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Abstract

Cancer is associated not only with mortality, but also with impacts on physical,

mental, and social health. When unmet, these resulting psychosocial needs are

associated with worsened quality-of-life and survival. Cancer centres employ psy-

chiatrists, counsellors, and other allied health clinicians to help address these needs.

However, these needs often go unmet even when these resources exist. It can be

difficult for treating oncologists to detect these needs and refer patients to these

resources.

In this work, we investigated the use of neural natural language processing

(NLP) models to predict these psychosocial needs using initial oncologist consul-

tation documents. We compared a non-neural model, bag-of-words (BOW), with

three neural models: convolutional neural networks (CNN), long-short term mem-

ory (LSTM), and bidirectional encoder representation from transformers (BERT).

We used these models to predict self-reported emotional and informational needs

around the time these documents were generated. We also used these models to

predict whether the patient will have clinician-addressed needs – specifically, see-

ing a psychiatrist or counsellor within the five years following document gener-

ation. We compared the prediction of these psychosocial needs to predicting a

non-psychosocial outcome, survival.

We found these models can predict whether patients will see a psychiatrist

with balanced accuracy and receiver-operator-area-under-curve (AUC) above 0.70.

This is a similar performance to comparable prior work predicting mental health

outcomes. We also predicted seeing a counsellor with AUC above 0.70, but pre-

dicting self-reported psychosocial needs seemed to be a more difficult task, with

these metrics usually below 0.70. We predicted the non-psychosocial outcome, sur-
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vival, with higher performance. For this task, balanced accuracy was above 0.80

and AUC above 0.90. Predictions using subsets of our study population suggest

that predicting these psychosocial outcomes is easier in females, and with cancer

patients diagnosed with a Stage II illness. We found that CNN and LSTM models

performed the best, and investigated how BERT’s document size limit may hinder

its performance on these tasks. This work is the first of its kind using NLP for this

application, and builds a foundation to improve how these techniques may one day

help cancer patients.
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Lay Summary

Cancer is a leading cause of death and can harm a patient’s mental health and

social situation. Cancer centres employ psychiatrists, counsellors, and others to

help patients deal with these problems. However, not all patients will get enough

help, because it can be hard for cancer doctors to determine which of their patients

will need this support.

In this project, we used a type of artificial intelligence (AI) that can read on-

cologists’ initial reports and predict which patients will need to see a counsellor or

psychiatrist, and which may need emotional or educational support. Our study used

a new type of AI that uses neural networks, which are inspired by the human brain.

We were able to predict which patients will need to see a psychiatrist or counsellor

reasonably well. This work creates a foundation for future improvements so we

can one day use these techniques to help cancer patients.
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Chapter 1

Introduction

Cancer is not only a leading cause of death worldwide [16], but a disease associated

with substantial impacts on physical, mental, and social health [65]. Patients are

at an increased risk of developing mental illnesses following diagnosis [45], and

the around one-third of cancer patients who already have a mental health condition

before cancer diagnosis are at particular risk for worsened distress. Cancer can

impact a patient’s socioeconomic status, such as preventing them from working,

and can strain their relationships including with their caregivers [15, 24, 63]. Given

these challenges, cancer patients may need support in multiple areas, including

psychological, informational, social, and physical symptom domains [61].

Factors such as social isolation, depression, anxiety and these unmet psychoso-

cial cancer needs put patients at risk for not only worse quality-of-life, but also

survival [48, 53, 54, 56]. Possible causal links between these psychosocial needs

and survival include their impact on a patient’s ability to follow through with can-

cer treatment, and their associated increase in substance use. To address these psy-

chosocial needs, cancer centres employ psychiatrists, counsellors and other allied

health staff specializing in psychosocial care for people with cancer. [17].

Despite the development of these psychosocial care fields as part of cancer care,

cancer patients continue to have unmet psychosocial needs [4, 34, 67]. Achieving

equity-oriented healthcare in cancer will require better support of these needs and

those with concurrent mental illness [31]. While lack of sufficient psychosocial

resources contributes to these unmet needs, there is also evidence that a lack of
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detection may play a role, especially in high-resourced settings [60].

This is likely multifactorial; patients can be reluctant to seek supportive care,

or not know of available resources [68]. It can also be hard for the treating oncol-

ogists to identify these psychosocial needs, as their primary goal is the treatment

of the patient’s cancer through chemotherapy, radiation, or surgery [70]. Prior

work has found that treating oncologists could only identify around one-third of

severely distressed patients [49, 70]. As well, their recommendations for address-

ing psychosocial needs, such as referring patients to counselling, did not strongly

correlate with these needs. Multiple reasons for this difficulty have been postu-

lated, such as the patient’s denial of needs, the provider’s time constraints, and the

provider’s use of close-ended questions related to the specific disease. Cultural and

socioeconomic differences between oncologists and their patients can also make

psychosocial concerns more difficult to discuss.

Given that unmet psychosocial needs are connected with worsened survival

and quality of life in cancer patients, and that these needs can be difficult to detect,

we sought to investigate whether we could detect such needs using modern
natural language processing (NLP) methods. Specifically, we sought to predict

these needs using NLP with initial oncologist consultation documents, as almost

all patients will have such a document generated at the start of their cancer care.

Allowing the detection of patients’ psychosocial needs would allow better targeting

of psychosocial resources to these patients, and so may improve quality-of-life and

possibly even survival. For example, a predictive model could be incorporated into

an electronic medical record (EMR) system, and suggest treating oncologists refer

a patient to psychiatry when appropriate.

NLP is the branch of artificial intelligence concerned with allowing computer

models to understand written human language. In this work, we investigated the

use of methods using neural networks. These are techniques to build an artificial

intelligence based upon how the human brain’s neurons are interconnected. Neu-

ral models can learn complex relationships between data; in our case, complex

relationships between words. We compare the traditional non-neural NLP method

bag-of-words (BOW) with two commonly used NLP neural methods, convolutional

neural network (CNN) and long short-term memory (LSTM) models. We also use

a newer technique based on transformers, Bidirectional Encoder Representations
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from Transformers (BERT), as well as a variation, Longformer.

We describe these models in detail in Chapter 3. BOW models simply use the

number of times a word occurs in a document, so cannot learn relationships such

as the ordering of words. BOW understands “He has cancer but does not have de-

mentia” the exact same as “He has dementia but does not have cancer” as both

phrases have the same words. On the other hand, neural models can build an un-

derstanding of language that takes into account complexities such as word order,

or the presence of other words elsewhere in a document. CNN models use “con-

volutions”, or smaller clusters of words, to build a more connected understanding

of an entire document. LSTMs are a type of recurrent neural network (RNN) that

understands a document one-word at a time, but can remember information about

words that came beforehand. Transformers such as BERT allow a interconnected

understanding of language after being trained on an immense amount of general

language data. These models can then be fine-tuned on a specific task such as our

predictions. We also use a variation of BERT called Longformer which bypasses

BERT’s limitation in only being able to intake a limited number of words. These

models all differ in their ability to understand how words in a document are related

to each other, and so may have different performance when used for predictions.

This work seeks to use and compare these models to predict a patient’s psy-

chosocial needs. As predictive targets, we include self-reported emotional and

informational needs. We also include clinician-addressed needs, by having targets

based on whether patients will go on to see a psychiatrist or counsellor. We seek to

make these predictions using only medical consultation documents that oncologists

generate at the start of a cancer patient’s care, with no other data. These documents

typically include details such as the patient’s present illness, medications, and per-

sonal, social, and family history. While these documents are readily available at

the start of cancer care, they often do not specifically record many psychosocial de-

tails. This makes their potential use for predicting psychosocial outcomes unclear,

and the focus of this work.

As we discuss in the next Chapter, we were unable to find prior work using

predictive models to predict the psychosocial outcomes of cancer patients. As

such, this work addresses this gap in the literature by investigating the following

primary hypotheses:
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1. Neural NLP models can be used with a patient’s initial oncologist consulta-

tion document to predict clinician-addressed psychosocial cancer needs,

such as whether a patient will see a counsellor or psychiatrist. Specifically,

they can predict these outcomes with balanced accuracy and area-under-

curve (AUC) numerically at least 0.70, a performance threshold often met

in other psychosocial predictions.

2. Neural NLP models can be used with a patient’s initial oncologist consul-

tation document to predict a patient’s self-reported emotional and infor-
mational cancer needs around the time of this document being generated,

also at the performance threshold of balanced accuracy and AUC being above

0.70.

3. Neural NLP models can be used with a patient’s initial oncologist consulta-

tion document to predict a non-psychosocial outcome, surviving at least five
years after this document was generated. This performance will be numeri-

cally higher than the performance of predicting the psychosocial outcomes,

but will serve as a useful comparator, and balanced accuracy and AUC will

be at least 0.80, a performance typically achieved by prior work predicting

survival.

In this work, we seek to understand our predictions further by investigating ad-

ditional questions. Given that the psychosocial needs of cancer patients can vary

based on their cancer stage at diagnosis, and their biological sex, we aim to inves-

tigate whether these attributes impacted the performance of our models. Similarly,

while the new BERT models have often achieved state-of-the-art performance on

NLP applications, they are limited by how large of a document they can be used

with, so we explore whether this limit impacts our models. These aims result in

the following secondary hypotheses:

1. When neural NLP models are used with a patient’s initial oncologist consulta-

tion document to predict psychosocial needs, the performance is numerically

similar between female and male patient subgroups.

2. When neural NLP models are used with a patient’s initial oncologist consulta-

tion document to predict psychosocial needs, the performance is numerically

4



similar between subgroups based on a patient’s cancer stage at diagnosis.

3. The number of tokens a model is able to use will impact its ability to

predict whether a patient will see a psychiatrist using a patient’s initial on-

cologist consultation document. Specifically, the performance of BERT will

be numerically worse than its variation, Longformer, which is able to use

more words.

We discuss relevant related work in Chapter 2. We then describe our methods

and the data used in our project in Chapter 3. This is followed by Chapter 4, where

we show the results of our investigations alongside some interpretations of our

model. In Chapter 5, we discuss these results, their limitations, and possible future

work, before our conclusion in Chapter 6.
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Chapter 2

Related Work

In this chapter, we start by reviewing prior work seeking to better understand the

psychosocial needs of cancer patients in Section 2.1. Given the lack of such work

using computational methods, we spend the rest of the chapter discussing rele-

vant prior work using NLP for document classification tasks, first discussing such

work in psychiatry (Section 2.2), and then in cancer and other fields of medicine

(Section 2.3). We focus our review on work using similarly sized and complex

medical documents, excluding work using documents generated in medical imag-

ing or pathology, as these documents are usually shorter and simpler than the full

medical consultation documents used in this work.

2.1 Clinical and Computational Methods to Predict the
Psychosocial Needs of Cancer patients

We were largely unable to find relevant prior work seeking to use computational

methods to predict the psychosocial needs of cancer patients, using NLP or ma-

chine learning using structured data. In their 2021 work, Watson et al. [75] use

a statistical model called “Autoregressive Integrated Moving Average” to forecast

cancer symptom complexity, including psychosocial symptoms, using structured

data (season, age, sex, tumour group). However, their application was predict-

ing the number of patients a clinic would see with high symptom complexity, as

opposed to predicting a patient’s symptom burden individually.

6



Traditionally, physicians have sought to understand the psychosocial cancer

needs of patients either as part of the clinical interview, or through the use of

questionnaires. The Canadian Problem Checklist was first developed by Ashbury

et al. [8] to understand the needs of cancer patients, and has been used and further

developed in later work [19, 62, 66]. It asks patients about emotional, informa-

tional, practical, social/family, spiritual, and physical needs. At BC Cancer, this

checklist is incorporated into a larger questionnaire used to screen the psychosocial

needs of cancer patients, the Psychosocial Screen for Cancer - Revised (PSSCAN-R)

[42, 43].

2.2 Document Classification in Psychiatry
We reviewed past psychiatry NLP literature for work predicting outcomes similar to

our psychosocial need targets. Abbe et al. [1] conducted a systematic review of text

mining applications in psychiatry up to late 2013. Of the 38 studies they include in

their analysis, 13 used unstructured documents from EMR as in this project. Most of

these studies did not predict psychosocial outcomes, instead looking at drug safety

outcomes, genetic pathways, ontology development, or data extraction. The most

relevant is perhaps the work by Gara et al. [29], which looked at using a language

model to confirm diagnoses of schizophrenia, but used transcripts of psychiatric

interviews, not the resulting physician’s consultation documents. Unsurprisingly

given the time period, no work in this review used methods based upon neural

networks, with BOW and other n-gram techniques often used instead.

