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Abstract 

 

    Interrupted time series design has been widely applied to assess the causal effectiveness of an 

intervention. This thesis investigates potential estimation and modelling challenges that arise 

from interrupted time series (ITS) studies. Specially, for studies that may involve delayed effects 

and phase-in periods. A phase-in period is a special form of delayed intervention effect where the 

full effect occurs sometime after intervention. Through a simulation study, this thesis proposes 

various applicable analytical strategies for phase-in periods and highlights the different casual 

effects that they referred to. This thesis concludes that multiple counterfactual assumptions may 

exist, and different analytical strategies lead to different causal effects. Researchers should be 

cautious about forming their counterfactual assumptions and picking the appropriate analytical 

strategy accordingly. 
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Lay Summary 

 

    Interrupted time series is a technique that often applied to assess the effectiveness of 

interventions, such as political policies. This technique is relatively straightforward and 

powerful. However, it relies on implicit assumptions. Phase-in period refers to a typical violation 

of the assumption that intervention may involves some time in order to be implemented or to 

take effect, although the classic interrupted time series framework assumes the intervention 

would be implemented instantly. This thesis aims to investigate any inferential issues that may 

arise with such delayed intervention effects. With these findings, researchers could enhance their 

understanding in how interrupted time series framework could be applied more robustly. 
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Chapter 1: Introduction 

 

This thesis investigates the features and modelling challenges that arise from the phase-in 

period in the interrupted time series (ITS) design. ITS has been a popular quasi-experimental 

method for determining the degree to which an intervention shifts the underlying trajectory of an 

outcome (Morgan & Winship, 2015). With the expectation of an intervention effect, the 

observations are hypothesized to have a different slope or level from the outcome trajectory than 

those before intervention (Shadish, et al., 2002). The term level and slope changes originates 

from the general practice of fitting a linear line to the outcome trajectory, and level change often 

represents a discontinued shift at the time of intervention, while slope change generally denotes a 

modification of long-term trend because of the intervention. Figure 1.1 includes a simple 

illustration on level and slope changes. 

A phase-in period is a special form of delayed intervention effect where the full effect occurs 

sometime after intervention, instead of right after intervention. Despite the fact that this 

terminology is being used by a growing number of academics, to the best of my knowledge, 

there is still no clear definition, characteristics, and best practices for phase-in periods in ITS 

studies. 

The purpose of this thesis is to highlight the fact that multiple counterfactual assumptions may 

exist, formally define the phase-in period, and conclude on how different analytical strategies 

could result under different circumstances.  
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1.1 Background 

A quasi-experiment is an empirical and interventional research that uses non-random 

assignment to quantify the causal impact and test causal hypotheses of an intervention on the 

target population (Shadish, et al., 2002). Due to the lack of experiment control, the primary issue 

in this technique is the impossibility to observe the same individual or unit of observation in both 

intervention and control stages (Morgan & Winship, 2015). A time series is a set of observations 

made on the same variable over a period of time that is ideally evenly spaced. Time series quasi-

experiments were initially proposed by Campbell and Stanley (1963). With this framework, it is 

feasible to monitor the same individual or unit at multiple periods in time (Brockwell & Davis, 

2009), and the key is to know the precise time point at which an intervention occurred (Shadish, 

et al., 2002). The causal effect of an intervention is then expressed as the estimated difference 

between the pre-intervention and post-intervention time series; or, from another perspective, it is 

the difference between the counterfactual (unobserved potential outcomes) and the true post-

intervention outcomes, with an arguably courageous assumption of potential outcomes being 

stable across time. If the intervention had an effect, the post-intervention observations may have 

a different level and/or slope than the pre-intervention data. 

ITS is a reasonable alternative to randomized controlled trials (RCT) under certain 

circumstances, and RCT have been regarded as the gold standard design for evaluating the 

effectiveness of an intervention (Bernal et al., 2017). Despite its obvious advantages, a 

randomized controlled trial may not always be an option due to cost, feasibility, ethical 

considerations or the necessity to evaluate an intervention retrospectively (Bernal, et al., 2017).  
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1.2 Terminologies 

In this sub-section, important terminologies in this thesis are introduced, including the idea of 

causal action, causal effect, counterfactual, delayed effect and phase-in period. 

 

1.2.1 Causal Action and Causal Effect 

In my opinion, a causal action is an action that directly created observable impact in some 

outcome measures, and this impact is the corresponding causal effect. Also, the magnitude of 

this impact is the causal effect size. For instance, if an investor holds some stocks and have 

decide to sell them, the action of selling would be the causal action, and the resulting profit or 

loss would be the causal effect. In addition, how much is the profit or loss relates to the causal 

effect size.  

 

1.2.2 Counterfactual 

    Counterfactual refers to “what-if” type of potential outcomes that exist in theory but cannot be 

directly observed. With the advancement of philosophy on counterfactuals and causations, the 

counterfactual models are widely applied to formulate precise causal hypothesis with specific 

counterfactual contrasts (Collins, et al., 2004). A generic hypothesis from such framework could 

be formulated as: if individuals with independent variable 𝑋𝑋 = 𝑥𝑥1 instead of 𝑋𝑋 = 𝑥𝑥2, how much 

would their dependent variable 𝑌𝑌 have changed. 

In ITS, counterfactual refers to the hypothetical scenario under which the prior trend would be 

assumed to continue without the intervention (Bernal et al., 2017). The causal impact is 

measured based on differences from the observed post-intervention and the unobserved 

counterfactual scenarios. Interestingly, in academia, researchers often think prospectively. 
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However, in real life, human being often thinks in both directions unconsciously. Back to the 

previous stock investor example, if this unlucky investor held a stock that was $3 on the first 

trading day, $2 on the second day, and $1 on the last, and he/she decided to sell this stock on the 

second day. on the last day, he could optimistically say that “I am glad that I had sold on the 

second day”, or pessimistically say that “I wish I had sold on the first day”. In this case, the 

causal action is selling the stock on the second day, the effect is making a profit, and the effect 

size is $2; With the optimistic view, the counterfactual (potential outcome) would be selling the 

stock on the last day, which would result in having $1. In contrast, the pessimistically 

perspective compared to the counterfactual of selling on the first day, which could lead to having 

$3. This discrepancy indicates that different counterfactual assumptions may result in different 

causal effects and causal effect sizes. 

 

1.2.3 Level Change and Slope Change Effect 

    The post-intervention time series may differ from pre-intervention time series in several ways, 

and the most common two are level/intercept change and slope/trend change. In general, level 

changes correspond to the abrupt (often discontinued) shift in the observed outcome shortly after 

the intervention; slope changes represent how the rate of change differs when compared a 

relatively longer period right before the intervention, with a similar length period right after the 

intervention. Thus, a level change focuses on short-term lift or drop of the outcome from any 

interventions, while a slope change emphasizes more on long-term trend shifts. I believe that the 

terminologies of level and slope originated in the fact that researchers most often adopt 

segmented regression analysis, which will be introduced in-depth in the later chapter. Since the 

intercept (level) and slope coefficients are the most important components to describe a linear 



5 

 

line, it makes sense to compare how much their intercept and slope coefficients differ in a 

segmented linear regression model. Level and slope changes are causal effects in ITS, and how 

much has changed refers to the causal effect sizes.  

 

Figure 1.1  

A Simple Illustration on Level and Slope Changes 

    

     

    As an illustration, consider the following hypothetical example series for pre-intervention: 1, 

2, 3, 4, 5, 6, 7, 8 and post-intervention: 7, 8, 9, 10, 11, 12, 13, 14. In these two series, we would 

expect the next value of the series to be 9 without intervention, however, we observed a value of 

7 instead, which resulted in a -2 point (i.e. =7-9) of level/intercept change. Also, as the rate of 

change stayed constant before and after intervention, there was no slope change. As another 

example where the pre-intervention series as: 1, 2, 3, 4, 5, 6, 7, 8 and post-intervention series as: 

9, 11, 13, 15, 17, 19, 21, 23. In the above series, the post-intervention series increased by 2 

points per unit, as supposed to only 1 in the pre-intervention series, which led to a double-sized 

slope/trend. In addition, the counterfactual assumed continuation of pre-intervention trend, and 
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would expect the first element of the post-intervention series to be 9, same as observed; thus, 

there was no level change. 

In the remaining chapters of this thesis, we will introduce two types of counterfactual 

assumptions as counterfactual from before (intervention) and counterfactual from after 

(intervention). The counterfactual from before assumes a continuation of the potential outcome 

prospectively; in our previous stock example, this would refer to assume the stock price would 

stay at $2 on the third trading day. In comparison, the counterfactual from after assumes the 

stock price would be $2 on the first trading day. The distinction of these two counterfactuals will 

be clear in later chapters through the simulation results.  

Interestingly, the above series could also be analyzed in a more counter-intuitive way, like the 

previous stock investor example. In comparison with assuming the counterfactual from pre-

intervention series, and calculating the causal effect from difference between the counterfactual 

outcome and observed outcome, it is also possible to assume the counterfactual from post-

intervention series, and ask what would happen if the intervention happened a unit earlier. The 

counterfactual outcomes in the last point of pre-intervention series would be 6 for the first 

example, and 7 for the second example. It is compelling to notice the difference in causal effect 

sizes from these two counterfactual assumptions. Nevertheless, only the counterfactual from 

before (e.g. assume the stock price would stay the same on the next trading day) were applied in 

academic settings, because this approach was more intuitive. Moreover, since level change 

casual effect only compares the counterfactual to adjacent outcome observations before or after 

intervention, the time intervals were short for any long-term trend shifts (slope changes) to create 

an impact. Therefore, the counterfactual from before and counterfactual from after approaches 

are not likely to create a significant difference for casual effect estimation in abrupt intervention 
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cases. However, things can be different when the intervention is not implemented abruptly, and 

this phenomenon will be further discussed in the later chapters. 

 

1.2.4 Delayed Effect and Phase-in Period 

    Effects in levels and slopes may be immediate or delayed, continuous or abrupt 

(discontinuous). Delayed effect refers to cases where the intervention effect does not occur 

instantly. Such effect may involve an implementation process with an unclear end date. Ideally, 

ITS is intended for immediate and abrupt interventions, and any distortion would cause 

problems. Specifically, if the effect spanned over a longer time period rather than instantly, the 

more threat on internal validity (i.e. does the causal effect estimation reflect the actual impact 

from intervention) it might impose; therefore, it would be challenging to separate the true 

unknown intervention effect from the chaotic observed change in the outcome, which might be a 

composition of true intervention effect, co-intervention (confounding) effect, pre-existing trend, 

random noise and so on. 

