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Abstract

Finite mixture models are widely used to model data that exhibit heterogeneity. In

machine learning, they are often used as probabilistic models for clustering analy-

sis. In the application of finite mixtures to real datasets, the most fundamental task

is to learn model parameters. In modern applications, datasets are often too large

to be stored in a single facility and are distributed across data centres. To learn

models on these distributed datasets, split-and-conquer (SC!) approaches are often

used. SC approaches consist of two steps: they first locally learn one model per

data centre and then send these local results to a central machine to be aggregated.

Since the parameter spaces of mixtures are non-Euclidean, existing aggregation

methods are not appropriate. We develop a novel computationally efficient aggre-

gation approach for SC learning of finite mixtures. We show that the resulting

estimator is root-n-consistent under some general conditions. Experiments show

the proposed approach has comparable statistical performance with the global es-

timator based on the full dataset, if the latter is feasible. It also has better statistical

and computational performance than some existing methods for learning mixtures

on large datasets.

Finite mixtures are also widely used to approximate density functions of var-

ious shapes. When mixtures are used in graphical models to approximate density

functions, the order of the mixture increases exponentially due to recursive pro-

cedures and the inference becomes intractable. One way to make the inference

tractable is to use mixture reduction, that is, to approximate the mixture by one

with a lower order. We propose a novel reduction approach by minimizing the

Composite Transportation Divergence (CTD) between two mixtures. The optimiza-

tion problem can be solved by a majorization minimization algorithm. We show
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that many existing algorithms for reduction are special cases of our approach. This

finding allows us to provide theoretical support for these existing algorithms. Our

approach also allows flexible choices for cost functions in CTD. This flexibility

allows our approach to have better performance than existing approaches.

We also discuss other related learning issues under finite mixtures.
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Lay Summary

Consider a hypothetical example in marketing. Consumers at a supermarket chain

may have different consumption patterns. To maximize the profit of the company,

the chain may be interested in grouping consumers by common characteristics and

priorities and designing more effective promotion strategies for each group. Con-

sumer spending data collected from all consumers is a mixture of group-specific

consumption styles, and statisticians can help the company to distinguish between

different groups, identifying their respective proportions and specific consumption

patterns.

We consider a scenario where consumer data are stored in multiple data centres.

Each centre can only report its summary findings to the headquarters, and the head-

quarters want to combine these summaries to form a unified picture of customer

groups and their consumption styles. This thesis develops statistical techniques to

combine summary findings at headquarters and addresses broader issues.
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Chapter 1

Introduction

1.1 Finite Mixture Model
Let Rd be the standard Euclidean space of dimension d and Θ be some space. A

parametric distribution family with density function f(x; θ) with respect to some

σ-finite measure isF = {f(x; θ) : x ∈ Rd, θ ∈ Θ}. Let δθ(·) be the Dirac measure

such that δθ(A) = 1 if θ is in set A and 0 otherwise. Let G =
∑K

k=1wkδθk be a

discrete probability measure, assigning probability wk to parameter value θk ∈ Θ

for some integer K > 0. A distribution with the following density function

f(x;G) =

∫
f(x; θ) dG(θ) =

K∑
k=1

wkf(x; θk) (1.1)

is called a finite mixture of F . We call f(x; θ) the subpopulation density function.

The elements of θ = (θ1, θ2, . . . , θK)> and that of w = (w1, w2, . . . , wK)> are

respectively called the subpopulation parameter and the mixing weight. We use

F (x; θ) and F (x;G) for the Cumulative Distribution Function (CDF) of f(x; θ)

and f(x;G) respectively. Let ΘK = Θ×Θ×· · ·×Θ be the Cartesian product over

K sets of Θ and ∆K−1 be the (K − 1)-dimensional simplex {(w1, w2, . . . , wK) :

wk ∈ [0, 1],
∑K

k=1wk = 1}, we denote the space of mixing distributions G of
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order up to K as

GK =

{
G : G =

K∑
k=1

wkδθk ,w ∈ ∆K−1,θ ∈ ΘK

}
. (1.2)

A mixture of (exactly) order K has its mixing distribution G being a member of

GK\GK−1 = {G : G ∈ GK and G 6∈ GK−1}. The order K is also referred to

as the number of components of a mixture. A mixture model is a collection of

mixture distributions of F .

The finite mixtures are commonly used to model the distribution of population

that exhibits heterogeneity. In many applications, the population can be decom-

posed into several different but homogeneous subpopulations, whose distributions

can be modelled by a classical parametric distribution. As early as in 1894, Pearson

(1894) applies a Gaussian mixture to analyze crabs’ ratio of the forehead to body

length data. The histogram of the ratio of forehead to body length of 1000 crabs

that Pearson analyzed is shown in Figure 1.1. In this figure, the dashed line is the

density function of the single Gaussian distribution fitted to the data. The Gaussian

distribution is clearly not a good fit. Based on the general understanding that a

well-developed biological species should have its biometrics normally (Gaussian)

distributed, Pearson suggests the 1000 crabs are composed of 2 unidentified sub-

species. He subsequently fits a 2-component Gaussian mixture to the data and the

density function of the fitted mixture is given by the solid line in Figure 1.1. The

well-fitted mixture supports the hypothesis of two subspecies of crabs in the col-

lected sample. Finite mixtures are also widely used in other disciplines. In finance,

people believe the stock prices in the stock market are either in a “normal” state or

a “extreme” state (Liesenfeld, 2001). Hence, the distribution of stock prices often

resembles a Gaussian mixture. In the study of the evolution of galaxies, Baldry

et al. (2004) suggests the existence of 2 galaxy subpopulations: a passively evolv-

ing red galaxy subpopulation and a blue star-forming galaxy subpopulation. A

2-component mixture fitted on the data suggests that there cannot be a continu-

ous evolution, and the rapid change of galaxies in these 2 subpopulations is due to

galaxy merger.

In machine learning, finite mixtures are often used as probabilistic models for
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Figure 1.1: Plot of the histogram of the ratio of forehead to body length data
on 1000 crabs and of the fitted Gaussian density (dashed line) and two-
component Gaussian mixture density (solid line). The two-component
Gaussian mixture suggests the crabs may be from two unidentified sub-
species (dotted lines).

clustering analysis (Bishop, 2006). The finite mixture model is used in Fraley and

Raftery (2002) to cluster breast cancer patients into different groups. Clinically,

doctors generally divide the tumours into either malignant or benign types. Their

analysis suggests that there may be 3 groups suggesting that the malignant tumour

may be in different stages. The finding based on the mixture model is clinically

important to determine an appropriate course of action for malignancy. In a clin-

ical example in Baudry et al. (2010), the Gaussian mixture is used to study the

development of the graft-versus-host disease (GvHD). GvHD occurs in allogeneic

hematopoietic stem cell transplant recipients when donor-immune cells in the graft

attack the skin, gut, liver, and other tissues of the recipient. GvHD is diagnosed by

clinical and histologic criteria that are often nonspecific and it is typically apparent
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only after the disease is well established. In their study, a mixture model is fitted to

the bio-marker of GvHD positive patient data and the result suggests the existence

of 4 cell subpopulations. These cell subpopulations correspond to colour combina-

tions of lymphocyte phenotypic and activation markers at progressive time points

post-transplant.

It is often cited (Nguyen et al., 2020; Titterington et al., 1985) that there always

exists a Gaussian mixture whose density function is arbitrarily close to any density

function. For example, the kernel density estimate with Gaussian kernel and proper

bandwidth is consistent for any continuous density function that vanishes at infin-

ity (Wied and Weißbach, 2012). Finite mixtures are therefore also broadly used as

a parametric model to approximate distributions with unknown shapes. Figure 1.2

gives density functions of Gaussian mixtures with various shapes, demonstrating

their ability to approximate an arbitrary density. In system design in engineering,

Figure 1.2: Density function of Gaussian mixtures with various shapes in
McLachlan and Peel (2004, Section 1.5).

the shape of the distribution of the design life of systems can vary considerably.

Bučar et al. (2004) proposes to approximate the density functions of these distri-

butions by finite Weibull mixtures. In Santosh et al. (2013), Brubaker et al. (2015),

and Yu et al. (2018), the Gaussian mixtures are used to approximate density func-

tions in Bayesian inference procedures under hidden Markov models for the task

of object tracking in video sequences.
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Commonly Used Models for Subpopulation

There are a lot of choices for the subpopulation distribution family F . We give

several examples of the most commonly used models below.

The finite Gaussian mixtures are by far the most studied finite mixture model.

For example, Lo et al. (2001), Chen and Li (2009), and Chen et al. (2012) study

the problem of testing the order of a Gaussian mixture. The mclust package in

R (Scrucca et al., 2016) is developed for using finite Gaussian mixtures for model-

based clustering, classification, and density estimation in applications. Xu and

Jordan (1996) studies the convergence of the Expectation Maximization (EM) al-

gorithm under finite Gaussian mixtures. Various learning approaches under finite

Gaussian mixtures (Constantinopoulos and Likas, 2007; Pernkopf and Bouchaffra,

2005; Vlassis and Likas, 2002) are also studied. We give the density function of

finite Gaussian mixtures in the following example.

Example 1.1 (Finite Gaussian Mixture). As the name suggests, a finite Gaussian

mixture is a mixture of Gaussian distributions. A d-dimensional Gaussian distri-

bution with mean vector µ and covariance matrix Σ has density function given

by

φ(x;µ,Σ) = det(2πΣ)−1/2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
where det(·) is the determinant of a square matrix. We denote by Φ(x;µ,Σ) its

CDF. We denote the density of a finite Gaussian Mixture Model (GMM) of order K

and its CDF by

φ(x;G) =

K∑
k=1

wkφ(x;µk,Σk); Φ(x;G) =

K∑
k=1

wkΦ(x;µk,Σk).

Under the finite GMM, the subpopulation parameter is θ = (µ,Σ) with its pa-

rameter space Θ = Rd × Sd+ where Sd+ is the space of all d × d positive definite

matrices.

Binomial and Poisson mixtures are also broadly investigated in the literature

and used in applications. In genetics, the number of recombinants of a family with

K offspring has binomial mixture distribution in the presence of genetic muta-

tions (Chernoff and Lander, 1995). The Poisson mixture model is well motivated
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for count data such as the number of patents (Wang et al., 1998) and the spinal

tumour counts for patients with neurofibromatosis 2 (Joe and Zhu, 2005). The

Gamma mixtures are often used to model household income distribution (He and

Chen, 2021). These mixtures may be regarded as special cases where the sub-

population distribution family of the mixture, F , is an exponential family. The

exponential family is defined as follows.

Definition 1.1 (Exponential Family). An exponential family is defined as a distri-

bution family whose densities can be represented as

f(x; θ) = exp{θ>T (x)−A(θ)}h(x)

with respect to some reference measure ν(·). In this definition, the vector θ =

(θ1, θ2, . . . , θm)> is called the natural parameter. The natural sufficient statistics

is the vector T (x) = (T1(x), T2(x), . . . , Tm(x))>. The function h(x) modifies

the reference measure ν(·) and the log-partition function A(θ) is a normalization

constant that does not depend on x. The parameter space of θ is usually expanded

to be

Θ =

{
θ ∈ Rm :

∫
exp{θ>T (x)} ν(dx) <∞

}
.

In Table 1.1, we list widely used exponential families with their sufficient

statistics and parameter space. We do not include the reference measure ν(·) and

h(x) as they are not relevant in statistical inferences.

Another well-investigated class of mixture models has location-scale families

as their subpopulation model F . Let f0(x) be the distribution of a univariate ran-

dom variable with support x ∈ R. A location-scale distribution family is formed

by all distributions with density function

f(x; θ) =
1

σ
f0

(
x− µ
σ

)
for θ = (µ, σ)> and parameter space Θ = R × (0,∞). Some examples of f0(x)

are:

• Univariate Gaussian distribution: f0(x) = φ(x; 0, 1);

• Logistic distribution: f0(x) = exp(−x)/{1 + exp(−x)}2;
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Table 1.1: The natural sufficient statistics, natural parameter, and parameter
space of some widely used exponential distribution families.

Name of F T (x) A(θ) Θ

Univariate discrete distributions
Binomial x log{1 + exp(θ)} R
Poisson x exp(θ) R

Univariate continuous distributions
Exponential x − log(−θ) (−∞, 0)
Weibull (known k) xk − log(−θ) (−∞, 0)
Laplace (known µ) |x− µ| log(−2/θ) (−∞, 0)
Rayleigh x2 − log(−2θ) (−∞, 0)
Log-normal (log x, log2 x)> −θ2

1/θ2 − 1/
√

2θ2 R× (−∞, 0)
Gamma (log x, x)> log Γ(θ1 + 1)− (θ1 + 1) log(−θ2) (−1,∞)× (−∞, 0)
Inverse Gamma (log x, 1/x)> log Γ(−θ1 − 1)) + (θ1 + 1) log(−θ2) (−∞,−1)× (−∞, 0)

• Gumbel distribution (type I extreme-value distribution): f0(x) = exp{−x−
exp(−x)}.

Naya et al. (2006) uses logistic mixture for thermogravimetric analysis and

Salimans et al. (2017) uses this model for image analysis. The Weibull mixture is

used by Hernández and Phillips (2006) to characterize end-to-end network delays

and by Marı́n et al. (2005) to model the life time of patients with lupus nephritis.

Zhang and Liu (2006) applies a mixture of Weibull distribution to model irregular

diameter distribution of forest stands. The Weibull mixture is also used by Carta

and Ramirez (2007) to model the distribution of wind speed.

1.2 Research Problems
In this thesis, we address the following research problems under finite mixture

models.

1. The properties of the Minimum Wasserstein Distance Estimator (MWDE) un-

der the finite location-scale mixtures.

2. Develop novel procedures for distributed learning of finite mixtures when

the datasets are large and (or) stored on different machines. We consider the

situation when the data in different machines cannot be directly shared due

to privacy or other considerations.
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3. Develop a general reduction approach that is widely used for approximate in-

ference in graphical models, such as approximating distributions in recursive

procedures and other applications.

We provide a simple description of the motivation for each problem below.

1.2.1 Minimum Distance Estimator

The most fundamental problem of using mixtures in applications is the learning of

the mixing distribution G given a set of observations. In statistics, the Maximum

Likelihood Estimate (MLE) is usually the first choice to learn the model parameters

due to its various nice properties. Under finite mixture models, there is an easy-to-

use EM algorithm for its numerical computation. However, under finite location-

scale mixtures, the MLE of G is not well defined. The log-likelihood function

of G based on a set of Independent and Identically Distributed (IID) observations

X = {x1, x2, . . . , xN} from a finite location-scale mixture model is given by

`N (G|X ) =

N∑
n=1

log f(xn;G) =

N∑
n=1

log

{
K∑
k=1

wk
σk
f0

(xn − µk
σk

)}
.

For an arbitrary mixing distribution Gε = 0.5δ(x1,ε) + 0.5δ(0,1) with a positive

constant ε, it is seen that `N (Gε|X ) → ∞ as ε → 0. Hence, the MLE of G is not

well defined or ill defined.

The minimum distance estimator is one of many alternatives to MLE (Blum and

Susarla, 1977; Choi, 1969; Choi and Bulgren, 1968; Clarke and Heathcote, 1994;

Cutler and Cordero-Brana, 1996; Macdonald, 1971). A minimum distance estima-

tor resembles the MLE in a way as the MLE minimizes the Kullback-Leibler (KL)

divergence between the empirical distribution and the assumed model. Let 1(·)
be the indicator function and FN (x) = N−1

∑N
n=1 1(xn ≤ x) be the empirical

distribution. Given a distance D(·, ·) on the space of CDFs, a minimum distance

estimator is defined to be

ĜN := arg min
G∈GK

D(FN (·), F (·;G)).

Note in the above notation in the distance, we denote by dot the input of the CDFs

8



to address that the distance is defined between two functions FN (·) and F (·;G),

rather than two values FN (x) and F (x;G). Table 1.2 lists the distances and the

corresponding minimum distance estimators studied under finite mixture models

that we are aware of.

Table 1.2: Minimum distance estimators under finite mixture models in the
literature. In the table, f is the density function of a mixture, F is the
corresponding CDF, FN is the empirical distribution based on a set of
IID sample X = {x1, x2, . . . , xN} and f̂N is a nonparametric density
estimate for f based on X , and x(n) is the nth order statistic.

Names of distances and their explicit forms

Wolfowitz distance (Choi, 1969; Choi and Bulgren, 1968)

DW(F, FN ) =

∫
(F (x;G)− FN (x))2 FN (dx)

= N−1
N∑
n=1

{
K∑
k=1

wkF (x(n); θk)− n/N

}2

Cramér-von Mises distance (Macdonald, 1971)

DCM(F, FN ) =

∫
(F (x)− FN (x))2 F (dx)

= {12N2}−1 +N−1
N∑
n=1

{
K∑
k=1

wkF (x(n); θk)− (n− 1/2)/N

}2

Squared L2 norm (Clarke and Heathcote, 1994)
D2(F, FN ) = ‖F − FN‖2 :=

{∫
(F (x;G)− FN (x))2 dx

}1/2

Kolmogorov distance (Blum and Susarla, 1977)
DK(F, FN ) = supx |FN (x)− F (x;G)|

Hellinger distance (Cutler and Cordero-Brana, 1996)
DH(f, f̂N ) = ‖f1/2 − f̂1/2

N ‖2

=

{∫ (
f1/2(x;G)− f̂1/2

N (x)
)2

dx

}1/2
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Noticeably, the Wasserstein distance is not in Table 1.2. The Wasserstein dis-

tance is a byproduct of the optimal transportation theory. It has drawn increased

attention in the machine learning community recently due to its intuitive interpre-

tation and good geometric properties (Arjovsky et al., 2017; Evans and Matsen,

2012). This leads to some interesting questions about the minimum distance es-

timator based on Wasserstein distance (MWDE). Is the MWDE well defined for

location-scale mixtures? Is the MWDE as efficient as the PMLE? Is the MWDE ro-

bust to model misspecification as other minimum distance estimators? We address

all of these questions in Chapter 3.

1.2.2 Distributed Learning of Mixtures

In the era of big data, there are various challenges for statistical inference when

dealing with large-scale datasets. The sizes of the datasets for various applications

may often be so large that they cannot be stored on a single machine. For example,

Google distributes its huge database around the world (Corbett et al., 2013). Dis-

tributed data storage is also natural when the datasets are collected and managed by

independent agencies. Examples include patient information collected from differ-

ent hospitals and data collected by different government agencies (Agrawal et al.,

2003). Privacy considerations may also make it difficult or even impossible to pool

the separate collections of data into a single dataset stored in a single facility. Even

if the dataset is stored on a single machine, it may not be possible to load all of

it into the computer memory. Data analysis methods should therefore be designed

so that they can work with subsets of the dataset, in parallel or sequentially. The

information extracted from the subsets can then be combined to draw conclusions

about the whole population. For distributed datasets, a commonly used communi-

cation efficient inference method to address the privacy concern and the big data

concern is a two-step split-and-conquer procedure:

(i) Local inference: standard inference is carried out on local machines;

(ii) Aggregation: the local inference results are transmitted to a central machine

to be aggregated.

The split-and-conquer approaches address privacy concerns by sharing only
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summary statistics across machines. This also avoids a potentially high transmis-

sion cost since the summary statistics have small sizes and only need to be trans-

mitted once. Many split-and-conquer approaches for distributed learning have been

developed under many regular models. For example, the split-and-conquer learn-

ing of the generalized linear models (Chen and Xie, 2014), kernel ridge regres-

sion models (Zhang et al., 2015), ordinary linear models (Chang et al., 2017), and

the split-and-conquer estimation of principal eigenspaces (Fan et al., 2019). See

also the split-and-conquer version of the Wald-and-score tests (Battey et al., 2015).

Most existing approaches first obtain one local estimate of the model parameters

based on per local dataset. These local estimates are then pooled and aggregated

through a linear averaging operation.

The split-and-conquer-based approaches have their unique challenges under fi-

nite mixtures. The parameter of the finite mixture, the mixing distribution, is a

discrete distribution with a finite number of support points. A naı̈ve linear av-

eraging operation of the local estimates results in a mixing distribution with an

inflated number of support points. The aggregated mixture hence has redundant

and spurious subpopulations. Liu and Ihler (2014) develops a KL divergence-based

aggregation approach that achieves the best efficiency under models from the ex-

ponential family, but its generalization to finite mixture models is not successful.

Therefore, it is a completely new and important problem to develop an aggregation

approach that is sensitive and computationally efficient with the least distortion.

We design a novel aggregation approach in the split-and-conquer framework under

the finite mixture model. We present this work in Chapter 4.

1.2.3 Mixture for Approximate Inference

The finite mixture models are also widely used to approximate densities of com-

plex shapes. Recall that any density function can be approximated by a mixture

with arbitrary precision as given in Titterington et al. (1985): “provided the num-

ber of component densities is not bounded above, certain forms of mixture can be

used to provide arbitrarily close approximation to a given probability distribution”.

Nguyen et al. (2020) shows that any continuous density function that vanishes at

infinity can be approximated arbitrarily close by a sequence of location-scale mix-
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tures in the supremum norm.

When finite mixtures are used for density approximation, there is a trade-off

between the accuracy of the approximation and computational efficiency. A higher-

order mixture allows better approximation but leads to more expensive computa-

tional costs in downstream applications. For instance, the cost of evaluating the

log-likelihood function increases with the order of the mixture. In some Bayesian

inference procedures, distributions are mixtures whose orders increase exponen-

tially with recursive operations (Manzar, 2017). A typical scenario is in belief

propagation for finding the marginal or conditional distributions in probabilistic

graphical models. Some reusable partial sums for the marginalization calculations

are referred to as messages under graphical models. Gaussian mixtures are used

to approximate the distribution of the messages (Sudderth et al., 2010). The order

of this mixture increases exponentially and quickly becomes intractable with iter-

ations. Similarly for the tracking problem under hidden Markov models (Santosh

et al., 2013; Yu et al., 2018) when the transition and the likelihood are both ap-

proximated by finite Gaussian mixtures. The recursive procedure leads to Gaussian

mixture posteriors whose orders increase exponentially. To overcome the computa-

tional difficulty, one way is to approximate a higher-order finite Gaussian mixture

by one with a lower order. We refer to this problem as Gaussian Mixture Reduc-

tion (GMR). GMR is widely employed to control the order of the Gaussian mixture.

There has been a rich literature on mixture reduction, see Crouse et al. (2011)

for a thorough review. The existing mixture reduction approaches can be classi-

fied into the following three categories. Some greedy approaches (Runnalls, 2007;

Salmond, 1990; West, 1993) may identify two close subpopulations and merge

them into a single Gaussian repeatedly until the order is reduced to some tar-

geted value. One GMR approach is to group the subpopulations into clusters and

have each cluster of subpopulations replaced by a Gaussian distribution (Schiefer-

decker and Huber, 2009). One may also directly search for a Gaussian mixture

of a specific order to best approximate the target mixture (Williams, 2003). Yet

more approaches are proposed and some can be regarded as variations of these

approaches (Ardeshiri et al., 2013; Assa and Plataniotis, 2018; Yu et al., 2018).

A general understanding is that these greedy algorithms usually lead to sub-

optimal solutions. The direct search in Williams (2003) posts a challenging opti-
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mization problem. The clustering-based approach leads to some respectable solu-

tions but without a theory on algorithm convergence nor what the limits are. We

develop an Majorization Maximization (MM) algorithm to link the clustering-based

approaches with some optimality targets. We show such algorithms converge at

least to some local optimal limits. We also show these algorithms can be further

generalized to have better performance. We present the results in Chapter 5.

1.3 Summary of the Contributions and Organization of
Thesis

We have provided some background on the research area of this thesis, explained

the significance of the research problems, and the proposed approaches. We pro-

vide a summary of the organization of the rest of the thesis and the contributions

of each research problem below.

1. Chapter 2 contains the preliminaries of this thesis. We introduce the la-

tent structure of the mixture model and its induced model-based clustering

method. We give some details about the MLE and the EM algorithm. They

are needed for learning mixtures at local machines for the split-and-conquer

approach. We then introduce the optimal transportation problem as the ba-

sis for divergence between probability measures. Some key notions such as

Wasserstein distance and barycentre are given. We also specify some per-

formance metrics to be used to compare the proposed approaches with some

popular existing approaches.

2. Chapter 3 focuses on MWDE under the finite location-scale mixtures. It

could be an alternative to likelihood approaches. We find it is well de-

fined and consistent, derive a numerical solution, and carry out some sim-

ulations. Our moderate scaled simulation study shows this approach suffers

some efficiency loss against a penalized version of MLE in general without

a noticeable gain in robustness. The MWDE is computationally also more

expensive than the penalized MLE. These reaffirm the general superiority of

the likelihood-based learning strategies even for non-regular models.

3. In Chapter 4, we develop an effective split-and-conquer approach for the
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learning of finite GMM under the distributed setting. We show the proposed

estimator is root-n-consistent under some general conditions. Experiments

based on simulated and real-world data show that the proposed split-and-

conquer approach has comparable statistical performance with the global

estimator that is based on the full dataset if the latter is feasible. It can even

outperform the global estimator if the model assumption does not match the

real-world data. It also has better statistical and computational performance

than some existing methods.

4. In Chapter 5, we build a general theoretical framework and a useful al-

gorithm for GMR to be used in approximate inference. We show that the

clustering-based algorithms in the literature in fact solve an optimization

problem regarding some composite transportation divergence between two

mixtures. The optimization problem can be solved by an easy-to-implement

MM algorithm. We show that the MM algorithm converges under general con-

ditions. With many possible Composite Transportation Divergence (CTD) at

our dispense, there is a great potential to find a GMR that is particularly effec-

tive in various situations. Numerical experiments are conducted to illustrate

the effectiveness of a class of CTD approaches.

5. In Chapter 6, we point out that although the developments in Chapter 4 and

Chapter 5 mainly focus on GMM, these results can be easily modified to

apply to other mixtures.
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Chapter 2

Preliminaries

As we already presented in the introduction in Chapter 1, there is rich literature

on the theory and application of the mixture models. To address various learning

problems under finite mixtures, we provide the fundamentals of finite mixtures in

this chapter. A summary of the outline of this chapter is given as follows.

The finite mixture is widely used for clustering, which is a natural application

based on its latent variable interpretation. Therefore, in Section 2.1, we provide the

latent variable interpretation of the mixture model and the corresponding model-

based clustering approach. For various learning problems we consider in this the-

sis, we evaluate their performance for clustering. The performance metric called

the adjusted rand index is also introduced in this section.

In Section 2.2, we review some traditional learning approaches under finite

mixtures. These approaches, such as the Maximum Likelihood Estimate (MLE)

and the corresponding famous Expectation Maximization (EM) algorithm for its

numerical computation, are reviewed when the dataset is stored on a single ma-

chine.

When a dataset is too large to be stored in a single facility or is stored in a dis-

tributed fashion, the cost of transmitting the data and privacy considerations raise

challenges for these traditional learning methods. We develop a split-and-conquer

procedure for the distributed learning of mixtures in this thesis. Our method learns

the mixture via the principle of maximizing the likelihood on local machines inde-

pendently and aggregates these locally estimated mixtures. Our proposed aggrega-
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tion step is a minimum distance-based approach. It is therefore necessary to have a

distance or divergence function on the space of either mixing distributions or mix-

tures. These divergences and distances are introduced in Section 2.3. Among all

the divergences and distances we introduce, we devote a lot of effort to the trans-

portation divergence. The transportation divergence, which is a byproduct of the

Optimal Transport (OT) theory (Villani, 2003), plays an important role in this the-

sis. We therefore also introduce some key concepts in the optimal transportation

theory instead of merely defining the divergence.

In Section 2.4, we introduce the barycenter of probability distributions, which

is a generalization of the average in the space of probability distributions. The

barycentres are used in split-and-conquer learning of finite Gaussian mixtures in

Chapter 4 and the mixture reduction in Chapter 5.

In Section 2.5, we also include the metrics that are used in this thesis for the

numerical evaluation of the performance of various estimators.

2.1 Finite Mixture Model and Clustering
The finite mixture models as defined in (1.1) are often used for clustering. The

clustering with the finite mixture model is natural by introducing a latent variable

to describe the finite mixture model.

Let f(x;G) =
∑K

k=1wkf(x; θ) be a mixture on F = {f(x; θ) : x ∈ Rd, θ ∈
Θ} as defined earlier. Let Z and X be two random variables such that the proba-

bility mass function of Z is given by

P(Z = k) = wk

for k ∈ [K] = {1, 2, . . . ,K} and

P(X ≤ x|Z = k) = F (x; θk)

where F (x; θ) is the CDF of f(x; θ). It is easily seen that

P(X ≤ x) =

K∑
k=1

P(X ≤ x|Z = k)P(Z = k) =

K∑
k=1

wkF (x; θk).
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The marginal distribution of X is a mixture of order K with mixing distribution

G =
∑K

k=1wkδθk . The latent variable Z represents the subpopulation membership

of X . It is called a latent variable since this variable is generally not observed in

real applications.

The latent variable interpretation makes it straightforward to use mixture mod-

els for clustering. Given an observation X from a finite mixture f(x;G), there

exists a latent variable Z associated with X whose value is missing. By Bayes’

theorem, we have

P(Z = k|X = x) =
wkf(x; θk)

f(x;G)
.

Based on this theorem, the most probable membership of the unit with observed

value x is given by

κ(x) = κ(x;G) = arg max
j∈[K]

{wjf(x; θj)}. (2.1)

When the mixing distribution G is known or is learned from a set of observations

{x1, . . . , xN}, one may divide the observed values to K clusters by their κ(xn;G)

values. Even if the latent variable Z = zn is known, be aware that we do not

necessarily have zn = κ(xn;G∗) under true mixing distribution G∗.

Given two mixing distributions G1 and G2, one can cluster observed values

into different groups based on the predicted memberships {κ(xn;G1)}Nn=1 and

{κ(xn;G2)}Nn=1. To evaluate the similarity of these two clustering outcomes, it is

not wise to directly count the total number of matched labels
∑N

n=1 1(κ(xn;G1) =

κ(xn;G2)). This is because even if some observations are in the same cluster based

on two clustering approaches, they may have different labels when the number of

clusters is not the same or the labels of two clusters are switched. Instead, the

Adjusted Rand Index (ARI) (Rand, 1971) as defined below is a good performance

metric for clustering similarity.

Definition 2.1 (Adjusted Rand Index). Given two clustering approaches, suppose

the observations in a dataset are divided into K clusters A1, A2, . . . , AK by one

method, and K ′ clusters B1, B2, . . . , BK′ by another method. Let Ni = card(Ai),

Mj = card(Bj), and Nij = card(Ai ∩ Bj) for i ∈ [K] and j ∈ [K ′], where

card(A) is cardinality of a set A. The ARI of these two clustering outcomes is
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defined to be

ARI =

∑
i,j

(Nij

2

)
−
(
N
2

)−1∑
i,j

(
Ni
2

)(Mj

2

)
1
2

∑
i

(
Ni
2

)
+ 1

2

∑
j

(Mj

2

)
−
(
N
2

)−1∑
i,j

(
Ni
2

)(Mj

2

) .
where

(
n
k

)
is the number of k combinations from a given set of n elements.

The value of ARI is in the range of [−1, 1]. A value closer to 1 indicates a

higher degree of agreement of the two clustering approaches. When two clustering

methods completely agree with each other, ARI takes the value of 1.

The latent structure interpretation also makes it simple to generate random sam-

ples from a mixture. We may draw a random index Z from [K] with probability

massesw = (w1, w2, . . . , wK)>. Given the value of the latent variable Z = k, we

then generate a random sampleX from f(x; θk). One may repeat this procedureN

times to obtainN pairs of (X,Z). Then drop the latent variable Z and {Xn}Nn=1 is

a set of IID samples of sizeN from the mixture f(x;G). More efficiently, one may

first generate random values N1, N2, . . . , NK from the multinomial distribution

with N trials and event probabilities w. Then generate Nk IID observations from

subpopulation distribution f(x; θk) for k ∈ [K]. The combined observations from

subpopulations resemble a set of N IID observations from f(x;G). By this sample

generating procedure, observations from the same hidden subpopulation are glued

together. One may randomly shuffle the simulated values when necessary.

2.2 Learning Finite Mixtures
The most fundamental statistical task in modelling the data with mixture models is

the parameter estimation or the learning of the mixing distribution. In this section,

we review some learning methods under finite mixture models.

2.2.1 Method of Moments Estimator

Given a set of observations, it is easy to compute the sample moments of vari-

ous orders. At the same time, under many parametric models, we can find closed

forms of corresponding population moments of its distributions as functions of the

parameters. The method of moments for parameter estimation is to select param-
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eter values so that the population moments of the specific distribution equal the

sample moments. We usually need the number of moments equal to the number of

free parameters in the model such that a solution exists and is unique.

Before the widespread of computers in the 1960s, the method of moments was

usually the method of choice for parameter estimation under finite mixture models

due to its ease of computation (Redner and Walker, 1984). In Pearson’s crab ex-

ample, Pearson (1894) uses the method of moments for estimating the parameters

under the two-component univariate Gaussian mixture. A univariate Gaussian dis-

tribution has p = 2 parameters. Hence, a Gaussian mixture of order K in this case

has 2K + (K − 1) = 3K − 1 free parameters. Pearson must solve the equation

system made of the first 5 moments, which is a difficult task back in the 1890s.

The method of moments is not widely used under finite mixture models in

modern applications because of its inferior statistical efficiency. Furthermore, with

the availability of the EM algorithm and modern computers, the method of moments

loses its computational advantage.

2.2.2 Maximum Likelihood Estimator and the EM Algorithm

Given a set of observed data, the maximum likelihood approach estimates the pa-

rameters of an assumed model by maximizing its likelihood value. The correspond-

ing estimator is called the MLE. The MLE is the most popular inference method in

statistics. On top of the intuitive reasoning of MLE, it also has various good sta-

tistical and mathematical properties under regular models. For instance, MLE is

asymptotically normal with the lowest possible asymptotic variance.

Under statistical models such as mixture, the MLE loses many of its nice prop-

erties. Yet, it is regarded as the most efficient based on empirical evidence albeit

not always proved theoretically. Furthermore, the popularity of MLE is benefited

from an easy-to-implement EM algorithm under finite mixture models. The MLE is

the most popular choice under finite mixture models and the basis of the distributed

learning in this thesis. We provide sufficient details for subsequent reference.

Let X = {x1, x2, . . . , xN} be a set of IID observations from the mixture

f(x;G) of order K. Under the finite mixture model, the log-likelihood function of
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the mixing distribution G is given by

`N (G|X ) =

N∑
n=1

log f(xn;G) =

N∑
n=1

log

{
K∑
k=1

wkf(xn; θk)

}
.

The MLE of the mixing distribution G is defined to be

ĜMLE = arg sup
G∈GK

`N (G|X ).

As we shown in Section 1.2.1, the MLE can be nonsensical under some mixture

models. However, this issue has little impact on the review of the EM algorithm for

the numerical computation of MLE under finite mixtures.

The most popular choice for numerical computation of MLE is the EM algo-

rithm. The description of the EM algorithm is most convenient via the latent vari-

able interpretation of the mixture distribution given earlier. For the nth unit with

observed value xn from the finite mixture f(x;G), there is a latent variable Zn
is associated with the observed value. We introduce a one-hot membership vector

zn = (zn1, . . . , znK) where znk = 1 when Zn = k and znj = 0 for j 6= k.

Suppose the latent variables {Zn, n ∈ [N ]} are known, we have the complete

dataset {(zn, xn), n ∈ [N ]}. Then we would also have the complete data log-

likelihood function

`cN (G) =
N∑
n=1

K∑
k=1

znk log{wkf(xn; θk)}.

Clearly, the complete data log-likelihood cannot be directly used to estimate G

since the latent variables are not known in practice. In the EM algorithm, we replace

elements in the vector zi in the complete data log-likelihood by their conditional

expectations in each iteration.

At the tth iteration, let G(t) be the current value of the mixing distribution. We

can then compute the conditional expectation of znk given the dataset:

w
(t)
nk = E(znk|G(t),X ) =

w
(t)
k f(xn; θ

(t)
k )∑K

j=1w
(t)
j f(xn; θ

(t)
j )

. (2.2)
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The conditional expectation of `cN (G) is then given by

Q(G|G(t)) =

N∑
n=1

K∑
k=1

w
(t)
nk log{wkf(xn; θk)}.

This is the so called E step of the algorithm.

Instead of seeking the maximizer of the complete data log-likelihood `cN (G),

the M step of the algorithm seeks the maximizer of Q(G|G(t)) for G ∈ GK .

This task is simpler since the subpopulation parameters θk are well separated

in Q(G|G(t)). More specifically, the mixing distribution G(t+1) that maximizes

Q(G|G(t)) is made of mixing weights

w
(t+1)
k = N−1

N∑
n=1

w
(t)
nk

and subpopulation parameters

θ
(t+1)
k = arg max

θ

{
N∑
n=1

w
(t)
nk log f(xn; θ)

}
.