Some more recent work has employed modern NLP techniques, such as neu-

ral network based approaches. Much of this work was conduced using a dataset

used in Track 2 of the 2016 N-GRID NLP challenge [27]. This dataset consists

of 1,000 de-identified initial psychiatric evaluation records, which they noted was

the first corpus of mental health records available to the scientific community. Par-

ticipants competed to predict the lifetime severity of a patient’s mental illness, in

an ordinal scale from zero to three. Karystianis et al. [36] employed a neural net-

work with three dense layers, creating features from BOW, bag-of-string, and the

presence of manually identified terms. However, they found that a “rule-based”

approach (explicit instructions around specific words or phrases) performed bet-
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ter than this method. Clark et al. [18] also used a three-layer densely connected

neural network with various, mostly engineered features. Tran and Kavuluru [73]

used only the history of presenting illness section of the documents, using a CNN

previously adapted for medical text [58], with pretrained word embeddings trained

on PubMed abstracts, and also tried an LSTM. Rios and Kavuluru [59] constructed

a model using a CNN combined with conventional feature engineering. Dai and

Jonnagaddala [20] solely used CNN models, trying different model hyperparame-

ters, and using GoogleNews word embeddings. However, some groups from this

competition did not use neural techniques, and still achieved competitive results

[55]; the competition winner used an ensemble of linear methods with engineered

features and a neural network [23, 27].

Some work predicting psychiatric outcomes using clinical documents did not

implement neural methods, possibly due to using datasets with relatively few doc-

uments. Wu et al. [77] used 500 discharge summaries to classify whether patients

had major depression or not, using a linear method based on the presence of spe-

cific words. Fernandes et al. [26] used linear and rule-based techniques to extract

whether discharge summaries, in a database of 500 documents, contained patients

who had suicidal ideation. Work by Ford et al. [28] did use a large database, in-

cluding data from 4.6 million patients, and used engineered text features with a

linear classifier to classify whether patients had bipolar disorder.

More recently, there have been some studies using and developing neural NLP

techniques in mental health applications. A pre-print by Ji et al. [33] outlines the

development of a pretrained BERT model for mental healthcare. Dai et al. [21]

used CNN, hierarchical attention networks, and BERT to determine the diagnosis of

patients in a dataset of 500 discharge summaries. Numerous studies have applied

neural techniques to detect or classify mental illness indicated by social media

texts, though these documents are different from ours in size, scope, and complex-

ity [13, 81].

We were unable to find prior work in psychiatry using NLP with clinical doc-

uments to predict outcomes that take place in the future. We were also unable

to find other work using neural techniques such as CNN, LSTM, BERT with docu-

ments similar to those in our study besides the few noted above using datasets with

1,000 or fewer subjects. We could not find previous studies using non-psychiatric
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documents to predict psychosocial or psychiatric outcomes.

2.3 Document Classification in Cancer and other Fields
of Medicine

We can find other examples of relevant work using neural methods with medical

documents by looking at examples in cancer and elsewhere in medicine. Wu et al.

[78] conducted a review of clinical NLP studies using “deep learning”, which they

define as using neural methods. Of the 212 studies they include, 88 employ text

or document classification. However, many of these studies used smaller pieces

of text than full clinical documents, or used clinical documents from radiology,

pathology, or histology reports, which are smaller and less similar to the documents

included in our dataset. Of the 88 studies which used various types of documents,

only a few examples were used for tasks similar to the targets in our work, such

as those predicting symptom severity (seven), life expectancy (one), and mortality

(five).

Some examples of relevant work in cancer include a study by Yuan et al. [79],

which estimated the survival of lung cancer patients using both structured data and

unstructured text from an EMR. However, they did not use neural methods, instead

using NLP techniques to extract features from text which they then fed into a linear

model. Prior studies have used neural methods to extract information from text,

such as the work by Banerjee et al. [9] which used a densely connected neural

network with two hidden layers to detect when breast cancer patients were doc-

umented to have disease recurrence. This was akin to uses of neural networks

elsewhere in medicine to automatically extract whether patients have a disease,

such as work by Rajput et al. [57] using CNN and LSTM models, or work by Liang

et al. [40] using LSTM models. In their more recent work, Wang et al. [74] used

a CNN to predict breast cancer recurrence based on structured data in addition to

features extracted from both pathology and progress notes. Unlike our work, they

used documents generated until right before recurrence, as opposed to only a doc-

ument at the start of cancer treatment. Beeksma et al. [11] used both structured

and unstructured data from an EMR to predict life expectancy in a general popu-

lation of patients using an LSTM, but extracted features from the text which was
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collapsed into a monthly vector representing both structured and unstructured data,

as opposed to using the neural method directly on text.

One of the most relevant prior studies may be work by Liu et al. [44]. Unlike

most of the previously mentioned studies which used less than ten thousand sub-

jects, this work used both the unstructured and structured data of around one mil-

lion patients to predict the future development of three chronic illnesses - strokes,

kidney failure, and heart failure. They used CNN and LSTM models directly with

clinical documents, and also tried a hierarchical model, flattening each clinical en-

counter document into a single vector, which they then used with the neural models.

They find that unstructured data allows better prediction than only using structured

data, with their best performing model using both, but having only a small ad-

vantage over using only unstructured text. As in this work, they used integrated

gradients to interpret their neural models.

Recently, BERT and transformer models have begun to be introduced to appli-

cations in medicine. BERT models pretrained on clinical and biomedical datasets

exist, with some evidence they may lead to higher performance on relevant tasks

than using models trained on general English corpora [5, 30]. Hu et al. [32] used

a transformer model to estimate survival of cancer and seriously ill hospitalized

patients, using structured data including disease comorbidities and genetic mark-

ers. Lin et al. [41] used BERT models to predict ICU-mortality using the texts of

radiology reports, alongside other clinical and imaging features.

Based on our review, this work will address multiple gaps in the existing lit-

erature. It will be the first study attempting to predict psychosocial needs from

medical documents using NLP. It may also be the first predicting psychosocial or

psychiatric outcomes from non-mental health documents. In both mental health

and medicine generally, it will add to only a few prior examples of using neural

NLP methods on full medical documents to predict future outcomes, or outcomes

that are not text extraction (e.g. what diagnosis a patient was given).

10



Chapter 3

Methods and Data

In Chapter 3, we describe the methodology of this work, as well as the data that

we used. We report the results of our data processing here, instead of in our results

chapter, Chapter 4, to keep that chapter focused on the results of using our NLP

models.

In Section 3.1, we describe our data, including both the unstructured text docu-

ments our NLP models use, and the structured data used to generate our prediction

targets. In Section 3.2 we explain our targets, and detail the class breakdown of

them in our dataset. We describe subgroups of our study population in Section 3.3,

and the specific NLP models in Section 3.4. We then detail how we trained and

evaluated the models in Section 3.5, and then how we sought to interpret the mod-

els in Section 3.6. We end this chapter remarking on code availability in Section

3.7.

3.1 Dataset
Our dataset consisted of both unstructured data - clinical documents generated for

cancer patients by care providers at BC Cancer - as well as structured data, which

we used to generate targets and select patients. In this section, we describe the

data, including how we obtained it, its characteristics, how we chose the clinical

document used to train and evaluate our NLP models, and how we generated target

labels.
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3.1.1 Inclusion and Exclusion Criteria

Our dataset included data from 59,800 BC Cancer patients who completed the

PSSCAN-R questionnaire between April 1, 2011 and December 31, 2016. This

questionnaire was completed by most BC Cancer patients, generally at the start of

their care. This time frame allowed full analysis of five year survival data.

We excluded patients if they were recorded as having more than one cancer

treated at BC Cancer, as it would be difficult to determine which cancer affected the

various outcomes we investigated. This involved dropping patients with duplicate

entries in the provided cancer details and PSSCAN-R datasets.

3.1.2 Obtaining the Data

The study was approved by the UBC BC Cancer Agency Research Ethics Board

with REB number H17-03309. A copy of this certificate is include in Appendix

Section ??. BC Provincial Health Services Authority Information Management

and Information Technology Services and BC Cancer Data Requests collaborated

to extract and provide the data.

They provided the consultation documents as Microsoft Word .doc files. They

also provided structured data used for different parts of this project. The provided

cancer details spreadsheet contains patient details such as sex, age, partial postal

code, diagnosis date, death date, last appointment, last contact, last follow-up, can-

cer stage, metastatic status, and cancer site. Names and identifying health numbers

were replaced by a study ID. A document details file provided information on each

included document, such as its type, which health discipline generated it (e.g. Med-

ical Oncology, Psychiatry), the date it was generated, and the patient it corresponds

to. We also received the PSSCAN-R data, which included the patient-reported can-

cer needs.

3.1.3 Patient Characteristics

Table 3.1 shows the characteristics of the 53,157 subjects included in our dataset

after applying inclusion and exclusion criteria, but before we split the subjects into

training, validation, and testing datasets. As outlined below, some patients were

excluded from certain targets if were missing data required to generate the target.
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Table 3.1: Characteristics of the subjects in our dataset, including their age,
sex, staging at diagnosis, and survival. Survival is calculated until death
or the end of the period observed, which varies between patients but is
at least approximately five years. We include months survived since the
subjects were diagnosed with cancer, as well as the months survived since
the generation of the initial oncologist consultation document used by our
models to make predictions.

n %

Total 53157 100
Female 27871 52.4
Stage I 7097 13.4
Stage II 9502 17.9
Stage III 6477 12.2

Stage IV / Metastatic 6317 11.9
Unknown Stage 23764 44.7

Mean Standard Deviation

Age at Diagnosis 64.7 13.8
Observed Months Survived

since Diagnosis
36.7 31.1

Observed Months Survived
since Document

31.6 26.6

3.1.4 Document Selection

We sought to train, develop and evaluate our models by using physician consul-

tation documents completed by the treating oncologist at the start of a patient’s

care at BC Cancer. To do this, we looked at documents created within five days of

a patient completing their PSSCAN-R questionnaire, which is provided to patients

at the start of their BC Cancer involvement. This amount of time on either side

accounts for some of the variation that occurs with administering the PSSCAN-R,

and for finalizing physician documents. Documents had to be marked as consulta-

tion documents as opposed to other types of documents such as progress notes. To

capture only documents made by physicians involved with the direct treatment of

a patient’s cancer, as opposed to those who address other needs, we only included

documents from medical and surgical specialties directly involved in treatment.
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Specific details of the documents and how this selection was implemented can

be found in Appendix Section A.1.

If multiple documents met this criteria, we included the document closest to

when the PSSCAN-R questionnaire was recorded.

3.1.5 Document Preprocessing

We converted the provided raw .doc files into text files using the win32com.client

Python library to automate Microsoft Word’s .doc to .txt conversion.

We then cleaned the files by using regular expressions to remove non-alphanumeric

characters, convert punctuation to periods, and to replace all spacing with single

spaces.

Clinical documents at BC Cancer have automatically inserted text at the begin-

ning and ends of the documents corresponding to information such as date, patient

identifying information, dictating physician, facility, and the care providers to copy

the document to. As this information is likely not useful for predictions, and would

vary between facilities, we sought to remove this text.

To do this, we employed filters using manually created regular expressions to

remove this text. We needed multiple filters as there are different document formats

to account for. These regular expressions can be found in the remove beginning

and remove ending functions in the process text.py, in the Github repos-

itories described in Section 3.7.

We also replaced punctuation with periods and removed characters that were

not punctuation, parentheses, quotations, or alphanumeric characters prior to tok-

enization,

For our BOW models, we made all text lowercase, and then tokenized the text

using the NLTK English SnowballStemmer [14]. For LSTM models and CNN mod-

els, we used the default tokenizer from PyTorch’s Torchtext library [51]. For BERT

and Longformermodels, we used the default tokenizers from their HuggingFace

library implementation [76], after making text lowercase and removing numeric

characters.
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Table 3.2: Class distribution for our targets representing whether a patient has
seen or not seen a psychosocial cancer discipline, within the five years
following when the document used by our models was generated.

Discipline Not Seen (%) Seen (%)

Psychiatry 43488 (98.2) 799 (1.8)
Counselling 34483 (77.9) 9804 (22.1)

3.2 Targets
In this work, we examined a few different targets representing psychosocial needs.

We include clinician-addressed psychosocial needs based on seeing a counsellor or

psychiatrist. We also included needs self-reported by patients when completing a

questionnaire at the start of their cancer care. The targets and their generation are

described in this section; please see Section A.1 for additional details.

3.2.1 Clinician-addressed Psychosocial Needs

We identified targets representing clinician-addressed psychosocial needs, whether

patients go on to see a counsellor or psychiatrist. Counsellors at BC Cancer see

patients for emotional needs, but also other psychosocial needs such as help with

securing housing, and practical needs such as assistance getting to and from ap-

pointments. Patients can self-refer themselves to counsellors, or can be referred

by clinicians. Patients see psychiatrists for a variety of mental health concerns,

including management of preexisting mental illnesses, as well as for new psychi-

atric symptoms. Patients must be referred to psychiatry by other clinicians, such as

counsellors, or members of the treatment team.