    However, in some situations, a delayed effect may also have a pre-existing or definable end 

date, and such situations are often named as phase-in period (also referred as roll-in or roll-out 

period). Specially, phase-in period is a special case of delayed effect when there is a clearly 

defined start and end date within which the causal effect takes place gradually. In other words, 

phase-in period represents when we know that the full intervention effect does not occur 

immediately after the intervention (e.g. due to implementation process, due to shortage of 

resources, unable to reach all the target population at once), but we also know the specific time 

where we would expect the full intervention effect to take place, and the time period between the 

start of intervention and the known time for the full intervention effect is phase-in period. For 
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example, if the research question is testing how Covid-19 vaccination has reduced hospital 

admission rate, it is possible to set the phase-in period to be between the beginning of first 

vaccination phase and the completion of the last vaccination phase. The end date could also be 

defined as when 80% of the population are vaccinated, if 80% is considered as a threshold of 

community immunity. Alternatively, the phase-in period can be specified by analysts based on 

the trend in observed time series. However, different analysts’ subjective judgement about the 

phase-in period could lead to different conclusions about the casual effect. As briefly in Chapter 

1.3, ITS studies often require strong assumptions to ensure internal validity. 

 

1.3 Threats to Internal Validity 

    Internal validity is the credibility of inference that the observed change implies a causal link 

from the manipulated variables; to support this assertion, researchers must show that there is no 

plausible alternative explanation (Shadish, et al., 2002). However, in quasi-experiments, such a 

claim is not always straightforward, because the observed change may have happened without 

the intervention. Table 1.1 lists some of the most prevalent threats to internal validity. History 

(also known as co-intervention) is the most significant threat in ITS. This may be a concern if 

another intervention occurred at the same time, resulting in indistinguishable effects. 

Instrumentation and selection are also significant threats, with the former occurring if 

administrative process for record keeping or data definition changes; the latter implying that the 

composition of experimental group may change abruptly at time of intervention if the 

intervention causes or requires attrition from the measurement framework (Shadish, et al., 2002). 

    Internal validity for ITS may be improved by using a variety of techniques. The most popular 

one is multiple baseline design, which has played a pivotal role in the development of 
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interventions in clinical psychology (Hayes, et al., 1999), education (Kratochwill, 2013), health 

promotion (Windsor, 1986) and reinforcement (Sidman, 1960). This technique is often 

implemented to include a no-intervention control group time series. As such, history is less of a 

concern because it is less likely that a co-intervention would occur and have a discretionary 

impact to make the two effects indistinguishable (Shadish, et al., 2002). Other methods for 

improving internal validity include introducing a second dependent variable that isn't anticipated 

to be impacted by the intervention, removing the intervention at a specific time, or adding 

multiple replications using an ABAB or ABBA design (Shadish, et al., 2002), where A and B 

typically denote treatment effect and placebo effect, respectively. 

 

Table 1.1  

Common Threats to Internal Validity (Shadish, et al., 2002) 
  
Ambiguous Temporal 

Precedence 

Lack of clarity about which variable occurred first may yield confusion about which 

variable is the cause and which is the effect. 

Selection Systematic differences over conditions in respondent characteristics that could also 

cause the observed effect. 

History Events occurring concurrently with treatment could cause the observed effect.   

Maturation Naturally occurring changes over time could be confused with a treatment effect. 

Regression When units are selected for their extreme scores, they will often have fewer extreme 

scores on other variables, an occurrence that can be confused with a treatment effect. 

Attrition Loss of respondents to treatment or to measurement can produce artifactual effects 

when systematically correlated with conditions. 

Testing Exposure to a test can affect scores on subsequent exposures to that test, an 

occurrence that can be confused with a treatment effect. 
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Instrumentation The nature of a measure may change over time or conditions in a way that could be 

confused with a treatment effect. 

Additive and Interactive 

Effects 

The impact of a threat can be added to that of another threat or may depend on the 

level of another threat. 

 

1.4 Purpose of the Thesis 

    This thesis advocates the investigation of characteristics and different analytical strategies for 

interrupted time series (ITS) design with a delayed effect from a phase-in period. To the best of 

my knowledge, there is currently no consensus regarding what a phase-in period is. As 

mentioned, the issues of validity are complicated and there is no universal guidance for 

evaluating validity. Thus, instead of dwelling on the issues of validity, this thesis assumes that all 

the validity requirements have been met and focus on providing some practical guidance for 

defining phase-in causal effect and the analytical strategies to evaluate it. To do so, I conducted a 

simulation study with the following foci: 

1. Describing the characteristics of phase-in periods with gradual implementation. 

2. Introducing various strategies of analyzing causal effect when there is a phase-in period.  

3. Exploring the potentially misleading conclusions from inappropriate analytical strategies. 
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Chapter 2: Literature Review 

 

2.1 Applications 

ITS has been widely used in various areas of research, including: political science (e.g. 

attorney advertising: Johnson, et al., 1993, community interventions: Biglan, et al., 2000, gun 

control: Carrington & Moyer, 1994; O'Carroll et al., 1991, human rights: Stanley, 1987, political 

participation: Seamon & Feiock, 1995), health science (e.g. Covid-19 related: Leske, et al., 2021; 

Pirkis, et al., 2021; Scortichini, et al., 2021; Hamadani, et al., 2020; Vokó, et al., 2020, 

epidemiology: Tesoriero, et al.,1995; medication use: Hawton, et al., 2013; Walley, et al., 2013; 

Derde, et al., 2014, Catalano & Serxner, 1987, surgery: Everitt, et al., 1990), economics (e.g. 

consumer behavior: Einav, et al., 2013, environmental risk analysis: Teague, et al., 1995, real 

estate values: Brunette, 1995; Murdoch, Singh, & Thayer; 1993, tax policy: Bloom & Ladd, 

1982,), education (e.g. educational evaluation: Somers, et al., 2013, education policy: Hallberg, 

et al., 2018; Bloom, 2003), and psychology (e.g. emotions: Fan, et al., 2019, spouse abuse: 

Tilden & Shepherd, 1987, substance abuse: Velicer, 1994). 

 

2.2 Studies with Clear and Unclear Intervention End Dates 

    In this sub-section, two example studies are included to highlight the difference between a 

clear intervention end date, with an ambiguous one. 

In the first study, Hankin et al. (1993) examined the impact of an alcohol warning label law on 

reducing antenatal drinking. Starting November 18, 1989, all containers sold or distributed had to 

include a warning label saying that drinking alcohol during pregnancy might cause birth defects. 

Hankin et al. (1993) used a sample of 12026 African-American women visited at a prenatal 
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clinic in Detroit between September 1986 and September 1991 to track monthly mean antenatal 

drinking scores, which represented how much alcohol was drunk in the two weeks leading up to 

their first prenatal appointment. The findings indicated that the label legislation had a small 

reduction of 0.28 on monthly mean drinking score, but there was a seven-month lag in the impact 

of the label, as shown in Figure 2.1. To back up their assumption about the transition phase, the 

authors collected information on label awareness, noticing a consistent trend until March 1990, 

four months after the label legislation went into effect. This delayed effect could be due to 

several factors. For example, the newly labelled containers would only appear on store shelves 

after the previous stock had been sold. For another example, it could take some time for people 

to become aware of the label and take actions accordingly. Although such a delayed impact is 

typical in ITS studies, there is still a lack of knowledge about its implication on inferences, as 

well as the best methods for dealing with it. 

 

Figure 2.1  

Monthly Mean of Antenatal Drinking Scores (Hankin, et al., 1993)
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As the intervention end date from Hankin’s study depended on their subjective observation 

from the outcome and interview information, in the following study, the end date was pre-

defined from the implementation process. Specifically, Lu et al. (2014) investigated a possible 

association between changes in young people’s antidepressant use with Food and Drug 

Administration (FDA) warnings and media coverages. The authors applied a quasi-experimental 

ITS design, and examined on abrupt rate changes of antidepressant dispensing, psychotropic 

drug poisonings and completed suicides. The time series of population rates were divided into 

three segments: pre-warning period (2000 Q1- 2003 Q3), phase-in period (2003 Q4 – 2004 Q4), 

and post-warning period (2005 Q1 – 2010 Q4). As a reference, FDA issued several health 

advisory warnings against the increased risk of suicidality from adolescent taking 

antidepressants. The phase-in period spanned the entire period of advisories, warning labels, and 

media coverages. Moreover, authors argued that excluding the phase-in period would 

accommodate the anticipatory response to the warnings, and thus resulted in a more reliable 

estimate on “full strength” effect from the policy (Lu, et al., 2014). As a result, the authors 

concluded on a 31% decrease of antidepressant use among adolescents, a 24.3% decline for 

young adults, and a 14.5% drop among adults, as shown in Figure 2.2. 

Figure 2.2  

Rates of Antidepressant Use for Adolescents, Young Adults, and Adults 
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Note. Top left graph is for children aged 10-17, top right is for young adults aged 18-29 and 

bottom is for adults aged 30-64 (Lu, et al., 2014). The darker gray period is the phase-in time. 

 

In conclusion, these two studies both discussed issues of delayed effects due to gradual 

implementation with relatively short but significant spanned periods. However, authors from the 

studies handled these circumstances differently. Hankin et al. (1993) used Box-Jenkins 

intervention model (gradual-start-permanent-duration model), where they hypothesized the label 

effect started gradually and had a permanent effect, also included the potential lagged period in 

their analysis. Their strategy involved fitting a model that consisted of two parts: an 

autoregressive integrated moving average (ARIMA)  model, and an intervention component. The 

intervention component measured impact from the label law, and the ARIMA model provided a 

smooth fit to the observations by adjusting from seasonality and other noises. However, the 

appropriateness of this model might be questionable, because impact from label law might be 

diminishing over time instead of being permanent. Moreover, as this model measured a gradual 

and long-term effect, the observed intervention effect might be mixed up with any overall trend 

(e.g. if people tends to consume more and more alcohol over time). In comparison, Lu et al. 

(2014) applied a classic segmented regression model, measured the abrupt change in 
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antidepressant use, with all the datapoints from phase-in period excluded in their model analysis. 

