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Abstract

We introduce ROS-X-Habitat, a software interface that bridges the AI Habitat plat-

form for embodied reinforcement learning agents with other robotics resources via

ROS. This interface not only offers standardized communication protocols between

embodied agents and simulators, but also enables physics-based simulation. With

this interface, roboticists are able to train their own Habitat RL agents in another

simulation environment or to develop their own robotic algorithms inside Habitat

Sim. Through in silico experiments, we demonstrate that ROS-X-Habitat has min-

imal impact on the navigation performance and simulation speed of Habitat agents;

that a standard set of ROS mapping, planning and navigation tools can run in the

Habitat simulator, and that a Habitat agent can run in the standard ROS simulator

Gazebo. Furthermore, to show how ROS-X-Habitat can be used in data collection

and RL training, we present the training and evaluation of an agent we train to

perform a multiple point goal navigation task we define.
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Lay Summary

Simulation software plays an essential part in modern artificial intelligence and

robot development and testing. In the past decade, powerful simulation software

and tools were built to offers high speed and realism to its users. However, not

many of these simulators have the compatibility to be used along with other soft-

ware platforms or middleware. Habitat AI for example, consists of a high-speed

and photo-realistic simulation environment (Habitat-sim) for reinforcement learn-

ing research and a modular high-level library to train embodied AI agents (Habitat-

lab). In this thesis, we present ros_x_habitat, a software interface that bridges

the ROS ecosystem including ROS-compatible simulators with Habitat AI to allow

AI researchers and roboticists to take advantage of both platforms at the same time.

We demonstrate the interface’s features and conduct in-depth evaluations on the

performance impact of using it.
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Chapter 1

Introduction

Since the earliest days of robotics, researchers have sought to build embodied

agents to perform a variety of jobs, such as assistive tasks in factories [29] or wild-

fire surveillance [16]. Following tremendous advancements in deep learning and

convolutional neural networks in the past decade, researchers have been able to

develop reinforcement learning (RL)-based embodied agents that interact with the

real world on the basis of sensory observations. Software platforms such as Ope-

nAI Gym [7], Unity ML-Agents Toolkit [17], and AI Habitat [31] have emerged

to address the community’s need for training and evaluating RL-based embodied

agents end-to-end. Our research group was particularly intrigued by the AI Habi-

tat platform, which offers a high-performance, photorealistic simulator, access to a

sizeable library of visually-rich scanned 3D environments, and a modular software

design.

However, even though these platforms allow roboticists to reuse existing RL

algorithms and train agents in simulators with ease, there is a critical step to us-

ing them for embodied agents which is only partially addressed: Connecting the

trained agent with a real robot. Ideally, after training an RL agent in simulation

one would like to take advantage of the extensive set of tools and knowledge from

the robotics community to make it easy to embody that agent.
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1.1 The ROS Ecosystem
One particularly popular tool from the robotics community is ROS, a robotics-

focused middleware platform with extensive support for classical robotic mapping,

planning and control algorithms ([2, 3]) as well as drivers for a wide variety of

compute, sensing and actuation hardware. But ROS support for directly training

an RL agent is limited, and Gazebo—the standard simulation environment used for

ROS systems—cannot match the level of photorealism or simulation speed of tools

specifically designed to train large-scale RL agents [23].

Meanwhile, robotics researchers are still developing classical embodied agents

that follow the “sense-plan-act” approach [6]. Compared with learning-based agents,

classical agents tend to be less data and compute intensive, and many developers

build and test classical agents for indoor tasks within the ROS ecosystem. For

navigation tasks, packages such as hector_mapping [20] and move_base

[3] allow users to easily map an environment and set up a planner. Simulation

tools such as Gazebo that work under ROS offer simulation dynamics and colli-

sion detection that have a moderate degree of physical realism. The large number

of hardware drivers from ROS packages allow users to easily test an agent in the

real world. But ROS also has its own shortcomings: 1) little support for building

learning-based agents, and 2) limited choices of simulation tools.

1.2 AI Habitat
Amongst many Embodied AI research platforms, Facebook’s AI Habitat stands

out for its high-performance, photorealism, and compatibility with visually-rich

scanned 3D environments. It consists of two main components: Habitat-sim and

Habitat-lab. Habitat-sim is a high-performance 3D simulator with support for

physics, high-fidelity 3D datasets, configurable sensors. Habitat-lab is a modular

high-level library for end-to-end development in embodied AI, it allows researchers

to define embodied AI tasks, to configure embodied agents and sensors, and to train

embodies agents.

However, AI Habitat framework does not provide any support or interface to

ROS. Moreover, AI Habitat does not provide support for development of classical

embodied agents or robot control algorithms, limiting its potential to the robotics
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Figure 1.1: High-level overview of ros x habitat’s architecture. The ar-
rows represent communications between an agent and a simulator. Op-
erating mode (a), (b) and (c) are detailed in Section 3.3

community.

1.3 Contribution
In order to take advantage of the strengths and overcome the weaknesses of these

two independent sets of tools, we therefore present ROS-X-Habitat (ros x habitat),
an interface that bridges the AI Habitat training platform with the ROS ecosystem.

Figure 1.1 shows a simplified view of the interface’s architecture. The interface

makes the following contributions to the robotics community:

• It allows AI Habitat’s RL agents to be evaluated in ROS, so RL agent devel-

opers can take advantage of ROS’ rich set of tools and community support,

as well as Gazebo’s ability to let users author 3D assets and customary test-

3



ing scenes. Although not demonstrated here, this bridge to ROS dramatically

shortens the path to embodying the Habitat agents in a physical robot.

• It allows classical embodied agents implemented in ROS packages (such as

[2, 3]) to access the state-of-the-art simulator from AI Habitat (now with

physics!). Thus researchers can evaluate the classical agents in more pho-

torealistic environments (many of them scanned from the real world) with

higher simulation speed.

• It allows researchers to easily collect, process, and annotate data from the

supported datasets. With augmented data via this interface, further devel-

opment of robotic agents, including training, testing, and evaluation, can

proceed.