The above EM iteration leads to another mixing distributionG(t+1). For many para-

metric subpopulation models F , there is an explicit solution to θ(t+1)
k . Hence, EM

iteration is often very easy to execute. Repeating the iteration leads to a sequence

of mixing distributions. Under some conditions, Wu (1983) shows that `N (G(t)) is

an increasing sequence and the mixing distribution sequence {G(t), t = 1, 2, . . .}
converges to a local maxima of the log-likelihood function. The EM algorithm

suffers from a slow algorithmic convergence rate in general, and it can easily be

trapped to local maximums. Various approaches (Balakrishnan et al., 2017; Liu

and Rubin, 1994; Meilijson, 1989; Meng and Rubin, 1993) have been proposed to

speed up the convergence. We do not provide a review on this issue.

The MLE is not well defined for the most widely used finite Gaussian mix-

tures and finite location-scale mixtures in general. Many variations are proposed

to overcome this obstacle. For example, Hathaway (1985) proposes a constrained

maximum likelihood formulation that seeks to avoid the unboundedness of the
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likelihood function. The resulting estimator has the desired consistency properties.

However, this approach alters the parameter space and is not perfect. Ridolfi and

Idier (2001) proposes to overcome the issue of the unbounded likelihood function

through a Bayesian approach by posing an inverse gamma prior on the scale pa-

rameter under the Gaussian mixture models. The posterior mode is recommended

as the Maximize a Posterior (MAP) estimator. This MAP estimator, which can be re-

garded as a penalized Maximum Likelihood Estimate (PMLE) from the frequentist

angle, is later shown to be consistent by Chen et al. (2008).

In Chen et al. (2008), a penalized log-likelihood function is defined to be

p`N (G|X ) = `N (G|X )− aN
K∑
k=1

p(θk|X )

for some penalty function p(·) and a parameter aN > 0 controls the strength of the

penalty. The PMLE then becomes

ĜpMLE = arg sup
G∈GK

p`N (G|X ) (2.3)

Note that the penalty function is a sum of penalties applied to individual subpopu-

lation parameters. This property is important to ensure easy implementation of the

subsequent altered EM algorithm.

There are many possible choices of the penalty function p(θ|X ) under different

mixtures of F . We recommend three penalty functions as follows.

• Under finite Gaussian mixtures, let Sx be the sample covariance matrix.

Chen and Tan (2009) recommends the penalty function to be

p(θ|X ) = tr(Σ−1Sx) + log det(Σ)

where tr(·) is the trace of a square matrix. The penalty function reduces to

p(θ|X ) = s2
x/σ

2 + log σ2

under univariate Gaussian mixtures (Chen et al., 2008).
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• Under finite location-scale mixtures with location parameter µ and scale pa-

rameter σ, one may replace the sample variance s2
x in the previous penalty

function with a scale-invariance statistic. One such candidate is the squared

sample inter-quartile range. This is helpful if the variance of f0(·) is not

finite.

• Under the finite mixture of two-parameter Gamma distributions, the likeli-

hood is also unbounded. Penalizing the likelihood is also an effective way

to restore statistical consistency. Chen et al. (2016) recommends the penalty

function to be

p(θ|X ) = r − log r

where r is the shape parameter in the Gamma distribution.

The EM algorithm for computing the MLE for finite mixture can be easily

adapted to compute the PMLE with the recommended penalty function (Chen and

Tan, 2009). Using the same latent variable interpretation as given earlier, the pe-

nalized complete data log-likelihood is

p`cN (G) =
N∑
n=1

K∑
k=1

znk log{wkf(xn; θk)} − aN
K∑
k=1

p(θk|X )

The only random quantity in p`cN (G) is {znk, n ∈ [N ], k ∈ [K]} when condition-

ing on X . Therefore, the conditional expectation calculation in (2.2) remains valid.

The conditional expectation of `cN (G) is then given by

Q(G|G(t)) =
N∑
n=1

K∑
k=1

w
(t)
nk log{wkf(xn; θk)} − aN

K∑
k=1

p(θk|X ).

This completes the E step.

The M step is to maximize the above Q(G|G(t)) that includes a penalty term.

With the recommended penalty function, the subpopulation parameters remain well

separated. Clearly, we still have

w
(t+1)
k = N−1

N∑
n=1

w
(t)
nk
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and the updated subpopulation parameters become

θ
(t+1)
k = arg max

θ

{
N∑
n=1

w
(t)
nk log f(xn; θ)− aNp(θ|X )

}
. (2.4)

Under Gaussian mixtures (Chen and Tan, 2009), the solution to (2.4) has the

following closed form

µ
(t+1)
k =

{
Nw

(t+1)
k

}−1
N∑
n=1

w
(t)
nkxn,

Σ
(t+1)
k =

{
2aN +Nw

(t+1)
k

}−1{
2aNSx + S

(t+1)
k

}
,

where

S
(t+1)
k =

N∑
n=1

w
(t)
nk(xn − µ(t+1)

k )(xn − µ(t+1)
k )>.

For general location-scale mixture, the M step (2.4) does not always have a closed-

form. However, one only needs to solve an optimization problem with two vari-

ables.

The EM algorithm for the PMLE, like its MLE counterpart, increases the value of

the penalized likelihood after each iteration. For all t, we have Σ
(t)
k ≥ {2aN/(N +

2aN )}Sx > 0. The covariance matrices in G(t) have a lower bound that does not

dependent on the parameter values. This property ensures that the log-likelihood

under Gaussian mixture atG(t) has a finite upper bound. Hence, the above iterative

procedure is guaranteed to have p`cN (G(t)) converge to at least a non-degenerate

local maximum.

The consistency and asymptotic normality of the PMLE under the Gaussian

Mixture Model (GMM) are established in Chen et al. (2008) under univariate case

and in Chen and Tan (2009) under multivariate case under the standard IID condi-

tion. These results will be used in consistency proof in this thesis later. Hence, we

include a simplified version here for reference. We use (w∗k, µ
∗
k,Σ

∗
k)
> to denote the

true mixing weight and the true subpopulation parameters in the following Lemma.

Lemma 2.1 (Consistency of PMLE). Given N IID observations from a finite GMM

with known order K, the PMLE Ĝ as defined by (2.3) with aN = N−1/2 is asymp-
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totically normal with rate N−1/2. Specifically, let (ŵk, µ̂k, Σ̂k)
> denotes the mix-

ing weight and subpopulation parameters based on Ĝ. It is possible to line up the

subpopulation parameters of the true mixing distribution G∗ and of the PMLE Ĝ

such that

(ŵk, µ̂k, Σ̂k)
> = (w∗k, µ

∗
k,Σ

∗
k)
> + o(1)

and

(ŵk, µ̂k, Σ̂k)
> = (w∗k, µ

∗
k,Σ

∗
k)
> +Op(N

−1/2)

as N →∞ in obvious notation.

Chen and Tan (2009) proves the root-n-consistency of the PMLE for a non-

random penalty term. The asymptotic result remains valid when the sample co-

variance matrix is part of the penalty. This is because the sample covariance matrix

converges to a positive definite matrix. The assumption of known K is crucial for

the claimed rate of convergence. If K is unknown, then the convergence rate of

Ĝ is far below N−1/2. See Chen (1995) and the recent developments in Rousseau

and Mengersen (2011), Nguyen (2013), Heinrich and Kahn (2018), and Dwivedi

et al. (2020).

2.2.3 Minimum Distance Estimator

The MLE can also be interpreted as a minimum distance estimator (Eguchi and

Copas, 2006). The minimum distance estimator interpretation of the MLE moti-

vates other minimum divergence estimators. See Table 1.2 for a list of minimum

distance estimators that have been studied in the literature under finite mixture

models. Most of these works study the theoretical properties of the minimum dis-

tance estimator, the computation of these estimators is usually challenging even in

one-dimensional space. Therefore, the minimum distance estimator is generally

not used in practice.

2.3 Divergences Between Mixing Distributions or
Mixtures

We need various divergences and distances in the distance-based approaches in

this thesis. We also need them to assess the quality of various estimators. Regular
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models in statistics are usually parameterized by a vector of real numbers. Hence,

how well an estimator performs is often measured by the Euclidean distance be-

tween the estimated parameter vector and the true parameter vector. This leads to

the commonly used Mean Squared Error (MSE). The finite mixture models are not

regular. A finite mixture is parameterized by the mixing distribution, which is a

probability measure itself. A mixture model can be artificially parameterized by

a vector of real numbers when the order is pre-specified. However, it is difficult

to line up subpopulations in the estimated mixture and those in the true mixture

due to the well-known label switching issue. Therefore, we instead identify a mix-

ture distribution under a mixture model by its mixing distribution and measure the

performance of the estimator by the distance between estimated and true mixing

distributions.

In this section, we provide several distances under finite mixtures and discuss

their pros and cons. Let us first introduce the general notion of divergence and

distance.

Definition 2.2 (Divergence and Distance). Let Θ be a space. A bi-variate function

ρ(·, ·) defined on Θ is a divergence if ρ(θ1, θ2) ≥ 0 for any θ1, θ2 ∈ Θ, with

equality holds if and only if θ1 = θ2.

Suppose that ρ(·, ·) also satisfies

(i) symmetry: that is, ρ(θ1, θ2) = ρ(θ2, θ1), and

(ii) triangle inequality: that is

ρ(θ1, θ2) ≤ ρ(θ1, θ3) + ρ(θ3, θ2),

for all θ1, θ2, θ3 ∈ Θ.

Then ρ(·, ·) is a distance on Θ.

When ρ(·, ·) is a distance, we call (Θ, ρ) a metric space.

2.3.1 Commonly Used Divergences Between Mixtures

In this section, we show some commonly used divergences between two mixtures.

Let F (x;G) =
∑N

n=1wnF (x; θn) and F (x; G̃) =
∑M

m=1 w̃mF (x; θ̃m) be the
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CDF of two finite mixtures whose subpopulation density functions are from F =

{f(x; θ) : x ∈ Rd, θ ∈ Θ}. We first consider the divergence or distance between

these two mixtures.

Kullback-Leibler (KL) Divergence One choice is the well-known Kullback-

Leibler (KL) divergence between two distributions. Even under the most popular

and simple Gaussian mixtures, the KL divergence

DKL(Φ(·;G)‖Φ(·; G̃)) =

∫
φ(x;G) log{φ(x;G)/φ(x; G̃)} dx (2.5)

does not have a closed form. One must use numerical approximation to evaluate

its value, see approaches in Jensen et al. (2007) and Hershey and Olsen (2007).

Integrated Squared Error (ISE) Another choice is the squared L2 distance or

the Integrated Squared Error (ISE). It is well-defined on the space of continuous

measures with proper density functions. Let F (·) and G(·) be two CDFs on Rd, let

f(·) and g(·) respectively be the density functions with respect to some measure

ν(·). Then the ISE is defined to be

DISE(F,G) =

∫
Rd

|f(x)− g(x)|2 ν(dx). (2.6)

Under finite mixtures, the measure ν(·) is usually chosen to be the Lebesgue mea-

sure. Let SGG, SGG̃ and S
G̃G̃

be square matrices of sizes N × N , N ×M , and

M ×M , with their (n,m)th elements given by∫
f(x; θn)f(x; θm) dx,

∫
f(x; θn)f(x; θ̃m) dx,

∫
f(x; θ̃n)f(x; θ̃m) dx.

The ISE between F (·;G) and F (·; G̃) is is then given by

DISE(F (·;G), F (·; G̃)) =

∫
|f(x;G)− f(x; G̃)|2 dx

= w>SGGw − 2w>S
GG̃
w̃ + w̃>S

G̃G̃
w̃.

Under the special case of GMM and general notation (µ,Σ) and (µ̃, Σ̃) for the
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parameters of two Gaussians, we have∫
φ(x;µ,Σ)φ(x; µ̃, Σ̃) dx = φ(µ; µ̃,Σ + Σ̃). (2.7)

To see this, let X and E be two independent random variables such that X ∼
φ(x; µ̃, Σ̃) and E ∼ φ(e;µ,Σ). The Left Hand Side (LHS) of (2.7) is the marginal

density of X +E, clearly X +E ∼ φ(x;µ+ µ̃,Σ + Σ̃). See also Williams (2003,

Appendix A-1).

The property of Gaussian distribution in (2.7) leads to the ISE between two

finite Gaussian mixtures given by

DISE(Φ(·;G),Φ(·; G̃)) =
N∑
n=1

N∑
n′=1

wnwn′φ(µn;µn′ ,Σn + Σn′)

− 2
N∑
n=1

M∑
m=1

wnw̃mφ(µn; µ̃m,Σn + Σ̃m)

+
M∑
m=1

M∑
m′=1

w̃mw̃m′φ(µ̃m; µ̃m′ , Σ̃m + Σ̃m′).

(2.8)

The square root of the ISE is theL2 distance that satisfies the symmetry and triangle

inequality as given in Definition 2.2.

Cauchy-Schwarz (CS) Divergence The third choice we recommend is called CS

divergence (Jenssen et al., 2006). With the same notation as above, the CS diver-

gence between F and G is defined to be

DCS(F,G) = − log

∫
f(x)g(x) ν(dx)√∫

f2(x) ν(dx)
∫
g2(x) ν(dx)

Applying (2.7), the CS divergence between two Gaussian mixtures has the follow-

ing closed expression

DCS(Φ(·;G),Φ(·; G̃)) =− log
w>S

GG̃
w̃√

w>SGGw
√
w̃>S

G̃G̃
w̃
.

Note that the CS divergence is symmetric in two arguments.
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These divergences are defined between two mixtures. One may measure the

similarity between two mixing distributions by their corresponding mixtures. Is

there any distance defined directly between two discrete distributions that can be

directly used to measure the similarity between two mixing distributions? A special

distance of the transportation divergence, the Kantorovich distance, is widely used

to measure the similarity between two discrete distributions (Deng and Du, 2009).

We introduce the transportation divergence between two distributions in the next

section.

2.3.2 Transportation Divergence and Wasserstein Distance under
Mixtures

The transportation divergence and the Wasserstein distance are the byproducts of

optimal transportation theory. They are part of the key ingredients of this thesis.

In this section, we first briefly review the history of the optimal transportation the-

ory and the two fundamental problems where the optimal transportation theory is

originated. We refer the interested readers to Villani (2003) and Peyré and Cuturi

(2019) for details where the former focuses on the theoretical aspect and the latter

focuses on the computational aspect of the optimal transport.

A Brief History Optimal Transport

Optimal Transport (OT) problem has a long history starting from 1781 when the

French mathematician and physicist Gaspard Monge (1746-1818) formulated the

original problem. He considered the problem of how to move a pile of sand to

fill up a hole at a minimal cost. The assignment of the sand from the original

location to the destination location is called “transport plan” or “transportation

plan”. The terminology “optimal transport” is used since the problem searches for

the transportation plan that gives the minimum cost. This formulation is hence

called Monge’s problem in the literature.

Later in 1947, the Russian economist Leonid Kantorovich (1912-1986) re-

formulated Monge’s problem. Kantorovich’s formulation is usually called Kan-

torovich’s relaxation or Monge-Kantorovich problem in their honour. Kantorovich

received Nobel Prize in 1975 for his contribution to the optimal transportation the-
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ory in economics. The OT problem later draws a lot of attention from mathemati-

cians since they find that the OT problem leads to many interesting mathematical

problems. For example, Yann Brenier’s work in 1987 on the existence and unique-

ness of the optimal transportation plan paved the way towards a beautiful interplay

between partial differential equations, geometry, probability theory, and functional

analysis (Villani, 2003).

In the statistics community, the Wasserstein distance is usually used. It char-

acterizes the convergence rate of the mixing distribution estimator under mixture

models by Nguyen (2013). Recently, the Wasserstein distance gained popularity as

a natural metric for the dissimilarity of two probability distributions (Dedecker and

Merlevede, 2017). It is also widely used in functional data analysis (Chen et al.,

2021; Chen and Muller, 2021). See Panaretos and Zemel (2019) for a comprehen-

sive review of the use of OT in statistics.

Monge’s Problem

Consider the sand moving problem as illustrated in Figure 2.1. Let there be a pile

Figure 2.1: Illustration of Monge’s problem.

of sand and a hole. We want to fill up the hole with sand completely. To fill up

the hole, the volume of the sand and the volume of the hole must be the same.

Without loss of generality, let the volumes of both sand and hole be 1. We use two

probability measures η and ν to represent the distribution of sand and hole. Denote

by c(x, y) the unit cost of moving the sand at location x to the hole at location y.
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The total cost to move all the sand depends on how we move the sand. Monge’s

problem seeks the transportation plan with the minimum cost to complete this task.

To formulate the problem mathematically, let Θ1 and Θ2 be two spaces and

P(Θ1) and P(Θ2) be two spaces of probability measures on Θ1 and Θ2 respec-

tively. Let η ∈ P(Θ1) and T be a map from Θ1 to Θ2.

Definition 2.3 (Push Forward Measure). A measure ν ∈ P(Θ2) is a push forward

measure of η by T if for any measurable set B ⊂ Θ2, ν(B) = η(T −1(B)).

We denote the push forward measure of η by T as ν = T#η. We now intro-

duce cost function as a bi-variate function c(·, ·) on Θ1×Θ2 such that c(θ1, θ2) ≥ 0

for any θ1 ∈ Θ1 and θ2 ∈ Θ2.

Definition 2.4 (Monge’s Problem). Let η and ν be two probability measures on Θ1

and Θ2 respectively. Let c(·, ·) be a cost function on Θ1×Θ2. For a given measure

η ∈ P(Θ1) and a map T from Θ1 to Θ2, define

Ic(T ) =

∫
Θ
c(x,T (x)) η(dx) (2.9)

which is the total cost of moving η to ν = T#η. Monge’s problem is to find a

transportation plan T ∗ such that

Ic(T ∗) = inf{Ic(T ) : T#η = ν}.

We call T ∗ an OT plan.

The total transportation cost Ic(T ) as defined in (2.9) is induced by a transport

plan T with unit cost c(·, ·). It can be interpreted as follows in the previous sand

moving example. The η(dx) amount of sand at location x is moved to the hole

at location T (x) with unit cost being c(x,T (x)). The push-forward measure

ν = T#η requires the hole with shape ν is filled up completely without any hollow.

Remark 2.1 (Non-existence of OT Plan in Monge’s Problem). The OT Plan in

Monge’s problem does not always exist. Consider two discrete measures η =

0.5δ−1 + 0.5δ1 and ν = δ0 on real space Θ1 = Θ2 = R. It is obvious that

T (x) = |x| − 1 is a transportation plan from η to ν. However, the transportation
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plan from ν to η does not exist: ν(T −1(B)) takes value either 0 or 1 for any B
and T . Hence, the push forward measure of any T can not assign measure 0.5 at

either location −1 or 1 required by η.

To solve the issue that the optimal transport plan may not exist for the trans-

portation problem based on Monge’s formulation, Kantorovich proposes a relax-

ation of Monge’s problem. This leads to the Monge-Kantorovich problem.

Monge-Kantorovich Problem

Kantorovich’s relaxation allows splitting the sand at location x to different propor-

tions and moving them to different locations of the hole. By allowing the partition

of the sand, the Monge-Kantorovich problem learns a stochastic instead of a deter-

ministic transportation plan.

For simplicity, let us consider the case when Θ1 = Θ2 = Θ. For any π ∈
P(Θ2), denote its marginal measures to be π1· and π·2. For any η, ν ∈ P(Θ),

define the space of the couplings of η and ν to be

Π(η, ν) = {π ∈ P(Θ2) : π1· = η, π·2 = ν}.

The coupling space Π(η, ν) consists of bi-variate measures with marginal measures

η and ν. For convenience, we denote Π(η, ·) as the space of measures with first

marginal measure being η, and similarly for Π(·, ν).

Definition 2.5 (Monge-Kantorovich Problem). Let η, ν, and c(·, ·) be two mea-

sures and cost function as in Definition 2.4. For any π ∈ P(Θ2), let

Ic(π) = Eπ{c(X,Y )} =

∫
Θ2

c(x, y)π(dx, dy). (2.10)

Kantorovich’s relaxation of the optimal transportation problem is to find a π∗ ∈
P(Θ2) such that

Ic(π∗) = inf{Ic(π) : π ∈ Π(η, ν)}.

Intuitively, π(x, y) indicates how much “mass” is transported from x to y. The

first constraint
∫

Θ π(x, dy) = η(x) on π is to ensure that the sand at location x is
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spread over the space of y. The second constraint
∫

Θ π(dx, y) = ν(y) ensures that

the hole at location y is filled up with sand from all places.

When c(x, y) is lower semi-continuous, Villani (2003, Theorem 1.3) shows the

infimum over Π(η, ν) is attainable and optimal transportation plans exist. This

formulation is called the relaxation of Monge’s problem since Monge’s problem is

its special case and its solution π has the special form

π(dx, dy) = η(dx)δy=T (x)(dy).

The notation δy=T (x)(·) is a Dirac mass at y that equals T (x).

The application of OT requires the computation of the optimal transport plan.

There does not exist a closed-form solution for the optimal transport plan π∗ in

general. Some numerical algorithms are developed to find the optimal transport

plan between two discrete measures. Approximate optimal transport plans are usu-

ally obtained by discretizing the continuous measures (Peyré and Cuturi, 2019).

Numerical Computation of Optimal Transport Plans

Let η =
∑N

n=1 unδxn and ν =
∑M

m=1 vmδym be two discrete probability measures

on some space Θ. Let the cost function be c(x, y) and C be a cost matrix such

that its (n,m)th element Cnm = c(xn, ym). Let π =
∑

n,m πnmδ(xn,ym) be a

transportation plan from η to ν so that it is a member of

Π(η, ν) =

{
π =

∑
n,m

πnmδ(xn,ym) :
M∑
m=1

πnm = un and
N∑
n=1

πnm = vm

}
.

By Definition 2.10, the total cost of transporting η to ν based on plan π is given by

Ic(π) =
N∑
n=1

M∑
m=1

πnmCnm.

This formulation enables us to use linear programming to find the optimal trans-

portation plan π∗ (Peyré and Cuturi, 2019, Section 3.1).

Let c = Vec(C) be a vector formed by the entries of matrix C column-wise.
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Similarly, let −→π = Vec(π). We create a matrix

A =

(
1>N ⊗ IM

IN ⊗ 1>M

)

where 1N is a vector of all 1s with length N , IM is an identity matrix with

dimension M , and ⊗ is the Kronecker product between two matrices. Recall

u = (u1, u2, . . . , un)> and v = (v1, v2, . . . , vm)> are the weights of η and ν

in vector form. The optimal transportation plan from η to ν can then be presented

as
−→π ∗ = arg min

{
c>−→π : −→π ∈ RNM+ , A−→π =

(
u

v

)}
.

The optimization problem is exactly a linear programming problem. Most linear

programming algorithms, such as simplex or interior point methods, have algo-

rithm complexity at O(N3 log(N)) for such a problem when N = M (Cuturi,

2013). Since the cost is cubic in N , the computational cost is considered very

expensive when N is large. To reduce the computation burden, Cuturi (2013)

proposes an entropic regularized problem. This problem is computationally less

expensive with a solution approximates the original transportation plan.

Definition 2.6 (Entropic Regularized Optimal Transport). Let probability mea-

sures η, ν, the transportation plan π, and the cost matrix C all be the same as

given earlier. Let

H(π) = −
N∑
n=1

M∑
m=1

πnm(log πnm − 1),

be a version of entropy of π. Let λ ≥ 0 and

Ic,λ(π) = Ic(π)− λH(π).

An entropic regularized optimal transport plan between η and ν with regularization

strength λ > 0 is defined to be a transport plan π∗ satisfies

Ic,λ(π∗) = min{Ic,λ(π) : π ∈ Π(η, ν)}. (2.11)
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It can be found that Ic,λ(π) is strongly convex. Hence, it has a unique mini-

mum π∗λ. Peyré and Cuturi (2019) shows that as λ → ∞, the regularization term

dominates and

π∗λ → arg max{H(π) : π ∈ Π(η, ν)}.

In the vector form, we have −→π ∗λ = uv>.

Let a = (a1, a2, . . . , aN )>. Denote the diagonal matrix whose nth main diag-

onal element is an by diag(a).

Proposition 2.1. LetK be a matrix with its (n,m)th entryKnm = exp(−Cnm/λ).

The vector form of the unique solution to (2.11) can be expressed as

−→π ∗λ = {diag(a)}K {diag(b)}

for some a ∈ RN+ and b ∈ RM+ .

By Proposition 2.1, the optimal solution −→π ∗λ satisfies constraints

{diag(a)}K {diag(b)}1M = u, {diag(b)}K> {diag(a)}1N = v.

Since diag(b)1M = b, these constraints can also be written as

a� (Kb) = u, b�
(
K>a

)
= v (2.12)

where� is the element-wise product of two vectors. Proposition 2.1 can be proved

using Lagrangian multiplier method (Peyré and Cuturi, 2019, Section 4.2). Based

on this proposition, the entropic regularized optimal transportation plan can be

obtained efficiently via an iterative minimization scheme that only involves simple

matrix operations. An intuitive iterative scheme to solve (2.12) is known as the

Sinkhorn’s algorithm:

a(t+1) = u/{Kb(t)}, b(t+1) = v/{K>a(t+1)}

where the division operator between two vectors is defined entry-wise.
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Transportation Divergence and Wasserstein Distance – A General Definition

We have given the intuition behind the optimal transportation plan in the previous

section. It is seen that a byproduct of OT is that the optimal transportation cost is a

divergence on the space of probability measures. For some choice of cost functions,

the optimal transportation cost becomes a distance, which is called the Wasserstein

distance (Villani, 2003). The Wasserstein distance measures the similarity between

two mixing distributions or mixtures (Nguyen, 2013). In this thesis, we use the

transportation divergence for aggregation and approximate inference.

Definition 2.7 (Transportation Divergence). Let η and ν be two probability mea-

sures, and c(·, ·) be a cost function on Θ. Let Ic(π) be the same as that in (2.10).

Denote by

π∗ = arg inf{Ic(π) : π ∈ Π(η, ν)}

the corresponding optimal transportation plan. We call

Tc(η, ν) = Ic(π∗)

the transportation divergence.

Based on the intuition behind OT, the transportation divergence captures the

human perception of similarity very well. Therefore, the transportation divergence

becomes a natural candidate to measure the similarity between probability mea-

sures.

The transportation divergence is defined through a cost function c(·, ·) on Θ×
Θ. Because the cost function is non-negative, the optimal transportation cost is a

divergence between two measures. The cost function is also very helpful when Θ

has complex structures such as trees and graphs. For example, it is used to measure

the similarity between phylogenetic trees (Evans and Matsen, 2012). This property

distinguishes itself from other distances such as the total variation distance and

Kolmogorov Smirnov distance.

Suppose D(·, ·) is a distance on space Θ and r ≥ 1 is a real number. We say

a probability measure η ∈ P(Θ) has finite rth moment if there exists an θ0 ∈ Θ
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such that ∫
θ∈Θ

Dr(θ, θ0) η(dθ) <∞.

In fact, if the above integration is finite for some θ0, it is finite when θ0 is replaced

by any other values in Θ. We denote Pr(Θ) as the space of probability measures

on Θ with finite rth moment.

If one chooses the cost function in the transportation divergence to be c(·, ·) =

Dr(·, ·) for some r ≥ 1, then the transportation divergence becomes the famous r-

Wasserstein distance. The following result can be found in Villani (2003, Theorem

7.3).

Proposition 2.2 (r-Wasserstein distance). Let D(·, ·) be a distance defined on

space Θ and c(·, ·) = Dr(·, ·) for some r ≥ 1. Then

WD,r(·, ·) = T 1/r
c (·, ·)

is a distance on Pr(Θ). We call WD,r(·, ·) r-Wasserstein distance.

Remark 2.2. We refer to distance D(·, ·) on Θ as ground distance. When Θ is an

Euclidean space, the most widely used ground distance is the Euclidean distance

D(x, y) = ‖x−y‖. We simplify the notation of this version of Wasserstein distance

into Wr, omitting the ground distance D in the subscript.

Remark 2.3. Let X and Y be two random variables with probability laws η and

ν and cumulative distribution functions F and G. We adopt the convention

Wr(X,Y ) = Wr(F (·), G(·)) = Wr(η, ν).

The Wasserstein distance is often used in probability theory for the metrization

of the weak convergence of probability measures as well as the convergence of

the moments. The following results are used when we study the properties of

the Wasserstein distance-based minimum distance estimator of finite location-scale

mixtures. The next two lemmas can be found in Villani (2003, Chapter 7).

Lemma 2.2 (Weak convergence). Let X1, X2, . . . , Xn, . . . be a sequence of ran-

dom variables and Y is another random variable. Assume that all of these random
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variable have finite rth moment. ThenWr(Xn, Y )→ 0 if and only if (i)Xn
d−→ Y

and (ii) E{Dr(Xn, x0)} → E{Dr(Y, x0)} for some (and therefore all) nonrandom

constant x0. The E(·) is the expectation of the corresponding function with respect

to the distribution of the random variable with obvious notation.

The Wasserstein distance also has a useful ordering property.

Lemma 2.3 (Ordering of Wasserstein distance). For any q ≥ p ≥ 1,

Wq(η, ν) ≥Wp(η, ν). (2.13)

Despite many of their nice properties, the use of transportation divergence or

Wasserstein distance is hindered by the computation challenge in general. In some

special cases, the Wasserstein distance has a closed-form as shown in the following

two examples.

Example 2.1 (Wasserstein distance between measures on R.). Let η and ν be two

probability measures on the one-dimensional Euclidean space R and F (x) and

G(x) be their corresponding CDFs. Then the r-Wasserstein distance between η

and ν has a closed-form expression

Wr(η, ν) =

(∫ 1

0
|F−1(t)−G−1(t)|rdt

)1/r

(2.14)

where F−1(t) = inf{x : F (x) ≥ t} and G−1(t) = inf{x : G(x) ≥ t} are

quantile functions.

Example 2.2 (2-Wasserstein distance between two Gaussians). Let X and Y be

two Gaussian random vectors with mean vectors µX and µY , and covariance ma-

trices ΣX and ΣY . Let the ground distance be the Euclidean distance:

D(x, y) = ‖x− y‖.

Then, the 2-Wasserstein distance has the following closed-form

W 2
2 (X,Y ) = ‖µX − µY ‖2 + tr

(
ΣX + ΣY − 2(Σ

1/2
X ΣY Σ

1/2
X )1/2

)
.
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See (Peyré and Cuturi, 2019).

With the definition of transportation divergence and Wasserstein distance, we

can apply them to directly measure the similarity between two mixing distributions.

Let f(x;G) =
∑N

n=1wnf(x; θn) and f(x; G̃) =
∑M

m=1 w̃mf(x; θ̃m) be two finite

mixtures parameterized by mixing distributions G and G̃. Let w and w̃ be two

vectors represent their corresponding mixing weights. Let the ground cost function

c(·, ·) : Θ×Θ→ R+ be any sensible divergence on the parameter space Θ. Based

on the definition of the transportation divergence, the transportation plan between

two discrete measures is also a discrete measure. To simplify the notation, we

denote by

Π(w, w̃) = {π ∈ RN×M+ : π1M = w,π>1N = w̃}

the coupling between G and G̃. In this notation, we denote by π the weights that

the transportation plan puts on its support points. We use this matrix notation for

the transportation plan between two discrete measures in the rest of the thesis.

The transportation divergence between G and G̃ then becomes

Tc(G, G̃) = inf

{∑
n,m

πnmc(θn; θ̃m) : π ∈ Π(w, w̃)

}
.

Under finite GMM with parameter space Θ = Rd × Sd+, the ground cost function

between two parameters θn = (µn,Σn) and θ̃m = (µ̃m, Σ̃m) can be chosen to be

c(θn, θ̃m) = ‖µn − µ̃m‖+ ‖Σ1/2
n − Σ̃1/2

m ‖F (2.15)

where ‖ · ‖F is the Frobenius norm of a matrix.

The transportation divergence can be used to measure the similarity between

any distributions. Is it helpful to measure the similarity between two mixtures?

The transportation divergence between two mixtures with the cost function being

the Euclidean distance on the sample space is well defined. However, this trans-

portation divergence is difficult to compute for continuous mixtures. We may take

advantage of the special structure of finite mixture to find some version of trans-

portation divergence that permits easy computation. This consideration leads to a

39



Composite Transportation Divergence (CTD) discussed in Nguyen (2013), which

we introduce in the next section.

Composite Transportation Divergence under Mixtures

The key to the easy-to-compute transportation divergence between finite mixtures

is to view the finite mixtures as discrete distributions on the space of probability

distributions. Let F = {f(x; θ) : x ∈ Rd, θ ∈ Θ} be a parametric distribution

family of subpopulations and F̃ = {F (x; θ) : x ∈ Rd, θ ∈ Θ} be the corre-

sponding collection of CDFs. A finite mixture is a discrete distributions on F . Let

c(·, ·) : F̃ × F̃ → R+ be a divergence defined on F̃ .

Definition 2.8 (CTD between Mixtures). We define the CTD between mixtures to be

Tc(F (·;G), F (·; G̃)) = inf
π∈Π(w,w̃)

{∑
n,m

πnmc(F (·; θn), F (·; θ̃m))

}
. (2.16)

As we discussed previously for the numerical computation of OT, the cost for

evaluating the divergence is high when the orderN of mixture F (x;G) is large. We

can similarly replace it with an entropic regularized version of CTD between two

mixtures which admits a low computational cost. The notations in the following

definition are the same as before.

Definition 2.9 (Entropic Regularized CTD). Let F (·;G) and F (·; G̃) be two mix-

ture Cumulative Distribution Function (CDF)s as defined earlier. Let H(π) =

−
∑

i,j πij(log πij − 1) be the entropy of the transportation plan π. We define the

entropic regularized CTD between two mixtures to be

Tc,λ(F (·;G), F (·; G̃)) = inf
π∈Π(w,w̃)

{∑
n,m

πnmc(F (·; θn), F (·; θ̃m))− λH(π)

}

with some regularization parameter λ ≥ 0.

Let the cost function on Θ×Θ be c̃(θ, θ̃) = c(F (·; θ), F (·; θ̃)). Then its implied

CTD Tc̃(G, G̃) between two mixtures is also a transportation divergence between

two mixing distributions. With many candidates for the cost function c(·, ·), there

are a large variety of CTDs, we explore the benefit of this flexibility in Chapter 5.
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2.4 Barycentre of Probability Measures
Under regular models, a widely adopted aggregation approach in the split-and-

conquer approach is to aggregate local estimators by their simple arithmetic mean.

The finite mixture model is not regular and the simple arithmetic mean of the local

estimators is not a sensible estimator. At the same time, the arithmetic mean is the

solution to the least sum of squares problem. Let x1, x2, . . . , xn be n real vectors,

the arithmetic mean x̄ = (x1 + x2 + · · ·+ xn)/n is the solution to

arg min
y
‖xn − y‖2.

Replacing the quadratic function with a generic distance function, the solution to

the least sum of distances resembles the geometric centre. This centre is referred

to as barycentre or as Fréchet mean in statistics (Fréchet, 1948).

With this knowledge, one may use the barycentre of local estimators in the

probability distribution space as the aggregated estimator (Agueh and Carlier, 2011).

This particular approach for finite mixture models is discussed in Section 4.1. The

notion of barycentre is utilized more broadly in this thesis. We devote a section to

barycentre here for easy reference.

Definition 2.10 (Barycentre of Probability Measures). Let (P(Θ), ρ) be a space

of probability measures on Θ that is endowed with the divergence ρ(·, ·). Let

(λ1, λ2, . . . , λM ) be a vector of positive values of length M . The (weighted)

barycentre of ν1, . . . , νM ∈ P(Θ) is defined to be

ν̄ = arg min
ν

M∑
m=1

λmρ(νm, ν). (2.17)

We can choose any sensible divergence ρ(·, ·) between two probability mea-

sures. Let ρ(·, ·) = W r
r (·, ·) with the Euclidean distance as the ground distance,

we get the widely used r-Wasserstein barycentre (Cuturi and Doucet, 2014). A

barycentre depends on the divergence ρ and the weights, we will omit the infor-

mation on the divergence and weights in the name but specify them in the formal

description.

The barycentre of the Gaussian distributions with respect to some divergence
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has either an explicit solution or permits simple numerical solution.

Example 2.3 (Wasserstein Barycentre of Gaussians). Let νm be a Gaussian prob-

ability measure with mean vector µm and covariance matrix Σm for m ∈ [M ]. It

can be shown that the following matrix equation

M∑
m=1

λm

(
Σ1/2ΣmΣ1/2

)1/2
= Σ (2.18)

has a unique positive definite matrix root in Σ (Agueh and Carlier, 2011). Denote

this root as Σ and let µ =
∑M

m=1 λmµm. Then, when the divergence ρ is chosen

to be 2-Wasserstein distance, the barycentre of {νm : m ∈ [M ]} is given by the

Gaussian distribution with mean vector µ and covariance matrix Σ.