While the latter approach is more popular in ITS studies (e.g. Bou-Antoun, et al., 2018; 

Sruamsiri, et al., 2016; Leopold, et al., 2014; Bernal, et al., 2012; Garabedian, et al., 2012; 

Serumaga, et al., 2011), there is still a lack of explorations on examining its effectiveness. To 

solve this puzzle, a simulation study will be conducted in the later chapter to evaluate the 

appropriateness of this approach under different circumstances. 

 

2.3 Simulation Study 

Simulation studies are computer experiments that adapt pseudo-random sampling to generate 

data (Morris, et al., 2019). Because parameters are prespecified and known by the user, 

simulation studies provide a chance to evaluate the performance of statistical methods (Morris, et 

al., 2019; Burton, et al., 2006). For example, Hawley et al. (2019) investigated the statistical 

power to detect an intervention effect by varying the number of time points, average sample size 

per time point, average relative reduction post-intervention, intervention location in the time 

series, and reduction mediated via a slope change or level change. Turner et al. (2020) compared 

the performance of estimation methods for ITS, such as ordinary least square, Newey-West 

estimator, generalized least square, restricted maximum likelihood, and autoregressive integrated 

moving average model with varying level change, slope change, autocorrelation, noise, and 

number of datapoints. They also evaluated the Durbin-Watson (DW) test's ability in detecting 

autocorrelation. 
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Chapter 3: Methods and Results 

 

3.1  Study Design 

In this section, I will report a simulation study that aims to evaluate the aptness of six 

strategies for analyzing the causal effect in a phase-in ITS. Simulation design allows me to draw 

sample data from a population with known intervention effect, both in terms of level and slope 

changes, varies in sample size and effect size. The six analytical strategies for analyzing the 

casual effect are labeled as: (1) as abrupt at start, (2) as abrupt at end, (3) excluding phase-in 

period - before, (4) excluding phase-in period - after, (5) counterfactual from before, and (6) 

counterfactual from after. These six analytical strategies are applied to the simulated data, 

respectively to see whether each of the estimate of intervention effect is biased. The performance 

of each study is determined by comparing estimates of level and slope changes to the true 

parameters. 

 

3.2 Objective 

    The objectives of this study are as follows: 

1. To simulate the trajectories of ITS with gradual implementation in a phase-in period under 

various circumstances. 

2. To evaluate the estimates of causal effect by the six different analytical strategies at 

varying levels of effect sizes and sample sizes. 

3. To compare the difference in performance among the six analytical strategies with a level 

change in the population, a slope change, or both. 
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3.3 Parameters and Scenarios 

As described and justified in the following sections, this study investigates three population 

scenarios with varying parameters. 

 

3.3.1 ITS Scenarios 

    In this study, three ITS population scenarios were created under the assumptions that the total 

number of time points was 200, intervention started at time point 100, and the length of phase-in 

period was 20: 

Scenario-1: a time series with no prior trend and a considerable level shift but no slope change 

because of intervention. 

Scenario-2: a time series with a prior trend and a considerable level shift but no slope change 

because of intervention. 

Scenario-3: a time series with a prior trend, a slope shift because of intervention, and both 

with or without considerable level shifts. 

Table 3.1 visualizes the difference between three population scenarios.  

     

Table 3.1  

Type of Changes Comparison across the Scenarios  

 Pre-existing trend Level change Slope change 
Scenario-1    
Scenario-2    
Scenario-3  

 
 
 

 
 
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3.3.2 Simulation Design 

This section provides rationales for choosing the research settings for the simulations. 

• Total number of time points = 200. The number of time point (denoted as N) was 

controlled (do not vary) in this simulation. The choice of 200 time points is reasonable 

because it represents approximately 50 years if they are quarterly observations, 16 

years for monthly, and 4 years for weekly (weekly is often the lowest level of 

aggregation in ITS studies). Also, since modelling seasonality effects typically requires 

more than 2 years of data, N = 200 is relatively sufficient to provide any form of 

analysis (Wagner et al., 2002). In addition, Hawley et al. (2019) provided evidence that 

the number of time points may have the same effect on statistical power as the number 

of subjects (sample size, denoted as n) per time point; therefore, it is reasonable and 

more simplified to only include variation on n while having N as fixed.  

• Length of phase-in period. This factor was controlled in the simulation and was set to 

be 20. In many ITS studies that involve phase-in periods, the periods typically 

represent 7.5% to 25% of the total time, with a median of 11.3% (Bou-Antoun, et al., 

2018; Sruamsiri, et al., 2016; Leopold, et al., 2014; Garabedian, et al., 2012; 

Serumaga, et al., 2011). Accordingly, the phase-in period length was set to 20 (10%) 

out of the total 200 time points. 

• Number of subjects per time point (n). This was a factor to be examined in the 

simulation study and it had three levels of 20, 100, 1000. The gradual impact model 

assumes that intervention effect is implemented at a constant rate and this will be 

explained in detail later; as a preview, since the length of phase-in period was set to 20, 

with at least one subject intervened per time point, the minimum possible sample size 
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for 20 time points would be 20. In addition, group size of 100 and 1000 were also 

included to compare how would increasing number of subjects at each time point 

impact the estimations for level and slope changes. Based on the simulation study from 

Hawley et al. (2019), 200 time points with 100 subjects at each point has led to 

sufficient statistical power (> 0.8) in detaching a reasonable level or slope change with 

their assumptions.  

• Population variance = 10. The population variance parameter was only set to introduce 

some randomness in the sample groups (among the subjects at each time point). In fact, 

since the outcome of interest was the sample group mean, the expected variation would 

be tiny, as the variance of mean was inversely related to the sample group size. 

Therefore, a population variance of 10 would be able to create a small but noticeable 

variation and would not impact the result of estimations in this study. Since this 

research emphasized more on how each analytical strategy affect estimations, the 

population variance was set as a controlling variable rather than a parameter of 

investigation, although it would be interesting to explore how large variation could 

impact our model estimations.   

• Level changes. The level change was a factor to be examined and there were four 

magnitudes: 0, -20, -50, and -100. In the simulation study from Hawley et al. (2019), 

the authors specified 15%, 34%, 50% and 75% reductions to represent reasonable 

levels of changes. Similarly, as we purposely fixed the value of the outcome variable to 

be 120 before intervention across all scenarios, level changes of -20, -50 and -100 

would represent 16% (relatively small), 42% (relatively medium), and 83% (relatively 
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large) reductions. Level change of 0 was only applied in scenario-3 in order to 

investigate any estimation impact with only slope change but no level change. 

• Slope change. In scenario-3, the post-intervention trend line’s slope was doubled from 

a value of 1 to 2. The idea here was to introduce an additional slope change after 

intervention and investigate how would this contribute to the estimation on the level 

change. Moreover, the slope change and level change were at opposite directions 

(decreased level and increased slope), thus, it would be interesting to examine if this 

opposition could lead to misleading conclusions.  

Because scenario-1 and -2 had the same outcome and the same amount of changes at time of 

intervention (i.e. in scenario-1 and -2 at time 100, the population outcomes were both at 120, and 

reduced to 100 at time 101 after receiving the intervention), any difference in estimations would 

be a result of the only distinction in the two scenarios, which was the existence of pre-existing 

trend. Similarly, scenario-2 and -3 had the same outcome trajectory patterns (shown in Figure 

3.1) before the intervention, and had the same changes because of the intervention, the difference 

was whether a slope change existed in addition to level changes. Scenarios that represent no level 

or slope changes were not included in this study. This is because ITS is more often applied to 

justify and quantify an observed change. With no change observed, researchers typically choose 

not to proceed with further analysis.  

 

3.3.3 Simulation Assumptions 

    Over the simulation study, all following assumptions were made for the sake of simplicity and 

feasibility: 
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1. No substantial threats to internal validity, which meant no other major factors such as 

confounders or seasonality that would affect the outcome. 

2. Individual outcomes at each time point distributed normally with a constant variance of 10. 

3. The phase-in period was predefined to start at time 100 and end at time 120, during which 

the intervention was gradually implemented among the subjects at a constant rate.  

4. Variability in the outcome variable during the entire time series was solely explained by 

the trend lines as specified in Table 3.2. 

 

3.4 Data Generating Process 

The datasets for this study were created with R v4.1 according to the settings described in the 

previous section. The reproducible script was posted on GitHub 

(https://github.com/tianyica/SimulationITS). In order to simulate time series with phase-in 

periods, abrupt change scenarios were generated first, then the effect was gradually added during 

the phase-in period to reflect the process of gradual implementation. To provide a stronger 

evidence, one hundred iterations were generated, which corresponded to one hundred different 

datasets for each effect size and sample size combination; that was, nine hundred (3 effect sizes * 

3 sample sizes * 100) different datasets generated for scenario-1 and -2, and one thousand and 

two hundred (4 effect sizes * 3 sample sizes * 100) different datasets generated for scenario-3. 

To obtain a better understanding with visual inspections and detailed estimation results, datasets 

from one iteration were randomly selected to create the trajectory plots (Figure 3.1-3.7), residual 

plots (Figure 3.8-3.13) and effect size point estimation tables (Table 3.4, 3.7-3.10). The data 

generating process for each dataset is described as follows.  
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Abrupt Change 

Recall that the outcome at time point 100, when the intervention started, was 120 for all three 

scenarios. The relationships for abrupt changes were shown in the Table 3.2 in terms of the 

slopes and intercepts for the trend lines. Taking scenario-3 with level change effect size of -50 as 

an example, the outcome would be 120 (=1*100+20) at time 100, and expected to be 121 

(=1*101+20); however, because of the intervention, it was 71 (=2*101-131) instead. Thus, the 

estimated causal level change would be the difference from the observed and counterfactual, 

which was -50 (=71-121). 

