set, rnew. Note that a node may be registered in the heap multiple times. This

ensures that the node is processed according to the success index set addition that

requires processing soonest (i.e. has added a success index set with lowest rnew).

If the target node is reached then we now have established an upper limit on the

number of worlds that are needed to reach the target node with the desired number

of success indices, namely rnew. This is used to lower the value of rlimit . We will

now demonstrate how the algorithm, as discussed so far, works with a toy example.

Example 3. Shown in Figure 4.3 is toy graph for which we will walk through how

110

Figure 4.3: Toy example for demonstrating the algorithm.

Algorithms 8 and 9 estimate the probability of node 1 reaching node 3. Initially,

in Algorithm 8 H contains only (1, node 1), as node 1 is the source node. As

such, Algorithm 9 will be called on node 1 with r = 1. From the initialization,

I [(node 1)] contains one element, A, with A.indices = {0} and A.worlds = 1. As

such, I = {0}. Note that P[(node 1)] thus far is empty. Lines 8-10 create P using I

and then add it to P[(node 1)]. p[(node 1)] is updated to its existing value, 0, plus

|I|/1, which gives 1. Since node 1 is not the target node, propagation is performed

across its two edges. Consider the edge from node 1 to node 2. For this example

suppose ℓ = 5. w is 0.1 which gives rnew = 2⌈log2(5·1/(0.1·1))⌉ = 2⌈log2(50)⌉ = 64.

Note that 2⌈log2(50)⌉ has the effect of rounding 50 up to the nearest larger power

of 2. Suppose invoking SampleIndices returns the set {4,16,20,51,62}. The

operation of SampleIndices will be discussed in detail in Section 4.5.1. This is

used to create a success index array that is added I [(node 2)]. (64, node 2) is

then added to H . The edge from node 1 node 3 is processed similarly. w is 0.2

which gives rnew = 32. Suppose invoking SampleIndices in this case returns the

set {3,10,15,20,31}. This is used to create a success index array that is added to

I [(node 3)]. (32, node 3) is then added to H . As node 3 is the target rlimit is set

to 32.

Next, Algorithm 9 will be called on node 3 with r = 32. I = {3,10,15,20,31}
from the one element in I [(node 3)] and since P[(node 3)] is so far empty. Lines 8-

10 create P using I and then add it to P[(node 3)]. p[(node 3)] is updated to its

existing value, 0, plus |I|/32, which gives 0.15625. Node 3 is the target so we

return to Algorithm 8. Next, Algorithm 9 will be called on node 2 with r = 32.

Note that r that was associated with node 2 has been overridden by rlimit , as it is

smaller. As r = rlimit is now the case the success indices will now be restricted

111

down to rlimit worlds. Consequently, I = {4,16,20}. The other success indices

now exceed the number of worlds under consideration. Lines 8-10 create P using

I and then add it to P[(node 2)]. p[(node 2)] is updated to its existing value, 0,

plus |I|/32, which gives 0.09375. Since node 2 is not the target node propagation

is performed across its one edge. Consider the edge from node 2 to node 3. Since

r = rlimit it is the case that rnew = rlimit . Suppose invoking SampleIndices in this

case returns the set {16,20}. This is used to create a success index array that is

added to I [(node 3)]. (32, node 3) is then added to H . Finally, Algorithm 9 will

be called on node 3 with r = 32. I = {16} after removal of the success indices that

overlap with those in P[(node 3)]. Notice that the success index 20 was removed.

This corresponds to the case where node 3 has been reached simultaneously via the

path from node 1 through node 2 to node 3 and also the edge from node 1 directly

to node 3. Lines 8-10 create P using I and then add it to P[(node 3)]. p[(node 3)]

is updated to its existing value, 0.15625, plus 1/32, which gives 0.1875. Node 3

is the target so we return to Algorithms 8. The heap is now empty and the value

p[(node 3)] = 0.1875 is the result for this repetition.

The described procedure is repeated K times and the average of the p[(node 3)]

results from each repetition is returned as the final estimate. The randomness in

this procedure originates from the the success indices returned by the invocations

of SampleIndices.

4.5.1 Success Indices Sampling

Algorithm 10 implements the SampleIndices procedure using geometric sampling

where as Algorithm 11 does so using a sampling strategy that we refer to as ex-

pectation matching. Both use edge draw recycling as needed to extend the number

of worlds given ru, to the desired number of worlds, rv. The inputs are the suc-

cess indices, Iu, and corresponding number of worlds, ru, the requested number of

worlds to test, rv, and the edge’s probability w. The output is the success indices Iv

that correspond to the request number of worlds and represent the worlds in which

a success index from Iu was present and the edge was live. These success indices

correspond to the worlds in which the source reaches the node v via the edge in

consideration.

112

Algorithm 10 SampleIndices-Geometric
Input: Iu,ru,rv,w
Output: Iv

1: Iv = /0
2: i = 0; iw = 0;
3: while iw < rv do
4: j ∼ Geom(w);
5: i← i+ j;
6: ind = i mod |Iu|;
7: iw = ru(i− ind)/|Iu|+ Iu[ind];
8: if iw < rv then
9: Iv← Iv∪{iw};

10: i← i+1;
11: return Iv;

Algorithm 10’s use of geometric sampling is an efficient and equivalent way

to implement the following more easily understood procedure. By construction it

is the case that ru and rv are powers of 2 with ru ≤ rv. As such rv/ru is a positive

integer. The application of edge recycling can be understood as taking the possible

worlds represented by Iu and ru and replicating them rv/ru times. The result is a

new set I′u that corresponds to rv worlds and contains (rv/ru)|Iu| success indices

with the replica indices generated by offsetting the original indices in Iu by c|Iu|
for the c’th replica. The set Iv is then constructed by for each element in |I′u| per-

forming a Bernoulli trial with probability w. If the trial is 1 this corresponds to

the edge being live and the success index is added to Iv otherwise it is not. While

simple, this direct way of constructing Iv quickly becomes inefficient if the number

of replications is large since the amount of work performed scales with (rv/ru)|Iu|.
Recall from Algorithm 9 line 14 the number of worlds requested, and hence num-

ber of replications, is controlled by the edge’s probability, w. Hence, the number

of replications will only be large if the edge’s probability is small. Geometric sam-

pling enables producing a result that is identical to the Bernoulli trial approach but

only with |Iv| work.

In Algorithm 10 iw is the most recently generated success index, so long as it

is less than the desired number of worlds, rv, the next success index is generated.

The variable i tracks the number of times the edge has been tested (i.e. the number

113

of Bernoulli trials that would have been performed so far if geometric sampling

wasn’t used). The geometric random variable draw on line 4 determines how many

times, j, the edge is tested and fails before the next time it is tested and it succeeds.

In addition to the number of failed attempts i also needs to be incremented for each

time the edge succeeds. This is accounted for by the increment on line 10. iw
is computed from i by first computing the remainder from ind = i mod |Iu| and

then using this to compute (i− ind)/|Iu| which determines which array replica it is

from. Once which replica to use has been determined the resulting success index is

produced by combining the replica offset, ru(i− ind)/|Iu|, which accounts for the

number of replicas that have been cycled over, and then indexing into the current

replica, Iu[ind]. If the resulting success index, iw, is less than the desired number of

worlds, rv, then it is added to Iv otherwise the procedure finishes returning Iv. We

will now go over an example.

Example 4. Suppose the input is Iu = {3,6,13},ru = 16,rv = 32,w= 0.4. Suppose

the 1st geometric random draw is j = 1. Hence, i = 1 and ind = 1 mod 3 = 1. iw is,

1) 0 (since i− ind = 0), 2) plus Iu[1] = 6, which gives 6. As, iw = 6 is less than rv, 6

is added to Iv. i is then incremented to 2. Suppose the 2nd geometric random draw

is j = 3. Hence, i= 5 and ind = 5 mod 3= 2. iw is, 1) 16 (from the number of array

replications that have been pasted over, (i− ind)/|Iu|, which is 1, multiplied by the

array length, ru, which is 16), 2) plus Iu[2] = 13, which gives 29. As, iw = 29 is less

than rv, 29 is added to Iv. i is then incremented to 6. Suppose the 3rd geometric

random draw is j = 0. Hence, i = 6 and ind = 6 mod 3 = 0. iw is, 1) 32 (from the

number of array replications that have been pasted over, (i− ind)/|Iu|, which is 2,

multiplied by the array length, ru, which is 16), 2) plus Iu[0] = 3, which gives 35.

iw = 35 is not less than rv. As such the algorithm returns Iv = {6,29}.

We will now discuss our second technique for the SampleIndices procedure

that we refer to as expectation matching sampling. In contrast to geometric sam-

pling, where the resulting number of success indices can vary substantially about

its expected value, in expectation matching sampling the number of success indices

is constructed to be essentially equal to the expectation. Doing so does not intro-

duce any bias into the estimation, as shown in Section 4.4, and serves to reduce

the variance of the estimation. First the expected number of success indices, a, is

114

Algorithm 11 SampleIndices-ExpectationMatching
Input: Iu,ru,rv,w
Output: Iv

1: Iv = /0
2: a = w · (|Iu| · rv/ru)
3: Probabilistically round a to integer.

(Round up with probability a−⌊a⌋, round down otherwise.);
4: Ir ← Draw a times uniformly at random without replacement from multiset

containing integers in range [0,(rv/ru)− 1] where each integer is replicated
|Iu| times.

5: for all ir ∈ Ir do
6: Draw i uniformly at random from Iu excluding entries that have already been

drawn from the ir’th replica.
7: iw = ir · ru + i;
8: Iv← Iv∪{iw};

computed on line 2. Since the number of success indices is discrete this value is

rounded using randomized rounding as described on line 3. Having determined

the number of success indices these must be drawn uniformly at random without

replacement from the rv/ru replicas. This is done by first drawing which replica

each success index is from (line 4). After that each of these is drawn from their

associated replica (line 6). Put together these give the success index, iw, that is

computed on line 7 and added to the set Iv, which is returned once all the success

indices have been generated.

Example 5. Suppose the input is Iu = {3,6,13},ru = 16,rv = 32,w = 0.4. Hence,

a = 0.4 · (3 · 32/16) = 2.4. As such, a is rounded up to 3 with probability 0.4

and rounded down to 2 with probability 1− 0.4. Suppose a is rounded down to

2. The multiset that is drawn from on line 4 is {0,0,0,1,1,1}. Suppose that the

multiset Ir = {1,1} is drawn. Suppose the first entry drawn from replica 1 is 13.

The resulting iw is then 16 (from ir · ru) plus 13 which gives 29. This is added to Iv.

