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Abstract

DNA methylation (DNAm) is an epigenetic mark that can control or reflect gene expression in a highly

cell-specific manner. Placental DNAm has been studied in various contexts, however, several sources of

variation remain uncharacterized. Before we are able to understand how placental DNAm contributes to

important health-relevant contexts, we must develop an understanding of the underlying normal variation

that occurs in the placental methylome. For example, a high proportion of variation in DNAm can vary

by ethnicity and genotype. DNAm is also highly cell-specific, and the placenta is a heterogeneous tissue

comprised of several distinct cell populations. However, due to difficulty of isolating cell populations, most

placental DNAm research is conducted on whole placental chorionic villi tissue. Isolating placental tissue

without contamination from maternal tissue, such as decidua and blood, can be challenging, especially in

earlier gestation samples where sampling enough tissue is difficult.

In this thesis, I hypothesize that a large proportion of the variation in placental DNAm can at-

tributed to ethnicity, genetic ancestry, cell composition, cell-specific effects, and the presence of maternal

cells. Using high-density DNAm microarray profiling, and open access genomic data repositories, I assessed

these factors in placental samples with various phenotypes. I found that ethnicity and genetic ancestry

are associated with placental DNAm variation in samples containing self-reports of White/Caucasian, East

Asian/Asian, and Black/African American ethnicity. Further, I found that it is possible to predict ethnicity

and genetic ancestry with high accuracy and reliability from placental DNAm. Another major source of

variation is cell-specific DNAm, which I characterized from placental samples of first trimester and term

pregnancies. I found that trophoblast and Hofbauer cells are highly epigenetically distinct, and many pla-

cental epigenetic features are conserved in trophoblasts but not always in other placental cells. I developed a

reference to estimate cell composition from placental chorionic villi DNAm. Lastly, I developed an approach

to estimate maternal cells present in chorionic villi samples, using DNAm, and found several previously

published placental DNAm studies to contain maternally-contaminated samples. Overall, I contributed to

our understanding of placental DNAm, and have provided bioinformatic tools for future placental DNAm

research.
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Lay Summary

The placenta is an essential organ for a healthy pregnancy. DNA methylation (DNAm) is a molecular mark

that helps the placenta control what genes are turned on and off. DNAm is an important component of

placental biology, and when pregnancy complications occur, corresponding changes in DNAm can occur.

However, our understanding of what controls placental DNAm itself is rudimentary. We need to understand

what influences placental DNAm under normal, healthy conditions before we can understand it under other

contexts like in disease. My thesis aims at understanding some of the major factors that influence placental

DNAm. Throughout my research, I have also developed several analysis tools to help future placental DNAm

research. Ultimately, my research has contributed to our understanding of the molecular characteristics of

the placenta, which in turn helps us understand the role of placental biology during pregnancy.
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1 Introduction

1.1 Dissertation context and overview

The placenta is a key component to the healthy development of the fetus during pregnancy. At the cellular

level, highly specialized placental cells regulate gene expression programs in part through epigenetics. DNA

methylation (DNAm), an epigenetic modification that involves the chemical addition of a methyl group to

cytosines, plays an integral role in regulating gene expression at the cellular level. Most cytosine DNAm oc-

curs at cytosine-guanine sites (CpGs), although non-CpG methylation (i.e. at cytosines followed by thymine,

adenine, or another cytosine) can play important roles in development and disease (1).

Recent developments in the past two decades have allowed the characterization of DNAm at an

unprecedented level of resolution in the human genome. Specifically, advances in microarray technology

combined with bisulfite conversion have allowed the measurement of DNAm on the order of hundreds of

thousands of CpGs per sample. Large human population studies of DNAm using microarrays has taken off

in popularity, which has in turn spurred significant developments in bioinformatics, allowing researchers to

investigate and understand phenotype-relevant signals in this information-rich genomic data.

Understanding the variation in placental DNAm is important to our understanding of the molecular

processes that contribute placental biology, which in turn will lead to a better understanding of the role of the

placenta in pregnancy. Although there is great interest in studying DNAm, there are significant technical and

biological challenges that can lead to spurious results. Understanding the contributors to DNAm variability

and how to account for them in our analyses will be a key step in moving DNAm research forward. In

this dissertation, I characterized some of the major contributors to variotion in placental DNAm, and have

developed bioinformatic methods to predict and account for these factors in future placental DNAm research.

These factors that influence placental DNAm, that I have studied in this dissertation, include ethnicity and

genotype, cell-specificity and cell composition dynamics across gestation, and maternal cell contamination.

1.2 Placental function

The placenta is an essential organ that develops from the embryo to nurture its development throughout

pregnancy (Figure 1.1). Sometimes described as a “vascular organ,” the placenta is responsible for the

establishment and regulation of maternal-fetal blood flow. Maternal blood is entered from the uterine spiral

arteries into the intervillous space of the placenta. Chorionic villi, the main structural unit of the placenta, are

tree-like structures populating the intervillous space that connect to the umbilical cord. Deoxygenated and

nutrient-depleted fetal blood travels through arteries into the chorionic villi, and oxygenated blood returns
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through veins to the fetus (2). Maternal-fetal blood exchange is essential for the proper growth of the fetus,

as imbalances, such as placental insufficiency, a condition where the placenta does not deliver sufficient

nutrients and oxygen to the developing fetus, can lead to complications such as fetal growth restriction,

preeclampsia, and pre-term birth (3). The placenta also influences the maternal environment (cardiovascular,

immune, and metabolic systems) through hormonal processes to support the proper nutrient and oxygen

supply to the growing fetus (4). Placental hormones such as those from the proclactin growth hormone

family and steroids, are especially important in promoting maternal physiological adaptations to increase

the bioavailability of nutrients to the fetus (5). Fetomaternal tolerance is also an important pregnancy

process that is in part regulated by the direct interactions between the placenta and maternal cells in the

decidua. Trophoblasts, specificaly extravillous populations that travel into the decidua, express nonclassical

major histocamptibility complex (MHC) molecules that modulates various populations of uterine immune

cells to promote tolerogenicity of the placenta/fetus, in addition to promoting placental growth and invasion

(6,7). Lastly, the placenta acts as a biophysical barrier that protects the fetus against potential pathogenic

infections (8,9).

1.3 DNA methylation in the human genome

Despite all cells of the human body being nearly genetically identical, human cell types must coordinate

a highly specific gene expression program to fulfill each of their own unique cellular niches. To achieve

cell-specific gene expression programs, epigenetic processes function as a layer of molecular information

that influences DNA interactions to regulate gene expression. Types of epigenetic marks include DNAm,

histones and their post-translational modifications, non-histone chromatin proteins, higher order chromatin

and chromosome organization, and non-coding RNAs. DNAm is the most widely studied epigenetic mark,

owing to its relative stability and availability of cost-efficient technologies.

DNAm at gene promoters is highly anti-correlated with gene expression. CpG islands, which are

genomic regions (~1000bp long) with high CpG density often found near gene promoters, are often devoid

of DNAm (10). Methylation of DNA at CpG islands results in the silencing of gene expression, for example

through the recruitment of repressive methyl-binding proteins, or by impairing transcription factor binding

(11). One of the main roles of DNAm is to also silence transposable and viral elements, which make up

Approximately 45% of the mammalian genome (12). DNAm also serves important roles in regulating genomic

imprinting (13), which is where a gene’s expression occurs from one allele (monoallelic) in a parent-of-origin

-specific manner, and in X-inactivation, which is the silencing of one X chromosomes in females (14).
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Figure 1.1: Schematic representation of the organization of the placenta (left), which is embedded in the
maternal uterus. It is organized into branched chorionic villi that contain the fetal vasculature that will
connect to the fetus via the umbilical vein and arteries. The villi are bathed by maternal blood contained
in the intervillous space, delivered by the uterine spiral arteries. Representation of a chorionic villus (right),
composed of the outer syncytiotrophoblast and inner cytotrophoblast cell layers, inner mesenchyme, and fetal
blood vessels. The villus is anchored to the maternal decidua, and extravillous trophoblast cells migrate and
invade the maternal decidua, where they interact with resident maternal immune cells such as the uterine
natural killer cells (uNK), and remodel the uterine spiral arteries. From Del Gobbo 2021 (15), University of
British Columbia, Vancouver, Canada. Original image adapted from Del Gobbo 2019 (16). Copyright 2019
by Springer-Verlag GmbH Germany, part of Springer Nature. Reprinted with permission.

Developmentally, DNAm is highly dynamic and serves as an important mark that is reprogrammed

for the generation and establishment of new genomes (Figure 1.2). DNAm is first erased during the matura-

tion of primordial germ cells, owing to actions of TET enzymes that convert 5’ methyl-cytosine (5’mc) to 5’

hydroxymethyl-cytosine (5’hmc), and also to passive dilution through successive replicative events coupled

with the absence of normal DNAm maintenance activity (17,18). During gametogenesis, maturation of sperm

and egg cells, DNAm and other epigenetic marks are re-established in a highly cell-specific manner. But,

after fertilization, the asymmetric epigenetic marks acquired in the sperm and egg genomes must become

equalized, and thus go through another round of reprogramming (19). With the exception of imprinted

regions, for which their allele-specificity is protected from this erasure, DNAm is erased in the paternal

genome through primarily active processes governed by the TET family of enzymes. This is in contrast to

the maternal genome, which undergoes DNAm erasure through a primarily replicative-dependent passive

dilution mechanism (20). Lastly, at the blastocyst stage, DNAm is at it’s lowest point, and new epigenetic
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marks can begin establishing in a highly cell-specific manner, with many cell types and tissues not reaching

their final differentiated profiles until later in life.

Maternal 
(passive)

Fertilization

Paternal 
(active)

Egg

Sperm

TE

ICM

DNA
methylation

Imprints protectedImprints erased

Imprints 
established

PGC

Implantation

Figure 1.2: DNA methylation (DNAm) reprogramming during development. The first major genome-wide
DNAm erasure occurs in primordial germ cells (PGCs), and includes erasure of prior gametic imprints.
DNAm is reestablished, but to a greater extent in sperm as compared to oocytes (egg). After fertilization,
the asymmetric paternal and maternal epigenomes begin reprogramming. The paternal genome undergoes
active demethylation, whereas the maternal genome undergoes demethylation more gradually through passive
replication-dependent mechanisms. Gamete-specific differentially methylated regions (i.e. genomic imprints)
and most repetitive sequences are protected during post-fertilization epigenetic reprogramming. At the
blastocyst stage, there is the first lineage-specification event of inner cell mass (ICM) and trophectoderm
(TE). By the blastocyst stage, DNAm is at its lowest point. After implantation, DNAm is established in
both ICM and TE, but in TE remains lower, a difference that is retained through development.

1.3.1 Measuring DNA methylation with Illumina microarrays

Although DNAm can be measured at various resolutions and technologies, ranging from targeted gene assays

to whole genome bisulfite sequencing, this dissertation exclusively relies on the use of two generations of Illu-

mina DNAm microarrays. The Infinium HumanMethylation450 and Infinium MethylationEPIC BeadChip

Microarrays, commonly referred to as the 450k and 850k arrays, measure DNAm at ~485,000 and ~850,000

CpGs across the genome. Because of their reasonable coverage over element-rich genomic regions (e.g. genes,

enhancers), affordability, and reliability, these microarrays are popular for population-based studies inves-

tigating disease and enivornmental effects on DNAm. Moreover, about 90% of the 450k is also covered

by the newer 850k, which means that a significant amount of data is comparable from older studies (21).

Particularly in at a time when data reproducibility is a high priority, the ability to compare new data and

findings to past research is a highly beneficial characteristic of the Illumina DNAm microarrays.

The microarray relies on DNA hybridization technology, where DNAm at each CpG is measured by

its own 50 base pair probe that is complementary such that the 3’ end of the probe ends with the CpG site. To
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distinguish methylated CpGs from unmethylated ones, bisulfite conversion is used to convert unmethylated

Cs into uracils (U) through chemical examination, and then to thymine (T) through polymerase chain

reaction (PCR). Then, bisulfite-converted DNA is hybridized in a specific manner depending on two probe

types that have different underlying mechanisms to separate methylated and unmethylated -associated signal.

Type I probes consists of two probe designs that are attached to two individual beads: unmethylated

and methylated. Probe hybridization for type I probes depends on the methylation-dependent sequence

complementarity that results from bisulfite conversion (bisulfite converted “T” vs methyl-protected “C”).

Type II probes, in contrast, have only one type of bead, where either unmethylated and methylated DNA

hybridizes to. Methylated and unmethylated CpGs are distinguished instead at the single base extension

step, which is when one fluorescently-labelled base is added to the 3’ end of the probe; either a “G” for

methylated sequences (complement to C), or “A” for unmethylated sequences (complement to T). Different

fluorescent dyes (red and green) therefore distinguishes methylated and unmethylated DNA only for type II

probes, whereas for Type I probes the methylated and unmethylated intensities is distinguished by whether

specific beads have any (red or green) fluorescense signal. The Type I probes were the primary probe type

of earlier generation Illumina DNAm arrays, and perform better in CpG dense regions, which were a higher

focus in earlier DNAm studies. Type II probes, however, only require 1 probe design, which means more

probes can be fit per array, which was factor that enabled increased coverage for the recent generations of

DNAm microarrays (450k and 850k).

A challenge introduced by having two probe types is that technical differences exist in the resulting

DNAm measurements, which must be accounted for when comparing CpGs measured by different probe types

(21). This is accounted for using statistical normalization techniques that address the difference in DNAm

distributions between the different probe types (22,23). Additional types of technical variation is accounted

for by these DNAm normalization techniques, such as the differences in methylated and unmethylated

channels, green and red fluorescence, and in background signal intensities. A small proportion of the 450k

and 850k probes have issues with performance. One set of probes that are commonly referred to as “cross-

hybridizing” have a non-trivial amount of sequence homology to multiple parts of the genome, resulting

in spurious signal. Another set of probes have single nucleotide polymorphisms (SNPs) within the probe

body itself, therefore affecting the strength of hybridization directly. Efforts have been made to identify

cross-hybridizing and probes with SNPs in the probe body for removal from downstream analyses .

5



1.4 Placental DNA methylation variation across human populations

Epigenome-wide association studies (EWAS) have shown that a substantial amount of variation in DNAm

exists between human populations (24–30). Therefore, if left unaccounted for, population-associated vari-

ation can interfere with the discovery of DNAm alterations associated with disease or environment. This

type of confounding, often referred to as population stratification, can be addressed by inferring population-

associated variation directly from DNAm data itself (31–33), as is done in genome-wide association studies

(GWAS) (34). However, unlike genetic markers, epigenetic markers are tissue-specific, and therefore a

DNAm-based method developed in a specific tissue or population may not generalize well to other tissues

with unique DNAm profiles, such as the placenta.