 

Table 3.2  

True Relationships Before and After Intervention in Each Scenario 

 Level 
Change 

Effect Size  

Before Intervention 
(time = 1…100) 

 

After Intervention 
(time = 101…200) 

Scenario-1: Level change only, no 
pre-exiting trend 
 

-20 𝑌𝑌𝑡𝑡 = 0 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 120 𝑌𝑌𝑡𝑡 = 0 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 100 
-50 𝑌𝑌𝑡𝑡 = 0 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 120 𝑌𝑌𝑡𝑡 = 0 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 70 
-100 𝑌𝑌𝑡𝑡 = 0 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 120 𝑌𝑌𝑡𝑡 = 0 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 

Scenario-2: Level change with pre-
existing trend 

-20 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 0 
-50 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 30 
-100 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 80 

Scenario-3: Level and slope change 
with pre-existing trend 

0 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 2 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 81 
-20 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 2 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 101 
-50 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 2 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 131 
-100 𝑌𝑌𝑡𝑡 = 1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 20 𝑌𝑌𝑡𝑡 = 2 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 181 

 

To generate datasets in each scenario, a random sample of the corresponding size was taken 

for each time point from a normal distribution with a mean specified by the trend line and a 

variance of 10, as 𝑌𝑌𝑡𝑡~𝑁𝑁(𝑎𝑎 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑏𝑏, 10), where a and b were slope and intercept terms shown 

in Table 3.2. Again, for this generation, we assumed that no residual autocorrelation existed. 

Theoretically, this would create random variations around the pre-specified trendlines. For 
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instance, the simulated observations from time point 150 of scenario-3, sample size 100, and 

level change effect size -20 were created by randomly drawing 100 samples from a normal 

distribution with a mean of 200 (= 2*150-100) and variance of 10. The mean of each generated 

time point was recorded as the outcome variable of interest. Figure 3.1 depicted some of the 

situations, noticing that since sample mean variation was inversely linked to sample size, the 

observations tended to cluster closer to the trend line as the sample size grew at each time point. 
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Figure 3.1  

Mean of Outcome Trajectories with No Phase-In Period (As Abrupt Change) from Scenario-1 to Scenario-3 
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Note. The vertical line at time 100 represents that the intervention occurred at time 100.
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Gradual Phase-in Period 

The data for the gradual phase-in period was created after obtaining an abrupt change time 

series. First, data from time 100 to 120 created by the abrupt change were specifically excluded 

and replaced to represent a gradually implemented phase-in period, while the observations 

outside of this time interval (i.e. time 1-99, 121-200) remained unchanged. In simple terms, it 

meant that we kept the same start and end points for the phase-in period, however, instead of 

believing the whole sample would switch suddenly because of the intervention effect, only 5% of 

the sample would receive intervention at each time point. This allowed for a constant gradual 

increase of intervened sample from 0% to 100%. 

Taking sample size of 20 for example, at the start of phase-in period, when time = 100 and all 

20 subjects have not received intervention, the expected mean outcome would follow the before 

intervention trend. At the next point when time = 101, one of the 20 subjects would receive 

intervention, and the mean outcome at time 101 would be slightly dragged towards the after-

intervention trend. By the same token, at time 119, 19 out of the 20 subjects would receive 

intervention, thus, the mean outcome would be close to the after-intervention trend. At the end of 

phase-in period (when time = 120), all 20 subjects would have received intervention, and 

therefore the expected mean outcome would be equivalent to the after-intervention trend. Table 

3.3 showed the implementation strategy using a sample size 20 at each time point as an example. 

To illustrate the data values at subject level, Table 3.4 displayed a zoom-in example at time 

105 for sample size 20 and level change of -50. In this case, five individual outcomes were 

generated at random from a normal distribution with a mean calculated from the counterfactual 

trend line of before intervention at time 105 and a variance of 10. Table 3.5 illustrated the 

summary of aggregated intervened vs. non-intervened group size comparison at every time point 
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within the phase-in period. Means were computed at each time point after the aggregation for 

phase-in periods and attached to the original time series to construct the complete case. 

Figure 3.1 demonstrated all the trajectories in each scenario when the intervention was abrupt. 

Subsequently, trajectories from Figure 3.2-3.4 indicated that the constant rate implementation of 

intervention resulted in a gradual shift within the phase-in period. Moreover, the shape was 

approximately linear without a slope change, and was approximately curvilinear with a slope 

change. 
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Table 3.3  

Implementation of Gradual Phase-in Period with Sample Size 20 at Each Time 

Note. Y denoted having received intervention and N as having not. 
 
 

 

 

 

Time / 
Subject 

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 

1 N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
2 N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
3 N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
4 N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
5 N N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
6 N N N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
7 N N N N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
8 N N N N N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y 
9 N N N N N N N N N Y Y Y Y Y Y Y Y Y Y Y Y 

10 N N N N N N N N N N Y Y Y Y Y Y Y Y Y Y Y 
11 N N N N N N N N N N N Y Y Y Y Y Y Y Y Y Y 
12 N N N N N N N N N N N N Y Y Y Y Y Y Y Y Y 
13 N N N N N N N N N N N N N Y Y Y Y Y Y Y Y 
14 N N N N N N N N N N N N N N Y Y Y Y Y Y Y 
15 N N N N N N N N N N N N N N N Y Y Y Y Y Y 
16 N N N N N N N N N N N N N N N N Y Y Y Y Y 
17 N N N N N N N N N N N N N N N N N Y Y Y Y 
18 N N N N N N N N N N N N N N N N N N Y Y Y 
19 N N N N N N N N N N N N N N N N N N N Y Y 
20 N N N N N N N N N N N N N N N N N N N N Y 
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Table 3.4  

Individual Outcomes for Sample Size 20 and Level Change of -50 at Time 105 

Individual Outcome Intervention Group Mean Grand Mean 
1 60.22 Y 74.70 109.76 
2 73.97 Y 74.70 109.76 
3 76.35 Y 74.70 109.76 
4 83.96 Y 74.70 109.76 
5 78.99 Y 74.70 109.76 
6 116.68 N 121.45 109.76 
7 117.49 N 121.45 109.76 
8 96.79 N 121.45 109.76 
9 126.03 N 121.45 109.76 

10 138.61 N 121.45 109.76 
11 118.78 N 121.45 109.76 
12 103.99 N 121.45 109.76 
13 113.56 N 121.45 109.76 
14 119.33 N 121.45 109.76 
15 128.54 N 121.45 109.76 
16 127.51 N 121.45 109.76 
17 122.39 N 121.45 109.76 
18 132.47 N 121.45 109.76 
19 130.43 N 121.45 109.76 
20 129.08 N 121.45 109.76 

Note.  Individuals assumed to be randomly shuffled; Y as received intervention and N as not received. 
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Table 3.5  

Intervened vs. Not Intervened Group Sizes at Each Time within Phase-in Period 

Sample Size→ 
Time↓ 

20 
 

100 1000 

100 0:20 0:100 0:1000 
101 1:19 5:95 50:950 
102 2:18 10:90 100:900 
103 3:17 15:85 150:850 
104 4:16 20:80 200:800 
105 5:15 25:75 250:750 
106 6:14 30:70 300:700 
107 7:13 35:65 350:650 
108 8:12 40:60 400:600 
109 9:11 45:55 450:550 
110 10:10 50:50 500:500 
111 11:9 55:45 550:450 
112 12:8 60:40 600:400 
113 13:7 65:35 650:350 
114 14:6 70:30 700:300 
115 15:5 75:25 750:250 
116 16:4 80:20 800:200 
117 17:3 85:15 850:150 
118 18:2 90:10 900:100 
119 19:1 95:5 950:50 
120 20:0 100:0 1000:0 

Note.  Received intervention: not received intervention. 
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Figure 3.2 

Mean of Outcome Trajectories with Phase-In Period for Scenario-1 
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Figure 3.3 

Mean of Outcome Trajectories with Phase-In Period for Scenario-2 
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Figure 3.4 

Mean of Outcome Trajectories with Phase-In Period for Scenario-3 
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Segmented Regression 

When assessing intervention impact, a generic time series model could be formulated as 

(Morgan & Winship, 2015): 

 

𝑌𝑌𝑡𝑡 = 𝑓𝑓(𝑡𝑡) + 𝐷𝐷𝑡𝑡 ∗ 𝑏𝑏 + 𝑒𝑒𝑡𝑡  …………………………………  (1) 

 

Here, the outcome 𝑌𝑌𝑡𝑡 is a certain function of 𝑓𝑓(𝑡𝑡) and an intervention variable 𝐷𝐷𝑡𝑡, where 𝐷𝐷𝑡𝑡 is a 

dummy variable indicating whether the intervention is in effect at time 𝑡𝑡. Also, a time varying 

noise 𝑒𝑒𝑡𝑡 is included. The function 𝑓𝑓(𝑡𝑡) describes how the outcome 𝑌𝑌𝑡𝑡 behaves along the time (i.e. 

any pre-existing trend) while controlling for the intervention. The 𝑏𝑏 coefficient is a constant that 

measures the magnitude of intervention impact.  

Alternatively, modern applied research uses the segmented regression approach (Bernal et al., 

2017; Wagner et al., 2002) that is given as: 

 

𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛽𝛽3 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑒𝑒𝑡𝑡 ....… (2) 

 

In this formula, 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝛽𝛽3 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 corresponds to 𝑓𝑓(𝑡𝑡) as they are 

time-related terms, and 𝛽𝛽2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 relates to 𝐷𝐷𝑡𝑡 ∗ 𝑏𝑏, which represents intervention effect. 

As a detailed explanation for each term: 𝑌𝑌𝑡𝑡 is an aggregated measure of interest at each time 

point (e.g. mean, rate, and proportion); 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡) is a continuous variable that indicates time 

since the inception of the study; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 (𝑖𝑖𝑡𝑡) is an indicator that is 0 before intervention 

and 1 thereafter; 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is a continuous variable that counts time after 

intervention. In terms of parameters, 𝛽𝛽0 estimates baseline level of the outcome;  𝛽𝛽1 defines any 
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pre-existing trend on how the outcome changes before intervention; 𝛽𝛽2 measures level changes 

because of intervention; 𝛽𝛽3 represents additional trend changes compared to before intervention. 

The error term 𝑒𝑒𝑡𝑡 denotes any random variability that not explained by the model, and it usually 

consists of a normally distributed random error with a possible correlated error term to account 

for autocorrelation issues (Nelson, 1998; Prais & Winsten, 1954). 

Although the formulation of 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is more widely accepted in ITS 

literatures (e.g. Bernal, et al., 2017; Wagner, et al., 2002), it suggests a fact that part of the 

intervention effect depends on time, which can be understood as an interaction effect between 

intervention and time. With this interpretation, equation (2) could also be expressed as: 

 

𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝛽𝛽3 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑒𝑒𝑡𝑡 ....… (3) 

 

Here, the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is re-expressed as an equivalent interaction effect 

between 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡. This expression should be preferred as being more precise 

from a mathematical perspective, and not introducing additional variable 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). On the other hand, it is understandable that many researchers 

might prefer the model expressed in formula (2), since interpreting and diagnosing an interaction 

term could be challenging and require more advanced knowledge of ordinary regression context.  