Suppose the second entry drawn from replica 1 is 3. Note that the only possibilities

are 3 and 6 as 13 has already been drawn from this replica. The resulting iw is then

16 (from ir · ru) plus 3 which gives 19. This is added to Iv. The algorithm then

returns Iv = {19,29}.

115

4.6 Implementation Details
We will now discuss a number of implementation details.

Success Index Deduplication. A very important step in Algorithm 9 is the removal

of success indices that overlap. This corresponds to identifying worlds where the

node has been reached by the source via multiple paths. Deduplication prevents

double counting which if allowed to happen would clearly result in the reachability

estimate being incorrect. The reason deduplication is not as simple as set union is

that the success index set correspond to varying number of worlds and the dedupli-

cation must be done against their replicated representation without performing the

replication. A trivial solution is to replicate the sets till their sizes match however

that is clearly impractical. To get around this, notice that it is relatively straightfor-

ward to deduplicate via removal of success indices from a success index set that is

of a larger size (i.e. represents more worlds) against one of smaller size. This is

because we can take the modulo of the success index with respect to the number of

worlds represented by a smaller success index set and then check if the resulting

remainder is in the set or not. However, this does not work in the other direction.

Notice that attempting to remove a success index from a success index set that rep-

resents fewer worlds will cause the success index of the smaller success index set

to ‘fragment’. This occurs because the replication pattern of the smaller success

index set is disrupted by the removal of a success index that is replicated at lower

frequency (i.e., is from an success index set that represents more worlds). Note that

simply removing success indices from the larger success index set is not an option

as it is the unprocessed success index set that must have the success index removed

or it would incorrectly result in a success index being reprocessed.

We avoid this problem by processing the success index sets in order of increas-

ing number of represented possible worlds. This ensures that all the processed

success index sets will represent equal or smaller success index sets than the one

currently under consideration. This corresponds to the case where the deduplica-

tion can be performed efficiently. Processing the success index sets in this order is

supported by the heap H which allows us to identify and process the nodes that

have success index sets which represent the smallest number of worlds.

Example 6. Shown in Figure 4.4 is a toy graph that we will use to demonstrate the

116

Figure 4.4: Toy example for demonstrating deduplication.

importance of the order the success index sets are processed in. Suppose that we

want to find the probability of node 1 reaching node 3. We will now show what

goes wrong if if success index sets are not processed in order of those that represent

the smallest number of worlds.

Initially, in Algorithm 8 H contains only (1, node 1), as node 1 is the source

node. As such, Algorithm 9 will be called on node 1 with r = 1. From the initializa-

tion, I [(node 1)] contains one element, A, with A.indices= {0} and A.worlds= 1.

As such, I = {0}. Since node 1 is not the target node propagation is performed

across its two edges. Consider the edge from node 1 to node 2. For this example

suppose ℓ= 5. w is 0.01 which gives rnew = 512. Suppose invoking SampleIndices

returns the set {71,96,164,266}. This is used to create a success index array that

is added I [(node 2)]. (512, node 2) is then added to H . The edge from node 1

node 4 is processed similarly. w is 0.2 which gives rnew = 32. Suppose invoking

SampleIndices in this case returns the set {3,10,15,20,31}. This is used to create

a success index array that is added I [(node 4)]. (32, node 4) is then added to H .

Now consider what happens if node 2 is process before node 4. That is, Algo-

rithm 9 will be called on node 2 with r = 512. Our algorithm will not do this as

the smallest success index set size associated with node 4 is 32 which is smaller

than that of node 2, which is 512. I = {71,96,164,266} from the one element

in I [(node 2)]. Note that P is created using I and then added to P[(node 2)]

Consider the edge from node 2 to node 3. w is 0.5 which gives rnew = 1024. Sup-

pose invoking SampleIndices returns the set {164,266,778}. This is used to create

a success index array that is added I [(node 3)]. (1024, node 3) is then added

to H . As node 3 is the target rlimit is set to 1024. Next, suppose node 4 with

r = 32 is processed by Algorithm 9. I = {3,10,15,20,31} from the one element in

117

I [(node 2)]. Since the edge probability is 1, rnew = 32 and invoking SampleIndices

returns {3,10,15,20,31}. This is used to create a success index array that is added

I [(node 3)]. (32, node 2) is then added to H .

Now, when Algorithm 9 is called on node 2 with r = 32 a problem will be en-

countered. The issue is with line 6. Note that prior to line 6, I = {3,10,15,20,31}.
P[(node 2)] contains one element, P, with P.indices = {71,96,164,266} and

P.worlds = 12.Observe that 266 in P overlaps with 10 in I because 266 mod 32 =

10. The problem is that 266 can not be removed at this point. It has already been

propagated across the edge when node 2 was processed previously. Furthermore,

removing 10 from I is not correct. Doing so would represent 10 overlapping in all

copies but this is not the case only 266 overlaps which is only one case of over-

lap out of 16 copies. At this point the only way to proceed would be to replicate

the success index set 16 times and only removal the case that should be removed.

However, this obviously is very inefficient as there will then be a greatly increased

number of success indices that need to be propagated.

This problem does not occur if the nodes are processed in the correct order.

Processing the nodes in increasing order of number of worlds (i.e. r) ensures that

the situation of r being less than P.worlds for any processed success index set

cannot happen. As a result, this problematic case where deduplication cannot be

performed efficiently will not happen.

Eagerly Eliminating Target Success Indices. Once a success index has been

found at the target any further copies of this success index reaching the target

will be removed by deduplication. Continuing to propagate such success indices

through the network is unnecessary as removing them cannot change the result-

ing reachability probability estimate. Once processed the target’s success index set

can be checked whenever a node is expanded to prevent success indices that over-

lap with those already present at the target from being propagated. Specifically, the

indices in I are checked for overlap with the processed success index sets in P[t]

by adding the following line to Algorithm 9 after line 6:

Remove indices in I that overlap with those in the success index sets in P[t].

Limiting the number of Worlds. The trivial initialization of the global maximum

118

number of worlds, rlimit , to 264, shown Algorithm 8, simply uses the maximum that

can be represented when using 64-bit unsigned integers. While it is eventually

revised when a path is found to the target, having an unnecessarily high rlimit will

result in the generation of success indices that will ultimately be discarded when

the rlimit is reduced. To improve efficiency we would like a tighter initial value for

the rlimit . Since we will typically want to perform more than one repetition (i.e.

K > 1) we can reuse the rlimit from the first repetition as opposed to completely

restarting from scratch. However, this does not help with the first repetition. For

this purpose we use the probability of the most probable path from the source to the

target. Specifically, let pmax path be the probability of the most probable path from

the source to the target being present, which is simply the product of the proba-

bilities of the edges needed to form it. We can then use, rlimit = 2⌈log2(ℓ/pmax path)⌉.

While still relatively loose in general it is still dramatically better than the technical

limit. Furthermore, the path with maximum probability can be efficiently found by

applying Dijkstra’s algorithm.

In addition to the global maximum number of worlds we would like more fine-

grained control to keep the number of success indices at intermediate nodes, not

just at the target node, at the desired number of success indices. Notice that the

number of worlds used when processing each edge is aggressively increased so to

ensure that even if there is only one path to a node it will attain the desired number

of success indices. However, the side effect of this is that if a node is reached via

many alternative paths it may end up with far more than the requested number of

success indices. If we knew the probability with which the source reached each

intermediate node then we could be more conservative in increasing the number of

possible worlds considered. Specifically, if we knew the reachability probability

for each intermediate node v, R(s,v), then we could limit the increase of rnew to

at most 2⌈log2(ℓ/R(s,v))⌉. Doing so accounts for the node being reached by multiple

paths and as such it is not necessary to have ℓ success indices from each path. Of

course, we do not know R(s,v). However, even a loose underestimate can be useful

in preventing unnecessary work on a low probability edge if the node has already

been reached by a higher probability path. The values p[u] that are computed on the

fly by using their processed success indices can serve this purpose. The calculation

119

of rnew can then be revised to be the following,

rnew = min(rlimit ,max(r,min(2⌈log2(ℓ/p[v])⌉,2⌈log2(ℓ·r/(w|I|))⌉))); (4.18)

Note that p[v] will be an underestimate until all of the success index sets across

all nodes complete processing, as it progressively incorporates alternative paths.

Despite this, it can be used to help prevent the number of worlds used from being

excessively increased.

Recall that the key properties that we must ensure for edge draw recycling to be

unbiased are the alignment property and the consistency property. The alignment

property continues to be satisfied as the number of worlds, rnew, continues to be

a power of 2 because ℓ/p[v] is rounded up to the nearest larger power of 2 by

the calculation, 2⌈log2(ℓ/p[v])⌉. The consistency property satisfied because rnew is at

least r. The only way the consistency property can be violated is if the number of

worlds, rnew, is less than the number of worlds used at previous edges that were

crossed to reach this node. Specifically, if the number of worlds used is less than

than the number of worlds used by previous edges that were passed to reach this

node then the smaller number of worlds used at this node masks the large number

of worlds used previously. This causes a problem because then it would appear

that these previous edges used fewer worlds than they actually did. This breaks the

consistency property. However, because nodes are processed in order of increasing

number of worlds and r is maximum thus far this violation cannot happen.

4.7 Experiments
The aim of our experiments is to assess the effectiveness of our proposed algo-

rithms against a variety of approaches and state-of-the-art algorithms for reach-

ability probability estimation. We perform tests on datasets and associated edge

probabilities that have been previously used to benchmark the performance of ex-

isting algorithms for this problem [54].

We expect our algorithms to attain more consistent relative error compared to

existing approaches. They are designed with the goal of doing so without incurring

additional running time costs. We will empirically assess whether this is the case.

To do so we will in Section 4.7.2 compare the algorithms on their estimates’ aver-

120

Dataset type nodes edges
LastFM directed 6,899 23,696
Nethept directed 15,233 62,774
DBLP undirected 1,291,298 7,123,632

BioMine mixed 1,508,587 32,761,889
LiveJournal directed 4,847,571 68,993,773

Table 4.1: Datasets

age relative error with respect to the amount of running time they take. While this

provides a coarse-grained assessment of the algorithms, taking the average relative

error can mask an algorithm’s poor performance on a small number of source target

pairs. To address this we will also assess the distribution of the relative errors over

source target pairs in Section 4.7.3. This will also enable us to empirically evaluate

whether our algorithms achieve more consistent relative error over all source target

pairs. Finally, in Section 4.7.4 we will assess the relationship between the rela-

tive error of the estimates produced and the value of the probability of the source

reaching the target that is to be estimated.

4.7.1 Experimental Configuration

Datasets. We perform experiments on five real network datasets (see Table 4.1).