This result shows that the Wasserstein barycentre of Gaussian distributions

is also a Gaussian distribution. This is an important property in image process-

ing (Rabin et al., 2011) and colour modification (Solomon et al., 2016). For sim-

plicity, we will simply call the r-Wasserstein barycentre of Gaussian distributions

as r-Wasserstein barycentre. The Wasserstein barycentre is also used in large-scale

Bayesian inference (Srivastava et al., 2018).

Example 2.4 (KL Barycentre of Gaussians). Another choice of divergence ρ that

leads to simple barycentre solution under Gaussians is the KL divergence. Recall

that the KL divergence between two distributions F1 and F2 with density functions

f1(·) and f2(·) with respect to some measure ν is given by

DKL(F1‖F2) =

∫
f1(x) log(f1(x)/f2(x)) ν(dx).

The barycentre of (2.17) with ρ(F1, F2) = DKL(F1‖F2) in the space of Gaussian

distributions, is a Gaussian distribution with mean vector µ =
∑M

m=1 λmµm and

covariance matrix

Σ =

M∑
m=1

λm(Σm + (µm − µ̄)(µm − µ̄)>).

We offer a proof of this claim in Appendix C.2. For simplicity, we simply call
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the barycentre based on KL divergence of Gaussian distributions as KL barycentre.

If not confined in the space of Gaussian distributions, the minimizer to (2.17) would

be the mixture
∑M

m=1 λmΦ(x;µm,Σm) itself.

Figure 2.2 depicts the covariance matrices of the (Gaussian) barycentres of four

2-dimensional Gaussian measures arranged by λ values.

2.5 Performance Metrics in Experiments
We use same performance metrics in the experiments in Chapter 3 – Chapter 5.

To avoid introducing the same notation repeatedly, we summarize the performance

metrics in this section.

Under mixture models, the degree of overlap between subpopulations decides

how difficult it is to learn the model. The larger the degree of overlap, the more

difficult it is to learn the model. We give the formal definition of pairwise degree

of overlap as follows.

Definition 2.11 (Pairwise Degree of Overlap). Let f(x;G) =
∑K

k=1wkf(x; θk)

be the density function of a mixture of order K. The probability of a unit from sub-

population i misclassified as a unit in subpopulation j by the maximum posterior

rule (in some sense) is

oj|i = P
(
wif(X; θi) < wjf(X; θj)|X ∼ f(x; θi)

)
.

The degree of overlap between the ith and the jth subpopulations is defined as

oij = oj|i + oi|j . (2.19)

In our simulation study, we pick various values for the degree of overlap of

the population mixture. Consider an experiment with R repetitions, let X (r) be a

random sample from F ∗(x;G(r)) for r ∈ [R]. Let F (x; Ĝ(r)) be the estimated

mixture based on X (r). We usually confine our study to the situation where F ∗ and

F are from the same family. When study the robustness of an estimator, F ∗ and F

may from different families. For example, F ∗(·;G) may be a logistic mixture and

F (x; Ĝ) can be a Gaussian mixture in this situation.

How to measure the performance of an estimator based on the outputs of a
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(a) 2-Wasserstein barycentre

(b) KL barycentre

Figure 2.2: The covariance matrices of (a) Wasserstein barycentres and (b)
KL barycentres of 4 randomly generated zero-mean 2-dimensional
Gaussian measures arranged by the λ value. The four corners are those
obtained with λ = (1, 0, 0, 0)>, (0, 1, 0, 0)>, (0, 0, 1, 0)>, (0, 0, 0, 1)>.
The middle one is obtained with λ = (1/4, 1/4, 1/4, 1/4)>.
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simulation study? For vector-valued parameters, the commonly used performance

metric of their estimators is the MSE. Under the finite mixture model that is non-

regular, the parameter is a discrete distribution and is called the mixing distribution.

One or more of the following quantities are used to measure the performance of the

various estimators.

1. Integrated Squared Error (ISE) between Mixtures. When F and F ∗ are

from the same family, we measure the performance of the learned mixing

distribution by the value of DISE(F ∗(·;G(r)), F (·; Ĝ(r))). The better the

learned mixing distribution, the closer the value to 0.

2. Distance between Mixing Distributions (W1). The transportation diver-

gence between the learned and true mixing distributions can also be used to

measure the performance of different estimators. The closer the value of the

transportation divergence to 0, the better the performance of the estimator.

Under GMM, we use

W1(Ĝ(r), G(r)) = inf

{∑
nm

πnmD(θ̂n, θm) : π ∈ Π(ŵ,w)

}

where θ̂n and θm are subpopulations parameters in Ĝ(r) and G(r) respec-

tively. The mixing weights of Ĝ(r) and G(r) are ŵ and w respectively. The

ground cost function D(θ̂n, θm) is chosen to be the one in (2.15). Since the

cost function is a distance and r = 1, this divergence is Wasserstein distance

Wc,1. For simplicity of notation, we denote this divergence as W1.

3. Adjusted Rand Index (ARI). According to Section 2.1, the finite mixture

models are often used for clustering. Given an observed value x from the true

mixture population f∗(·;G∗), according to (2.1), the observation is classified

into the cluster κ∗(x) = arg maxj∈[K]{w∗jf∗(x; θ∗j )} based on the true mix-

ture. Similarly, if f(·; Ĝ) is the learned mixture, then the most likely cluster

that x belongs to is κ̂(x) = arg maxj∈[K]{ŵjf(x; θ̂j)}. We measure the

performance of the learning approach by measuring the degree of similarity

between {κ̂(r)(xi) : xi ∈ X (r)} and {κ(r)
∗ (xi) : xi ∈ X (r)} by the ARI given

in Definition 2.1.
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4. Log-likelihood (LL). We compare the value of the log-likelihood (LL) func-

tion at the estimated mixing distribution. For the ease of presentation, we

present the value of the log-likelihood per observation. Let Ĝ(r) be an es-

timator of true mixing distribution G(r) in the rth experiment based on an

IID sample X (r) = {x(r)
1 , x

(r)
2 , . . . , x

(r)
N }, then the LL of estimator Ĝ(r) is

defined to be

LL(Ĝ(r)) = N−1
N∑
n=1

log f(x
(r)
i ; Ĝ(r)).

We can similarly define the LL of the true mixing distribution G(r). The

higher the value of LL, the better the performance of the estimator.

For all performance metrics, we either report the value of each metric averaged

across R repetitions or present the boxplot of their values across R repetitions. We

specify the details in each simulation.
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Chapter 3

Minimum Wasserstein Distance
Estimator under Univariate
Finite Location-Scale Mixture

For finite mixture models in (1.1), the most fundamental inference problem is the

learning of the mixing distribution G based on data. In this chapter, we study

the problem of learning the mixing distribution G given a set of IID univariate

observations from a finite location-scale mixture, that is a mixture when F is a

known location-scale family. The location-scale family F consists of densities

f(x;θ) =
1

σ
f0

(x− µ
σ

)
for some probability density function f0(x) with x ∈ R with respect to Lebesgue

measure where θ = (µ, σ)> with Θ = R× (0,∞).

In statistics, the Maximum Likelihood Estimate (MLE) is usually the first choice

to learn model parameters due to its statistical efficiency. However, under finite

location-scale mixture model, the MLE ofG is not well-defined. The log-likelihood

function of G based on a set of IID observations X = {x1, x2, . . . , xN} from a fi-
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nite location-scale mixture model is given by

`N (G|X ) =

N∑
n=1

log f(xn;G) =

N∑
n=1

log

{
K∑
k=1

wk
σk
f0

(
xn − µk
σk

)}
.

This log-likelihood function is unbounded: its value goes to infinity for a specific

combination of µk and some σk → 0. Hence, the MLE of G is not well-defined or

is ill defined as explained in Section 1.2.1.

The minimum distance estimator is one of many alternatives to MLE (Blum and

Susarla, 1977; Choi, 1969; Choi and Bulgren, 1968; Clarke and Heathcote, 1994;

Cutler and Cordero-Brana, 1996; Macdonald, 1971). A minimum distance estima-

tor resembles the MLE in a way as the MLE minimizes the Kullback-Leibler (KL)

divergence between the empirical distribution and the assumed model (Eguchi and

Copas, 2006). Suppose we have a set of IID observations X = {x1, x2, . . . , xN}.
Let FN (x) = N−1

∑N
n=1 1(xn ≤ x) be the empirical distribution. Given a dis-

tanceD(·, ·) on the space of cumulative distribution functions, a minimum distance

estimator under a finite mixture model of order K is defined to be

ĜN = arg min
G∈GK

D(FN (·), F (·;G)).

Note in the above notation in the distance, we denote by dot the input of the Cumu-

lative Distribution Function (CDF)s to address that the distance is defined between

two functions FN (·) and F (·;G), rather than two values FN (x) and F (x;G). Ta-

ble 1.2 in Chapter 1 lists the distances and the corresponding minimum distance

estimators studied under finite mixture models that we are aware of. Noticeably,

the Wasserstein distance is not one of them.

Given the increased interest of Wasserstein distance in the machine learning

community, we wish to know whether the Minimum Wasserstein Distance Estima-

tor (MWDE) is a viable approach to learn finite location-scale mixtures. We answer

the following questions in this chapter.

1. Is the MWDE well-defined under finite location-scale mixtures?

2. Is the MWDE a consistent estimator?
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3. Is the MWDE more efficient than the penalized Maximum Likelihood Esti-

mate (PMLE)?

4. Is the MWDE more robust than the PMLE?

We find that the MWDE is consistent, and we develop a numerical solution

under finite location-scale mixtures. We compare the robustness of the MWDE

with the PMLE in the presence of outliers and mild model mis-specifications. We

conclude that the MWDE suffers some efficiency loss against the PMLE in general

without an obvious gain in robustness. These findings reaffirm the general supe-

riority of the likelihood-based learning strategies even for the non-regular finite

location-scale mixtures.

This chapter is organized as follows. In Section 3.1, we give the formal defini-

tion of the MWDE and discuss its existence and consistency under finite location-

scale mixtures. We obtain some algebraic results that are essential for computing

the 2-Wasserstein distance between the empirical distribution and a finite location-

scale mixture. We then develop a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm scheme for computing the MWDE of the mixing distribution. In Section 3.2,

we characterize the efficiency properties of the MWDE relative to PMLE in various

circumstances via simulations. We also study the robustness of MWDE when the

data contains outliers, is contaminated, or when the model is mis-specified. We

then apply both methods in an image segmentation example in Section 3.3. We

conclude this chapter with a summary in Section 3.4.

3.1 Minimum Wasserstein Distance Estimator (MWDE)
In this section, we introduce the MWDE estimator under finite location-scale mix-

tures. We also investigate its existence, statistical consistency, and numerical com-

putation.

LetWr(·, ·) be the r-Wasserstein distance between univariate random variables

with ground distance D(x, y) = ‖x − y‖. Let X = {x1, x2, . . . , xN} be a set

of IID observations from a finite location-scale mixture f(x;G) of order K and

FN (x) = N−1
∑N

n=1 1(xn ≤ x) be the empirical distribution. Assume f0(x)

has finite rth moment for some r ≥ 1, we then propose the MWDE of the mixing
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distribution G:

ĜMWDE
N = arg inf

G∈GK

Wr(FN (·), F (·;G)) = arg inf
G∈GK

W r
r (FN (·), F (·;G)). (3.1)

3.1.1 Existence of MWDE

As we pointed out earlier, the MLE is not well-defined under finite location-scale

mixtures. Is the MWDE well-defined? We examine the existence or sensibility of

the MWDE in this section. We show that the MWDE exists when f0(·) satisfies

certain conditions.

Assume that f0(0) > 0, f0(x) is bounded, continuous, and has finite rth mo-

ment for some r ≥ 1. Under these conditions, we can see that

0 ≤Wr(FN (·), F (·;G)) <∞

for any G ∈ GK . When N ≤ K, the solution to (3.1) requires special attention.

Let Gε = N−1
∑N

n=1 δ(xn,ε) be a mixing distribution that assigns probability 1/N

to (xn, ε)
>. When ε→ 0, each subpopulation in the mixture F (x;Gε) degenerates

to a point mass at xn and the mixture F (x;Gε) → FN (x). Hence, as ε → 0, we

have

Wr(FN (·), F (·;Gε))→ 0.

Since none of G ∈ GK has zero-distance from FN (·), the MWDE does not exist

unless we expand GK to include G0 = N−1
∑N

n=1 δ(xn,0) = limε→0Gε. To

remove this technical artifact, in Definition 3.1 of MWDE, we expand the space of

σ to [0,∞). We denote by F (·; (θ0, 0)>) a distribution with point mass at x = θ0.

With this expansion, G0 is the MWDE when N ≤ K.

In the next few paragraphs, we exhaust all possible ways that MWDE is not

consistent and demonstrate each of them leads to a contradiction. By excluding all

these possibilities, we conclude that MWDE is consistent.

Let δ = inf{Wr(FN (·), F (·;G)) : G ∈ GK}. Clearly, 0 ≤ δ < ∞. By defi-

nition, there exists a sequence of mixing distributions {Gm,m = 1, 2, . . .} ∈ GK

such that Wr(FN (·), F (·;Gm)) → δ as m → ∞. Suppose one mixing weight
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of Gm has a limit 0. Then remove the corresponding support point and rescale the

mixing weights to get a proper distribution, we obtain a new mixing distribution se-

quence and it still satisfies Wr(FN (·), F (·;Gm))→ δ. Therefore, we assume that

the mixing weights of Gm have non-zero limits by selecting converging subse-

quence if necessary to ensure the limits exist. Further, if we keep the same support

points as that of Gm but replace the mixing weights with their limits, we still have

Wr(FN (·), F (·;Gm))→ δ as m→∞. We hence discuss the sequence of mixing

distributions whose mixing weights are fixed in the following discussion.

Suppose the first support point ofGm has its scale parameter σ1 →∞ asm→
∞. With the boundedness assumption on f0(x), the mass of this subpopulation will

spread thinly over entire R because σ−1
1 f0((x − µ1)/σ1) → 0 uniformly. Denote

θ1 = (µ1, σ1). For any fixed finite interval [a, b], this thinning makes

F (b;θ1)− F (a;θ1)→ 0

as m→∞. It implies that for any given t ∈ (0, 0.5), we have

|F−1(t;θ1)|+ |F−1(1− t;θ1)| → ∞.

This further implies that for any t ∈ (0, w1/2) we have

|F−1(t;Gm)|+ |F−1(1− t;Gm)| → ∞

where w1 is the mixing weight corresponding to subpopulation with parameter θ1

as m→∞. In comparison, the empirical quantile satisfies x(1) ≤ F−1
N (t) ≤ x(N)

for any t. By the form of Wr(·, ·) in (2.14), this leads to Wr(FN (·), F (·;Gm)) →
∞ asm→∞. This contradicts with the assumption thatWr(FN (·), F (·;Gm))→
δ. Hence, neither σ1 →∞ nor σk →∞ for any k is a possible scenario of Gm.

Can a support point ofGm instead have its location parameter µ→∞? Let the

parameter of this support point corresponds to θ1. Note that at leastw1{1−F0(0)}-
sized probability mass of F (x;Gm) is contained in the range [µ1,∞). Because of

this, when µ1 → ∞, we have F−1(1 − t;Gm) → ∞ for t = w1{1 − F0(0)}/2.

Therefore, Wr(FN (·), F (·;Gm)) → ∞ by (2.14). This contradicts with the fact

that Wr(FN (·), F (·;Gm)) → δ < ∞. Hence, µ1 → ∞ is not a possible scenario
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of Gm either. For the same reason, we cannot have µk → ±∞ for any k.

After ruling out µk ±∞ and σk → ∞, we find Gm has a converging subse-

quence whose limit is a proper mixing distribution in GK . This limit is then an

MWDE and its existence is verified.

The MWDE may not be unique and the mixing distribution may lead to a mix-

ture with degenerated subpopulations when N is small. We will show that the

MWDE is consistent as the sample size goes to infinity. Thus, allowing degener-

ated subpopulations in the learned mixture is a mathematical artifact for rigorous

proof. In contrast, no matter how large the sample size becomes, there are always

nonsensical degenerated mixing distributions with unbounded likelihood values.

3.1.2 Statistical Consistency of MWDE

In this section, we establish the consistency of MWDE whenX = {x1, . . . , xN} are

IID observations from a finite location-scale mixture of order K. The true mixing

distribution is denoted as G∗. Assume that f0(x) is bounded, continuous, and has

finite rth moment. We say the location-scale mixture, or any mixture model in

general, is identifiable if

F (x;G1) = F (x;G2)

for all x given G1, G2 ∈ GK implies G1 = G2. We allow subpopulation scale pa-

rameter σ = 0. The most commonly used finite locate-scale mixtures, such as the

normal (univariate Gaussian) mixture, are well-known to be identifiable (Teicher,

1961). Holzmann et al. (2004) give a sufficient condition for the identifiability of

general finite location-scale mixtures. Let ϕ(·) be the characteristic function of

f0(t). The finite location-scale mixture is identifiable if for any σ1 > σ2 > 0,

limt→∞ ϕ(σ1t)/ϕ(σ2t) = 0.

We consider the MWDE based on r-Wasserstein distance with ground distance

D(x, y) = |x− y| for some r ≥ 1. For the same r, we assume that f0(x) has finite

rth moment. We show that the MWDE under finite location-scale mixture model as

defined in (3.1) is asymptotically consistent.

Theorem 3.1. With the same notations above, assume that f0(·) is bounded, con-

tinuous, and has finite rth moment, we have the following conclusions.
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1. For any sequence Gm ∈ GK and G∗ ∈ GK , Wr(F (·;Gm), F (·;G∗)) → 0

implies Gm
d−→ G∗ as m→∞.

2. The MWDE satisfies Wr

(
F (·;G∗), F (·; ĜMWDE

N )
)
→ 0 as N → ∞ almost

surely.

3. The MWDE is consistent: Wr

(
ĜMWDE
N , G∗

)
→ 0 as N →∞ almost surely.

Proof. We present these three conclusions in the current order which is easy to

understand. A different order is better for proof. For ease of presentation, we write

F ∗ = F (·;G∗) and Ĝ = ĜMWDE
N in this proof.

We first prove the second conclusion. By the triangular inequality and the

definition of MWDE, we have

Wr

(
F ∗, F (·; ĜN )

)
≤Wr(FN , F

∗) +Wr

(
FN , F (·; ĜN )

)
≤ 2Wr(FN , F

∗).

Note that FN is the empirical distribution and F ∗ is the true distribution, we have

FN (x) → F ∗(x) uniformly in x almost surely by the Glivenko-Cantelli uniform

Law of large numbers (Van der Vaart, 2000, Chapter 19). At the same time, under

the assumption that F0(x) has finite rth moment, F ∗(x) also has finite rth mo-

ment. The rth moment of FN (x) converges to that of F ∗(x) almost surely by the

law of large numbers. Given the ground distance D(x, y) = |x − y|, the rth mo-

ment in Wasserstein distance sense is the usual moments in probability theory. By

Lemma 2.2, we conclude Wr(FN , F (·;G∗))→ 0 as both conditions are satisfied.

Conclusion 3 is implied by Conclusions 1 and 2. With Conclusion 2 already

established, we need only prove Conclusion 1 to complete the whole proof. By

Helly’s lemma (Van der Vaart, 2000, Lemma 2.5) again, Gm has a converging sub-

sequence though the limit can be a sub-probability measure. Without loss of gen-

erality, we assume that Gm itself converges with limit G̃. If G̃ is a sub-probability

measure, so would be F (·; G̃). This will lead to

Wr(F (·;Gm), F (·;G∗))→Wr

(
F (·; G̃), F (·;G∗)

)
6= 0
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which violates the theorem condition. If G̃ is a proper distribution in GK and

Wr

(
F (·; G̃), F (·;G∗)

)
= 0,

then by identifiability condition, we have G̃ = G∗. This implies Gm → G∗ and

completes the proof.

The multivariate Gaussian mixture is another type of location-scale mixture.

The above consistency result of the MWDE can be easily extended to finite multi-

variate Gaussian mixtures.

Theorem 3.2. Consider the problem when X = {x1, . . . , xN} are IID observa-

tions from a finite Gaussian mixture distribution of order K and ĜMWDE
N is the

MWDE defined by (3.1). Let the true mixing distribution be G∗. The MWDE is

consistent: Wr

(
ĜMWDE
N , G∗

)
→ 0 as N →∞ almost surely.

The rigorous proof is long though the conclusion is obvious. We offer a less

formal proof based on several well-known probability theory results:

(I) A multivariate random variable sequence Yn converges in distribution to Y

if and only if a>Yn converges to a>Y for any unit vector a;

(II) If Y is multivariate Gaussian if and only if a>Y is normal for all a;

(III) The normal distribution has finite moment of any order.

Let Xm be a random vector with distribution F (x;Gm) for some Gm ∈ GK ,

m = 0, 1, 2, . . ., in a general mixture model setting. Suppose as m→∞, with the

notations we introduced previously,

Wr(Xm, X0)→ 0.

Then for any unit vector a, based on Lemma 2.2 of the Wasserstein distance and

the result (I), we can see that

Wr

(
a>Xm,a

>X0

)
→ 0.
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Next, we apply this result to normal mixture so that F (x;Gm) becomes Φ(x;Gm)

which stands for a finite multivariate normal mixture with mixing distribution Gm.

In this case, Xm is a random vector with distribution Φ(x;Gm). Let (µk,Σk)

be generic subpopulation parameters. We can see that the distribution of a>Xm

is Φa(x; G̃m), which is a finite normal mixture with subpopulation parameters

(a>µk,a
>Σka), and mixing weights the same as those of Gm. Let the mixing

distributions after projection be G̃m,a and G̃0,a.

By the same argument in the proof of Theorem 3.1,

Wr

(
Φ(·; ĜWMDE

N ),Φ(·;G∗)
)
→ 0

almost surely as N →∞. This implies

Wr

(
Φa(·; ĜWMDE

N ),Φa(·;G∗)
)
→ 0

almost surely as N → ∞ for any a. Let ĜWMDE
N,a and Ĝ∗a be the projections of

ĜMWDE
N and G∗ in direction a respectively. By Conclusion 1 of Theorem 3.1,

ĜWMDE
N,a

d−→ Ĝ∗a almost surely for any unit vector a. We therefore conclude the

consistency result: ĜWMDE
N

d−→ G∗ almost surely.

3.1.3 Numerical Computation of MWDE

Both in applications and in simulation experiments, we need an effective way to

compute the MWDE. We develop an algorithm that leverages the explicit form of

the Wasserstein distance between two measures on R for the numerical solution to

the MWDE. The strategy works for any r-Wasserstein distance but we only provide

specifics for r = 2 as it is the most widely used. We leave the algebraic details

in the Appendix A. For the rest of this chapter, we only discuss the univariate

location-scale mixture due to its computational simplicity.

Let Y be a random variable with distribution f0(·). Denote the mean and vari-

ance of Y by µ0 = E(Y ) and σ2
0 = Var(Y ). Recall that G =

∑K
k=1wkδ(µk,σk).

Let x(1) ≤ x(2) ≤ · · · ≤ x(N) be the order statistics, x2 = N−1
∑N

n=1 x
2
n, and

ξn = F−1(n/N ;G) be the (n/N)th quantile of the mixture for n = 0, 1, . . . , N .
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Let

T (x) =

∫ x

−∞
tf0(t) dt (3.2)

and define

∆Fnk = F0

(
ξn − µk
σk

)
− F0

(
ξn−1 − µk

σk

)
,

∆Tnk = T

(
ξn − µk
σk

)
− T

(
ξn−1 − µk

σk

)
.

When r = 2, we expand the squared W2 distance, WN , between the empirical

distribution and F (·;G) as follows:

WN (G) =W 2
2 (FN (·), F (·;G))

=

∫ 1

0
{F−1

N (t)− F−1(t;G)}2 dt

=x2 +
K∑
k=1

wk{µ2
k + σ2

k(µ
2
0 + σ2

0) + 2µkσkµ0}

− 2
∑
k

wk

{
µk

N∑
n=1

x(n)∆Fnk + σk

N∑
n=1

x(n)∆Tnk

}
.

The MWDE minimizes WN (G) with respect toG. The mixing weights and subpop-

ulation scale parameters in this optimization problem have natural constraints. We

may replace the optimization problem with an unconstrained one by the following

parameter transformation:

σk = exp(τk),

wk =
exp(tk)∑K
j=1 exp(tj)

for k ∈ [K]. We may then minimize WN with respect to {(µk, τk, tk) : k ∈ [K]}
over the unconstrained space R3K . Furthermore, we adopt the quasi-Newton BFGS

algorithm (Nocedal and Wright, 2006, Section 6.1). To use this algorithm, it is best
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to provide the gradients of WN (G), which are given as follows:

∂WN

∂tj
=

K∑
k=1

{
∂wk
∂tj

∂WN

∂wk

}
=
∑
k

wj(δjk − wk)
∂WN

∂wk
,

∂WN

∂µj
= 2wj

{
µj + σjµ0 −

N∑
n=1

x(n)∆Fnj

}
,

∂WN

∂τj
= 2wj

{
σj(µ

2
0 + σ2

0) + µjµ0 −
N∑
n=1

x(n)∆Tnj

}
∂σj
∂τj

for j ∈ [K], where

∂WN

∂wk
= {µ2

k + σ2
k(µ

2
0 + σ2

0) + 2µkσkµ0}

− 2
N−1∑
n=1

{x(n+1) − x(n)}ξnF (ξn;µk, σk)

− 2

{
µk

N∑
n=1

x(n)∆Fnk + σk

N∑
n=1

x(n)∆Tnk

}
.

Since WN (G) is non-convex, the algorithm may find a local minimum of

WN (G) instead of a global minimum as required for MWDE. We use multiple

initial values for the BFGS algorithm, and regard the one with the lowest WN (G)

value as the solution.

This algorithm involves computing the quantiles ξn and ∆Tnj repeatedly which

may lead to high computational cost. Since ξn is between mink F
−1(n/N ;θk)

and maxk F
−1(n/N ;θk), it can be found efficiently via a bisection method, see

Appendix A for details. Fortunately, T (x) in (3.2) has simple analytical forms

under two widely used location-scale mixtures which make the computation of

∆Tnj efficient:

1. When f0(x) = (2π)−1/2 exp(−x2/2) which is the density function of the

standard normal, we have xf0(x) = −f ′0(x). In this case, we find

T (x) = −f0(x).
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2. For finite mixture of location-scale logistic distributions, we have

f0(x) =
exp(−x)

(1 + exp(−x))2

and

T (x) =

∫ x

−∞
tf0(t) dt =

x

1 + exp(−x)
− log(1 + exp(x)). (3.3)

3.2 Simulation
We now study the performance of the MWDE and the PMLE under finite location-

scale mixtures. We explore the potential advantages of the MWDE and quantify

its efficiency loss, if any, by simulation experiments. Consider the following three

location-scale families (Chen et al., 2020):

1. Normal distribution: f0(x) = (2π)−1/2 exp(−x2/2). Its mean and variance

are given by µ0 = 0 and σ2
0 = 1.

2. Logistic distribution: f0(x) = exp(−x)/(1 + exp(−x))2. Its mean and

variance are given by µ0 = 0 and σ2
0 = π2/3.

3. Gumbel distribution (type I extreme-value distribution): f0(x) = exp(−x−
exp(−x)). Its mean and variance are given by µ0 = γ and σ2

0 = π2/6 where

γ is the Euler constant (Gumbel, 1954, Table 3.1).

We also include a real data example to compare the image segmentation result of

using the MWDE and PMLE.

3.2.1 Homogeneous Model

The homogeneous location-scale model is a special mixture model with a single

subpopulation K = 1. Both the MWDE and the MLE are applicable for parameter

estimation. There have been no studies of MWDE in this special case in the litera-

ture. It is therefore of our interest to see how MWDE performs under this model.

Under three location-scale models given earlier, the MWDE has closed-forms.

Using the same notations, their analytical forms are as follows.

58



1. Normal distribution:

µ̂MWDE = x̄, σ̂MWDE =
N∑
n=1

x(n) {f0(ξn−1)− f0(ξn)} .

2. Logistic distribution:

µ̂MWDE = x̄, σ̂MWDE =
3

π2

N∑
n=1

x(n) {T (ξn)− T (ξn−1)}

where T (x) is given in (3.3).

3. Gumbel distribution:

µ̂MWDE = {1− γr}−1{x̄− γT}, σ̂MWDE = T − rµ̂MWDE

where

T = {γ2 + π2/6}−1
N∑
n=1

x(n)

∫ ξn

ξn−1

tf0(t) dt

and r = γ/(γ2 + π2/6).

The MLEs under the logistic and Gumbel distributions do not have an easy-

to-use analytical form, we therefore employ BFGS to solve for MLE. We generate

samples of sizes between N = 10 to N = 100000 with R = 1000 repetitions.

Under the homogeneous model, it is most convenient to compute the Mean Squared

Error (MSE) of the location and scale parameters separately. Due to invariance

property, we only need to study the problem when the data are from distributions

with µ = 0 and σ = 1.

The simulation results are summarized as plots in Figure 3.1. Both the x and y

axes in these plots are in logarithm scale. For both MLE and MWDE, their log-MSE

and log(N) values are close to the straight lines with slope −1. This phenomenon

indicates that both estimators have the expected convergence rates Op(N−1/2) as

the sample size N →∞.

The performance of the estimators for the location parameter and scale pa-

rameter are different. For the location parameter under all three models, the lines
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(a) Normal (b) Logistic

(c) Gumbel

Figure 3.1: The MSEs of the MWDE and the MLE for location and scale pa-
rameters versus sample size N under different homogeneous (a) normal
distribution, (b) logistic distribution, and (c) Gumbel distribution.

formed by MLE and MWDE are nearly indistinguishable though the MSE line of

MLE is always below the that of MWDE. For the scale parameter σ, the MLE is also

more efficient than the MWDE but the difference is negligible under the normal and

logistic models. Under the Gumbel model, the MWDE is less efficient.

In summary, using MWDE under a homogeneous model may not be preferred

but appear to be acceptable under the normal and logistic models. We do not

investigate the performance of MWDE under Gumbel mixture further due to its
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efficiency loss under the homogeneous model. With these observations, we move

to its performance under finite location-scale mixtures.

3.2.2 Efficiency and Robustness

We study the efficiency and robustness of the MWDE for learning finite location-

scale mixtures. Since the MLE is not well-defined, we compare the performance

of MWDE with the PMLE (Chen and Tan, 2009) instead. We compare their perfor-

mances when the mixture model is correctly specified, when the data is contami-

nated, or when the model is mildly misspecified.

Efficiency

A widely employed two-component mixture model (Cutler and Cordero-Brana,

1996; Zhu, 2016) has a density function in the following form:

f(x;G) = pf(x; 0, a) + (1− p)f(x; b, 1) (3.4)

with some density function f(·;θ) from a location-scale family. Namely, we have

K = 2, the mixing weights w1 = p, w2 = 1 − p, and subpopulation parameters

θ1 = (0, a)> and θ2 = (b, 1)>. By choosing different combinations of p, a, and

b, we obtain mixtures with different properties. Due to the invariance property, we

need only consider the case where one of the location parameters is 0, and one of

the scale parameter is 1.

We generate samples from f(x;G) according to the following scheme: gener-

ate an observation Y from distribution with density function f0(x) and let

X =

aY, with probability p;

Y + b, otherwise.
(3.5)

We can easily see that the distribution of X is f(x;G) specified earlier.

The level of difficulty in precisely estimating the mixture largely depends on

the degree of overlap between the subpopulations. We employ the following a, b,

and p values in our simulation experiments:

1. mixing proportion p = 0.15, 0.25, 0.5, 0.75, 0.85;
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2. scale of the first subpopulation a2 = 1, 2;

3. The size of the location parameter b is chosen according to the degree of

“overlap” between two subpopulations. Since the order of the mixture we

consider here is only 2, we use a special case of the general definition of de-

gree of overlap in (2.19). Suppose two subpopulations have means µ1 < µ2

and xc solves wf(xc;µ1, σ1) = (1− w)f(xc;µ2, σ2). For each observation

x, it makes sense to classify this unit to be a member of the first subpopula-

tion (with mean µ1) when x < xc; a member of the second subpopulation

otherwise. The overlap is then defined as the misclassification probability of

X which is given by

pF (1− x;µ2, σ2) + (1− p)F (x;µ1, σ1) (3.6)

In this simulation, we choose the degree of overlap to be either 0.03 or 0.1

and obtain the required b value accordingly.

The combination of these choices leads to 24 mixtures with various shapes. The

sample size N in our experiments is chosen to be 100, 500, and 1000 respectively.

We obtain the Integrated Squared Error (ISE) and Adjusted Rand Index (ARI)

based onR = 1000 repetitions on data generated from normal and logistic mixture

distributions as specified by (3.5). Figure 3.2 and Figure 3.3 respectively contains

plots of ISE and ARI of the MWDE and the PMLE estimators. In these plots, the

markers represent the mean value against sample size N under these two models.

We can see that when the sample size increases, the ISE of both estimators

decrease and the ARI of both estimators increase, supporting the theory that both

MWDE and PMLE are consistent. Under the normal mixture, these two estimators

have nearly equal ISE. The MWDE slightly outperforms the PMLE in terms of the

ARI, when the degree of overlap is large (o12 = 0.1) and the two subpopulations

have both equal scale and highly unbalanced weights. Under logistic mixture, as

shown in plots (a) and (b) of Figure 3.3, the PMLE always outperforms the MWDE

in terms of the ISE. In terms of the ARI, the MWDE is better when the scale pa-

rameters are equal and weights are highly unbalanced. When the scale parameters

are different, the PMLE is better than MWDE when p > 0.5 and worse than MWDE
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(a) ISE

(b) ARI

Figure 3.2: Performances of PMLE and MWDE under 2-component normal
mixture in (3.4) when f0(x) is the standard normal distribution.
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(a) ISE

(b) ARI

Figure 3.3: Performances of PMLE and MWDE under 2-component logistic
mixture in (3.4) when f(x;θ) is the logistic distribution.
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when p < 0.5.

We next investigate the performance of the MWDE and PMLE for learning 3-

component normal mixtures. We come up with 8 such distributions with different

configurations. The three subpopulations have the same or different weights and

same or different scale parameter values. They lead to different degrees of overlap

as defined by

MeanOmega = mean1≤i<j≤3{oij}.

where oij is the degree of overlap between subpopulations i and j in (2.19). See

Table 3.1 for detailed parameter values.

Table 3.1: Parameter values of 3-component normal mixtures with different
degree of overlap. I and II have the same subpopulations means but dif-
ferent subpopulation variances and mixing weights. III and IV have the
same subpopulation parameters but different mixing weights. V and VI
have the same variances but different subpopulations means and mixing
weights. VII and VIII have the same mixing weights and subpopulation
variances but different subpopulation means.

MeanOmega w1 w2 w3 µ1 µ2 µ3 σ1 σ2 σ3

I 0.288 (low) 0.4 0.5 0.1 -2 0 1 0.3 2 0.4
II 0.367 (high) 0.4 0.5 0.1 -2 0 1 0.3 1 0.4

III 0.097 (low) 0.3 0.5 0.2 -3 0 3 1 1 1
IV 0.249 (high) 0.3 0.5 0.2 -2 0 2 1 1 1

V 0.148 (low) 1/3 1/3 1/3 -1 0 1 1.5 0.1 0.5
VI 0.267 (high) 1/3 1/3 1/3 -0.5 0 0.5 1.5 0.1 0.5

VII 0.091 (low) 1/3 1/3 1/3 -3 0 3 1 1 1
VIII 0.226 (high) 1/3 1/3 1/3 -2 0 2 1 1 1

Figure 3.4 contains plots of the ISE and ARI values of two estimators. The

interpretation of the figures is the same as that of Figure 3.2. It is seen that the

PMLE consistently outperforms MWDE in terms of ISE but their difference is small.

The performances of the MWDE and PMLE are mixed in terms of ARI and the

differences are small. The PMLE is clearly better under distributions I and II.
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(a) ISE (b) ARI

Figure 3.4: Performances of PMLE and MWDE under 3-component normal
mixtures whose parameter values are given in Table 3.1.

Robustness

Robustness is another important property of estimators. The sample mean is the

most efficient unbiased estimator of the population mean in terms of variance under

normality or some other well-known parametric models. However, the value of the

sample mean changes dramatically even if the dataset contains merely a single

extreme value. Sample median offers a respectable alternative and still has high

efficiency across a broader range of parametric models.

In the context of learning finite location-scale mixture models, both PMLE and

MWDE rely on a parametric distribution family assumption through f0(x). How

important is to have f0(x) correctly specified? We shed some light on this problem

via empirical experiments in this section.