In EWAS, confounding from population stratification is most often addressed using self-reported

ethnicity/race to stratify study samples across the phenotype of interest. But, defining ethnicity/race is a

complex task requiring the interpretation of a combination of biological and social factors leading to sev-

eral complications: (i) inconsistent definition of ethnicity/race categories between individuals/organizations

(35,36); (ii) self-reporting more than one ethnicity/race (37); and (iii) missing ethnicity information alto-

gether. Ultimately, ethnicity and race are concepts that try to classify humans but are social constructs and

are therefore always subject to the viewpoints and sociocultural factors that are constantly changing. To

overcome the limitations of ethnicity/race categories, genetically-defined ancestry can be used in research

contexts (38) as an alternative measure of population-specific variation. In contrast to the discrete nature

of ethnicity/race categories, genetic ancestry can be expressed as several continuous variables based on

genotype variation that reflect ancestry composition (39).

1.4.1 Existing approaches to account for population variation in EWAS

Although the importance of accounting for human population-based variation in EWAS is widely acknowl-

edged, methods for DNAm-specific analysis are underdeveloped. Barfield 2014 developed a principal com-

ponents analysis (PCA)-based approach to summarize genetic variation in PC variables that can be later

incorporated into downstream analyses (31) (Table 3.1). This approach, which is highly similar and likely

inspired from genotype-based methods of assessing genetic ancestry that are routinely used GWAS (40),

was effective in a population of North American Caucasian and African American peripheral blood samples.

In contrast to genotype-based genetic ancestry, population-specific signal in DNAm data is not nearly as

strong; therefore, Barfield 2014 found improvements by using PCA on CpG sites that are nearby (<50bp)

single nucleotide polymorphisms (SNPs), which are where the DNA sequence at a particular genomic po-

sition often varies between individuals, and in this case, human populations. Rahmani 2017 developed an
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approach they refer to as EPISTRUCTURE, which is also a PCA-based approach using a subset of CpGs. In

contrast to Barfield 2014’s “proximity-based” approach, EPISTRUCTURE uses CpG sites that were directly

associated with a nearby SNP. These SNPs that are associated with CpG methylation, referred to as methy-

lation quantitative trait loci (mQTLs), were identified in one of the two cohorts included in Rahmani 2017.

Although EPISTRUCTURE had improvements in capturing population-specific genotype-based variation

in their DNAm data, a limitation of this type of approach is that many mQTLs are highly tissue-specific

(30,41,42), and moreover SNPs can be highly population-specific (43). Since EPISTRUCTURE was devel-

oped in blood and in Europeans, it remains unclear if EPISTRUCTURE can provide reasonable performance

in other tissues and populations. In contrast to Barfield 2014 and EPISTRUCTURE, Zhou 2017 developed

an entirely genotype-based approach by training a random forest predictor of ethnicity, using the 59-65

SNP probes on the 450k and 850k DNAm microarrays (44). They show that their SNP predictor performs

well for at least 3 broad ethnicities in USA, that they defined as White, Black or African American, and

Asian. However, these SNP probes were designed for population-specific analyses in mind, and because of

the small number of probes, it is unclear how robust and sensitive to additional populations is Zhou 2017’s

SNP predictor.

1.5 Epigenetics and placenta cell types

In the early blastocyst, the majority of gamete-derived epigenetic marks have been erased. The trophec-

toderm will develop into one of the layers of the chorion as well as the villous trophoblast, which retains

this low methylated state. Hypomethylation of chorionic villi as a whole reflects that trophoblast is the

predominant cell type within this tissue (46). In the mouse, trophoblast hypomethylation is associated with

down-regulation ofthe DNA methyltransferases, Dnmt3a, Dnmt3b, and Dnmt1a (47). However, the role of

DNMTs in human trophoblast is less clear (48). In contrast, the inner cell mass undergoes de novo global

DNAm. These cells are the origin of the fetal tissues, but also contribute to primitive endoderm, from which

placental endothelial cells are derived, and to the extraembryonic mesoderm, from which villus stroma is

derived. In addition to differences in DNAm, the early trophectoderm shows higher H3K27 methylation as

well as lower levels of histone H2A and/or H4 phosphorylation (49). Further differentiation processes in both

trophoblast and other lineages are associated with additional DNAm changes and histone modifications at

specific regulatory loci (50).

The tree-like structures of chorionic villi that compose the placenta consist of an outer layer of

stem-like cytotrophoblasts (CTBs), which fuse together to form syncytiotrophoblast (STB). This syncytium

facilitates maternal-fetal exchange and produce hormones to support pregnancy, such as progesterone, leptin,
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Table 1.1: Description of methods to infer self-reported ethnicity or genetic ancestry using HM450K data.

Sample Characteristics
method Statistical

Approach
Input
HM450K
sites

Output Tissue Populations* Cohort
Location

Barfield et
al. 2014 (31)

PCA 7703
DNAme
sites with a
1000
genomes
project SNP
at the CpG
site

Genetic
ancestry as
PC scores

Blood Caucasian-
Americans,
African-
Americans

USA

EPI-
STRUCTURE
(32)

PCA 4913
DNAme
sites
associated
with local
genetic
variation
(mQTLs)

Genetic
ancestry as
PC scores

Blood Europeans,
Puerto
Ricans,
Mexicans

Southern
Germany;
USA

Zhou et
al. 2017 (33)

Predictive-
modeling

59/65 SNP
sites

Ethnicity Multiple White,
Black or
African
American,
Asian

Many

PlaNET
(45)

Predictive-
modeling

15 SNPs;
1845
DNAme
sites

Ethnicity
and Genetic
Ancestry

Placenta Caucasians,
Asians,
Africans

Canada,
USA

* Ethnicity/ancestry as defined in associated study
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human chorionic gonadotropin, and human placental lactogen. Transcriptional and epigenetic events control

CTB differentiation and are triggered by pregnancy-associated levels in oxygen content (51); (52)]. Under

low oxygen conditions, CTB fusion is impaired, and certain STB-specific CpG sites become hypermethylated

(53). For example, syncytin-1, which is critical for STB formation, is down-regulated in response to hypoxia

through DNMT3A-dependent hypermethylation (54). Histone deacetylase complexes (HDAC) and histone

acetyltransferases (HAT) are also involved through their effects on the transcription factor GCMa, which

regulates syncytin-1 expression (55).

The terminally differentiated syncytium contains nuclei derived from the fusion of CTBs at various

stages in gestation. As a result, nuclei in the syncytium are heterogeneous in their age and structure.

Nuclei from recently fused CTBs tend to contain a transcriptionally active euchromatic structure whereas

older heterochromatic nuclei form condensed structures called syncytial knots (56). The majority of STB

nuclei are transcriptionally active and lacking repressive epigenetic marks, such as DNAm, H3K9me3, and

H3K27me3 (57). However, there is also an enrichment of H4K20me3, a repressive chromatin mark, that is

suggested to potentially originate from the older nuclei.

CTBs can also differentiate into extravillous trophoblasts (EVTs), which exhibit strikingly different

transcriptional, epigenetic, and morphological characteristics compared to STBs. During this process, ex-

pression of cell adhesion molecules and polarity are lost and expression of mesenchymal markers, migratory,

and invasive properties are gained (58). Key to EVT differentiation is hypoxia-inducible factor (HIF) and

Notch1 signalling, which both can be triggered by the low oxygen environment of the early gestation placenta

(59–61). Transcription factors essential to the initiation of this transition process, SNAIL and SLUG, are

also differentially methylated between CTBs and EVTs (62).

Histone acetylation is also essential for trophoblast differentiation, and is thought to be controlled

by placental-utero oxygen content through the activity of HIF-1 and HDACs (52). The HDAC inhibitor,

trichostatin-A, results in increased histone acetylation and over-expression of tumor suppressor gene SER-

PINB5, leading to reduced EVT motility and invasion (63). In contrast, acetylation of histones H2A and

H2B by the CREB-binding protein (CBP) acetyltransferases inhibits the epithelial-mesenchyme transition

and promotes epithelial characteristics in mouse studies (64). A higher-order chromatin structure mediated

by histone modifications in combination with a locus repeat structure was demonstrated to play a role in

STB-specific expression within the human growth hormone gene cluster (65), illustrating that the DNA

sequence itself can affect chromatin structure.

Our knowledge of cell-specific epigenetics is confined primarily to trophoblast populations. How-
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ever, additional placental cell populations are functionally important and may also be implicated in disease.

Chorionic villus cultures yield the predominant growth of fibroblast cells, which have a DNAm profile that is

much more similar to the fetal membranes than to whole placental villi (66). Placental-specific macrophages,

Hofbauer cells (HBs), lie in the mesenchymal core of the chorionic villi and in comparison to maternal

and fetal macrophages, show hypermethylation of many immune response-related and classical macrophage-

activation associated genes, possibly as a result of high expression of DNMT1, DNMT3A, and DNMT3B

(67).

Our current understanding of pathological diseases that affect the placenta is contributed predom-

inantly from bulk-tissue profiling studies, which suffer from the limitation that cellular heterogeneity can

result in the dilution of cell-specific signals and the creation of spurious ones. More targeted studies in-

vestigating cell-specific signatures will contribute to our understanding of changes associated with normal

placental functioning as well as of abnormal ones.

1.5.1 Cell-specific placental DNA methylation

Because heterogeneous tissues, such as the placenta, are made up of several cell types (Figure 1.1), each with

a distinct DNAm signature, whole-tissue measurements are ultimately an average of the DNAm signatures

of the constituent cell types, weighted by their respective frequency in the bulk tissue sample. Therefore,

changes in DNAm measured in complex tissues can often be attributed to variation in cell composition

rather than DNAm changes that occur in the constituent cell populations (68). This makes interpretation

of placental DNAm studies difficult until placental DNAm is characterized at a cell-specific resolution.

During the first few cell divisions after fertilization, there is a wave of genome-wide erasure of

DNAm, followed by de novo DNAm in the inner cell mass (69). Deriving from the inner cell mass are fetal

tissues and the mesenchymal core component of the placental chorionic villi. Within the mesenchymal core,

stromal cells (SC) and HBs can be seen in the placental stroma as early as 18 days post conception (70),

which are thought to derive from mesenchymal stem cells. HBs are distinct from decidual macrophages

and fetal/maternal monocytes (67); they display high phenotypic diversity, promoting angiogenesis early

in gestation and later participating in the immune response to pathological processes and infection (71,72).

Placental vasculature is critically important for proper functioning of the placenta, and depends on the

development of vessels beneath the trophoblast layer. These vessels are formed from endothelial cells (EC)

that derive from the chorionic mesoderm (73). Encompassing the mesenchymal core is a thick trophoblast TB

epithelial cell layer, which displays a hypomethylated profile (66). TBs comprise a set of functionally distinct

subtypes, each with their own unique function (53,74): CTBs are stem-like cells that harbor regenerative
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abilities and give rise to the two major trophobalst subtypes, EVTs and STBs. EVT are motile cells that

travel to maternal tissue and remodel maternal vasculature, while STB are a multi-nucleated epithelial layer

lining the chorionic villi that perform critical roles in hormone production and nutrient transfer.

As a consequence of its distinct developmental origin, dramatic differences in DNAm between

placenta and somatic tissues have been observed (66). Globally, the placenta is hypomethylated compared

to other tissues, which was originally attributed to reduced methylation of repetitive element DNAm (75,76),

but was later resolved to be primarily due to placental-specific PMDs (77). It is unclear if these PMDs have

a distinct function or are footprints of earlier developmental events between embryonic and extraembryonic

tissues. Parent-of origin specific DNAm, which is associated with genomic imprinting, is also more commonly

found in the placenta than other tissues (78). Almost all known imprinted genes are imprinted in the placenta,

and many are exclusively imprinted in the placenta (79–82). Interestingly, a number of placental-specific

imprinted genes are polymorphically imprinted (79). It is possible that cellular and genetic heterogeneity can

contribute to polymorphic imprinting, as well as variability in DNAm generally. Supporting this, a significant

role for genetic control of placental DNAm variation was recently characterized (41). These studies have

contributed to our understanding of the unique epigenetics of the placenta, but it remains unclear if these

features are maintained in all constituent placental cell types or are confined to specific ones.

1.5.2 Cell deconvolution

Placental DNAm is often studied in the context of disease and environmental exposures that may affect

health. A common study design is the EWAS (83), where differentially methylated CpGs (DMCs) are

identified in a high-throughput manner, usually with microarray or sequencing based approaches. However,

placental DNAm studies are almost all carried out using whole CV and are therefore subject to challenges

of interpretability due to potential cell composition variability (84). Unlike other tissues, such as adult

blood and umbilical cord blood, addressing cell composition variability in placenta is difficult due to a

lack of reference placental DNAm profiles, which enables bioinformatic estimation of cell composition from

cellular deconvolution techniques (85). These methods operate by modelling the whole tissue measurements

as a weighted sum of cell type -specific DNAm signatures, where the weights correspond to the relative

proportion of each constituent cell type in the whole tissue sample, and can be determined using least-

squares or non-constrained regression approaches (85–87). Without reference DNAm profiles for each cell

population, researchers sometimes account for cell composition using reference-free deconvolution methods

(88). However, the effectiveness of reference-free deconvolution in capturing cell composition variation has

not yet been assessed in placenta.
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1.6 Maternal signal in placental DNA methylation data

Illumina high-density microarray profiling for DNAm has advanced placental research by identifying epige-

netic processes associated with placental function in relation to maternal environment, genetics, and perinatal

health (89). Critical to these studies is the development of bioinformatic tools to process and analyze DNAm

data. Recently, sample contamination, which can result in obscured measurements, has been shown to be

prevalent in EWAS data (90). Sex mismatches and, mis-annotation of samples is a problem that has been

previously demonstrated in other types of genomic studies (91). Heiss and Just 2018 used two bioinfor-

matic approaches to determine whether samples measured on the Illumina Infinium HumanMethylation450

BeadChip (450k) and Infinium MethylationEPIC DNAm BeadChip (850k) microarrays are contaminated or

misannotated.

The first approach estimates the amount of mixing of distinct genotypes in a DNAm array sample,

by measuring the amount of outlying signal at 59-65 single-nucleotide polymorphism (SNP) probes, which

increases as mixing between genetically distinct individuals occur. The second approach identifies samples

that have a pattern of signal intensity on the X and Y chromosome probes that is consistent with mixing

of samples of different sex. This second approach is only sensitive to those cases where the sexes of the

mixed samples are distinct, Despite most epigenome-wide association studies (EWAS) having some level of

data quality control and sample preprocessing. Heiss and Just 2018 demonstrate that misannotation and

sample contamination is relatively common in DNAm studies, but also importantly note that contamination

is identifiable by their approaches and therefore addressable in downstream analysis.

In placental research, where conceptus-derived chorionic villi are normally sampled, there is an

added challenge of avoiding contamination with maternal tissue, as the placenta is directly attached to

the maternal uterine wall and bathed in maternal blood (91). Because maternal cells from decidual tissue

are distinct in both function and epigenetic profile than placental (conceptus-derived) cells, contamination

from maternal tissues can obscure measurements of DNAm and make interpretation difficult (92). While

small numbers of maternal macrophages are a normal component of placental cell composition throughout

gestation (93), placental inflammation can sometimes be associated with infiltration of maternal immune

cells into the intervillous space and even the villi themselves (e.g. acute chorioamnionitis (94)). Due to these

technical and biological factors that can contribute to maternal DNA presenting in placental samples, it can

be difficult to determine whether DNAm variation reflects phenotype-associated epigenetic reprogramming

or if simply the underlying cell composition is changing.