We identified these targets based on whether a patient ever goes on to see a

counsellor or psychiatrist at BC Cancer, within the first five years after the doc-

ument used for the predictions was generated. We show the class distribution of

these targets in Table 3.2
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Figure 3.1: Portion of the Canadian Problem Checklist used used by patients
to self-report their psychosocial cancer needs.

3.2.2 Self-reported Psychosocial Needs

To generate targets representing the self-reported psychosocial needs of cancer pa-

tients, we used scores from the Canadian Problem Checklist portion of the PSSCAN-R,

a questionnaire patients at BC Cancer fill out at the start of their treatment [43].

Figure 3.1 shows the relevant portion of the questionnaire which patients fill out.

This work looked at predicting whether patients will report a threshold number of

Emotional and Informational needs.

The primary cancer needs we investigated were the Emotional needs, as it cor-

responds directly to various aspects of emotional and psychological health. To

determine how performance would change when predicting a different need, we

also looked at Informational needs, picking this one due to its focus on patient

educational needs.

Within these two categories of needs, we sought to predict whether patients had

a minimum numbers of needs, as an attempt to quantify severity. We investigated

the spectrum of having at least one need to having all four or five emotional needs.

Table 3.3 reports how many patients did or did not meet each threshold of having
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Table 3.3: Class distribution for our labels representing whether a patient
meets a threshold of a minimum number of cancer needs.

Type of Need Minimum
Needed

Does not
Meet Threshold (%)

Meets
Threshold (%)

Emotional 1 23116 (42.3) 31510 (57.7)
Emotional 2 39090 (71.6) 15536 (28.4)
Emotional 3 46728 (85.5) 7898 (14.5)
Emotional 4 51797 (94.8) 2829 (5.2)
Emotional 5 53672 (98.3) 954 (1.7)

Informational 1 24455 (44.8) 30171 (55.2)
Informational 2 38235 (70.0) 16391 (30.0)
Informational 3 44184 (80.9) 10442 (19.1)
Informational 4 47625 (87.2) 7001 (12.8)

a minimum number of reported cancer needs.

To reduce the number of possible comparisons when evaluating different mod-

els, we chose to look at our different models using targets corresponding to having

four or more emotional needs, and having four informational needs. We choose

these cutoffs to isolate patients with a high number of needs in each category.

Around 5% of patients met this threshold for emotional needs, and around 12% for

informational needs.

3.2.3 Survival

To compare the prediction of psychosocial cancer needs with a non-psychosocial

outcome, we also generated targets based on survival. We calculated a patient’s

survival starting from the date the document used by the model was generated, at

the start of their care at BC Cancer. While cancer literature typically examines sur-

vival from diagnosis, we were interested in predicting survival from the document

creation. The time between diagnosis and this document being generated varies,

such as when patients first have a surgery outside of BC Cancer, and only come to

BC Cancer months later for chemotherapy.

We calculated survival by finding the number of months from the document

date until a patient passed away, if they did. If not recorded as dying, we instead
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Table 3.4: Class distribution for our labels representing whether a subject sur-
vived a certain number of months.

Months Did not Survive (%) Survived (%) Total Subjects

6 5472 (13.8) 34188 (86.2) 39660
36 14767 (43.8) 18953 (56.2) 33720
60 17140 (67.4) 8283 (32.6) 25423

calculated their survival being until the last date we know they were still alive,

by looking at their last contact date, last attended appointment

or PSSCAN screening date. For some subjects and targets, it was unclear

whether a patient survived a certain number of months, as they may have had nei-

ther a recorded death date or another date indicating they were still alive by the

survival cutoff. These patients were excluded from the training and evaluation for

these targets. We show the survival class balance and number of subjects included

in Table 3.4.

3.3 Specific Subgroups

3.3.1 Stage and Metastatic Status

A patient’s psychosocial needs are expected to change based on how advanced their

disease is, which can affect a patient’s function and risk of mortality [10]. The

patients in our dataset have staging data based on the American Joint Committee

on Cancer (AJCC)’s staging manual, where cancers are staged from Stage I to IV

[7]. Stages are specific to the type of cancer, but generally correspond to being

only in one spot (Stage I), in one area but larger (Stage II), spreading locally such

as to nearby lymph nodes (Stage III) or spreading distantly (Stage IV, metastatic).

Final staging is made by considering a patient’s clinical staging, based on

symptoms and imaging scans, and also on their pathological staging, which is

based on examining tissue removed from a patient. For this project, we used the

final summary staging. Some patients are missing staging data so were excluded.

Specific details of this processing can be found in Section A.1

We sought to investigate whether a patient’s cancer stage at diagnosis impacts
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the performance of our models. To do this, we trained and evaluated our models

separately for patients diagnosed with each cancer stage. We also compared our

models when using data from patients with metastatic illness at diagnosis, where

their cancer has spread to distant parts of the body, to those without metastatic

illness. Metastatic illness corresponds to a poorer prognosis and symptom burden.

We evaluated our outcomes using BOW and CNN models with these cancer

stage subgroups. We show the number of subjects in each stage in Table 3.1.

3.3.2 Male or Female

We also investigated whether model performance varies by biological sex. We

again predicted our different targets using CNNs with male and female subjects.

In our dataset, all patients were recorded as either male or female. For the entire

dataset, 52.4% of subjects are recorded as being female.

3.4 Natural Language Models
In NLP, language models assign probabilities to words based on how they relate to

each other [35]. Most directly, they can be used to determine the probability of one

sequence of words occurring compared to another. However, by using this under-

standing of words within a document, language models can be used to classify a

document, by extending such models to predict a classification task.

In this work, we compare and evaluate different types of language models,

extending them for document classification to predict our binary targets. We test

simple BOW models, and the common neural models CNN and LSTM. We also

deploy a recent neural model which uses transformers, BERT, and a long-document

adaptation, Longformer. This comparison allows us to investigate whether these

more advanced models perform better for our task. Generally, more complicated

or recent methods in machine learning (ML) and NLP may not always be better

suited for a task and the data being used.

3.4.1 Bag-of-Words

BOW is a traditional non-neural language model, and one of the simplest ways

to understand text. A collection of text is used to produce a list of words; for
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example, the most frequently occurring n words. A piece of text in this collection

is then understood as a vector with length n, with each element corresponding to

how many times a word was found in the text. These vectors can then be used

for classification tasks by being fed directly to machine learning algorithms [14].

Linear classifiers and decision-tree methods are commonly used.

Our use of BOW was meant to be a non-neural comparison against our neural

language models. We implemented it using the commonly used L2-regularized lo-

gistic regression. We used term frequency — inverse document frequency (TD-IDF)

weighting, an adjustment for a word’s importance that takes into account both its

term frequency, how often a word occurs in a document, and the inverse document

frequency, the inverse of how many documents a word appears in [46]. We used a

C value of 0.2, corresponding to the inverse of the lambda regularization constant,

and a vector length of 5000 words (features), choosing these hyperparameters em-

pirically as shown in Appendix Section A.1.

3.4.2 Convolutional Neural Networks

CNNs are neural networks originally used for signal and image processing [82],

centred upon the use of convolutions. Convolutions are groups of features - in

image processing adjacent pixels, in NLP adjacent words - considered by the model

together. This allows a reduction of the feature space, while still allowing the model

to consider how features are grouped together.

We based our model on the CNN model originally developed for sentence clas-

sification by Kim [37], and then further adapted by Rios and Kavuluru [58] for

document classification. We based our hyper-parameters on these works, as well

as the further work by Rios and Kavuluru [59] which used psychiatric documents.

In our model, tokenized words are represented as 300-length, randomly instan-

tiated vectors. Convolutions of 3,4, and 5 tokens (window length) are then used to

output single real number values to 500 output channels each. Each output channel

is a vector whose length is equal to the number of convolutions, which is based on

the number of convolutions needed to cover a document by moving over one word

at a time.

These output channels are then connected to a single max-pooled feature vec-
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tor, which is then fed to a final softmax layer which predicts the binary outcomes.

To prevent over-fitting, and as an alternative to other methods of regularization, the

model employs dropout. Elements of the max-pooled layer are randomly set to zero

before being fed to the softmax layer, with probabilities drawn from a Bernoulli

distribution with p=0.5.

3.4.3 Long Short-Term Memory Models

Recurrent neural networks are a type of neural network designed to handle se-

quences of data, especially sequences that can vary in length such as documents

[82]. They utilize a hidden state, which is updated with each part of sequential

data, in addition to the prior hidden state, learning weights to transform both in-

puts.

LSTM is an extension of the RNN model which also includes a memory cell. A

particular hidden state may or may not affect the memory cell as determined by

input and output gates, which are also learned by the model. An output gate then

controls what will be used for the next hidden state, either using the current hidden

state or the memory cell, allowing the next hidden state to be influenced by recent

and further away parts of the sequence.

Our implementation was based upon the model described by Adhikari et al. [3],

which uses multiple types of regularization with an LSTM. We again used random

word embeddings with a dimension of 300. Our hidden unit has a dimension of

512. As in this previous work, we employed dropout as in our CNN model with

p=0.5. We also incorporated embedding dropout, where the model randomly drops

entire word embeddings, with a dropout rate of 0.1. Lastly, as in their work, we

also used weight dropping, which drops some of the values in the weight matrices,

with a dropout rate of 0.2.

3.4.4 Bidirectional Encoder Representations from Transformers

Devlin et al. [22] proposed BERT models to allow deep bidirectional understanding

of text, creating a pretrained model that can be fine tuned to accomplish a wide

variety of tasks. BERT is based on transformers, which, unlike the sequential read-

ing in CNN or RNN models, allow all of the words or tokens in a piece of text to
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be considered at once. Transformers accomplish this by using an encoder to trans-

form the entire piece of text into a sequence of vectors as numerous as the number

of tokens. Fully connected layers then connect these vectors, and can be used to

accomplish tasks. The models were then trained on a large corpora to accomplish

two tasks: predicting masked words, and whether one sentence follows another.

This results in a pretrained model with a sophisticated understanding of language.

Different layers can then be connected on top of this base model to accomplish

different tasks after some fine-tuning.

In this work, we used the pretrained BERT model bert-base-uncased,

which was pretrained on general English text. We tried using some BERT models

pretrained on more specific clinical data created by Alsentzer et al. [5], but these

did not seem to improve performance. We fine-tuned the model with a binary

classification head, and used the maximum number of tokens supported by BERT,

512.

3.4.5 Longformer

BERT is limited in only being able to use up to 512 tokens, as the model’s memory

requirement scales quadriatically, O(n2), with the number of tokens. While this

may be enough to cover many pieces of text such as sentences or tweets, almost

all of our documents are larger than this, as we show in Figure 3.2. Only 7.07%

of the documents in our psychosocial outcome training dataset had 512 or fewer

tokens when tokenized by BERT, with the mean and median number of tokens being

988.49 and 945 respectively.

Beltagy et al. [12] proposed the Longformer model as an extension of BERT

that can handle larger documents, up to 4092 tokens. This model’s memory re-

quirements scale linearly instead of quadriatically. Instead of full attention between

all tokens, Longformer uses three more selective attention mechanisms. A sliding

window has a token attend to a set number of tokens on either side of it. A dilated

sliding window allows attention between a token and others farther away. Global

attention is also used, but only for a set number of tokens, which are allowed to

attend to all other tokens and vice versa.

As for BERT, we used a model pretrained on a general English corpus:
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Figure 3.2: Histogram of the number of tokens in the documents used to train
our models to predict whether a patient will see a psychiatrist in the
five years after document generation, after being tokenized by the bidi-
rectional encoder representations from transformers (BERT) Tokenizer.
The dotted line shows the limit of BERT, at 512 tokens.

longformer-base-4096. We used the default attention window size, 512.

To utilize this model fully, we used it with up to the maximum 4096 tokens per

document as supported by this model.

3.5 Training and Evaluation

3.5.1 Training, Validation, and Test Sets

When training machine learning models for prediction, it is important to consider

that models may learn to fit training data well, but not be able to predict new data

successfully, a phenomenon called overfitting [64]. The potential for overfitting
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worsens as models become more complex, such as when using the neural methods

employed in this project.

To avoid overfitting, we separated both hold-out validation and test sets. We

included 70% of subjects in the training set, used to train our models. We made

a hold-out validation set with 10% of subjects, and a hold-out test set with 20%

of subjects. We trained models using the training set, and evaluated them on the

validation set while working on this project, to understand and guide development.

Results in this work represent the best performance on the validation set. Evalu-

ating these models on the test set will provide the most accurate understanding of

how the models would perform on novel data. However, for the purpose of this

thesis, we have not yet evaluated on the test set, and will be reporting these results

in forthcoming publications, after some additional work such as further tuning.