Let φ(x;µ, σ) = (2πσ2)−1/2 exp(−(x−µ)2/2σ2) be the density function of a

normal distribution with mean µ and variance σ2. Note in this chapter, the second

parameter in the normal density function φ(x;µ, σ) is the scale parameter σ not

the variance σ2. Unless otherwise specified, we use the variance parameter for

the Gaussian distribution in the rest of this thesis. We learn finite normal mixtures
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assuming K = 2 but generate data from the following distributions:

1. Mixture with outliers: (1−α){pφ(x; 0, a)+(1−p)φ(x; b, 1)}+αφ(x; 8, 1)

with α = 0.01.

2. Mixture with contamination: (1 − α){pφ(x; 0, a) + (1 − p)φ(x; b, 1)} +

αφ(x; b/2, 7) with α = 0.01.

3. Mis-specified mixture I: pf0(x; 0, a) + (1 − p)f0(x; b, 1) with f0(x) being

Student-t with 4 degrees of freedom.

4. Mis-specified mixture II: pf1(x; 0, a) + (1 − p)f2(x; b, 1) with f1(x)and

f2(x) being Student-t with 2 and 4 degrees of freedom.

In every case, we use the combinations of the a, b, and p value-combinations

that is obtained in studying the efficiency of 2-component normal mixture in (3.4).

We regard {pφ(x; 0, a) + (1 − p)φ(x; b, 1)} as the true distribution in all cases to

compute the ARI accordingly.

We obtain the ARI values based on R = 1000 repetitions with sample sizes

N = 100, 500, and 1000, see Figure 3.5 and Figure 3.6. We see that when the

degree of overlap is low, MWDE and PMLE have similar performances. When the

subpopulation variance is larger (a2 = 2), the performance of PMLE is generally

better. In general, we conclude that PMLE is preferred.

Statistical inference usually becomes more accurate when the sample size in-

creases. This is not the case in this simulation experiment. We can see that ARI

often decreases (becomes less accurate) when the sample size increases. This is not

caused by simulation error. When the model is mis-specified, the learned model

does not converge to the “true model” as N →∞. Hence, the quality of inference

does not necessarily improve. The conclusion of this simulation study is that the

MWDE is not more robust than the PMLE.

3.3 Application in Image Segmentation
Image segmentation aims to partition an image into regions, each with a reason-

ably homogeneous visual appearance or corresponds to objects or parts of ob-
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(a) Mixture with outliers

(b) Mixture contaminated

Figure 3.5: Adjusted rand index based on PMLE and MWDE when data con-
tains outliers or is contaminated
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(a) Mixture mis-specified I

(b) Mixture mis-specified II

Figure 3.6: Adjusted rand index based on PMLE and MWDE when subpopu-
lation distributions are mis-specified.
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jects (Bishop, 2006, Chapter 9). In this section, we perform image segmentation

with finite normal mixtures.

Each pixel in an image is represented by three numbers within the range of

[0, 1] that corresponds to the intensities of the Red, Green, and Blue (RGB) chan-

nels. Since the intensities values are always between 0 and 1, we transform the

intensity values to ensure the normal mixture model fits better. Let y = Φ−1((x+

1/N)/(1 + 2/N)) with x being the intensity and N the total number of pixels in

the image. Since our numerical algorithm is developed for univariate data, we learn

a normal mixture on y values from each channel. Namely, we learn three normal

mixtures on red, green, and blue channels respectively.

We use the maximum posterior probability rule to assign each pixel to clusters.

We then form an image segment by pixels assigned to the same cluster. We visu-

alize the segregated images channel-by-channel by re-drawing the image with the

original intensity value replaced by the average intensity of the pixels assigned to

the specific cluster. The segmented images depend heavily on the fitted mixture

distributions. We compare the segmented images obtained by the normal mix-

tures learned via the PMLE and the MWDE. We retrieve an image from Pexel 1 as

shown in Figure 3.7 (a). Clark (2015) resized the original high-resolution image to

433 × 650 grids using Lanczos filter. We learn a normal mixture of order K = 2

for each channel based on resized datasets and evaluated its utility of segmenting

the foreground and the background.

Table 3.2: Estimated mixing distributions of 2-component mixtures fitted on
red, green, and blue channel of the flower image respectively by PMLE

and MWDE.

Channel Estimator w1 w2 µ1 µ2 σ1 σ2

Red PMLE 0.896 0.104 -1.668 1.139 1.321 0.277
MWDE 0.915 0.085 -1.617 1.220 1.316 0.213

Green PMLE 0.804 0.196 -0.935 0.637 0.373 0.595
MWDE 0.819 0.181 -0.926 0.724 0.378 0.510

Blue PMLE 0.735 0.265 -0.753 0.268 0.414 1.034
MWDE 0.862 0.138 -0.722 1.019 0.473 0.592

1 https://www.pinterest.se/pin/761952830692007143/
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Figure 3.7: Flower image and its segmentation outcomes. Original image in
(a). Results for the red, green, and blue channels are shown in panels
(d)-(f), (g)-(i), and (j)-(l) respectively. In each group, the left panel
shows the histogram and fitted 2-component normal densities based on
PMLE and MWDE, the middle panel and the right panel are the image
segmentation results based on PMLE and MWDE respectively.

We present the specifications of the learned mixing distributions by PMLE and

MWDE in Table 3.2. Plots (d), (g), and (j) in Figure 3.7 are histograms of the

transformed intensity values of RGB channels, together with the mixture densities

learned via PMLE and MWDE. The corresponding segmented images are shown

as plots (e), (h), and (k) for PMLE; (f), (i), and (l) for MWDE. The estimated

parameter values and the fitted density on the red and green channels based on

these two approaches are very similar. For the blue channel, the fitted densities and

the segmentation results are very similar although the estimated parameter values

of the second component are different. Both approaches can produce images with

meaningful structures segmenting foreground from background.

There are two clusters in each of 3 channels leading to 8 refined clusters. We

may paint each pixel with the average RGB intensity triplet according to these
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8 refined clusters. The re-created image via PMLE and MWDE respectively are

shown in (b) and (c). We note these two images are very similar, showing that both

learning strategies are effective.

3.4 Conclusion
The MWDE provides another approach for learning finite location-scale mixtures.

We have shown the MWDE is well-defined and consistent. Our moderate scaled

simulation study shows it suffers some efficiency loss against a penalized version

of MLE in general without a noticeable gain in robustness. The MWDE is com-

putationally more expensive than the PMLE. Therefore, we reaffirm the general

superiority of the likelihood-based learning strategies even for non-regular models.
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Chapter 4

Distributed Learning of Finite
Gaussian Mixtures

In the era of big data, there are various challenges for statistical inference when

dealing with large-scale datasets. The sizes of the datasets for various applications

may often be so large that they cannot be stored on a single machine. For example,

Google distributes its huge database around the world (Corbett et al., 2013). Dis-

tributed data storage is also natural when the datasets are collected and managed by

independent agencies. Examples include patient information collected from differ-

ent hospitals and data collected by different government agencies (Agrawal et al.,

2003). Privacy considerations may also make it difficult or even impossible to pool

the separate collections of data into a single dataset stored in a single facility. Even

if the dataset is stored on a single machine, it may not be possible to load all of

it into the computer memory. Data analysis methods should therefore be designed

so that they can work with subsets of the dataset, in parallel or sequentially. The

information extracted from the subsets can then be combined to draw conclusions

about the whole population.

In this chapter, we consider the learning of finite Gaussian Mixture Model

(GMM) when the data are stored in a distributed fashion. Suppose we have an IID

random sample X = {x1, x2, . . . , xN} from a distribution f(x; θ). The dataset X
is said to be a distributed dataset if it is partitioned into M subsets X1,X2, . . . ,XM
completely at random and is stored on M local machines. Let Nm denotes the
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sample size on the mth local machine. Clearly,
∑M

m=1Nm = N .

As indicated in the introduction, this chapter focuses on developing split-and-

conquer procedures to learn the finite GMMs. In the split step, we perform standard

statistical inference on local machines. We denote by θ̂m the local estimate of

θ based on Xm. For example, under finite GMM, the parameter θ becomes the

mixing distributionG and the local estimate is the penalized Maximum Likelihood

Estimate (PMLE) introduced in Section 2.2.2:

Ĝm = arg max

{∑
i∈Xm

log φ(xi;G)− am
K∑
k=1

{
tr(Σ−1

k Sm) + log det(Σk)
}}

.

In the aggregation step, we transmit these local estimates to a central machine to

be aggregated.

Various aggregation approaches have been studied in the literature under dif-

ferent settings. The most widely used aggregation approach combines the local

estimates by their linear average (Chang et al., 2017; Zhang et al., 2015). Let θ̂m
be a local estimate on the mth local machine. The aggregated estimate is then the

weighted average

θ =
M∑
m=1

λmθ̂m

with λm = Nm/N being the sample proportion.

Liu and Ihler (2014) proposes a different aggregation procedure to learn models

from an exponential family. Let θ̂m be the local MLE on themth local machine, Liu

and Ihler (2014) proposes to find the aggregated estimator by

θ
KL

= arg min
θ∈Θ

M∑
m=1

λmDKL(F (·; θ̂m)‖F (·; θ)). (4.1)

We refer to this aggregated estimator as the KL Averaging (KLA). It is shown

in Liu and Ihler (2014) that when F (x; θ) belongs to the exponential family, then

θ
KL

is as efficient as the global MLE based on the full dataset. The KLA estimator is

less efficient for a distribution that does not belong to the exponential family. The

information loss can be characterized by how close F (x; θ) is to full exponential
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family.

In a distributed system with many machines, some worker machines send arbi-

trarily erroneous information due to hardware or software breakdowns, data crashes,

or communication failures (Lamport et al., 1982). This issue is called the Byzan-

tine failure. Distributed learning under the Byzantine failure setting has attracted a

lot of attention in recent years, see Blanchard et al. (2017), Yin et al. (2018), Alis-

tarh et al. (2018), Xie et al. (2018), and Tu et al. (2021) for the median estimator

and its variants. The robust alternative of simple average, the coordinate-wise me-

dian of the local estimates in a vector space, is also widely used when a Byzantine

failure occurs.

There are various issues when applying existing aggregation approaches under

finite mixtures. First, the simple average approach is appropriate for parameters

in a vector space, but it is nonsensical if the average of the parameters is not well

defined. Under finite mixtures, the simple average approach leads to a mixture

with an inflated number of subpopulations whose mixing distribution is no longer

in the same parameter space. Second, the GMM does not belong to any exponential

families, the KLA approach therefore does not perform. Moreover, as we show in

Section 4.4, the computation of the KLA estimator in (4.1) is difficult under finite

mixtures. Under finite mixture models, it is vital to find a statistically efficient

aggregation procedure with a low computational cost.

We investigate two aggregation approaches namely the “barycentre” and the

“reduction”. The barycentre in Section 2.4 generalizes the simple average to prob-

ability distribution spaces. Our first approach is to aggregate the local estimates by

their barycentre. We find that the aggregation by barycentre may be distorted and

therefore focus on aggregating the local estimates by the reduction approach. The

rest of this chapter is structured as follows. In Section 4.2, we design an algorithm

for computing the reduction estimator. In Section 4.3, we show that the proposed

reduction estimator has the best possible statistical convergence rate under certain

conditions. In Section 4.4, we review some existing approaches for large-scale

learning and particularly the distributed learning of GMM. Numerical experiments

on simulated and real data are presented in Section 4.5. We find that the proposed

reduction approach performs better than existing approaches. We apply our method

to atmospheric datasets in Section 4.5.3. We also study the robustness of the reduc-
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tion approach under some scenarios. In Section 4.6, we study the robustness of the

reduction approach when the partition of the subsets is not completely at random.

In Section 4.7, we study the robustness of the reduction approach when the order

of the mixture is over-specified on local machines. In Section 4.8, we provide a

discussion and some concluding remarks.

4.1 Aggregation Approaches under Mixture
In this section, we discuss two aggregation approaches: the barycentre approach

and the reduction approach.

4.1.1 Aggregation by Barycentre

Under finite mixtures, let Ĝ1, . . . , Ĝm be local estimates. The weighted average of

the local estimates is

G =

M∑
m=1

λmĜm. (4.2)

Its corresponding mixture has density function f(x;G) =
∑M

m=1 λmf(x; Ĝm).

While f(x;G) is a good estimate, it can be unsatisfactory for revealing the la-

tent structure of the mixture model. For instance, this estimator is a mixture with

MK subpopulations rather than the assumedK, which is useless for clustering the

dataset into K clusters.

The analogy of linear average in distribution space is the barycentre introduced

in Section 2.4. We take average of the local estimators Ĝ1, . . . , Ĝm through their

barycentre:

GC = arg inf
G∈GK

M∑
m=1

λmρ
(
Ĝm, G

)
(4.3)

for some choice of the divergence ρ(·, ·) between to mixing distributions. Recall

that GK is the space of mixing distributions with K support points.

Unfortunately, the barycentre approach may not give sensible aggregated esti-

mator for some choice of the divergence ρ(·, ·).

Example 4.1 (Barycentre of Two Univariate Gaussian Mixtures with Identical Sub-
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populations). Suppose we wish to aggregate two local estimates given by

Φ(x;G1) = 0.4Φ(x;−1, 1) + 0.6Φ(x; 1, 1) := 0.4Φ−1 + 0.6Φ1,

Φ(x;G2) = 0.6Φ(x;−1, 1) + 0.4Φ(x; 1, 1) := 0.6Φ−1 + 0.4Φ1

with λ1 = λ2 = 0.5. These two local estimates have same subpopulation pa-

rameters but different mixing weights. We anticipate that whatever distance or

divergence we choose, the barycentre is given by

Φ(x;G) = 0.5Φ(x;−1, 1) + 0.5Φ(x; 1, 1) = 0.5Φ−1 + 0.5Φ1.

Consider the 2-Wasserstein distance between two univariate Gaussian distribu-

tions with Euclidean ground distance (see Example 2.2)

W2

(
Φ(·;µ1, σ

2
1),Φ(·;µ2, σ

2
2)
)

= {(µ1 − µ2)2 + (σ1 − σ2)2}1/2.

When the divergence ρ(·, ·) in the barycentre is chosen to be the composite

transportation divergence with the cost function being the squared 2-Wasserstein

distance W 2
2 , that is ρ(G1, G2)=TW2(Φ(·;G1),Φ(·;G2)). Surprisingly, we find

that the barycentre with this divergence is given by

Φ(x;GC) = 0.4Φ(x;−1, 1) + 0.6Φ(x; 2/3, 1) := 0.4Φ−1 + 0.6Φ2/3.

We defer the technical details to Appendix B.1. This abnormal result is rooted

in the divergence ρ employed in defining the barycentre. Other choices of ρ may

lead to a solution that is consistent with our intuition. However, for the reduction

estimator we discuss in the next section, whatever divergence ρ is employed, we

always have the anticipated result.

4.1.2 Aggregation by Reduction

Recall that the mixing distribution G =
∑M

m=1 λmĜm is likely close to the true

mixing distribution G∗, except for the incorrect number of support points. This

problem can be solved by approximating G by some G ∈ GK , suggesting another

aggregation approach. Let ρ(·, ·) be a divergence in the space of mixing distri-
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butions. We can aggregate the local estimates via the reduction estimator, given

by

GR = arg inf
G∈GK

ρ(G,G). (4.4)

In the machine learning community, approximating a GMM by one with a lower

order is called Gaussian Mixture Reduction (GMR) (Schieferdecker and Huber,

2009; Williams and Maybeck, 2006; Yu et al., 2018). Williams and Maybeck

(2006) uses an optimization-based approach that minimizes

ρ(G,G) = DISE(Φ(·;G),Φ(·;G))

where the analytical form of Integrated Squared Error (ISE) between two mixtures

is given in (2.8). Although the ISE between two GMMs has an analytical form, the

optimization ofDISE(Φ(·;G),Φ(·;G)) with respect toG ∈ GK is computationally

expensive.

One key observation is that it is usually difficult to compute the divergence

between two mixtures, but easy to compute the divergence between two Gaussian

distributions. This fact motivates us to consider the Composite Transportation Di-

vergence (CTD) between two Gaussian mixtures as the objective function in the

reduction approach. The corresponding GMR estimator is

GR = arg inf
G∈GK

Tc(Φ(·;G),Φ(·;G)) (4.5)

for some CTD Tc(·, ·) as given in (2.16). In the rest of this chapter, we write

Tc(Φ(·;G),Φ(·;G)) and Tc(G,G) interchangeably for the ease of presentation.

At a high level, the statistical efficiency of the reduction estimator is guaran-

teed since G is a good estimate for the truth G∗. For the same ρ, it is found that the

computation of the barycentre estimator is more expensive than the reduction esti-

mator. We hence propose to aggregate the local estimates by reduction approach.

Before we describe the algorithm for the numerical solution to the reduction esti-

mator, we show that these two aggregation approaches – barycentre and reduction

– are connected when specific divergences are used.
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4.1.3 Connection between Barycentre and Reduction Estimators

Let the divergence ρ(·, ·) in the barycentre definition (4.3) or in the reduction esti-

mator (4.4) be the Kullback-Leibler (KL) divergence between two mixtures

ρ(G1, G2) = DKL(Φ(·;G1)‖Φ(·;G2)).

In this case, recall G =
∑M

m=1 λmĜm, we have

DKL(Φ(·;G)‖Φ(·;G)) =

∫
φ(x;G) log

{
φ(x;G)/φ(x;G)

}
dx

= C1 −
∫
φ(x;G) log φ(x;G) dx

= C1 −
M∑
m=1

λm

∫
φ(x; Ĝm) log φ(x;G) dx

= C2 +

M∑
m=1

λmDKL

(
Φ(·; Ĝm)‖Φ(·;G)

)
where C1 and C2 are constants that do not dependent on G. This relationship

implies that for KL divergence, we have

GR = arg inf
G∈GK

ρ(G,G) = arg inf
G∈GK

{
M∑
m=1

λmρ(Ĝm, G)

}
= GC . (4.6)

Thus, the two aggregation methods give identical aggregated estimators. It can be

seen that with this divergence, the barycentre estimator becomes the KLA estimator

proposed in Liu and Ihler (2014).

4.2 Numerical Algorithm for Reduction Estimator
Let G be defined as in (4.2). Let the subpopulations in G be Φi = Φ(x;µi,Σi) and

the mixing weights be wi for i ∈ [MK]. Let G be any mixing distribution of order

K with the K subpopulations Φk = Φ(x;µk,Σk) and the mixing weights vk for

k ∈ [K]. In vector format, the weights are w and v.

Let the cost function c(·, ·) be a divergence in the space of d-dimensional Gaus-

sian distributions for which the computational cost is low. Then the transportation
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divergence (Nguyen, 2013) between mixing distributionsG andG ∈ GK with cost

function c becomes

Tc(G,G) = inf

∑
i,k

πikc(Φi,Φk) : π ∈ Π(w,v)

 .

The corresponding GMR estimator is

GR = arg inf
{
Tc(G,G) : G ∈ GK

}
.

For this estimator, it may appear that calculating our estimator involves two op-

timizations: (i) computing Tc(G,G) for each pair of G and G, and (ii) searching

for arg infG Tc(G,G). We are able to design a more efficient optimization algo-

rithm based on the following observation. The optimization problem in Tc(G,G)

involves searching for transportation plans π under two marginal constraints spec-

ified by w and v. While constraint w is strict, v is a moving constraint. Instead

of searching for π satisfies constraint v, we move v to meet π. This makes the

marginal distribution constraint v on π redundant.

Let us define two functions of G, with G hidden in the background:

Jc(G) = inf
π

∑
i,k

πikc(Φi,Φk) : π ∈ Π(w, ·)

 , (4.7)

π(G) = arg inf
π

∑
i,k

πikc(Φi,Φk) : π ∈ Π(w, ·)

 . (4.8)

Note that both functions depend onG through its subpopulations Φk but are free of

its mixing weights v. The optimizations in (4.7) and (4.8) involve only the linear

constraint in terms of w. Hence, the optimal transportation plan π(G) for a given

G has an analytical form:

πik(G) =

wi if k = arg mink′ c(Φi,Φk′)

0 otherwise.
(4.9)
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When c(Φi,Φ) has multiple minimizers, we transport Φi evenly to every min-

imum Φ. For example, if c(Φ1,Φ) have two minimizers Φk′ and Φk′′ , we let

π1k′(G) = π1k′′(G) = w1/2.

Theorem 4.1. LetG, Tc(·), Jc(·), π(·), and other notations be the same as earlier.

We have

inf{Tc(G) : G ∈ GK} = inf{Jc(G) : G ∈ GK}. (4.10)

The subpopulations of the GMR estimator are hence given by

GR = arg inf{Jc(G) : G ∈ GK} (4.11)

and the mixing weights are given by v with

vk =
∑
i

πik(G
R). (4.12)

The existence of a solution to (4.11) is guaranteed under a simple condition

on cost function c(·, ·), see Theorem 4.2. The proof of Theorem 4.1 is in Ap-

pendix B.1. Based on this theorem, the optimization reduces to search for K sub-

populations Φk for k ∈ [K] to make up G. The mixing proportions are then deter-

mined by (4.12). An iterative algorithm quickly emerges following the well-known

Majorization Maximization (MM) idea (Hunter and Lange, 2004).

The algorithm starts with someG(0) withK subpopulations specified. LetG(t)

be the mixing distribution at the tth MM iterations. Define a majorization function

of Jc at G(t) to be

Kc(G|G(t)) =
∑
i,k

πik(G
(t))c(Φi,Φk) (4.13)

where πik(G(t)) is computed according to (4.9). Once π(G(t)) made of πik(G(t))

has been obtained, we update the mixing proportion vector of G(t) easily via

v
(t+1)
k =

∑
i

πik(G
(t)).

In fact, v(t) is not needed until the algorithm converges.
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Algorithm 1 MM algorithm for GMR estimator with KL divergence cost function.
Input: Φ1,Φ2, . . . ,ΦNK

Initialization: Φk, k ∈ [K]
repeat

for k ∈ [K] do
for i ∈ [MK] do

Let

πik =

{
wi if k = arg mink′ DKL(Φi‖Φk′)

0 otherwise

end for
Let

π·k =
MK∑
i=1

πik, µk =
MK∑
i=1

{πik/π·k}µi

Σk =
MK∑
i=1

{πik/π·k}{Σi + (µi − µk)(µi − µk)>}

end for
until the change in the value of the objective function

∑
i,k πikDKL(Φi,Φk) is

below some threshold ε > 0
Let vk =

∑
i πik for k ∈ [K]

Output: {(vk, µk,Σk) : k ∈ [K]}

The subpopulations Φk are separated in the majorization function (4.13). This

allows us to update the subpopulation parameters, one Φk at a time and possibly in

parallel, as the solutions to

Φ
(t+1)
k = arg inf

Φ

∑
i

πik(G
(t))c(Φi,Φ). (4.14)

The MM algorithm then iterates between the majorization step (4.13) and the min-

imization step (4.14) until some user-selected convergence criterion is met.

The most expensive step in the MM algorithm is the optimization in (4.14). If

we choose the cost function c(·, ·) = ρr(·, ·) with ρ(·, ·) being a divergence in the

space of probability measures, the solution to (4.14) is a barycentre as given in Def-
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inition 2.10. The following lemma shows that the KL based barycentre of Gaussian

distributions has an analytical form and is therefore computationally simple.

Due to the ease of computing the barycentre as shown in this lemma, we rec-

ommend c(Φi,Φk) = DKL(Φi‖Φk) in (4.5). Cost functions define the geometries

on the Gaussian distribution space (Peyré and Cuturi, 2019), leading to slightly

different outputs. We do not rule out the possibility of better choices. The pseudo-

code for the MM algorithm with KL divergence as the cost function is given in

Algorithm 1.

To make the notation simple, in the following theorem, we use Φ for both the

parameter (µ,Σ) and the corresponding distribution, and similarly for Φ∗.

Theorem 4.2. Suppose the cost function c(·, ·) is continuous in both arguments.

For some distance in the parameter space of Φ, assume that for any constant ∆ > 0

and Φ∗ the following set is compact:

{Φ : c(Φ∗,Φ) ≤ ∆}. (4.15)

Let {G(t)} be the sequence generated by G(t+1) = arg minKc(G|G(t)) with some

initial mixing distribution G(0). Then

(i) Jc(G(t+1)) ≤ Jc(G(t)) for any t;

(ii) if G∗ is a limiting point of G(t), then G(t) = G∗ implies Jc(G(t+1)) =

Jc(G∗).

These two properties imply that Jc(G(t)) converges monotonically to some con-

stant J ∗. All the limiting points G(t) are stationary points of Jc(·): iterations

from G∗ do not further reduce the value of the objective function Jc(·). We have

practically cloned the global convergence theorem (Zangwill, 1969). We do not

see a way to directly apply it and therefore provide a proof of the theorem in Ap-

pendix B.1.

We have all the ingredients for the split-and-conquer learning of a finite GMM.

We then consider the statistical properties of the GMR estimator and the experi-

mental evidence for the efficiency of our method.
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4.3 Statistical Properties of Reduction Estimator
We show that the proposed GMR estimatorGR is consistent and retains the optimal

rate of convergence in a statistical sense. We first state some conditions on the data

and the estimation methods.

C1 The data X are IID observations from the finite Gaussian mixture Φ(x;G∗)

with K distinct subpopulations, that is the order of G∗ is known to be K.

The subpopulations have distinct parameters and positive definite covariance

matrices.

C2 The dataset X is partitioned into M subsets X1, . . . ,XM . Each dataset Xm
contains IID observations from the same finite Gaussian mixture distribution

and is of size Nm. The number of local machines M does not increase with

N =
∑

mNm.

C3 The local machine sample ratio Nm/N have a nonzero limit as N →∞.

C4 The cost function c(Φk,Φ0) → 0 or c(Φ0,Φk) → 0 as k → ∞, if and only

if Φk → Φ0 in distribution, and c(Φ1,Φ2) is continuous in both Φ1 and Φ2.

Condition C4 is necessary to ensure consistency. It further rules out the case

that Tc(G,G∗) =∞ for any G with different mixing weights from that of G∗.

Our proposed reduction estimator is aggregated from the PMLEs learned at the

local machines. Under the condition that minNm →∞ stated above, all the local

estimators are consistent by Lemma 2.1. Hence, the consistency of the aggregate

estimator G is taken as granted when the number of local estimators M does not

increase with sample size N .

Theorem 4.3 (Consistency of GR). Let G be the linear average estimator defined

by (4.2) and GR be the aggregated estimator by reduction defined by (4.4) with

ρ = Tc. Assume conditions C1–C4 are satisfied. Then GR is strongly consistent.

Specifically, Tc(GR, G∗)→ 0 almost surely as N →∞.

The proof of the theorem is given in Appendix B.1. The following theorem

shows that under one additional mild condition on the cost function c(·, ·), the

reduction estimator GR has the standard N−1/2 convergence rate. We denote by
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‖Φ1 − Φ2‖ the Euclidean norm in µ,Σ in the sense of (2.15). We use ΦR
k for the

kth subpopulation of GR and wk for its mixing weight for k ∈ [K].

Theorem 4.4 (Convergence Rate ofGR). LetG be the aggregate estimator defined

by (4.2) and GR be the aggregate estimator by reduction defined by (4.4). Assume

conditions C1–C4 are satisfied and further assume that

C5 For any Φ, there exists a small neighbourhood Ω of Φ and a positive constant

A, such that for any Φ1,Φ2 ∈ Ω, we have

A−1‖Φ1 − Φ2‖2 ≤ c(Φ1,Φ2) ≤ A‖Φ1 − Φ2‖2.

Then with proper labelling of subpopulations, we have

ΦR
k − Φ∗k = Op(N

−1/2), wRk − π∗k = Op(N
−1/2).

Condition C5 requires the cost function c(·, ·) behaves locally as a quadratic

loss function. This is a most natural property for a cost function. In Appendix B.1,

we show this condition holds for the KL divergence. The conclusion should hold

with any other reasonable choices. The proof of the theorem is given in Ap-

pendix B.1. Our proof remains valid, for instance, if we replace ‖Φ1 − Φ2‖2 by

‖Φ1 − Φ2‖r for any r > 0 in C5.

4.4 Related Work
In this section, we describe several related approaches for learning GMM with large

datasets. We compare some of these approaches with our proposed approach in

Section 4.5 in the experiments.

KL Averaging

Liu and Ihler (2014) considers the distributed learning of models from an exponen-

tial family by the split-and-conquer approach. The parameter θ is a real vector in

this case. Liu and Ihler (2014) proposes to perform local inference by finding the

local MLEs and aggregate them by their KL barycentre. This estimator is referred

to as the KLA. When the model belongs to the exponential family, the aggregated
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estimator is as efficient as the global MLE based on the full dataset. For models

not in the exponential family, such as GMM, the KLA estimator is less efficient.

Moreover, the exact computation of the KL barycentre of local estimators under

GMM is difficult. Liu and Ihler (2014) suggests to find an approximate solution

instead. Liu and Ihler (2014) first generates random samples X̂m of size 1000 from

the local estimates Ĝm at the central machine. Then a GMM of order K is fitted

on the pooled sample ∪mX̂m which has a moderate size of 1000M . This approach

does not need to transmit the raw data but requires refitting of the mixture on the

central machine.

Distributed EM Algorithm

The distributed learning of GMMs can also be tackled by developing a distributed

version of the Expectation Maximization (EM) algorithm (DEM) (Nowak, 2003).

We briefly describe DEM and provide a conceptual comparison to our approach in

this section.

Under distributed learning setting, let Xm be the dataset stored at the mth local

machinem ∈ [M ] andN be the total sample size. Note that the quantities required

in defining Q(G;G(t)) based on full dataset X have the following decomposition:

for k ∈ [K],

Ω
(t)
k :=

N∑
i=1

ω
(t)
ik =

M∑
m=1

{∑
i∈Xm

ω
(t)
ik

}
:=

M∑
m=1

Ω
(t)
m,k,

A
(t)
k :=

N∑
i=1

ω
(t)
ik xi =

M∑
m=1

{∑
i∈Xm

ω
(t)
ik xi

}
:=

M∑
m=1

A
(t)
m,k,

B
(t)
k :=

N∑
i=1

ω
(t)
ik xix

>
i =

M∑
m=1

{∑
i∈Xm

ω
(t)
ik xix

>
i

}
:=

M∑
m=1

B
(t)
m,k.

Given G(t), one can compute ω(t)
ik defined by (2.2) for ith observation on local

machine m for all m ∈ [M ] and k ∈ [K]. Hence, one can obtain the local sum-

mary statistics ∪Kk=1{Ω
(t)
m,k,A

(t)
m,k,B

(t)
m,k} at the mth local machine and have them

transmitted to a central machine. One can then construct Q(G;G(t)) on the central

machine and carry out the M-step to get G(t+1), which reproduces the EM iteration

86



based on the full dataset.

Nowak (2003) considers the situation where the local machines form a sensor

network and the transmission cost cannot be ignored. This paper suggests the

mth machine transmits ∪mj=1{Ω
(t)
j,k,A

(t)
j,k,B

(t)
j,k} to the next machine in the queue.

Furthermore, it adopts the incremental E and M steps of Neal and Hinton (1998) to

speed up the convergence of the algorithm. Nowak (2003) further shows that the

DEM has a local linear convergence rate.

The DEM and proposed GMR approaches are designed for distributed learning

with different communication schemes. DEM requires a high level of coordination

between local machines and repeated access of the local data. The computation at

each local machine is equivalent to an EM iteration based on local data. Our pro-

posed method allows local machines to complete the learning on their own. More-

over, our method only requires one round of communication across all machines

and is communication efficient. If successful, DEM leads to a solution to the origi-

nal learning problem retaining full statistical efficiency. We do not include DEM in

the experiment because the conclusions are already known. Our proposed method

is superior in terms of communication cost. The statistical efficiency of DEM is

same as the global estimator which is compared with our proposed method in the

experiment.

Learning at Scale via Coresets

Most machine learning problems can be formulated as an optimization problem

that minimizes a cost function cost(X , θ) over the parameter space. For our prob-

lem, the cost function could be the negative log-likelihood, X is the full dataset,

and the parameter space GK is given by (1.2).

When X is very large, the computational burden can be extremely heavy. Feld-

man et al. (2011) suggests to replace X by a much smaller weighted subset C,

called coreset hereafter, such that

|cost(X , G)− cost(C, G)|
cost(X , G)

≤ ε (4.16)

for some given small ε > 0. Minimize the cost(C, G) based on the coreset can be

much faster than the original cost based on the full dataset. The construction of
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coreset is to assure the minimizer of cost(C, G) approximates that of cost(X , G).

Lucic et al. (2017) provides theoretical analysis and techniques for constructing

coresets under GMM. For GMM of dimension d, order K, it gives a scheme to

obtain coresets of size |C| = O(d4K6ε−2) satisfying (4.16) uniformly over some

compact subset of GK . This is a surprising result as the size of C does not depend

on the size of X .

When the datasets are stored in distributed fashion, one may first reduce the

dataset in each machine into the first generation coresets. Then these coresets are

paired up to create a second generation coreset from each pair. This procedure is

repeated if needed until we get a final coreset. Due to the composition properties

of coreset (Lucic et al., 2017, Section 5), the quality of the final coreset can be

maintained. We refer to this approach as the Coreset approach hereafter.

The Coreset approach is computationally very efficient. Unlike DEM, it looks

for approximate solutions leading to inevitable loss in statistical efficiency. More-

over, the Coreset approach requires the transmission of the raw data unlike other

approaches for distributed learning that only requires the communication of sum-

mary statistics. We include the Coreset approach in our experiment for efficiency

comparison.

We wish to remark that the log-likelihood function in statistics is defined up to

an additive constant. The precision specification (4.16) can be affected by how it

is normalized. We adopt the normalization convention of (Lucic et al., 2017).

Bayesian Moment Matching (BMM)

Direct Bayesian inference under GMM is challenging due to the well-known label

switching problem. See Murphy (2012, Chapter 11) for explanation and possible

solutions. Jaini and Poupart (2016) proposes an approximate inference procedure

that does not suffer from the issue of label switching. Under GMM with known

order K, given a prior π0 with Dirichlet for weights and Gaussian-Gamma for

subpopulation parameters, the posterior distribution π̃1 with a single observation
x1 is a complex mixture of Dirichlet and Gaussian-Gamma combination. Repeat-

ing this operation given another observation would lead to an even more complex

posterior. Instead, Jaini and Poupart (2016) suggests to approximate π̃1 posterior

88



with a simple Dirichlet and Gaussian-Gamma combination π1 so that π̃1 and π1

have the same lower order moments. Let π1 be the prior distribution, with the

next single observation x2, we obtain π2 in the same way. Repeat sequentially un-

til we have exhausted all data to get πN . Under multivariate GMMs, one replaces

Gaussian-Gamma prior by Gaussian-Wishart. The end product πN is regarded as

an approximate posterior and it serves well for Bayes inferences.

Being sequential in nature, BMM is computationally efficient but apparently

loses statistical efficiency due to approximation. Based on Table 2 in Jaini and

Poupart (2016) and our Table 4.1, the per observation log-likelihood value of BMM

when applied to Magic04 is −32.1, which is much lower than that of our proposed

GMR −26.6. Jaini and Poupart (2016) shows that BMM has higher statistical ef-

ficiency than the online EM approach of Cappé and Moulines (2009, Theorem 2),

whose convergence rate is lower than N−1/2.

We do not include BMM in the experiment not only because of the comparison

above but also because we do not know how they handle the redundant moment

equations. Under the multivariate GMM, there are K + dK + d(d + 1)K/2 pa-

rameters to be estimated at each step but there are dK + 2K − 1 + 3d(d+ 1)K/2

moment equations. The redundant equations make it difficult for us to replicate

their approach.

ADMM for Distributed Optimization

The distributed learning of GMM is essentially a distributed optimization problem.

We may therefore directly use the Alternating Direction Method of Multipliers

(ADMM) of Boyd et al. (2011). Consider the optimization problem defined as

min

{
M∑
m=1

f(θm|Xm) : θm − θ = 0, m ∈ [M ], θ ∈ Θ

}

for some function f(·|Xm) and a Euclidean parameter space Θ. The parameters

θm are called local variables and θ is called a global variable. The ADMM for this
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optimization problem is based on the augmented Lagrangian

Lλ(θm, ηm, θ) =

M∑
m=1

{
f(θm|Xm) + η>m(θm − θ) + (λ/2)‖θm − θ‖22

}
for some regularization parameter λ > 0. The ADMM then iterates according to

θ(t+1)
m = arg min

θm

{
f(θm|Xm) + (η(t)

m )>(θm − θ(t)) + (λ/2)‖θm − θ(t)‖22
}
,

θ(t+1) = M−1
M∑
m=1

θ(t+1)
m ,

η(t+1)
m = η(t)

m + λ{θ(t+1)
m − θ(t+1)}.