As the algorithms considered operate on directed graphs, each undirected edge in

the datasets is converted into two directed edges. The datasets for Nethept, LastFM

and DBLP were obtained from the authors of [54]. The BioMine dataset (specifi-

cally biomine 3 oct 2018) was obtained from https://biomine.ijs.si/downloads/ on

2021-09-29. The edge probabilities for Nethept, LastFM and DBLP datasets are as

set in [54]. They considered two different edge probability sets for DBLP. Here we

use the setting referred to as DBLP 0.05. The BioMine dataset already has edge

probabilities associated with each edge which are what we use. The dataset Live-

Journal, obtained from [60], is considered with two different settings: one-over

in-degree, which is often considered in the literature on influence maximization,

and drawn uniformly at random form the range 0 to 0.01. These networks and

associated edge weights provide test cases that cover a wide range of possible situ-

ations that correspond to whether there are s-t pairs that have high, medium or low

121

https://biomine.ijs.si/downloads/

probability of the source reaching the target. Specifically, LastFM and BioMine

have high probabilities, NetHept and DBLP have a range of medium probabilities

and the two LiveJournal case have low probabilities. This can be seen from the

distribution of s-t pair reach probabilities reported in Figure 4.12.

Algorithms. Our proposed algorithms will be referred to as WIR-G and WIR-E.

WIR-G uses geometric sampling while WIR-E uses expectation matching sam-

pling. The recursive sampling algorithms (RHH and RHT) proposed in [48] will

be compared using their implementation that was made publicly available by the

authors. As noted in Section 4.2 their code is slightly different than described in

the pseudo-code of [48] where the actual code corrects for a source of error that is

present in the pseudo-code. Ke et al. [54] also reimplemented RHH for comparison

in their survey. We will refer to their implementation of RHH as RHHs. We also

use the implementations of [54] for the following approaches referred to as RSS,

MC and LP. Recursive stratified sampling, RSS, [62] is a generalization of RHH

were multiple edges are split on simultaneously. The hyper-parameter controlling

the number of edges split on is set to 4 as done by the code obtained from [54]. LP

[65] is the approach that makes use of geometric sampling to make edge sampling

more efficient. The implementation by Ke et al. [54] that we use corrects for an er-

ror present in the pseudo-code of [65]. MC refers to Monte Carlo simulation which

makes use of breadth-first search that only draws edges as needed to determine if

the target is reachable from the source in sampled possible worlds. ARS, which

refers to annealed rejection sampling, is an additional algorithm that we have cre-

ated in an attempt to adapt techniques from the literature on rare event estimation,

for comparison purposes.

Despite it being a well established field, we are not aware of any existing works

that have applied techniques developed for rare event estimation to reachability

estimation. What we consider here attempts to adapt the principle behind annealed

importance sampling [69] to reachability estimation. At a high level, the key idea

is to decompose a rare event that is difficult to estimate into a conjunction of more

probable events, and doing so makes them individually easier to estimate. The way

we map this to reachability estimation is that each edge in the graph is decomposed

into sub-edges such that the product of the probabilities of these sub-edges is equal

to the original edge. These sub-edges are then separated out into their own graph

122

copies. Observe for a path to be formed in the original graph it must be present

in all of the graph copies. As such the reachability problem is decomposed into

identifying if a common path is present in all the graph copies. This decomposition

is the annealing step after which rejection sampling, which is essentially just MC

simulation, is applied to estimate the probability that a common path connects the

the source to the target in all the copies. Note that this approach is specific to the

case that reachability is a rare event and is not expected to be efficient otherwise.

Evaluation metric. Assessing the error of the estimates produced by reachability

estimation algorithms is challenging as we are fundamentally unable to compute

the true reachability probability on large graphs due to the known intractability:

s-t reachability is #P-hard [86]. Considering only tiny graphs on which the exact

reachability calculation can be performed is not an option as such graphs would be

insufficient to stress test the effectiveness of the reachability estimation algorithms.

One approach to evaluation that has been used in [54] is to focus on the vari-

ance of the estimators. All of the estimation algorithms that we consider are un-

biased and as such their error is entirely due to their variance. Unfortunately we

have found that unless very many repetitions are performed variance is an unreli-

able quality metric. To see why, consider MC simulation using far too few possible

world samples, attempting to estimate a very small reachability probability. Almost

every MC simulation run will come back with a reachability estimate of zero. Con-

sequently, unless very many repetitions are performed the variance will be found

to be zero (as all repetitions come back with an estimate of 0)! A variance of zero

would suggest the estimates are very accurate, however their relative error to the

true reachability probability is 1, which is the relative error of estimating 0 for any

non-zero probability, i.e., they are in fact extremely poor estimates. Because of this

limitation and the fact that performing sufficiently many repetitions is impractical

due to the amount of time such experiments would take, we instead return to at-

tempting to use relative error as the evaluation metric. However, to do so we must

have a pseudo ground truth of the reachability probability, which should be more

accurate than any of the estimators that we are attempting to evaluate.

To produce such a pseudo ground truth we will combine together the reach-

ability estimates produced by all of the algorithms evaluated. This will be done

using a weighted average of the best estimates (i.e. highest number of samples that

123

completed) from all algorithms. To do so we will run each algorithm considered

multiple times (100 times on the smaller datasets, LastFM and NetHept, where this

is practical and 5 times on the larger datasets, DBLP and BioMine). Initially all

algorithms’ estimates are given equal weight to compute the average. Following

that, on each iteration each algorithm’s estimates are weighted according to the

algorithm’s estimates’ average squared error to the previously computed average.

This is continued until convergence, which we measure by the average changing

by < 0.1%. This is done separately for each source-target pair as some algorithms

may produce estimates that are accurate for some source-target pairs but not for

others. This weighting of the estimates to compute the average is in accordance

with maximum-ratio-combining. Maximum-ratio combining is known to be the

optimum combiner for independent additive white Gaussian noise [51]. All of the

algorithms considered produce unbiased estimates. As such, their errors are en-

tirely due to their variance which is comparable to white Gaussian noise. It follows

that they may be combined to produce an estimate that is more accurate than any

of them individually. This is what we will use for our pseudo ground truth with

respect to which we compute the relative error.

To assess the performance of the algorithms over a variety of sources and tar-

gets we will follow the approach taken in [54]. Specifically, for each dataset, we

will randomly select 100 source-target (s-t) pairs that have a shortest path of 2 be-

tween them for the smaller datasets (LastFM and NetHept), 4 for the larger datasets

(DBLP and BioMine) and 2 for the dataset LiveJournal. The choice of a shortest

path of 2 on LastFM and NetHept is consistent with what was used in [54]. We

used 4 on DBLP and BioMine because the combination of their higher connectiv-

ity and higher probability edge weights results in high s-t reach probabilities even

at a longer distance. This was not done on LiveJournal because the lower edge

probabilities made is such that even with a shortest distance of 2 the s-t reach prob-

abilities were found to already be very low. The resulting s-t reach probabilities

are reported in Figure 4.12.

Selecting s-t pairs in this manner has the effect of ensuring no abnormally

easy s-t pairs are present: purely randomly selected s-t pair nodes may happen

to be neighbors. This cannot happen when the shortest path between the source

and the target is required to be a value greater than one. It also makes the s-t

124

pairs considered to be in a sense similar in difficulty. Intuitively one would expect

reachability estimation to become harder the further apart the source and target

are and the reachability probability will also tend to decrease. Similar difficulty s-t

pairs should make computing the average relative error over them not as misleading

as it would otherwise be. Despite this, we find the distributions of relative errors to

be quite wide when we drill down to the relative error distributions over s-t pairs in

Section 4.7.3. In general, having s-t pairs that are of similar difficulty should favor

the existing algorithms that are adversely affected when the reachability probability

varies dramatically between s-t pairs of interest.

Test Environment. All experiments were run on an Intel(R) Xeon(R) CPU X5670

@ 2.93GHz server with 96GB of RAM running openSUSE Leap 15.3. All al-

gorithms are implemented in C++ and compiled using gcc version 7.5.0 (SUSE

Linux) at optimization level -O3.

4.7.2 Average Performance

Before we compare our algorithms against the competing algorithms we will first

compare our algorithms against themselves with different settings of the hyper-

parameter, ℓ, which controls the desired number of success indices. Following

that we will compare all of the algorithms considered on the two smaller datasets,

LastFM and NetHept, with respect to how their average relative error depends on

the amount of running time they use. After that will consider only the more effec-

tive algorithms on the larger datasets, DBLP and BioMine.

10-2 100

average running time (s)

10-3

10-2

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

0 50 100 150
15

20

25

30

35

40

45

50

M
em

or
y

(M
B

)

WIR-G
WIR-E

Figure 4.5: Impact of varying the desired number of success indices hyper-
parameter, ℓ, on the NetHept dataset.

125

Hyper Parameter Configuration. Shown in Figure 4.5 is the performance of our

two algorithms, WIR-G and WIR-E, as evaluated on the 100 s-t pairs considered on

the NetHept dataset as the number of success indices hyper-parameter, ℓ, is varied.

For each setting of ℓ the number of repetitions, K, is varied. It can be observed

that WIR-G does not appear to significantly benefit from increasing the number of

success indices. Increasing the number repetitions, K, of a lower number of success

indices is nearly as effective in terms of the reduction in the relative error per unit

running time as increasing the number of success indices. In contrast, WIR-E at the

highest value of ℓ achieves the relative error attained by WIR-E at the lowest value

of ℓ nearly an order of magnitude of running time faster. However, increasing ℓ

comes at the cost of substantially increased memory usage (see Figure 4.5 (right)).

While the absolute amount of memory involved in this experiment is tiny it is

the relative amount of memory needed that is significant. Specifically, it may be

projected that ℓ= 160 will require roughly 3× the memory of ℓ= 5. For this reason

in the following experiments we will use a conservative value of ℓ= 10 for both of

our algorithms.

10-2 100

average running time (s)

10-3

10-2

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

10-2 10-1 100

average running time (s)

10-3

10-2

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

Figure 4.6: Average relative error over all s-t pairs with respect to running
time on LastFM (left) and NetHept (right).

Performance on LastFM and NetHept. Here we compare all of of the algorithms

on the smaller datasets, LastFM and NetHept, in terms of their average relative er-

ror over all s-t pairs with respect to the running time taken. Running time is used

for this comparison as the computational cost of one ‘sample’ differs between al-

gorithms making the number of samples used not useful for this comparison. The

126

number of samples/repetitions used is abstracted out by running each algorithm

for a range of different numbers of samples/repetitions, K, and reporting the av-

erage running time taken and the associated average relative error attained. These

results are reported in Figure 4.6 for LastFM (left) and NetHept (right). It can

be observed that WIR-G performs at least as well as the best competing approach

on both datasets while WIR-E attains roughly an order of magnitude less average

relative error. Recall that the difference between WIR-G and WIR-E is how they

construct the initial samples that are then recycled. WIR-G uses geometric sam-

pling while WIR-E performs the sampling using a technique that we refer to as

expectation matching sampling. It can be clearly seen that WIR-E attains consis-

tently lower relative error than WIR-G. This is expected as WIR-E is intended to

remove an unnecessary source of variance by setting number of success indices to

their expectation and only randomizing on which worlds these success occur on.