To distribute patients randomly between the sets, we assigned sets based on the

last digit of their study ID. The validation set included IDs ending in the number

two, while the test set has those ending in five or eight. The remaining subjects

were included in the training set. We confirmed with BC Cancer Data Access that

these IDs are randomly generated and not biased.

3.5.2 Implementing and Training our Models

We conducted this project on a virtual installation of Windows Server 2012 R2,

with an eight processor Intel Xeon 8160 CPU, and 16 GB of RAM. We had access

to a shared GPU through a NVIDIA GRID V100D-16Q, with 16 GB of VRAM

allocated to our virtualisation. We ran BOW models on the CPU, and all other

models on the virtual GPU.

For all models, we used a learning rate of 0.00001, except for Longformer

where we used 0.0001. For our BOW implementation, we deployed and fit our

model using scikit-learn [52], using their LogisticRegression model and its

default functions to fit and predict.

For our neural models, we allowed up to 100 epochs, stopping training after

five epochs of no increase in balanced accuracy when tested on the validation set.

We used binary cross-entropy loss for all of these models, along with an Adam

optimizer [38].
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For our CNN and LSTM models, we implemented them as PyTorch nn mod-

ules, manually writing code to implement forward and back-propagation through

batches and epochs. We re-used some code from hedwig Github repository1,

though modifications were required due to recent PyTorch and other updates

For BERT and Longformers, we used their respective classes from Hugging-

Face’s transformer library [76], the BertModel and LongformerModel classes

respectively. We utilized PyTorch Lightning [25] to handle some of the boilerplate

code for training and evaluating.

3.5.3 Dealing with Class Imbalance

Many of the targets we examined are imbalanced, as shown in Tables 3.2, 3.3, and

3.4. We explored two options to deal with this class imbalance, undersampling and

loss weighting.

For our undersampling technique, we randomly selected the training dataset

to have at most twice as much of one class as another. For our loss weighting,

we adjusted our binary cross entropy loss, multiplying the loss by a factor so that

the product of the factor and a class’s proportion would be the same between both

classes.

As shown in Table A.2, weighted loss usually outperformed undersampling,

so we generally used this throughout this work, except for when comparing the

impact of token length on prediction. This helped cut down on the time required to

run the Longformer models, which could take weeks when using the full training

dataset and weighted loss.

3.5.4 Evaluation Metrics

We chose a variety of evaluation metrics to allow comparison of our results with

prior work in both computer science and medicine, including metrics that adjust for

class imbalance. We define these metrics, besides AUC in Table 3.5. Throughout

this work, we display these metrics for all results, except for positive predictive

value (PPV), negative predictive value (NPV), and specificity, which we recorded

separately. AUC represents the area under the receiver-operator curve, which is a

1https://github.com/castorini/hedwig
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Table 3.5: Evaluation metrics used in this work, expressed in terms of the
four components of the confusion matrix: true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN). We also list
equivalent definitions of Balanced Accuracy and F1 based on other met-
rics.

Metric Definition

Accuracy T P+T N
T P+T N+FP+FN

Recall/Sensitivity T P
T P+FN

Precision T P
T P+FP

Specificity T N
T N+FP

Positive Predictive Value T P
T P+FP

Negative Predictive Value T N
T N+FN

Balanced Accuracy
T P

T P+FN + T N
T N+FP

2

F1 2T P
2T P+FP+FN

Balanced Accuracy Sensitivity+Speci f icity
2

F1 2∗ Precision∗Recall
Precision+Recall

plot of sensitivity against one minus specificity, thereby providing a metric taking

into account both of these components.

3.6 Interpreting our Models

3.6.1 Interpreting Bag-of-word Models

To understand our BOW models, we examined feature importance using scikit-

learn’s implementation. This corresponds to the absolute value coefficient size of

the L2-regularized logistic regression models. We extracted the top ten tokens from
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our BOW models by this weight to better understand the models, as a representation

of what tokens are most important for either positive or negative predictions.

3.6.2 Interpreting Neural Models

Given that neural models have often been described as “black boxes” that are dif-

ficult to interpret, we sought to better understand our models using the Captum

interpretability library for PyTorch [39]. Specifically, we used the library to imple-

ment integrated gradients [69].

This is an attribution method that allows visualization of input features, in our

case text, to understand what features are contributing to a prediction. Integrated

gradients accomplish this by generating a linear interpolation between an empty

input text and the actual text, and then calculating an averaged gradient represent-

ing how much each token impacts the prediction throughout the interpolation. This

allows a straightforward understanding of how a token in a document is impacting

its prediction when used by a trained model. However, this calculated importance

is specific to a token’s surrounding text, so a single token may have different im-

portance depending on its context and the document it is in.

3.7 Code Availability
Due to the size of this project and it being part of larger endeavours to use and

analyze this dataset, the code for this project is found in three separate Github

repositories: initial subject selection and document processing2, preparation of the

datasets directly used in this project3, and the actual code used for training and

evaluating our models4.

2https://github.com/jjnunez11/scar
3https://github.com/jjnunez11/scar nlp data
4https://github.com/jjnunez11/scar nlp
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Chapter 4

Results

In Chapter 4 we report the results of training our models to predict psychosocial

needs and then evaluating them on our hold-out validation set, deferring evaluation

on our test set for now. After describing these results, we show the results of

interpreting the models to understand how they are arriving at their predictions.

We start in Section 4.1 with a summary of how the models compared against

each other when predicting the various targets. We then describe the results of

investigating our primary hypotheses. We report the results of predicting our

clinician-addressed psychosocial need targets, whether subjects will see a psychia-

trist or counsellor, in Section 4.2. The self-reported psychosocial targets, emotional

or informational needs, then follow in Section 4.3. We then compare this to pre-

dicting a non-psychosocial target, survival, in Section 4.4.

We then describe the results pertaining to our secondary hypotheses. We look at

the performance of our models when predicting outcomes within subgroups based

on biological sex and by cancer stage, in Section 4.5. As BERT models are limited

in the number of a document’s tokens (words) they can use, we then investigate

the impact of token limits in Section 4.6. We do this by using Longformer models,

which can use more tokens, alongside BERT, with different token inclusion limits.

Finally, in Section 4.7, we interpret our models, examining co-efficient weight-

ing for our BOW models, and using Integrated Gradients to further understand our

neural models.
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Table 4.1: Summary of the best performing model on three performance met-
rics for the outcomes examined in this work. Here we compare Bag-
of-Words (BOW), Convolutional Neural Networks (CNN), Long-term
Short-term Memory (LSTM) and bidirectional encoder representations
from transformers (BERT) models, across balanced accuracy, receiver
operator-curve area-under-curve (AUC), and F1 metrics. Seeing a coun-
sellor or psychiatrist, and survival, are based on the five years following
when the document used by the models was generated. Two models in-
dicates a tie at two decimal places.

Target Balanced
Accuracy

AUC F1

Seeing a psychiatrist BOW LSTM CNN
Seeing a counsellor CNN/LSTM CNN/LSTM CNN/LSTM

Four or more emotional needs BOW/BERT BERT BoW
Four informational needs CNN CNN CNN

Surviving five years CNN CNN CNN

4.1 Comparing Models
When comparing BOW, LSTM, CNN and BERT models across our outcomes, we see

that CNN and LSTM models were often the best performing, though BOW and BERT

were sometimes most performant. We show a summary of these results in Table

4.1, and further details for the specific metrics in the following sections, in Tables

4.2, 4.3, 4.4, 4.5, and 4.6. We also found that a variation of BERT which can use

more tokens has higher performance than standard BERT, as shown in Section 4.6.

We note that, across models, performance was higher when predicting our non-

psychosocial outcome, survival (highest balanced accuracy 86%), than any of our

psychosocial outcomes; the highest balanced accuracies were in the mid eighties

for survival, but low sixties to low seventies for the psychosocial outcomes.
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Table 4.2: Model performance when predicting whether a patient will see a
psychiatrist within the first five years after their cancer diagnosis. We
compare bag-of-words (BOW), convolutional neural network (CNN),
long-short term memory (LSTM) and bidirectional encoder representa-
tions from transformers (BERT) models. We report various performance
metrics including receiver-operator-curve area-under-curve (AUC).

Model Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 0.80 0.73 0.73 0.11 0.06 0.66
CNN 0.87 0.68 0.75 0.12 0.07 0.49

LSTM 0.80 0.72 0.77 0.10 0.06 0.63
BERT 0.73 0.62 0.63 0.07 0.03 0.51

4.2 Predicting Clinician-addressed Psychosocial Needs

4.2.1 Seeing a Psychiatrist

We find that LSTM and BOW models generally had the highest performance when

predicting whether a subject will see a psychiatrist within five years, a task with

more class imbalance than our other outcomes. As shown in Table 4.2, perfor-

mance was generally higher than when predicting the self-reported emotional or

informational needs, with our LSTM model achieving a balanced accuracy of 0.72

and AUC of 0.77.

4.2.2 Seeing a Counsellor

As another outcome related to a cancer patient’s clinician-addressed psychosocial

needs, we predicted whether patients will see a counsellor within the five years af-

ter generation of the document used by our models. Comparing the four models in

Table 4.3, we find CNN and LSTM models performed best, and that performance for

predicting this outcome was higher in some metrics, such as AUC and balanced ac-

curacy, than when predicting self-reported emotional or informational needs. The

three neural models all achieved AUC over 0.70, though the balanced accuracies

fell short of this threshold.
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Table 4.3: Model performance when predicting whether a patient will see a
counsellor within the first five years after their cancer diagnosis. We com-
pare bag-of-words (BOW), convolutional neural network (CNN), long-
short term memory (LSTM) and bidirectional encoder representations
from transformers (BERT) models. We report various performance met-
rics including area-under-curve (AUC).

Model Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 0.66 0.66 0.66 0.48 0.37 0.67
CNN 0.70 0.68 0.75 0.49 0.40 0.65

LSTM 0.68 0.68 0.75 0.49 0.39 0.68
BERT 0.65 0.65 0.70 0.46 0.35 0.66

4.3 Predicting Self-reported Psychosocial Needs

4.3.1 Emotional Needs

We predicted whether patients self-reported a minimum threshold of emotional

cancer needs when filling out a questionnaire at the start of their cancer care. We

evaluated BOW and CNN models on all of the possible cutoffs, as the latter was

generally best performing, and the former is a non-neural method. In Table A.3 we

see that having a cutoff at neither extreme tends to lead to the best performance.

The CNN models generally outperformed BOW across the evaluated metrics.

Only around 10% of patients have four or more emotional needs. We eval-

uated this cutoff across four models, as shown in Table 4.4. For this number of

needs, BOW and BERT models generally performed the best, though CNN models

are somewhat similar. Performance was numerically lower than when predicting

clinician-addressed needs, with only our BERT model having an AUC above 0.70,

and no models achieving a balanced accuracy above this level.

4.3.2 Informational Needs

We also looked at the prediction of informational needs, as a psychosocial need

more related to needing educational support than psychological help. We com-
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Table 4.4: Model performance when predicting whether a patient self-reports
four or five emotional needs at the start of their cancer care. We compare
bag-of-words (BOW), convolutional neural network (CNN), long-short
term memory (LSTM) and bidirectional encoder representations from
transformers (BERT) models. We report various performance metrics
including receiver-operator-curve area-under-curve (AUC).

Model Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 0.69 0.66 0.66 0.18 0.10 0.63
CNN 0.69 0.63 0.67 0.16 0.09 0.57

LSTM 0.47 0.58 0.63 0.12 0.07 0.70
BERT 0.64 0.66 0.71 0.17 0.09 0.68

Table 4.5: Model performance when predicting whether a patient self-reports
four informational needs at the start of their cancer care. We compare
bag-of-words (BOW), convolutional neural network (CNN), long-short
term memory (LSTM) and bidirectional encoder representations from
transformers (BERT) models. We report various performance metrics
including receiver-operator-curve area-under-curve (AUC).

Model Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 0.61 0.60 0.60 0.27 0.18 0.59
CNN 0.59 0.61 0.65 0.28 0.18 0.64

LSTM 0.44 0.57 0.61 0.25 0.15 0.75
BERT 0.60 0.59 0.62 0.27 0.17 0.59

pared the models using a cutoff of having all four informational needs asked, which

around 12% of our subjects reported. As shown in Table 4.5, we see that CNN mod-

els performed best, though generally the prediction of these needs seemed harder

than the emotional needs. None of the models achieved either balanced accuracies

or AUC above 0.65.