Similar to DEM, the ADMM requires a high level of coordination between local

machines at each iteration. If successful, it gives the solution to the original op-

timization problem, void the statistical efficiency comparison. In the context of

GMM, one must look for suitable substitutes for the term (η
(t)
m )>(θm − θ(t)) in

the augmented Lagrangian since θm is a discrete distribution in our context. We

therefore do not include ADMM in the experiment.

4.5 Experiments
We conduct experiments on both simulated and real data to illustrate the effec-

tiveness of the proposed GMR estimator in (4.5) with c(Φi,Φk) = DKL(Φi‖Φk)

between any two Gaussian distributions Φ̄i and Φk. We compare its performance

with some existing approaches in terms of their statistical efficiency and computa-

tional costs. Our experiments include the following estimators:

1. Global. The PMLE based on the full dataset. The Global estimator is statis-

tically most efficient and therefore used as the baseline for comparison.

2. Median. An off-the-shelf aggregation approach is the median

GM = arg min
G∈{Ĝ1,Ĝ2,...,ĜM}

M∑
m=1

λmTDKL(Ĝm, G).

90



The sample median is intuitively a robust alternative with minor efficiency

loss. We call this estimator as Median, it is different from the median es-

timator for split-and-conquer aggregation of models with vector parameter

space. The median estimator in the latter case is the coordinate-wise median

of local estimators in vector space.

3. KLA. The KL-Averaging in Liu and Ihler (2014) with nm = 1000 obser-

vations generated from local estimate Ĝm. The real datasets have different

dimensions and sample sizes, the size nm for real data experiments is speci-

fied if different.

4. Coreset. The Coreset approach with card(Cm) = 1000 on each local ma-

chine. They are repeatedly merged as in Lucic et al. (2017) to arrive at the

final coreset C of size 1000, the coreset sizes for real data experiment is

specified if different.

For the ease of comparison, we use the PMLE defined in (2.3) with penalty

size N−1/2
m as local estimates when applicable. The PMLE is also used in the

KLA estimator of Liu and Ihler (2014) on the central machine with penalty size

(1000M)−1/2, and for the Coreset method with penalty size card(C)−1/2. We use

the EM algorithm to compute PMLE and declare convergence when the per obser-

vation penalized log-likelihood function is less than 10−6. With very large sample

sizes of the simulated data, the maxima of the penalized likelihood should be at-

tained at a mixing distribution close to the true mixing distribution. We therefore

use the true mixing distribution as the initial value and regard the output of the EM

algorithm as the global maximum of the penalized likelihood. This strategy does

not work for the real-world data in the absence of a true mixing distribution. For

real-world data, we use kmeans++ with default arguments in scikit-learn

package (Pedregosa et al., 2011) to generate 10 initial values for the EM algorithm.

Ideally, we run the EM algorithm with these initial values until convergence and

regard the output of the EM algorithm with the highest penalized log-likelihood

function as the PMLE. To save time on the real dataset, we use a warm up strategy.

We run the EM algorithm with these 10 initial values for 20 iterations and pick

the one with the highest penalized log-likelihood value. We use the output of this
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one as the initial value to run the EM algorithm further until convergence and this

output is treated as the PMLE.

The choice of the initial value in the aggregation step is also important. When

the sample size is large, we have good reason to believe that the optimal solution

is close to the true value. Also, by the principle of majority rules, the median of

the local estimates is likely the closest to the optimal solution. Thus, in simulation

studies, we initialize the algorithm with the true mixing distribution and the median

estimate. For real-world data, we use the local estimators as multiple initial values

and output of the MM algorithm with the lowest objective function value is regarded

as the GMR estimator. We declare the convergence of the MM algorithm for the

GMR estimator when the change in the objective function is less than 10−6.

All experiments are conducted on the Compute Canada (Baldwin, 2012) Cedar

cluster with Intel E5 Broadwell CPUs with 64G memory. The codes are written

in Python and are publicly available at https://github.com/SarahQiong/SCGMM.

The code for Coreset method is provided by the author of Lucic et al. (2017).

Performance Measure

The split-and-conquer approach may also reduce the computational time by per-

forming local inference on multiple machines. Besides the metrics in Section 2.5

to measure the statistical efficiency of the estimators, we also report the compu-

tational times of all the methods. The computational time of a split-and-conquer

approach is defined to be the sum of the time for the local estimates and that for

the aggregated estimator. Since the local estimates can be computed in parallel, we

record the longest local machine time as the time for the local estimates.

4.5.1 Simulated Datasets

Distributed learning methods are designed for learning at scale where the observa-

tions have high dimensions and large sample size. To reduce the potential influence

of human bias, we simulate data from finite Gaussian mixtures with randomly gen-

erated parameter values. We use the R package MixSim (Maitra and Melnykov,

2010; Melnykov et al., 2012). An important quantity of a finite mixture is pairwise

overlap oij as given in Definition 2.11. The maximum overlap of a finite mixture
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is defined to be

MaxOmega = max
i,j∈[K]

oij .

We use MixSim to generate 100 finite Gaussian mixtures with d = 50 andK = 5.

The results for other d and K are in the Appendix B.2. We let MaxOmega be 1%,

5%, and 10%, N = 2l for l = 17, 19, 21 and M = 2l for l = 2, 4, 6. The simu-

lated data are divided evenly over the local machines. We combine 100 outcomes

from each combination of dimension, order, MaxOmega, sample size, and number

of local machines to form boxplots for each estimation method. Figure 4.1 and

Figure 4.2 show the results.

Figure 4.1 reports the result when the total sample size is N = 221. Within

each subfigure, the MaxOmega increases from the left panel to the right panel.

Within each panel, the x-axis gives the number of local machines: 4, 16, or 64.

The plots in Figure 4.1 contain boxplots of W1, Adjusted Rand Index (ARI), LL,

and the computational time.

Based on Figure 4.1, all methods have better performance in terms of W1, ARI,

and LL when MaxOmega is lower. This is consistent with our intuition and the

experiment survives the sanity check.

The proposed GMR has comparable performance to the gold-standard global

estimator in all three metrics. It is arguably the best aggregation approach. The

number of local machines has little influence on its performance. KLA has rela-

tively poor performance though it improves moderately when the number of local

machines increases. Recall that KLA generates a fixed number of observations

from each local estimator. More local machines lead to a larger total sample size

in its aggregation step. This helps its statistical performance but not computational

efficiency. The median estimator does not perform with a large number of local

machines. The Coreset estimator does not perform in all cases.

All aggregation approaches take less computational time than the global esti-

mator. The Coreset estimator takes the least amount of computational time. How-

ever, the computational time does not take the transmission cost into account.

Moreover, the computational time does not make up the poor statistical perfor-

mance. By far a large chunk of computational time of the split-and-conquer ap-

proaches is spent on learning the local estimators. Because GMR and the median
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(a) Transportation distance W1

(b) ARI

(c) Log-likelihood

(d) Computation time

Figure 4.1: Performance of five estimators: Global, GMR, median, KLA, and
Coreset from left to right in each block of 5 in terms of (a) W1 distance,
(b) ARI, (c) log-likelihood per observation, and (d) computational time
for learning 50-dimensional order K = 5 Gaussian mixtures with sam-
ple sizeN = 221. M is the number of local machines. For W1 distance,
the smaller the better. For ARI and log-likelihood, the larger the better.
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estimators spend negligible time on aggregation, they use about 1/M of the global

estimator computational time. When the data generating mixture has a high de-

gree of overlapping, the EM algorithm needs more iterations to converge leading to

higher computational time. KLA must re-learn the GMM based on the pooled data

generated from the local estimates, therefore generally takes longer time than the

GMR approach.

Figure 4.2 presents results when MaxOmega is 10% and M = 64. It is seen

the proposed GMR has very good performance, comparable to the global estimator.

The relative performance of the median estimator improves when the sample size

increases, but still not good enough to be recommended. The performance of KLA

and Coreset approaches do not improve with increased sample size. They are far

from competitive against the proposed GMR approach.

Coreset approach does not benefit from larger sample size likely because the

coreset size is fixed at 1000. KLA approach does not because the larger sample size

improves only the precision of the local estimates. Its aggregation step is heavily

influenced by the built-in randomness when we generate samples from the local

estimates. The other aspects of the simulation results are as expected.

We have more simulation results when the dimensions d = 10, 50 combined

with orders K = 5, 10, and 50. They are presented in Appendix B.2. These

results are consistent with what we find so far in terms of the statistical efficiency.

Since the Coreset estimator is found not competitive, it is not included in these

experiments.

4.5.2 Real Datasets

We now examine the performance of the proposed approach on large-scale public

datasets in Section 4.5.2, for clustering the handwritten digits in Section 4.5.2, and

for clustering a large-scale spatio-temporal data in Section 4.5.3.

Public Datasets

We experiment on the public datasets that are widely used for learning Gaussian

mixtures at scale in this section. The following datasets are used in Lucic et al.

(2017) and Jaini and Poupart (2016).
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(a) W1 distance (b) ARI

(c) Log-likelihood (d) Computation time

Figure 4.2: Performance of five estimators: Global, GMR, median, KLA, and
Coreset from left to right in each block of 5 in terms of (a) W1 distance,
(b) ARI, (c) log-likelihood per observation, and (d) computational time
for learning 50-dimensionalK = 5 Gaussian mixtures with sample size
N = 221 and when MaxOmega = 0.1 and M = 64. For W1 distance,
the smaller the better. For ARI and log-likelihood, the larger the better.
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1. MAGIC04. This is a simulated dataset for classifying gamma particles in

the upper atmosphere. It contains 19, 020 observations with 10 real valued

features and is publicly available at UCI machine learning repository.

2. MINIBOONE. The dataset is taken from the MiniBooNE experiment that

is used to distinguish electron neutrinos from muon neutrinos. It contains

130, 065 observations with 50 real valued features and is publicly available

at UCI machine learning repository.

3. KDD. This dataset is used in Lucic et al. (2017). It contains 145, 751 ob-

servations with 74 real valued features for predicting the protein types. It is

available at https://kdd.org/kdd-cup/view/kdd-cup-2004/Data.

4. MSYP. The dataset is used to predict the release year of a song from audio

features. It contains 515, 345 observations with 90 real valued features. The

dataset is publicly available at UCI machine learning repository. Follow-

ing Lucic et al. (2017), we reduce the dataset to its top 25 principal compo-

nents and fit the mixture model with these 25 features.

The nature of features in these datasets is not important in our demonstra-

tion. Details about these features can be found in the corresponding data repos-

itory sources. For the first three datasets, we divide the dataset onto M = 4 local

machines completely at random. Since MSYP is very big and the order of the mix-

ture to be fitted is high, we divide the dataset onto M = 16 local machines. The

random partition of the dataset is repeated R = 100 times. The size of the gen-

erated sample and coreset size are set to be 1000 for MAGIC04, and 10, 000 for

other datasets. The order of the fitted mixture on each dataset follows the setting

in Lucic et al. (2017) and is specified in Table 4.1.

For each method, due to repetition, we have 100 LL values based on the full

dataset at the learned mixing distributions. We summarize these values by its me-

dian and inter quartile range (IQR). We also obtain the total computational time for

each method. These results are given in Table 4.1.

Based on Table 4.1, it is clear that the proposed GMR has the best performance

among all split-and-conquer based approaches in terms of the LL value. For the

MiniBooNE dataset, the LL values of KLA and Coreset approaches are very small.
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Table 4.1: Performance of five learning approaches Global, GMR, Median,
KLA, and Coreset on four large-scale public datasets.

Dataset N d K M Global GMR Median KLA Coreset

Median (IQR) LL values (the larger the better)

MIGIC04 19020 10 10 4 -24.15 -24.30(0.07) -26.60(0.05) -26.73(0.07) -27.16(0.55)
MiniBooNE 130065 50 10 4 -19.46 -22.00(0.53) -24.60(0.32) −6.41(1.95)× 103 −8.6(2.56)× 109

KDD 145751 74 10 4 -221.80 -223.25(0.42) -232.93(8.02) -235.00(8.96) -374.43(193.58)
MSYP 515345 25 50 16 -166.56 -167.05(0.04) -171.10(0.04) -170.72(0.01) -181.64(1.78)

Median (IQR) computational times in seconds

MIGIC04 19020 10 10 4 19.3 7.0(3.2) 6.7(3.2) 10.2(3.1) 2.2(0.6)
MiniBooNE 130065 50 10 4 346.9 313.1(162.6) 313.2(162.6) 511.3(213.2) 26.6(64.3)

KDD 145751 74 10 4 1033.9 544.4(309.5) 543.0(310.0) 706.0(290.3) 4.3(64.0)
MSYP 515345 25 50 16 67048.8 2611.6(474.0) 1777.5(511.2) 5515.9(1629.7) 67.4(12.6)

This is likely because the total sample size to refit the GMM on the central ma-

chine is relatively small in 50-dimensional space. The fitted order 10 mixture

may not be able to cover the entire space properly and the log-likelihood con-

tribution of some observations is practically negative infinity. A single near zero

likelihood value could lead to a very small LL value. To evaluate the improve-

ment of the GMR approach over other approaches, we consider how many extra

subpopulations are needed to achieve the same gain in the LL value. Note that

the famous BIC (Schwarz, 1978) would favour a model with an extra parameter

if the gain in LL is more than log(N)/(2N). The log(N)/(2N) values for these

datasets are (26, 4.5, 4.1, 1.3)×10−5. A subpopulation in GMM with d = 74 needs

1 + 74 + 74× 75/2 = 2854 parameters. This translates into a difference of 0.116

in LL. For the KDD data, the gain in GMR compared to KLA would allow another

17 subpopulations.

All the split-and-conquer learning methods are much faster than the global

method. For the MSYP dataset, the split-and-conquer methods can be 10 times

as fast compared to the global estimator. The Coreset method takes the shortest

time. The proposed GMR approach takes comparable computational time with the

KLA approach.

NIST Handwritten-Digit Dataset

The finite GMM is often used for model-based clustering (Fraley and Raftery, 2002;

Friedman et al., 2001, Chapter 14.3). When the dataset is large and/or distributed
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over many local machines, split-and-conquer approaches such as the proposed

GMR become useful. In this section, we demonstrate the use of the GMR method on

the famous NIST dataset for character recognition (Grother and Hanaoka, 2016).

We use the second edition of the dataset, named by class.zip 1. It consists of ap-

proximately 4M images of handwritten digits and characters (0–9, A–Z, and a–z)

by different writers. Our experiment focuses on the digits and we still refer to it as

the NIST dataset. The images of the digits are in directories 30–39. According to

the user guide 2, the images in the train 30 to train 39 and hsf 4 folders are used

as the training and test sets respectively. The numbers of training images for each

digit are listed in the following table:

Table 4.2: The numbers of training images for each digit in NIST dataset.

Digits 0 1 2 3 4 5 6 7 8 9
Training 34803 38049 34184 35293 33432 31067 34079 35796 33884 33720

Test 5560 6655 5888 5819 5722 5539 5858 6097 5695 5813

Each image is a 128× 128 pixel greyscale matrix whose entries are real values

between 0 and 1 that record the darkness of the corresponding pixels. A darker

pixel has a value closer to 1. Following the common practice, we first train a 5-

layer convolutional neural network and reduce each image to a d = 50 feature

vector of real values. The details of the neural network for the dimension reduction

are given in Appendix B.2. A naı̈ve approach to build a classifier is to regard the

features of each digit as a random sample from a distinct Gaussian distribution. The

pooled data is therefore a sample from a finite Gaussian mixture of order K = 10.

We may learn this model based on the whole dataset or through split-and-conquer

approaches.

We randomly select R = 100 datasets of size N = 50K from the training set.

Each dataset is then randomly partitioned into M = 10 subsets. We obtain global,

GMR, Median, KLA, and Coreset estimates for a Gaussian mixture of order 10 on

each dataset. The size of the generated sample for the KLA method and the coreset

size in the Coreset method are both set to be 3000. This experiment is also carried

out with the sample sizes N = 100K, 200K, and 300K. These mixture estimates
1 Available at https://www.nist.gov/srd/nist-special-database-19.
2 Available at https://s3.amazonaws.com/nist-srd/SD19/sd19 users guide edition 2.pdf.
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(a) Training LL (b) Test LL

(c) Training ARI (d) Test ARI

(e) Computation time

Figure 4.3: Performance of five estimators: Global, GMR, median, KLA, and
Coreset from left to right in each block of 5 in terms of (a) training LL,
(b) test LL, (c) training ARI, (d) test ARI, and (e) computational time
for learning of 50-dimension order K = 10 Gaussian mixture for NIST
digit classification. For LL and ARI, the higher the better.
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are then used to cluster images of handwritten digits in the training and test sets.

We show the boxplots of the LL values based on the training dataset and the test

dataset in Figure 4.3(a) and Figure 4.3(b) respectively. The ARI between the true

label of the image and the predicted label based on (2.1) is respectively given in

Figure 4.3(c) and Figure 4.3(d).

In terms of the LL value, the proposed GMR approach attains the highest log-

likelihood among all split-and-conquer approaches. The performance of Coreset

estimator is far behind. In this experiment, the number of local machine is fixed

at M = 10 and the sample sizes are from 50K to 300K. Increasing the sample

size benefits median estimator most notably. This is because the local sample size

increases as the total sample size increases. When the total sample size is 300K,

the number of samples used to fit the local models and the samples generated to fit

the aggregated model in the KLA approach are the same. The LL value of median

estimator and the KLA estimator are about the same.

In terms of clustering performance, the global estimator surprisingly performs

noticeably worse than the split-and-conquer approaches. The high LL value of

the global estimator does not help. A likely explanation is that a GMM of order

10 is merely a working model rather than the true model, whereas true models

are used in simulated data. This eliminates the advantage of the global estimator.

This can also be seen that an increased total sample size N does not lead to an

improved fit in general. The ARIs of all approaches get worse when the sample

size increases. We think that the damage of the model-misspecification is more

severe when the sample size is large. Nevertheless, the proposed GMR method has

the best performance in all cases. It has the highest average ARI values and smaller

variations.

Figure 4.3(e) gives the computational time. All split-and-conquer approaches

save computational time. The Coreset estimator is most time efficient, the GMR

and median estimators takes slightly longer and the KLA takes the longest.

4.5.3 Applications in Atmospheric Data Analysis

In this Section, we follow Chen et al. (2013) and show an example of using the

distributed learning for the application of clustering in large-scale spatio-temporal
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data.

We apply the proposed GMR approach to fit a finite GMM to an atmospheric

dataset 3 named CCSM run cam5.1.amip.2d.001 following Chen et al. (2013).

These data are computer simulated based on Community Atmosphere Model ver-

sion 5 (CAM5). The dataset contains daily observations of multiple atmospheric

variables between years 1979 and 2005 over 192 longitudes (lon), 288 latitudes

(lat), and 30 vertical altitude levels (lev). There variables are included: the mois-

ture content (Q), temperature (T), and vertical velocity (Ω, OMEGA) of the air.

For ease of comparison, we analyze only observations in December, January,

and February, i.e., winter in the northern hemisphere. The number of days is thus

2, 430, and the restriction reduces the variation in the dataset. At each surface lo-

cation, we filter out non-wet days (less than 1 mm of daily precipitation) and focus

on days with precipitation above the 95th wet-day percentile. This step reduces the

number of observations at each location, not necessarily evenly. The analysis aims

to cluster the locations according to the multivariate variable of dimension d = 91:

30 lev × {Q, T, Ω} plus the daily precipitation (PRECL) at the surface. Follow-

ing Chen et al. (2013), we fit a finite GMM of order K = 4. They suggest that this

model is helpful in identifying modes of extreme precipitation in 3D atmospheric

space over a few atmospheric variables.

After this pre-processing, the dataset still takes about 3 GB of memory, so

we cannot learn a global mixture in a reasonable time. We partition the dataset

evenly into M = 128 subsets and apply the proposed GMR approach with the

same numerical strategies as in the NIST experiments. For comparison, we also

aggregate the local estimates by the KLA with 500 observations generated from

each local estimate.

Once a finite GMM is learned, we cluster the observations based on (2.1). Each

combination of day and surface location is clustered into one of four subpopula-

tions. To visualize the clusters, we further allocate each surface location to the

cluster in which it belongs on most days. Figure 4.4 shows the geographical dis-

tribution of these four clusters represented by different colours. Similar to Chen

et al. (2013), the GMR clusters reveal a strong latitudinal structure, they clearly
3Available at https://www.earthsystemgrid.org/dataset.
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Figure 4.4: Surface locations coloured by clusters. The clusters are obtained
based on a mixture fitted with 91 atmospheric features at surface loca-
tions around the world. Within each cluster, the darker the colour, the
more wet days at that location.

separate the frigid, temperate, and tropical zones. The KLA results in similar clus-

ters. Unlike Chen et al. (2013), the proposed GMR clusters are able to separate the

continental and oceanic areas in the temperate zone.

4.6 Extension Where Data are Not Split at Random
In the split-and-conquer learning approach described so far, we assume that the

full dataset is split completely at random into M machines. What happens if the

observations are not split completely at random? In this case, the population dis-

tributions at each local machine may be different although the full dataset is an IID

sample from a single model. The data at a local machine can be overly represented

by some subpopulations but completely absent of data from other subpopulations.

Suppose we proceed to use the proposed GMR estimator. Does this estimator leads

to a sensible estimate of the overall mixture? We empirically study the performance

of the aggregated estimators in this scenario in this section.

Simulation Setting

We simulation data from the mixtures in the same way as in Section 4.5.1. For

the ease of computation, we only consider the case where the total sample size
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N = 217. We use the following procedure to partition the samples onto M = 4,

16, and 64 local machine respectively. As described in Section 2.1, the subpopu-

lation identity of each randomly generated sample from a mixture is known. We

first sort the generated random samples based on their subpopulation identities in

an increasing order. For example, all random samples from the (k − 1)th subpop-

ulation are followed by all random samples from the kth subpopulation. We then

split the sorted dataset in order into M subsets with equal sizes. With this split, the

observations on each local machine may only from a subset of the subpopulations

of the mixture. As M increases, each local machine has information about fewer

subpopulations.

The same five estimators in Section 4.5.1 are considered in the experiment.

Due to non-random split, the population mixture on each local machine may not

be the same as the true mixture. Therefore, to compute the local estimators, we

do not use the true mixture to initialize the EM algorithm and use kmeans++ to

generate 10 initial values with the warm up strategy as described in Section 4.5.

The rest of the setting is the same as that in Section 4.5.

Simulation Results

We use the same set of metrics as in Section 4.5.1 to measure the performance of

the estimators. The simulation results are given in Figure 4.5.

In terms of the W1 distance, ARI, and LL, it can be seen that the performance

of the Median estimator is clearly deteriorated under this setting, comparing to the

results in Figure 4.1. The poor performance is due to the fact that the population

mixture is different from the true mixture due to the non-random split. The other

three estimators based on the aggregation are quite robust to the violation of the

completely random split. The performance of the GMR estimator is still almost as

good as the global estimator, both the KLA estimator and the Coreset estimator have

worse performance. However, we notice that when the number of local machine is

M = 64, the performance of the GMR estimator is slightly worse than the Global

estimator in terms of W1 and ARI, especially when the degree of overlap is large.

With N = 217 and M = 64, it is very likely that the local machine only contains

observations from a single component.

104



(a) W1 distance

(b) ARI

(c) Log-likelihood

(d) Computational time

Figure 4.5: Comparison of Global, Median, GMR, KLA, and Coreset esti-
mators in terms of distance between learned and true mixing distribu-
tions in (a), the similarity of clustering outcomes based on learned and
true mixture in (b), the log-likelihood per observation based on the full
dataset in (c), and the computational time in (d), for distributed learning
of 50-dimensional order 5 mixture under non-random data split when
N = 217.
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In terms of the computational time, since we initialize the EM algorithm for

computing the Global estimator with the true value and the warm up strategy for

the local estimators, then computational time for the local estimators are about 10

times longer than the Global estimator. If the same initialization strategy is used

for all estimators, then the split-and-conquer learning based estimators can save the

computational time than the Global estimator.

Summary

Based on the simulation results, all the split-and-conquer based approaches are ro-

bust to the violation of the assumption of splitting completely at random, under

finite Gaussian mixtures. Among all these approaches, the proposed GMR estima-

tor is still the most efficient estimator. Although the Coreset estimator is compu-

tationally fast, its statistically efficiency is compromised. Although the Median,

GMR, and KLA estimators take longer time to compute than the Global estimator

in general. This observations, however, is dependent on the choice of the initial

values in the EM algorithm. If the EM algorithm is run with multiple initial values

for the Global estimator, the split-and-conquer approach is still more time efficient

than the Global estimator.

4.7 Discussion on the Known Order Assumption
In the split-and-conquer learning of GMM described above, we assume the order

of the mixture is known and correctly specified. Every local machine learns a

finite Gaussian mixture with the same and correct order. While the machine learn-

ing community has devoted most energy to this special case, it is of interest and

great importance to develop the split-and-conquer approaches when the order of

the mixture model is potentially over-specified.

In this section, we empirically evaluate the performance of a number of split-

and-conquer approaches under this case. We simulate data from a mixture of order

K and have the simulated data partitioned into M subsets completely at random.

On each local machine, we learn the mixture model based on the allocated subset

under four scenarios.

i) the order of the mixture is correctly specified;
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ii) the order of the mixture on the local machine is specified to be K + 1;

iii) the order of the mixture on the local machine is specified to be K + 2;

iv) the order of the mixture on the mth local machine is specified to be K +m.

In the last scenario, the order of the mixture model varies with the local machines,

and we refer to this scenario as mixed order hereafter. In the aggregation step, we

first combine the local estimates to form φ(x;G) and the order of this mixture is

greater than MK under cases ii) – iv).

Estimators for comparison

We use the reduction approach in (4.4) to reduce the order of φ(x;G) to true order

K with various choices of the divergence ρ(·, ·). The divergences considered in the

experiment are:

1. ISE. The ISE between two mixtures, that is

ρ(G1, G2) = DISE(Φ(·;G1),Φ(·;G2)).

2. CTD-KL. The CTD with the cost function being the KL divergence between

two Gaussians. That is

ρ(G1, G2) = TDKL(Φ(·;G1),Φ(·;G2)).

3. CTD-ISE. The CTD with the cost function being the ISE between two Gaus-

sians. That is

ρ(G1, G2) = TDISE(Φ(·;G1),Φ(·;G2)).

We also include a KLA approach of Liu and Ihler (2014) in the simulation study.

The Coreset method is not applicable under this setting, we therefore do not in-

clude this method for comparison in our experiment. We use the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm to compute ISE estimator, the CTD-ISE can

also be computed numerically via the MM algorithm, we describe the details of

their computation in Chapter 5.
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Data Generation

We generate data from the following four mixtures in our experiment. Since the

ISE estimator is computationally difficult for high dimension d, we only generate

random samples from d = 1 and d = 2. The first two are chosen as Gaussian

mixtures of order K = 3 and dimension d = 1. Their density functions are given

by

I. φ(x;G) = 1/3φ(x;−3, 1) + 1/3φ(x; 0, 1) + 1/3φ(x; 3, 1);

II. φ(x;G) = 0.1φ(x;−2, 1) + 0.3φ(x; 0, 1) + 0.6φ(x; 3, 1).

The next two are chosen as a Gaussian mixtures of orderK = 3 and dimension

d = 2. To introduce the density function of these two mixtures, we first denote

µ(r, θ) = r(cos θ, sin θ)> and

Σ(λ1, λ2, θ) =

(
cos θ − sin θ

sin θ cos θ

)(
λ1 0

0 λ2

)(
cos θ − sin θ

sin θ cos θ

)>
.

III. The mixing weights are 0.15, 0.35, and 0.5 respectively. The subpopulation

means are µ(2, 3π/2), µ(3, 0), and µ(2, π/2). The subpopulation covari-

ances are Σ(1, 5, 0), Σ(1, 5, π/4), and Σ(1, 5, π).

IV. The mixing weights are 0.15, 0.35, and 0.5 respectively. The subpopulation

means are µ(2, 3π/2), µ(0, 0), and µ(2, π/2). The subpopulation covari-

ances are Σ(1, 1, 0), Σ(1, 5, π/4), and Σ(1, 5, π).

The density function of the two mixtures in III and IV are visualized in Fig-

ure 4.6.

We generate samples of sizes N = 219 or N = 221 respectively from each of

the mixtures given above. Each sample is then split into M = 4 or M = 8 subsets

completely at random and they are regarded as stored on M = 4 or M = 8 local

machines. With these two choices of sample sizes and two choices of the number of

local machines, we obtain 4 combinations. The four split-and-conquer methods in

Section 4.7 are applied to obtain the aggregated estimates. When the local mixtures

are over-specified, we use the kmeans++ to generate 10 initial values for the EM
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(a) III (b) IV

Figure 4.6: The density function of two 3-component mixtures in 2 dimen-
sional in III and IV.

algorithm with the warm up strategy as described in Section 4.5. In the aggregation

step with the reduction approach, we use the true value to initialize the algorithm.

The rest of the setting is the same as that in Section 4.5.

Simulation Results under Distributions I and II

We summarize the results in Figure 4.7 and Figure 4.8 when the split-and-conquer

methods are applied to data generated from distributions I and II. Note the plots

in the first and second columns are results under distributions I and II respectively.

We then divide each plot into 4 panels labeled by M = 4 or M = 8 on the top, and

N = 219 and N = 221 on the right margin with an obvious interpretation. Within

each panel are box-plots of one of the performance measures for 4 methods. The

lower ISE and higher ARI indicate better performance.

According to Figure 4.7 and Figure 4.8 , when the true order K = 3 is speci-

fied at local machines, ISE, CTD-ISE, and CTD-KL have similar and good perfor-

mances. When the number of machines increases or the sample size increases, the

box-plots get shorter, indicating lower variations. In comparison, the ISE of KLA

approach is hundreds of times larger. It is therefore less efficient.

When the order on local machines is over-specified with K = 4, the ISE
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(a) ISE

(b) ARI

(c) Time

Figure 4.7: Performances of four split-and-conquer approaches for learning
1-dimensional 3-component mixture in I.
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(a) ISE

(b) ARI

(c) Time

Figure 4.8: Performances of four split-and-conquer approaches for learning
1-dimensional 3-component mixture in II.
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method is negatively but only mildly affected in terms of both ISE and ARI. The

CTD-ISE and CTD-KL become much worse and less stable. The KLA remains

non-competitive. When the order is over-specified at K = 5, the ISE remains well

behaved. The computationally favored CTD-ISE and CTD-KL become statisti-

cally ineffective. Under the case of mixed orders, the ISE is still well behaved and

other methods remain non-competitive.

Simulation Results under Distributions III and IV

The simulation results under distributions III and IV are summarized in Figure 4.9

and Figure 4.10. The plots are arranged the same way as before.

Most inference methods have deteriorated performance on multidimensional

data. It turns out that the performance of the ISE approach remains reasonable

in all cases under distribution III. When the order is slightly over-specified with

K = 4, the performances of CTD-ISE and CTD-KL also remain reasonable. When

k = 5, these two approaches become unstable, just like their performance under

distributions I and II. Under the case of mixed orders, the ISE approach is still well

behaved. The other methods remain non-competitive.

Unlike distributions I-III, the subpopulations in distribution IV are not well

separated. We anticipate that all approaches do not perform too well. Indeed, ISE,

CTD-ISE, and CTD-KL are all unstable even when the order is correctly specified

with K = 3. We are surprised, however, that they recover from this failure when

the order is over-specified at K = 4. The ISE approach has a comparable low ISE

value in this case to the ISE value under distribution III, where the subpopulations

are well separated.

Summary

Our study reveals that there is a trade-off between robustness and computational ef-

ficiency: the computationally intensive approach is robust against over-specification,

while the two computationally friendly approaches have compromised statistical

performance when the order is over-specified. We believe that the information in

the data on the true model is not lost in the split step of the learning. Hence, there

is a good promise to develop computationally friendly aggregation strategies to ag-

112



(a) ISE

(b) ARI

(c) Time

Figure 4.9: Performances of four split-and-conquer approaches for learning
2-dimensional 3-component mixture in III.
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(a) ISE

(b) ARI

(c) Time

Figure 4.10: Performances of four split-and-conquer approaches for learning
2-dimensional 3-component mixture in IV.
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gregate local estimates in a statistically efficient way. A full exploration of such

remedies is left as future work.

Our simulation experiment only covers a small range of scenarios. It is danger-

ous to generalize what we have observed. It might be safe to say, the reasonable

performance of the ISE approach in all situations indicates the local estimates ef-

fectively summarize the information contained in the data. The over-specification

of the order may not always be devastating. Based on these results, one may decide

to always use the ISE approach as it is least affected by over-specification. How-

ever, the drawback of this approach is its computational complexity. It becomes

infeasible when either M or the dimension d becomes larger. The straightforward

implementations of CTD-ISE and CTD-KL do not perform as well under order

mis-specification. One is reminded that the motivation behind the CTD-ISE and

CTD-KL is their computational efficacy, which is not shared by ISE. The superior

performance of ISE in terms of the robustness against over-specification indicates

that statistical efficacy is possible. With some effort, we believe robust as well as

computationally efficient split-and-conquer approaches can be found. We aim to

pursue this topic in the future.

4.8 Conclusion
In this chapter, we describe two potential aggregation approaches, namely the

barycentre approach and the reduction approach, for the split-and-conquer learning

of finite Gaussian mixtures. We show an example where the barycentre approach

does not work and hence recommend using the reduction approach for aggrega-

tion. We also discuss the connection between these two approaches. Considering

the computational complexity, we recommend using the CTD between mixtures as

the objective function for the reduction approach. A numerically effective MM al-

gorithm is designed for the computation. Our experiments show that our proposed

GMR estimator has good performance both statistically and computationally. In the

simulation study, our estimator is as good as the global estimator if the latter is

feasible. We also investigate the robustness of the GMR estimator under the cases

where the full dataset partition is not at random and where the locally fitted mixture

is over-specified. We empirically show the GMR is as efficient as the global estima-
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tor under non-random split. When locally fitted mixtures are over-specified, there

is a trade-off between the statistical efficiency and computational complexity: a

computationally intensive approach is robust against over-specification, while two

computationally friendly approaches have compromised statistical performances.

We leave this as future work to develop a computationally effective robust esti-

mator under over-specification. We have focused on finite GMMs, but with some

adjustment, our approach could be applied to learning mixtures with other subpop-

ulation distributions such as Gamma and Poisson. We discuss the generalization to

non-Gaussian mixtures in Chapter 6.
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Chapter 5

Gaussian Mixture Reduction and
Approximate Inference

It is often cited (Nguyen et al., 2020; Titterington et al., 1985) that there always

exists a Gaussian mixture whose density function is arbitrarily close to any den-

sity function. For example, the kernel density estimate with Gaussian kernel and

proper bandwidth is consistent for any continuous density function that vanishes at

infinity (Wied and Weißbach, 2012). Based on this observation, GMMs are widely

used to approximate distributions of complex shapes. In many applications, the

target density function can be well approximated by a finite Gaussian mixture with

proper order. The approximation makes the downstream data analysis computa-

tionally efficient.

In this chapter, we study the problem called Gaussian Mixture Reduction (GMR)

in the machine learning community. Ignoring the application background, GMR is

a procedure to approximate an order N Gaussian mixture

Φ(x;G) =

N∑
n=1

wnΦ(x;µn,Σn) :=

N∑
n=1

wnΦn(x)

by an order M Gaussian mixture

Φ(x; G̃) =

M∑
m=1

w̃mΦ(x; µ̃m, Σ̃m) :=

M∑
m=1

w̃mΦ̃m(x)
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with M < N . We refer to Φ(x;G) and Φ(x; G̃) as original mixture and reduced

mixture respectively. Note that we use apparent notation for G, G̃, µn, Σn, Σ̃n,

and Σ̃m. For the rest of the dicussion, the order M is given or chosen by the user.

We want to highlight that the GMR is not a statistical inference problem. It does not

learn the mixing distributionG from data but instead approximates a target mixture

with high order by a mixture with a lower order.

The GMR procedure is used in many machine learning applications involving

recursive inference procedures (Manzar, 2017). In these cases, suppose the dis-

tribution of a statistics is a mixture of moderate order at one iteration. The corre-

sponding distribution after another iteration can be a mixture whose order increases

by a multiplication factor. Therefore, the sequence of mixtures from the recursive

procedure are mixtures whose orders increase exponentially with the number of

iterations. The computation of these distributions therefore quickly becomes in-

tractable. To overcome this difficulty, the GMR procedure is applied after each

iteration to approximate the mixture with a controlled order to stop the order of a

mixture from increasing exponentially. As a result, the orders of the sequence of

mixtures remain the same and the computation becomes feasible.