The average relative error of all approaches asymptotically reduces as 1/
√

t

where t is the running time taken. The is inline with the known error reduction

of averaging independent samples/repetitions. For all algorithms being allowed to

run longer translates into being able to perform more samples/repetitions. Where

the algorithms differ is the constant offset which captures how efficiently each

algorithm reduces the relative error. Observe that on both LastFM and NetHept

the best competing approaches require nearly 100× the running time to match the

relative error attained by WIR-E.

Reported in Table 4.2 is the maximum memory used by the compared ap-

proaches. We do not report the memory usage with respect to the number of sam-

ples/repetitions used as this does not increase the memory required for many of the

algorithms considered. This is obviously the case for our algorithms (WIR-G and

WIR-E) as well as all of the other approaches that also construct their samples/rep-

etitions independently (LP, MC and ARS). The recursive sampling algorithms can

use more memory at higher numbers of samples but we observe that this is small

for the number of samples considered here compared to the consistent amount of

memory required regardless of the number of samples. It can be observed that

LP and MC require the least memory. This shouldn’t be surprising since they use

no additional data other than the probabilistic graph and the bookkeeping needed

to perform a breadth-first search traversal. Our algorithms in general use more

127

memory however our choice of the hyper parameter ℓ has kept the memory us-

age comparable to that of the other algorithms. Recall that it has been observed

when assessing the effect of ℓ that WIR-E has the option of substantially reducing

the running time needed to attain a desired relative error at the cost of increased

memory usage.

Dataset WIR-G WIR-E RHH RHT LP ARS MC RHHs RSS
LastFM 9.53 9.38 9.09 9.15 9.04 10.1 7.92 10.6 10.5
Nethept 19.1 18.7 14.1 14.1 13.9 15.2 13.9 19.8 19.8

Table 4.2: Maximum memory usage in MB

Returning to Figure 4.6, of the competing approaches RHH, RHT and LP are

found to be the most effective. RHHs (the alternative implementation of RHH by

[54]) and RSS are found to perform the best on the smallest dataset, LastFM, but

then perform worse on the larger dataset of NetHept. We suspect that this may

be caused by the different implementations using slightly different techniques to

choose which edges to split on and the effectiveness of which may vary between

datasets. The margin by which MC is outperformed by the other approaches grows

substantially when considering NetHept compared to the smallest dataset LastFM.

ARS performs very poorly on LastFM, even being outperformed by MC, but be-

comes more competitive on NetHept. This is not surprising as ARS is designed for

rare event estimation which can be seen to be largely unnecessary on the smallest

dataset and the introduced overhead is detrimental. In line with these observations,

we focus our experiments on the algorithms RHH, RHT, LP and ARS in addition

to our own (WIR-G and WIR-E) which are expected to be the most competitive on

the larger datasets, DBLP and BioMine, which we consider next.

Performance on DBLP, BioMine and LiveJournal. Shown in Figure 4.7 is the

performance as measured by average relative error compared to average running

time spent on the larger datasets, DBLP and BioMine. On these datasets for WIR-

G and WIR-E we first vary ℓ from 1 to 10 with 1 repetition before increasing

the number of repetitions. On both datasets the performance of WIR-G becomes

similar to LP. On DBLP WIR-E remains appreciably better than the best competing

approach. However, on BioMine ARS performs similarly to WIR-E and RHH and

RHT are slightly better. The reason that our algorithms WIR-E and WIR-G do not

128

100 101 102

average running time (s)

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

100 101 102

average running time (s)

10-2

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

Figure 4.7: Average relative error over all s-t pairs with respect to running
time on DBLP (left) and BioMine (right).

have result at lower amounts of running time is that performing one repetition with

10 success indices already takes the smallest time reported. As such, if one wants

an estimate with a low relative error it can be seen that WIR-E is the best of the

algorithms considered on DBLP. On BioMine at low relative error RHH and RHT

perform the best while at higher relative error ARS is most effective. While RHH

and RHT perform well on BioMine they perform the worst on DBLP. It would

appear their effectiveness is highly dataset dependent. ARS, which performed very

poorly on the smaller datasets, becomes one of the strongest contenders on the

larger datasets, performing similar to RHH, RHT and WIR-E on BioMine and

only worse than WIR-E on DBLP.

We conjecture that the reason that our algorithms are less effective on BioMine

than the other datasets considered is because it is a considerably more dense graph,

especially after accounting for many edges being undirected. Notice that BioMine

contains edges that are on average quite high probability (average edge probability

in BioMine is 0.14). The reason this decreases the efficiency of our algorithms

is that many nodes end up with more success indices than desired, despite our at-

tempts to compensate for this in our algorithm’s design. As shown in Table 4.3

when our algorithms are unable to keep the number of success indices at the de-

sired number, the memory usage is also increased. In general, we expect that our

algorithms will perform well on any uncertain graph whose largest eigenvalue is

close to 1 and that the efficiency may degrade the more that this is exceeded. The

129

largest eigenvalues for these datasets are: LastFM 1.0, NetHept 1.2, DBLP 51, and

BioMine 260. On LiveJournal the consider edge probabilities result in relatively

low eigenvalues compared to DBLM and BioMine. For edge weights chosen uni-

formly at random in the (0,0.01) range, the largest eigenvalue is 1.761 and for

one-over in-degree the largest eigenvalue is 1. For a graph to have a large eigen-

value it must be highly connected with high probability. A largest eigenvalue near

1 is a sufficient condition for the number of success indices propagated through

the graph by our algorithms to not greatly exceed the desired number of success

indices on many nodes.

On LiveJournal with edge weights drawn uniformly from (0,0.01), the reach-

ability probabilities are found to be very low despite considering s-t pairs that have

a minimum distance of 2. On this dataset we we do not consider RHT. Previous

results show that RHH and RHT perform almost identically. Only our approaches

WIR-G / WIR-E and LP are found to perform well, as can be seen in Figure 4.8.

For the uniform random edge weights case RHH is found to take nearly the maxi-

mum about of time given even with the number of samples set to 1. Furthermore,

the time taken continues to increase substantially when the number samples is set

to 2. As such, it is not the case that a pre-processing step is dominating the running

time. Unlike our approach where one repetition already can provide a reasonable

reachability estimate RHH generally needs a substantial number of samples for its

estimate to become accurate. Consequently, it is not surprising that its relative er-

ror is very high. While ARS performed well on DBLP and BioMine it does not

on LiveJournal. While ARS is supposed to handle cases where the probability of

reaching the target is small this comes at the cost of greatly increased time need to

construct samples. Furthermore, ARS was found to frequently fail to construct a

valid samples resulting in the work spent on these to be wasted. It may be possi-

ble for ARS to perform better if the number of stages it used were to be tuned to

the reachability probability, specifically, increasing the number of stages when the

reachability probability is small. However, as ARS isn’t our focus in this work and

since one doesn’t know the reachability probability beforehand, we do not explore

this further.

For the one-over in-degree edge weights case we allow all algorithms to run

substantially longer. We are not able to do this for all of the datasets and edge

130

weight configurations as the experiments for just this case took approximately 1

week to run. Here it can be seen that RHH begins to reduce its relative error as it is

given more running time but it remains far less efficient that WIR-G, WIR-E and

LP.

101 102

average running time (s)

10-2

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

102 103

average running time (s)

10-2

10-1

100

av
er

ag
e

re
la

tiv
e

er
ro

r

Figure 4.8: Average relative error over all s-t pairs with respect to running
time on LiveJournal with uniform 0 to 0.01 edge weights (left) and one-
over in-degree edge weights (right).

Dataset WIR-G WIR-E RHH RHT LP ARS
DBLP 9.89 8.37 1.28 1.28 1.14 1.39
BioMine 11.4 10.3 8.57 8.57 8.53 9.39
LiveJournal (Uniform) 10.1 10.1 11.2 - 10.1 10.1
LiveJournal (1/in-degree) 27.7 28.4 11.2 - 10.1 11.0

Table 4.3: Maximum memory usage in GB

4.7.3 Relative Error Distribution

In this section we will investigate the distribution of relative errors over the s-t pairs

that results from the various algorithms. Reported in Figure 4.9 and Figure 4.10 is

cumulative distribution of the relative error on the s-t pairs on the smaller datasets,

LastFM (left) and NetHept (right) and larger datasets, DBLP (left) and BioMine

(right), respectively. The reported relative errors are for the lowest relative error run

attained by each algorithm when allowed a common amount of time to complete

on all s-t pairs. The number of samples/repetitions used by each algorithm were

131

10-6 10-4 10-2 100

relative error

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e

10-6 10-4 10-2 100

relative error

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e

Figure 4.9: Relative error cumulative distribution over s-t pairs on LastFM
(left) and NetHept (right).

10-3 10-2 10-1 100

relative error

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e

10-4 10-3 10-2 10-1 100

relative error

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e

Figure 4.10: Relative error cumulative distribution over s-t pairs on DBLP
(left) and BioMine (right).

increased as powers of 2. As such the actual time used is similar but doesn’t match

exactly. To account for this, we report the actual average time spent per s-t pair by

each algorithm in Table 4.4.

From Figure 4.9 it can be seen that both of our algorithms (WIR-G and WIR-E)

have a much narrow spread of relative errors. In particular, the maximum relative

error of any s-t pair is less than 10−2 on LastFM and close to this on NetHept. In

comparison the maximum relative error of the best competing approach is nearly

an order of magnitude higher. Even on the BioMine dataset, which is the most chal-

lenging for our algorithms, it can be seen in Figure 4.10 (right) that our algorithm

132

10-2 100 102

relative error

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e

10-4 10-2 100

relative error

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e

Figure 4.11: Relative error cumulative distribution over s-t pairs on LiveJour-
nal Uniform(0,0.01) edge weights (left) and 1/in-degree edge weights
(right).

WIR-E has a lower maximum (i.e., worst case) error than RHH and RHT, as seen

by the cumulative distribution topping out sooner. This is despite the fact that RHH

and RHT have lower average relative error, as found in Figure 4.7 (right). Only

ARS achieves similar maximum relative error as WIR-E. Producing estimates with

more consistent relative error was the main goal that we set out to achieve when

designing our algorithms. These results provide empirical evidence that we have

succeeded in doing so.