Although careful sample processing can generally avoid most maternal contamination, knowing
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the degree of maternal DNA contribution for each sample would aid downstream analyses and may be

relevant to the biological processes of interest. Despite this, the degree that maternal DNA contamination

influences placental studies has been minimally explored. Wan 2019 describe a set of quality control measures

based on clustering DNAm patterns between control placental and maternal tissue samples, and partially

methylated domains (PMDs), that were used to infer that early termination pregnancies are especially at

risk of contamination during sample processing (95). PMDs are long regions of intermediate/low DNAm

surrounded by regions of higher DNAm that exist in a highly cell-specific fashion (96). In particular, they

emphasized that samples obtained from early termination pregnancies are especially at risk of contamination

during sample processing. Maternal contamination can also present a risk to cord blood studies. Morin 2017

used tissue-specific approaches to assess maternal contamination in DNAm data derived from cord blood,

such as using highly cord blood -specific sites to predict contaminated and non-contaminated samples (97).

Interestingly, they explored using quality measurements (i.e. “no-calls”) from genotyping data for samples

that had also been measured on the Illumina PsychChip (genotyping array) to confirm contamination calls,

but in contrast to Heiss 2018, found that the sensitivity of the genotyping data for genotype mixing was

poor.

1.7 Research objectives and hypothesis

Previous work in placental DNAm research involves mostly EWAS-type study designs assessing placental

phenotypes such as preeclampsia, fetal growth restriction, chorioamnionitis, neural tube defects, and envi-

ronment. However, these studies are limited to existing bioinformatic tools, which have not been extensively

explored for their appropriateness and effectiveness in placental data. Moreover, the underlying DNAm of

the various cell components of the placental chorionic villi has not yet been characterized.

In this dissertation I aimed to characterize and identify the major sources of variation in placental

DNAm, and develop bioinformatic approaches to infer, model, and characterize these variables from placental

DNAm data directly. I hypothesize that cell composition, genetic ancestry and ethnicity, and maternal DNA

contamination can be identified and predicted from placental chorionic villi DNAm data. To assess this, I

performed:

1. A study of developing and comparing approaches to predict ethnicity and genetic ancestry from pla-

cental DNAm data using multiple placental GEO datasets.

2. A study of characterizing the DNAm of placental cell types across gestation, and developing a reference

to estimate cell composition from placental chorionic villi DNAm.
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3. A study of using bioinformatics to identify maternal signal from placental DNAm data from previously

published placental DNAm studies.

These studies contribute to further insights into major contributors of variation in placental DNAm,

and provide useful bioinformatic approaches for conducting better placental DNAm research.
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2 Accurate ethnicity prediction from placental DNA methylation

data

2.1 Introduction

Population stratification or confounding effects from variation in genetic ancestry can confound placental

EWAS. However, methods to estimate population effects either by inferring genetic ancestry (31,32) from

highly genotype-associated CpG methylation (32) or by predicting ethnicity, may have population- and

tissue- specific effectiveness.

In this study, we developed a placenta-specific approach to predicting ethnicity, which we refer to

as planet (Placental DNAm Elastic Net Ethnicity Tool). Planet uses DNAm and genotyping data measured

on the 450k array and was developed using multiple cohorts of placentas from North America. To ensure

compatibility with future studies, planet was developed on overlapping sites from 450k and the newer 850k

array. We show that planet out-performs existing methods in predicting ethnicity in placental DNAm data

and can produce accurate measures of genetic ancestry. Our method can be used to classify individuals into

discrete groups based on self-reported race/ethnicity or to describe individuals on an ancestral continuum

that more accurately reflect the nature of human populations. In this study, self-reported ethnicity/race

categories sometimes differed between cohorts. Ethnicity defined in this study is a collection of self-reported

ethnicity and/or race information that was recoded such that populations were grouped into 3 populations

with high cultural similarity and common ancestral origin (recoding: “African” = African / African American

/ Black; “Caucasian” = Caucasian / Non-hispanic White; “Asian” = East Asian / Asian).

In studies where ethnicity information is unavailable, planet can be applied to predict ethnicity after

obtaining DNAm data, and used to investigate population-specific differences or to minimize confounding

by population stratification in downstream DNAm statistical analyses.

2.2 Results

2.2.1 Datasets

Our goal was to develop a placental DNAm-based ethnicity classifier, which could learn ethnicity-specific

DNAm patterns from one set of samples in order to assign ethnicity labels to a new set of samples. We

searched for placental 450k data on the Gene Expression Omnibus (98) that contained more than one

ethnicity group and made sample-specific ethnicity information available (Table 2.1). Five distinct cohorts

met these criteria (labelled C1-C5), with three major North American ethnicities represented by sufficiently
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large numbers across more than one dataset: African (n = 58), Asian (n = 53), and Caucasian (n = 389). We

opted to include samples from both healthy and abnormal pregnancies (preeclampsia, gestational diabetes

mellitus, fetal growth restriction or overgrowth) (Table 2.1) (79,99–104). Though there were significant

cohort-specific effects on DNAm that may reflect batch/technical variation (Figure A.1), we included these

multiple datasets and phenotypes to enable the development of a robust classifier that would generalize well

in future studies (105).

2.2.2 Development of a placental DNA methylation ethnicity classifier

To determine the best machine learning classification algorithm that could learn ethnicity-specific patterns

from DNAm microarray data, we compared four algorithms previously shown to be well-suited for prediction

using high-dimensional genomics data (105–107): generalized logistic regression with an elastic net penalty

(GLMNET) (108,109), nearest shrunken centroids (NSC) (106), k-nearest neighbours (KNN) (110), and

support vector machines (SVM) (111). For each algorithm, hyperparameter(s) were selected (e.g. k number

of neighbours for KNN) that resulted in the highest performance estimated by repeated five-fold cross

validation (three repeats). All algorithms performed favorably (logLoss = 0.170 - 0.276; Figure A.2), except

KNN (logLoss = 1.82). However, all algorithms showed a bias for high predicatability of Caucasians (average

accuracy = 0.980), and low predictability of Asians (average accuracy = 0.448) (Figure A.2). Considering

overall- and ethnicity-specific performance, the GLMNET algorithm was used for the remainder of the study

(accuracy = 0.866, 0.625, 0.998 for Africans, Asians, and Caucasians, respectively), and we refer to this

classifier as planet (Placental DNAm Elastic Net Ethnicity Tool).

For each sample, planet returns a probability that the sample is African, Asian or Caucasian and

the final classification is defined by the ethnicity class with the highest of these probabilities. We reason

that these probabilities have the potential to identify samples with mixed ancestry or ethnicity. Therefore,

we implemented a threshold function on planet’s probability outputs that classifies samples as ‘Ambiguous’

if the highest of the three class-specific probabilities is below 0.75 (Material and Methods, Figure A.3). This

resulted in 7 self-reported African, 12 Asian, and 13 Caucasian samples as being classified as ambiguous,

which led to a slight decrease in performance (Figure 2.1a). However, we note that because genetic ancestry

exists on a continuum and due to the limitations of self-reported ethnicity, there are likely to be individuals

of mixed ancestry/ethnicity in our sample set, and therefore hypothesize that a model that includes an

ambiguous class is more realistic and accurate than one without. Cross validation, where training/validation

subsets were created based on cohort-identity, yielded an overall accuracy of 0.900, a Kappa of 0.738, and

a positive predictive value of 0.944 (Figure 2.1a), which was consistent when examining performance by
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Table 2.1: Description of 450k DNAm datasets used to develop and test planet.

Self-reported ethnicity
Cohort n GEO

accession
Description Location AFR

(n=57)
ASI

(n=53)
CAU

(n=389)
Additional
genetic
data

C1 (103) 72 GSE70453 36
controls,
36 gesta-
tional
diabetes
mellitus

Boston,
MA,
USA

13 13 46 NA

C2 (101) 24 GSE73375 13
controls,
11
preeclamp-
sia (PE)

Chapel
Hill, NC,
USA

13 1 10 NA

C3 (102) 289 GSE75248 289
samples
from
infants
with
variable
newborn
neurobe-
haviour

RI, USA;
MA,
USA

23 9 257 NA

C4 (100) 44 GSE10019717
controls,
27 PE

Toronto,
CAN

7 12 25 50 AIMs

C5 (99) 70 GSE100197,
GSE108567,
GSE74738,
Unpub-
lished

35
controls,
35 fetal
growth
restric-
tion, PE,
and/or
preterm
birth

Vancouver,
CAN

1 18 51 50 AIMs;
Omni2.5

AFR African, ASI Asian, CAU Caucasian
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dataset (Figure A.4).
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Figure 2.1: Evaluating planet’s performance and characterizing ethnicity-predictive 450k sites. We developed
planet (Placental elastic net ethnicity classifier), using placental 450k data and evaluated its classification
performance using leave-one-dataset-out cross validation. a Each sample’s ethnicity classification is shown
with respect to their self-reported ethnicity. Samples were called ‘ambiguous’ if their predicted probability
fell below a ‘confidence’ threshold of 75%. b planet utilizes a subset of ethnicity-predictive sites from the
450k. To investigate whether genetic signal is present in the measurement for these sites, we cross-referenced
ethnicity-predictive sites to an existing placental mQTL database (41) and determined whether any sites
had SNPs present in either the probe body, CpG site of interrogation, or single base extension sites, based
on dbSNP137

2.2.3 Ethnicity-predictive sites on the 450k array are largely linked to genetic variation

To better understand the basis of planet’s ethnicity prediction, we examined the 1860 sites automatically-

selected by the GLMNET model. These sites were enriched for SNP probes, containing 15 of the 59 SNPs

explicitly measured on both 450k and 850k DNAm arrays (p < 1e-16). Of the remaining 1845 DNAm sites,

we found significant enrichment for sites linked to genetic variation: 802 sites (43.1%) have a documented

SNP in either the probe body, CpG site of interrogation, or the single base extension site (p < 1e-16) (112),

and 220 sites (11.8%) corresponded to previously identified placental-specific methylation quantitative trait

loci (mQTLs) (41) (p < 1e-16, Figure 2.1b). With respect to chromosomal location, we found significant

enrichment for ethnicity-predictive sites on chromosomes 2 (p < 0.01), 15 (p < 0.05), and 17 (p < 0.05)

(Figure A.5 file 2: Figure A.5). With respect to CpG density, we found significant enrichment for ethnicity-

predictive sites in OpenSea (p < 0.001) and South Shore (p < 0.05) regions (Figure A.5), where relatively

neutral (unselected) genetic variation is more likely to be located (113). Pathway analysis for GO and KEGG

terms for genes associated with the 1860 sites, found only one significant (p < 0.05) GO term (homophilic

cell adhesion via plasma membrane adhesion molecules).
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2.2.4 DNAm -inferred ethnicity and genetic ancestry

To test the ability of planet to identify individuals of mixed ancestry, we examined whether samples classified

as ‘ambiguous’ were also intermediate with respect to genetically-defined ancestry. Genetic ancestry was

inferred from 50 ancestry informative genotyping markers (AIMs) in samples from cohorts C4 and C5 (n

= 109), using 1000 Genomes Project samples as reference populations (43,114). These 50 markers were

previously selected based on their ability to differentiate between African, European, East Asian, and South

Asian populations (114). Plotting the first two multi-dimensional scaling coordinates calculated on the 50

AIMs in (Figure 2.2), shows a handful of samples intermediate to three more distinct ancestry clusters.

The samples with less extreme genetic ancestry coordinates based on AIMs tended to have lower planet-

calculated probabilities associated with the ethnicity classification matching the individual’s self-reported

ethnicity (Figure 2.2) confirming that planet provides some information on the genetic ancestry composition.
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Figure 2.2: Probabilities associated with planet ethnicity predictions and genetic ancestry inferred from
AIMs. Probabilities associated with planet ethnicity predictions and genetic ancestry inferred from AIMs.
Ethnicity classifications from planet and associated confidence/probability scores were compared to genetic
ancestry inferred from 50 AIMs (n = 109, cohorts C4, C5), represented by the first three coordinates from
multidimensional scaling using 1000 genomes project samples as reference populations

Although genetic ancestry can be adequately inferred from a small set of AIMs, it is best obtained

from a large number of unlinked markers (115). Therefore, we also inferred genetic ancestry in a smaller

number of samples from C5 (n = 37) with high density genotyping array data (Omni 2.5, >2.5 million

SNPs), again using 1000 Genomes Project samples as reference populations (43,116,117), and compared this

to planet’s predicted membership probabilities for each ethnicity (Figure 2.3a-c). 10 of these 37 samples

were not initially used for previous analyses due to a lack of available self-reported ethnicity information

(Figure 2.3a). We found that genetic ancestry coefficients reflected the probabilities associated with ethnicity
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classification to a high degree (Figure 2.3bc, R2 = 0.95-0.96, p < 0.001).

P(African)
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Figure 2.3: Probabilities associated with planet ethnicity predictions and genetic ancestry inferred from high
density genotyping data. Probabilities associated with planet ethnicity predictions and genetic ancestry
inferred from high-density genotyping data. planet was tested in a subset of cohort C5 (n = 37). a planet’s
ethnicity classifications were compared with self-reported ethnicity. b Ethnicity probabilities generated by
planet were compared to c genetic ancestry coefficients determined from high-density genotyping data (Omni
2.5, > 2 million SNPs), using the function snmf() from the R package LEA, and found to be highly correlated
(R2 = 0.95–0.96, p < 0.001) determined by linear regression.

2.2.5 Characterizing existing methods to infer population structure in placental DNA methy-

lation data

To evaluate our hypothesis that a placental-specific approach to population inference would outperform exist-

ing methods developed in other tissues, we compared the performance of planet to three previously published

450k methods: Barfield’s SNP-based filtering approach (31), EPISTRUCTURE (32), and Zhou’s SNP-based

classifier (33). To address the differences in the type of outcomes produced by each method (e.g. PCs or

ethnicity classifications), we used PCA to generate metrics that could be compared between methods. PCA

was performed on the set of 450k sites corresponding to each method (Table 1) to determine the amount of

variance explained in self-reported ethnicity (Figure 2.4a; n = 499, cohorts C1-C5), genetic ancestry (Fig-

ure 2.4b,c; n = 109, cohorts C4 and C5 only), and cohort-specific patient variables (e.g. microarray batch,

sex, gestational age; Figure A.6), by each of the top ten PCs corresponding to each of the four population

inference methods. For computation of PCs on planet’s sites, we used a cohort-specific cross validation
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framework to account for bias that could be introduced by using the same samples for development and

testing. Specifically, planet’s PCs were computed separately for each cohort using ethnicity-predictive sites

selected in all other cohorts (methods). We found that for all cohorts, the first two PCs computed on planet’s

sites and the 59 SNPs was highly correlated with self-reported ethnicity (Figure 2.4a, R2 = 0.649 ± 0.087,

0.697 ± 0.110, respectively), genetic ancestry coordinate 1 (Figure 2.4b, R2 = 0.680 ± 0.086, 0.721 ± 0.019),

and genetic ancestry coordinate 2 (Figure 2.4c, R2 = 0.296 ± 0.418, R2 = 0.356 ± 0.497; Figure 2.4a). In

contrast, the first PC computed on Barfield’s and EPISTRUCTURE’s sites showed almost no correlation

with self-reported ethnicity (Figure 2.4a, R2 = 0.0452 ± 0.060, 0.066 ± 0.082), genetic ancestry coordinate

1 (Figure 2.4b, R2 = 0.044 ± 0.060, 0.040 ± 0.055, respectively), or genetic ancestry coordinate 2 (Figure

2.4c, R2 = 0.0178 ± 0.0236, 0.0228 ± 0.0321). Instead, for Barfield and EPISTRUCTURE, the PCs that

correlated with ethnicity/ancestry were confined to PCs 3-6 (Figure 2.4a), while often the top PCs (e.g., 1-4)

for these two methods were associated with variables other than ethnicity/ancestry (A.6). For example, in

cohort C4, EPISTRUCTURE PC1 was most correlated with row position on the 450k array (R2 = 0.482),

PC2 with gestational age (R2 = 0.315), PC3 with genetic ancestry coordinate 1 (R2 = 0.450) and PC5 with

ethnicity (R2 = 0.579; A.6).