One example of using GMR is the belief propagation under a probabilistic

graphical model (Sudderth et al., 2010). One task in inference under a proba-

bilistic graphical model is to find the marginal distribution of a random variable

given the joint distribution of the random variables whose dependency structure is

specified by a graph. An example of a graphical model and dependency structure

will be given more precisely in Section 5.1.1. Given the complicated dependency

structure of these random variables, computationally and efficiently marginalizing

over other random variables involves a recursive procedure called belief propaga-

tion. The messages, which are distributions that contain the “influence” that one

variable exerts on another, are updated iteratively in the belief propagation. The

flexibility of the Gaussian mixture makes it an ideal choice to approximate the ini-

tial message in belief propagation. After an iteration, the updated message remains

a Gaussian mixture but its order is increased by some multiplication factor. Hence

the order of the message increases exponentially and quickly becomes intractable.

The GMR can be used after each iteration so that the message remains in a con-

trolled order and manageable computational cost.
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Another example of using GMR is in recursive Bayesian filtering under a hidden

Markov model (HMM). In the Bayesian filtering of an HMM, the finite Gaussian

mixtures can be used to approximate the transition distribution and the marginal

distribution. Consequently, the posterior distribution (the distribution of hidden

states given the observed value up to the current time point) is also a Gaussian

mixture. However, the order of the mixture increases exponentially with time. To

control the computation costs, some intermediate approximation steps are often

introduced to prevent the order of the posterior mixture from exploding. Similarly,

the GMR is helpful for this purpose.

There has been a rich literature on GMR and most approaches are one of three

general types: greedy algorithm-based (Huber and Hanebeck, 2008; Runnalls,

2007; Salmond, 1990), optimization-based (Williams and Maybeck, 2006), and

clustering-based (Assa and Plataniotis, 2018; Davis and Dhillon, 2007; Goldberger

and Roweis, 2005; Schieferdecker and Huber, 2009; Vasconcelos and Lippman,

1999; Yu et al., 2018; Zhang and Kwok, 2010). The greedy algorithms either merge

two components or prune a component at a time and repeat until the desired num-

ber of components (order) is obtained. These approaches are ad hoc and usually

do not have an ultimate optimality target. The optimization-based approaches such

as in Williams and Maybeck (2006) have an explicit optimality target but can be

computationally difficult. The clustering-based approaches are motivated by the

k-means algorithms in the Euclidean space and are computationally efficient in

general. To the best of our knowledge, it is unsure in the literature whether the

clustering-based algorithms should converge or whether they have attained some

optimality target when they converge.

In this chapter, we propose an optimization-based approach for GMR. The pro-

posed reduced mixture minimizes a Composite Transportation Divergence (CTD)

between the original mixture and a mixture with the desired order. We develop

an Majorization Maximization (MM) algorithm to efficiently solve the correspond-

ing numerical optimization problem. Our MM algorithm resembles the existing

clustering-based algorithm and is computationally efficient. Its clear optimality

target enables us to show the algorithm converges under some conditions on the

CTD. Since our MM algorithm includes the existing clustering-based algorithms

as special cases, our results reveal the missing optimality targets of the existing
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clustering-based algorithms and establish their algorithmic convergence in general.

The rest of the chapter is organized as follows. In Section 5.1, we present the

details of the approximate inference with GMR in belief propagation and filtering

under Hidden Markov Model (HMM). In Section 5.2, we review existing GMR

approaches in the literature. The proposed method is given in Section 5.3. We show

that existing clustering-based approaches are special cases of our proposed method.

Numerical experiments comparing different approaches are given in Section 5.4.

Conclusions and discussions are given in Section 5.5.

5.1 Application Examples of Gaussian Mixture
Reduction

The density functions of Gaussian mixtures are often used to approximate density

functions of complex shapes in statistical inference. In this section, we give some

examples of using GMR. In Section 5.1.1, we explain the approximate inference in

the belief propagation under probabilistic graphical models. In Section 5.1.2, we

describe the tracking procedure under hidden Markov models.

5.1.1 Belief Propagation under Graphical Models

A graph consists of a node set V and an undirected edge set E made of pairs of

nodes that are related. A probabilistic graphical model associates each node with

a random variable, say Xi, and postulates that the joint density function of the

random vector X = {Xi : i ∈ V} can be factorized into

fX(x) ∝
∏

(i,j)∈E

ψij(xi, xj)
∏
i∈V

ψi(xi) (5.1)

for some non-negative valued functions ψij(·, ·) and ψi(·). We call ψij(·, ·) and

ψi(·) local potential and local evidence potential respectively. Note that the factor-

ization is determined by the dependency of these variables that is characterized by

the graph.

One task in the inference under probabilistic graphical model is to evaluate the

marginal density function of Xi for i ∈ V given the factorization in (5.1). For ex-

ample, the graphical model is applied to kinematic tracking problems in computer
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vision (Sudderth et al., 2010). The task of kinematic tracking is to estimate the

motion of each part of an articulated object based on recorded video sequences.

The tracking of human hand gestures, which is used as a natural human-computer

interface device, is one of the applications of kinematic tracking (Wu and Huang,

2001). To simplify the problem, discretization is used and only several rigid bod-

ies of the hand need to be tracked. For example, Sudderth et al. (2010) only tracks

the position of little circles marked on the hand as shown in the left plot in Fig-

ure 5.1. In these applications, the random variable Xi is a 4-dimensional vector

Figure 5.1: Graphical models capturing the kinematic, structural, and tempo-
ral constraints relating the hand’s 16 rigid bodies. The images is taken
from Sudderth et al. (2010).

that records the 3D spatial location and the angle of the rotation of each of the

bodies of the hand. Figure 5.1 depicts the graphical model used in Sudderth et al.

(2010). The left plot shows the pairwise potentials that capture kinematic con-

straints that phalanges are connected by revolute joints. The middle plot shows the

pairwise potentials that capture structural constraints of different fingers. The right

plot shows pairwise potentials that capture the Markov temporal dynamics of the

hand at two consecutive frames of the video. Given the graphical model, the task

of tracking is to find the marginal distribution of each body of the hand Xi and

predict the spatial location of these bodies over time.

To find out the marginal distribution of Xi, a computationally efficient pro-

cedure called Belief Propagation (BP) is proposed by Yedidia et al. (2003). We
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describe the BP algorithm and show the motivation of using GMR in the inference.

The BP algorithm works by passing density functions called messages along

with the edges between the nodes in the graph. These messages contain the “influ-

ence” that one variable exerts on another. More precisely, let the neighbourhood of

a node i be denoted as Γ(i) = {j : (i, j) ∈ E}. The message from node i to node

j ∈ Γ(i) is a density function that is denoted as mji(·). Given messages m(t−1)
ji (·)

at the (t− 1)th iteration, the BP algorithm updates them according to

m
(t)
ji (x) ∝

∫
{ψij(x, xj)ψj(xj)

∏
k∈Γ(j)\i

m
(t−1)
kj (xj)} dxj (5.2)

in the next iteration. A belief is the tentative marginal density function q(t−1)
i (x)

of Xi up to some normalization constant. Given the messages, the BP algorithm

updates the beliefs by

q
(t)
i (x) ∝ ψi(x)

∏
j∈Γ(i)

m
(t)
ji (x). (5.3)

The messages and beliefs are iteratively updated until convergence. For acyclic or

tree-structured graphs, the updates lead to a sequence of beliefs that converges to

the density function of the marginal distribution. For graphs with loops, the BP

sequence provides a useful approximation. The derivation and justification of the

message passing are very complex, see Yedidia et al. (2003) for details.

Closed-form outcomes of the messages do not exist in general but with some

exceptions. When all local potential ψi and local evidence potential ψij are Gaus-

sian densities, then by the property of Gaussian distribution in Section (2.7)∫
φ(x;µ1,Σ1)φ(x;µ2,Σ2) dx = φ(µ1;µ2,Σ1 + Σ2),

the messages and the beliefs updated using (5.2) and (5.3) remain Gaussian with

closed-form new parameter values. However, the Gaussian distributions are not

flexible enough to capture the shape of the marginal densities. To take advantage of

the property of the Gaussian distribution while permitting flexible density shapes,

the Gaussian mixtures can be used to approximate local potential ψij(·) and lo-

122



cal evidence potential ψi(·). Subsequently, the messages m(t)
ji and the beliefs q(t)

i

are Gaussian mixtures whose parameter values have closed-form. However, the

orders of the messages and beliefs increase exponentially with t and the inference

quickly becomes intractable. To solve this issue, one may use the GMR technique

to reduce the order of the mixture before the next update to stop it from increasing

exponentially. We apply the proposed GMR to BP in Section 5.4.2.

5.1.2 Tracking under Hidden Markov Models

In this section, we show that the GMR is also used for tracking under hidden Markov

models. We first introduce the tracking under hidden Markov models and then

show how the GMR is used under tracking.

The HMM is defined as follows.

Definition 5.1. A hidden Markov model characterizes two discrete time series

{Xt}t≥0 and {Yt}t≥0.

1. The unobserved state space {Xt}t≥0 is a Markov process. The Markov pro-

cess has the property that the conditional distribution of Xt given X0:t−1 =

x0:t−1 is the same as the conditional distribution of Xt given Xt−1 = xt−1.

We denote the distribution of X0 with density function p0(x) and the transi-

tion density of Xt+1 given Xt = xt by pt+1(x|xt).

2. The series {Yt}t≥0 is an observed series. We denote the conditional distri-

bution of Yt given Xt = xt by gt(·|xt).

Based on the definition of an HMM, it can be noted that the conditional dis-

tribution of Yt given X0:t = x0:t is the same as its conditional distribution given

Xt = xt.

One HMM example is the Linear Gaussian Model specified by

Xt+1 = FtXt +GtWt

Yt = H>t Xt + Vt

where X0 ∼ φ(x;µ0, P0), Vt
i.i.d.∼ φ(x; 0, Rt), Wt

i.i.d.∼ φ(x; 0, Qt), and all unspeci-

fied quantities are non-random matrices of appropriate nature and dimensions. The
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linear Gaussian model is widely used for target tracking and signal processing (An-

derson and Moore, 2012). Another HMM example is Stochastic Volatility model.

This model and its generalizations are widely used in economics and mathematical

finance (Taylor, 1994). The stochastic volatility model is specified by

Xt+1 = αXt + σWt

Yt = β exp(Xt)Vt

where X0 ∼ φ(x; 0, σ2/(1 − α2)), Vt
i.i.d.∼ φ(x; 0, 1), Wt

i.i.d.∼ φ(x; 0, 1), and all

unspecified quantities are non-random parameters. Compare to the linear Gaus-

sian model, the relationship between Yts and the latent Xts is nonlinear under the

stochastic volatility model.

Under the HMMs, one general inference problem is tracking: inferring the value

of the latent variable at the current moment given all the observations up to this

moment. It is called “tracking” since we are interested in keeping track of the “lo-

cation” of the system given noisy observations. Mathematically, it is to determine

the conditional distribution of Xt given Y0:t = y0:t namely {pXt|Y0:t(xt|y0:t)}t≥0.

Under linear Gaussian models, the tracking is analytically tractable, and the

procedure is usually named the Kalman filter (Meinhold and Singpurwalla, 1983).

In general, the filtering is done by a recursive procedure described as follows (Doucet

and Johansen, 2009, Page 4–5). The conditional joint distribution of all hidden

variables X0:t given the observations y0:t can be written as

pX0:t|Y0:t(x0:t|y0:t) =
pX0:t(x0:t)pY0:t|X0:t

(y0:t|x0:t)∫
pX0:t(x̃0:t)pY0:t|X0:t

(y0:t|x̃0:t) dx̃0:t
(5.4)

where the prior on the hidden variables are given by

pX0:t(x0:t) = p0(x0)
t∏

k=1

pk(xk|xk−1)
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and likelihood of x0:t is given by

pY0:t|X0:t
(y0:t|x0:t) =

t∏
k=0

gk(yk|xk)

based on Definition 5.1.

The joint density function pX0:t,Y0:t(x0:t, y0:t) of (X0:t, Y0:t) has decomposi-

tion

pX0:t,Y0:t(x0:t, y0:t) = pX0:t−1,Y0:t−1(x0:t−1, y0:t−1)pt(xt|xt−1)gt(yt|xt).

Along with (5.4), the posterior pX0:t|Y0:t(x0:t|y0:t) consequently satisfies the recur-

sion relationship

pX0:t|Y0:t(x0:t|y0:t) = pX0:t−1|Y0:t−1
(x0:t−1|y0:t−1)

pt(xt|xt−1)gt(yt|xt)
pYt|Y0:t−1

(yt|y0:t−1)

where

pYt|Y0:t−1
(yt|y0:t−1) =

∫
pXt−1|Y0:t−1

(xt−1|y0:t−1)pt(xt|xt−1)gt(yt|xt) dxt−1 dxt.

Integrating out x0:t−1, we find the filtering satisfies the recursion

pXt|Y0:t(xt|y0:t) =
pXt|Y0:t−1

(xt|y0:t−1)gt(yt|xt)
pYt|Y0:t−1

(yt|y0:t−1)
(5.5)

where

pXt|Y0:t−1
(xt|y0:t−1) =

∫
pt(xt|xt−1)pXt|Y1:t−1

(xt|y1:t−1) dxt−1. (5.6)

Equation (5.6) is called the prediction step and (5.5) is called the update step.

The prediction and update steps are used iteratively for tracking under HMMs.

For general conditional density gt(·) and conditional density pt(·), both steps do

not have closed-form outcomes and numerical approaches are needed. One nu-

merical approach is functional approximation: approximating pt(·) and gt(·) by

Gaussian mixtures. The choice of GMMs is due to their ability to approximate
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any density function to arbitrary precision and having closed-form outputs in the

prediction and update steps. Suppose

pt(xt|xt−1) =

nti∑
i=1

wtiφ(xt;Atixt−1 + µti,Σti),

gt(yt|xt) =

mtj∑
j=1

πtjφ(yt;Btjxt + utj ,Λtj)

for some non-random matrices, vectors, constants Ati, Σti, Btj , Λtj , µti, utj , wti,

and πtj . The numbers nti and mtj are the orders of the mixtures of the conditional

densities.

Let the tth step of the recursion be

pXt−1|Y0:t−1
(xt−1|y0:t−1) =

Ntk∑
k=1

ωkφ(xt−1;µ†k,Σ
†
k)

for some µ†k, Σ†k, and k ∈ [Ntk] where Ntk is a known integer. Then the prediction

step and update step are given as follows.

Prediction step:

pXt|Y0:t−1
(xt|y0:t−1) =

nti∑
i=1

Ntk∑
k=1

wtiωkφ(xt;µtik,Σtik) (5.7)

where µtik = Atiµ
†
k + µti and Σtik = Σti +AtiΣ

†
kA
>
ti .

Update step:

pXt|Y0:t(xt|y0:t) =

nti∑
i=1

mtj∑
j=1

Ntk∑
k=1

wtijkφ(xt;µtijk,Σtijk) (5.8)

where wtijk = πtijk/
∑

i,j,k πtijk, πtijk = wtiπtjωkCtijk, and

Ctijk = φ(yt;Btjµtik + utj ,Λtj +BtjΣtikB
>
tj).
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This is a Gaussian mixture and its subpopulation parameters are

Σ−1
tijk = Σ−1

tik +B>tjΛ
−1
tj Btj

and

µtijk = Σtijk{Σ−1
tikµtik +B>tjΛ

−1
tj (yt − utj)}.

It is seen from (5.7) and (5.8), the order of both mixtures will increase exponen-

tially with updating. Use GMR to reduce the order of the mixture before each update

can be helpful to make the inference tractable. This example is used to illustrate

the use of GMR in tracking under HMMs. We do not include a numerical example

in this chapter, interested readers can refer to Yu et al. (2018, Section 5.3).

5.2 Existing GMR approaches
As we mentioned before, there are three general types of GMR approach: greedy

algorithm-based, clustering-based, and optimization-based approaches. We pro-

vide additional details in three subsections respectively. The details on clustering-

based approaches are needed later when we show that this type of approach is a

special case of our proposed method.

5.2.1 Greedy Algorithms

The greedy algorithm-based approaches (Assa and Plataniotis, 2018; Runnalls,

2007; Salmond, 1990; Williams and Maybeck, 2006) start with the original mix-

ture and usually either prune one component or merge two components at each

step. The number of components in the mixture is hence reduced by one after each

step. The procedure is repeated until the desired order is achieved.

The pruning is done by discarding the component that either has the smallest

weight or the cost of its discarding is the lowest according to some metric. The

weights of the remaining components are then renormalized to obtain a proper

density function. Instead of pruning, one may merge two components that are

most similar. One uses some metric cij between ith component and jth component
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for the similarity. For example, Salmond (1990) considers

cij =
wiwj
wi + wj

(µi − µj)>Σ−1(µi − µj)

where Σ is the covariance matrix of the original mixture Φ(x;G). In comparison,

Runnalls (2007) considers

cij = wij log det(Σij)− wi log det(Σi)− wj log det(Σj)

where

wij = wi + wj

µij = (wi/wij)µi + (wj/wij)µj

Σij =
∑
k=i,j

(wk/wij){Σk + (µk − µij)(µk − µij)>}.
(5.9)

In this approach, two components have smallest cij value are merged into a single

component via moment matching. Let us say the ith and the jth components of the

current mixture are chosen to be merged. Then these two components along with

their mixing weights can be viewed as an unnormalized mixture. This approach

replaces these two components with a weighted Gaussian component that can also

be viewed as an unnormalized mixture. The corresponding parameter values of the

weighted Gaussian component are decided based on matching its first two moments

with that of the unnormalized 2-component mixture. As a result, the corresponding

parameters are given by wij , µij , and Σij in (5.9). By merging two components

that minimize cij at each step, it lacks an ultimate optimality target. Such greedy

algorithms are clearly sub-optimal since the low loss at the first step may lead to

substantial losses in future steps.

5.2.2 An Optimization-based Algorithm

Williams and Maybeck (2006) formulates the GMR as an optimization problem.

The reduced mixture minimizes some divergence to the original mixture. The mix-
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ing distribution of the reduced mixture is simply

G̃ = arg min
G̃∈GM

D(Φ(·;G),Φ(·; G̃))

for some divergence D(·, ·) and GM is the space of all mixing distributions of

order M . If successfully implemented, it obtains the best possible approximation

according to D(·, ·) by definition.

Williams and Maybeck (2006) study this approach with D(·, ·) chosen to be

the Integrated Squared Error (ISE): the squared L2 distance between two Gaussian

mixtures given by

DISE(Φ(·;G),Φ(·; G̃)) =
N∑
n=1

N∑
n′=1

wnwn′φ(µn;µn′ ,Σn + Σn′)

− 2
N∑
n=1

M∑
m=1

wnw̃mφ(µn; µ̃m,Σn + Σ̃m)

+
M∑
m=1

M∑
m′=1

w̃mw̃m′φ(µ̃m; µ̃m′ , Σ̃m + Σ̃m′).

Although the above function has a closed-form, complicated numerical algo-

rithms seem inevitable for minimization. Williams and Maybeck (2006) recom-

mends the generic Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-

gorithm for optimization. Recall N is the order of the original mixture, M is the

order of the reduced mixture, and d is the dimension. Using the BFGS algorithm,

the cost for evaluating the gradient at each step is O(NMd3) and the cost for

approximating the Hessian is O(M2d4). As the cost is quartic in dimension d,

directly minimizing ISE is very expensive when the dimension d is very large.

5.2.3 Clustering-based Algorithms

The clustering-based approach such as the one in Schieferdecker and Huber (2009)

for GMR mimics the k-means algorithm. This approach permits a simple imple-

mentation and has a low computational cost. Recall we use N for the order of the

original mixture and M for the order of the reduced mixture. The algorithm starts
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with M initial cluster centres. It then iterates between the following two steps.

1. Assignment step: split N components of the original mixture into M groups

based on their closeness to the proposed cluster centres;

2. Update step: obtain a new centre of the components in each group according

to some criterion.

The iteration continues until the centres do not change meaningfully between iter-

ations. The reduced Gaussian mixture has M components formed by these centres

and the corresponding mixing weight as the sum of the weights of the original

components belong to this cluster.

As in the case of clustering in the vector space, one can design different assign-

ment schemes in this algorithm for GMR. If the algorithm assigns each component

in the original mixture entirely to a single cluster, it is a hard clustering-based al-

gorithm. If the algorithm split a component in the original mixture into several

parts and assign them to different clusters, this leads to a soft clustering-based al-

gorithm. The existing hard clustering-based and soft clustering-based approaches

are described below.

Hard Clustering-based The hard clustering-based approaches partition the origi-

nal mixture components into M groups according to some closeness measure. For

example, Schieferdecker and Huber (2009) uses the KL divergence

D(Φn, Φ̃m) =DKL(Φ(·;µn,Σn)‖Φ(·; µ̃m, Σ̃m))

=
1

2

(
log

det(Σ̃m)

det(Σn)
+ tr(Σ̃−1

m Σn) + (µ̃m − µn)>Σ̃−1
m (µ̃m − µn)− d

)
.

Assa and Plataniotis (2018) uses the squared Wasserstein distance between two

Gaussians

D(Φn, Φ̃m) =W 2
2 (Φ(·;µn,Σn),Φ(·; µ̃m, Σ̃m))

=‖µn − µ̃m‖2 + tr
(

Σn + Σ̃m − 2(Σ1/2
n Σ̃mΣ1/2

n )1/2
)
.

Each component of the original mixture is assigned to its nearest cluster centre.

At the update step, the new cluster centre is formed by the components that are

assigned to the same cluster. Suppose we assign the nth component of the original
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mixture to cluster C(n) ∈ [M ]. Schieferdecker and Huber (2009) creates the new

cluster centres via moment matching:

w̃m =
∑

{n:C(n)=m}

wn

µ̃m = w̃−1
m

∑
{n:C(n)=m}

wnµn

Σ̃m = w̃−1
m

∑
{n:C(n)=m}

wn{Σn + (µn − µ̃m)(µn − µ̃m)>}.

(5.10)

Assa and Plataniotis (2018) forms the new cluster centres by local Wasserstein

barycentre. Namely, the barycentre of the components assigned to this cluster.

Both of them iterate between these two steps until the change in the ISE be-

tween the original and reduced mixtures is below some threshold. A general de-

scription of the hard clustering-based algorithm is given in Algorithm 2.

Algorithm 2 A general description of hard clustering-based algorithms for GMR.
Input: Φ1,Φ2, . . . ,ΦN , w1, w2, . . . , wN
Initialize: Φ̃1, Φ̃2, . . . , Φ̃M

repeat
Assignment step:
Compute dnm = DKL(Φn, Φ̃m) in (2.5)
Assign component n to clusters C(n) = arg minj dnj
Update step: update cluster centre by moment matching
for m ∈ [M ] do

w̃m ←
∑

{n:C(n)=m}

wn

µ̃m ← w̃−1
m

∑
{n:C(n)=m}

wnµn

Σ̃m ← w̃−1
m

∑
{n:C(n)=m}

wn{Σn + (µn − µ̃m)(µn − µ̃m)>}.

end for
Let Φ(x; G̃) =

∑
m w̃mΦ̃m(x)

until the change in the value of DISE(Φ(·;G),Φ(·; G̃)) is below some threshold
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Soft Clustering-based Instead of assigning each component of the original mix-

ture to one cluster, the soft clustering-based approach assigns znm fraction of

component n to the mth clustering centre. Clearly, we require znm ≥ 0 and∑M
m=1 znm = 1 for n = 1, 2, . . . , N .

Various forms of znm are considered in the literature. Let En{h(X)} be the

expectation of h(X) when X ∼ Φn and define

Enm =En{log φ(X; µ̃m, Σ̃m)}

=

∫
φ(x;µn,Σn) log φ(x;µn,Σn) dx

−DKL(Φ(·;µn,Σn)‖Φ(·; µ̃m, Σ̃m)).

(5.11)

This quantity measures the similarity between components of the original mixture

and the reduced mixture. Vasconcelos and Lippman (1999) recommends having

znm ∝ w̃m exp(wnIEnm)

with some hyper-parameter I > 0. Yu et al. (2018) recommends having

znm ∝ w̃m exp(IEnm). (5.12)

The values of znm are computed in the assignment step of the clustering algorithm.

The update step in soft clustering-based algorithms uses the moment matching

the same as the hard clustering-based algorithm but with adjusted fractions. We

present the soft clustering-based algorithm of Yu et al. (2018) in Algorithm 3. We

still use C(n) to denote the cluster that the nth original component is assigned to

in the hard clustering-based approach. When the hyper-parameter I →∞, we find

znm = 1 if C(n) = m and 0 otherwise. This shows that the soft clustering-based

algorithm reduces to the hard clustering-based algorithm as I →∞.

The soft clustering-based algorithm in Yu et al. (2018) leads to an effective

GMR procedure. However, Yu et al. (2018) derives the above procedure from a

variational inference point of view. We find their derivation is wrong yet our finding

invalidates their variational inference interpretation. Their GMR procedure itself is

valid. We document this finding in the following remark.
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Algorithm 3 Overview of soft clustering-based algorithms for GMR.
Input: Φ1,Φ2, . . . ,ΦN , w1, w2, . . . , wN , hyper-parameter I > 0
Initialize: Φ̃1, Φ̃2, . . . , Φ̃M , w̃1, w̃2, . . . , w̃m
repeat

Assignment step:
Let

znm = {w̃m exp(IEnm)}/
∑
m′

{w̃m′ exp(IEnm′)}

where Enm is defined in (5.11)
Update step:
for m ∈ [M ] do

w̃m ←
∑
n

znmwn

µ̃m ← w̃−1
m

∑
n

znmwnµn

Σ̃m ← w̃−1
m

∑
n

znmwn

{
Σn + (µn − µ̃m)(µn − µ̃m)>

}
end for

until the change in
∑

nwn
∑

m znm

{
log w̃m

znm
+ IEnm

}
is below a threshold

Remark 5.1 (Technical errors in Yu et al. (2018)). Let X1, X2, . . . , XI be a set

of IID pseudo-samples of size I from the original mixture φ(x;G). We denote by

X = (X1, X2, . . . , XI)
>. Yu et al. (2018) proposes to perform GMR by maximizing

the expected likelihood of G̃:

`I(G̃) = E{log φ(X; G̃)}.

The expectation is computed knowing X ∼
∏I
i=1 φ(xi;G). Yu et al. (2018) appar-

ently does not notice

`I(G̃) = I E{log φ(X1; G̃)}.
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Instead, Yu et al. (2018) wrongfully claims that the expected log-likelihood function

`I(G̃) = E{log φ(X; G̃)}

=

N∑
n=1

wnEY∼∏I
i=1 φn(yi)

{
I∑
i=1

log φ(Yi; G̃)

}
.

(5.13)

Conceptually, this claim has regarded whole vector X having probability wn to

be an IID sample from the subpopulation with distribution Φn, for n ∈ [N ]. This

is not true. One can also find (5.13) is false from integral expressions. Let x =

(x1, x2, . . . , xI), and denote

g(x) = φ(x; G̃) =
I∏
i=1

φ(xi; G̃).

We have

E{log φ(X; G̃)} =

∫
g(x)

I∏
i=1

{
N∑
n=1

wnφn(xi)

}
dx

while

EY∼∏I
i=1 φn(yi)

{
I∑
i=1

log φ(Yi; G̃)

}
=

N∑
n=1

wn

∫
g(x)

I∏
i=1

φn(xi) dx.

Two outcomes are clearly unequal because the summation and the product are not

exchangeable. This misinterpretation carries in deriving a variational lower bound

of their wrong objective function.

5.3 Proposed Reduction Approach
In this section, we present the novel GMR approach that minimizes the CTD from

the reduced mixture to the original mixture. We present its formulation, the cor-

responding numerical algorithm, and its connection with some existing clustering-

based algorithms.

Let Φ(x;G) =
∑N

n=1wnΦ(x;µn,Σn) :=
∑N

n=1wnΦn(x) be the original
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mixture with order N . Our research problem is to search for a mixture

Φ(x; G̃) =

M∑
m=1

w̃mΦ(x; µ̃m, Σ̃m) :=

M∑
m=1

w̃mΦ̃m(x)

of order M < N to approximate Φ(x;G).

Denote by w = (w1, w2, . . . , wn)> the mixing weights of the original mix-

ture and w̃ = (w̃1, w̃2, . . . , w̃m)> the mixing weights of the reduced mixture. Let

c(Φn, Φ̃m) be a non-negative bi-variate function on a space of Gaussian distribu-

tions. For example,

c(Φn, Φ̃m) = DKL(Φn‖Φ̃m)

could be a cost function. Let π ∈ Π(w, w̃) be a transportation plan, and

H(π) = −
∑
n,m

πnm(log πnm − 1) (5.14)

be the entropy of the transportation plan π. We introduce an entropic regularized

CTD

Tc,λ(Φ(·;G),Φ(·; G̃))

= inf
π∈Π(w,w̃)

{∑
n,m

πnmc(Φn, Φ̃m)− λH(π)

}
(5.15)

for some regularization constant λ ≥ 0.

Our proposed GMR reduces Φ(x;G) to Φ(x; G̃) with

G̃ = arg inf
G̃∈GM

Tc,λ(Φ(·;G),Φ(·; G̃)) = arg inf
G̃∈GM

Tc,λ(G, G̃). (5.16)

For simplicity, we also write Tc,λ(Φ(·;G),Φ(·; G̃)) as Tc,λ(G, G̃) as in (5.16).

We next introduce an MM algorithm in the spirit of Section 4.2 for the optimiza-

tion in (5.16). We connect the generalized MM algorithm with the clustering-based

algorithms introduced in Section 5.3.2. In Section 5.3.3, we discuss the choice of

cost functions c(·, ·).
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5.3.1 Numerical Algorithm

Let us define two functions of G̃, with G hidden in the background:

Jc,λ(G̃) = inf
π∈Π(w,·)

{∑
n,m

πnmc(Φn, Φ̃m)− λH(π)

}
, (5.17)

πλ(G̃) = arg inf
π∈Π(w,·)

{∑
nm

πnmc(Φn, Φ̃m)− λH(π)

}
(5.18)

where H(π) is defined in (5.14). The optimization problem in (5.17) and (5.18)

involves only one linear constraint in terms of w. For a given cost function c(·, ·)
and a level λ > 0, the optimal transportation plan πλ(G̃) for this problem has an

analytical solution

πλnm(G̃) =
wn exp(−c(Φn, Φ̃m)/λ)∑
m′ exp(−c(Φn, Φ̃m′)/λ)

.

The derivation of the analytical form is given in Appendix C.1. The optimal trans-

portation plan under the special case λ = 0 discussed in Section 4.2 is the limit of

the optimal transportation plan πλnm(G̃) when λ→ 0. Introduce an index set

An = {m′ : c(Φn, Φ̃m′) = min
m

c(Φn, Φ̃m)}

and let card(An) be the cardinality of set An. It is seen that

lim
λ↓0

πλnm(G̃) =

wn/card(An) if m ∈ An
0 otherwise

.

For the ease of notation, for λ ≥ 0, we denote by

πλnm(G̃) =


wn

exp(−c(Φn, Φ̃m)/λ)∑
m′ exp(−c(Φn, Φ̃m′)/λ)

λ > 0,

wn
1{m ∈ arg minm′ c(Φn, Φ̃m′)}
| arg minm′ c(Φn, Φ̃m′)|

λ = 0.

(5.19)
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The conclusion in the following theorem simplifies the optimization problem in

our propose GMR method.

Theorem 5.1. Let G be the mixing distribution of the original mixture, Tc,λ(·),

Jc,λ(·), and πλ(·) be defined in (5.15), (5.17), and (5.18) respectively. We have

inf{Tc,λ(G, G̃) : G̃ ∈ GM} = inf{Jc,λ(G̃) : G̃ ∈ GM}.

The reduced mixture is hence given by

G̃ = arg inf{Jc,λ(G̃) : G̃ ∈ GM} (5.20)

with mixing weights w̃ with its mth entry

w̃m =
∑
n

πλnm(G̃). (5.21)

Given this theorem, the MM algorithm in Section 4.2 and its convergence con-

clusion can be generalized straight-forwardly with the new transportation plan

πλ(G̃) in (5.19). With a minor level of redundancy, we describe the MM algorithm

again to refresh our memory. The pseudo-code for the MM algorithm is given in

Algorithm 4.

Algorithm 4 MM algorithm for GMR with CTD

Input: Φ1,Φ2, . . . ,ΦN , w1, w2, . . . , wN
Initialization: Φ̃m, m ∈ [M ]
repeat

for m ∈ [M ] do
Assignment step: compute πλnm in (5.19)
Update step:
Let w̃m =

∑
n π

λ
nm

Let Φ̃m = arg minΦ

∑N
n=1 π

λ
nmc(Φn,Φ)

end for
until

∑
n,m π

λ
nmc(Φn, Φ̃m)− λH(πλ) converges

The algorithm starts with some initial G̃(0). Let G̃(t) be the mixing distribution

of the reduced mixture after t MM iterations. Define a majorization function of Jc,λ
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at G̃(t) to be

Kc,λ(G̃|G̃(t)) =

{∑
n,m

πλnm(G̃(t))c(Φn, Φ̃m)

}
− λH(πλ(G̃(t))) (5.22)

where πλnm(G̃(t)) is the transportation plan defined by (5.19) and

w̃(t+1)
m =

∑
n

πλnm(G̃(t)), t = 1, 2, . . . .

It can be seen that Kc,λ is a majorization function for Jc,λ meaning

Kc,λ(G̃|G̃(t)) ≥ Jc,λ(G̃), t = 1, 2, . . . .

The mean and covariance of Φ̃m are separated from mean and covariance of Φ̃m′

whenm 6= m′ in the majorization function (5.22). This allows us to update the sub-

population parameters of Φ̃m one subpopulation at a time and possibly in parallel,

as the solutions to

Φ̃(t+1)
m = arg inf

Φ

{∑
n

πλnm(G̃(t))c(Φn,Φ)

}
. (5.23)

The MM algorithm iterates between the majorization step (5.22) and the minimiza-

tion step (5.23) until some user-selected convergence criterion is met.

Computational Complexity Analysis

The proposed MM algorithm is iterative. We assess its computational cost at each
iteration. The cost function needs to be evaluated for O(NM) times. For most

of the cost functions to be considered, the cost for their evaluation once is O(d3)

where d is the dimension of µ. Therefore, the total cost for evaluating the cost func-

tion is O(NMd3). The cost for computing the transportation plan is O(NM).

The computationally most expensive step is the updating step to obtain M local

barycentres {Φ̃m : m ∈ [M ]}. This computation cost depends on the cost func-

tion we choose in the algorithm. When the cost function is Kullback-Leibler (KL)

divergence, then the barycentre has a closed form and the cost for computing one
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barycentre is O(d2). Therefore, in this case, the total computation cost for finding

the barycentres is O(Md2). Hence, when the cost function is chosen to be the

KL divergence, the total computation cost at each iteration is O(NMd3). Com-

pared to computation cost for the ISE reduction approach which is quartic in d, the

proposed algorithm has a computation cost cubic in d. Therefore, our algorithm

is computationally less expensive than the ISE reduction approach as described in

Section 5.2.2 at each iteration.

5.3.2 Existing Algorithms as Special Cases

Our proposed GMR approach includes many clustering-based approaches in the

literature as special cases. It also connects with many existing optimization-based

approaches. We establish the connection in this section.

Clustering-based Algorithms

Schieferdecker and Huber (2009) argues that the clustering-based algorithms are

computationally much cheaper than the optimization-based algorithm discussed

in Williams and Maybeck (2006) and some greedy algorithms. Despite the com-

putation efficiency, they do not establish the convergence of these algorithms nor

identify their optimality targets when they converge.

We show that existing clustering-based algorithms are special cases of our pro-

posed MM algorithm with specific cost functions in CTD as defined in (5.15). Be-

cause of this, our results provide important support to these approaches that were

missing in the literature in the following aspects.

1. Objective: Because most existing clustering-based algorithms are special

cases of our proposed MM algorithm, all of them are unknowingly minimiz-

ing an entropic regularized CTD.

2. Convergence: For the same reason, most existing clustering-based algo-

rithms convergence when their corresponding entropic regularized CTD sat-

isfy conditions in Theorem 4.2.

3. Consistency: Our proposed MM algorithm uses the same cost function c(·, ·)
in the assignment and update steps. In the assignment step, we use the cost
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function to measure the similarity between components in the original mix-

ture and components in the proposed mixture F (·;G(t)). In the update step,

we search for the barycentre of components in the original mixture assigned

to the same cluster with respect to this same cost function. Our theory shows

the MM algorithm produces a sequence with non-increasing entropic regu-

larized CTD and therefore converges in this case. If different cost functions

are used in these two steps, this guarantee may not be true. This happens,

for example, when one assigns the components to clusters based on some

divergence such as Wasserstein distance but nonetheless updates the cluster

centres by moment matching. Since moment matching leads to barycentre

under KL divergence, the convergence of the algorithm is not implied by our

theory.