In contrast to our approach, the other compared approaches have much wider

relative error distributions. While for some s-t pairs they can provide very accu-

rate estimates for others the relative error remains high. This is expected as it is

known that the number of samples needed by MC simulation based approaches

in order to attain a desired relative error depends on the reachability probability

being estimated. The basic MC simulation approach (MC) may seem to have a

narrow relative error distribution but this is simply an artifact of all of the errors

being high. This is a consequence of it not being able to perform enough samples

to effectively reduce the relative error in the given running time. Recall that LP is

equivalent to MC except that it is more efficient. This enables it to generate more

possible world samples in the same amount of time. From the results produced

by LP it becomes apparent that it is much more effective for some s-t pairs than

others. Note that if MC were given sufficient time to perform as many samples as

133

LP is able to perform it would exhibit the exact same behaviour as LP; being much

more effective for some s-t pairs than others. The recursive sampling algorithms,

RHH, RHT, RHHs and RSS are observed to have this effect even further exagger-

ated. Their primary improvement over LP is to further reduce the relative error of

s-t pairs that already had low relative error. We suspect that is a consequence of the

recursive sampling’s analytical component being able to exactly account for some

of the paths which makes it very accurate on easier s-t pairs but provides limited

benefit on those that are harder (i.e., involve many paths or have paths that have

low probability).

Dataset WIR-G WIR-E RHH RHT LP ARS MC RHHs RSS
LastFM 1.56 1.55 2.70 2.99 2.76 2.46 2.99 1.80 1.01
Nethept 2.50 2.42 2.53 2.53 2.79 4.45 2.91 4.41 2.83
DBLP 153 156 189 207 157 140 - - -
BioMine 155 143 101 150 204 182 - - -
LiveJournal
(Uniform)

35.4 41.7 57.2 - 67.2 49.8 - - -

LiveJournal
(1/in-degree)

875.6 947.7 813.4 - 519.5 1047 - - -

Table 4.4: Average running time in seconds per s-t pair for each algorithm’s
relative errors reported in Figure 4.6. The selection of the number of
samples/repetitions used ensures the running times of all algorithms are
within one doubling of the time taken by WIR-G/WIR-E.

4.7.4 Impact of s-t Reach Probability on Relative Error

We will now assess the impact of the probability of the source reaching the target

on the relative error of the estimates of this probability. Shown in Figure 4.12 is the

distribution of the probabilities of the source reaching the target for the 100 s-t pairs

considered on each dataset. It can be seen that distribution varies substantially be-

tween datasets. Some datasets contain a wide range of s-t reach probabilities while

others have primarily high reachability probabilities (i.e. larger than 0.1). As dis-

cussed previously, we expect existing approaches to struggle to produce estimates

with low relative error when the probability to be estimated is small.

Shown in Figures 4.13, 4.14 and 4.15 is the impact of the probability of the

source reaching the target on the relative error of the estimates produced by the

134

[10
-7 , 10

-6)

[10
-6 , 10

-5)

[10
-5 , 10

-4)

[10
-4 , 10

-3)

[10
-3 , 10

-2)

[10
-2 , 10

-1)

[10
-1 , 10

0)

s-t reach probability

0

20

40

60
C

ou
nt

(a) lastFM

[10
-7 , 10

-6)

[10
-6 , 10

-5)

[10
-5 , 10

-4)

[10
-4 , 10

-3)

[10
-3 , 10

-2)

[10
-2 , 10

-1)

[10
-1 , 10

0)

s-t reach probability

0

10

20

30

40

C
ou

nt

(b) NetHept

[10
-7 , 10

-6)

[10
-6 , 10

-5)

[10
-5 , 10

-4)

[10
-4 , 10

-3)

[10
-3 , 10

-2)

[10
-2 , 10

-1)

[10
-1 , 10

0)

s-t reach probability

0

10

20

30

40

50

C
ou

nt

(c) DBLP

[10
-7 , 10

-6)

[10
-6 , 10

-5)

[10
-5 , 10

-4)

[10
-4 , 10

-3)

[10
-3 , 10

-2)

[10
-2 , 10

-1)

[10
-1 , 10

0)

s-t reach probability

0

50

100

C
ou

nt

(d) BioMine

[10
-7 , 10

-6)

[10
-6 , 10

-5)

[10
-5 , 10

-4)

[10
-4 , 10

-3)

[10
-3 , 10

-2)

[10
-2 , 10

-1)

[10
-1 , 10

0)

s-t reach probability

0

20

40

60

80

C
ou

nt

(e) LiveJournal
Uniform(0,0.01)

[10
-7 , 10

-6)

[10
-6 , 10

-5)

[10
-5 , 10

-4)

[10
-4 , 10

-3)

[10
-3 , 10

-2)

[10
-2 , 10

-1)

[10
-1 , 10

0)

s-t reach probability

0

10

20

30

40

C
ou

nt

(f) LiveJournal
1/in-degree

Figure 4.12: s-t reach probability distribution of the s-t pairs considered on
each dataset.

algorithms that have been found to be most effective in our previous experiments:

WIR-G, WIR-E, RHH, LP, and ARS. RHT is not included due to its performance

being nearly identical to that of RHH. To reduce clutter on the plots, instead of

reporting a scatter plot of all of the results of the s-t pairs we have grouped the

s-t pairs into groups of 10 according to their s-t reach probability and then report

the median of the group. In addition, a linear fit in log-space is reported to make

the overall trend for each algorithm’s data points easier to discern. Note that in

log-space a linear fit corresponds to the equation, y(x) = βxα , where the slope is α

and the offset is β . The running time of all algorithms is set to be be similar in the

same manner as described in Section 4.7.3.

The main takeaway from these results is that our algorithms, WIR-G and WIR-

E, exhibit a much flatter trend than the existing algorithms. A flat line indicates

α = 0 which corresponds to the algorithm’s relative error having no dependence

on s-t reach probability. We consider this to be the ideal case as this means one

can attain consistently accurate estimates regardless of the value of the probability

being estimated. Notice that a wide range of s-t reach probabilities is needed to

establish the relationship between the s-t reach probability and the relative error.

135

10-2 10-1 100

s-t reach probability

10-4

10-3

10-2

10-1

re
la

tiv
e

er
ro

r

10-6 10-4 10-2

s-t reach probability

10-4

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

Figure 4.13: Relative error vs. s-t reach probability on LastFM (left) and
NetHept (right).

10-2 10-1 100

s-t reach probability

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

10-1 100

s-t reach probability

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

Figure 4.14: Relative error vs. s-t reach probability on DBLP (left) and
BioMine (right).

As a result, those datasets where the s-t reach probabilities vary over a wide range

(i.e., NetHept and LiveJournal) are more reliable indicators of this relationship than

datasets (e.g., BioMine) where most s-t reach probabilities are concentrated in the

high range. WIR-G and WIR-E still exhibiting a slight slope (e.g. in Figure 4.15)

may be attributed to the dependence of the relative error on the path length. If

the s-t reach probability is low it is more likely the case that the short paths from

the source to the target were low probability making longer paths comparatively

more important. The presence of a slight positive slope in in Figure 4.13 (right)

is most likely due to random variation and we expect it to disappear if a larger

136

10-6 10-5 10-4

s-t reach probability

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

10-6 10-4 10-2

s-t reach probability

10-3

10-2

10-1

100

re
la

tiv
e

er
ro

r

Figure 4.15: Relative error vs. s-t reach probability on LiveJournal Uni-
form(0,0.01) edge weights (left) and 1/in-degree edge weights (right).

number of s-t pairs were considered. The existing algorithms of LP and RHH are

expected to exhibit a slope of approximately α = −0.5. This follows from the

known dependence of relative error of the estimate produced by MC simulation

on the probability being estimated. LP and RHH having a non-negligible slope is

apparent in all of the plots. An exception is Figure 4.15 (left) where RHH exhibits

a constant relative error of 1. This is caused by all of the s-t reach probabilities

being very small resulting in RHH always estimating the probability of the source

reaching the target to be 0. Doing so will always incur a relative error of 1 when the

true probability is non-zero. ARS in some cases exhibits less dependence on the s-t

reach probability than RHH and LP as seen in Figure 4.13 (right) and Figure 4.14.

However, ARS was unable to handle the very small probabilities present in the case

of LiveJournal with edge weights drawn uniformly at random from [0,0.01] as seen

by the relative error being consistently 1 (see Figure 4.15 (left)).

As expected, our algorithms, WIR-G and WIR-E, perform best compared to the

existing algorithms when the probability of the source reaching the target is low. As

such, if one were to know beforehand that the s-t reach probability to be estimated

is small, then our algorithms are expected to be very useful. Conversely, if one is

only interested in s-t reach probability that are large then existing algorithms are

likely sufficient, as they only begin to suffer when the probability to be estimated is

small. While the existing algorithm may be more efficient when the probability to

be estimated is large, in the absence of knowledge of the probability to be estimated

137

being large or small, our approach has the advantage of performing much more

consistently than existing approaches.

4.8 Discussion and Conclusions
In this chapter, we have presented a technique that we refer to as edge draw recy-

cling, which has enabled us to develop algorithms that achieve consistent relative

error regardless of the reachability probability being estimated. This is in contrast

with the algorithms from existing works, which have their relative error become

much worse when the reachability probability to be estimated is small. From our

inspection of the distribution of relative errors we find that existing approaches

primarily only reduce the relative error of the ‘easier’ source-target (s-t) pairs (i.e.

those that Monte Carlo (MC) simulation is already effective on). Our algorithms

overcome this limitation by greatly reducing the relative error of those s-t pairs that

are estimated with the least accuracy by MC simulation (as well as by the existing

approaches built on MC simulation). In addition to having more consistent relative

error our algorithms are found empirically to be substantially more efficient than

competing algorithms in terms of the average relative error of the estimates pro-

duced when spending the same amount of running time on many of the datasets

considered.

We have proven that the estimates produced when using edge draw recycling

remain unbiased. As such the only source of error is the variance of the estimator.

While we have analyzed the variance that results from edge draw recycling when

estimating the reachability probability of a path and presented intuitions as to how

this may be extended to the general case, a formal analysis of variance for the

general case where there may be multiple paths between a s-t pair is currently open.

Furthermore, the technique of edge draw recycling may have application beyond

the context considered here, as it is not specific to the problem of reachability

estimation.