Again using BOW and CNN models to examine performance on different need

cutoffs, we see our metrics are similar between the cutoffs, with a slight edge for

CNN on some metrics (Appendix Table A.4).
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Table 4.6: Model performance when predicting whether a patient will sur-
vive for five years after the document used for training models was gen-
erated. We show results of Bag-of-Words (BOW), convolutional neural
networks (CNN), long-short term Memory (LSTM) and bidirectional en-
coder representations from transformers (BERT) models. We report var-
ious performance metrics including receiver-operator-curve area-under-
curve (AUC)

Model Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 0.84 0.83 0.83 0.77 0.72 0.82
CNN 0.85 0.86 0.92 0.79 0.71 0.89

LSTM 0.84 0.85 0.91 0.78 0.71 0.86
BERT 0.84 0.84 0.91 0.77 0.72 0.84

4.4 Predicting Survival, a Non-psychosocial Outcome
In order to compare the performance of predicting psychosocial outcomes with a

non-psychosocial target, we trained our models to predict survival, an important

outcome investigated in prior work. As five-year survival is the common duration-

of-interest, we compare the four models when predicting it in Table 4.6. Of note,

our target represents whether a subject survived five years from the document used

by the model being generated, instead of from their cancer diagnosis date as usually

used in the literature. We found that CNN models offer the highest performance,

and that the metrics are higher for this outcome than the psychosocial ones. For this

target, the balanced accuracies reached the mid-eighties and AUC the low-nineties.

As different lengths of survival can be of interest depending on the clinical sit-

uation, we again used BOW and CNN models to compare the prediction of different

survival lengths: six months, thirty-six months, and sixty months. We show these

results in Appendix Table A.5. The CNN models have slightly higher performance

when predicting the longer survival duration, though metrics are similar for the

BOW models.
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4.5 Predicting with Subgroups

4.5.1 Fewer Subjects

As we are interested in examining model performance for subgroups of our dataset,

such groupings based on biological sex or cancer stage, we first examined how

performance changes when using fewer subjects (Appendix Table A.6). Predicting

whether a patient will see a psychiatrist within 5 years, we saw an increase for most

metrics as the number of subjects is increased, all the way to the maximum number

available in our dataset, 30953.

4.5.2 Metastatic Status and Cancer Stage

Given that the stage of a patient’s cancer can affect their prognosis and cancer

needs, we sought to investigate how our models would perform when training and

evaluating on only subjects diagnosed with a certain stage of cancer. In Table 4.7,

we show the results of training our models to predict seeing a psychiatrist within

five years, with subgroups based on AJCC staging. As not all subjects in our dataset

had intact staging data, we show the numbers of subject in each stage, and also

include a group of subjects with non-metastatic disease, Stage I, II, and III.

We see a mixed set of results; both models seem to have predicted better for

patients with Stage II disease, and the prediction seems more difficult for patients

with Stage IV illness. Notably, the metrics were generally higher when predicting

with 5535 Stage II patients, than with 6000 randomly selected patients. Of note,

the Stage IV prediction had only a small number of patients who saw psychiatry;

only 54/3636 in the training set, and 6/552 in the validation set.

Given the class imbalance of predicting whether a patient will see psychiatry,

we also examined predicting whether patients will have four or more emotional

needs, to see whether performance would again be higher when only including

patients diagnosed with Stage II illness. In Table 4.8, we again see improved per-

formance when predicting with only Stage II patients.
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Table 4.7: Model performance when predicting whether a patient will see
psychiatry in the five years following document generation at the start of
their cancer care. Here we compare the results of Bag-of-Words (BOW)
and Convolutional Neural Networks (CNN) by subgroups of patients
based on their cancer stage at diagnosis. Not all subjects in our dataset
had staging data, and we show the number of subjects used to train each
model (n). AUC: receiver-operator-curve area-under-curve.

Model Stage n Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW I 4078 0.88 0.66 0.66 0.07 0.04 0.43
BOW II 5535 0.72 0.76 0.76 0.10 0.05 0.80
BOW III 3809 0.77 0.69 0.69 0.09 0.05 0.60
BOW I+II+III 13422 0.79 0.76 0.76 0.10 0.06 0.72
BOW IV 3638 0.92 0.55 0.55 0.05 0.03 0.17

CNN I 4078 0.78 0.89 0.92 0.09 0.05 1.00
CNN II 5535 0.57 0.75 0.85 0.08 0.04 0.93
CNN III 3809 0.91 0.66 0.66 0.14 0.08 0.40
CNN I+II+III 13422 0.71 0.67 0.77 0.07 0.04 0.62
CNN IV 3638 0.99 0.50 0.46 0.0 0.0 0.0

4.5.3 Biological Sex

Given the differences between biological sexes in mental health and associated

care patterns, we sought to determine whether prediction performance would be

different between the two groups. As shown in Table 4.9, performance appears to

be higher when predicting seeing a psychiatrist for a subset of patients identified

as having female sex. There is a difference in the rate at which the sexes see

psychiatry, with almost twice as many females (2.28%) seeing the discipline than

males (1.28%). All subjects in our dataset were documented as having either male

or female sex.

4.6 Impact of Token Limits for Transformer Models
BERT models are limited to using 512 tokens, and our documents are often much

larger than this. We used Longformer models to determine if a similar transformer
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Table 4.8: Model performance when predicting whether a patient self-reports
four or five emotional needs at the start of their cancer care. Here we
compare the results of Bag-of-Words (BOW) and Convolutional Neural
Networks (CNN) by subgroups of patients based on their cancer stage at
diagnosis. Not all subjects in our dataset had staging data, and we show
the number of subjects used to train each model (n). AUC: receiver-
operator-curve area-under-curve.

Model Stage n Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW I 4078 0.77 0.56 0.56 0.10 0.06 0.32
BOW II 5535 0.63 0.71 0.71 0.18 0.10 0.81
BOW III 3809 0.64 0.57 0.57 0.12 0.07 0.48
BOW I+II+III 13422 0.7 0.63 0.63 0.15 0.09 0.56
BOW IV 3638 0.65 0.54 0.54 0.1 0.06 0.42

CNN I 4078 0.62 0.54 0.57 0.09 0.05 0.44
CNN II 5535 0.58 0.70 0.73 0.16 0.09 0.84
CNN III 3809 0.88 0.55 0.55 0.13 0.10 0.19
CNN I+II+III 13422 0.69 0.58 0.63 0.12 0.07 0.46
CNN IV 3638 0.74 0.57 0.55 0.12 0.07 0.38

Table 4.9: Model performance when predicting whether a patient will see
psychiatry in the five years following document generation at the start of
their cancer care. Here we compare the results of Bag-of-Words (BOW)
and Convolutional Neural Networks (CNN) on those who identified as
males vs female. All subjects in our dataset were recorded as having one
of these two sexes. AUC: receiver-operator-curve area-under-curve.

Sex Model Accuracy Balanced
Accuracy

AUC F1 Precision Recall

Female BOW 0.81 0.69 0.69 0.12 0.07 0.57
Female CNN 0.92 0.64 0.74 0.16 0.10 0.36

Male BOW 0.85 0.67 0.67 0.08 0.04 0.48
Male CNN 0.73 0.61 0.61 0.05 0.02 0.48
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Table 4.10: Model performance when predicting whether a patient will see
psychiatry in the five years following document generation at the start
of their cancer care. Here we compare the impact of token lengths, when
using bidirectional encoder representations from transformers (BERT),
and a variation that can use more tokens, Longformer. AUC: receiver-
operator-curve area-under-curve.

Model Max
Tokens

Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BERT 256 0.17 0.51 0.51 0.04 0.02 0.87
BERT 512 0.64 0.63 0.63 0.06 0.03 0.61

Longformer 256 0.80 0.62 0.66 0.07 0.04 0.43
Longformer 512 0.77 0.61 0.66 0.07 0.04 0.45
Longformer 1024 0.67 0.63 0.63 0.06 0.03 0.60
Longformer 2048 0.75 0.64 0.71 0.07 0.04 0.52
Longformer 4096 0.72 0.64 0.69 0.07 0.04 0.56

model would be able to achieve higher performance if able to use more of the

document. In Table 4.10 we see that Balanced Accuracy and AUC increased when

BERT can use 512 tokens instead of 256 tokens, and as Longformer is able to use up

to 2048 tokens. Longformer is able to achieve an AUC 0.08 higher than BERT when

using 2048 tokens. Using a limit of 4096 tokens did not improve performance.

To determine whether this benefit was isolated to predicting whether patients

would see a psychiatrist, we also investigated the impact of the number of tokens

used when predicting five year survival, as we show in Table 4.11. Using more

tokens increased the performance by only a small amount. The performance of our

Longformer model only increased by 0.01 when increasing the number of tokens

from 256 to 2048. It then fell slightly when using a maximum of 4096 tokens.

4.7 Interpreting our Models
In this section, we show the results of interpreting our models. As we discuss the

layout and ordering of the sections of medical consultation documents, in Table

4.12 we show the headings of the document used to interpret our neural models

in Subsection 4.7.2. These headings are typical, though “Gynecologic History”
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Table 4.11: Model performance when predicting whether a patient will see
psychiatry in the five years following document generation at the start
of their cancer care, when models can use a varying maximum num-
ber of tokens. We compare using bidirectional encoder representations
from transformers (BERT), and a variation that can use more tokens,
Longformer. AUC: receiver-operator-curve area-under-curve.

Model Max
Tokens

Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BERT 256 0.84 0.82 0.90 0.76 0.76 0.76
BERT 512 0.84 0.83 0.90 0.76 0.72 0.81

Longformer 256 0.82 0.83 0.91 0.75 0.68 0.83
Longformer 512 0.83 0.83 0.91 0.76 0.70 0.83
Longformer 1024 0.85 0.84 0.92 0.77 0.75 0.79
Longformer 2048 0.86 0.84 0.92 0.78 0.78 0.78
Longformer 4096 0.84 0.84 0.91 0.77 0.70 0.86

would be omitted or replaced by other specific histories depending on cancer type,

and “Impression and Plan” are commonly separated into two separate headings.

4.7.1 Bag-of-Words

To better understand the performance of our BOW models, we examined the fea-

ture importance of the trained models. As we employed L2-regularized logistic

regression models, this feature importance is based on the absolute value of the

coefficients, which can correspond to importance for either the positive or nega-

tive prediction. We show the top ten tokens based on this metric in Table 4.13.

These tokens are words that have been stemmed to remove endings. Due to the

possibility of correlated variables affecting coefficient weights, especially given

that we did not use any L1-regularization, we must use caution when interpreting

these rankings. However, we see some expected results, such as the stems depress

(depression, depressive), counsel (counselling, counsellor), and anxieti (anxiety,

anxieties) having large weights for many of the psychosocial targets. Types of

cancer and palliat (palliative, palliation) are important for the survival target.
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Table 4.12: Headings in the document we used to interpret our neural models,
as a representation of typical headings in oncology consultation docu-
ments. In other documents, “Impression and Plan” may be split into
two separate sections, and “Gynecologic History” would be replaced
depending on the patient’s type of cancer.

Section

Reason for Referral
History of Present Illness

Gynecologic History
Past Medical History
Past Surgical History

Medications
Allergies

Social History
Family History

Physical Examination
Impression and Plan

4.7.2 Neural Models

To better understand our neural models, we show the results of using integrated

gradients to interpret our models when applied to a piece of text using the Captum

library [39]. To balance privacy considerations with wanting to show the results on

real data, we show only relevant excerpts of applying integrated gradients to an en-

tire document which had identifying information anonymized; this anonymization

did not change these results.

The document used was from a patient who did see a psychiatrist within five

years, and who also survived five years. To keep our results concise, we show the

interpretation of CNN and BERT models, a pair that differs in their use of transform-

ers and ability to use the whole text. We compare trained models used to predict

a psychosocial outcome, seeing a psychiatrist, and contrast this with surviving five

years, a non-psychosocial outcome.
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Table 4.13: Top ten features by feature importance of our bag-of-word
(BOW) model when used to predict the stated outcomes. Survival, psy-
chiatry, and counselling are all outcomes in the five years following the
document used by the models being generated at the start of the sub-
ject’s cancer care. Our BOW model is using L2-regularized logistic
regression, so feature importance is especially impacted by correlation
between features.

Emotional
Needs

Informational
Needs

Seeing
Psychiatry

Seeing
Counselling

Survival

1 depress 2011 depress depress palliat
2 2011 2011. anxieti counsel 2015
3 counsel radiat radiat princ breast
4 anxieti skin prostat georg risk
5 no no daughter prostat lung
6 pound tamoxifen also anxieti 2016
7 pain basal mri any lymphoma
8 colon also treatment as no
9 retir 2015 x no servic
10 anxious md counsel retir .