In addition, a variety of statistical methods are available to estimate the model parameters, 

such as ordinary least square (OLS), generalized least squares (GLS), autoregressive integrated 

moving average (ARIMA), and restricted maximum likelihood (REML) (Turner, et al., 2021; 

Hudson, et al., 2019; Jandoc, et al., 2015; Wagner, et al., 2002). For simplicity, OLS was applied 
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in our study, and a normally distributed random error 𝑒𝑒𝑡𝑡 was assumed (i.e. no autocorrelation of 

residuals). 

 

3.5 Phase-in Period Analytical Strategies  

As previously introduced in chapter one, a phase-in period is a delayed effect with pre-defined 

or rationalized end date. In this sub-section, six analytical strategies for ITS with phase-in 

periods were examined. Detailed descriptions and corresponding rationales were provided as 

follows. 

1. As abrupt at start: modelling the full intervention effect as if it occurred abruptly at the start 

of phase-in period (𝑡𝑡 = 100). This is arguably the most naïve approach, because all the ITS 

studies should have a properly defined intervention start date, but not necessarily for an end 

date. In reality, researchers often encounter scenarios such as in the antenatal drinking study 

from Hankin et al. (1993), where although some forms of delayed effects were 

acknowledged, there would still be ambiguities for the end date of corresponding 

implementations, and thus a phase-in period would not be properly defined. 

2. As abrupt at end: modelling the full intervention effect as if it occurred abruptly at the end of 

phase-in period (𝑡𝑡 = 120). Although this approach is rare, it is theoretically possible to 

model the intervention effect as if it happened abruptly at the end of phase-in period, given 

the end date can be clearly defined. 

3. Excluding phase-in period - before: excluding observations in the phase-in period and 

modeling the remaining as an abrupt change (i.e. excluding 100 < 𝑡𝑡 < 120). This is 

currently the most popular method for dealing with well-defined phase-in periods, because 

the observations within the period may have ambiguous effects on estimating slope and level 
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changes. In addition, this strategy assumes that the full-strength intervention effect occurred 

at the end date of intervention (i.e. a prospective counterfactual). 

4. Excluding phase-in period - after: similar as above, but with the assumption that the full-

strength intervention effect occurred at the start date of intervention (i.e. a retrospective 

counterfactual). 

5. Counterfactual from before: assuming the trend would stay the same from pre-intervention in 

the phase-in period, and creating projection observations accordingly. Technically, this 

means to extend the pre-intervention trend line to the end of phase-in period. This approach 

assumes that the full-strength intervention effect would happen abruptly at the end of phase-

in period, which also corresponds to the prospective counterfactual introduced earlier. 

6. Counterfactual from after: assuming that the trend would be the same with post-intervention 

in the phase-in period and creating projection observations accordingly. Technically, this 

means to extend the post-intervention trend line to the start of phase-in period. By extending 

the post-intervention trajectory, this assumes that the full-strength intervention effect would 

happen abruptly at the start of phase-in period, which also corresponds to the retrospective 

counterfactual introduced earlier. 

    Table 3.6 demonstrates the coding scheme in order to prepare the independent variables in 

equation (2) for the six analytical strategies, respectively. The important values are highlighted in 

bold face to reflect the setups of the six analytical strategies. To evaluate the appropriateness of 

the analytical strategies, each was applied to the simulated datasets with different sample sizes 

and effect sizes, generated under three different population scenarios.   

Although excluding phase-in period - before and counterfactual from before, excluding phase-

in period - after and counterfactual from after were expressed as different strategies, in fact, they
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Table 3.6  

Coding Independent Variables in Equation (2) for the Six Analytical Strategies 

 As abrupt at start As abrupt at end Excluding phase-in 
period – before 

Excluding phase-in 
period – after 

Counterfactual from 
before 

Counterfactual from 
after 

Time Period 𝒕𝒕 𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕 𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕 𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕 𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕 𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒕𝒕 𝒊𝒊𝒕𝒕 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
1-100 

(Before 

intervention) 

1 
2 
3 
⁞ 

98 
99 

100 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

1 
2 
3 
⁞ 

98 
99 

100 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

1 
2 
3 
⁞ 

98 
99 
100 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

1 
2 
3 
⁞ 

98 
99 
100 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

1 
2 
3 
⁞ 

98 
99 
100 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

1 
2 
3 
⁞ 

98 
99 
100 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

101-120 

(Phase-in) 

101 
102 
103 
⁞ 

118 
119 
120 

1 
1 
1 
⁞ 
1 
1 
1 

1 
2 
3 
⁞ 

18 
19 
20 

101 
102 
103 
⁞ 

118 
119 
120 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

101 
102 
103 
⁞ 

118 
119 
120 

  101 
102 
103 
⁞ 

118 
119 
120 

  101 
102 
103 
⁞ 

118 
119 
120 

0 
0 
0 
⁞ 
0 
0 
0 

0 
0 
0 
⁞ 
0 
0 
0 

101 
102 
103 
⁞ 

118 
119 
120 

1 
1 
1 
⁞ 
1 
1 
1 

1 
2 
3 
⁞ 

18 
19 
20 

121-200 

(After 

intervention) 

121 
122 
123 
⁞ 

198 
199 
200 

1 
1 
1 
⁞ 
1 
1 
1 

21 
22 
23 
⁞ 

98 
99 

100 

121 
122 
123 
⁞ 

198 
199 
200 

1 
1 
1 
⁞ 
1 
1 
1 

1 
2 
3 
⁞ 

78 
79 
80 

121 
122 
123 
⁞ 

198 
199 
200 

1 
1 
1 
⁞ 
1 
1 
1 

1 
2 
3 
⁞ 

78 
79 
80 

121 
122 
123 
⁞ 

198 
199 
200 

1 
1 
1 
⁞ 
1 
1 
1 

21 
22 
23 
⁞ 

98 
99 
100 

121 
122 
123 
⁞ 

198 
199 
200 

1 
1 
1 
⁞ 
1 
1 
1 

1 
2 
3 
⁞ 

78 
79 
80 

121 
122 
123 
⁞ 

198 
199 
200 

1 
1 
1 
⁞ 
1 
1 
1 

21 
22 
23 
⁞ 

98 
99 

100 
Other Notes   Phase-in period 

observations were 
excluded 

Phase-in period 
observations were 

excluded 

Phase-in period 
projections based on 
counterfactual from 
before intervention 

Phase-in period 
projections based on 
counterfactual from 

after intervention 

Note.  𝑡𝑡 is a continuous variable that indicating time since the inception of the study; (𝑖𝑖𝑡𝑡) is an indicator that is 0 before the 

intervention and 1 thereafter; time after intervetiont (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) is a continuous variable that counts time after the intervention.
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were actually different expressions on the same counterfactual assumptions. The link between 

these shared assumptions will be more obvious in the simulation results section. 

 

3.6 Result 

In this sub-section, figures and tables based on one randomly selected iteration with the 

simulated trajectories were included, with summarized key findings. Also, Table 3.7 included 

aggregated accuracy performance results from the one hundred iterations of simulations, which 

suggested that abrupt modelling constantly led to poor accuracy in estimations, while excluding 

phase-in period - after and counterfactual from after provided satisfactory results. It was 

interesting to observe the accuracy discrepancies for excluding phase-in period - before and 

counterfactual from before, where they were only not able to obtain accurate level change 

estimations in scenario-3. Since there was no significant difference in accuracy across different 

effect sizes and sample sizes, Table 3.7 was aggregated at the strategy level to highlight the 

different performance from different analytical strategies. However, this does not suggest that 

effect sizes and sample sizes have no effect on estimation accuracy. In our study, the models 

from different strategies were either perfectly specified, or extremely mis-specified (from the 

abrupt change); in both cases, effect sizes and sample sizes may not contribute significantly to 

the estimation performance. 

    To better observe and understand the performance differences from each analytical strategy, 

the remaining of this sub-section focused on the one randomly selected iteration from the one 

hundred simulations. For scenario-1 to scenario-3 respectively, Figure 3.5-3.7 displayed model 

fitting results, shown as red line segments, from the six analytical strategies. In addition, 

different level change causal effects were labelled with blue vertical bars in each figure. They 
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demonstrated that, for all three scenarios, abrupt change modelling (as abrupt at start or as abrupt 

at end) constantly yield to inaccurate approximation in pre- or post-intervention sections. 

Specifically, the pre-intervention series was unfit when assuming the full intervention effect 

happened abruptly at the end of phase-in period, and the post-intervention series was unfit when 

assuming the full intervention effect happened abruptly at the start of phase-in period. The 

remaining techniques provided reasonable fittings to the simulated observations. This could be 

observed from Figure 3.5-3.7, where all the fitted lines from these techniques aligned closely 

with the observations. 

One thing that worth noting was the discrepancy between the level change causal effects for 

scenario-3 in Figure 3.7; the differences were resulted from the change of slope. Table 3.8-3.10 

compared the performance of six analytical strategies by reporting causal effect point estimates 

regarding level and slope changes with 95% confidence intervals. Overall, the abrupt methods 

led to inaccurate estimates, and the inaccuracy in level change exacerbated as effect sizes 

increased. Counterfactual from before and excluding phase-in period - before produced correct 

estimations for scenario-1 and scenario-2 when there was no slope change; however, they led to 

imprecise level change estimations for scenario-3 when there was a slope change. With the 

additional slope change, the prospective counterfactual would introduce a bias with size of the 

difference in slope between before and after intervention trend lines, similar to what the simple 

series demonstrated in Chapter 1.2.3. In contrast, excluding phase-in period - after and 

counterfactual from after strategies constantly provided accurate estimations. It was also 

interesting to notice that the causal effect points estimations and 95% confidence intervals 

between excluding phase-in period - before and counterfactual from before, excluding phase-in 
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period - after and counterfactual from after matched almost perfectly, since they shared the same 

counterfactual assumptions. 

In addition, Figure 3.8-3.13 contained residual plots and normal Q-Q plots from different 

analytical strategies in each scenario, as a reference for possible modelling issues from the 

corresponding ordinary linear regression fits. 