We now show the hard clustering-based algorithm of Schieferdecker and Huber

(2009) is a special case of our algorithm with λ = 0 and the cost function

c(Φn, Φ̃m) = DKL(Φn‖Φ̃m)

According to our assignment step (5.19) in Algorithm 4, when λ = 0, the trans-

portation plan becomes

πnm =

wn/|An| if m ∈ An
0 otherwise.

where An = {m′ : DKL(Φn‖Φm′) = minmDKL(Φn‖Φm)}. Then the mixing

weights becomes

w̃m =
N∑
n=1

πnm =
∑

{n:C(n)=m}

wn

and the mth subpopulation is updated via the KL barycentre given in Example 2.4

Φ̃m = arg inf
Φ

N∑
n=1

πnmDKL(Φn‖Φ)

By substituting λn with πnm above, the updated subpopulation parameters based
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on our approach becomes

µ̃m = w̃−1
m

∑
{n:C(n)=m}

wnµn

and

Σ̃m = w̃−1
m

∑
{n:C(n)=m}

wn{Σn + (µn − µ̃m)(µn − µ̃m)>},

which are the same as the moment matching given in the hard clustering algorithm

in Algorithm 2.

Initially, we also think the soft clustering based Algorithm in Yu et al. (2018)

is a speical case of ours by letting

c(Φn, Φ̃m) = − log w̃m − IDKL(Φn‖Φ̃m).

As we show later that this cost function leads to an MM algorithm that has exactly

the same update as the soft clustering based algorithm in Yu et al. (2018). However,

since this cost function depends on the mixing weights of the reduced mixture, the

theoretical convergence of our proposed MM algorithm is not guaranteed.

With this cost function, in the assignment step (5.19) of Algorithm 1, the trans-

portation plan becomes

πnm =
wn exp(−c(Φn, Φ̃m))∑
m′ exp(−c(Φn, Φ̃m′))

=
wnw̃m exp(IEnm)∑
m′ w̃m′ exp(IEnm′)

= wnznm

with znm the same as in (5.12). The mixing weights of the reduced mixture be-

comes

w̃m =

N∑
n=1

πnm =

N∑
n=1

wnznm (5.24)
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and the mth subpopulation is updated via

Φ̃m = arg inf
Φ̃

N∑
n=1

πnmc(wnΦn, w̃mΦ̃)

= arg inf
Φ̃

N∑
n=1

πnm{− log w̃m − I
∫
φ(x;µn,Σn) log φ(x; µ̃, Σ̃) dx}

= arg inf
Φ

N∑
n=1

πnm

∫
log

{
φ(x;µn,Σn)

φ(x; µ̃, Σ̃)

}
φ(x;µn,Σn) dx

= arg inf
Φ̃

N∑
n=1

πnmDKL(Φ(·;µn,Σn)‖Φ(·; µ̃, Σ̃)).

Therefore, the components of the reduced mixture are the barycentres of the orig-

inal Gaussian components assigned to the cluster under the KL divergence. By

substituting λn with πnm in Example 2.4, along with (5.24), the updated subpopu-

lation parameters based on our approach becomes

µ̃m = w̃−1
m

N∑
n=1

wnznmµn (5.25)

and

Σ̃m = w̃−1
m

N∑
n=1

wnznm{Σn + (µn − µ̃m)(µn − µ̃m)>}. (5.26)

It can be seen that (5.24) – (5.26) lead to the cluster centres given in the soft clus-

tering algorithm in Algorithm 3.

Optimization-based Algorithms

There are two connected but slightly different optimization-based approaches for

GMR. One is the proposed approach that minimizes the CTD Tc,λ. The other is to

directly minimize some cost function cost(·, ·) between two mixtures for GMR. We

use cost(·, ·) here to highlight that it is a divergence between two general distribu-

tions. In comparison, the cost function c(·, ·) in CTD is a divergence between two

subpopulation distributions.
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Conceptually, one can choose the cost function cost(·, ·) as the cost function

c(·, ·) in CTD. Namely, one can make

cost(·, ·) = c(·, ·).

In this case, we are interested in finding out the connection between the two targets

cost(Φ(·;G),Φ(·; G̃)) = c(Φ(·;G),Φ(·; G̃)) and Tc,λ(Φ(·;G),Φ(·; G̃)) in (2.16).

We show in this section that when c(·, ·) satisfies “convexity”, then the CTD be-

tween two mixtures is an upper bound for the cost between two mixtures.

Consider the special case where we wish to reduce the Gaussian mixture to a

single Gaussian and the cost function in CTD is chosen to be ISE or the KL diver-

gence between two Gaussians. If so, we have

arg min
Φ̃

N∑
n=1

wnc(Φn, Φ̃) = arg min
Φ̃

c

(
N∑
n=1

wnΦn, Φ̃

)
. (5.27)

The Left Hand Side (LHS) of (5.27) is the CTD between the original mixture and

the reduced mixture and the Right Hand Side (RHS) of (5.27) is the divergence

between two mixtures. The equality shows that when we reduce a mixture to a

single Gaussian with some cost functions, these two approaches are equivalent.

We give a proof in Appendix C.3. More generally, when the cost function c(·, ·)
has a “convexity” property to be defined later, we have

Tc,0(Φ(·;G),Φ(·; G̃)) ≥ c(Φ(·;G),Φ(·; G̃)).

That is to say our proposed GMR approach when λ = 0 in fact minimizes an upper

bound of the direct cost function.

Theorem 5.2. Let c(·, ·) be a non-negative bi-variate function on space of Gaus-

sian mixture distributions with “convexity” property: for any α ∈ (0, 1), and

Gaussian distributions F1, F2, Φ1, and Φ2, we have

c(αF1 + (1− α)F2, αΦ1 + (1− α)Φ2) ≤ αc(F1,Φ1) + (1− α)c(F2,Φ2).
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Then for all G̃, we have

c(Φ(·;G),Φ(·; G̃)) ≤ Tc,0(Φ(·;G),Φ(·; G̃)).

The proof of this theorem is given in Appendix C.3.

Remark 5.2. The conclusion in Theorem 5.2 under some special cost functions has

been shown in the literature from different angles. Delon and Desolneux (2020,

Section 4.2) obtains this conclusion for cost function

c(Φn, Φ̃m) = W 2
2 (Φn, Φ̃m)

where W2 the 2-Wasserstein distance between two Gaussians with the ground dis-

tance being Euclidean distance in Rd. Nguyen (2013, Lemma 1) obtains this con-

clusion when the cost function is the general class f -divergence between two den-

sities.

Many divergence functions have the convexity property. Other than the whole

family of f -divergence (Nguyen, 2013, Lemma 1) and the squared 2-Wasserstein

distance (Villani, 2003, Chapter 7), we show that ISE is also convex as follows.

RecallF is the distribution family of subpopulations in our context of finite mixture

models.

Example 5.1 (Integrated Squared Error is Convex). Let F1, F2, Φ1, Φ2 be some

subpopulation distributions with density functions f1, f2, φ1, and φ2 ∈ F and

α ∈ [0, 1]. Note that Φ1 and Φ2 are not necessarily Gaussian distributions. Let

DISE be defined in (2.6), we have

DISE(αF1+(1−α)F2, αΦ1+(1−α)Φ2) ≤ αDISE(F1,Φ1)+(1−α)DISE(F2,Φ2).

The proof is straightforward and is the same as showing Euclidean norm on a
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vector space is convex. By the definition of DISE, we have

DISE(αF1 + (1− α)F2, αΦ1 + (1− α)Φ2)

=

∫
{α{F1(x)− Φ1(x)}+ (1− α){f2(x)− Φ2(x)}}2dx

=α2DISE(F1,Φ1) + (1− α)2DISE(F2,Φ2) + 2α(1− α)〈f1 − φ1, f2 − φ2〉

Therefore, we have

αDISE(F1,Φ1) + (1− α)DISE(F2,Φ2)

−DISE(αF1 + (1− α)F2, αΦ1 + (1− α)Φ2)

=α(1− α){DISE(F1,Φ1) +DISE(F2,Φ2)− 2〈f1 − φ1, f2 − φ2〉}

=α(1− α)DISE(F1 − Φ1, F2 − Φ2) ≥ 0.

The last inequality holds because the ISE is non-negative and α ∈ [0, 1]. This

completes the proof.

5.3.3 The Choice of Cost Functions in the Proposed GMR

The proposed MM algorithm and its implied GMR cover most known clustering-

based GMR approaches as special cases. At the same time, our proposed approach

goes far beyond. The proposed Algorithm 4 determines what fractions of a subpop-

ulation in the original mixture will be assigned to a cluster in the reduced mixture

based on a cost function. It also uses the same cost function to update the clus-

ter centres. Hence, the choice of the cost function is very important in terms of

computational cost and the property of the reduced mixture.

In this section, we investigate two choices of the cost function: the Cauchy-

Schwarz (CS) divergence and the Integrate Squared Error (ISE). We find that both

divergences have closed-form expressions when applied to Gaussian distributions.

Their corresponding Gaussian barycentres do not have closed expressions. There-

fore, we also discuss the corresponding numerical solutions for barycentres.
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Cauchy-Schwarz Divergence

By straightforward calculation, we find the CS divergence between two Gaussians

is given by

DCS(Φ(·;µ1,Σ1),Φ(·;µ2,Σ2))

=− log

∫
φ(x;µ1,Σ1)φ(x;µ2,Σ2)dx√∫

φ2(x;µ1,Σ1)dx
∫
φ2(x;µ2,Σ2)dx

=− log φ(µ1;µ2,Σ1 + Σ2)− 1

4
{log det(Σ1) + log det(Σ2)} − d

2
log(2π).

Let Φn = Φ(·;µn,Σn) be the components of the original mixture. When the

CS divergence is the cost function in the proposed MM algorithm, the update step

requires to find the barycentre that is defined as a Gaussian distribution Φ that

minimizes
N∑
n=1

λnDCS(Φn,Φ)

for some λ = (λ1, λ2, . . . , λN )> ∈ ∆N−1. Denote the solution by Φ̃. It is easy to

find that its mean vector µ̃ and covariance matrix Σ̃ satisfy

µ̃ =

{∑
n

λn(Σn + Σ̃)−1

}−1∑
n

λn(Σn + Σ̃)−1µn. (5.28)

Hence, the task of finding Φ̃ is reduced to find its covariance Σ̃. With some straight-

forward algebra, we find Σ̃ solves the matrix equation

Σ̃−1 = 2
∑
n

λn(Σn + Σ̃)−1{Id − (µn − µ̃)(µn − µ̃)>(Σn + Σ̃)−1} (5.29)

where Id is the identity matrix of size d× d and d is the dimension of the Gaussian

distribution.

The technical details behind (5.28) and (5.29) are as follows. Denote by

L(µ,Σ) =
∑
n

λnDCS(Φn‖Φ)
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which has the following expression:

L(µ,Σ) =
1

2

∑
n

λn(µn − µ)>(Σn + Σ)−1(µn − µ)

+
1

2

∑
n

λn log

{
det(Σn + Σ)

det1/2(Σ)

}
+ C

for some constant C. Since L(µ,Σ) is a smooth function, the solution to the opti-

mization problem is a stationary point. It is seen that

∂L

∂µ
= −

∑
n

λn(Σn + Σ)−1(µn − µ)

and

2
∂L

∂Σ
= −1

2
Σ−1 +

∑
n

λn(Σn + Σ)−1
{
Id − (µn − µ)(µn − µ)>(Σn + Σ)−1

}
.

Setting both partial derivatives to 0, we get

µ̃ =

{∑
n

λn(Σn + Σ̃)−1

}−1∑
n

λn(Σn + Σ̃)−1µn

and

Σ̃−1 = 2
∑
n

λn(Σn + Σ̃)−1{Id − (µn − µ̃)(µn − µ̃)>(Σn + Σ̃)−1}

as claimed earlier.

To numerically obtain the mean and covariance of the CS barycentre, we itera-

tively update µ̃ and Σ̃ via (5.28) and (5.29) from some initial value. The iterations

stop when the change in the value of
∑N

n=1 λnDCS(Φn,Φ) is below a threshold.

The KL Gaussian barycentre has a closed form solution and we use this solution as

initial value of the covariance matrix Σ̃ in our numerical implementation.

We show in Section 5.3.2 that the convexity property of a cost function ac-

cording to Definition 5.2 leads to some good properties. Unfortunately, the CS

divergence is not convex as shown below.
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Example 5.2 (Cauchy-Schwarz Divergence is Non-Convex). Let α = 0.5 and µ >

0 and σ > 0 be two constants. Let F1(x) = Φ(x;−1, σ2), F2(x) = Φ(x;−µ, 1),

Φ1(x) = Φ(x; 1, 1), and Φ2(x) = Φ(x;µ, σ2) be four Gaussian distributions. If

CS divergence has convexity property, we should have

DCS(αF1 +(1−α)F2, αΦ1 +(1−α)Φ2) > αDCS(F1,Φ1)+(1−α)DCS(F2,Φ2).

Using the closed-form of the CS divergence between two Gaussian mixtures, we

are able to obtains the closed-form for both LHS and RHS of this inequality. The

difference of LHS-RHS as a function of µ and σ is shown in Figure 5.2. It shows

Figure 5.2: The function of the difference CS divergence between two Gaus-
sians is non-convex.

that this function has a saddle surface and is not always positive. Therefore, the

CS divergence is not convex.
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Integrated Squared Error

The ISE between two Gaussians is another of our choice of the cost function in

subsequent experiments. It has a closed form expression:

DISE(Φ(·;µ1,Σ1),Φ(·;µ2,Σ2)) =det−1/2(2πΣ1) + det−1/2(2πΣ2)

− 2φ(µ1;µ2,Σ1 + Σ2).

The objective function
∑N

n=1 λnDISE(Φn,Φ) for finding out the local barycentres

when the ISE is the cost function does not have convexity property. Hence, the

local barycentres may be some local minima when numerical algorithms are used

for computation. In our experiment, we search for barycentre using the numerical

algorithms such as BFGS or the Nelder-Mead algorithm (Nelder and Mead, 1965).

We use the KL barycentre and the Wasserstein barycentre as initial values. To

ensure the positive definiteness of the covariance matrix, we use the numerical trick

to optimize over the Cholesky decomposition of the covariance matrix instead.

5.4 Experiments
In this section, we use numerical experiments to compare the performance of var-

ious reduction approaches. Recall Φ(·;G) is the original mixture with order N

and we want to approximate it by an order M mixture Φ(·; G̃). We include the

following reduction approaches:

1) directly minimize DISE(Φ(·;G),Φ(x; G̃)) and we refer to this approach as

MISE;

2) the proposed CTD-based approach with cost functions: ISE, CS, KL, and

squared 2-Wasserstein. We denote these methods as CTD-ISE, CTD-CS,

CTD-KL and CTD-W2.

We set the level of entropy regularization at λ = 0 in all experiments. Unless

otherwise specified, all the reduction algorithms are initialized by 10 values ob-

tained by fitting a Gaussian mixture of M components by the penalized Maximum

Likelihood Estimate (PMLE) using random samples of size 100 generated from the
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original mixture. All experiments are implemented in Python 3.7.4 on Cedar

cluster at Compute Canada with Intel E5 CPU with 2.1Ghz.

5.4.1 Simulated Experiment

Our first experiment considers reducing a bi-variate Gaussian mixture of order

N = 25 to a mixture of order M = 5, 10, and 15. Rather than select an order

N = 25 bi-variate Gaussian mixture arbitrarily, we create R = 100 of them with

a certain structure and a large dose of uncertainty. We describe the procedure for

generating the parameter values of the original mixture in each repetition. We let all

the mixing weights wj = 0.04, j ∈ [25]. Our first task is to generatedN = 25 sub-

population mean vectors. We make these subpopulations roughly clustered around

randomly selected 5 centres. For this reason, we generate a multinomial random

vector n1, n2, . . . , n5 with event probabilities (0.2, . . . , 0.2) so that
∑5

i=1 ni = 25.

Each centre µ0
i , i = 1, 2, . . . , 5 is selected uniformly from [−10, 10] × [−10, 10].

We then generate µ0
ij , j = 1, . . . , ni uniformly in the disk with radius 2.5. The

subpopulation mean vectors are then chosen to be

µ0
i + µ0

ij , j = 1, . . . , ni; i = 1, 2, . . . , 5.

Clearly, these subpopulation means should be clustered around µ0
i , i = 1, 2, . . . , 5.

The next task is to generate N = 25 subpopulation covariance matrices. For

n ∈ [N ], we generate σ11n, σ22n from Gamma distribution with shape parameter

8 and scale parameter 4, and generate a θn uniform in [0.2, 0.8]. We then let

Σn =

(
σ11n

√
σ11nσ22n cos(θnπ)

√
σ11nσ22n cos(θnπ) σ22n

)

be the covariance matrix of the nth component of the original mixture. Note the

π in the above expression is the mathematical constant whose value approximately

equals to 3.14159, not a transportation plan. Figure 5.3 (a) shows an example of

one generated subpopulation means and their cluster centres. Figure 5.3 (b) shows

the heat-map of the corresponding original mixture of order N = 25.

The above design has taken several factors into consideration. If the mean
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vectors of the mixture are completely random, we suspect none of GMR approaches

can find a substantially reduced mixture that approximates the original mixture

well. This will render the comparison meaningless. At the same time, we must

leave enough uncertainty in the original mixture. If all GMR approaches find a very

precise approximation, the comparison will also lose its value. Our design also

contains a few tuning constants. We can choose different values to use the one so

that the outcome of the experiment is informative.

The reduction results for the original mixture in Figure 5.3 (a) are given in

Figure 5.4 under different reduction approaches and values of M . Knowing how

the original mixture is created, the reduction should be most satisfactory withM =

5. Without the knowledge of creation, we may attempt to reduce its order to M =

10 and M = 15.

We apply all GMR approaches to these R = 100 order N = 25 bivariate

Gaussian mixtures. We compute the ISE values between the reduced and original

mixtures. We visualize the average of these 100 ISE values and 95% error bar in

Figure 5.3 (c). The average computational time and the 95% error bar of each

reduction method is given in Figure 5.3 (d). The three attached bars are results for

M = 5, 10, 15 respectively.

MISE reduction approach has the smallest ISE by definition. This method

therefore serves as a baseline for comparison. The low ISE of MISE is at the cost

of high computational time. The ISE decreases and the computation time increases

when M increases from 5 to 10 and then to 15 for all reduction approaches. The

performances of the proposed CTD-based GMR approaches vary with the choice of

the cost function. Their relative performance is consistent regardless of the value

of M . In terms of ISE, the preference for the cost function from high to low is

ISE, CS, KL, and W2. In terms of the computational time, the preference for the

cost function from high to low is KL, CS, W2, and ISE. If we use ISE as the cost

function in the proposed approach, the result is nearly as good as the direct ISE

reduction method (MISE) when M = 5, but at 1/10 of the computation time.

The CTD-KL approach only takes about 1/1000 computation time of the MISE.

Based on Figure 5.4, CTD-KL and CTD-W2 are still quite good. All CTD-based

approaches for reduction are satisfactory.
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(a) Cluster centres (b) Density heat-map

(c) Integrate Squared Error (d) Computation time

Figure 5.3: (a) The location of 25 mean vectors in one randomly generated
mixture, (b) The density heat-map of the randomly generated mixture,
(c) the average ISE between the reduced and original mixtures and the
95% error bar, and (d) the total computational time. Three attached bars
are results for M = 5, 10, 15 respectively.
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Figure 5.4: Heat-maps of density functions of reduced mixtures from one
generated original mixture whose heat-map is in Figure 5.3.

153



5.4.2 Approximate Inference for Belief Propagation

In this section, we apply the proposed GMR to the graphical model represented

by Figure 5.5 (a) following Yu et al. (2018). The goal of this experiment is to

precisely approximate the marginal distribution of the random variable associated

with each node. In this model (5.1), the local potential associated with the (i, j)th

edge is given by ψij(x, y) = φ(x; y, φ−1
ij ), where φij values are marked alongside

the graph edges in the figure. The local evidence potential associated with the ith

node is a two-component Gaussian mixture

ψi(x) = wiφ(x;µi1, 1) + (1− wi)φ(x;µi2, 1.5), i = 1, 2, 3, 4.

for some wi, µi1, and µi2 values. In this experiment, we create R = 100 graphic

model specifications with these constant values in each specification generated as

follows: wi
i.i.d.∼ U(0, 1), µi1

i.i.d.∼ U(−4, 0), and µi2
i.i.d.∼ U(0, 4), i = 1, 2, 3, 4.

The marginal distributions of Xi are completely determined by these poten-

tials. However, it is difficult to compute their density functions. The iterations in

the BP introduced in Section 5.1.1 involves message mixtures whose orders grow

exponentially. The exact inference hence becomes intractable after merely 4 iter-

ations. One way to overcome this difficulty is to reduce the order of the message

mixture after each iteration before it is used for updating the belief in the next it-

eration. This is so called approximate inference. The proposed GMR can be used

here to keep the order at a manageable size. In this experiment, we reduce the order

of the message mixture to M = 4 whenever its order exceeds 4 after an iteration

following Yu et al. (2018).

We evaluate the performance of the GMR approaches by ISE between the exact

belief and the approximate beliefs. The comparison is computationally feasible

only for the first 3 iterations due to limited computer memory. Since no reduction is

applied in the first iteration, we only obtain the result for the 2nd and 3rd iterations.

The results are averaged over 100 trials with the corresponding 95% error bars.

Figure 5.5 (c) gives the distance of the belief based on the approximate in-

ference to the true belief mixture based on the exact inference at four nodes. As

the iteration increases, the ISE gets larger. It can be also seen from Figure 5.5 (c)

that the approximate inference based on ISE is most accurate. For all minimum
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Figure 5.5: (a) The structure of the graphical model, (b) computation time
for belief update versus number of iteration, and (c) the ISE between the
exact and approximate beliefs.

CTD-based reduction approaches, when the cost function is the ISE, the approxi-

mate inference has the best results. In terms of the computational time, the MISE

approach that is the closest to the exact inference does not save the computational

time. In the 3rd iteration, the order of the message mixture is very large in the exact

inference, the CTD-based approaches save the computational time and the beliefs

obtained based on the approximate inference are very close to those based on the

exact inference.
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5.4.3 Hand Gesture Recognition

We apply the GMR for static hand gesture recognition in this section. For static

hand gesture recognition, a set of labelled images of hand gestures are given as the

training set. A classifier is trained to classify unseen images of the same set of hand

gestures.

Dataset & Pre-processing We use the Jochen Triesch static hand posture database

in Triesch and Von Der Malsburg (1996) that is publicly available online. This

dataset contains 128 × 128 grey-scale images of 10 hand postures forming the al-

phabetic letters: A, B, C, D, G, H, I, L, V, and Y by 24 persons with 3 different

backgrounds. To remove additional noise caused by the background, in our exper-

iment, we use the same set of images as described in Kampa et al. (2011) whose

backgrounds are removed. To reduce the classification error caused by the mis-

alignment of the hands, Kampa et al. (2011) centres these hands by cropping. They

manually crop each image into the smallest rectangle that only contains the hand

and whose centre is the centre of the hand. After this step, all hands are centred in

the image but with different sizes due to the difference in the hand sizes in the orig-

inal images. To make the classifiers less dependent on the size of the hand, they

resize the images into a square whose most top-left pixel and most bottom-right

pixel have coordinates (0, 0) and (1, 1) respectively. After these pre-processing

steps, there are 168 images in total with around 16 − 20 images for each hand

posture.

Gaussian Mixture & Hand Gesture Recognition Kampa et al. (2011) view the

intensity of each pixel as a function of the location. They approximate this func-

tion by the density function of a Gaussian mixture up to some normalizing constant.

They therefore obtain a 10-component Gaussian mixture from each image with the

non-background pixels. Each image is then represented by a 2-dimensional Gaus-

sian mixture. An example of the original image and the heat-map of the density

function of the corresponding fitted mixture model is given in Figure 5.6.

Kampa et al. (2011) classify new image based on CS divergence between a test

image and all training images. The test image is classified by the nearest neighbour

method. A test image of hand gesture is classified as gesture “A” if there is a train-

ing image with hand gesture “A” that is closest to this test image. This approach
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(a) Pre-processed image (b) Heat-map of GMM

Figure 5.6: An example of (a) a pre-processed image of hand posture “C”;
(b) the heat-map of the order 10 Gaussian mixture of a pre-processed
image.

achieves a classification accuracy of 95.2%.

We use a slightly different strategy from Kampa et al. (2011). We first combine

the training images of the same hand gesture into a single training image. Since

each image is a GMM, the combined image of the same hand gesture is also a GMM

except for a much higher order. We then use proposed GMR methods to reduce its

order to 10. We call the resultant GMM as class prototypes of the hand gestures.

The nearest neighbour classifier is then applied with respect to prototypes. When

the number of training examples is very large, our approach is worthwhile for its

efficiency in computation, perhaps at some loss in classification accuracy. The

purpose of this example is to demonstrate the feasibility, not to have a superior

classifier immediately. Figure 5.7 gives the prototypes of the hand gestures based

on different reduction approaches.

Results The quality of the class prototypes must have an effect on the classification

accuracy. We compare the classification accuracy and computation time of various

reduction methods. Since the training set is relatively small, we perform 5-fold

cross validation that is repeated 100 times to estimate the classification accuracy.

We consider two schemes during the test:

1. We use the same divergence for classification and for reduction. That is,

we minimize the ISE to obtain the class prototype, and use ISE to measure

157



Method A B C D G H I L V Y

MISE

CTD-KL

CTD-W2

CTD-CS

CTD-ISE

Figure 5.7: The class prototypes of hand gestures obtained by different re-
duction approaches.

the similarity between the test images and the class prototypes. Similarly

for other CTD-based divergences. Figure 5.8 (a) depicts the classification

accuracy applying this strategy based on several divergences.

2. We also obtain results by using different divergences for classification and

for reduction. For example, we can minimize the ISE to obtain the class pro-

totype, but use CS to measure the similarity between the test images and the

class prototypes. Figure 5.8 (b) depicts the classification accuracy applying

this strategy based on different combinations of divergences.

When the same divergence is used in the reduction and test, the MISE approach

attains the highest classification accuracy. However, it takes most computation

time. Using CTD-based divergences leads to slightly lower classification accuracy.

However, CTD-CS and CTD-ISE beat CTD-KL while CTD-KL is most efficient

in computation time.

When different divergences are used during the reduction and test, it is best

to use ISE for the test. All reduction approaches except for CTD-W2 lead to high

classification accuracy. Combining the considerations in computation time and

classification accuracy, we recommend to use the CTD-KL to perform reduction

and ISE for test.
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(a) Classification Accuracy (b) Computation Time

(c) Classification Accuracy

Figure 5.8: The (a) classification accuracy when the same divergence is used
in the reduction and test, (b) computational time based on different
reduction approaches, (c) classification accuracy when different diver-
gences are used in the reduction and test on the hand gesture dataset.
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5.5 Conclusion
In this chapter, we propose a new optimization-based GMR approach through com-

posite transportation divergence (CTD). We establish the convergence of the ac-

companying iterative MM algorithm. Our approach includes the clustering-based

and optimization-based approaches for GMR in the literature as our special cases.

Therefore, our results provide optimality targets to many existing clustering-based

approaches, support their usefulness, as well as establish their algorithm conver-

gence.

The proposed GMR methods with various CTD experimented with so far do not

achieve as high an efficiency as the MISE-based optimization approach. However,

the proposed GMR methods have the computational simplicity of the clustering-

based algorithms. In addition, our GMR approach allows flexible cost function

choices in its CTD. This flexibility opens up a big room for potential improvement

of the proposed GMR approach. We leave it a future project to search for a near

perfect cost function.
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Chapter 6

Beyond Gaussian Mixture

The finite Gaussian mixtures are by far the most studied finite mixture model (Chen

and Li, 2009; Chen et al., 2012; Lo et al., 2001; Scrucca et al., 2016; Xu and Jor-

dan, 1996). Other mixtures such as the mixture of Binomial distributions, Poisson

distributions, and Gamma distributions are also broadly investigated in the liter-

ature and used in applications. For the split-and-conquer learning of mixtures in

Chapter 4 and mixture reduction in Chapter 5, we only focus on the finite Gaus-

sian mixtures though the methods can be generalized for mixture of distributions

from other distribution families. We extend our proposed method to mixtures of

distributions from exponential families in this chapter.

For both split-and-conquer learning of mixtures and the mixture reduction, the

fundamental task is the approximation of a high order mixture by one with a lower

order. The approximation problem is formulated as an optimization problem where

the lower order mixture is found by minimizing the entropic regularized Composite

Transportation Divergence (CTD) between two mixtures and an Majorization Max-

imization (MM) algorithm is developed accordingly. Chapter 5 shows that there are

various choices for the cost function such as the Kullback-Leibler (KL) divergence,

Integrated Squared Error (ISE), and Cauchy-Schwarz (CS) divergence. To use these

divergences as the cost function in the proposed MM algorithm, the key is to have

an easy-to-use form of the divergence for the assignment step and the correspond-

ing barycentres for the update step. We therefore study the form of KL divergence,

ISE, and CS divergence for mixtures of distributions in exponential families and
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their corresponding barycentres.

Recall that the density function of a distribution from exponential family can

be written as

f(x; θ) = exp(θ>T (x)−A(θ)) (6.1)

with respect to some reference measure ν(·). We call θ = (θ1, θ2, . . . , θm)> the

natural parameter and T (x) = (T1(x), T2(x), . . . , Tm(x))> the natural sufficient

statistics. The natural parameters and natural sufficient statistics of some widely

used distributions in the exponential family are given in Table 1.1. An exponential

family is regular if the parameter space Θ is an open set. The exponential fam-

ily is minimal if the functions in T (x) are linearly independent. Without loss of

generality, we assume the exponential families in our discussion are minimal.

Based on the parameterization of the exponential family, it is easy to see that

A(θ) = log

∫
exp{θ>T (x)} ν(dx). (6.2)

Moreover, as shown in Wainwright and Jordan (2008), the log partition function

A(·) is a convex function of θ. When exponential family is minimal, then A(·) is

strictly convex. We cite some properties of the exponential family in Wainwright

and Jordan (2008) that is useful in our discussion.

Lemma 6.1 (Properties of the Exponential Family). Let the log partition function

A(θ) be defined above and p(x) be a density function with respect to ν that is not

necessarily in the exponential family. Let

M = {µ ∈ Rd : ∃ p(x) s.t. EX∼p{T (X)} = µ},

then

1. ∇A(θ) = EX∼f(x;θ){T (X)} := Eθ{T (X)} is a one-to-one mapping be-

tween Θ and ν if and only if the exponential family is minimal.

2. In a minimal exponential family, for each µ that is an interior point ofM,

there exists some θ ∈ Θ so that Eθ{T (X)} = µ.

With these properties of exponential family, we discuss the assignment step and
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the update step in the MM algorithm for mixture reduction whenF is an exponential

family.

Assignment Step

In the assignment step of the proposed MM algorithm in Algorithm 4, the optimal

transportation plan at each iteration is a function of the cost function, and the plan

can be expressed as a matrix made of the pairwise distance between one subpopu-

lation of the original mixture and another subpopulation of the candidate mixture.

Therefore, to have an easy-to-use transportation plan, it is critical to get the closed-

form cost function under the mixture of distributions for a given exponential family.

In this section, we show the pairwise KL divergence, ISE, and CS divergence have

closed-forms under any exponential families.

LetF (·; θ1) andF (·; θ2) be two distributions from the same exponential family.

Then the KL divergence between these two distributions is

DKL(F (·; θ1)‖F (·; θ2)) =

∫
f(x; θ1) log

f(x; θ1)

f(x; θ2)
ν(dx)

=

∫
f(x; θ1)

{
(θ1 − θ2)>T (x)− (A(θ1)−A(θ2))

}
ν(dx)

=(θ1 − θ2)>∇A(θ1)− (A(θ1)−A(θ2))

(6.3)

where

∇A(θ) = Eθ{T (X)} =

∫
T (x)f(x; θ) ν(dx).

The form of ∇A for widely used exponential family is given in Table 6.1. There-

fore, the pairwise KL divergence between subpopulations has a closed-form.

To find the CS divergence and ISE between two distributions from the same

exponential family, we make use of the following Lemma.

Lemma 6.2. Let f(x; θ1) and f(x; θ2) be two distributions from the same expo-

nential family, we have∫
f(x; θ1)f(x; θ2) ν(dx) = exp{A(θ1 + θ2)−A(θ1)−A(θ2)}.

Applying this result, the CS divergence between F (·; θ1) and F (·; θ2) is given
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by

DCS(F (·; θ1), F (·; θ2))

=− log

∫
f(x; θ1)f(x; θ2) ν(dx)√∫

f2(x; θ1) ν(dx)
√∫

f2(x; θ2) ν(dx)

={A(θ1) +A(θ2)}/2−A(θ1 + θ2)

(6.4)

and the ISE between F (·; θ1) and F (·; θ2) is given by

DISE(F (·; θ1), F (·; θ2)) =

∫
(f(x; θ1)− f(x; θ2))2 ν(dx)

=

{
2∑
i=1

exp{A(2θi)− 2A(θi)}

}
− 2 exp{A(θ1 + θ2)−A(θ1)−A(θ2)}.

(6.5)

The form of A(θ) for commonly used exponential families is given in Table 6.1. It

can be seen that all three divergences between these types of subpopulations have

closed-forms. Therefore, the optimal transportation plan (5.19) in the assignment

step also has a closed-form.

Update Step

In the update step of the MM algorithm, we need to work on the barycentre of

distributions with respect to these divergences. We discuss the barycentre of dis-

tributions from the same exponential family under different divergences in this

section.

Theorem 6.1 (Barycentres of Distributions from an Exponential Family). Denote

{f(·; θn) ∈ F : n ∈ [N ]} as a set of density functions in the exponential family and

{F (·; θn) : n ∈ [N ]} as their corresponding CDFs. The barycentre of {F (·; θn) :

n ∈ [N ]} with weights λ = (λ1, λ2, . . . , λN )> ∈ ∆N−1 under divergence D(·, ·)
is F (·; θ) such that

θ̄ = arg min
θ∈Θ

N∑
n=1

λnD(F (·; θn), F (·; θ)).
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Table 6.1: Parameter specification and statistics of widely used density func-
tions in full exponential family. In all cases, the base measure ν is
Lebesgue measure that is modulated by a factor h(·). The ψ(·) is the
digamma function.

F T (x) A(θ)

Univariate distribution
Exponential x − log(−θ)
Weibull (known k) xk − log(−θ)
Laplace (known µ) |x− µ| log(−2/θ)
Rayleigh x2 − log(−2θ)
Log-normal (log x, log2 x)> −θ2

1/θ2 − 1/
√

2θ2

Gamma (log x, x)> log Γ(θ1 + 1)− (θ1 + 1) log(−θ2)
Inverse Gamma (log x, 1/x)> log Γ(−θ1 − 1)) + (θ1 + 1) log(−θ2)

Multivariate distribution

Gaussian Gamma (log τ, τ, τx, τx2)> log Γ(θ1 + 1
2)− 1

2 log(−2θ4)− (θ1 + 1
2) log(−θ2 +

θ23
4θ4

)

Dirichlet logx {1>K log Γ(θ + 1)− log{1>KΓ(θ + 1)}

F ∇A(θ)

Univariate distribution
Exponential −1/θ

Weibull (known k) k(−1/θ)
k−1
k

Laplace (known µ) −1/θ
Rayleigh −1

θ

Log-normal (− θ1
2θ2
,
θ21
4θ22
− 1

2θ2
)>

Gamma (ψ(θ1 + 1)− log(−θ2),− θ1+1
θ2

)>

Inverse Gamma (log(−θ2)− ψ(−(θ1 + 1)), θ1+1
θ2

)>

Multivariate distribution

Gaussian Gamma (ψ(θ1 + 1
2)− log(

θ23
4θ4
− θ2), 4θ1θ4+2θ4

θ23−4θ2θ4
,− θ3(2θ1+1)

θ23−4θ2θ4
,

θ23(2θ1+1)

2θ4(θ23−4θ2θ4)
− 1

2θ4
)>

Dirichlet ψ(θ + 1)− ψ(1>Kθ +K)

We have the following results:

(a) when D(F (·; θn), F (·; θ)) = DKL(F (·; θn)‖F (·; θ)), then θ̄ is the solution to

N∑
n=1

λn∇A(θn) = ∇A(θ).
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(b) when D(F (·; θn), F (·; θ)) = DCS(F (·; θn), F (·; θ)), then θ̄ is a solution to

∇A(θ) = 2
n∑
n=1

λn∇A(θn + θ).

(c) when D(F (·; θn), F (·; θ)) = DISE(F (·; θn), F (·; θ)), then θ is a minimizer of

exp{A(2θ)− 2A(θ)} − 2
∑
n

λn exp {A(θn + θ)−A(θn)−A(θ)} .

With these simple characterizations of the barycentre under these divergences,

we can easily update the cluster centres in the corresponding MM algorithms. Their

MM algorithms are therefore easy to carry out. We now give more details of the

derivation of the barycentres in Theorem 6.1.