In our experiments, we have found that the version of our algorithm that uses

expectation matching sampling can have its relative error reduction rate further

improved by increasing the number of success indices used. However, doing so

comes at the cost of increasing the memory used. Our analysis of the variance of

138

edge draw recycling on a path suggests that the number of success indices should

be at least as high as the length of the paths one needs to estimate the probability

of. As such, on a graph a sensible heuristic may be to set the number of success

indices according to the diameter of the graph. It is possible that with more careful

pruning of unneeded success indices the memory usage of this algorithm could be

reduced. This would enable using a larger number of success indices than the rather

conservative number we have used in the majority of our experiments.

139

Chapter 5

Summary and Future Research

5.1 Summary
In this dissertation we have identified and developed new approaches to address

key computational inefficiencies (in terms of both running time and memory) that

prevent existing approaches from attaining high quality solutions for the important

problems of coverage maximization, known as Influence Maximization (IM), and

reachability estimation, also known as reliability, on uncertain graphs.

In Chapter 2 we developed a general approach for efficiently performing edge

sampling on uncertain graphs by efficiently testing groups of edges together to de-

termine if any edge in the group succeeds. We assemble these group tests into

a hierarchy to efficiently identify the edges that succeed. Our approach has time

complexity that scales linearly with the number of edges that succeed but only log-

arithmically with the number of edges that fail. This is in contrast with the standard

approach of testing each edge independently which results in a time complexity that

scales linearly with the number of edges that fail. We have applied our approach

to accelerate the generation of RIS samples used by state-of-the-art approaches to

solve the IM problem. Our experiments show that our approach achieves nearly

an order of magnitude speedup in RIS sample generation on the larger networks

considered.

In Chapter 3 we presented a novel algorithm based on optimization of a pair of

fractional objectives that enables us to process the RIS samples, used for solving

140

the problem of influence maximization, as a stream. This enabled us to completely

avoid the need to store them, which is the reason the existing approaches require a

prohibitive amount of memory. We established both a lower bound on the coverage

of the set of nodes our algorithm returns as well as an instance specific upper bound

on the coverage of the optimal solution. This upper bound enables us to provide

instance specific guarantees on the quality of the returned solution compared to

the optimal solution. In our experiments performed on a variety of real data sets

we show that not only does our approach completely eliminate the large memory

cost associated with storing the large RIS collection but it does so in a manner that

its running time and attained coverage remains competitive with existing state-of-

the-art algorithms. In addition, the instance specific guarantees that we are able to

provide are found to be superior to that which the best existing approach achieves.

In Chapter 4 we created a novel algorithm that is designed to have the key prop-

erty that both it’s relative error and running time is not impacted by the probability

that is being estimated. To do so we developed a technique that we refer to as ran-

dom draw recycling which enables the efficient generation of unbiased samples of

the indices of the possible worlds in which the source node reaches the target node.

We perform experiments on a variety of real datasets and demonstrate the effec-

tiveness of our approach. In particular, we investigate not only the average relative

error, as done by prior works, but also the distribution of relative errors over a vari-

ety of randomly selected source-target (s-t) pairs. This highlights the ability of our

approach to not only achieve low average relative error but to achieve consistently

low relative error over all s-t pairs, in contrast with existing approaches.

At a high level, Chapters 2 and 3 focus on developing efficient algorithms for

influence maximization which is fundamentally a source placement problem. The

canonical application being identification of users that would be effective for a

viral marketing campaign. Chapter 4, which focuses on developing efficient algo-

rithms for reachability estimation, may be viewed as being useful for addressing

the complimentary problem of source identification. For instance if information is

observed to have reached a particular node we may wish to estimate how likely it

is to have originated from a candidate source. This is the problem that reachability

estimation addresses.

141

5.2 Limitations
An underlying requirement of the techniques that we consider and propose in this

thesis is that diffusion occurs independently for each edge in the graph. This setting

has received a great deal of focus due to it striking a balance between model ex-

pressiveness and computational tractability that is sufficient for modeling a number

of practical phenomena but already presents a variety of significant computational

challenges, as have been explored. However, the independence assumption may

be a poor fit for applications where edges are in fact correlated. For instance, in

protein-protein interaction (PPI) networks an interaction between a pair of pro-

teins may not be always independent of other interactions. Some proteins (e.g.,

enzymes) may act as a catalyst in a PPI network. That is, an interaction happens

only when another protein playing the catalyst role interacts with one of the inter-

acting proteins. Such co-interactions cannot be represented simply by independent

edges between nodes representing the proteins. Furthermore, in a social network it

may not be the case that a user has an independent probability of activating each of

their neighbors. This may occur if there is in fact a common cause such as a shared

post that is likely to either activate many or no neighbors depending on how well

the post was received.

Interestingly, there appears to be the opportunity to model such situations while

retaining the edge independence property. The main idea is to introduce pseudo-

nodes that may be used to represent a common cause. Such a construction has

the capability of representing positive correlation of the edges from a node to its

neighbors. As the end result is an extended graph on which the edge correlations

have been processed out the techniques considered in this thesis would still apply.

However, the number of intermediate nodes required to represent complex corre-

lations may become prohibitive. In addition, such an approach would unlikely be

applicable if one were to need to represent correlations among the edges out of

multiple nodes (e.g. the success of the out edges of one node increasing the chance

that the edges out of other nodes also succeed).

At this point we have not explored how common it is that edge correlations that

occur in real applications take on a form that admits them to be represented in this

manner. In general, specifying the joint probability of edges grows exponentially.

142

As such, removing the independence requirement and exploring a more general

model must be tied to how the edges’ correlations may be compactly represented.

5.3 Future Research
There are a variety of open questions and possible research directions that were

encountered that are worth further consideration:

1. While the technique of group edge testing was applied only for the accelera-

tion of RIS sample generation it may be more generally useful for other ap-

plications that operate on uncertain graphs. The setting where it is expected

to be most effective is when individual edges have only a low probability

of succeeding, however the presence of many such edges results in at least

some succeeding, and these few successful edges must be identified from the

vast majority that do not.

2. The use of fractional relaxations to tackle the IM problem and related prob-

lems likely deserves further attention. There are many variants of the IM

problem (competitive variants, revenue maximization, welfare maximiza-

tion, etc) to which the application of fractional relaxation optimization could

be considered in the place of the Greedy algorithm. Far too much of the

existing literature relies on the Greedy algorithm which despite its desirable

qualities of being simple and having a known approximation guarantee also

has the undesirable property of sequential selection that prohibits removal of

previously selected elements. It was only by breaking away from using the

Greedy algorithm were we able to develop our algorithm that can process

the a stream of RIS samples.

Whether the approach of optimizing fractional objectives, as done in Chap-

ter 3, may be extended to these settings depends on the following: 1) Can

the diffusion process be approximated using RIS sampling? This is required

to establish the connection to max-k cover which the fractional objectives

are based on. RIS rely on the objective being representable as a coverage

function. In particular, it must be monotone and submodular. 2) Does the

constraint admit an efficient solution when the objective is modular? Specif-

143

ically, our approach involves solving the linear overestimate to the objective

function. The solution to which we need to update efficiently as RIS are

generated. As we have shown this can be done efficiently for a cardinal-

ity constraint. More generally, the same approach would also work for a

partition matroid constraint by applying the same optimization technique to

each partition. An example application of this is to restrict the number of

seed users that may be selected from demographic groups (e.g. divided by

gender, age or ethnicity) to enforce a form of fairness.

3. Despite the empirical effectiveness of our algorithm the theoretical time

complexity remains open. Unfortunately characterizing it requires determin-

ing its convergence rate which appears to be closely related to the conver-

gence rate of Fictitious Play. The Fictitious Play algorithm has been conjec-

tured (over 60 years ago!) to have a convergence rate of O(t−1/2). To our

knowledge this conjecture remains open with only a much slower rate hav-

ing been proven. This is despite the observe empirical convergence being in

agreement with the conjecture.

4. The edge draw recycling technique that we propose may have applications

to other problems that operate on uncertain graphs. In fact, the idea isn’t

even necessarily limited to uncertain graphs as the general technique can

in principle be applied to any logic function composed of conjunction and

disjunction on a collection of independent Boolean random variables.

5. There is substantial potential for our algorithm which uses expectation match-

ing sampling to be improved further by more precise pruning of success in-

dices that are not needed. Doing so would enable using a larger number of

success indices without it requiring an excessive amount of memory. In our

experiments it was found that our algorithm could have a substantially im-

prove rate at which it can reduce its estimate’s relative error if more success

indices are used. However with our current implementation it results in a

large amount of memory being needed.

144

Bibliography

[1] A. Ageev and M. Sviridenko. Pipage rounding: A new method of
constructing algorithms with proven performance guarantee. J. of
Combinatorial Optimization, 8(3):307–328, Sep 2004. → page 44

[2] A. Arora, S. Galhotra, and S. Ranu. Debunking the myths of influence
maximization: An in-depth benchmarking study. In SIGMOD, pages
651–666, 2017. → pages 36, 86

[3] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming
submodular maximization: Massive data summarization on the fly. KDD,
page 671–680, 2014. → page 42

[4] M. O. Ball. Computational complexity of network reliability analysis: An
overview. IEEE Transactions on Reliability, 35(3):230–239, 1986.
doi:10.1109/TR.1986.4335422. → page 4

[5] M. Bateni, H. Esfandiari, and V. Mirrokni. Almost optimal streaming
algorithms for coverage problems. In SPAA, pages 13–23, 2017. → page 42

[6] G. Bevilacqua and L. Lakshmanan. A fractional memory-efficient approach
for online continuous-time influence maximization. The VLDB Journal, 06
2021. doi:10.1007/s00778-021-00679-0. → page v

[7] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social
influence in nearly optimal time. In SODA, pages 946–957, 2014. → pages
2, 4, 8, 18, 35, 36, 85

[8] K. V. Bury. Statistical Models in Applied Science. J Wiley & Sons, London,
1975. ISBN 0471125903. → page 23

[9] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a
submodular set function subject to a matroid constraint (extended abstract).
In IPCO, pages 182–196, 2007. → page 43

145

http://dx.doi.org/10.1109/TR.1986.4335422
http://dx.doi.org/10.1007/s00778-021-00679-0

[10] A. Chakrabarti and A. Wirth. Incidence Geometries and the Pass Complexity
of Semi-Streaming Set Cover, pages 1365–1373. 2016. → page 42

[11] L. Chen, H. Hassani, and A. Karbasi. Online continuous submodular
maximization. In AISTATS, volume 84, pages 1896–1905, 2018. → page 85

[12] W. Chen. An issue in the martingale analysis of the influence maximization
algorithm imm. In Computational Data and Social Networks, pages
286–297, 2018. → page 68

[13] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social
networks. In KDD, pages 199–208, 2009. → pages 35, 68, 85

[14] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In KDD, pages
1029–1038, 2010. → page 7