Limiting to methods that predict ethnicity classes, we compared the performance of planet to Zhou

et al. 2018’s SNP-based classifier (Figure A.7). Both classifiers demonstrated similar accuracy in classifying

self-reported Africans (87.1% for planet; 90.3% for Zhou) and Caucasians (96.7% vs 97.9%), but planet was

more accurate in classifying self-reported Asians (74.4% vs 41.0%).
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Figure 2.4: Comparing planet to existing methods to account for population stratification using 450k data.
a For each cohort, principal components analysis was conducted on planet using a model trained on all
other cohorts. planet’s principal components (PCs) were then compared to the PCs computed on sites from
EPISTRUCTURE (32), Barfield’s method (31), and the 59 SNPs. a Amount of variance explained from
a series of linear models where principal component “i” is a function of self reported ethnicity encoded as
a dummy variable. b This was then repeated using AIMs coordinates 1 and 2 instead of ethnicity as the
independent variable (n = 109)

2.2.6 Application of planet in an EWAS setting

Lastly, to demonstrate the utility of applying planet to placental DNAm data, we applied planet to obtain

ethnicity classifications across two previously published EWAS studies using three datasets (Table 2.2, Figure

A.9). We note that this includes samples from cohorts C4 and C5 that were used to develop planet.

One study used two distinct cohorts from Vancouver, Canada (GSE100197, = 102) and Toronto,

Canada (GSE98224, n = 48) to investigate DNAm alterations associated with preeclampsia status (99). We

reasoned that correction for ethnicity should decrease false positives in the EWAS and therefore increase con-

cordance between hits identified in the two data sets. In the original EWAS, with no adjustment for ethnicity,

our group reported that 599 out of the 1703 (35.1%) significant associations found in the discovery cohort
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were also significant in the validation cohort, and the correlation of the difference in mean DNAm between

controls and preeclampsia-affected samples (i.e. delta betas) at FDR significant sites between discovery and

validation was 0.62 (99). When we repeated the analysis while adjusting for ethnicity determined by planet,

the number of preeclampsia-associated sites that overlapped between cohorts increased to 651/1614 (40.3%)

[Table A.3], and the correlation between delta betas increased to 0.66. We also found that repeating gene set

enrichment analysis, which originally found nothing significant (99), yielded several significantly enriched

GO terms such as developmental process, inflammatory response and cell adhesion.

Next, because adjustment for population stratification can not only be done via correction in linear

modelling, but can also be done by stratifying an analysis by population identity, we performed a secondary

EWAS confined to samples predicted as Caucasians (n = 71/102 for discovery, n = 28/48 for validation).

This resulted in a decrease in overlap in preeclampsia-associated sites between cohorts: 359/1488 (17%)

[Table A.4], although the correlation between delta betas remained high (r = 0.67), indicating the observed

decrease in overlap between significantly differentially methylated sites was likely due to a decrease in power

from smaller sample size (particularly in the validation group) rather than a decrease in concordance between

cohorts.

The application of planet can be useful for checking for discrepancies in self-reported ethnicity

information. We tested whether planet could identify the ethnicity of samples from an all-Caucasian popu-

lation. GSE71678 (n = 343), a cohort not used in the development of planet, consisted of DNAm data from

placental samples collected from a New Hampshire, USA birth cohort that investigated the effects of arsenic

exposure on placental DNAm (118). 342 samples were classified as Caucasian by planet, and 1 sample had

a high probability of belonging to the Caucasian group (Probability = 0.73) but was below our confidence

threshold and was therefore classified as ‘ambiguous,’ confirming ethnic homogeneity was high in this cohort

and adjustment for population stratification was not needed in this study.

2.3 Discussion

In this study, we developed planet, a method to predict Asian, African, and Caucasian ethnicity using

placental 450k array data. To enable compatibility with future studies, planet was developed on sites (452,453

CpGs and 59 SNPs) overlapping between 450k and 850k DNAm arrays. Although all samples in this study

were reported as a single ethnicity/race, we expected that there would be significant population substructure

that might limit our ability to develop predictive models of ethnicity and to assess their performance. Despite

this limitation, ethnicity could be predicted with high accuracy as assessed by cross validation. planet’s

DNAm-based ethnicity classification relies on 450k sites with large amounts of genetic signal, which supported
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Table 2.2: Distribution of planet ethnicity predictions across previously published placental EWAS datasets.

GEO
Accession

Primary
groups

African Asian Caucasian Ambiguous

GSE98224 EOPET 5 4 10 0
Preterm
Controls

1 3 5 0

LOPET 1 1 8 1
Term Controls 0 4 5 0

GSE100197 EOPET 1 5 15 1
Preterm
Controls

1 4 19 0

LOPET 0 6 12 0
Term Controls 0 2 17 0
IUGR 0 3 8 0

GSE71678 NA* 0 0 342 1
EOPET - Early Onset Preeclampsia, LOPET - Late Onset Preeclampsia.
* Phenotype of interest is a continuous variable (arsenic concentration).

our initial efforts to filter our data to enrich for genetic-informative sites prior to classifier development

(methods) [41, 50, 51]. When examining planet’s 1,860 sites used to predict ethnicity, more than half could

be linked to a nearby genetic polymorphism. Of these, 802 CpG sites have documented SNPs in their probe

body, single base extension or CpG site of interrogation, which previously have been identified to differ

between European and East Asian populations (112). Several studies have suggested the genetic influence

on DNAm at these sites is primarily technical in nature (112,119,120), suggesting the patterns in DNAm at

these sites are likely tissue-agnostic, warranting further investigation in their utility in predicting ethnicity

and/or genetic ancestry in tissues other than the placenta. A significant proportion of other ethnicity-

predictive CpG sites (n = 220) were previously found associated with placental mQTLs in a population

with similar demographics to the ones studied here (41). This finding, together with EPISTRUCTURE—a

method that also relies on mQTLs (32)—suggests that leveraging the tissue- and population- specificity of

mQTLs can produce highly effective DNAm -based population structure inference methods.

Of the existing methods to assess population stratification from DNAm data, we note that Barfield’s

method and EPISTRUCTURE infer continuous measures of genetic ancestry, while Zhou’s SNP-based clas-

sifier returns discrete ethnicity classifications, however ours produce both (31–33) (Table 1.1). EPISTRUC-

TURE and Barfield’s method are unsupervised PCA-based approaches, which rely on the empirical observa-

tion that specific DNAm sites can be highly correlated with PCs computed on genome-wide genotype data

in adult blood samples (31,32). However, we found that DNAm at these sites did not produce PCs that

are highly associated with genotype data in placental samples. Instead, top PCs were more often associated

with non-ancestry related variables in the placental samples included in this study, such as gestational age,
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preeclampsia, and technical variables. Ethnicity and genetic ancestry -associated PCs were confined to the

third to sixth component of variation, suggesting that application of these methods may require filtering

of PCs to those that are ethnicity / ancestry-specific, which is impossible when self-reported ethnicity and

genetic ancestry information is unavailable (i.e. when these methods are needed most). Future improvements

to these types of methods can aim at improving the amount of ethnicity and genetic ancestry -associated

signal in the sites used to ensure the top two-three PCs are always associated with ethnicity and ancestry.

This aim could also be supported in identifying ethnicity and ancestry -associated sites that are also robust

to changes in non-genetic drivers of DNAm such as cell type, gestational age, and severe pathology.

Supervised population inference approaches such as ethnicity classifiers can return an explicit as-

signment of samples into distinct groups. In comparison to self-reported ethnicity, an assessment based on

DNAm/genetic data is more objectively defined, which allows for more robust investigation of ethnicity-

specific effects. An important goal of any population structure inference method would be to account for

samples of mixed ancestry, a capability not well supported by Zhou’s ethnicity classifier (33). In contrast,

planet produced membership probabilities corresponding to each ethnicity group that were highly correlated

with genetic ancestry estimated from genotyping data. This was consistent whether we used principal com-

ponents analysis on AIMs data, or model-based estimation of ancestry on high density genotyping array

data (116,121–123). In this study, we defined samples of potential mixed ancestry as those with a maxi-

mum membership probability of less than 0.75, but we note that this threshold can be manually adjusted

by the user, and that the probabilities themselves can be used to adjust for population structure in study

populations including significant numbers of samples with mixed ancestry.

Results of DNAm studies on genetic ancestry and ethnicity, such as this one, depend on the number

and proportion of different populations sampled from, as well as the tissue studied. Due to limitations in

sample availability, only African, Asian, and Caucasian ethnicities were included in our study. However,

we note that these ethnicities are among the most common in North American populations—but future

developments should consider inclusion of additional ethnicities. Furthermore, due to limited number of

samples with high density genetic data, we were unable to address the extent of finer population structure

that likely exists within the major ancestral groups studied. Differences in ethnic composition in samples

from our study and samples used to develop Barfield’s method and EPISTRUCTURE may also explain why

Barfield’s method or EPISTRUCTURE performed poorly in our study (31,32). A lack of generalizability

of these methods to our placental samples was likely further compounded by the use of different tissues

to develop each method—Barfield and EPISTRUCTURE were both developed and tested in blood tissue

only. This is especially important to consider when applying these techniques to tissues with unique DNAm
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profiles, such as placenta (66). It is possible that application of these approaches to other tissues that are

more similar to blood (e.g. other somatically-derived tissues) may result in better performance compared to

when applied to placenta as seen in this study. However, any DNAm-based test needs to be validated before

application to new tissues, which has not yet been done for these methods.

A major goal of EWAS is to uncover signal truly associated with the phenotype/environment of

interest that might generalize to other relevant populations. This is challenging given the wide host of

technical variables that can affect DNAm measurements and the common finding that many phenotypes are

associated with relatively small effect sizes (104,124). To this end, adjustment for major confounders such

as genetic ancestry or ethnicity can significantly improve EWAS. We demonstrated, in a reanalysis of our

previously published PE placentas, that adjustment for ethnicity, determined by planet, improved the repli-

cability of significant associations between independent cohorts. Conversely, overadjustment can occur when

populations are relatively homogeneous, resulting in bias and/or loss of precision. We showed that planet

can indicate minimal population stratification when applied to a homogenous Caucasian population. Thus,

planet will be useful in assessing population stratification in future placental EWAS, as well as conducting

ethnicity-stratified analyses, which may lead to important insights into the disparities between populations

of pregnancy-related outcomes (125–127).

2.4 Conclusion

We demonstrated that ethnicity and genetic ancestry can be accurately predicted using placental HM40K

DNAm microarray data with respect to three major ethnicity/ancestral populations. Although samples that

were used to develop planet were reported to come from single ethnic populations, our classifier was able to

capture mixed ancestry, and outperformed existing prediction methods. Planet will be valuable in assessing

and accounting for population stratification, which can confound associations between DNAm with disease

or environment, in future studies using 450k or 850k arrays. The machine-learning approach used to develop

planet can easily be applied for other tissues and populations for use in future DNAm studies.

2.5 Methods

2.5.1 Collection of previously published placental 450k DNA methylation data

Placental DNAm data from liveborn deliveries of healthy and mixed pregnancy complications (n = 585),

were combined from seven GEO 450k datasets corresponding to five North American cohorts (summarized

in Table 2.1) (79,98,99,101–103). Five unpublished samples from the C5 cohort were included and are

available at GSE128827. Gestational ages of these pregnancies at delivery ranged from 26 to 42 weeks and
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50.30% of samples were male. Samples were excluded (n=67) if their self-reported ethnicity was missing

or did not fall into one of three major race/ethnicity groups: Asian/East Asian (n=53), Caucasian/White

(non-hispanic) (n=389), or African/African American/Black (n=57). Based on census data (128), we note

that self-reported Caucasian/White (non-hispanic) samples are typically of European ancestry, self-reported

Asians are typically of East Asian ancestry and self-reported African represent diverse ancestries from Africa

with a significant potential of admixture from other ancestries (129). When possible, data was downloaded

as raw IDAT files (GSE75248, GSE100197, GSE100197, GSE108567, GSE74738), otherwise methylated and

unmethylated intensities were utilized (GSE70453, GSE73375).

2.5.2 DNA methylation data processing

All samples were analyzed using the Illumina Infinium HumanMethylation450 BeadChip array. Array data

analysis was performed using R version 3.5.0. To allow compatibility of planet with the newer 850k microar-

ray, the raw 450k data (485,512 CpGs, 65 SNPs) was filtered to the 452,453 CpGs and 59 SNPs common

between both platforms prior to classifier development (33). Because genetic variability can capture ancestry

information, we omitted the common filtering step that would remove sites with probes that overlap SNPs

(n = 52,116 at a minor allele frequency > 0.05). CpGs were removed if greater than 1% of samples had

poor quality signal (bead count < 3, or a detection p-value > 0.01; n = 14,858). The remaining poor quality

measurements were replaced with imputed values using K-Nearest Neighbours from the R package impute

(130). Cross-hybridizing (n = 41,937) (119,120) and placental-specific non-variable sites (n = 86,502) (131)

were also removed, leaving 319,233 sites for classifier development.

Biological sex was determined by hierarchical clustering on DNAm measured from sites on the

sex chromosomes and then compared to reported sex. Samples with discordant reported and inferred sex

were removed (n=3). Samples were also removed if they had a low mean inter-array correlation (< 0.95, n

= 5). Intra-array normalization methods, normal-exponential out-of-band (NOOB) (132) and beta mixture

quantile normalization (BMIQ) (133) were used from R packages minfi (version 1.26.2) (134) and wateRmelon

(version 1.24.0) (135) to normalize data.

2.5.3 Genotyping data collection and genetic ancestry assessment

In a subset of C5 (n = 27) and 10 additional samples, high density SNP array genotypes were collected.