Interpreting Models Predicting Seeing a Psychiatrist

For our example text, our CNN model correctly predicted that the patient would go

on to see psychiatry, but the BERT model did not. We show some relevant excerpts

in Figure 4.1. In this figure, we show how the models assign importance to words

in a section of the document describing symptoms. In Figure 4.1 (a), we see our

CNN model finds “also noticed” and another “noticed” to be predictive, but not an

initial “noticing”. This pattern may correspond to predicting a patient more likely

to see psychiatry when endorsing many symptoms, as we will discuss further in

Chapter 5. On the other hand, our BERT model finds only light importance for a few

words, except for a stronger negative importance for “bleeding”. Our CNN model

attributes importance to more words in a section of the document describing social

and family history, as in Fig 4.1 (c). It found the mention of grandparents having

cancer to be important for the prediction, as well as “breast”, and a “currently”

that is preceding mention of being in a relationship. There is some lighter negative
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importance assigned to “nonsmoker”. Due to BERT’s limit of 512 tokens, it is not

able to use this section, or any of the document following gynecologic history,

including missing medications, family and social history, and the impression and

plan.

Interpreting Models Predicting Survival

To compare how the models are working when predicting a non-psychosocial out-

come, we show the importance of words when predicting five-year survival in Fig-

ure 4.2, again with our CNN and BERT models. We show an excerpt that seemed

to have most of the important words in both models, from the beginning of the

document where the physician describes the patient’s cancer and investigations to

date. Both models correctly predict that the patient will survive five years. In

the CNN model, we see “ultrasound”, ”biopsy was negative” and “marrow” as im-

portant words or phrases that were important in predicting the patient’s survival,

while “multiple” preceding “peripheral solid nodules” was important in predicting

not surviving. There are some similarities with the BERT interpretation, with “ul-

trasound” again important in predicting survival, but “repeat”, “revealing”, “mar-

row”, and “peripheral” all shaded to indicate importance in predicting the patient

not surviving.
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(a) Excerpt of a clinical document describing symptoms with CNN word importance

(b) Excerpt of a clinical document describing symptoms with BERT word importance

(c) Excerpt of a clinical document describing family and social history with the CNN word
importance

Figure 4.1: Interpretation of our convolutional neural network (CNN) and
bidirectional encoder representations from transformers (BERT) mod-
els, showing the importance of words when predicting whether a pa-
tient will see a psychiatrist, according to interpretation with integrated
gradients. We show excerpts from a clinical document that has been
anonymized for presentation here, with any potentially identifying
words, names, dates or numbers changed. We show only some rele-
vant excerpts, showing a portion describing symptoms in (a) and (b).
We also show a segment describing social and family history in (c)
which is only used by the CNN model due to BERT’s token limits. The
darker the green highlighting, the more predictive of seeing a psychi-
atrist, while red similarly corresponds to not seeing a psychiatrist. A
red-green colour-blind viewable version is available in Appendix Fig-
ure A.1
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(a) Excerpt of a clinical document describing a patient’s cancer with CNN word impor-
tance

(b) Excerpt of a clinical document describing a patient’s cancer with BERT word impor-
tance

Figure 4.2: Interpretation of our convolutional neural network (CNN) and
bidirectional encoder representations from transformers (BERT) mod-
els, showing the importance of words when predicting whether a pa-
tient will survive for five years, according to interpretation with inte-
grated gradients. We show excerpts from a clinical document that has
been anonymized for presentation here, with any potentially identify-
ing words, names, dates or numbers changed. We show an excerpt de-
scribing a patient’s cancer. The darker the green highlighting, the more
predictive of surviving five years, while red similarly corresponds to
not surviving. A red-green colour-blind viewable version is available in
Appendix Figure A.2
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Chapter 5

Discussion

In this Chapter we discuss the implications of this work. We start by returning to

our primary hypotheses in Section 5.1, discussing the general results of predicting

psychosocial needs and survival. We consider our results relative to our secondary

hypotheses in Section 5.2, interpreting the performance of our models when using

subgroups based on sex and cancer staging, and when we vary the number of tokens

our models can use. We then discuss broader implications of this work, first from

a clinical perspective in Section 5.3, and then from a computational perspective in

Section 5.4. We end this chapter with Section 5.5, where we discuss limitations of

this work and how they may be addressed, and then Section 5.6, how future work

may build upon this project.

5.1 Primary Hypotheses
1. Neural NLP models can be used with a patient’s initial oncologist consulta-

tion document to predict clinician-addressed psychosocial cancer needs,

such as whether a patient will see a counsellor or psychiatrist. Specifically,

they can predict these outcomes with balanced accuracy and AUC numeri-

cally at least 0.70, a performance threshold often met in other psychosocial

predictions.

Our results partially support our first primary hypothesis. Two of our mod-

els, LSTM and BOW, were able to predict whether subjects will see a psychiatrist
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within five years of document generation with balanced accuracy and AUC over

0.70, and our CNN model’s AUC also surpassed this threshold. While this level of

performance may not reach the 0.90 thresholds often thought to be needed for clin-

ical applications, it is comparable to the performance others have found in other

psychiatric or psychosocial work predicting outcomes in the future, such as using

clinical data to predict antidepressant response [50]. As such, we find these results

consistent with a successful first attempt at this predictive task, laying a foundation

for further work to improve performance.

Interestingly, the performance of our models predicting if patients will see a

counsellor in this time frame was numerically worse, and short of the 0.70 thresh-

old for all models for balanced accuracy, though AUC did surpass this level for

the three neural models. This was an unexpected result, as this target is less class

imbalanced than whether patients will see psychiatry. There may be different rea-

sons why this predictive task seemed to be more difficult. Patients see counsellors

at BC Cancer for a wide variety of psychosocial reasons, including psychological

support, but also for more functional help such as securing housing or obtaining

assistance with transportation to receive care. On the other hand, psychiatrists see

patients for a narrower scope, centred upon treating psychiatric illness. It may be

more difficult for models to learn a wider range of reasons someone would be re-

ferred. Another consideration is that patients must be referred to psychiatry by a

clinician. Clinicians may therefore document details pertaining to a psychiatry re-

ferral more reliably than when considering a counselling referral, which patients

can self-refer to.

Prior work has often discussed the need for interpretability when applying ar-

tificial intelligence (AI) techniques to clinical domains [2]. While interpretation

methods have limitations, we attempted to “look within the black box” in this

work. Interpreting our BOW model by looking at coefficient weights revealed that

some expected words (technically, their stems) had high importance. For instance,

depress and anxiety were the top two words for predicting whether a pa-

tient will see a psychiatrist, and depress and counsel for seeing a counsellor.

Other words with large absolute value co-coefficients for this task include princ

and georg, which may correspond to different levels of counselling availability

at the Prince George BC Cancer site, or the different rates of psychosocial needs in
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this more rural population. Stems corresponding to types of cancer and treatment

also seemed important for whether a patient will see psychiatry.

Interpreting the neural models with integrated gradients was less straightfor-

ward, but still interesting. In one demonstrative document, the model seemed to

find that words describing a patient’s family history of cancer was predictive of

seeing psychiatry. This may suggest that a family history of cancer may make a

patient more likely to need support from a psychiatrist due to reactivation of inter-

generational trauma from facing this illness. Perhaps a patient lost a loved family

member from a difficult journey with cancer at a young age, and now worries they

will similarly have a challenging experience. A less interesting explanation could

be that the oncologists who who do not spend time taking a comprehensive family

history are less likely to refer a patient to psychiatry due to asking a narrow set of

questions, a possible explanation of lack of referral to psychosocial supports doc-

umented in prior work [49, 70]. Providers who do ask about family history may

also be more in tune with holistic cancer needs.

Our interpretation of the neural models may suggest that our models are able

to pick up on subtle nuances in the language used by the treating oncologists. For

example, in our demonstrative document, when predicting which patients will see

psychiatry, our model assigned importance to “also noticed” and a later “noticed”,

but not an initial “notices”. These three uses of the verb “to notice” preceded

symptoms the patient was experiencing. The model may have picked up that when

an oncologist uses the verb “to notice” multiple times, it corresponds to a patient

that is endorsing many symptoms. Such patients may be experiencing anxiety,

which can increase awareness of bodily sensations, and so may be more likely to

see psychiatry. This could be an example of how neural models may be able to pick

up on language features whose importance for prediction may not be particularly

obvious.

2. Neural NLP models can be used with a patient’s initial oncologist consul-

tation document to predict a patient’s self-reported emotional and infor-
mational cancer needs around the time of this document being generated,

also at the performance threshold of balanced accuracy and AUC being above

0.70.
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Unlike the results of predicting clinician-addressed needs, our results for pre-

dicting self-reported psychosocial cancer needs did not support our hypothesis. For

both emotional and informational needs, the models’ performance did not surpass

the 0.70 threshold for either balanced accuracy or AUC, besides our BERT model

whose AUC was 0.71 when predicting a patient reporting at least four emotional

needs.

One could expect that this task would have been easier than the clinician-

addressed needs given the temporal relationship; our models predicted whether a

patient would see a psychiatrist or counsellor within five years of the document be-

ing generated, while these needs were self-reported by the patient within five days

of the document being generated. However, it may simply be that these needs are

more varied and less connected to the content documented by the treating oncol-

ogist. These needs are entirely self-reported, while the clinician-addressed needs

are always (psychiatry) or sometimes (counselling) referred to by clinicians. As

such, the treating oncologist may have less reason to include details around these

needs. Our worse results for predicting informational needs may suggest these

needs may vary greatly patient-to-patient with respect to the information recorded

in these documents. This is somewhat surprising; one could expect that infor-

mational needs have a relationship with a patient’s educational level and current

employment, which is often recorded in these documents.

Interpretation of these models may shed some light. For example, when look-

ing at absolute coefficient weights, we see some expected words corresponding

to emotional needs (depress, counsel, anxieti, pain). However, the top

two tokens for informational needs were years (2011, 2011.), which seem to

be a possible result of overfitting, or a complex set of variable correlation, as op-

posed to obviously helpful tokens. However, some of the words with high impor-

tance were consistent with informational needs, such as the breast cancer treatment

tamoxifen suggesting that breast cancer patients may commonly have more or

less informational needs.

3. Neural NLP models can be used with a patient’s initial oncologist consulta-

tion document to predict a non-psychosocial outcome, surviving at least five
years after this document was generated. This performance will be numeri-

47



cally higher than the performance of predicting the psychosocial outcomes,

but will serve as a useful comparator, and balanced accuracy and AUC will

be at least 0.80, a performance typically achieved by prior work predicting

survival.

Compared to our psychosocial need predictions, our models were able to pre-

dict five years survival with numerically higher performance, and clearly surpassed

our hypothesis threshold of 0.80. Our three neural models achieved balanced accu-

racy in the middle 0.80’s, and AUC surpassing 0.90. This is inline with the perfor-

mance of prior computational predictive models used for survival prediction [11].

We should also interpret these results in the context of known survival figures for

patients solely based upon their cancer site and staging at diagnosis, which is com-

monly used to give patients a prognosis clinically. Future work could compare our

results with the performance of these simpler prognoses.

We believe these results support that our methodology was successfully de-

ployed, and that the lower results of our psychosocial outcome predictions reflect

the increased difficulty of this task when using these types of documents, as op-

posed to a flaw in our methodology.

Interpreting our models, again using absolute coefficient weights for BOW mod-

els and integrated gradients for our neural models, was consistent with expecta-

tions. The top token for BOW, palliat, may correspond to a patient being re-

ferred for palliative care, which would often suggest an oncologist expects limited

survival. Other important tokens correspond to types of cancer with generally good

(breast, lymphoma) and bad (lung) prognoses. Future work could investigate

whether these coefficients are positive or negative, to ensure these correspond with

expectations.

When observing which words had predictive importance in a demonstrative

document when used by our CNN and BERT models, we find that the oncolo-

gist’s mention of ultrasound was supportive of survival, which may correspond

to this technique being used for more survivable cancers such as cervical cancer.

Similarly, a phrase like an endometrial biopsy was negative for

malignancy was found to be important for predicting survival, which would

correspond to a patient cancer that has not spread as far, a good prognostic factor.
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Words like repeat and multiple were important for predicting a subject not

surviving; we would expect these terms to indicate situations associated with poor

survival prognosis, such as a patient needing to repeat a scan due to concerns about

cancer recurrence, or having multiple disease sites.

5.2 Secondary Hypotheses
1. When neural NLP models are used with a patient’s initial oncologist consulta-

tion document to predict psychosocial needs, the performance is numerically

similar between female and male patient subgroups.

For both self-reported and clinician addressed needs, our models had numer-

ically better performance when training and evaluating on a subgroup of patients

with female biological sex than a subgroup with only males. These results are

consistent with well documented prior literature that males are less likely to seek

psychosocial support or endorse such needs. For example, while the rates of some

psychiatric illnesses are smaller in males, the around double rate of females see-

ing a psychiatrist in our dataset was not expected. This does not correspond to

known prevalence of common psychiatric diseases such as anxiety, depression, or

schizophrenia in the general populations which have relatively small differences

[6], or of depression, anxiety, or adjustment disorder in cancer populations, where

there has been found to be no sex difference [47]. This suggests that there are situ-

ations where male cancer patients may benefit from a counsellor or psychiatrist but

either refuse, or are not referred; this may make it harder for our models to predict

these outcomes for male patients correctly.