Although not use cases for the interface, we also demonstrate that:

• Connecting a Habitat agent to Habitat Sim through ROS does not change

navigation performance and has modest effect on execution speed when

compared to the standard direct connection in the AI Habitat codebase.

• For an Habitat agent trained in a simulation environment without physics,

the performance difference in a test environment between simulations with

and without physics is slight.
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Chapter 2

Related Work

To help guide the objectives of our work, we review previous work in four rele-

vant areas of research in this chapter: 1. embodied agents, 2. robotic middleware,

3. simulation software for robotics, and 4. datasets for either training and evalua-

tion of learning-based embodied agents or for evaluating classical embodied agents

in general. By carefully reviewing the existing work, we show the robotics com-

munity has need to

1. bridge learning-based embodied agents with Gazebo or other ROS-bridged

simulators;

2. bridge classical ROS-based planners with state-of-the-art robotic simulators

that offer a greater level of photorealism as well as speed;

3. evaluate embodied agents’ performance in a continuous action space to lever-

age simulators’ physics simulation capability.

2.1 Embodied Agents
In this work, we consider two categories of embodied agents commonly used to

complete PointGoal navigation tasks: Classical robotics approaches and learning-

based.

Most commonly deployed classical embodied agents do navigation in two phases:

Construct a map of the environment using, for example, a SLAM-based algorithm

5



(such as [5, 20, 22]), then use the map to plan out a path to the goal position (such as

[2, 3]). While many packages following this approach are available in ROS, most

recent photorealistic, physics-capable simulators (see Section 2.2) do not interface

to ROS and thus evaluating classical agents in those simulators is difficult.

So-called “end-to-end” learning-based agents use a neural network to produce

a sequence of actions directly from visual observations and/or localization data

without relying on prior maps [12, 31, 36]. Another popular approach is to combine

learning-based agents with classical mapping-then-planning [8, 10]. But none of

these frameworks make direct connections with ROS.

Although not fundamental to their designs, a common distinction between clas-

sical and RL agents is that the former operate in a continuous action space while

the latter are often trained to produce discrete actions. Continuous action spaces

are more representative of how physical robots actuate [26] in the real world, but

training for these spaces has higher computational cost [25]. As an example, Habi-

tat’s default PointGoal navigation agents have an action space consisting of four

actions [31]: move_forward, turn_left, turn_right, and stop. To sim-

ulate these actions, Habitat Sim teleports the robot from one state/position to an-

other without taking account of interactions between the agent and other objects

at intermediate states. It is certainly possible to map from discrete to continuous

actions, but it is not clear a priori that a composition of an agent trained to produce

discrete actions with transformation of the actions from discrete to continuous will

produce desirable outcomes.

2.2 Simulators
Simulators are powerful tools for early stage development, training and testing of

embodied agents before deploying them in the real world. In the past, simulators

were judged on the dimension of their environment (2D or 3D), realism of sens-

ing and actuation, usability, and OS support [33], but the exploding interest in RL

agents, and particularly in vision-based RL agents, has put a premium on simula-

tion speed and photorealism.

Some popular examples of simulators include Gazebo [19], Unity [17], and

Nvidia’s Isaac Sim [27]. Gazebo has a large user community and lots of community-

6



shared pre-built assets, but lacks photorealism and high simulation speed. Unity

is a powerful game engine, and the Unity ML-Agents Toolkit available to re-

searchers provides simulation environments suitable for embodied agents [17]. But

the toolkit does not provide photorealistic simulation spaces by default and lacks

compatibility with off-the-shelf 3D datasets such as Replica [34] or Matterport3D

[9]. Isaac Sim shows great promise in terms of configurability and photorealism,

but is not currently open-source or free of charge. The recently released Sapien

[39] platform offers a photorealistic and physics-rich simulated environment, but

currently provides limited support for tasks other than motion planning.

In this paper we explore the use of Habitat Sim v2 from the AI Habitat platform

[35] for several reasons:

1. Faster simulation speed. This feature is particularly useful for RL agents,

since agent performance may continue to improve even after many millions

of training steps.

2. Photorealistic rendering of scanned spaces. Habitat Sim can render photore-

alistic scenes (including depth maps) from datasets such as Replica [34] and

Matterport3D [9]. Training and testing embodied agents in photorealistic

scenes can help to reduce the sim2real gap.

3. Simulation of many different tasks. We focus here on PointGoal naviga-

tion [31], but object picking has also been demonstrated [35].

2.3 Robotics Middleware
Robotics middleware is an abstraction layer that resides between the robotics soft-

ware and the operating system (which is itself abstracting the underlying hard-

ware). Middleware provides standardized APIs to sensors, actuators, and commu-

nication; design modularity; and portability [13].

There have been a variety of robotics middleware systems over the years (for

example, see [21]) each with its own strengths and limitations. For example, while

Microsoft RDS supports multiple programming languages, it runs only on the Win-

dows OS[14]. OROCOS offers its own optimized run-time environment for real-

7



time applications, but it does not have a graphical environment for drag-and-drop

development nor a simulation environment [14].

ROS (Robot Operating System) is a popular robotics middleware introduced in

2007 [30]. Among its features:

1. it is free and open-source,

2. it promotes modular and robust designs by breaking implementations into

communicating nodes and services that run independently, and

3. the huge user community has generated thousands of ready-to-use packages,

including drivers for all common robotics hardware [15, 24, 30].

Given the popularity of ROS, it should come as no surprise that others have

sought to build an interface between an embodied AI platform and the ROS ecosys-

tem. Zamora et al. [40] used ROS as a bridge between OpenAI Gym and Gazebo,

but did not consider other simulation environments which could provide more pho-

torealism. PyRobot is a lightweight, high-level interface on top of ROS that pro-

vides a consistent set of hardware-independent mid-level APIs to control different

robots [28], and the Habitat-PyRobot Bridge (HaPy) [18] further provides integra-

tion between Habitat agents and PyRobot. However, the HaPy-PyRobot combina-

tion suffers from four limitations:

1. tight coupling with the LoCoBot [31] asset;

2. tight coupling with Habitat Sim;

3. unable to support physics-based simulation from Habitat Sim v2;

4. no support for a direct connection between classical agents and Habitat Sim.