[15] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in social
networks under the linear threshold model. In ICDM, pages 88–97, 2010. →
pages 2, 6, 7, 10, 17, 35, 36, 41, 85

[16] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng. Imrank: Influence
maximization via finding self-consistent ranking. SIGIR, page 475–484,
2014. → page 68

[17] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based influence
maximization and computation: Scaling up with guarantees. In CIKM, pages
629–638, 2014. → pages 35, 85

[18] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for monte
carlo estimation. SIAM J. on Computing, 29(5):1484–1496, 2000. → pages
55, 69

[19] E. D. Demaine, P. Indyk, S. Mahabadi, and A. Vakilian. On streaming and
communication complexity of the set cover problem. In Dist. Comput.,
pages 484–498, 2014. → page 42

[20] P. Domingos and M. Richardson. Mining the network value of customers. In
KDD, pages 57–66, 2001. → pages 2, 35

[21] N. Du, L. Song, M. Yuan, and A. J. Smola. Learning networks of
heterogeneous influence. In NeurIPS, pages 2780–2788. Curran Associates,
Inc., 2012. → pages 3, 4, 35, 41

146

[22] N. Du, L. Song, M. Gomez Rodriguez, and H. Zha. Scalable influence
estimation in continuous-time diffusion networks. In NeurIPS, pages
3147–3155. Curran Associates, Inc., 2013. → pages 22, 30, 35, 36, 85

[23] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for
stochastic optimization. SIAM J. on Optimization, 22(2):674–701, 2012. →
page 85

[24] J. F. Lawless. Statistical Models and Methods for Lifetime Data.
Wiley-Interscience, 2002. → page 22

[25] M. Farajtabar, N. Du, M. Gomez-Rodriguez, I. Valera, H. Zha, and L. Song.
Shaping social activity by incentivizing users. In Proceedings of the 27th
International Conference on Neural Information Processing Systems -
Volume 2, NIPS’14, page 2474–2482, Cambridge, MA, USA, 2014. MIT
Press. → page 6

[26] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):
634–652, July 1998. ISSN 0004-5411. → pages 11, 42

[27] G. S. Fishman. A comparison of four monte carlo methods for estimating
the probability of s-t connectedness. IEEE Transactions on Reliability, 35
(2):145–155, 1986. doi:10.1109/TR.1986.4335388. → page 7

[28] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3:95–110, 1956. → page 85

[29] S. Galhotra, A. Arora, and S. Roy. Holistic influence maximization:
Combining scalability and efficiency with opinion-aware models. SIGMOD,
page 743–758, 2016. → page 68

[30] J. Ghosh, H. Q. Ngo, S. Yoon, and C. Qiao. On a routing problem within
probabilistic graphs and its application to intermittently connected networks.
In IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications, pages 1721–1729, 2007.
doi:10.1109/INFCOM.2007.201. → pages 1, 89

[31] D. L. Gibbs and I. Shmulevich. Solving the influence maximization problem
reveals regulatory organization of the yeast cell cycle. PLOS Computational
Biology, 2017. → pages 2, 35

[32] M. X. Goemans and D. P. Williamson. New 3/4-approximation algorithms
for max sat. SIAM Journal on Discrete Mathematics, 7:313–321, 1994. →
page 44

147

http://dx.doi.org/10.1109/TR.1986.4335388
http://dx.doi.org/10.1109/INFCOM.2007.201

[33] J. Goldenberg, B. Libai, and Muller. Using complex systems analysis to
advance marketing theory development. Academy of Marketing Science
Review, 2001. → pages 4, 35

[34] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex
systems look at the underlying process of word-of-mouth. Marketing
Letters, 12(3):211–223, 2001. → pages 4, 35

[35] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the
temporal dynamics of diffusion networks. In ICML, pages 561–568, 2011.
→ pages 3, 4, 5, 6, 30, 35, 41, 68

[36] M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf. Modeling information
propagation with survival theory. In ICML, pages III–666–III–674, 2013.

[37] M. Gomez Rodriguez, J. Leskovec, and B. Schölkopf. Structure and
dynamics of information pathways in online media. In WSDM, pages 23–32,
2013. → pages 3, 4, 22, 35, 41

[38] A. Goyal, W. Lu, and L. V. S. Lakshmanan. Simpath: An efficient algorithm
for influence maximization under the linear threshold model. In ICDM,
pages 211–220, 2011. → pages 35, 68, 85

[39] M. Granovetter. Threshold models of collective behavior. American Journal
of Sociology, 83(6):1420–1443, 1978. → page 35

[40] Q. Guo, S. Wang, Z. Wei, and M. Chen. Influence maximization revisited:
Efficient reverse reachable set generation with bound tightened. In
SIGMOD, page 2167–2181, 2020. → page 85

[41] Q. Guo, S. Wang, Z. Wei, and M. Chen. Influence maximization revisited:
Efficient reverse reachable set generation with bound tightened. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, page 2167–2181, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450367356.
doi:10.1145/3318464.3389740. URL
https://doi.org/10.1145/3318464.3389740. → pages 13, 20

[42] S. Har-Peled, P. Indyk, S. Mahabadi, and A. Vakilian. Towards tight bounds
for the streaming set cover problem. PODS, page 371–383, 2016. → page
42

[43] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, 1997. → page 11

148

http://dx.doi.org/10.1145/3318464.3389740
https://doi.org/10.1145/3318464.3389740

[44] M. Hua and J. Pei. Probabilistic path queries in road networks: Traffic
uncertainty aware path selection. EDBT ’10, page 347–358, New York, NY,
USA, 2010. Association for Computing Machinery. ISBN 9781605589459.
doi:10.1145/1739041.1739084. URL
https://doi.org/10.1145/1739041.1739084. → page 1

[45] K. Huang, S. Wang, G. S. Bevilacqua, X. Xiao, and L. V. S. Lakshmanan.
Revisiting the stop-and-stare algorithms for influence maximization.
PVLDB, 10(9):913–924, 2017. → pages 2, 10, 14, 18, 35, 36, 85

[46] D. Ienco, F. Bonchi, and C. Castillo. The meme ranking problem:
Maximizing microblogging virality. In ICDMW, pages 328–335, 2010. →
pages 2, 35

[47] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex
optimization. In ICML, volume 28, pages 427–435, 2013. → page 85

[48] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint reachability
computation in uncertain graphs. Proc. VLDB Endow., 4(9):551–562, jun
2011. ISSN 2150-8097. doi:10.14778/2002938.2002941. URL
https://doi.org/10.14778/2002938.2002941. → pages
1, 4, 6, 15, 89, 90, 92, 93, 122

[49] K. Jung, W. Heo, and W. Chen. IRIE: scalable and robust influence
maximization in social networks. In ICDM, pages 918–923, 2012. → pages
35, 68, 85

[50] S. K. Thompson. Sampling, Second Edition. Wiley, New York, 2002. →
page 92

[51] L. Kahn. Ratio squarer. Proc. IRE (Corresp.)., 42(11):1704, November
1954. doi:10.1109/JRPROC.1954.274666. → page 124

[52] M. Karimi, M. Lucic, H. Hassani, and A. Krause. Stochastic submodular
maximization: The case of coverage functions. In NeurIPS, pages
6853–6863. Curran Associates, Inc., 2017. → page 85

[53] S. Karlin. Mathematical Methods and Theory in Games, Programming, and
Economics. Addison-Wesley, Reading, Mass., 1959. → page 61

[54] X. Ke, A. Khan, and L. L. H. Quan. An in-depth comparison of s-t reliability
algorithms over uncertain graphs. Proc. VLDB Endow., 12(8):864–876, apr
2019. ISSN 2150-8097. doi:10.14778/3324301.3324304. URL

149

http://dx.doi.org/10.1145/1739041.1739084
https://doi.org/10.1145/1739041.1739084
http://dx.doi.org/10.14778/2002938.2002941
https://doi.org/10.14778/2002938.2002941
http://dx.doi.org/10.1109/JRPROC.1954.274666
http://dx.doi.org/10.14778/3324301.3324304

https://doi.org/10.14778/3324301.3324304. → pages
4, 6, 15, 93, 120, 121, 122, 123, 124, 128

[55] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In KDD, pages 137–146, 2003. → pages
2, 3, 4, 7, 8, 9, 11, 12, 17, 18, 35, 36, 40

[56] A. Khan, F. Bonchi, F. Gullo, and A. Nufer. Conditional reliability in
uncertain graphs. IEEE Transactions on Knowledge and Data Engineering,
30(11):2078–2092, 2018. doi:10.1109/TKDE.2018.2816653. → pages 1, 89

[57] H. Kumamoto, K. Tanaka, K. Inoue, and E. J. Henley. Dagger-sampling
monte carlo for system unavailability evaluation. IEEE Transactions on
Reliability, R-29(2):122–125, 1980. doi:10.1109/TR.1980.5220749. →
page 7

[58] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or
a news media? http://an.kaist.ac.kr/traces/WWW2010.html, 2010. → page
29

[59] D. Lee, K. Hosanagar, and H. Nair. Advertising content and consumer
engagement on social media: Evidence from facebook. Management
Science, 64, 01 2018. → page 37

[60] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014. → pages 29, 121

[61] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks.
In KDD, pages 420–429, 2007. → pages 2, 8, 10, 35, 37, 84, 86, 87

[62] R.-H. Li, J. X. Yu, R. Mao, and T. Jin. Recursive stratified sampling: A new
framework for query evaluation on uncertain graphs. IEEE Transactions on
Knowledge and Data Engineering, 28(2):468–482, 2016.
doi:10.1109/TKDE.2015.2485212. → pages 15, 90, 92, 122

[63] X. Li, J. D. Smith, T. N. Dinh, and M. T. Thai. Why approximate when you
can get the exact? optimal targeted viral marketing at scale. In INFOCOM,
pages 1–9, May 2017. → pages 35, 42, 87

[64] Y. Li, J. Fan, D. Zhang, and K.-L. Tan. Discovering your selling points:
Personalized social influential tags exploration. In SIGMOD, page 619–634,
2017. → page 85

150

https://doi.org/10.14778/3324301.3324304
http://dx.doi.org/10.1109/TKDE.2018.2816653
http://dx.doi.org/10.1109/TR.1980.5220749
http://an.kaist.ac.kr/traces/WWW2010.html
http://snap.stanford.edu/data
http://dx.doi.org/10.1109/TKDE.2015.2485212

[65] Y. Li, J. Fan, D. Zhang, and K.-L. Tan. Discovering your selling points:
Personalized social influential tags exploration. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD ’17,
page 619–634, New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450341974. doi:10.1145/3035918.3035952. URL
https://doi.org/10.1145/3035918.3035952. → pages 13, 15, 20, 90, 93, 122