DNA samples from one site from the fetal side of each placenta were collected as previously described (136)

and quality was checked using a NanoDrop ND-1000 (Thermo Scientific) as well as by electrophoresis on a

1% agarose gel. Genotyping at ~2.3 million SNPs was done on the Illumina Infinium Omni2.5-8 (Omni2.5)
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array at the Centre for Applied Genomics, Hospital for Sick Kids, Toronto, Canada. For inferring genetic

ancestry, the data for these 37 samples was combined with a previously processed 1000 Genomes Project

Omni2.5 dataset (n = 1,756) to use as reference populations (43,117). Genotypes in this combined dataset

were filtered for quality (missing call rate > 0.05, n removed = 31,604), minor allele frequency (MAF > 0.05,

n removed = 114,628), and linkage disequilibrium pruning was performed to select representative SNPs (R2

< 0.25, n removed = 919,824) for a final dataset of 218,732 SNPs and n = 1793 samples. Genetic ancestry

coefficients were estimated using the R package LEA, which utilizes sparse non-negative matrix factorization

to produce similar results to model-based algorithms ADMIXTURE and STRUCTURE (116,123). Cross-

entropy criterion was used to assess the number of ancestral populations (Figure A.8) (137).

A smaller panel of 50 ancestry-informative genotyping markers (AIMs) was collected in a subset

of samples from cohorts C4 (n = 41) and C5 (n = 68). AIMs were selected based on their ability to

differentiate between African, European, East Asian, and South Asian populations (138–140). Results from

cohort C5 have been published elsewhere (114), and genotyping data was collected for cohort C4 in the

same manner. Briefly, these markers were measured in placental villus DNA using the Sequenom iPlex Gold

platform (Génome Québec Innovation Centre, Montréal, Canada). Genetic ancestry inferred from 50 AIMs

markers was computed using multi-dimensional scaling after combining with the same 50 AIMs from the

1000 Genomes Project samples, as previously described (114).

2.5.4 Developing the ethnicity classifier and assessing its performance

To develop and assess the performance of planet we used a ‘leave-one-dataset-out cross-validation’ (LODOCV)

approach. This approach uses four out of five datasets to develop a predictive model (training), which is

then used to generate ethnicity classifications on the samples in the remaining dataset (testing). This

differs from the traditional cross validation approach of randomly splitting the full dataset into training

and testing. LODOCV produces more accurate estimates of classifier performance for future studies, and

has been previously used for evaluating age-predictive models (141). Each iteration of LODOCV generates

dataset-specific estimates of performance (accuracy, Kappa). After all iterations, overall performance was

assessed by aggregating classifications across all datasets.

For fitting predictive models within LODOCV-generated training sets, we used the R package

caret (142) Several algorithms were compared: logistic regression with an elastic net penalty (GLMNET)

(143,144), nearest shrunken centroids (NSC) (145,146), K-nearest neighbours (KNN) (147), and support

vector machines (SVM) (111). To determine optimum tuning parameters for each algorithm (e.g., ‘k’ number

of neighbours for KNN, alpha and lambda for GLMNET), we built several models while varying the tuning
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parameter(s) and compared the performance of these models within each training set using repeated (n =

3) five-fold cross validation. Hyperparameter values were left as default settings in caret (148), or a grid of

values for GLMNET (alpha = 0.025 – 0.500, lambda = 0.0025 – 0.2500). We compared the performance

of these models using accuracy, positive predictive value, cohen’s Kappa (149), and logLoss (a measure of

classification accuracy that heavily penalizes over-confident misclassifications). After assessing the classifier

performance using LODOCV, a final GLMNET model was fit to the entire dataset (cohorts C1-C5) using

the same model fitting procedure described above and is available for use in future datasets (https://github.

com/wvictor14/planet).

2.5.5 Enrichment analysis

The DNAm sites and SNPs selected to predict ethnicity in this final model (n = 1860) were used for

enrichment analysis. For DNAm sites, we looked for enrichment for SNPs in the probe body, CpG site, and

single base extension sites based on Illumina’s 450k annotation version 1.2 (150). We looked for enrichment

for placental mQTLs (41), chromosomes and CpG islands (HG19; Figure A.5). Fisher’s exact test was used

for all enrichment tests using a p-value threshold of < 0.05, and was carried out in R using the function

fisher.test(). GO and KEGG pathway analysis was done using the R package missMethyl version 3.8 (151).

2.5.6 Threshold analysis

We explored the use of a ‘threshold function’ to identify samples that are difficult to classify into discrete

ethnicity groupings because of mixed ancestry. Because planet’s ethnicity classifications are associated

with varying degrees of confidence (i.e., probabilities), we reasoned that a sample’s most probable ethnicity

classification (i.e., max(P(Asian), P(African), P(Caucasian)) would be lower with a higher degree of mixed

ancestry. Therefore, we implemented a threshold function on planet’s probability outputs that classifies

samples as ‘Ambiguous’ if the highest of the three class-specific probabilities is below a certain threshold.

We explored several thresholds and decided on 0.75, which minimized the resulting decrease in predictive

performance (Figure A.3).

2.5.7 Comparison of methods for inferring genetic ancestry / ethnicity from 450k data

Because existing population inference methods and planet use different statistical approaches to infer genetic

ancestry/ethnicity (PCA-based vs predictive modeling), we compared each method based on the amount of

population-associated signal in DNAm from each method-specific subset of sites. This was done by applying

PCA to standardized beta values for HM450k sites associated with each method (Table 1.1) (31–33) within

each cohort. To avoid bias, the PCs associated with planet were calculated for each cohort using a classifier
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trained on all other cohorts (generated from LODOCV). To test for the amount ethnicity and genetic

ancestry –associated signal in the sites corresponding to each method, we applied several simple linear

regression models to estimate the amount of variance explained in PCi (i = 1, 2, 3, …, 10) by self-reported

ethnicity and genetic ancestry when available. To determine other factors that might affect signal in these

sites, we also tested for the association between PCi and each covariate available for each cohort. All simple

regression tests were done in R using the function lm().

To compare planet to Zhou et al. 2017’s SNP-based classifier (33), we used the package R package

sesame (version 1.1.0) (152) to obtain SNP-based ethnicity classifications for samples with idats available

(cohorts C3, C4, and C5).

2.5.8 Application of planet to previous EWAS

To demonstrate application of planet, we downloaded placental 450k DNAm datasets GSE98224, GSE100197,

and GSE71678. We note that GSE100197 and GSE98224 overlap cohorts C4 and C5, respectively. To apply

planet to obtain ethnicity information, raw data was downloaded from GEO in the form of IDATs and

loaded into R using minfi (version 1.26.2). Both NOOB and BMIQ normalization were applied before

applying planet. The R package limma (version 3.36.2) was used to test for differentially methylated sites.

For GSE98224 and GSE100197, the processed DNAm data was used, and statistical thresholds were chosen

the same as the published analysis (99). For enrichment analysis, differentially methylated CpGs were

inputted into the gometh function from the R package missMethyl (version 1.16.0) using all filtered sites as

background, and default settings.
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3 Cell-specific characterization of the placental methylome

3.1 Introduction

The placenta is composed of several distinct cell populations, each carrying out a specific biological role, that

together create a healthy placenta. Measurements of DNAm using whole placental chorionic villi, are there-

fore, an average measurement of the variety of cells that make up a placental sample. Grigoriu 2011 found

that major placental cell types, cytotrophoblasts and fibroblasts have highly distinct DNAm profiles (46).

Fogarty 2015 compared epigenetic markers such as 5’hydroxymethylcytosine (5’hmc), H3K9me3, H3K27me3,

and others in CTB and STB (57). They found that STB had lower levels of H3K27me3 and H3K9me3, and

higher H4K20me3 and 5’hmc compared to CTB. Because placental cell types are epigenetically distinct,

interpretation of DNAm measurements in whole chorionic villi are difficult to interpret without addressing

cell composition variability. Without reference DNAm profiles of constituent cell types, bioinformatic ap-

proaches to account for cell composition variability, such as reference-based cell deconvolution, cannot be

used (85).

To address this, in this study we generated DNAm reference profiles for 4 major human placental

cell populations using the 850k DNAm microarray. Our study is the first to characterize the DNAm of major

placental cell populations with a high-resolution approach, across first trimester and term placentas. We

show that cell-specific DNAm occurs at thousands of CpG sites, of which a subset can be used to infer cell

composition using cellular deconvolution. Our study underscores the importance of cell-specific approaches

in placental studies, especially when measuring epigenetic features such as DNAm.

3.2 Results

3.2.1 Major human placental cell types have highly specific methylation patterns

To characterize the dynamics of CpG methylation during human placental development, we performed DNAm

microarray profiling (n CpGs=737,050 after removal unreliable probes) in samples of matched CV and 4

fluorescence-activated cell sorted (FACS) cell- types (Figure B.1A ), from 9 first trimester (6.4–13 weeks

gestational age) and 19 term (36.4–40.4 weeks) pregnancies (Table 3.1). Immunofluorescence staining of flow

cytometry sorted cells (Figure B.1B-E) determined high purity for TB (KRT7+, 97%), HB (CD68+, 95%),

and EC (CD31+, 88%) and lower purity for SC (VIM+, 73%). Several bioinformatic approaches, such as

array-based sex inference (90), and genotype clustering, were used to identify contamination with maternal

DNA (Figure B.2A-F). We restricted analysis to samples with an estimated maternal cell contamination of

less than 35%, with the majority of first trimester samples having less than 20%, and term samples less than
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Table 3.1: Number of cell-specific and matched chorionic villi samples from first trimester and term placentas,
measured on the Illumina 850k DNAm microarray. Surface markers for flow cytometry and immunofluores-
cence staining are shown in brackets.

First trimester Term
Chorionic villi 7 19
Trophoblast (EGFR+/KRT7+) 5 19
Hofbauer (CD14+/CD68+) 3 18
Endothelial (CD34+/CD31+) 8 19
Stromal (VIM+) 9 19
Mean Gestation age (mean and range in weeks) 10.8 (6.4–13) 39.0 (36.4–40.4)
Sex (n Males) 4 9

10% (Figure B.2G). This resulted in the exclusion of: 6 HB, 1 EC, and 4 TB from first trimester, and 1 HB

from term samples. Final sample numbers in all downstream analyses are shown in Table 3.1.

To determine major factors that drive DNAm variation, we first applied principal components

analysis (PCA) to all 126 CV and cell samples. Three distinct clusters were observed when samples were

projected onto PCs 1 and 2 (total percent variation explained = 64%; Figure 3.1a). Samples in these

clusters were i) TB and CV, ii) SC and EC, and iii) HB. Cell type was strongly associated with the first 3

PCs (p<0.001), while gestational age (i.e. “Trimester”) was the second strongest identifiable factor driving

DNAm variation, being associated with PCs 4 and 5 (p<0.001, Figure B.3). Technical variables such as

“Batch,” “Row,” and “Chip ID” explained less variation in comparison to biological variables. Sex was

associated with PCs 6 and 8–11 (p<0.01). The close clustering of TB with CV (original unsorted tissue) is

consistent with this being the predominant cell type in whole villi.

We next wanted to define the extent and patterns of cell-specific DNAm. At a Bonferroni-adjusted

p<0.01 and an absolute difference in mean methylation (Δ�)>25%, we found 75,000–135,553 and 9136–

117,528 (term and first trimester, respectively) cell-specific differentially methylated CpGs (DMCs; Figure

3.1b). The differences in the number of DMCs between first trimester (n = 3–9) and term (n = 18–19) are

likely due to less power from the smaller sample size for first trimester samples compared to term. When

comparing across term samples, we detected more DMCs for TB and HB (n = 135,553 and 130,733) compared

to SC and EC (80,153 and 75,525; respectively). This was also true for first trimester samples: there were

more DMCs for TB and HB (117,528 and 78,309) than SC and EC (9136 and 18,867). We further classified

these DMCs by whether their methylation was in the “less than” (compared to all other cell types) or “more

than” direction. Most TB DMCs were in the less methylated direction (61% - first trimester, 88% term),

whereas HB DMCs were often more methylated than other cell types (74% - first, 72% term). A list of

38,656–86,355 differentially methylated regions (DMRs) were identified (FDR<0.01) using the R package
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dmrcate for each cell type and gestational age.

To characterize the functional relevance of placental cell-specific DMCs, we tested these CpGs

for enrichment in various genomic elements (chi-squared test, FDR<0.05; term DMCs in Figure 3.1c, first

trimester DMCs in Figure B.4). Cell-specific DMCs were depleted in gene-related elements such as promoters,

exons, 5� UTRs, and 3� UTRs. Instead, we saw significant enrichment in non-coding regions, such as open

seas, CpG island shores, intergenic regions, introns, and enhancers. The level and direction of enrichment

was highly consistent across first trimester and term cell DMCs. Less methylated DMCs were enriched for

placental PMD regions (77) for TB but depleted for all other cell types. Functional enrichment analysis tested

if GO or KEGG pathways were associated with cell-specific DMCs. We adjusted for the variable number of

CpGs per gene to reduce bias in gene set analysis. EC and HB DMCs were enriched (FDR<0.05) for terms

related to intercellular interactions such as “cellular response to external stimulus,” whereas stromal DMCs

yielded more intracellular processes related to maintaining tissue structure, such as “actin cytoskeleton” and

“collagen binding.” Trophoblast DMCs were enriched for two KEGG pathways, “ECM-receptor interaction”

and “Regulation of actin cytoskeleton” (Table B.1 and B.3).