2.4 Datasets
Unlike Gazebo—in which users have to author their own 3D assets and scenes—

Habitat Sim can ingest 3D scenes from off-the-shelf datasets. The Habitat frame-

work’s modular design [31, 35] offers easy access to many photorealistic 3D scene

datasets, including Matterport3D [9], Gibson [38], Replica [34] and ReplicaCAD

8



Figure 2.1: Images extracted from two of the 18 scenes from the Matter-
port3D test set. (a): Scene with ID 2t7WUuJeko7; (b): Scene with
ID RPmz2sHmrrY.

[35]. In this work, we use the Matterport3D dataset. It is a diverse and visually

realistic 3D indoor space dataset, and it also offers a large amount of training space

for a variety of supervised and self-supervised computer vision tasks. We chose it

for two main reasons:

1. The original Habitat RL agents were trained in its training set [31].

2. The test set is publicly available. The test set contains 18 scenes and a total

of 1008 PointGoal navigation episodes [31].

We show some example images from this data set in Figure 2.1.

Ingesting the datasets mentioned above into Gazebo is not practical, so we used

the turtlebot3_house scene from the turtlebot3_gazebo package [4]

when testing a Habitat agent in Gazebo.
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Chapter 3

ROS Cross Habitat Interface

In this chapter, we first discuss the four most important design requirements that

guided the design of the ROS Cross Habitat Interface. In the second section, we

elaborate on its core concepts and components. We illustrate its architecture as

well as three operational modes in the third section.

3.1 Design Requirements
As pointed out in Chapter 2, there are a number of properties which are desirable or

even required for modern robotics software. Drawing on knowledge gleaned from

working with other packages, we established four requirements which guided our

design of the ros_x_habitat interface. With these requirements, we seek to

produce an interface which will allow users to exploit the strengths of both AI

Habitat and ROS to build better embodied agents.

3.1.1 Serve as a Lightweight Communication Bridge

The interface should allow agents to communicate through ROS with sensors and

actuators with minimal impact on performance and execution time. To explore this

requirement, we connect a Habitat agent with Habitat Sim, and compare perfor-

mance and execution times with and without ROS serving as the communication

medium in Section 4.1.
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3.1.2 Support Different Agents

The interface should allow users to deploy a variety of planning agents; in other

words, it should be robust and modular. To explore this requirement we demon-

strate that classical ROS planners can navigate within Habitat Sim using the inter-

face in Section 4.2.

3.1.3 Support Different Environments

In further support of modularity and robustness, the interface should allow users to

evaluate Habitat agents in other simulation environments with ROS bridges. To ex-

plore this requirement we demonstrate that a Habitat agent can navigate in Gazebo

using the interface in Section 4.3. Although we do not demonstrate control of a

physical robot, the test against Gazebo lends confidence that the communications

plumbing to do so is operational.

3.1.4 Support Intermediate Data Processing

One of the useful features of the ROS architecture of communicating nodes is the

ease with which data transforming filters can be inserted between producers and

consumers with just a little rewiring. In the case of Habitat trained agents, we

can take advantage of this type of transformation to test agents trained in the high-

throughput, physics-free, discrete-time mode of Habitat Sim against higher-fidelity,

physics-based, continuous-time simulators: The discrete actions are converted into

continuous control signals. Sections 4.1 and 4.2 demonstrate success on this re-

quirement. In Chapter 5, we also demonstrate use of this capability in a novel

navigation task.

3.2 Core Concepts
To formally define the ros_x_habitat interface we use four main concepts:

1. The agent is an embodied entity which consumes observations and produces

actions.

2. The environment is either a real space or a simulated space in which the

agent’s embodiment and other objects exist.
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3. The actions are decisions the agent makes, typically with an objective in

mind, that affect its embodiment and/or the environment.

4. The observations are information about the environment and/or its embodi-

ment to which the agent has access.

The ros_x_habitat interface is intended to bridge different combinations of

agents and environments—with an emphasis on Habitat-trained agents and the

Habitat Sim environment—through the ROS middleware capabilities, and support

taking advantage of other capabilities available within the ROS ecosystem, such as

classical planning agents and the Gazebo simulation environment.

To create the interface, we encapsulate each of the four concepts mentioned

above into ROS-based components so that they can take advantage of the ROS

communication stack including messages, topics, and services. The agent and the

environment will each be wrapped inside a ROS node where they subscribe to the

topics of interest and connect to the services they require. For example, an embod-

ied agent requires sensor observations from the environment in order to produce

actions, and the environment will have new information about its states after the

agent has taken an action. In this case, we put the agent inside a ROS node so it can

publish its actions to a ROS topic and the environment (also encapsulated in a node)

can extract the actions from that topic. Observations are also exchanged in such

a manner. Since there is no direct communication required between the agent and

the environment, each of them can run independently using their original technical

setup and all of the information exchange happens through the interface. Addi-

tionally, other nodes can be added to help process the data shared via the topics to

make the interface more flexible. One can easily introduce an intermediate node

to map data that is not in the right format for the consumer (observations going to

the agent, or actions going to the environment). In this way, neither the agent or

the environment needs to be modified to handle new data types, maximizing their

re-usability.

3.3 Architecture
In this section, we elaborate how the ros_x_habitat interface bridges the four

concepts introduced in Section 3.2. We present three operating modes, each a
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representative use case of our interface.

Figure 3.1: The architecture of ros x habitat under each of the three op-
erating modes. For simplicity, we omitted auxiliary nodes, topics, and
services; for example, topics and nodes performing mapping actions un-
der operating mode (b).

3.3.1 Bridging Communications Only

In this mode, our interface only serves as a communication middleware. Specif-

ically, the agent and the environment are each encapsulated inside a ROS node

designed for the interface. The actions and the observations are published to their

corresponding interface topics. In this way, no direct communications occur be-
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tween the agent and the environment. Figure 3.1(a) shows a Habitat agent nav-

igating in a Habitat Sim-rendered scene, with or without physics, through ROS.