2. When neural NLP models are used with a patient’s initial oncologist consulta-

tion document to predict psychosocial needs, the performance is numerically

similar between subgroups based on a patient’s cancer stage at diagnosis.

The results of predicting psychosocial needs with subgroups based upon the

cancer stage at diagnosis may be one of our most interesting results. We see nu-

merically higher predictive performance for patients with Stage II cancer than with

other cancers when predicting both emotional needs and whether a patient will see

a psychiatrist.
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When observing the results for predicting whether a patient will see psychiatry,

we see the task is particularly difficult for patients diagnosed with Stage IV illness,

whose cancer has spread to distant sites. This may simply correspond to the limited

survival of these patients; it can take a month or more for a referred patient to be

seen by psychiatry, so clinicians may not feel a referral is warranted, even if the

model correctly identifies that a patient would benefit from this support. We also

note our observed performance may be impacted by the relatively small number of

patients who saw psychiatry, especially in our validation set.

Otherwise, it seems that for both clinician-addressed and self-reported needs,

our models are able to predict better when training and evaluating on only patients

who were diagnosed with Stage II illness. This is an interesting result, as it does

not suggest that it is simply a question of disease severity, as performance is worse

for both patients with less severe illness (Stage I), and more severe illness (Stages

III, IV). A possible causal explanation could be that patients with Stage II illness

have higher amounts of uncertainty than those with other stages, and uncertainty

is often a source of anxiety. Those with Stage I illness generally will have an

optimistic prognosis, while those with Stage III and especially Stage IV illness

may have clearer poor prognoses. Patients with Stage II illness may be having

more emotional needs stemming from worry, as their prognoses are often relatively

good, but with a considerable chance of worsening disease and death. However,

these results could be impacted by other correlations, especially considering that

we do not have intact survival data for all patients.

3. The number of tokens a model is able to use will impact its ability to

predict whether a patient will see a psychiatrist using a patient’s initial on-

cologist consultation document. Specifically, the performance of BERT will

be numerically worse than its variation, Longformer, which is able to use

more words.

Models using transformers such as BERT have been able to achieve state-of-

the-art performance on many applications of NLP, but in our work, seem to be out-

performed by the older neural models, CNN and LSTM, especially when predicting

our psychosocial outcomes. BERT’s limitation of only being able to use 512 tokens

may explain some of this difference, especially given that our documents have a
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median of 945 tokens. As such, they are often limited to the first few sections of our

oncologist consultation documents, even though our neural model interpretations

suggest that portions in the middle of the document may be particularly useful.

The improved results of the Longformer model, which is able to use more

tokens, supports this may indeed be BERT’s limitation when predicting our psy-

chosocial outcomes. We see improved performance when Longformer is able to

use up to 2048 tokens. Few documents have more tokens than this, so it is unsur-

prising that using up to 4096 tokens worsens performance, as for many documents

it would lead to more padding tokens.

However, Longformer’s performance still did not appear as good as using the

other neural models. Longformer is able to use more tokens due to limits in its

ability to understand all words in relation to each other. Unlike BERT, where all

words are connected with each other, Longformer only connects to a few words

somewhat close and somewhat farther from itself. As such, CNN and LSTM models

may be able to interpret the documents more holistically, and gain performance by

observing patterns of words being present further away from each other.

When predicting survival, Longformer’s ability to use more of a document’s

tokens seem to confer less benefit. The almost negligible difference of 0.01 in both

balanced accuracy and AUC between Longformer using 256 versus 4096 suggests

that the first 256 tokens may largely be sufficient to predict survival. This is consis-

tent with our interpretations, where we found that important tokens (words) were

usually found at the beginning of the consultation document when the oncologist

describes the cancer and the patient’s history to date.

5.3 Clinical Implications
The goal of this work was to determine the feasibility of using neural language

models with a patient’s initial oncologist consultation document to better under-

stand their psychosocial needs, to be able to better detect psychosocial needs so

that they can be addressed. We believe that this work supports that this application

may be feasible, especially predicting clinician-addressed needs such as whether a

patient will go on to see a psychiatrist or counsellor.

The performance of our models predicting psychosocial needs is not as high as
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compared to when predicting survival. This is unsurprising, given that we would

expect oncologists to describe many aspects of a patient’s cancer related to prog-

nosis, such as its type, stage, spread, and treatment so far. On the other hand,

the treating oncologists will generally document fewer details directly related to

psychosocial health. If all patients were to receive a comprehensive psychosocial

assessment at the start of their care, we may expect that this document would allow

much better predictions of our psychosocial outcomes. However, such an assess-

ment is not routinely done. This work instead focuses on using a document that

is widely available, the initial treating oncologist consultation. Our results suggest

that, with improvement, this methodology may one day produce a clinically useful

prediction, especially when predicting clinician-addressed needs.

It is unclear what performance would be needed for clinical application, and

this may depend on the task at hand. We focused in this work on balanced accuracy

and AUC, as they are metrics often used in clinical applications. They correspond to

general predictive power, and balancing the importance of predicting both negative

and positive labels. However, the particular use case of predicting psychosocial

needs may have impact on what metrics would be required.

For example, a possible application could be to deploy these models to read

a treating oncologist’s initial consultation, and suggest that the oncologist asks

patients predicted to have a clinician-addressed need whether they would like to

see a counsellor or psychiatrist. In such a scenario, the oncologist may not mind a

relatively high false positive rate, so long as it does not suggest asking this question

for all patients. However, they would likely want a relatively low false negative rate

as the point of this application would be to prevent patients from “falling through

the cracks”. As such, in this scenario, sensitivity (recall) and NPV may be more

important than specificity, precision, and PPV.

For identifying the self-reported psychosocial needs, it is less clear than this

combination of methodology and data may one day lead to a useful clinical appli-

cation. We do note that the performance was better when using BERT, and when

predicting with Stage II patients. This task may require more complex language

models, such as transformers able to have more connected understanding of doc-

uments with more tokens. Further investigation may be warranted to understand

why this task seems to be more difficult.
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The possible applications of predicting self-reported psychosocial needs may

be more focused on detection at a population level, as if a clinician wanted to know

a patient’s self-reported cancer needs in the moment, they could simply inquire,

or ask them to fill a questionnaire. If these techniques could be shown to apply

to different documents, such as the progress notes patients receive throughout their

stay, our models could be used to show how self-reported needs might vary through

a patient’s cancer care. Lower performance may be tolerable in this situation if

the prediction seems accurate in aggregate, though further work will be needed to

explore such applications.

Of note, while we included survival prediction as a comparison to validate our

methodology with a non-psychosocial outcome, this predictive task also has po-

tential clinical application in helping address psychosocial needs. For example,

patients nearing the end of life may benefit from care at a hospice, extra supports

around estate planning, and from particular therapies such as meaning centred psy-

chotherapy [72]. However, it can be unclear when patients are nearing their last

six months of life. Predicting that a patient is unlikely to have six-month survival

may allow these end-of-life resources to be better provided for these patients. This

could improve not only quality-of-life, but also survival, as has been shown with

the provision of early palliative care [71].

The results pertaining to our secondary hypotheses also have clinical impli-

cations. The worse performance when predicting psychosocial outcomes with

male subjects substantiates the difficulty of supporting these patients with their

psychosocial needs. Given that males may more often stand to benefit from psy-

chosocial support but not access it, this may make it difficult for our models to

learn the correct prediction. It could make sense to train models on only female

patients, and apply them to patients of all sexes.

The results of predicting our outcomes using subgroups based on cancer stage

at diagnosis may also have implications for the clinical utility of this work. If this

result is indeed valid, it may mean that applications of these techniques are more

accurate for those diagnosed with certain cancer stages than others. This would be

important to know if deployed clinically; for example, perhaps the tool would not

be used for those with Stage IV illness. However, these results also may speak to

the current deficits in supportive cancer care. Or model’s poor performance may
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result from a lack of access of these resources for certain patients. For instance,

our model may have predicted false positives for patients that would have benefited

from a psychiatry referral, but were not referred due to psychiatric support not

being available promptly enough, or the oncologist thinking it would be futile.

5.4 Implications for Using Neural Language Models in
this Domain

As our work may be the first exploring the application of neural NLP techniques to

predict psychosocial outcomes from cancer or other medical documents, this work

may provide a baseline for other work to improve upon our results. Our findings

that CNN and LSTM models often performed the best suggests these models should

be continue to be explored.

Our work also suggests that transformers may need further adaption to be used

in this domain, potentially owing to the length of full consultation documents.

Many of our documents had many more tokens than BERT’s maximum of 512.

While using Longformer models seems to partially improve these results, further

development of long-document transformers may be warranted, perhaps with dif-

ferent attention mechanisms, especially considering the better performance of our

CNN and LSTM models even when Longformer is able to use 2048 tokens. The

recently released BigBird model may possibly improve these results, though they

largely seem to be using some of the adaptations found in Longformer [80]. Alter-

natively, given the potential relevance of certain portions of the documents, BERT

using a middle or end 512 tokens may also be able to perform better, as may tech-

niques using hierarchical attention.

We should also note the relatively strong performance of our non-neural BOW

models. This may suggest that the more advanced neural models may still have

further room for improvement. Alternatively, these results may also suggest that

further exploration of additional n-gram and other non-neural NLP models is war-

ranted.
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5.5 Limitations

5.5.1 Validity of our Targets

We should consider the validity of the targets used in this work. The self-reported

psychosocial needs are as valid as the construct validity of the questionnaire they

are from, though the thresholds we used have not been used before. There may be

more robust or applicable ways to construct targets from these PSSCAN-R results,

such as excluding certain items.

The clinician-addressed need targets should be understood in the context of

the problem their prediction is hoping to address. As we laid out earlier, cancer

patients continue to have unmet psychosocial needs such as not always being able

to see a counsellor or psychiatrist. Our models learned to predict whether patients

have this need from data in a system where these unmet needs are present. As

such, it may be worthwhile qualitatively exploring false positives, where patients

are predicted to see a psychiatrist or counsellor but do not. If there seems to be

situations where patients may have benefited from these supports even though they

did not receive them, some amount of the false positives that our models predict

may actually be helpful to address unmet needs.

Our survival targets’ construct validity is limited by the accuracy of the mor-

tality data provided to us and our technique to label it. In this work we excluded

patients who do not have death dates recorded or dates clearly documenting they

survived until a threshold such as five years. This meant we excluded a number of

patients, which may introduce some bias into our data and results.

5.5.2 Internal Validity of our Results

A limitation of this work is that we solely considered the numerical differences

of our results. We did not conduct statistical analysis to know if results are sig-

nificantly different from each other, or from the thresholds established in our hy-

potheses. As our models can train differently every time, we cannot interpret our

results with respect to their statistical significance. Future work could repeat our

results numerous times to determine their variances, which would then allow the

appropriate statistical tests to be conducted.
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5.5.3 External Validity of our Results

A major limitation of this work is that our results are based upon evaluation on

a hold-out validation set. This validation set was used during our development,

and to select the number of training epochs. This may lead to some overfitting,

as results may simply be a configuration of a model that fit the validation set the

best, but would not fit new data as well. We plan to further validate our results on

a hold-out test set in the future.

Further external validity could be established by evaluating our trained models

on an entirely new dataset, such as patients who received BC Cancer care during a

different time period, or even more robustly, data from a different cancer centre.

5.5.4 Methodological Limitations

This work was meant to be an initial investigation into the feasibility of predicting

our targets using neural NLP models, not an exhaustive investigation into how these

techniques could be optimized to accomplish such tasks.

Many avenues exist to further improve our work. We generally did not tune

our neural models, instead using hyperparameters from prior work instead. We

used a consistent learning rate across models, besides a larger learning rate for

Longformer, and tuning this can often improve performance. Additionally, after

some initial testing, we used randomized word vectors for CNN and LSTM models.

Pretrained general English or clinical word embedding are available, and they may

improve performance.

Similarly, BERT model pretrained on clinical and biomedical documents may

also improve performance, even though we did not find this during our brief testing.

Alternative strategies for dealing with class imbalance, and for text preprocessing,

could also be attempted. We believe our results, especially when predicting sur-

vival, suggest that our configurations are grossly sufficient. Yet, future work could

likely improve our performance further.

5.6 Future Work
Besides addressing some of the limitations discussed in Section 5.5, there are many

ways to expand and build upon this work. We were interested in solely using
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unstructured text to make these psychosocial predictions, but structured data could

likely also be useful. Future work could investigate comparing and combining

structured and unstructured (text) data.