33



*
*
*
*

*
*

*
*

*

*

*
*
*
*

*
*

*
*

*

*

*

*

*

*
*
*
*

*
*
*
*

*
*

*
*

*

*
*
*
*

*
*
*
*

*
*

*
*

*
*
*
*

*
*

*
*

*

*

*

*

*
*

*
*

*

*

*

*

*

*
*
*
*

*
*
*
*

*
*

*
*

*

*

*
*
*
*

*
*
*
*

*
*
*
*

More methylated Less methylated

0% 50% 100% 0% 50% 100%

island

sea

shelf

shore

enhancer

1to5kb

3UTR

5UTR

exon

intergenic

intron

intronexonboundary

promoter

pmd

*
Enriched
(bonferroni p < 0.001) Expected frequency

-100

0

100

-100 0 100

PC1 (41%)

P
C

2
 (

2
3
%

)

First trimester
Term

Endothelial
Hofbauer
Stromal
Trophoblasts
Villi

18,867
78,309

9,136
117,528

75,525
130,733

80,153
135,553

Term

First trimester

Endothelial
Hofbauer

Stromal

Trophoblasts

Endothelial
Hofbauer

Stromal

Trophoblasts

Less More

A)

B)

C)

promoters exons introns

D) E)

Endothelial

Hofbauer

Stromal

Trophoblasts

Villi

uc003thq.3

uc003thr.3

INHBA

41 730 000 41 745 000
position

DMCS

Endothelial

Hofbauer

Stromal

Trophoblasts

Villi

uc002xya.3

uc010zzi.2

TFAP2C

55 200 000 55 210 000
position

DMCS

Figure 3.1: Genome-wide characterization of placental cell DNAm a Principal components analysis (PCA)
was applied to all samples and CpGs. Samples are projected onto axes PC1 and PC2 which account for
41% and 23% total variance, respectively. b Results from the differential methylation analysis using the R
package limma are shown here. DMCs, defined as those tests passing a Bonferroni-adjust p-value <0.01,
and a difference in group means >0.25, were divided into less methylated and more methylated compared to
all other cell types. c Enrichment analysis of term cell-specific DMCs was carried out on genomic elements
using a chi-squared test and a Bonferroni-adjusted p-value <0.01. The expected (background) frequency,
which is the percentage of total tested CpGs in each genomic element, is shown as a black line. d Average
term placental cell-specific DNAm across TFAP2C transcripts on chromosome 6, and e INHBA transcripts
on chromosome 7. Differentially methylated regions (defined as regions with a high density of differentially
methylated CpGs), are highlighted with a grey background. Y axis ranges from 0 to 100% DNAm
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Table 3.2: Number of preeclampsia-associated CpGs from Wilson et al. 2018 that are cell-specific DMCs
for term samples. Enrichment for preeclampsia-associated CpGs was statistically significant for each term
cell-specific set of CpGs at a Bonferroni-adjusted p<0.01

n cell-specific
DMCs

n DMCs that are
preeclampsia-
associated

Proportion out of
599 preeclampsia
CpGs that are also
cell-specific DMCs

Odds ratio

Trophoblast 135553 147 (0.11%) 27.20% 1.66
Stromal 80153 105 (0.13%) 19.40% 1.98
Endothelial 75525 109 (0.14%) 20.20% 2.22
Hofbauer Cells 130733 131 (0.10%) 24.30% 1.49

3.2.2 Cell-specific DNAm occurs at highly functionally-relevant genes

A number of regions with a high density of DMCs were located in or nearby functionally- and pathology-

relevant genes. TFAP2C, which encodes a pan-trophoblast marker, were highly methylated in TB compared

to other cell types in the promoter and upstream region; whole CV showed a similar profile to TB (Figure

3.1d). This region contains several predicted enhancers (153), which may require DNAm for recruiting

transcription factors. Alternatively, other regions more distal to TFAP2C may be responsible for regulation

of this gene’s transcription. Other trophoblast-specific markers, such as GCM1, MMP2, SLC1A5, and

GATA3, also had regions of highly cell-specific DNAm localized near their transcription start sites (Figure

B.5). We also observed high DMC density regions in genes for which placental DNAm and/or expression

differences have been associated with preeclampsia (99), including INHBA (Figure 3.1e), JUNB, TEAD3,

NDRG1, and CGA (Figure B.6). Out of 540 preeclampsia-associated CpGs previously identified by Wilson

et al. 2018 that were also captured in our processed data, a statistically significant (Bonferroni adjusted

p<0.01) fraction ranging from 19.4–27.2% were also identified as exhibiting cell-specific DNAm for term

samples (Table 3.2) (99).

We hypothesized that genome-wide differences in DNAm could in part relate to differences in the

expression and DNAm at genes that regulate the deposition, maintenance, and removal of DNAm, such as

DNMT1, DNMT3A, DNMT3B, DNMT3L, and TET1. In these genes, we found that a high proportion of

CpGs in the promoter region (61, 36, 31, 83, 18%, respectively) were differentially methylated by cell type.

However, considering the variable number of CpGs associated with each gene’s promoter, these percentages

were not significantly greater than genes of similar CpG coverage (Figure 3.2ab). Differential methylation

within DNAm-regulating genes was highly localized (Figure 3.2c). The promoter of DNAm-maintenance gene

DNMT1, which is known to be specifically imprinted in the placenta (154), shows the expected intermediately

methylated (i.e. ~50%) pattern for all cell types except HB, which is completely unmethylated (Figure 3.2c).
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This suggests that DNMT1 is imprinted in TB, SC, and EC, but not in HB.
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Figure 3.2: Differential methylation at DNAm -regulating genes. a On a per-gene basis, the number of
promoter CpGs that are differentially methylated by at least one cell type, out of the total number of promoter
CpGs per gene. The y=x line is shown (blue), where genes with 100% of promoter CpGs are differentially
methylated. The green line is a smoothed average. b Distribution of the percentage of promoter CpGs
per gene that are differentially methylated. The dotted line represents an array-wide average. c DNAm at
CpGs associated with DNMT1 for term placental samples (top). CpGs in CpG islands, regions of genomic
imprinting, PMDs, and enhancers are indicated (middle). Associated UCSC transcripts and their genomic
elements (promoter, 5� UTR, exons, introns, 3’UTR) are displayed (bottom)
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3.2.3 DNA methylation characterization of Syncytiotrophoblast and Hofbauer cells

We used the pan-trophoblast marker EGFR to isolate TB using FACS. Because mature EVTs exist primarily

in maternal tissue, and STBs are structurally incompatible with FACS isolation protocols, our TB sample

likely consists primarily of CTB. In order to better understand the relationship between STB and the

isolated TB cells, we compared a subset of TB with matched STB from the same placenta that was obtained

from enzymatic separation using Collagenase IA (referred to as eSTB; n=5) from term CV samples. This

digestion protocol which extracts the outer layer of the CV, produces a sample enriched for STB, but is

likely to also contain a proportion of non-STB cell types. To compare eSTB samples globally to other cell

types, we projected eSTB onto PCs 1 and 2 to see where they cluster in relation to other samples. On PCs

1 and 2, eSTB clustered closely with TB and CV samples, indicating high similarity between these three

populations (Figure 3.3a). Throughout gestation, the STB proportion increases, and is greater in nuclei

number compared to CTB at term (155). To determine if TB or eSTB samples were more similar to CV,

unsupervised hierarchical clustering was applied on the top 1000 most variable probes, and resulted in CV

clustering with eSTB (Figure 3.3b), which is consistent with the expectation that CV consists primarily

of STB. Supporting this, we found more DMCs (Bonferroni p<0.01, absolute difference in mean DNAm

> 25%) between TB and eSTB (n DMCs=4666), than between CV and eSTB (n DMCs=72). Differential

methylation at specific CpGs localized to genes known to be expressed in STB, such as CGA, CYP19A1,

PAPPA2, PARP1, SLC13A4, and SLC22A11 (Figure 3.3c) (156–159). The direction of DNAm at these

CpGs was mostly consistent with expected patterns of genes that are more active in eSTB compared to TB

and other placental cell types (i.e. more methylation at introns, less methylation at promoters)
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closely related cell types. a Syncytiotrophoblast samples (n=5) were projected onto principal components
PC1 and PC2. Original samples used for constructing these PCs (Fig. 1a) are shown (chorionic villi: dark
red, trophoblast: yellow, all others: grey). Syncytiotrophoblast (orange) cluster with the chorionic villi and
trophoblast samples. b Clustering on the top 1000 variable CpGs between chorionic villi, syncytiotrophoblast,
and trophoblast samples. Hierarchical clustering with Euclidean distance was used for both CpG-wise (rows)
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shown for select differentially methylated CpGs, which were identified using limma, with a Bonferroni adjust
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The distinct DNAm profiles observed in placental HB suggests a distinct developmental trajectory.

Indeed, the functional role and phenotypic diversity of HBs is complex and thought to vary across gestation,
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however, they show similar morphological and cell marker characteristics as adult and fetal monocytes (71).

Therefore, to compare placental HBs to other immune cells, we compared their DNAm profiles to a curated

450k DNAm database of flow-sorted cord blood cell types (n=263) (160). We included only term HBs in

this comparison since the available cord blood data was collected from term samples. To determine which

cord blood cell types HB are most similar to, we applied unsupervised hierarchical clustering on the top

1000 most variable CpGs across each dataset. We observed that HB form their own distinct cluster (Figure

3.3d), indicating they likely have unique functional properties compared to other immune cells at similar

developmental stages. This finding supports previous reports of distinct DNAm between HBs, fetal/maternal

monocytes, and decidual macrophages (67). HBs cluster most closely with monocytes and granulocytes,

consistent with them having a common developmental origin.

3.2.4 Canonical placental epigenetic features are not always present in all constituent cells

To determine if previously identified placental specific features of DNAm are cell specific, we compared cell-

type specific DNAm at partially methylated domains (PMDs), genomic imprinting, and repetitive elements

(77,79,161). PMDs are large (>100kb) regions of lower average methylation (<70%) compared to surrounding

regions. Placental PMDs are thought to contribute to the observation that placental DNAm on average is

much lower than other human tissues (66). To characterize their cell-specificity, we calculated the percentage

of CpGs that are found in previously defined placental PMDs (77) with DNAm falling into 20% intervals (0–

20%, 20–40%, 40–60%, 60–80%, 80–100%). We observed that DNAm levels in PMDs is highly cell-specific

(Figure 3.4a). TB, like CV, have more CpGs with low levels of DNAm in PMDs (0–40%) compared to

other cell types. HB show a strong bias towards higher DNAm levels, with over 43% of CpGs in PMDs

exhibiting >80% DNAm. We observed some changes within cell types between trimesters. All cell types

have lower levels (0–40%) of methylation in term compared to first trimester. All cell types except TB

have less intermediately (40–60% intervals) methylated CpGs at term compared to first trimester. HB, in

contrast, have more intermediately (40–60% intervals) methylated CpGs in third trimester. In summary, the

methylation levels at CpGs in PMD regions were at the expected levels (relatively low methylated compared

to surrounding regions) for CV and TB; sometimes hypermethylated for EC and SC; and were almost always

highly methylated for HB, at levels typically found in somatic cells.
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In examining specific regions containing PMDs, a strong bimodal pattern of methylation was ob-
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served, where regions of lower methylation (overlapping known placental PMD regions), which were sur-

rounded by regions of higher methylation (Figure 3.4bc). TB DNAm levels followed closely the levels

measured in CV, supporting that placental PMDs are likely reflecting mainly TB-specific DNAm patterns.

In contrast, DNAm in HB often deviated from the other cell types, typically showing higher levels of methy-

lation within PMDs. SC and EC often “followed” CV DNAm levels, but were not nearly as consistent as

TB cells in this respect.

We also looked at imprinted differentially methylated regions (DMRs) that are covered by the 850k

array. While many imprinted DMRs are maintained in somatic tissues, others are highly specific to the

placenta (79–82). To evaluate whether placental-specific imprinting is maintained in constituent placental

cell populations, we first combined the results from four studies (79,80,82,162) to form a list (B.3) of placental-

specific (n CpGs = 981; n genes = 111) and non-placental specific (i.e. imprinted in other tissues) DMRs

(n CpGs = 1085; n genes = 307). To determine if CpGs were intermediately-methylated, as would be

expected for an imprinted DMR, we counted the proportion of CpGs with an average DNAm across both

alleles that were in a range between 25 and 75% methylation. For CpGs in non-placental specific imprinted

DMRs, the mean percentage of CpGs in the intermediate range across each cell type and in CV in term

samples was 69% (Figure 3.4d). For placental-specific imprinted CpGs, the percentage of CpGs falling into

this DNAm range was much more variable. As expected, in the term placental samples, TB and CV had

a high percentage (76, 81%, respectively) of CpGs in this DNAm range. SC and EC had a lower, but still

a majority, percentage of CpGs in this range (64, 64%, respectively). In contrast, HB cells had almost no

CpGs (12%) in this range; almost all CpGs were unmethylated (<25%). These proportions were similar in

first trimester samples, except with EC and SC showing less intermediate methylation and more CpGs with

less methylation at placental-specific imprints (Figure B.7A). These results suggest that placental-specific

imprinting is maintained primarily in TB, and to a lesser degree EC and SC, and is virtually absent in HB.

When considering the parental origin of imprinted DNAm (79–82,162), paternally- methylated regions had

more CpGs falling within 25–75% as compared to maternal ones (Figure B.7BC). We only estimated this

in non-placental specific imprinted DMRs, since almost all validated placental-specific imprinted DMRs are

maternally methylated.

DNAm at specific imprinted DMRs was examined. As described above, TB and CV had interme-

diate (>25, <75%) DNAm at nearly all CpGs located in placental-specific imprinted regions (Figure 3.4d).

Most of these CpGs, in contrast, are hypomethylated for HB cells, consistent with this cell type having a dif-

ferent developmental origin than other placental components (embryonic versus extraembryonic). However,

at the imprinted DMR associated with the placental-specific expressed microRNA cluster C19MC, this pat-
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tern is reversed: HB have hypermethylation at this region (Figure 3.4e) as is reported for somatic adult/fetal

tissues (79). For SC and EC, these cell types generally show lower levels of DNAm than TB/CV at the

placental-imprinted DMRs, sometimes matching that in HBs and other times showing levels somewhere be-

tween HB and TB/CV. Such patterns are observed for genes such as DCAF10 (Figure 3.4f), fibroblast growth

factors FGF8, FGF12 (Figure B.8AB), and at epigenetic regulator JMJD1C (Figure B.9A). However, for a

few DMRs, levels of DNAm in SC/EC matched that of TB/CV, such as ones associated with the DNAm

maintenance gene DNMT1 (Figure 3.2c) and FGF14 (Figure B.9B). Higher DNAm than TB/CV was only

observed for 1 gene (RASGRF1, Figure B.10).

DNAm at repetitive elements, such as Alu and LINE1 elements, can be placental-specific and have

been hypothesized to often be important regulatory components of placental processes (163). To determine

if DNAm at repetitive elements is consistent across placental cell populations, we analyzed the subset of 850k

CpGs that map to Alu (n=15,289) and LINE1 (22,006) elements. Compared to CV, TB had lower LINE1

DNAm (mean difference in DNAm=−1.5%, p=0.04), and HB had much higher DNAm (+9.7%, p<0.001;

Figure B.11A). Similar relationships are seen for Alu elements. TB had lower (−1.2%, p=0.02), HB had

higher (+7.0%, p<0.001), and EC had higher (+2.1%, p<0.001) DNAm in Alu CpGs, when compared to CV.

To explore large-scale DNAm differences, we averaged DNAm across all 850k probes and compared each cell

type to CV. We found these relationships to be similar to those with the subset of repetitive elements probes.

HB had higher DNAm compared to CV (+5%, p<0.001), and all other cell types had lower DNAm (Table

B.4). The relationships we found for repetitive elements and global DNAm between cell types and CV were

also largely consistent in our first trimester samples (Table B.4, Figure B.11B). To determine genome-wide

repetitive element DNAm, we used the random forest -based ‘REMP’ algorithm (134) to predict 438,664

Alu CpGs and 39,136 LINE1 CpGs that are not covered by the 850k array. Relationships between cell types

and CV for predicted and non-predicted repetitive elements were mostly the same, except TB DNAm in

predicted Alu and LINE1 CpGs was not significantly different compared to CV (Table B.4, Figure B.11C).