It should be noted that this mode is not an expected use-case of the interface for

external users, as it would be more efficient to connect Habitat agents directly with

Habitat Sim through the existing AI Habitat interfaces. Instead, this mode is in-

tended for testing the effect of the interface on performance and execution time.

3.3.2 One-way Data Processing Support

To the features of the communications only mode we add observational data con-

version nodes so that a different agent can use the converted data to produce ac-

tions. In the specific case shown in Figure 3.1(b), the ROS planner being used

expects laser scan readings as input, but Habitat Sim supports only a depth camera

sensor. We use a standard ROS package [1] to convert the depth image data to a

pseudo laser scan. However, the data conversion is one-directional in this mode

since only the observations are converted with the support of our interface.

3.3.3 Two-way Data Processing Support

Of course, transformations can be applied to communications in both directions.

As an example, Figure 3.1(c) shows a discrete action Habitat agent navigating in a

Gazebo-rendered scene. Intermediate nodes are added to convert Gazebo’s sensory

data into formats that the Habitat agent expects, and to convert the Habitat agent’s

action outputs into the continuous velocity commands that the Gazebo embodiment

asset expects.
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Chapter 4

Experiments on Operating Modes

In this chapter, we conduct experiments in each of the operating modes introduced

in Section 3.3. Section 4.1 will focus on studying the performance impact brought

by our interface. Sections 4.2 and 4.3 will showcase how the interface can support

different combinations of Agents and Simulators.

4.1 Navigation of Habitat Agents in Habitat Sim
A ROS bridge for the Habitat platform would be ineffective if it significantly de-

grades the performance of the Habitat components or it cannot use the new physics

simulation capabilities of Habitat v2. Here we ask two research questions, aiming

to explore the performance impact brought by the ros_x_habitat interface. To

answer the research questions, we must first evaluate the Habitat v2 RGBD agent

[35] on the PointGoal navigation task (in which the agent navigates from an initial

position to a goal position [31]) over 1,008 episodes (an instance of the task) from

the Matterport3D test set [9]. An episode ends after the agent issues the STOP

command or the agent has taken 500 steps. Finally, we reflect on and analyze the

results to give answers to the research questions.

4.1.1 Research Questions

1. (RQ1) Given a Habitat navigation agent that was trained in Habitat Sim
without enabling physics, how will this agent perform when physics is
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turned on? Having a Habitat agent’s discrete actions (e.g. TURN LEFT,

TURN RIGHT, . . . ) converted to a sequence of velocity commands allows

us to leverage Habitat Sim’s physics engine (i.e. Bullet Physics [11]) to

simulate the actuation process in a more realistic fashion. We would like to

measure how much of an impact physics has on navigation performance and

execution speed.

2. (RQ2) Does the ROS middleware impair navigation performance or in-
troduce excessive run-time overheads? First, we would like to verify that

adding the ROS interface as a middleware does not negatively impact a Habi-

tat agent’s navigation performance within Habitat Sim. Second, we would

like to measure how much ROS overhead impacts the execution speed of the

task (including both agent and simulation components).

Note that these research questions and the experiments performed in this sec-

tion are not an expected use case for ros_x_habitat; after all, running a Habi-

tat agent in Habitat Sim is precisely what AI Habitat is already designed to do. The

expected use cases of ros_x_habitat for robotics researchers are demonstrated

in Sections 4.2 and 4.3.

4.1.2 Methodology

Evaluation metrics. We employ the Success Weighted by Path Length (spl)

metric to evaluate the RGBD agent’s navigation performance in each episode [31,

35]. This metric lies in the range [0,1] and measures the length of the traversed

path relative to the shortest path from the source to the destination. An spl closer

to 1 implies a shorter path and thus better performance. Failure to reach the goal is

defined as an spl of 0.

To capture our interface’s impact on execution speed we implement a set of

timing measurements so that we capture the impact on individual components as

well as the overall execution:

1. Per-step agent time (agent_time): Given sensor data as input, the CPU

time used by a Habitat agent to produce an action.
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2. Per-step simulation time (sim_time): Given an action from the agent as

input, the CPU time used by Habitat Sim to update the world.

3. Total running time (running_time): The total wall clock time of eval-

uating an agent’s navigation over all 1,008 episodes. This metric not only

accounts for the agent’s action time and the simulator’s step time but also

all of the computational overheads, such as initialization and inter-process

communication.

Experiment configurations. We conducted our experiments on four configu-

rations in order to independently observe the impact of introducing physics-based

simulation and adding ROS.

1. -Physics & -ROS. We have the Habitat RGBD agent actuate in its de-

fault, discrete action space without using the ROS middleware, and we run

Habitat Sim without physics turned on. This setting is the configuration in

which the agent was trained, and serves as a baseline for our experiment.

2. +Physics & -ROS. We enable physics-based simulation, but do not use

ROS. We explain below what the physics-based simulation entails.

3. -Physics & +ROS. The Habitat RGBD agent communicates with Habi-

tat Sim through the ROS interface, as shown in Figure 3.1 (a). The agent still

navigates using its discrete action space, and the simulation is run without

physics.

4. +Physics & +ROS. The combination of the previous two settings.

Physics-based simulation and mapping from discrete to continuous action
space. What do we mean by physics-based simulation in the context of Habitat

Sim? Table 4.1 summarizes how Habitat Sim operates with and without physics,

where:

• The 3D asset we attached to our agent is the LoCoBot model provided in

Habitat Sim’s code base [31].

• An action step is defined as one update of the world’s state due to the agent

completing an action in a discrete time simulation without physics.
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Table 4.1: Habitat Sim with and without Physics

Agent’s Geome-
try

Agent’s Physical
Properties

Simulation of Motion

Simulation
without
physics

A cylinder 0.1m
in radius, 1.5m in
height

Friction coefficient
is undefined; mass
defined but not used
for simulation

World state advances
by one action step for
each discrete action
simulated; for each ac-
tion the agent is trans-
lated or rotated instan-
taneously; no forces
simulated.