We only used the initial oncologist consultation document for the predictions

in this work. Multiple documents from the beginning of a patient’s cancer care

could be useful. As well, future work could extend this work to use documents

over time, updating predictions. This would likely require other types of docu-

ments to be used, such as progress notes. A general prediction for any medical

document could allow cancer patients to be assessed at every visit for current or

future psychosocial needs. This may allow us to even better support our patient

needs, especially longitudinally.
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Chapter 6

Conclusion

In this work, we investigated whether neural language models can be used to pre-

dict the psychosocial needs of cancer patients from initial oncologist consultation

documents. This is a novel application of NLP, as we were unable to find similar

prior work in the literature. We investigated the prediction of both self-reported

and clinician-addressed psychosocial cancer needs, and compared these to the pre-

diction of a non-psychosocial cancer need, survival. We compared the non-neural

NLP technique BOW with three neural methods, CNN, LSTM, and BERT. We con-

ducted additional investigations using subgroups of our dataset to better understand

our results and how these techniques may be applied to patients based on their bi-

ological sex or cancer stage at diagnosis. We also used techniques to interpret our

trained models, to better understand how they came to their predictions.

We found that our models were able to predict clinician-addressed cancer needs

with performance similar to some other applications of predictive models in psy-

chiatry and psychosocial medicine. However, predicting self-reported emotional

and informational cancer needs seemed to be more difficult. Our models were

not able to reach our hypothesized performance threshold for these self-reported

needs, even though the validity of our techniques was supported by our models

being able to predict survival well. Additional analyses found differences in pre-

dictive performance between biological sexes, as well as with a patient’s cancer

stage at diagnosis. This may have implication for how to apply these techniques

clinically. Given the relatively long length of our documents, we investigated the
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impact of our transformer model, BERT, being able to use only the first portion of a

document, finding that a long-document adaption of this model, Longformer, had

higher performance.

Our work investigated a novel application of neural NLP by seeking to help

detect the psychosocial needs of cancer patients so that these needs can be better

met. We provide a foundation for future work to develop this application further,

so that we can one day use these techniques to improve and extend the lives of our

cancer patients.
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Appendix A

Supporting Materials

A.1 Specific Details for Data Preparation and Processing

A.1.1 Patient Data and Selection

We extracted patient data from the provided mt2a cancer details.csv, and

PSSCAN-R data from m2c PSSCAN details.csv. To exclude patients with

more than one cancer treated at BC Cancer, we removed patients with duplicate

entries in either of these files.

A.1.2 Document Preparation

We selected documents used in this work based on the data provided in

q18-0193 document details.csv.

To select only consultation documents, we filtered documents by document type,

requiring that it be ONC or H&P, which corresponds to consultations.

To only capture documents produced by treating physicians at BC Cancer, we

required their fasr discipline be one of the following, corresponding to the

following medical or surgical disciplines:

1. MED ONCOLOGY (Medical Oncology)

2. RAD ONCOLOGY (Radiation Oncology)
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3. HEMATOLOGY (Hematology)

4. DERMATOLOGY (Dermatology)

5. GASTROENTER (Gastroenterology and Gastrointestinal Surgery)

6. MUSCULOSKELE (Orthopedic Surgery)

7. NEUROLOGY (Neurology and Neurosurgery)

8. SURGERY (Cancer and General Surgery)

9. GYNECOLOGY (Gynecology)

A.1.3 Target Preprocessing

Seeing a Discipline

We judged a patient as having seen a discipline if they have a document where

fasr discipline was equal to either PSYCHIATRY, for seeing psychiatry,

and SOCIAL WORK, for seeing counselling. Documents generated by counsellors

are marked in this fashion, regardless of whether the clinicians were trained as

social workers or counselling psychologists.

A.1.4 Staging and Metastatic Status

We determined stage by using a patient’s stage summary COL AJCC Stage Sum.

However, some patients are missing this data. Future work could recover some of

this missing staging data by looking at the clinical and pathological staging data,

and calculating the summary stage. This is not a trivial task, as it would require

using the desired AJCC staging handbook rules. As this was not integral to this

thesis project, we have deferred this for now.

We determined metastatic status simply by using COL AJCC Stage Sum, as-

signing that a patient has metastatic disease if they are Stage IV, but are non-

metastatic if Stage I-III.
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Table A.1: Choosing Bag-of-Word’s number of words and C regularization
hyperparameter. We based this on the performance when predicting
which patients will see a psychiatrist within five of the generation of the
initial oncologist cancer document used by the models. AUC: Receiver-
operator-curve area-under-curve.

Model Words C Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BoW 1000 0.1 0.70 0.71 0.71 0.08 0.72 0.70
BoW 1000 1 0.78 0.70 0.70 0.09 0.61 0.78
BoW 1000 2 0.80 0.68 0.68 0.09 0.56 0.80
BoW 5000 0.1 0.77 0.72 0.72 0.10 0.67 0.77
BoW 5000 0.2 0.80 0.73 0.73 0.11 0.66 0.81
BoW 5000 0.3 0.82 0.71 0.71 0.11 0.60 0.82
BoW 5000 0.5 0.85 0.68 0.68 0.11 0.51 0.85
BoW 5000 1 0.87 0.67 0.67 0.12 0.46 0.88
BoW 10000 0.01 0.61 0.62 0.62 0.06 0.62 0.61
BoW 10000 0.10 0.78 0.73 0.73 0.10 0.67 0.78
BoW 10000 0.5 0.87 0.69 0.69 0.13 0.51 0.88

A.2 Specific Details for Model Training and Tuning

A.2.1 Bag-of-Words Hyperparameters

For our BOW, we used a common L2-regularized logistic regression classifier. We

set the number of words and regularization strength C hyperparameters empirically,

as shown in Table A.1. We choose 5000 words as further increases let to incremen-

tally less improvement, at the possible risk of overfitting and computational costs,

and used a regularization constant C of 0.2.

A.2.2 Comparing Techniques for Dealing with Class Imbalance

We compared two techniques to deal with class imbalance, undersampling, and

weighing our cross-entropy loss. To compare performance, we compared our mod-

els when predicting whether subjects will see a psychiatrist within the five years

following when the document used for training was generated, at the start of their

cancer. We show these results in Table A.2.
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Table A.2: Comparison two different methods for dealing with class imbal-
ance using Bag-of-Word (BoW), Convolutional Neural Network (CNN),
Long short term memory (LSTM) and bidirectional encoder represen-
tations from transformers (BERT) models. Here we show the results
when using the models to predict whether a patient will see a psychia-
trist within five years. AUC: Receiver-operator-curve area-under-curve.

Model Fix Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BoW Undersampling 0.80 0.73 0.73 0.11 0.06 0.66
BoW Weighted Loss 0.80 0.73 0.73 0.11 0.06 0.66

CNN Undersampling 0.87 0.69 0.78 0.13 0.07 0.50
CNN Weighted Loss 0.83 0.73 0.80 0.12 0.07 0.63

LSTM Undersampling 0.98 0.50 0.43 0.0 0.0 0.0
LSTM Weighted Loss 0.58 0.63 0.71 0.06 0.03 0.70

BERT Undersampling 0.79 0.67 0.70 0.09 0.05 0.54
BERT Weighted Loss 0.73 0.68 0.73 0.08 0.04 0.63

A.3 Additional Result Tables
This section contains additional tables reporting our results.
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Table A.3: Comparison of model performance when whether a subject re-
ports a minimum threshold of emotional needs, using Bag-of-Words
(BoW) and Convolutional Neural Networks (CNN). AUC: Receiver-
operator-curve area-under-curve.

Model Needs Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 1 0.63 0.63 0.63 0.67 0.69 0.65
BOW 2 0.64 0.65 0.65 0.51 0.41 0.67
BOW 3 0.65 0.65 0.65 0.34 0.23 0.65
BOW 4 0.69 0.66 0.66 0.18 0.10 0.63
BOW 5 0.78 0.62 0.62 0.07 0.04 0.46

CNN 1 0.65 0.65 0.70 0.68 0.70 0.66
CNN 2 0.67 0.67 0.73 0.54 0.44 0.69
CNN 3 0.67 0.66 0.72 0.36 0.25 0.65
CNN 4 0.42 0.58 0.62 0.12 0.07 0.77
CNN 5 0.95 0.55 0.64 0.09 0.07 0.12

Table A.4: Comparison of model performance when predicting whether a
subject has a minimum number of informational needs, using Bag-
of-Words (BOW) and Convolutional Neural Networks (CNN). AUC:
Receiver-operator-curve area-under-curve.

Model Needs Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 1 0.61 0.60 0.60 0.64 0.64 0.64
BOW 2 0.59 0.59 0.59 0.47 0.38 0.61
BOW 3 0.59 0.59 0.59 0.35 0.25 0.58
BOW 4 0.61 0.60 0.60 0.27 0.18 0.59

CNN 1 0.60 0.60 0.63 0.65 0.63 0.69
CNN 2 0.58 0.61 0.64 0.49 0.38 0.67
CNN 3 0.67 0.61 0.65 0.36 0.28 0.51
CNN 4 0.62 0.60 0.64 0.28 0.18 0.58
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(a) Excerpt of a clinical document describing symptoms with CNN word importance

(b) Excerpt of a clinical document describing symptoms with BERT word importance

(c) Excerpt of a clinical document describing family and social history with CNN word
importance

Figure A.1: Red-green colour-blindness accessible version of Figure 4.1.
Interpretation of our convolutional neural network (CNN) and bidi-
rectional encoder representations from transformers (BERT) models,
showing the importance of words when predicting whether a patient
will see a psychiatrist, according to interpretation with integrated gra-
dients. We show excerpts from a clinical document that has been
anonymized for presentation here, with any potentially identifying
words, names, dates or numbers changed. We show only some relevant
excerpts, showing a portion describing symptoms in (a) and (b). We
also show a segment describing social and family history in (c) which
is only used by the CNN model due to BERT’s token limits. The darker
the orange highlighting, the more predictive of seeing a psychiatrist,
while blue similarly corresponds to not seeing a psychiatrist.
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Table A.5: Model performance when using Bag-of-Word (BOW) and Convo-
lutional Neural Network (CNN) models to predict surviving the specified
number of months after the document used by the model was generated.
AUC: Receiver-operator-curve area-under-curve.

Model Months Survived Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 6 0.81 0.82 0.82 0.88 0.97 0.80
BOW 36 0.82 0.82 0.82 0.83 0.86 0.80
BOW 60 0.84 0.83 0.83 0.77 0.72 0.82

CNN 6 0.83 0.81 0.90 0.90 0.96 0.84
CNN 36 0.83 0.83 0.91 0.85 0.86 0.83
CNN 60 0.84 0.85 0.93 0.78 0.71 0.88
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Table A.6: Model performance when predicting whether a patient will see
psychiatry in the five years after the document used by the models was
generated. Here we compare the results of using Bag-of-Words (BOW)
and Convolutional Neural Networks (CNN) models when training with
randomly selected smaller numbers of patients (n). AUC: Receiver-
operator-curve area-under-curve.

Model n Accuracy Balanced
Accuracy

AUC F1 Precision Recall

BOW 3000 0.84 0.65 0.65 0.09 0.05 0.45
BOW 4000 0.88 0.63 0.63 0.10 0.06 0.38
BOW 6000 0.87 0.66 0.66 0.11 0.06 0.45
BOW 9000 0.83 0.69 0.69 0.11 0.06 0.55
BOW 12000 0.82 0.70 0.70 0.10 0.06 0.57
BOW 15000 0.83 0.68 0.68 0.10 0.06 0.54
BOW 20000 0.82 0.71 0.71 0.11 0.06 0.59
BOW 30953 0.80 0.73 0.73 0.11 0.06 0.66

CNN 3000 0.79 0.58 0.58 0.06 0.03 0.35
CNN 4000 0.98 0.52 0.66 0.07 0.14 0.05
CNN 6000 0.85 0.62 0.65 0.08 0.05 0.38
CNN 9000 0.88 0.65 0.68 0.11 0.06 0.40
CNN 12000 0.71 0.63 0.67 0.07 0.04 0.55
CNN 15000 0.81 0.64 0.67 0.08 0.05 0.48
CNN 20000 0.79 0.66 0.68 0.09 0.05 0.52
CNN 30953 0.83 0.71 0.75 0.11 0.06 0.59
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(a) Excerpt of a clinical document describing a patient’s cancer with CNN word impor-
tance

(b) Excerpt of a clinical document describing a patient’s cancer with BERT word impor-
tance

Figure A.2: Red-green colour-blindness accessible version of Figure 4.2.In-
terpretation of our convolutional neural network (CNN) and bidi-
rectional encoder representations from transformers (BERT) models,
showing the importance of words when predicting whether a patient
will survive for five years, according to interpretation with integrated
gradients. We show excerpts from a clinical document that has been
anonymized for presentation here, with any potentially identifying
words, names, dates or numbers changed. We show an excerpt describ-
ing a patient’s cancer. The darker the orange highlighting, the more
predictive of surviving five years, while blue similarly corresponds to
not surviving.
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