Figure 3.5 

Mean of Outcome Trajectories with Phase-In Period and Fitted Models for Scenario-1   

 

 
Note. Red line: fitted linear regression, blue bars: level change casual effect. 
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Figure 3.6 

Mean of Outcome Trajectories with Phase-In Period and Fitted Models for Scenario-2  

  

   

Note. Red line: fitted linear regression, blue bars: level change casual effect. 
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Figure 3.7 

Mean of Outcome Trajectories with Phase-In Period and Fitted Models for Scenario-3

 

  
Note. Red line: fitted linear regression, blue bars: level change casual effect. 
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Table 3.7  

Aggregated Performance from One Hundred Simulations on Different Strategies 

Scenario/ 
Analytical 
Strategies 

As abrupt at  
time 100 

As abrupt at  
time 120 

Excluding phase-in 
period - before 

Excluding phase-in 
period - after 

Counterfactual  
from before 

Counterfactual  
from after 

 
Scenario-1  

 

Level: 0.11% 0.00% 100.00% 100.00% 99.78% 100.00% 
Slope: 0.56% 0.89% 95.44% 97.11% 93.89% 95.89% 

 
Scenario-2  

 

0.11% 0.22% 97.56% 99.33% 97.89% 99.00% 

1.56% 2.89% 92.22% 95.22% 91.67% 96.33% 

 
Scenario-3 

 

0.58% 0.42% 0.50% 97.75% 0.92% 98.00% 

4.50% 6.00% 97.00% 95.25% 92.58% 94.83% 

Note. Red color represents low accuracy (i.e. accuracy< 10%), while green color denotes high accuracy (i.e. accuracy> 90%). 

Table 3.8  

Performance from One Simulation on Different Strategies for Scenario-1 

Modelling methods/ 
Effect size & Sample size 

As abrupt at  
time 100 

As abrupt at  
time 120 

Excluding 
phase-in period - 

before 

Excluding 
phase-in period - 

after 

Counterfactual  
from before 

Counterfactual  
from after 

 
 

True level change:  
-20 

 
True slope change: 

0 

Sample size 
20 

Level: -12.97*** 
[-14.93, -11.01] 

-13.72*** 
[-15.84, -11.60] 

-20.23*** 
[-21.60, -18.85] 

-20.29*** 
[-21.75, -18.82] 

-20.43*** 
[-21.52, -19.33] 

-20.04*** 
[-21.12, -18.96] 

Slope: -0.10*** 
[-0.13, -0.06] 

0.08*** 
[0.04, 0.12] 

0 
[-0.02, 0.03] 

0 
[-0.02, 0.03] 

0.01 
[-0.01, 0.03] 

0 
[-0.02, 0.02] 

 
100 

-13.08*** 
[-14.60, -11.57] 

-13.42*** 
[-15.18, -11.66] 

-19.84*** 
[-20.53, -19.16] 

-19.76*** 
[-20.49, -19.03] 

-19.86*** 
[-20.40, -19.33] 

-19.81*** 
[-20.33, -19.28] 

-0.10*** 
[-0.13, -0.07] 

0.07*** 
[0.04, 0.11] 

0 
[-0.02, 0.01] 

0 
[-0.02, 0.01] 

-0.01 
[-0.02, 0] 

0 
[-0.01, 0.01] 

 
1000 

-12.54*** 
[-14.06, -11.03]  

-14.11*** 
[-15.70, -12.53] 

-19.97*** 
[-20.20, -19.73] 

-19.98*** 
[-20.23, -19.73] 

-20.02*** 
[-20.20, -19.83] 

-19.98*** 
[-20.16, 19.80] 
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-0.11*** 
[-0.13, -0.08] 

0.07*** 
[0.04, 0.10] 

0 
[0, 0] 

0 
[0, 0] 

0 
[0, 0] 

0 
[0, 0] 

 
 

True level change:  
-50 

 
True slope change: 

0 

 
20 

-32.75*** 
[-36.52, -28.98] 

-33.89*** 
[-38.21, -29.57] 

-50.01*** 
[-51.51, -48.51] 

-50.04*** 
[-51.64, -48.43] 

-50.07*** 
[-51.24, -48.89] 

-49.86*** 
[-51.02, -48.70] 

-0.24*** 
[-0.31, -0.18] 

0.20*** 
[0.12, 0.28] 

0 
[-0.02, 0.03] 

0 
[-0.02, 0.03] 

0 
[-0.02, 0.03] 

0 
[-0.02, 0.02] 

 
100 

-32.82*** 
[-36.40, -29.24] 

-33.83*** 
[-38.01, -29.65] 

-49.84*** 
[-50.52, -49.17] 

-49.83*** 
[-50.55, -49.10] 

-49.85*** 
[-50.38, -49.32] 

-49.84*** 
[-50.36, -49.32] 

-0.25*** 
[-0.31, -0.18] 

0.19*** 
[0.11, 0.27] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

 
1000 

-32.78*** 
[-36.44, -29.11] 

-33.95*** 
[-38.18, -29.72] 

-49.94 *** 
[-50.16, -49.72] 

-49.98 *** 
[-50.22, -49.74] 

-50.01 *** 
[-50.19, -49.83] 

-50.00 *** 
[-50.18, 49.83] 

-0.25*** 
[-0.31, -0.18] 

0.20*** 
[0.12, 0.28] 

0 
[0, 0.01] 

0 
[0, 0.01] 

0 
[-0.02, 0.06] 

0 
[0, 0] 

 
 
True level change: 

-100 
 
 
 
 

True slope change: 
0 

 
20 

-64.82*** 
[-71.95, -57.69] 

-67.18*** 
[-75.50, -58.87] 

-99.12*** 
[-100.59, -97.65] 

-98.72*** 
[-100.29, -97.15] 

-99.04*** 
[-100.19, -97.89] 

-99.19*** 
[-100.33, -98.05] 

-0.50*** 
[-0.63, -0.38] 

0.37*** 
[0.21, 0.53] 

-0.02 
[-0.05, 0] 

-0.02 
[-0.05, 0] 

-0.02 
[-0.06, 0.10] 

-0.01 
[-0.03, 0.01] 

100 
 

100 

-65.34*** 
[-72.56, -58.13] 

-68.47*** 
[-76.71, -60.22] 

-100.10*** 
[-100.76, -99.44] 

-100.20*** 
[-100.91, -99.50] 

-100.14*** 
[-100.65, -99.62] 

-100.03*** 
[-100.53, -99.52] 

-0.50*** 
[-0.62, -0.37] 

0.39*** 
[0.23, 0.55] 

0.01 
[-0.01, 0.02] 

0.01 
[-0.01, 0.02] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

 
1000 

-65.29*** 
[-72.46, -58.11] 

-76.12*** 
[-85.84, -66.40] 

-99.95*** 
[-100.18, -99.72] 

-100.02*** 
[-100.27, -99.77] 

-100.03*** 
[-100.21, -99.84] 

-100.03*** 
[-100.21, -99.85] 

-0.50*** 
[-0.62, -0.37] 

0.39*** 
[0.23, 0.54] 

0 
[0, 0.01] 

0 
[0, 0.01] 

0 
[0, 0.01] 

0 
[0, 0.01] 

Note. Values in the table were point estimates, and the 95% confidence intervals are shown in squared brackets. Red color represents 

true value is not in 95% CI, while green color denotes correct conclusion. * p-value< 0.05, ** < 0.01, *** < 0.001.  
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Table 3.9  

Performance from One Simulation on Different Strategies for Scenario-2 

Modelling methods/ 
Effect size & Sample size 

As abrupt at  
time 100 

As abrupt at  
time 120 

Excluding 
phase-in period - 

before 

Excluding 
phase-in period - 

after 

Counterfactual  
from before 

Counterfactual  
from after 

 
 
True level change: 

 -20 
 

True slope change: 
0 

Sample size 
20 

Level: -13.66*** 
[-15.53, -11.79] 

-13.09*** 
[-15.35, -10.84] 

-20.27*** 
[-21.87, -18.67] 

-19.68*** 
[-21.39, -17.97] 

-19.73*** 
[-20.98, -18.48] 

-20.18*** 
[-21.41, -18.95] 

Slope: -0.12*** 
[-0.15, -0.08] 

0.06*** 
[0.01, 0.10] 

-0.03* 
[-0.06, 0] 

-0.03* 
[-0.06, 0] 

-0.03* 
[-0.04, 0] 

-0.02* 
[-0.04, 0] 

 
100 

-12.61*** 
[-14.11, -11.11] 

-13.88*** 
[-15.48, -12.28] 

-19.71*** 
[-20.36, -19.05] 

-19.76*** 
[-20.46, -19.06] 

-19.94*** 
[-20.45, -19.43] 

-19.76*** 
[-20.27, -19.26] 

-0.10*** 
[-0.13, -0.08] 

0.07*** 
[0.04, 0.10] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

 
1000 

-13.18*** 
[-14.63, -11.74] 

-13.44*** 
[-15.13, -11.74] 

-19.89*** 
[-20.10, -19.68] 

-19.91*** 
[-20.14, -19.69] 

-19.96*** 
[-20.12, -19.80] 

-19.90*** 
[-20.06, -19.74] 

-0.10*** 
[-0.12, -0.07] 

0.08*** 
[0.05, 0.11] 

0 
[0, 0] 

0 
[0, 0] 

0 
[0, 0] 

0 
[0, 0] 

 
 

True level change:  
-50 

 
True slope change: 

0 

 
20 

-33.35*** 
[-37.17, -29.53] 

-34.68*** 
[-39.08, -30.29] 

-50.98*** 
[-52.44, -49.52] 

-50.83*** 
[-52.39, -49.26] 

-50.67*** 
[-51.82 -49.52] 

-50.85*** 
[-51.98, -49.72] 

-0.26*** 
[-0.32, -0.19] 

0.19*** 
[0.11, 0.27] 

-0.01 
[-0.03, 0.02] 

-0.01 
[-0.03, 0.02] 

0 
[-0.02, 0.02] 

-0.01 
[-0.03, 0.01] 

 
100 

-32.79*** 
[-36.34, -29.25] 

-33.55*** 
[-37.72, -29.38] 

-49.53*** 
[-50.20, -48.86] 

-49.55*** 
[-50.27, -48.83] 

-49.76*** 
[-50.29, -49.23] 