Physics-
based
simula-
tion

Defined by the
3D asset attached
to agent’s scene
node

Friction coefficient
is defined; mass is
defined and used to
compute dynamics

World state advances
by one continuous
step for each velocity
command; gravita-
tional and frictional
forces fully simulated.

• A continuous step is defined as the advancement of the world’s state over a

predefined time period ( 1
60 second in our experiments) in a continuous time

simulation with physics.

Since the simulated robot embodiment in the physics-based simulation expects ve-

locity inputs, we convert the RGBD agent’s discrete actions into a sequence of

velocity commands using Algorithm 1, where

• control period is a user-supplied parameter and defines the time in seconds

it takes an agent to complete a discrete action (set to 1 in our experiments);

• steps per sec defines the number of continuous steps Habitat Sim advances

for each second of simulated time (set to 60 in our experiments);

• the angular velocities are measured in degrees / second; and

• the linear velocities are measured in meters / second.

The problem of reproducibility. Given sensor observations as input, Habitat’s

reinforcement learning agents use a neural network to generate an action; however,

the action is chosen non-deterministically by default: The output action is sam-

pled from the entire action space, with each action’s probability of being sampled
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Algorithm 1 Convert a discrete action to a sequence of velocities, then simulate
the action with physics.

Require: a discrete action as one of the following: move forward,
turn left, or turn right

1: initialize linear velocity, angular velocity as zero vectors
2: num steps = control period · steps per sec
3: if action == move forward then
4: linear velocity = [0.25/control period,0,0]
5: else if action == turn left then
6: angular velocity = [0,0,10.0/control period]
7: else if action == turn right then
8: angular velocity = [0,0,−10.0/control period]
9: end if

10: for count steps = 1,2, . . . ,num steps do
11: env.step physics((linear velocity,angular velocity))
12: end for

equal to its confidence score from the last layer. Sampling is implemented with

a standard pseudo-random number generator, so we can impose determinism and

achieve reproducible results by fixing the random number generator’s initial seed.

In order to build confidence that the choice of initial seed does not impact

experimental outcomes too significantly, we ran the -Physics & -ROS config-

uration (the fastest, since it does not include physics or ROS) using ten randomly

chosen seeds. The variability in navigation and timing metrics between seeds was

dwarfed by the variability between scenarios, so for the remaining (slower) config-

urations we ran only a single seed.

4.1.3 Results and Analysis

We return to the questions posed in Section 4.1.1.

(RQ 1) Given a Habitat navigation agent that was trained in Habitat Sim
without physics, how effective is it when physics is turned on? Comparing

subplots (a) and (c) in Figure 4.1 we can see the effect that enabling physics has

on the distribution of spl over the 1,008 episodes. We see that the number of

failed episodes (those with spl = 0.0) increased (by 129 or roughly 30%) after

we mapped actions to velocities and introduced physics-based simulation, but the
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Figure 4.1: Distribution of spl under the four experimental configurations.
Failed episodes have spl at 0.

average spl only dropped slightly (from 0.495 to 0.480). We then visually ex-

amined the 129 episodes in which the agent navigated successfully in the discrete

action space but failed in the continuous action space. Four causes of failure came

to our attention:

• Mesh cavity. This term refers to empty regions in a Matterport3D scene in

which mesh vertices and surfaces are undefined. Because the agent visits

many more states when physics is turned on—it must traverse intermediate

states during any motion, rather than just jumping to the final state—it is

more likely that an agent will blunder into one of these cavities. We found

15/129 failed cases in which the agent walked into a mesh cavity and was

not able to get out and resume its original course.

• The robot is stuck. By “stuck” we mean the agent is not able to move forward
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but remains within the scene; for example, trapped against the corner of a

table. The majority of the episodes (80/129) failed for this reason. While

some of these failures were to be expected when an agent trained without

friction or inertia suddenly has to deal with them, in some episodes the agent

was stuck because the agent’s movement is constrained to two dimensions

by our implementation of Algorithm 1: It was not able to climb stairs when

move_forward is converted into a sequence of planar velocities. This

problem does not appear to manifest in the discrete-time / non-physics mode

of Habitat Sim: the agent is automatically teleported to the correct height for

whatever planar position it should occupy.

• The agent issued the STOP action at a distance close to the goal but slightly

larger than 0.2m and was thus considered to have failed. This category in-

volved 9/129 cases.

• The agent chose a poor path and was unable to achieve the goal within 500

steps, This category involved 25/129 cases.

Figures 4.2, 4.3 and 4.4 show timing results. Our summary is as follows:

• The per-step simulation time increased significantly with physics enabled

(see first and third box plots in Figure 4.2). The average increased by roughly

a factor of five from 0.063 to 0.337 per (action) step. The increase is due to

the added computational cost incurred by Habitat Sim when a single discrete

action is divided into num steps (60 in this experiment) continuous steps

when physics is enabled (see Algorithm 1).

• The per-step agent time has nearly identical distributions without or with

physics-based simulation (see first and third box plots in Figure 4.3). The

averages for these two configurations are 0.053 seconds and 0.054 seconds

respectively.

• The total running time of +Physics & -ROS is about eight times that of

-Physics & -ROS (see first and third bars of Figure 4.4). Aside from

the increased per-step simulation time, extra time was required for simula-
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Figure 4.2: Distribution of per-step simulation time under the four exper-
imental configurations. Each dot represents the result for a single
episode. The box plot shows the boundaries between the quartiles.

tor reset (to load and delete physics-based object assets and reconfigure the

simulator).

Given the minor gap in navigation performance and the significantly longer

run-times for the physics-based simulator, this experiment further bolsters the claim

that training RL agents in a discrete action space can be more cost effective [25],

and that physics need not be turned on until validation or even final testing.

(RQ 2) Does the ROS middleware impair navigation performance or in-
troduce excessive run-time overheads? In terms of navigation performance, once

we removed non-determinism from the system by fixing the random seed value we

were able to show that the introduction of ROS did not affect navigation perfor-

mance at all, regardless of whether physics was enabled: Once ROS was intro-
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Figure 4.3: Distribution of per-step agent time under the four experimental
configurations.

duced, each episode had the exact same number of steps and the SPL discrepancies

were at the level of floating point round-off. Comparing the distributions in the left

and right columns of figure 4.1 shows the latter effect qualitatively.