3.2.5 Cell-specific DNAm dynamics across gestation

To determine how DNAm changes in placental cell populations over gestation, we compared first and third

trimester cell samples at 737,050 CpGs. We found 108,814 (TB); 94,619 (SC); 63,433 (EC) and 1550 (HB)

significant cell-specific gestational-age dependent DMCs (Bonferroni p<0.01, Δ�>0.05). Strikingly, almost

all of the TB DMCs show an increase in DNAm from first trimester to term (98.2%; Figure 3.5a). Most

gestational-age DMCs for HB and SC also show an increase in DNAm from first trimester to term (75.6

and 56.6%, respectively). In contrast, EC DMCs show less DNAm in the term compared to first trimester
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Several interesting KEGG pathways and GO terms were significant (FDR<0.05) in our func-

tional enrichment analysis (Figure 3.5bc). Immune pathways (“Cytokine-Cytokine receptor interactions”)

and metabolism-related terms (“metabolic pathways,” “ATP binding,” “kinase activity”) for trophoblast
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gestational-age dependent DMCs suggest a highly active state throughout gestation affecting multiple pla-

cental functions. As expected, stromal terms were highly associated with cellular/tissue structure -related

terms, such as “extracellular matrix organization,” and “Regulation of actin cytoskeleton.” No significant

pathway or GO terms were found significant for HB gestational-age DMCs. Most gestational-age dependent

DMCs were enriched with open sea regions, regardless of direction of methylation (Figure 3.5d). HB DMCs

that increase in methylation with gestational age were the only cell type DMCs that were heavily enriched for

enhancers (Bonferroni p<0.001). Trophoblast DMCs that increase in methylation with gestational age were

enriched for CpG island shores, open seas, and intergenic regions (Bonferroni p<0.001). All cell type-specific

gestational-age dependent DMCs were depleted (Bonferroni p<0.001) for promoter regions, suggesting that

genome-wide promoter DNAm is mostly stable from first trimester to term.

3.2.6 Assessing cell composition in chorionic villi

Using placental cell DNAm profiles as a reference, we assessed cellular composition in CV samples using

cellular deconvolution. To select cell-type discriminating CpGs, the pickCompProbes function from the R

package minfi (134) was used, which takes the top 100 most hypo- and hyper-methylated CpGs ranked by

F-test statistic for each cell type. Gestational-age specific references were created for first trimester and term.

For first trimester samples, reference probes were selected from all first trimester cell samples, but also term

nucleated red blood cells (nRBCs) and eSTB samples were used since these cell types are also present in early

gestation (164). For nRBC samples, 11 DNAm profiles from umbilical cord blood from public databases

were included (160). Reference CpGs determined from first trimester (Figure 3.6a) and term (Figure 3.6b)

placental samples were highly cell-specific.
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Figure 3.6: Assessing cell composition in first trimester and term CV samples. a Mean DNAm across each
cell type (columns) for 600 first trimester deconvolution reference CpGs selected by minfi::pickCompProbes.
CpGs (rows) are hierarchically clustered using euclidean distance. b Term reference CpGs. c Cell compo-
sition of 7 first trimester and 19 third trimester CV samples, estimated with cellular deconvolution using
RPC. d Cell composition is similar between male and female term samples with respect to estimated per-
centage of each cell type (y-axis). F: female, M: male. e Cell composition is similar between Asian and
European/Caucasian third trimester samples

To determine the best-performing cellular deconvolution method, 1500 in silico bulk mixtures were

generated based on our cell data with known cellular composition proportions. These deconvolution methods

were compared: constrained projection (CP) (86), robust partial correlations (RPC) (85), and support-vector

regression / CIBERSORT (CBS) (87). All three methods were tested using the implementation from the R
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package EpiDISH (165), and the constrained projection approach was used from implementations in both

EpiDISH and minfi (134) R packages. Performance was high and consistent across algorithms and cell types

(R2=0.88–0.99, RMSE=0.02–0.08, MAE=0.01–0.4; Figure B.12A; Table B.5). However, RPC slightly outper-

formed other approaches (R2=0.96, MAE=0.024, RMSE=0.045). Biases towards under−/over- estimation

for certain cell types were small but were consistent across algorithms (Figure B.12B): SC tended to be

overestimated (mean difference between estimated and actual= +0.33% to 0.98%), HB were underestimated

(−0.03% to −0.38%). TB were underestimated (−0.07% to 0.94%), and nRBCs do not show as much bias

(+0.03 to −0.21%).

To assess the validity of placental cell deconvolution estimates, we applied deconvolution to previ-

ously published placental samples that are enriched for specific cell populations. Deconvolution was applied

to cultured trophoblast samples (n=90) from Yuen et al. 2013 (53), that were cultured to 24h (predominantly

CTB phenotype) or to 48h, after which many CTB cells have fused into STB; each set of samples was also

subjected to varying oxygen levels (1%, 8%, 20%). Cultured STB had higher estimated STB relative to

sample-matched cultured CTB (Figure B.13A). The small changes in STB:CTB between culturing times

are consistent with the small DNAm differences that were reported in Yuen 2013 (53), and suggest that

although fusion of cytotrophoblast was achieved, further culturing would be required to produce a mature

STB phenotype akin to term placenta. We then applied deconvolution to first, second trimester, and term

enzymatically separated mesenchyme (n=3) and matched samples of outer TB layer of chorionic villi (n=3)

from Hanna et al. 2016 (79), the latter of which were isolated in the same manner as eSTB in the present

study. Despite batch effects and array differences (450k vs 850k), the term TB sample was estimated to be

mostly syncytiotrophoblast (97%; Figure B.13B). Deconvolution estimates for trophoblast isolated from first

and second trimester placentas were also mostly TB with some presence of the mesenchymal components,

in particular some SC. Matched mesenchyme samples, as expected, were enriched for SC, and EC. Overall,

these findings are consistent with our understanding that enzymatic separation enriches for certain popula-

tions but cannot produce homogenous cell populations. Lastly, we applied cell deconvolution to chorionic

villi samples (n=5) that were enriched for large visible stem villi. These samples had cell compositions that

were heavily enriched for SC (mean=51%, sd=4%), compared to matched “normally” -processed chorionic

villi (mean=11%, sd=2%; Figure B.13C).

RPC cellular deconvolution was applied to our 7 first trimester and 19 term CV samples. There

was significant gestational-age specific variation in the estimated percentage of eSTB, TB, and SC (Table 3;

Figure 3.6c). eSTB were the most abundant cell type in all (19/19) term samples (mean=58%), whereas SC

was the most abundant in most (5/7) first trimester samples (mean=43%). There were significant changes
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Table 3.3: Mean of cell composition estimates (%) for first trimester and term CV samples using RPC cellular
deconvolution. Standard deviation is shown in parentheses

First (n = 7) Term (n = 19)
Syncytiotrophoblast 35 (9) 58 (8)
Trophoblast 16 (12) 20 (6)
Stromal 43 (13) 12 (3)
Hofbauer cells 3 (2) 2.34 (1)
Endothelial 3 (2) 7 (1)
Nucleated red blood cells 0 (0) 0 (0)

from first trimester to term samples: there was a significant mean increase of 23% in eSTB (Bonferroni-

adjusted p<0.001), a decrease in SC (−31%; adjusted p<0.001) and a small increase in EC (+5%; adjust

p<=0.005). A detectable contribution of nRBCs was not estimated in any sample using RPC deconvolution.

No significant (adjusted p>0.01) differences in cell composition were observed between male (n=9) and

female (n=10) samples (Figure 3.6d; Table B.6), or between European/Caucasian (n=11) and East Asian

(n=6) samples (Figure 3.6e) for term CV. Within-trimester gestational age (estimated and reported) was

not significantly associated with cell composition (Table B.6), although numbers were small.

3.3 Discussion

We performed a comprehensive analysis of DNAm for human placental cell types using the Illumina 850k

methylation array. Previous placental cell DNAm studies have focused on a lesser number of cell types (166),

used lower resolution approaches (46), or focused on a narrow gestational age range (e.g. only first trimester,

or only term). Using the 850k array, which targets CpG sites in gene-rich regions and non-coding regulatory

elements, this study describes the DNAm profiles of major human placental cell types from first trimester

and term placentas, and identifies cell-specific and gestational age –dependent DNAm.

After the wave of de novo DNAm in the inner cell mass and trophectoderm, global differences

in DNAm exist between these two blastocyst cell layers and their derivatives. These differences result in

genome-wide patterns with the placenta showing a unique hypomethylated DNAm profile compared to other

somatic tissues (167). Earlier studies suggested that the hypomethylated placenta was partly due to lower

DNAm at repetitive elements such as LINE1 (75,76,163). We show that LINE1 and ALU DNAm is higher in

HB compared to other placental cell types, but otherwise displays low cell-specificity. Later studies indicated

that placental hypomethylation could be largely attributed to long regions of consistently low methylation

(PMDs), and that this type of patterning was unique to the placenta (77). We found that PMDs are more

pronounced in TB, and are absent from HB. The impact of PMDs is unclear and may in part reflect that in
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the blastocyst, the trophectoderm does not undergo de novo DNAm. Whether PMDs serve a functional role

in the placenta is also unclear, but our understanding of their relevance would benefit from characterizing

the timing of their development. We note that although our study is genome-wide, the number of CpG loci

analyzed (n=737,050) is only a fraction of the epigenome (~3%), and is biased towards genomic regions with

annotated functionality (e.g. near genes and regulatory elements). Therefore, findings of this study should

be interpreted with these limitations in mind. To comprehensively understand repetitive element and PMD

DNAm, higher resolution approaches such as whole genome bisulfite sequencing will be necessary.

Not all CpG sites undergo dynamic changes in DNAm status throughout development. Genomic

imprinting, defined as parent-of-origin specific gene expression, is typically associated with regulatory re-

gions (promoters/enhancers) that exhibit parent-of-origin dependent DNAm. Imprinting is an evolutionary

phenomenon that exists only in eutherian mammals (78), which suggests a potential important relationship

between placental function and imprinting. Consistent with this, there is an enrichment for imprinted genes

that are specific to the placenta (79–82). Although our study lacks parental information, previously identi-

fied placental-specific imprinted DMRs tend to show the expected intermediate DNAm levels in TB, and to

a lesser degree, in EC and SC. For example, the placental-imprinted gene, DNMT1, is only unmethylated at

its promoter in HB, while other placental cell types are hemi-methylated. DNAm-mediated down-regulation

of DNMT1 expression has been shown in whole placental tissue (48), and our data suggest that that DNAm-

mediated regulation of DNMT1 varies by placental cell population. All placental-specific imprints examined

in this study showed the expected intermediate methylation for TB and CV samples, and hypomethylation

for HB. The methylation patterns of HBs are consistent with an origin from fetal monocytes. The variabil-

ity in the patterns of DNAm at these imprinted CpGs for mesenchymal components, EC and SC, could

be from variability in the timing of erasure of these imprints. Future investigations in resolving parental-

origin-specific DNAm and expression are needed. In contrast, our data suggest that common (non-placental

specific) imprinted CpGs are maintained in all placental cell populations.

To address the challenges of cell composition variability in placental DNAm studies, we have gen-

erated DNAm profiles for 4 major human placental cell populations as well as enzymatically isolated STB,

and assessed their utility as references for cellular deconvolution. Like other tissues (86,160,168), placental

cell composition can be estimated with any of the commonly used deconvolution approaches. However, it

was not possible to independently validate the DNAm-based cell composition estimates presented in this

study with other quantitative measures of cell composition (e.g. with histology) and it is not possible to

get measures on the identical sample assayed for DNAm. Instead, we validated bioinformatically estimated

cell composition in cultured trophoblasts and in previously published samples that are enriched for certain
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populations (e.g. by enzymatically stripping away the outer layers of chorionic villi). Estimated cell com-

position in first trimester and term samples was also consistent with our understanding of how placental

cell composition changes across gestation. The ratio of CTB:STB is relatively equal at 13 weeks gestation

(155). But as trophoblastic surface area increases as pregnancy progresses (169), at term, 90% of nuclei exist

in STB and the remainder are in CTB (155). This corresponds to a large observed increase in the eSTB

component (+58% from first trimester), becoming the predominant cell population at term. However, we

note that within the STB, nuclei are also heterogeneous in their chromatin state, where there are 4 times

more transcriptionally inactive nuclei compared to active ones (57). This property, combined with how sim-

ilar CTB and STB methylation profiles are, may limit the ability to accurately estimate eSTB proportion.

There were also no nRBCs estimated as present in either first trimester or term placentas, suggesting that

their contribution to placental cell composition may be very small, at least in uncomplicated pregnancies.

Together, these observations suggest that this approach is able to capture large relative changes, but may

be imprecise when assessing smaller changes. Future studies with independent measures of cell composition,

such as from histology, will be essential for assessing the accuracy of this approach, as has been done for cell

deconvolution in other tissues such as adult/cord blood and brain (86,160,168).

There was also significant interindividual variation in cell composition that could not be fully

explained by within-trimester gestational age variation, suggesting that other factors contribute to cell

composition variability. In this study, we found that chronological (i.e. reported) and biological (i.e. estimated

from DNAm) gestational age, sex, and ancestry were not significantly associated with cell composition. But

the sample size supporting these findings was small and future studies with more appropriate power are

needed to answer how much these factors play in contributing to placental cell composition variability. We

also caution that the accuracy of cell composition estimates on first trimester samples relies on the degree of

gestational-age dependent variation in term eSTB and nRBC reference CpGs, which could not be assessed

in this study.

Another challenge to this study, and others which use a single or few marker genes/proteins to

isolate/define cell populations, is addressing heterogeneity within relatively homogenous cell populations.

As mentioned previously, TB contains several subtypes, such as CTB, STB and EVTs. In this study, our TB

is likely mostly CTB but contains some proportion of immature precursors to the other TB subtypes, given

that pan-trophoblast markers EGFR+ were used for cell isolation. HB (CD14+/CD68+) and SC (VIM+)

can also able to be divided into meaningful subtypes (71). It will be essential to placental epigenetics research

to develop DNAm references for other placental cell subtypes, such as extravillous trophoblast. This will be

especially important in studies on placental pathologies (and likely also in many other phenotypes), where
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certain TB subtypes are more affected than others, such as preeclampsia (170) and placenta accreta (171).

Associated changes in cell composition with preeclampsia may explain the finding that many CpGs with

altered DNAm in preeclampsia (99) are also highly cell-specific. Cellular heterogeneity will always be a

challenge when using techniques that take measurements in samples that consist of a mixed population of

cells. However, cell deconvolution applied in placental DNAm studies will significantly improve interpretation

of the resulting measurements and findings.

3.4 Methods

3.4.1 Patient recruitment

Placental tissues were obtained with approval from the University of British Columbia / Children’s and

Women’s Health Centre of British Columbia Research Ethics Board (H04–70488, H16–02280, H13–00640).

Women for a scheduled C-section with a healthy term (>37 weeks) singleton pregnancy were recruited with

written informed consent at BC Women’s Hospital, Vancouver Canada. In addition, first trimester samples

from elective terminations were obtained in a deidentified manner. A total of 9 first trimester (6.4–13 weeks)

and 19 term (36.4–40.4 weeks) placental samples were obtained; all were screened for large chromosome

abnormalities using CNV calling on the 850k array, and found to be normal. No gross pathologies were

noted.

3.4.2 Tissue processing and cell isolation

Fresh term placental samples from 3 to 4 sites were taken from the fetal-facing side of the placental disc

to avoid maternal contamination and pooled for processing. Chorionic villi samples were washed several

times in 1X PBS to eliminate all traces of visible blood and physically homogenized using razor blades.