[66] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid,
J. Ramirez-Alfonsin, and B. Reed, editors, Probabilistic Methods for
Algorithmic Discrete Mathematics. Springer, 1998. → page 49

[67] A. Mokhtari, H. Hassani, and A. Karbasi. Conditional gradient method for
stochastic submodular maximization: Closing the gap. In AISTATS,
volume 84, pages 1886–1895, 2018. → page 85

[68] S. Muthukrishnan. Data streams: Algorithms and applications. Found.
Trends Theor. Comput. Sci., 1(2):117–236, Aug. 2005. → page 37

[69] R. M. Neal. Annealed importance sampling. Statistics and Computing, 11
(2):1573–1375, 2001. doi:10.1023/A:1008923215028. → page 122

[70] H. Nguyen, T. Nguyen, N. H. Phan, and T. Dinh. Importance sketching of
influence dynamics in billion-scale networks. In ICDM, pages 337–346, 11
2017. → pages 38, 86

[71] H. T. Nguyen, M. T. Thai, and T. N. Dinh. Stop-and-stare: Optimal sampling
algorithms for viral marketing in billion-scale networks. In SIGMOD, pages
695–710, 2016. → pages 2, 4, 8, 10, 14, 18, 35, 36, 37, 41, 42, 55, 68, 77, 85

[72] N. Ohsaka. The solution distribution of influence maximization: A
high-level experimental study on three algorithmic approaches. In SIGMOD,
page 2151–2166, 2020. → pages 69, 85, 86

[73] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-I. Kawarabayashi. Fast and
accurate influence maximization on large networks with pruned monte-carlo
simulations. In AAAI, page 138–144, 2014. → pages 8, 35, 85

[74] N. Ohsaka, T. Sonobe, S. Fujita, and K.-i. Kawarabayashi. Coarsening
massive influence networks for scalable diffusion analysis. In SIGMOD,
pages 635–650, 2017. → pages 36, 38, 86

[75] D. Popova, N. Ohsaka, K.-i. Kawarabayashi, and A. Thomo. Nosingles: A
space-efficient algorithm for influence maximization. In SSDBM, pages
18:1–18:12, 2018. → pages 38, 86

151

http://dx.doi.org/10.1145/3035918.3035952
https://doi.org/10.1145/3035918.3035952
http://dx.doi.org/10.1023/A:1008923215028

[76] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. K-nearest neighbors in
uncertain graphs. Proc. VLDB Endow., 3(1–2):997–1008, sep 2010. ISSN
2150-8097. doi:10.14778/1920841.1920967. URL
https://doi.org/10.14778/1920841.1920967. → page 7

[77] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral
marketing. In KDD, pages 61–70, 2002. → pages 2, 35

[78] M. G. Rodriguez and B. Scholkopf. Influence maximization in continuous
time diffusion networks. In ICML 2012, 2012. → pages 5, 6

[79] B. Saha and L. Getoor. On Maximum Coverage in the Streaming Model &
Application to Multi-topic Blog-Watch. SDM, pages 697–708, 01 2009. →
page 42

[80] H. N. Shapiro. Note on a computation method in the theory of games.
Communications on Pure and Applied Mathematics, 11(4):587–593, 1958.
→ page 61

[81] D. Shewan. The comprehensive guide to online advertising costs.
https://www.wordstream.com/blog/ws/2017/07/05/online-advertising-costs,
2020. → page 37

[82] X. Song, Y. Chi, K. Hino, and B. L. Tseng. Information flow modeling
based on diffusion rate for prediction and ranking. In WWW, pages 191–200,
2007. → pages 2, 35

[83] J. Tang, X. Tang, X. Xiao, and J. Yuan. Online processing algorithms for
influence maximization. In SIGMOD, pages 991–1005, 2018. → pages
2, 4, 10, 14, 18, 35, 36, 37, 41, 42, 68, 77, 86, 87

[84] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal time
complexity meets practical efficiency. In SIGMOD, pages 75–86, 2014. →
pages 2, 7, 8, 9, 18, 36, 41, 56, 85

[85] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear time: A
martingale approach. In SIGMOD, pages 1539–1554, 2015. → pages
2, 4, 9, 10, 14, 18, 22, 30, 35, 36, 37, 41, 42, 48, 55, 68, 78, 85

[86] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979. doi:10.1137/0208032.
→ pages 1, 3, 4, 6, 17, 90, 123

152

http://dx.doi.org/10.14778/1920841.1920967
https://doi.org/10.14778/1920841.1920967
https://www.wordstream.com/blog/ws/2017/07/05/online-advertising-costs
http://dx.doi.org/10.1137/0208032

[87] C. Wang, W. Chen, and Y. Wang. Scalable influence maximization for
independent cascade model in large-scale social networks. Data Mining and
Knowledge Discovery, 25(3):545–576, 2012. → pages
2, 4, 6, 7, 10, 17, 35, 36, 41, 85

[88] K. Zhang, S. Bhattacharyya, and S. Ram. Large-scale network analysis for
online social brand advertising. MIS Quarterly, 40:849–868, 04 2016. →
page 37

[89] P. P. Zubcsek and M. Sarvary. Advertising to a social network. Quantitative
Marketing and Economics, 9:71–107, 2011. → page 37

153

Appendix A

Supporting Materials

A.1 Additional Proofs

Proof of Lemma 6. Starting from Pr[X ≥ (1+ ε)χ] < exp
(
− ε2χ

2(1+ε/3)

)
, where

χ :− µt, a concentration bound violation probability of at most δ is needed (i.e.

δ = exp(− ε2χ

2(1+ε/3))). Rearranging into quadratic form in ε ,

2(1+ ε/3) log(δ) =−ε
2
χ

χε
2 +2/3log(δ)ε +2log(δ) = 0

By solving the quadratic it can be determined that this is ensured if,

ε =

(
−2/3log(δ)+

√
4/9log(δ)2−8χ log(δ)

)
/(2χ) (A.1)

=
(
− log(δ)+

√
− log(δ)(18χ− log(δ))

)
/(3χ) (A.2)

Hence,

Pr[X ≥ χ +
(
− log(δ)+

√
− log(δ)(18χ− log(δ))

)
/3]≤ δ (A.3)

154

From the inner constraint we have,

X ≥ χ +
(
− log(δ)+

√
− log(δ)(18χ− log(δ))

)
/3 (A.4)

3X + log(δ)−3χ ≥
√
− log(δ)(18χ− log(δ)) (A.5)

Squaring both sides and rearranging.

0≤ log(δ)(18χ− log(δ))+(3X + log(δ)−3χ)2 (A.6)

0≤ 3χ
2 +(4log(δ)−6X)χ +2X log(δ)+3X2 (A.7)

Solving for χ via the quadratic formula and simplifying.

χ ≤ X−2/3log(δ)−
√
−2/9log(δ)(9X−2log(δ)) (A.8)

As such we have,

Pr[χ ≤ X− 2
3 log(δ)−

√
−2

9 log(δ)(9X−2log(δ))]≤ δ (A.9)

Pr[χ > X + 2
3 log(1

δ
)−
√

2
9 log(1

δ
)(9X +2log(1

δ
))]≥ 1−δ (A.10)

Let LB(X ,δ) := X + 2
3 log(1

δ
)−
√

2
9 log(1

δ
)(9X +2log(1

δ
) then,

Pr[µ > LB(X ,δ)/t]≥ 1−δ

Proof of Lemma 7. Starting from Pr[X ≤ (1− ε)χ] ≤ exp
(
−1

2 ε2χ
)
, where χ :−

µt, a concentration bound violation probability of at most δ is needed (i.e. δ =

exp(−1
2 ε2χ)). This is ensured if ε =

√
−2log(δ)/χ . Hence,

Pr[X ≤ (1−
√
−2log(δ)/χ)χ]≤ δ (A.11)

From the inner constraint we have, 0≤ χ−
√
−2log(δ)χ−X

Solving for
√

χ via the quadratic formula gives,
√

χ ≥
(√
−2log(δ)+

√
4X−2log(δ)

)
/2.

155

As such we have,

Pr[χ ≥
(√
−2log(δ)+

√
4X−2log(δ)

)2
/4]≤ δ (A.12)

Pr[χ <
(√
−2log(δ)+

√
4X−2log(δ)

)2
/4]≥ 1−δ (A.13)

Pr[χ < X− log(δ)+
√
− log(δ)(2X− log(δ))]≥ 1−δ (A.14)

Let UB(X ,δ) := X + log(1
δ
)+
√

log(1
δ
)(2X + log(1

δ
)) then,

Pr[µ < UB(X ,δ)/t]≥ 1−δ

156

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Reachability and Diffusion on Uncertain Graphs
	1.2 Challenges and Key Contributions
	1.2.1 Group Testing for Efficient Sample Generation
	1.2.2 Memory Efficient Influence Maximization via Streaming
	1.2.3 Recycling random draws for Efficient Reachability Estimation

	1.3 Outline

	2 Efficient Sample Generation
	2.1 Introduction
	2.2 Related Work
	2.3 Our Approach
	2.3.1 Group Test Construction
	2.3.2 Group Test Application

	2.4 Experiments
	2.5 Discussion and Conclusions

	3 Memory Efficient Influence Maximization
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Influence Maximization
	3.2.2 Fractional Objectives

	3.3 Approach
	3.4 Theory
	3.4.1 Bounds Derivation
	3.4.2 Bounds Failure Probability
	3.4.3 Parameters

	3.5 Algorithm
	3.6 Efficient Implementation
	3.6.1 Lazy Update
	3.6.2 Parallel Implementation

	3.7 Experiments
	3.7.1 Experimental Configurations
	3.7.2 IM Experiments: Online Setting
	3.7.3 IM Experiments: Conventional Setting
	3.7.4 Summary of IM experiments
	3.7.5 Effect of Efficient Implementation

	3.8 Related Work
	3.9 Discussion and Conclusions

	4 Edge Sample Recycling for Reachability Estimation
	4.1 Introduction
	4.2 Related Work
	4.3 Our Approach
	4.3.1 Edge Draw Recycling

	4.4 Theory
	4.4.1 Unbiased Estimation
	4.4.2 Variance Characterization

	4.5 Algorithm
	4.5.1 Success Indices Sampling

	4.6 Implementation Details
	4.7 Experiments
	4.7.1 Experimental Configuration
	4.7.2 Average Performance
	4.7.3 Relative Error Distribution
	4.7.4 Impact of s-t Reach Probability on Relative Error

	4.8 Discussion and Conclusions

	5 Summary and Future Research
	5.1 Summary
	5.2 Limitations
	5.3 Future Research

	Bibliography
	A Supporting Materials
	A.1 Additional Proofs