We now analyze the execution time:

• Both per-step simulation time and per-step agent time dropped(!) after we

introduced ROS (see Figures 4.2 and 4.3), regardless of whether physics sim-

ulation was enabled or not. We are quite surprised by this outcome, as we

did not anticipate that encapsulating either the agent or the simulator inside

a ROS node would affect its execution time. Since encapsulation in ROS

nodes changes the set of processes on the computer, we hypothesize that the

difference may be due to changes in how the operating system is scheduling

execution, although we have confirmed that all processes involved are exe-

cuting at the same OS priority level. These measurements deserve further
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Figure 4.4: Total running time under the four experimental configurations for
all 1008 episodes.

investigation.

• Figure 4.4 shows that the total running time increases by roughly five times

from -Physics & -ROS to -Physics & +ROS, but only moderately

from +Physics & -ROS to +Physics & +ROS. The increases in total

running time are due to the overheads from inter-process communication be-

tween ROS nodes, as well as intra-process communication between threads

running various service handlers and subscriber callbacks within each node.

4.2 Navigation of ROS-based Planners in Habitat Sim
For robotics researchers interested in designing and testing navigation algorithms—

be they classical or RL-based—we believe that this configuration of ros_x_habitat

will be the most useful, as Habitat Sim provides a novel, high speed, photorealis-

24



Figure 4.5: ROS-based planner move base navigating in Matterport3D
scene 2t7WUuJeko7 simulated by Habitat Sim. (a) The agent’s fi-
nal position overlayed on top of the map built by rtab map ros. (b)
Top-down map of the scene from Habitat Sim. The blue curve indicates
the agent’s trajectory. The agent’s starting position is marked in blue;
final position is marked in yellow; and goal position is marked in red.

Figure 4.6: ROS-based planner move base navigating in Matterport3D
scene RPmz2sHmrrY simulated by Habitat Sim. (a) The agent’s fi-
nal position and laser-scanned map. (b) Top-down map from Habitat
Sim.
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tic simulation environment in which to test such algorithms. In this section we

do not intend to show the merits of a particular mapping, planning and/or naviga-

tion system, but simply that some standard packages from ROS can be easily and

successfully connected to Habitat Sim v2.

First, we mapped two scenes from the Matterport3D dataset with rtab_map_ros

[22]. Second, we attached the LoCoBot [31] asset to the agent in Habitat Sim, as

we did to Habitat agents navigating in Habitat Sim with physics enabled. Finally,

we manually set a goal position for the move_base [3] planner. Figures 4.5 and

4.6 show the generated map (left) and ground-truth map (right) overlaid with the

final agent position and sensor readings (left) and path (right) for the two scenes.

The planner failed to reach the goal in Figure 4.5 but succeeded in Figure 4.6.

We observed during the simulations that the agent often had a hard time local-

izing itself, especially in cluttered regions. We expect that with some tuning of the

mapping, planning and navigation algorithms’ parameters we could achieve better

performance.

4.3 Navigation of Habitat Agents in Gazebo
For RL researchers interested in testing their agents on real robots, this configu-

ration demonstrates the benefits of ros_x_habitat. Researchers familiar with

ROS know that despite the significant sim2real gap in the Gazebo simulator, it can

be an effective first target during design and testing because it will expose whole

classes of common design bugs, such as incorrectly typed or connected data flows,

coordinate transform errors, and gross timing issues.

In that vein, although we do not demonstrate a Habitat agent connected to a

physical robot, by demonstrating a Habitat agent connected to Gazebo we show

that ros_x_habitat can allow connection of Habitat agents to other simula-

tion environments with ROS bridges, and that connection of a Habitat agent to a

physical robot can be performed without the kinds of common design bugs men-

tioned above. Note that we do not expect the Habitat agent to perform particularly

well in this Gazebo environment since it was trained in Habitat Sim environments

providing much richer visual and geometric cues.

We use the House scene from the turtlebot3_gazebo package [4] (Fig-

26



Figure 4.7: The House scene from ROS package turtlebot3 gazebo.
a) a view of the scene in 3D; b) a map scanned from the scene using
hector mapping [20].

ure 4.7) to build three navigation episodes of increasing path length as shown in

Figure 4.8. Then we instantiate a Habitat v2 RGBD agent inside each episode, and

let it navigate until it reaches the goal or has generated 500 actions. Since we only

intend to show that this configuration works, we do not report quantitative metrics

such as spl or sim_time for these episodes. We see that the agent succeeded in

the two shorter of the three episodes, although in the middle episode the agent took

a path much longer than needed.
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Figure 4.8: Maps showing the Habitat v2 RGBD agent navigating in three
episodes. The blue spheres indicate the starting positions of each
episode; the red spheres indicate the goal positions of each episode.
The green curves represent paths traversed by the agent.

28



Chapter 5

Training of a Habitat Agent using
the interface

In this chapter, we explore an example of what we expect would be a more common

use case of the ros_x_habitat interface: Training and evaluating an agent for

a novel navigation task in the Habitat environment. Specifically, we generalize the

PointGoal navigation task discussed previously to a multiple or “one-of” point goal

navigation task where the agent must navigate to any one of a collection of goal

locations. In this case the goals are potential safe docking locations around tables,

and are generated by a separate, recently developed computer vision pipeline [37].

We train a PPO (Proximal Policy Optimization) [32] RL agent to accomplish this

task using Habitat’s training infrastructure and evaluate the agent’s performance

using the ros_x_habitat interface.

5.1 Multiple PointGoal Navigation
For the PointGoal task defined in [31], an agent is initialized at a random starting

position and orientation in an environment, and must navigate to within a proximity

threshold of a target location. The coordinates of this target relative to the agent’s

position are provided before each step. In this section, we generalize this “single”

PointGoal navigation task to a navigation task with multiple possible goals. Multi-

ple goals can represent many meaningful navigation tasks in real life; for example,
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a delivery robot could choose the next delivery location from among the packages

that it carries based on a variety of criteria.