KL Barycentre of Distributions in an Exponential Distribution Family By (6.3),

the KL barycentre of {F (·; θn) : n ∈ [N ]} is F (·; θ) such that θ minimizes

L(θ) = A(θ)− θ>
{

N∑
n=1

λn∇A(θn)

}
+ C

where C is a constant that does not depend on θ. By the property of exponential

family, A(θ) is convex in θ. Hence, L(θ) is also convex in θ. As a result, θ is the

solution of∇L(θ) = 0, which is simplified to

N∑
n=1

λn∇A(θn) = ∇A(θ). (6.6)

This result shows that the KL barycentre can be obtained easily. Since ∇A(θ) =

Eθ{T (X)}, equation (6.6) lines up the expectation of T (X) of the barycentre with

the convex combination of those of original distributions. The second property of

Lemma 6.1 ensures the existence of the solution.

CS Barycentre of Distributions in an Exponential Distribution Family By (6.4),
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the CS barycentre of {Fn : n ∈ [N ]} is F (·; θ) such that θ minimizes

1

2
A(θ)−

N∑
n=1

λnA(θn + θ)

up to some additive constant. To find the CS barycentre, we look for the stationary

point of the objective function, which is the solution to

1

2
∇A(θ) =

n∑
n=1

λn∇A(θn + θ).

We therefore have θ be the solution to

∇A(θ) = 2
n∑
n=1

λn∇A(θn + θ).

ISE Barycentre of Distributions from Exponential Family By (6.5), the

barycentre F (·; θ) under ISE has its θ minimizes

exp{A(2θ)− 2A(θ)} − 2
∑
n

λn exp {A(θn + θ)−A(θn)−A(θ)} .

This function is non-convex in general and numerical methods can be used to find

a local minimum.

We have presented all ingredients needed to carry out our proposed MM al-

gorithm, which makes it possible to perform reduction and distributed learning

under finite mixtures of distributions from an exponential distribution family. We

limit our investigation in this Chapter to theoretical discussion without going into

numerical experiments. Clearly, empirical comparison of various approaches for

reduction and distributed learning under finite mixtures of distributions from an

exponential family may lead to a lot of repetition of contents in previous chap-

ters. Considering the effort and the length of the thesis, we leave the empirical

comparison as future work.
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Chapter 7

Conclusions

The major contributions of this thesis are to develop novel methods for (a) the

distributed learning of finite Gaussian mixtures, and (b) Gaussian Mixture Re-

duction (GMR) for approximate inference. The Composite Transportation Diver-

gence (CTD) between two mixtures, which is a byproduct of the Optimal Trans-

port (OT) theory, is used as an effective tool for both developments.

For split-and-conquer learning of finite Gaussian mixture models with the dis-

tributed dataset, we propose a novel aggregation method by reduction. We show

that the proposed estimator is both statistically and computationally efficient. It

also outperforms existing approaches for split-and-conquer learning of finite Gaus-

sian mixtures. The proposed aggregation approach is also empirically shown to

be robust against the non-random partition of the dataset. We also investigate its

robustness when the order of the mixture on the local machine is over-specified.

Empirical experiments show that the information of the mixture retains in local

estimators, but more effective reduction procedures are yet to be discovered.

We also propose a general framework for GMR by minimizing the CTD between

two mixtures. We show the proposed framework connects the existing clustering-

based and optimization-based algorithms for GMR. Existing clustering-based algo-

rithms are special cases of our proposed framework with specific cost functions in

the CTD. We also show that the proposed method optimizes an upper bound of the

objective function in the existing optimization-based algorithms for GMR. With so

many potential cost functions to choose from, we see the potential to improve the
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performance of the existing clustering-based algorithms for GMR. Although our

discussion focuses on finite Gaussian mixtures, we show that the proposed frame-

work can be easily adapted to mixtures of distributions from other distribution

families.

The storage of datasets in a distributed fashion brings a lot of challenges to

effective statistical inference. For example, there might be bandwidth constraints

for the amount of information that can be sent across machines (Parras and Zazo,

2020), data heterogeneity (Jeong et al., 2018), and the well-known Byzantine fail-

ures problem (Chen et al., 2017; Tu et al., 2021) where erroneous information is

communicated due to hardware breakdowns, data crashes, or communication fail-

ures. Many of these new challenges have not been studied in the context of mix-

tures yet, which are left as the future work of this thesis. In our proposed method,

we assume of the order of the mixture is known, which may not always be true in

applications. There are various potential approaches to tackle this problem. For

example, over-specified mixtures can be fitted on local machines as in our prelim-

inary study. The existing order selection approach can also be first applied to local

machines. If the aggregation approach with known order assumption is used in

these scenarios, do these estimators perform? Which estimator has better perfor-

mance? The above two candidate approaches when the order is not known still

assume the order is known on the central machine. Under the split-and-conquer

learning setting where only the summary statistics are allowed to transmit to the

central machine, how can one decide the order for aggregation on the central ma-

chine given only the summary statistics? We intend to investigate these problems

in the future.
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Appendix A

Appendix for Chapter 3

Numerically friendly Expression of the Objective Function

We present the numerically friendly expression of the objective function of the

Minimum Wasserstein Distance Estimator (MWDE) under mixture of location-scale

families. To learn the finite mixture distribution through MWDE, we need to com-

pute

WN (G) = W 2
2 (FN (·), F (·;G)) =

∫ 1

0
{F−1

N (t)− F−1(t;G)}2 dt (A.1)

for finite location-scale mixture

F (·;G) =

K∑
k=1

πkF (·;θk) =

K∑
k=1

πkσ
−1
k F0((x− µk)/σk).

We write Ek(·) as expectation under distribution F (·;θk). For instance,

Ek{X2} = µ2
k + σ2

k(µ
2
0 + σ2

0) + 2µkσkµ0.

Define intervals In = ((n−1)/N, n/N ] for n = 1, 2, . . . , N so that F−1
N (t) = x(n)

when t ∈ In, where x(n) is the nth order statistic. For ease of notation, we write
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x(n) as xn. Over this interval, we have∫
In

{F−1
N (t)− F−1(t;G)}2 dt

=

∫
In

{x2
n − 2xnF

−1(t;G) + {F−1(t;G)}2} dt.
(A.2)

The integration of the first term in (A.2), after summing over n, is given by

N∑
n=1

∫
In

x2
n dt = N−1

∑
n

x2
n.

Denote x2 = N−1
∑

n x
2
n, the integration of the third term in (A.2) is

N∑
n=1

∫
In

{F−1(t;G)}2 dt =

∫ ∞
−∞

x2f(x;G) dx =

K∑
k=1

wkEk{X2}.

Let ξ0 = −∞, ξN+1 =∞, and ξn = F−1(n/N ;G) for n = 1, . . . , N . Denote

∆Fnk = F (ξn;θk)− F (ξn−1;θk)

and

T (x) =

∫ x

−∞
tf0(t) dt, ∆Tnk = T ((ξn − µk)/σk)− T (ξn−1 − µk)/σk).

Then ∫
In

F−1(t;G) dt =
∑
k

wk

∫ ξn

ξn−1

xf(x;µk, σk) dx

=
∑
k

wk{µk∆Fnk + σk∆Tnk}.

These lead to numerically convenient expression

WN (G) = x2 +
∑
k

wkEk{X2} − 2
∑
n

∑
k

wk{µk∆Fnk + σk∆Tnk}.
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Gradient of the Objective Function

To most effectively use Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, it

is best to provide gradients of the objective function. Below is the numerically

friendly expressions of gradients of WN in (A.1).

Lemma A.1. Let δjk = 1 when j = k and δjk = 0 when j 6= k. For n = 1, . . . , N

and j = 1, 2, . . . ,K, we have

∂F (ξn;θk)

∂wj
= f(ξn;θk)

∂ξn
∂wj

,

∂F (ξn;θk)

∂µj
= f(ξn;θk)

(
∂ξn
∂µj
− δjk

)
,

∂F (ξn;θk)

∂σj
= f(ξn;θk)

(
∂ξn
∂σj
−
{
ξn − µk
σk

}
δjk

)
,

and

∂

∂wj
T

(
ξn − µk
σk

)
= f(ξn;θk)

(
ξn − µk
σk

)
∂ξi
∂wj

,

∂

∂µj
T

(
ξn − µk
σk

)
= f(ξn;θk)

(
ξn − µk
σk

)(
∂ξn
∂µj
− δjk

)
,

∂

∂σj
T

(
ξn − µk
σk

)
= f(ξn;θk)

(
ξn − µk
σk

){
∂ξi
∂σj
−
(
ξn − µk
σk

)
δjk

}
.

Furthermore, we have

∂ξn
∂µk

=
wkf(ξi;θk)

f(ξn;G)
,

∂ξn
∂σk

=
wkf(ξn;θk)

f(ξi;G)

(
ξn − µk
σk

)
,

∂ξn
∂wk

= −F (ξn;θk)

f(ξn;G)
.
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Based on this lemma, it is seen that

∂WN

∂µj
=2wj(µj + σjµ0)− 2wj

N∑
n=1

x(n)∆Fnj

− 2
N∑
n=1

∑
k

wkµkx(n)

{
∂F0(ξn;θk)

∂µj
− ∂F0(ξn−1;θk)

∂µj

}

− 2

N∑
n=1

∑
k

wkσkx(n)
∂

∂µj

{
T

(
ξn − µk
σk

)
− T

(
ξn−1 − µk

σk

)}

with F0(ξ0; θk) = 0, F0(ξN+1; θk) = 1, T
( ξ0−µk

σk

)
= 0, and T

( ξN+1−µk
σk

)
=∫∞

−∞ tf0(t)dt is a constant that does not depend on any parameters. Substituting

the partial derivatives in Lemma A.1, we then get

∂WN

∂µj
=2wj(µj + σjµ0)− 2wj

N∑
n=1

x(n)∆Fnj

− 2
N−1∑
n=1

x(n)ξn
∑
k

wkf(ξn;µk, σk)

(
∂ξn
∂µj
− δjk

)

+ 2

N−1∑
n=1

x(n)ξn−1

∑
k

wkf(ξn−1;µk, σk)

(
∂ξn−1

∂µj
− δjk

)

=2wj

{
µj + σjµ0 −

N∑
n=1

x(n)∆Fnj

}

Similarly, we have

∂WN

∂σj
= 2wj

{
σj(µ

2
0 + σ2

0) + µjµ0 −
N∑
n=1

x(n)∆µnj

}
,

∂WN

∂wk
= {µ2

k + σ2
k(µ

2
0 + σ2

0) + 2µkσkµ0} − 2

N−1∑
n=1

{x(n+1) − x(n)}ξiF (ξn;θk)

− 2

{
µk

N∑
n=1

x(n)∆Fnk + σk

N∑
n=1

x(n)∆Tnk

}
.

These gradients are used in the BFGS algorithm to compute the MWDE under
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location-scale mixtures in Chapter 3.

Compute Quantiles of Mixtures

Computing the quantiles of the mixture distribution F (·;G) for each G is one of

the most demanding tasks in the computation of the gradients of WN in (A.1). The

property stated in the following lemma allows us to develop a bi-section algorithm

for computing the quantiles of the mixture.

Lemma A.2. Let F (x;G) =
∑K

k=1 F (x;µk, σk) be a K-component mixture,

ξ(t) = F−1(t;G) and ξk(t) = F−1(t;θk) respectively the t-quantile of the mix-

ture and its kth subpopulation. For any t ∈ (0, 1),

min
k
ξk(t) ≤ ξ(t) ≤ max

k
ξk(t). (A.3)

Proof. Since F (x;θ) has a continuous CDF, we must have F (ξk(t);θk) = t. By

the monotonicity of the CDF F (·;θk), we have

F

(
min
k
ξk(t);θk

)
≤ F (ξk(t);θk) ≤ F

(
max
k

ξk(t);θk

)
.

Multiplying by wk and summing over k lead to

F

(
min
k
ξk(t);G

)
≤ t ≤ F

(
max
k

ξk(t);G

)
.

This implies (A.3) and completes the proof.

In view of this lemma, we can easily find the quantiles of F (·;θk) to form

an interval containing the targeting quantile of F (·;G). We can effectively find

F−1(t;G) value through a bi-section algorithm.
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Appendix B

Appendix for Chapter 4

The appendix for Chapter 4 is organized as follows. Section B.1 contains all left

over technical details and proofs and Section B.2 provides additional details.

B.1 Technical Proofs

Example 4.1: Technical Details

We will show that D(GC) < D(G) where

D(G) = 0.5W2
D,2(G1, G) + 0.5W2

D,2(G2, G).

This result implies that G is not a barycenter. We stop short of proving that GC is.

The latter task is so tedious that we have it omitted.

Note that all transportation plans from G1 and G2 to the presumed barycentre

GC have the form(
p 0.4− p

0.4− p 0.2 + p

)
and

(
p 0.6− p

0.4− p p

)
,

respectively, for some p between 0 and 0.4. These two matrices are bivariate

probability mass functions with the marginal probability masses (0.4, 0.6)> and
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(0.6, 0.4)> as required. The cost functions may be presented as(
c(−1,−1) c(−1, 2/3)

c(1,−1) c(1, 2/3)

)
=

(
0 25/9

4 1/9

)
.

It is clear that p = 0.4 gives the optimal plans for transporting G1 to GC and G2

to GC . With these plans in place, we can see that

D(GC) = 0.5W2
D,2(G1, G

C) + 0.5W2
D,2(G2, G

C) = 1/3.

In comparison, the optimal transportation plan from G1 to G is to move 0.1 mass

from φ1 to φ−1 with a total cost of 0.1× 4 = 0.4. Hence,

D(G) = 0.5W2
D,2(G1, G) + 0.5W2

D,2(G2, G) = 0.4 > 1/3.

That is, G is not a barycenter.

Proof of Theorem 4.1

Let G∗ = arg inf{Jc(G) : G ∈ GK}. Let the mixing weights of any G ∈ GK be

w̃(G), and let the subpopulations prescribed by G be Φk. According to (4.12), we

have

w̃k(G
∗) =

∑
i

πik(G
?),

which implies that π(G∗) ∈ Π(·, w̃(G∗)). Since π(G∗) ∈ Π(w, ·) by (4.7), we

also have that π(G∗) ∈ Π(w, w̃(G∗)) or it is a valid transportation plan from G to

G∗. Consequently,

inf{Tc(G) : G ∈ GK}

≤
∑
i,k

πik(G
∗)c(Φi,Φ

∗
k) = Jc(G∗) = inf{Jc(G) : G ∈ GK},

with the last equality implied by the definition of G∗. This inequality implies that

the left-hand side of (4.10) is less than its right-hand side.

Next, we prove that the inequality holds in the other direction. Let G† =

inf{Tc(G) : G ∈ GK}, the solution to the optimization on the left-hand side
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of (4.10). We denote the subpopulations prescribed by G† as Φ†γ . Let

π† = arg inf

∑
i,k

πikc(Φi,Φ
†
k) : π ∈ Π(w, w̃(G†))

 ,

which is the optimal transportation plan from G to this G†. Because of this, we

have

inf{Tc(G) : G ∈ GK} = Tc(G†) =
∑
i,k

π†ikc(Φi,Φ
†
k)

≥ Jc(G†) ≥ inf{Jc(G) : G ∈ GK}.

The last step holds because π† ∈ Π(w, ·). This completes the proof.

Proof of Theorem 4.2

(i). Clearly, we have Kc(G|Gt) ≥ Jc(G) for all G with equality holds at G = Gt.

Hence,

Jc(Gt) ≥ Jc(Gt)− {Kc(Gt+1|Gt)− Jc(Gt+1)}

= Jc(Gt+1)− {Kc(Gt+1|Gt)− Jc(Gt)}

≥ Jc(Gt+1)− {Kc(Gt|Gt)− Jc(Gt)}

= Jc(Gt+1).

This is the property that an Majorization Maximization (MM) algorithm must have.

(ii). Suppose G(t) has a convergent subsequence leading to a limit G∗. Let this

subsequence be G(tk). By Helly’s selection theorem (Van der Vaart, 2000), there

is a subsequence sk of tk such that G(sk+1) has a limit, say G∗∗. These limits,

however, could be subprobability distributions. That is, we cannot rule out the

possibility that the total probability in the limit is below 1 by Helly’s theorem.

This is not the case under the theorem conditions. Let ∆ > 0 be large enough

such that

A1 = {Φ : c(Φi,Φ) ≤ ∆, for all subpopulations Φi of G}
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is not empty. With this ∆, we define

A2 = {Φ : c(Φi,Φ) > ∆, for all subpopulations Φi of G}.

Suppose G† has a subpopulation Φ† such that c(Φi,Φ
†) > ∆ for all i. Replacing

this subpopulation in G† by any Φ†† ∈ A1 to form G††, we can see that for any t,

Kc(G†|G(t−1)) > Kc(G††|G(t−1)).

This result shows that none of the subpopulations of G(t) are members of A2.

Otherwise, G(t) does not minimize Kc(G|G(t−1)) at the tth iteration.

Note that the complement ofA2 is compact by condition (4.15). Consequently,

the subpopulations ofG(t) are confined to a compact subset. Hence, all limit points

of G(t), including both G∗ and G∗∗, are proper distributions. By the monotonicity

of the iteration:

Jc(G(sk+1)) ≤ Jc(G(sk+1)) ≤ Jc(G(sk)).

Let k →∞, we get

Jc(G∗∗) = Jc(G∗). (B.1)

By the definition of the MM iteration, we have

Kc(G(sk+1)|G(sk)) ≤ Kc(G|G(sk)).

Let k →∞ and by the continuity of Kc(·|·), we get

Kc(G∗∗|G∗) ≤ Kc(G|G∗).

Hence, G∗∗ is a solution to minKc(G|Gt)) when G(t) = G∗. Namely, we have

Kc(G∗∗|G∗) = Kc(G(t+1)|G∗). With the help of (B.1), it further implies

Jc(G∗∗) = Jc(G(t+1)) = Jc(G∗)

when G(t) = G∗. This shows that iteration from G(t) = G∗ does not make
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Jc(G(t+1)) smaller than Jc(G(t)). Hence, G∗ is a stationary point of the MM

iteration. This is conclusion (ii) and we have completed the proof.

Proof of Theorem 4.3

Recall that the local estimators Ĝm,m ∈ [M ] are strongly consistent for G∗ when

the order K of G∗ is known. Clearly, this implies that the aggregate estimator

G→ G∗ and Tc(G,G∗)→ 0 almost surely. That is, other than a probability 0 event

in the probability space Ω on which the random variables are defined, convergence

holds. Furthermore, each support point of G must converge to one of those of G∗.

The total weights of the support points of G converging to the same support of

G∗ must converge to the corresponding weight of G∗. Without loss of generality,

assume Tc(G,G∗)→ 0 holds at all ω ∈ Ω without a zero-probability exception.

By definition, GR has K support points. We also notice that

Tc(G,GR) ≤ Tc(G,G∗)→ 0. (B.2)

Suppose thatGR does not converge toG∗ at some ω ∈ Ω. One possibility is that the

smallest mixing weight of GR (or a subsequence thereof) goes to zero as N →∞.

In this case, GR has K − 1 or fewer meaningful support points. Since the support

points of G are in an infinitesimal neighborhood of those of G∗, one of them must

be a distance away from any of the support points of GR. Therefore, by Condition

4, the transportation cost of this support point is larger than a positive constant not

depending on N . The positive transportation cost implies that Tc(G,GR) 6→ 0,

which contradicts (B.2).

The next possibility is that the smallest mixing weight of GR does not go to

zero. In this case, there is a subsequence such that all the mixing weights converge

to positive constants. Without loss of generality, all the mixing weights simply

converge to positive constants as N → ∞. If there is a subsequence of support

points of GR that is at least ε-distance away from any of the support points of

G∗, then the transportation cost from G to this support point will be larger than a

positive constant not depending on N . This again leads to a contradiction to (B.2).

The final possibility is that GR (or a subsequence thereof) has a proper limit,

say G∗∗ 6= G∗. If so, Tc(G,GR)→ Tc(G∗, G∗∗) 6= 0, contradicting (B.2).
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We have exhausted all the possibilities. Hence, the consistency claim is true.

Proof of Theorem 4.4

We start with a few rate conclusions. Let Φmk be the kth subpopulation learned at

local machine m and wmk be its mixing weight. Note that we do not put a “hat” on

them for notation simplicity. According to Lemma 2.1 on the rate of convergence

of the PMLE at local machines, these subpopulations can be arranged so that for all

m ∈ [M ] and k ∈ [K], we have

‖Φmk − Φ∗k‖ = Op(N
−1/2),

∑
m

λmwmk − w∗k = Op(N
−1/2).

By C5, the first rate conclusion above implies

max{c(Φmk,Φ
∗
k) : k ∈ [K]} = Op(N

−1).

For each k, let w̃k =
∑M

m=1 λmwmk and Φ̃k be the local barycentre of Φmk,

m ∈ [M ]:

Φ̃k = arg min

{
Φ :

M∑
m=1

λmwmkc(Φmk,Φ)

}
.

By the rate conclusions given earlier, we have w̃k = w∗k+Op(N
−1/2) for k ∈ [K].

By C5, we must also have

‖Φ̃k − Φ∗k‖ = Op(N
−1/2)

and Tc(G, G̃) = op(N
−1). This GR is given by G̃, then the rate conclusion of the

theorem is proved.

Next, we show that the GMR GR is given by G̃ asymptotically. By theorem

conditions, the true subpopulations Φ∗k are all distinct. Hence, by condition C4, we

have

min{c(Φ∗k,Φ∗k′) : k 6= k′ ∈ [K]} > 0.

Thus, if the subpopulations of GR is not in an op(1) neighbourhood of one of Φ∗k
even though everyone of G is, the transport cost to this subpopulation from any
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subpopopulation of G exceeds a positive constant in probability. This contradicts

Tc(G,GR) ≤ Tc(G, G̃) = op(N
−1). (B.3)

This implies, all subpopulations of GR are within op(1) neighbourhood of one of

Φ∗k. Denote these subpopulations as ΦR
k The optimal plan must transport Φmk to

ΦR
k , otherwise the total transport cost exceeds a positive constant in probability

which again contradicts (B.3). Since GR minimizes the transport cost, we must

have ΦR
k = Φ̃k, the local barycenter. These conclusions imply that GMR GR =

G̃ with probability approaching to 1. Consequently, the rates of convergence of

w̃k, Φ̃k extend to those of GR and this completes the proof.

KL Divergence Satisfies C5

Let µ1,Σ1 and µ2,Σ2 be the parameters of Φ1 and Φ2. It is known that

2DKL(Φ1‖Φ2) = log
det(Σ2)

det(Σ1)
+ tr(Σ−1

2 Σ1 − Id) + (µ2 − µ1)>Σ−1
2 (µ2 − µ1).

Assume both Φ1 and Φ2 are in a small neighborhood of Φ whose covariance matrix

Σ is positive definite. Hence, eigenvalues of Σ2 are in small neighborhood of

these of Σ. Thus, there exists a positive constant A1 such that the second term in

2DKL(Φ1‖Φ2) satisfies

A−1
1 ‖µ2 − µ1‖2 ≤ (µ2 − µ1)>Σ−1

2 (µ2 − µ1) ≤ A1‖µ2 − µ1‖2 (B.4)

Let λ1, . . . , λd be eigenvalues of Σ
−1/2
2 Σ1Σ

−1/2
2 . Since both Σ1 and Σ2 are in a

small neighborhood of Σ, we have λ1, . . . , λd all close to 1.

log{det(Σ2)/det(Σ1)}+ tr(Σ−1
2 Σ1 − Id) =

d∑
j=1

{(λj − 1)− log λj}.

Note that (λ− 1)− log λ is a convex function with its minimum attained at λ = 1

at which point its second derivative equals 1. Hence, there exists an A2 > 0 such

that

A−1
2 (λ− 1)2 ≤ (λ− 1)− log λ ≤ A2(λ− 1)2.
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We have therefore shown that

A−1
2

d∑
j=1

(λj−1)2 ≤ log{det(Σ2)/det(Σ1)}+ tr(Σ−1
2 Σ1−Id) ≤ A2

d∑
j=1

(λj−1)2.

(B.5)

We now connect the bound with Frobenius norm.

For a positive definite matrix Σ, it is easy to see that ‖Σ− Id‖2F =
∑d

j=1(σj −
1)2, where σ1, σ2, . . . , σd are eigenvalues of Σ. Frobenius norm also has sub-

multiplicative property

‖Σ1Σ2‖F ≤ ‖Σ1‖F ‖Σ2‖F .

Applying the sub-multiplicative property in our context, we get

‖Σ1 − Σ2‖2F ≤ ‖Σ1/2
2 ‖

4
F ‖Σ

−1/2
2 Σ1Σ

−1/2
2 − Id‖2F

≤ A3 ‖Σ−1/2
2 Σ1Σ

−1/2
2 − Id‖2F

= A3

d∑
j=1

(λj − 1)2

for some local positive constant A3 > ‖Σ1/2‖4F , as both matrices are in a small

neighborhood of Σ. Similarly, we have

d∑
j=1

(λj − 1)2 = ‖Σ−1/2
2 Σ1Σ

−1/2
2 − Id‖2F

= ‖Σ−1/2
2 {Σ1 − Σ2}Σ−1/2

2 ‖2F
≤ ‖Σ−1/2

2 ‖4F ‖Σ1 − Σ2‖2F
≤ A4‖Σ1 − Σ2‖2F .

for some positive constant A4. This leads to

‖Σ1 − Σ2‖2F ≥ A−1
4

d∑
j=1

(λj − 1)2.
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Let A = 2 max{A1, A2, A3, A4}. Applying (B.4) and (B.5), we have

A−1{‖µ1−µ2‖2+‖Σ1−Σ2‖2F } ≤ DKL(Φ1‖Φ2) ≤ A{‖µ1−µ2‖2+‖Σ1−Σ2‖2F }

when Φ1,Φ2 are in a small neighborhood of Φ, with A being a positive constant

depends on Φ. This shows that the KL-divergence has property C5.

B.2 Additional Details

Additional Simulation Results

In this section, we present additional simulation results for K = 5, 10, 50 and

d = 10, 50. All the settings are as in Section 4.5.1. Figures B.1–B.2 show the

results for N = 219 and M = 4 with various combinations of K and d. The panels

in each figure are arranged so that the order of the mixture increases from left to

right, and the dimension of the mixture increases from top to bottom.

Comparing panels within the same row in Figure B.1, we note that the perfor-

mance of all the estimators becomes worse as the order of the mixture increases in

terms ofW1 distance. The panels within the same column in Figures B.1 show that

all the estimators become worse as the dimension of the mixture increases in terms

of both performance measures.

Regardless, our estimator has performance comparable to that of the global

estimator. In terms of the misclassification error, for the same degree of overlap-

ping, the superiority of our estimator increases compared to the KL-averaging as

the number of components and the dimension increase.

The computational costs of the local estimators are typically low, and this gives

our method an added computational advantage. However, this advantage is not

guaranteed: see the bottom right panel in Figure B.2, where d = 50, K = 50,

and the degree of overlapping is above 1%. There are many other factors at play.

A more skillful implementation may lead to different conclusions on the computa-

tional time.
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Figure B.1: W1 distances of estimators for learning mixtures.

Figure B.2: Computational times for learning mixtures.

198



Convolutional Neural Network in NIST Example

Deep convolutional neural networks (CNNs) are commonly used to reduce the

complex structure of a dataset to informative rectangle data. CNNs effectively

perform dimension reduction and classification in an end-to-end fashion (Dara and

Tumma, 2018). The final soft-max layer in a CNN can be viewed as fitting a multi-

nomial logistic regression model on the reduced feature space. We use a CNN for

dimension reduction in the NIST experiment; its architecture is specified in Ta-

ble B.1. We implement the CNN in pytorch 1.5.0 (Paszke et al., 2019) and

train it for 10 epochs on the NIST training dataset. We use the SGD optimizer with

learning rate 0.01, momentum 0.9, and batch size 64. After the training, we drop

the final layer and use the resulting CNN to reduce the dimension of the images in

the training and test sets to 50.

Table B.1: Architecture and layer specifications of CNN for dimension re-
duction in NIST example.

Layer Layer specification Activation function

Conv2d Cin = 1, Cout = 20, H = W = 5 Relu
MaxPool2d k = 2 –

Conv2d Cin = 20, Cout = 50, H = W = 5 Relu
MaxPool2d k = 2 –

Flatten – –
Linear Hin = 800, Hout = 50 Relu
Linear Hin = 50, Hout = 10 Softmax
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Appendix C

Appendix for Chapter 5

C.1 Optimal Transportation Plan with One Marginal
Constraint

In this section, we derive the closed-form of the optimal transportion plan when

there is only one marginal constraint.

Let Π(w, ·) = {π ∈ RN×M+ :
∑M

m=1 πnm = wn},H(π) = −
∑

n,m πnm(log πnm−
1), and

πλ = arg inf
π∈Π(w,·)

{∑
n,m

πnmCnm − λH(π)

}
for some Cnm that does not depend on π. We show in this section that

πλnm =

wn
exp(−Cnm/λ)∑
m′ exp(−Cnm′/λ) λ > 0

wn
1{m=arg minm′ Cnm}
| arg minm′ Cnm′ |

λ = 0
(C.1)

and

π0 = lim
λ↓0
πλ.

Proof. Let

`C(π) =
∑
nm

πnmCnm − λH(π). (C.2)

We prove the results under the following two cases.
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Case I (λ > 0) The Lagrangian associated with (C.2) is

L(π, ξ1, · · · , ξN ) = `C(π)−
N∑
n=1

ξn

{
M∑
m=1

πnm − wn

}
.

Then for n ∈ [N ] and m ∈ [M ], the first order conditions yield ∂L
∂πnm

= Cnm − λ log πnm − ξn = 0,

∂L
∂ξn

=
∑M

m=1 πnm − wn = 0.

Then the optimal transportation plan is given by

πλnm = wn
exp(−Cnm/λ)∑
m′ exp(−Cnm′/λ)

. (C.3)

Case II (λ = 0) The objective function becomes

`C(π) =
∑
nm

Cnmπnm

which is linear in π under the constraints that
∑

m πnm = wn for n ∈ [N ]. There-

fore, by the linearity and the fact thatCnm ≥ 0, it is clear that the objective function

is smallest when

πnm =

wn m = arg minm′ Cnm′

0 otherwise

When there are ties in arg minm′ Cnm′ , we could evenly split the weight wn and

the optimal transportation plan becomes

πnm =

wn/| arg minm′ Cnm′ | m ∈ arg minm′ Cnm′

0 otherwise.

Hence, we show that the optimal transportation plan is (C.1) when there is only

one marginal constraint on the transportation plan.
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We now show that π0 = limλ↓0 π
λ. According to (C.3), we have

lim
λ↓0

πλnm = lim
λ↓0

wn
exp(−Cnm/λ)∑
m′ exp(−Cnm′/λ)

= lim
λ↓0

wn∑
m′ exp{−(Cnm′ − Cnm)/λ}

We discuss the limit under the following two cases:

• Let An = arg minm′ Cnm′ , then When m ∈ An, then there are |An| terms

in the denominator equals 1 and exp{−(Cnm‡ −Cnm)/λ} → 0 as λ ↓ 0 for

any m‡ 6∈ An. Therefore, in this case, we have

lim
λ↓0

πλnm = wn/| arg min
m′

Cnm′ |.

• When there exists anm∗ so thatCnm∗ < Cnm, then exp{−(Cnm∗−Cnm)/λ} →
∞ as λ ↓ 0, hence

lim
λ↓0

πλnm → 0.

In conclusion, we then have

lim
λ↓0

πλnm = wn
1{m ∈ arg minm′ Cnm′}
| arg minm′ Cnm′ |

= π0
nm.

C.2 Gaussian Baycentre under KL Divergence
We show the conclusion of Example 2.4 in this section. Let {Φn(x) = Φ(x;µn,Σn) :

n ∈ [N ]} be a set of Gaussian distributions. The Kullback-Leibler (KL) barycentre

of {Φn : n ∈ [N ]} with weights λ = (λ1, λ2, . . . , λN )>, when confined on the

space of Gaussian distributions, has its mean

µ =

{
N∑
n=1

λn

}−1 N∑
n=1

λnµn
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and the covariance

Σ =

{
N∑
n=1

λn

}−1 N∑
n=1

λn{Σn + (µn − µ)(µn − µ)>}.

Compare the barycentre with the moment matching in (5.10), we can see the

barycentre of subpopulations belonging to the M cluster is the same as that from

moment matching.

Proof. With KL-divergence, the barycentre confined on the space of Gaussians is

a Gaussian with its mean and covariance minimize the function

L(µ,Σ) =
N∑
n=1

λnDKL(Φn‖Φ)

=
1

2

∑
n

λn
{

log det(Σ) + tr(Σ−1Σn)
}

+
1

2

∑
n

λn(µ− µn)>Σ−1(µ− µn) + C

for some constant C. We now use the following linear algebra formulas

∂ log det(Σ)

∂Σ
= (Σ−1)> = (Σ>)−1,

∂tr(AΣ−1B)

∂Σ
= −(Σ−1BAΣ−1)>,

and
∂

∂x
(x− µ)>Σ−1(x− µ) = 2Σ−1(x− µ)

to work out partial derivatives of L with respect to µ and Σ. They are given by

∂L

∂µ
=2
∑
n

λnΣ−1(µ− µn),

∂L

∂Σ
=Σ−1 − Σ−1

∑
n

λn

{
Σn + (µ− µn)(µ− µn)>

}
Σ−1.
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Setting both partial derivatives to 0, we obtain

µ =

{∑
n

λn

}−1 N∑
n=1

λnµn

and the covariance

Σ =

{∑
n

λn

}−1 N∑
n=1

λn{Σn + (µn − µ)(µn − µ)>}.

This completes the proof.

C.3 Connection With Optimization Based Algorithms
In this section, we provide the derivation details for establishing the connection

of existing optimization based GMR approach and our proposed approach in Sec-

tion 5.3.2.

We first show that when the cost function is Integrated Squared Error (ISE)

and KL divergence, our proposed approach is the same as the existing optimization

based approach under the special case when M = 1. When M > 1, we show

that the composite transportation divergence is an upper bound of the divergence

between two mixtures when the cost function satisfies the “convexity”.

Proof for Equation (5.27)

Proof. We give the proof under the following two situations.

ISE When c(·, ·) = DISE(·, ·), the objective function on the LHS of (5.27) is

N∑
n=1

wnDISE(Φn, Φ̃) =

N∑
n=1

wn

{∫
φ2
n(x) dx+

∫
φ̃2(x) dx− 2

∫
φn(x)φ̃(x) dx

}
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The RHS of (5.27) is

DISE

(
N∑
n=1

wnΦn, Φ̃

)

=

∫ { N∑
n=1

wnφn(x)− φ̃(x)

}2

dx

=

∫ { N∑
n=1

wnφn(x)

}2

dx+

∫
φ̃2(x) dx− 2

∑
n

wn

∫
φn(x)φ̃(x) dx

=C +

N∑
n=1

wnDISE(Φn, Φ̃)

where C is some constant that does not depend on Φ̃. This relationship implies

that (5.27) holds when the cost function is the ISE.

KL divergence

DKL

(
N∑
n=1

wmΦn‖Φ̃

)
=

∫ { N∑
n=1

wnφn(x)

}
log

{∑
nwnφn(x)

φ̃(x)

}
dx

=C1 −
∑
n

wn

∫
φn(x) log φ̃(x) dx

=C2 +
∑
n

wn

∫
φn(x) log

φn(x)

φ̃(x)
dx

=C2 +
∑
n

wnDKL(Φn‖Φ̃)

where C1 and C2 are constants not dependent on Φ̃. This relationship implies

that (5.27) holds when the cost function is the KL divergence.
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Proof for Theorem 5.2

Proof. Let π ∈ Π(w, w̃) be a transportation plan. We can always write Φ(·;G) =∑
nwnΦn =

∑
n

∑
m πnmΦn. Similarly Φ(·; G̃) =

∑
n,m πnmΦ̃m. Therefore,

c(Φ(·;G),Φ(·; G̃)) = c

(∑
n

wnΦn,
∑
m

w̃mΦ̃m

)

= c

(∑
n,m

πnmΦn,
∑
n,m

πnmΦ̃m

)
≤
∑
n,m

πnmc(Φn, Φ̃m)

The last inequality holds because of the “convexity” property of the cost function.

That is for any α ∈ (0, 1), and component distributions F1, F2, Φ1, and Φ2, we

have

c(αF1 + (1− α)F2, αΦ1 + (1− α)Φ2) ≤ αc(F1,Φ1) + (1− α)c(F2,Φ2).

Since this inequality holds for any transportation plan π, therefore taking the

infimum with respect to π on the right hand side, we then have

c(Φ(·;G),Φ(·; G̃)) ≤ Tc,0(Φ(·;G),Φ(·; G̃))

which completes the proof.
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