-49.68*** 
[-50.20, -49.17] 

-0.24*** 
[-0.30, -0.18] 

0.20*** 
[0.12, 0.28] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

 
1000 

-32.72*** 
[-36.30, -29.13] 

-33.74*** 
[-37.92, -29.56] 

-49.75*** 
[-49.96, -49.54] 

-49.73*** 
[-49.95, -49.50] 

-49.80*** 
[-49.97, -49.64] 

-49.81 *** 
[-49.97, -49.65] 

-0.25*** 
[-0.31, -0.18] 

0.19*** 
[0.11, 0.27] 

0 
[0, 0] 

0 
[0, 0] 

0 
[-0.01, 0] 

0 
[0, 0] 

 
 
True level change: 

-100 
 
 

 
20 

-65.47*** 
[-72.51, -58.42] 

-67.16*** 
[-75.54, -58.77] 

-98.77*** 
[-100.53, -97.02] 

-98.77*** 
[-100.53, -97.02] 

-99.05*** 
[-100.33, -97.77] 

-99.91*** 
[-101.18, -98.64] 

-0.51*** 
[-0.63, -0.39] 

0.36*** 
[0.20, 0.52] 

-0.03* 
[-0.06, -0.01] 

-0.03* 
[-0.06, 0] 

-0.03* 
[-0.05, 0] 

-0.02 
[-0.04, 0] 

100 
 

-65.38*** 
[-72.57, -58.18] 

-68.01*** 
[-76.30, -59.72] 

-99.73*** 
[-100.44, -99.03] 

-99.82*** 
[-100.57, -99.06] 

-99.99*** 
[-100.54, -99.44] 

-99.81*** 
[-100.35, -99.26] 
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True slope change: 
0 

100 -0.49*** 
[-0.62, -0.37] 

0.39*** 
[0.23, 0.55] 

0 
[-0.01, 0.02] 

0 
[-0.01, 0.02] 

0 
[-0.01, 0.01] 

0 
[-0.01, 0.01] 

 
1000 

-65.36*** 
[-72.50, -58.21] 

-76.07*** 
[-85.78, -66.36] 

-99.95*** 
[-100.16, -99.73] 

-100.02*** 
[-100.25, -99.79] 

-100.02*** 
[-100.19, -99.86] 

-99.96*** 
[-100.12, -99.80] 

-0.49*** 
[-0.62, -0.37] 

0.39*** 
[0.23, 0.55] 

0* 
[0, 0.01] 

0* 
[0, 0.01] 

0* 
[0, 0.01] 

0 
[0, 0.01] 

Note. Values in the table were point estimates, and the 95% confidence intervals are shown in squared brackets. Red color represents 

true value is not in 95% CI, while green color denotes correct conclusion. * p-value< 0.05, ** < 0.01, *** < 0.001. 

Table 3.10  

Performance from One Simulation on Different Strategies for Scenario-3 

Modelling methods/ 
Effect size & Sample size 

As abrupt at  
time 100 

As abrupt at  
time 120 

Excluding 
phase-in period - 

before 

Excluding 
phase-in period - 

after 

Counterfactual  
from before 

Counterfactual  
from after 

 
 

True level change:  
0 
 

True slope change: 
1 

Sample size 
20 

Level: -3.44*** 
[-4.70, -2.18] 

14.38*** 
[12.56, 16.20] 

18.36*** 
[16.97, 19.76] 

-1.41 
[-2.89, 0.08] 

18.55*** 
[17.45, 19.65] 

-1.36* 
[-2.46, 0.25] 

Slope: 1.02*** 
[0.99, 1.04] 

0.94*** 
[0.91, 0.98] 

0.99*** 
[0.96, 1.01] 

0.99*** 
[0.96, 1.01] 

0.99*** 
[0.97, 1.01] 

0.99*** 
[0.97, 1.01] 

 
100 

-2.12*** 
[-2.78, -1.46] 

14.88*** 
[13.37, 16.39] 

19.45*** 
[18.81, 20.10] 

-0.43 
[-1.13, 0.26] 

19.45*** 
[18.94, 19.95] 

-0.75** 
[-1.25, 0.24] 

1.02*** 
[1.01, 1.03] 

0.94*** 
[0.91, 0.97] 

0.99*** 
[0.98, 1.01] 

0.99*** 
[0.98, 1.01] 

0.99*** 
[0.99, 1.00] 

1*** 
[0.99, 1.01] 

 
1000 

-2.74*** 
[-3.23, -2.24] 

14.69*** 
[13.24, 16.14] 

19.04*** 
[18.82, 19.25] 

-0.23*** 
[-1.23, 0.76] 

19.03*** 
[18.86, 19.20] 

-0.36*** 
[-1.16, 0.83] 

1.03`*** 
[1.02, 1.03] 

0.95*** 
[0.92, 0.98] 

1*** 
[1, 1.01] 

1*** 
[1, 1.01] 

1*** 
[1, 1] 

1*** 
[1, 1] 

 
 

True level change:  
-20 

 

 
20 

-16.53*** 
[-18.23, -14.83] 

0.75*** 
[-0.63, 2.12] 

-0.74* 
[-2.16, -1.33] 

-20.56*** 
[-22.07, -19.05] 

-0.45 
[-1.55, 0.65] 

-20.31*** 
[-21.39, -19.22] 

0.92*** 
[0.89, 0.95] 

1.02*** 
[0.99, 1.05] 

0.99*** 
[0.97, 1.01] 

0.99*** 
[0.97, 1.01] 

0.99*** 
[0.97, 1.01] 

0.99*** 
[0.97, 1.01] 

100 
 

-14.56*** 
[-15.87, -13.25] 

1.93*** 
[1.24, 2.61] 

0.54 
[-0.19, 1.10] 

-19.43*** 
[-20.13, -18.74] 

0.45 
[-0.06, 0.95] 

-19.70*** 
[-20.20, -19.20] 
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True slope change: 
1 

100 0.93*** 
[0.90, 0.95] 

1.01*** 
[1, 1.03] 

0.99*** 
[0.98, 1.01] 

0.99*** 
[0.98, 1.01] 

0.99*** 
[0.99, 1.00] 

1*** 
[0.99, 1.01] 

 
1000 

-15.17*** 
[-16.37, -13.98] 

1.73*** 
[1.16, 2.31] 

0.06 
[-0.18, 0.25] 

-20.00*** 
[-20.23, -19.76] 

0.03 
[-0.14, 0.20] 

-19.99*** 
[-20.16, -19.83] 

0.93*** 
[0.91, 0.95] 

1.02*** 
[1.01, 1.03] 

1*** 
[1, 1.01] 

1*** 
[1, 1.01] 

1*** 
[1, 1] 

1*** 
[1, 1] 

 
 

True level change:  
-50 

 
 
 
 

True slope change: 
1 

 
20 

-35.42*** 
[-38.97, -31.87] 

-19.00*** 
[-22.10, -15.89] 

-31.67*** 
[-33.10, -30.24] 

-50.60*** 
[-52.13, -49.07] 

-31.41*** 
[-32.53, -30.29] 

-50.39*** 
[-51.49, -49.29] 

0.78*** 
[0.72,0.84] 

1.14*** 
[1.08, 1.20] 

1*** 
[0.97, 1.02] 

1*** 
[0.97, 1.02] 

1*** 
[0.98, 1.02] 

0.99*** 
[0.97, 1.01] 

 
100 

 
 

-34.68*** 
[-38.05, -31.32] 

-18.85*** 
[-21.64, -16.07] 

-31.05*** 
[-31.71, -30.39] 

-50.09*** 
[-50.80, -49.39] 

-30.02*** 
[-30.54, -29.51] 

-49.95*** 
[-50.46, -49.44] 

0.78*** 
[0.72,0.84] 

1.14*** 
[1.09, 1.19] 

1*** 
[0.99, 1.01] 

1*** 
[0.99, 1.01] 

1*** 
[0.99, 1.01] 

1*** 
[0.99, 1.01] 

 
1000 

-34.48*** 
[-37.86, -31.10] 

-18.80*** 
[-21.57, -16.03] 

-30.88*** 
[-31.10, -30.67] 

-49.85*** 
[-50.08, -49.61] 

-29.87*** 
[-30.04, -29.71] 

-49.91*** 
[-50.08, -49.75] 

0.78*** 
[0.72, 0.84] 

1.13*** 
[1.08, 1.19] 

1*** 
[0.99, 1] 

1*** 
[0.99, 1] 

1*** 
[0.99, 1] 

1*** 
[1, 1] 

 
 

True level change:  
-100 

 
True slope change: 

1 

 
20 

-67.05*** 
[-74.01, -60.09] 

-52.80*** 
[-59.75, -45.84] 

-80.83*** 
[-82.20, -79.46] 

-99.42*** 
[-100.88, -97.95] 

-80.65*** 
[-81.72, -79.58] 

-99.92*** 
[-100.98, -98.87] 

0.51*** 
[0.39,0.63] 

1.31*** 
[1.18, 1.44] 

0.98*** 
[0.96, 1] 

0.98*** 
[0.96, 1] 

0.98*** 
[0.96, 1] 

0.99*** 
[0.97, 1.00] 

 
100 

-67.87*** 
[-74.71, -61.03]  

-52.08*** 
[-59.06, -45.09] 

-80.74*** 
[-81.44, -80.04] 

-99.68*** 
[-100.43, -98.93] 

-79.78*** 
[-80.33, -79.24] 

-99.82*** 
[-100.36, -99.28] 

0.54*** 
[0.42,0.66] 

1.33*** 
[1.20, 1.47] 

1*** 
[0.98, 1.01] 

1*** 
[0.98, 1.01] 

1*** 
[0.99, 1.01] 

1*** 
[0.99, 1.01] 

 
1000 

-67.87*** 
[-74.74, -61.01] 

-79.00*** 
[-87.25, -70.75] 

-80.87*** 
[-81.09, -80.66] 

-99.85*** 
[-100.08, -99.62] 

-79.88*** 
[-80.05, -79.71] 

-99.92*** 
[-100.09, -99.76] 

0.54*** 
[0.42, 0.66] 

1.33*** 
[1.20, 1.47] 

1*** 
[0.99, 1] 

1*** 
[0.99, 1] 

1*** 
[1, 1] 

1*** 
[1, 1] 

Note. Values in the table were point estimates, and the 95% confidence intervals are shown in squared brackets. Red color represents 

true value is not in 95% CI, while green color denotes correct conclusion. * p-value< 0.05, ** < 0.01, *** < 0.001.
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Figure 3.8 

Fitted Trajectory, Residual Plot and Normal Q-Q Plot from Scenario-1 

  

Note. Level change of -100, sample size 20, as abrupt at start. 