For our purposes, we define the multiple PointGoal navigation task with the

following components:

1. Goals: a set of targets defined as 3-dimensional positions (without head-

ing).

2. Start Position: the position where the agent is initialized to be at the

start of each simulation.

3. Success: a success is achieved whenever the agent navigates to within a

proximity threshold of any one of the Goals.

The motivation for this task is an agent for autonomous navigation of a smart

wheelchair. A common activity of daily living for users of powered wheelchairs is

to approach, or “dock”, with a table or desk so that the horizontal surface can be

used for manual activities such as eating or writing. To solve this problem we need

to generate PointGoals next to tables and desks in the Habitat Sim environment so

that we can annotate training data with multiple goals and train the agent to perform

the multiple PointGoal navigation task. In the next section we discuss how we use

a computer vision pipeline along with a data collection node via the interface to

generate docking locations for each simulation scene in which there is a suitable

table or desk.

In addition to the set of target locations, training an agent for the multiple

PointGoal navigation task requires the definition of a new sensory metric by which

the agent gains knowledge about this set. Although not necessarily the most ef-

fective or realistic metric, we choose the simplest extension to the metric used

by the single PointGoal task: Before each step the agent is told the relative co-

ordinates of the nearest target in the set. This data is delivered in the form of

two values: distance to goal and goal position. To compute these two values,

we implement a MultiPointGoalSensor with Algorithm 2. We use Habitat Sim’s

built-in is navigable function and path finder class to determine whether a posi-

tion is navigable and whether there exists a path between two positions. We also

use Habitat Sim’s compute point goal function to compute the goal’s position in
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the agent’s coordinate frame. Finally, we calculate the distance to goal from the

closest goal position. As Habitat Sim cannot handle goals that are unreachable

at runtime, we ignore any such docking locations during an episode, and imple-

ment a simple but effective fallback mechanism in lines 8–10 to avoid crashes if

all docking locations are discarded: If none of the docking goals we generated are

reachable, we add the episode’s original single PointGoal to the current training

episode. This goal is guaranteed to be reachable as the authors in [31] manually

generated the goals and made sure they are reachable from all valid starting loca-

tions. Although this fallback choice will not directly improve the agent’s ability

to navigate to a docking location, it will favour actions which cause the agent to

navigate to a specified location (and will avoid the need for a costly training run

restart).

Algorithm 2 Given a list of pre-defined goals from each episode, compute the
nearest goal location

Require: a list of PointGoal in the form of 3-dimensional positions [x, y, z]
1: initialize valid goals as an empty list
2: initialize agent position and agent rotation with the current agent states
3: for each G in input list of PointGoal do
4: if G is at a navigable location and agent position has a path to G then
5: add G to valid goals
6: end if
7: end for
8: if valid goals is empty then
9: add original goal to valid goals

10: end if
11: initialize minimum distance to goal to MAX FLOAT
12: initialize closest goal to an empty 3D vector
13: for each goal V G in valid goals do
14: magnitude o f path = ShortestPathLength(agent position, V G)
15: if magnitude o f path < minimum distance to goal then
16: closest goal = V G
17: minimum distance to goal = magnitude o f path
18: end if
19: end for
20: return compute point goal(closest goal, agent position, agent rotation)
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5.2 Data Collection and Goal Generation Method
To quickly annotate training data with docking locations around tables and desks,

we must reduce the manual work involved. Thukral [37] trained a computer-vision

based network to automatically detect tables / desks from point cloud data and then

generate suitable docking locations around them. The ROS architecture makes it

easy to add data collection nodes through ros_x_habitat and thereby collect

depth image data from Habitat Sim and convert this data into point clouds. After

we have the point cloud data, it is straightforward to automate the goal generation

process either at runtime or as a preprocessing step offline. Figure 5.1 shows how

the point cloud saver node is added into a design which allows users to drive

freely through the Habitat Sim environment.

With the above framework, we can easily drive through the training scene

datasets used in the original Habitat work [31] looking for tables or desks, and

then automatically generate parking positions for any we find. Figure 5.2 shows an

example depth image that we collected through this interface, which is then con-

verted to point cloud format and saved. Finally, we use the network trained in [37]

to generate the 3D parking locations shown in Figure 5.3. Additional examples of

tables we found in the Matterport3D scenes dataset can be found in Appendix A.

In order to reduce training time, we choose to generate the docking locations

as a preprocessing step and modify the episode metadata from Habitat Sim v1 to

include the new docking locations. We reuse the start_positions for the

agent, and filter out all scenes which do not contain a table or desk, as well as all

episodes where the start position and docking locations are not on the same floor.

5.3 Training of a Habitat Agent
As we did in Chapter 4, we use the Matterport3D scene datasets for the training and

evaluation of a PPO RL agent. We train this PPO agent using Habitat-lab, which as

previously mentioned, is a modular high-level library for end-to-end development

in embodied AI. For this task, scenes are only relevant if there is a table or desk;

therefore, after carefully reviewing the 61 scenes in Habitat’s Matterport3D train-

ing datasets we select a total of 12 scenes that have tables and desks in them. There

are a few scenes containing tables or desks that were not included because of
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Figure 5.1: Architecture of Point Cloud Data Saving Process.
We had already developed a design which allowed users to navigate
freely through any Habitat Sim environment using a joystick for testing
and debugging purposes. A single new node (bottom right) was added
to listen to the existing depth sensor topic and save point clouds to disk.
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Figure 5.2: Example of a depth image collected in front of a table from the
Matterport3D scene dataset.

• bad mesh quality in the vicinity of the table or desk which works poorly with

the Goal Generation Method we built in Section 5.2 or

• the table or desk is in a position which is visible but to which the agent

cannot navigate due to other obstacles.

Knowing that our computational resources are rather limited to compared to those

used in [31] and [35], we pick docking locations around only a single table or desk

in each scene.
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Figure 5.3: Example of docking locations surrounding a table from the Mat-
terport3D scene datasets. The small red dots indicate docking locations
that appear to be free of collision.

5.3.1 Training Configuration

We configure Habitat-lab’s PPO trainer to use the following parameters:

RL:

PPO:

# ppo params

c l ip param : 0.2

ppo epoch : 4

va lue l oss coe f : 0.5

en t ropy coe f : 0.01

num mini batch : 2

l r : 2.5e−4

eps : 1e−5

max grad norm : 0.5

num steps : 128

h idden s ize : 512

use gae : True

gamma: 0.99

tau : 0.95

u s e l i n e a r c l i p d e c a y : True

u s e l i n e a r l r d e c a y : True
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reward window size : 50

use doub le buf fered sampler : False

The agent itself is configured to have both a RGB SENSOR and a DEPTH SENSOR
of dimension 256 * 256. We limit each training episode to a maximum of 500 sim-

ulation steps and use a success proximity threshold of 0.2 meters, as was used for

the single PointGoal agent training.

5.3.2 Training Process

Training is performed on a desktop PC running Ubuntu 20.04 with an Intel®

Core™ i7-10700K CPU @ 3.80 GHz with 16 cores, 64 GBs of RAM, and a Zotac

RTX 3070 GPU with 8 GB memory. The total number of simulation steps we allo-

cate for the training process is 75 million, and these are taken in a total of 474,837

episodes from the 12 scenes we selected.

With 4 Habitat simulation environments running in parallel the training process

took roughly 60 GPU hours. We collected the SPL and success rate of the agent

while it was being trained. Figure 5.4 shows the evolution of these metrics with

respect to the number of training steps. Performance improves steadily through

the first 20 million steps but plateaus after that; in fact, performance occasionally

suffers temporary declines beyond 40 million steps.

5.4 Evaluation of the Trained Agent
To evaluate the agent we apply the Data Collection and Goal Generation Method

we designed in Section 5.2 to the test set. Our objective is to demonstrate that we

can train an agent to complete a novel task using the ros_x_habitat interface

(in this case it was used to collect training data). Given our limited computational

resources and hence limited number of training steps, we do not expect the agent’s

performance to be particularly impressive.

Because we are not seeking to accurately measure the performance, we use

just 4 scenes from the Matterport3D test datasets for our evaluation. After goal

generation and annotation, we have a total of 152 episodes for testing. We again

choose a fixed seed for random number generation (in this case the value 7) to

ensure reproducibility.
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Figure 5.4: SPL and Success rate metrics v.s. the number of simulation steps
in training

We collect the same metrics from the experiments as in Chapter 4. Specifi-

cally, we run the test cases with and without ROS serving as the communication

channel between agent and simulation. As Figures 5.5 and 5.6 show, we observe

no difference in the performance values with or without ROS.

Additionally, we include two top-down maps of test episodes as examples of

how the trained agent navigates in the Multiple PointGoal Navigation task. Fig-

ure 5.7 shows a successful test navigation and Figure 5.8 shows an unsuccessful

example.
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Figure 5.5: SPL of the trained Multiple PointGoal PPO agent in two test-time
configurations. Note that agent training was completed without ROS to
maximize training throughput.
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Figure 5.6: Number of simulation steps the trained Multiple PointGoal PPO
agent took in the two test-time configurations.
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Figure 5.7: Successful Multiple PointGoal Navigation in scene
2t7WUuJeko7. Potential docking locations are red boxes. Agent path
starts from blue box and follows blue line. “Optimal” path for SPL
calculation is shown as green line.
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Figure 5.8: Failed Multiple PointGoal Navigation in scene jtcxE69GiFV.
Potential docking locations are red boxes. Agent path starts from blue
box and follows blue line. “Optimal” path for SPL calculation is shown
as green line.
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Chapter 6

Conclusion

We presented a software interface that bridges the AI Habitat platform with ROS

middleware. Through this interface, researchers can benefit from easy-to-use and

lightweight inter-process communication so that they can train/develop/test their

embodied agents in both established simulators such as Gazebo or the state-of-

the-art Habitat Sim. Although we demonstrate only two simulator options in this

work, our design allows easy integration of additional platforms including physical

robots. Last but not least, we explore an example of the interface’s utility by show-

ing how researchers can easily add a customized ROS node to collect and process

data.

Using established metrics, we show that our interface introduces no impact

on the navigation performance of embodied agents in the discrete action space and

physics-free environment in which they were trained, and has a moderate execution

time overhead. Furthermore, we show that if the same agents are evaluated in

continuous time with physics enabled, the performance degradation is surprisingly

modest, although the simulation speed is significantly longer.

To show the flexibility of our interface, we also demonstrated how the Habitat

trained agent can be used in a Gazebo simulation environment, and how a classical

ROS navigation stack can be used in the Habitat Sim environment.
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6.1 Future Work
The original plan for this work was to demonstrate a Habitat trained agent embod-

ied in a physical robot through ROS. Unfortunately, pandemic safety concerns did

not allow access to suitable hardware until after the experimental component of the

work was completed. Nevertheless, such a demonstration remains at the top of our

future goals.

One of the key benefits of a machine learning approach to robot control is the

ability to train agents for a variety of tasks. There is no reason that ros_x_habitat

could not be used for tasks more general than basic navigation; for example, the

agents trained for the Pick Task from [35].

Of course, agent training needs training data. Habitat Sim allows access to

a huge collection of suitable environments, but it is not the only possibility. We

would like to take advantage of ros_x_habitat to bridge to other ROS con-

nected simulators and thereby access a wider variety of 3D assets and scenes.

Simulators such as Isaac Sim [27] can also offer state-of-the-art photorealistic and

physically realistic environments. We would be interested in seeing Habitat agents

being trained in such environments for better navigation performance.
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Appendix A

Images Collected From Training 
Datasets
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Figure A.1: A table from the training dataset used in Chapter 5
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Figure A.2: A table from the training dataset used in Chapter 5
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Figure A.3: A table from the training dataset used in Chapter 5
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Figure A.4: A table from the training dataset used in Chapter 5
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Figure A.5: A table from the training dataset used in Chapter 5
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