 

Figure 3.9 

Fitted Trajectory, Residual Plot and Normal Q-Q Plot from Scenario-2 

  

Note. Level change of -100, sample size 20, as abrupt at start. 
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Figure 3.10 

Fitted Trajectory, Residual Plot and Normal Q-Q Plot from Scenario-2 

 

Note. Level change of -100, sample size 20, excluding phase-in period - before. 

 

Figure 3.11 

Fitted Trajectory, Residual Plot and Normal Q-Q Plot from Scenario-3 

  

Note. Level change of -100, sample size 20, as abrupt at end. 
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Figure 3.12 

Fitted Trajectory, Residual Plot and Normal Q-Q Plot from Scenario-3 

   

Note. Level change of -100, sample size 20, counterfactual from before. 

 

Figure 3.13 

Fitted Trajectory, Residual Plot and Normal Q-Q Plot from Scenario-3 

  

Note. Level change of -100, sample size 20, counterfactual from after. 
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Chapter 4: Conclusions and Discussions 

 

    This thesis showcases the characteristics of ITS trajectories under three different scenarios and 

clarifies the formal definition of phase-in periods. Six analytical strategies for estimating level 

and slope changes are proposed and examined by segmented linear regression using ordinary 

least square estimation method.  

This chapter reflects on the findings from the simulation study, evaluates the significance and 

limitation of this thesis, and discusses potential future studies. 

 

Conclusions 

4.1 Phase-in Period Definition 

    Although earlier we argued that phase-in period was a special form of delayed effect, not all 

delayed effects were guaranteed as phase-in periods. Both delayed effect and phase-in period in 

ITS studies would have a clearly defined start date (when the intervention begins), and some 

forms of detained full-strength effect; however, the key difference between these two is whether 

a clearly pre-defined or rationalized end date (when the intervention completes) exists.  

    In the previous antenatal drinking study from Hankin et al. (1993), although a clear delayed 

effect was identified, which was both proven by a seven-month lag of observed impact from 

outcome score, and a four-month delay in awareness trend collected from interviews, there was 

no pre-defined end date for this delayed effect. Actually, the delayed duration was identified by 

analysis instead of based on rationales, and such duration might vary upon modifications of 

analysis strategies or criteria (e.g. how was a meaningful impact of outcome score defined). 
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Therefore, although the antenatal drinking study involved with a delayed effect, the 

implementation should not be modelled as a phase-in period. 

    In comparison, the antidepressant usage study from Lu et al. (2014) examined a delayed effect 

with pre-defined start and end date. Generally speaking, the warnings and media coverages were 

unlikely to cover all the target population at once, thus resulted in a delayed full effect. 

Moreover, the start and end dates were defined as the first and last issues of warnings (2003 Q4 – 

2004 Q4), which were specific dates defined prior to any analysis phases; also, setting first and 

last issues of warnings was a reasonable choice in terms of measuring the impact from 

corresponding policy. In conclusion, this delayed effect could be modelled as a phase-in period. 

 

4.2 Phase-in Period Characteristics 

    In the current simulation study, the phase-in periods’ trajectories demonstrated gradual 

transition over a short period of time from the pre-intervention trends to the post-intervention 

trends. The magnitude of this transition was determined by the size of corresponding level 

changes. Also, the shapes were approximately linear without slope changes and curvilinear with 

a slope change. This is reasonable because when there was no slope change, and the outcome 

was assumed to change at a constant rate within the phase-in period, as imagining the former 

scenario to shift the trend line gradually from pre-intervention to post-intervention, and the 

resulted trajectory would be linear. When there was slope change, because the aggregated 

outcome would change at a varying rate, the line would follow a curvilinear trajectory. 

Moreover, as expected, a bigger sample group size (n) turned out to have less fluctuation in the 

series, and vice versa.  
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    However, it is important to realize that all the simulations were performed with assumptions 

that both pre- and post-intervention trends were strictly linear, and the intervention was 

implemented at a constant rate. In contrast, the intervention might be implemented at changing 

rates, and the pre- and post-intervention trends could be in any forms. For example, the rates of 

antidepressant use for adolescents gradually shifted from pre-intervention to post-intervention 

trend, as indicated in Figure 2.2, which aligned with scenarios from our simulations. However, 

rates for young adults and adults shifted after two to three data points and remained consistent 

with the post-intervention trends. 

    As a result, a gradual shift from a stable pre-intervention trend to a stable post-intervention 

trend could be an indication of potential phase-in period. Still, such conclusion would need to be 

backed up by evidence from the underlying processes. Some examples of these evidence could 

be the implementation process were completed via multiple stages or throughout a continuous 

time period (e.g. multiple campaigns for a policy, different roll-out phases). 

 

4.3 Analytical Strategies on Phase-in Period 

    The model estimation results from simulations suggested that excluding phase-in period 

observations - after and the counterfactual from after strategies yielded unbiased estimations. 

Also, ignoring potential delayed effects and modelling abruptly has constantly led to biased 

estimations, both in level and slope changes; this was resulted as fitting either pre- or post-

intervention series jointly with the phase-in period series. The counterfactual from before and 

excluding phase-in period observations – before strategies performed well in the scenarios 

without slope changes (only level changes); however, with slope changes, these strategies 
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produced biased estimations in level changes. Results from Figure 3.7 and Table 3.10 revealed 

such discrepancies visually and numerically.  

    In addition, same counterfactual assumption (retrospective or prospective) led to aligned 

estimation results, which was shown in Table 3.8-3.10. Although modeling ITS is challenging, 

and there is no gold standard approach, our simulation results indicated that excluding phase-in 

period observations might be preferred as best practices for ITS analysis involving phase-in 

periods. After all, if a simple exclusion guarantees unbiased estimation, why bother to create 

complicated projections? In fact, the counterfactual from before and counterfactual from after 

strategies were primarily designed to visually help researchers to understand what counterfactual 

assumptions would be from excluding phase-in period, as indicated through projection lines and 

vertical bars in Figure 3.5-3.7. Researchers are also encouraged to inspect the phase-in period 

trajectory in a preliminary analysis. In the case of possible autocorrelation (particularly 

seasonality), it may be helpful to first control or remove the autocorrelation by including 

variables that are highly correlated with seasonality, or by using an autoregressive integrated 

moving average (ARIMA) model.  

   

Discussions 

4.4 Limitations of the Current Study 

    This study is subject to various limitations. First, autocorrelation issues are persistent in time 

series analyses, and the assumption of strictly linear trend with normally distributed noises in our 

simulation may rarely hold in practice. Second, subjects within each sample may have influences 

with each other, especially when the sample size is small; thus, these correlated observations 

would violate the independence assumption from ordinary linear regression. Third, the effect size 
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(level and slope changes) and some parameters (e.g. sample size) were chosen discretely rather 

than performing numerous simulations and having the corresponding effect size on a continuous 

scale. Finally, only three scenarios were included in the simulation study, the impacts from some 

interesting factors were not fully explored, such as relative length of phase-in period, and any 

potential floor or celling effects within the phase-in periods.  

 

4.5 Additional Concerns for Segmented Regression Analysis 

    Results in Table 3.8-3.10 suggested that modelling phase-in period as abrupt changes led to 

biased effect estimations. Moreover, from ordinary linear regression prospective, there might be 

additional concerns. As indicated in Figure 3.5-3.7, the abrupt models fitted linear lines to V-

shaped trajectories. Consequently, model residuals were not randomly distributed as assumed. In 

Figure 3.8, 3.9, and 3.11, clear V-shaped residual patterns can be observed in residual plots, also 

with significant deviations from tails in normal Q-Q plots. This suggested that both parameter 

and standard error estimations from abrupt modelling should not be trusted. In contrast, Figure 

3.10, 3.12 and 3.13 included residual plots from non-abrupt strategies, where the plots were less 

problematic.  

 

4.6 Suggestions for Future Studies 

    The interrupted time series method could be better understood with explorations in the 

following problems. To begin with, how does the estimation performance vary with the relative 

length of phase-in period compared to total time series? For simplicity, this thesis has fixed the 

length of phase-in period and the overall time series. However, it would be interesting to 

investigate if the phase-in period last longer (e.g. more than 50% of the total collected time 
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series), could researchers still obtain reliable estimations? Second, what are the possible 

techniques to handle potential floor or celling effects within the phase-in periods? This might be 

important practically; as an example, if researchers are measuring how vaccines reduced hospital 

admission rate, it is impossible to vaccinate the entire population because of resources 

constraints or personal preferences. In this case, how should researchers measure the full causal 

effect if only a fraction of population could be covered. Last but not least, how to effectively 

communicate the assumptions and create visualizations for ITS studies? Although one of the 

strengths from ITS studies is the possibility to visualize the series and observe the hypothesized 

causal effect, it could also be misleading. The majority of researchers used before intervention 

trend to extend the counterfactual projections (e.g. Bou-Antoun, et al., 2018; Sruamsiri, et al., 

2016); however, there is a conceptual and estimation difference between the counterfactual from 

before intervention and the counterfactual from after intervention in the case of phase-in periods; 

the counterfactual from before assumes that the intervention was not fully implemented until the 

end of phase-in period, whereas the counterfactual from after projects the hypothetical case as if 

the intervention was implemented abruptly at the beginning of phase-in period. These 

calculations differ when there are slope changes, as shown in scenario-3. Therefore, although the 

true effect size of changes remains unknown, it is important for researchers to choose their own 

ways of visualizations and communicate the underlying assumptions transparently.  

    To summarize, multiple causal hypothesizes may exist within an interrupted time series 

framework, and each may correspond to different casual effect in terms of level and slope 

changes. With the possible existence of a delayed effect and phase-in period, researchers may 

apply a number of different analytical strategies to obtain effect estimations, including as abrupt 

at start, as abrupt at end, excluding phase-in period –before, excluding phase-in period –after, 
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counterfactual from before and counterfactual from after. Researchers should also be aware of 

any counterfactual assumptions each analytical strategy assumes, and which causal effect it 

corresponds to.  
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