For term placental samples the tissue was then incubated twice in a denuding/digestion HEPES buffer

containing HBSS, Dispase, trypsin and DNase I for 30 min at 37C°, to allow the separation of most of the

syncytiotrophoblast layer of the chorionic villi. The remaining tissue was then washed in HBSS media with

2% FBS (HF media) and subsequently digested using Collagenase/Hyaluronidase Digestion DMEM Buffer

with DNase I, at 37oC for 1h with vortexing every 30 min. The supernatant was collected. This is followed

by a wash of the remaining cell pellet with HF media, gentle centrifugation at 4°C for 10 min and further

digestion of the cell pellet, with gentle mixing with a pipette, using of 0.25% trypsin solution for 2 min at

room temp. The pellet is then washed again with HF media and digested once again with a Dispase/DNase

I solution by gentle mixing with a pipette. This is followed by a final wash in HF media and filtering of the

sample using first 100um and then 40um sieves to eliminate any remaining chunks of tissue. The cells are
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then counted and frozen in freezing media at −80°C until used for FACS. The freezing process eliminates a

great deal of the remaining non-nucleated red blood cells.

For first trimester samples, the entire placental sample was processed after identification and re-

moval of most of the decidual tissue. The sample was mechanically homogenized using razor blades and

then digested with Collagenase/Hyaluronidase DMEM Buffer at 37°C for 1h. The tissue was then washed

with HF media and further digested with a 0.25% trypsin solution by gentle mixing with a pipette for 2 min.

The pellet is then washed again with HF media and digested once again with a Dispase/DNase I solution by

gentle mixing with a pipette for 2 min. The sample was finally washed with HF media and filtered through

a 40um sieve. The cell pellet was resuspended in HF and cells were counted and subsequently frozen in

freezing media at -80oC until used for FACS.

To isolate human placental cell types with fluorescence-activated cell-sorting (FACS), cells were

first thawed and then washed using HF media. Suspended cells in HF media were then filtered through a

40-um sieve (VWR, CA21008–949) and then counted using a hemocytometer. Trypan Blue (0.4%, Amresco,

K940-100ML) was used to identify live / dead cells. A final cell solution was made at a concentration of

10 million cells per ml, which was then stained with the following antibodies purchased from eBioscience:

7-AAD (1:25, 00–6993-50), CD235a FITC (1:50, 11–9886-42), CD45 APC-eFluor780 (1:100, 47–0459-42),

CD14 PE (1:50, 12–0149-42), CD34 APC (1:25, 17–0349-42), and EGFR PeCy7 (Biolegend, 1:50, 352,909).

Approximately 200,000 cells for term placental samples and 125,000 cells for first trimester were obtained

for each cell type using the BCCHR FACS Core equipment. DNA was extracted from cell-sorted samples

and matched whole villi using Qiagen DNeasy Blood & Tissue kit (Qiagen, 69,504 / 69,506).

Enzymatically isolated syncytiotrophoblasts (eSTB) were obtained from term villi samples using

an enzymatic digestion protocol. Briefly, approximately 0.5 cc of chorionic villi were washed thoroughly

several times with 1X PBS to eliminate all visible traces of blood without disrupting the tissue and then

incubated for 10 min in 1ml of Collagenase IA 1mg/ml (Sigma). The tube was then vortexed for 30s, if

cloudy, 3 ml of Hanks Balanced salt solution (HBSS) was added to the digest letting it settle for 2 min. The

supernatant containing mostly syncytiotrophoblast (STB) and some cytotrophoblast (CTB) was collected

in a separate tube, the pellet was centrifugated and washed in 1X PBS before DNA extraction. This HBSS

step is repeated once and all supernatant is pooled in the same tube. If the initial collagenase IA digest is

not cloudy after the initial 10 min digestion, the whole villi were digested for an additional 2 min before

adding the HBSS.
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3.4.3 Measuring DNA methylation in placental samples

DNA quality was checked using a NanoDrop ND-1000 (Thermo Scientific) as well as by electrophoresis on

a 1% agarose gel. Bisulfite conversion was carried out using the EZ DNA Methylation Kit (Zymo, D5001

and D5002), before amplification and hybridization to the Infinium Methylation EPIC BeadChip (Illumina,

WG-317) following the manufacturer’s protocol. An Illumina iScan reader was used to scan the chips and

produce raw data files (IDATs).

3.4.4 DNA methylation data processing

To assess various quality metrics, IDAT files were loaded directly into R (v3.6.1) using the minfi package

(v1.32.0) and ewastools (90) (v1.6). Poor quality and unreliable probes (detection p-value > 0.01, bead

count <3, cross-hybridizing (33), probes with SNPs within 5 bp of the CpG site in the probe direction

(33)), and probes located on sex chromosomes were removed (n=109,410). Analysis was restricted to a final

set of 737,050 autosome probes. All samples had high (7500–15,000) average median intensity readings in

the methylated and unmethylated channels, and passed manufacturer-determined default thresholds for 17

control probes. The possibility of sample mislabelling was verified comparing reported sex and inferred sex

based on X chromosome copy number (ewastools) (90). Identical genotypes between matched cell-sorted

and whole chorionic villi samples were verified using the 850k array’s 59 SNP probes (ewastools) (90). This

genotype-check also identified a number of first trimester cell-sorted samples with evidence of maternal

contamination, which were removed from further analyses (n=12). Upon inspection of global DNAm patterns

with PCA, we identified and removed 2 outlier samples that we suspect were contaminated with cells from

other genotype-matched samples. After quality control and probe filtering, noob (132) and BMIQ (133)

normalization was applied to the DNAm data.

3.4.5 Differentially methylated CpGs (DMCs) analysis

All analyses were conducted in R version >3.6.1. To identify differentially methylated CpGs (DMCs), the

R package limma (172) (v3.42.0) was used to apply CpG-wise linear models with empirical Bayes posterior

variance estimators (173). Unless otherwise stated, the “one-versus-all” approach was applied, where for

each CpG, the mean DNAm of one cell type was compared to the mean of all other samples (excluding

villi). DMCs were defined as those tests that were statistically significant at a bonferroni-adjusted p-value

of <0.01, and also a showed a difference in mean DNAm >25%. For functional enrichment analysis of

identified DMCs, the R package missmethyl (v1.20.0) was used to account for the variable number of CpGs

that can be associated with each gene (151). For testing enrichment of DMCs for various genomic features
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(e.g. CpG islands, promoters, enhancers) and preeclampsia-associated CpGs, chi-squared tests were applied

using the base-R function chi.sq.test. Annotations for UCSC transcripts (e.g. promoters, introns, exons,

etc.), enhancers, and CpG islands were taken from the R package annotatr, which downloads annotation

data from UCSC directly. Significant enrichment/depletion was defined as those with a Bonferroni-adjusted

p<0.01. DMRs were identified using the R package dmrcate (v2.0.7), using an FDR cutoff of <0.01, with

default settings.

3.4.6 Partially methylated domains

To assess cell-specific placental DNAm in partially methylated domains (PMDs), coordinates for previously

identified placental PMDs were taken from Schroeder et al. 2011 (77). Original hg18 coordinates were

mapped to hg19 using the UCSC LiftOver tool implemented in the R package liftover (v1.10.0). Due to

differences in genomic content between the two genome versions, remapping broke up many PMD regions

into smaller ones. Fifteen of these smaller “pieces” mapped to different chromosomes, so were removed

from further analysis. To account for bias in array-specific coverage towards CpGs lying in promoters, CpG

islands, and CpG island shores, these CpGs were removed, as previously described (77).

3.4.7 Imprinted regions

Location data for imprinted regions was created by combining results from five previous human imprinting

studies (79,80,82,162). A variety of approaches and technologies were used in these studies, such as whole

genome bisulfite sequencing, methyl-sequencing, and Infinium 450k methylation arrays. We took outer

coordinates for overlapping regions. A final list of imprinted regions can be found in Table B.3.

Repetitive element mappings were determined by downloading the “rmsk” track from UCSC genome

browser (hg19) and then overlapping these regions with the 850k array CpGs. Mean DNAm was calculated

by averaging over each set (Alu, LINE1, all CpGs) of CpGs for each sample. Predicted genome-wide DNAm

for Alu and LINE1 CpGs was done using the Bioconductor R package REMP (174) (v1.8.2), using default

settings.

3.4.8 Public cord blood DNAm data

A curated database of cord blood cell types DNAm data ran on the 450k methylation array was used.

This data was downloaded from the R package FlowSorted.CordBloodCombined.450k and noob normal-

ized (160). For associated analyses, the common probes from this dataset and our 850k data were used.

Heatmaps/clustering was applied using the R package pheatmap. Where possible, colour-blind friendly
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palettes were used with the R package viridis.

3.4.9 Cellular deconvolution

Reference probes for cellular deconvolution were determined using the pickCompProbes function from the R

package minfi (v1.30.0) separately for first trimester and third trimester samples. The Houseman et al. 2012

constrained projection (CP) approach was applied using implementations in the minfi and EpiDISH (v2.0.2)

R packages. Other algorithms tested were robust partial correlations (RPC) and CIBERSORT (CBS), both

implemented in the EpiDISH package. Default parameters were used for all functions, except “constraint”

was set to “equality” for using the CP approach from EpiDISH. In silico mixtures were generated by the

following procedure: 250 proportion samples were drawn from a uniform distribution between 0 and 1. These

are the first 250 proportions for one cell type. Two hundred and fifty additional proportions were drawn

from a uniform distribution between 0 and the first proportion for the next cell type. This was repeated for

a total of 6 times for 6 cell types. These 5 sets of 250 sampled proportions make up 250 in silico mixtures.

Because this procedure only ensures that the first set of percentages are uniformly distributed from [0,1]

and the remainder are biased towards increasingly smaller values, we repeated this entire procedure for each

cell type, each time starting with a different cell type, for a total of 1500 in silico mixtures. Performance

metrics to compare algorithms were computed using the r package yardstick (v0.0.4). Linear modelling

with Bonferroni- multiple testing adjustment was done to test differences in cell composition by sex and by

ethnicity. Inferred ethnicity was computed via the R package planet (v0.2.0) (45), and corroborated with

the first 2 principal components of high density (~2.3 million SNPs) genotyping data
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4 Maternal contamination in placental DNA methylation studies

4.1 Introduction

In this study, we provide a comprehensive assessment of maternal cell contamination in placental DNAm

studies. Building on some of the existing bioinformatic approaches described above, we designed a multi-

faceted placental-specific approach to assess maternal cell contamination in DNAm data.

4.2 Methods

DNAm data was obtained from the data repository GEO for 11 placental studies, 3 of which were from our

own lab (Table 4.1). These included studies of acute chorioamnionitis (dataset 1), preeclampsia (datasets

2, 3, 10, 11), neural tube defects (dataset 4), assisted reproductive technologies (dataset 5), neurobehavior

of newborns (dataset 7), arsenic exposure (dataset 8), and extremely early gestation preterm birth (dataset

9). Decidua and maternal blood samples from additional datasets GSE113600 (dataset 12) and GSE74738

(dataset 13) were included for methylome-wide principal components analysis (PCA). All studies reported

collecting 1-4 sites of chorionic villi from the fetal facing side of the placenta, which is done to avoid contam-

inating maternal tissue. DNAm data was normalized with BMIQ and noob; and filtered for poor quality,

cross-hybridizing, and probes with nearby SNPs according to the 2021 June 15th update of the original Zhou

2017 DNAm annotation (33).

4.2.1 Identifying mixing of genetically distinct DNA samples

To quantify the amount of mixing of genetically distinct DNA in each sample, a mixture model was fit

to the 59 SNPs on the 450k/EPIC array using the R package ewastools (90). Mixing of genotypes is

expected to result in SNP measurements with a high probability for the “outlier” distribution (referred to

as the “P(outlier)” value), which corresponds to measurements that deviate from the 3 possible genotypes.

P(outlier) values range from 0 to 1, and increases with mixing of distinct genotypes (e.g. fetal and maternal

DNA).

4.2.2 Cell composition outliers

We hypothesized that placental samples significantly contaminated with maternal decidua or blood could be

identified from DNAm-based estimates of placental cell composition. Specifically cell composition inferred

from our previously developed placental cell deconvolution approach (175), and PCA clustering with maternal

blood and decidua samples, were tested for their association with genotype-based contamination. This latter
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approach is a variation of the PCA approach described previously from Wan 2019 (95), whereby, instead of

using all CpG sites, we used a specific subset of highly decidua and blood-specific CpG sites that we identified

through linear modelling. Decidua and blood-specific CpG sites were determined using the R package limma

(172), by comparing the DNAm profile from decudua and maternal blood independently to that for placenta;

the top 500 hypo- and hyper- methylated CpGs (total was 2000 cpgs for two tissue-specific comparisons)

were used for PCA.

4.2.3 Epigenetic age

Epigenetic age is a measure of biological aging based on aging-associated DNAm changes. Epigenetic

“age clocks” are usually built using supervised machine learning trained to predict chornological age us-

ing CpG methylation (176). Because epigenetic age should be highly increased in decidua and maternal

blood (i.e. adult tissues) compared to conceptus-derived placental tissue, we hypothesized that estimated

epigenetic age may significantly differ between maternally contaminated and non-contaminated placental

samples. To estimate epigenetic age, placental and adult epigenetic age clocks were applied to chorionic villi

samples (105,177).

4.2.4 Sex chromosome analysis

Placental samples from male fetuses that are contaminated with maternal (female) DNA, should appear

more “female-like” when examining sex chromosome DNAm. Using the R package ewastools (90), DNAm

intensity measurements on X and Y chromosome probes were normalized to autosomal signal, and then

outliers on X and Y chromosome plots were identified in a dataset-specific manner (termed “XY outliers”).

4.3 Results

4.3.1 Genotype mixing

The estimated genotype mixing between studies was highly variable (Figure 4.1A). While some datasets

showed no evidence of mixed genotype contributions, other datasets showed a number of placental samples

with a high P(outlier) value (Table 4.1). Due to the potential for maternal tissue contamination during

placental sampling, we hypothesized that much of the observed genotype mixing can be explained by the

presence of maternal cells, either due to sample processing technique (e.g. failure to avoid maternal infarcts

or to wash sample well), or biological processes such as inflammation. We noted the number of samples

with P(outlier) values greater than 0.15 for each dataset in Table 4.1. As high P(outlier) values may also

result from poor data quality or non-maternal sample contamination (e.g. unintentional mixing of placental
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Table 4.1: Placental datasets and number of samples with evidence of contamination.

Placental datasets - Contamination measures (n samples)
n villi / n

total 
Genotype

mixing
PCA

outliers
Epigenetic

age
XY

outliers
1 GSE115508 Konwar

2018 (7)
48 1 15 2 1

2 GSE100197 Wilson
2018 (10)

97 2

3 GSE98224 Leavey
2018 (11)

48 2

4 GSE69502 Price 2016
(12)

51 6 32 6

5 GSE120250 Choufani
2019 (13)

88 1 38 1

6 GSE98938 Zhang
2021 (14)

2 1 4

7 GSE75248 Paquette
2016 (15)

335 5 3 2 3

8 GSE71678 Green
2016 (16)

343 6 18 1

9 GSE167885 ELGAN
(17)

411 28 34 6

10 GSE125605 Wang
2019 (18)

42 2 3

11 GSE75196 Yeung
2016 (19)

24
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samples), it is important to follow up flagged samples with additional measures to determine the cause of

these results.

4.3.2 Association with low quality data

We first looked for a relationship between data quality measures and P(outlier values). Relatively few samples

failed 1 or more Illumina data quality control checks (Figure 4.1B), likely because most studies eliminate

poor quality samples after performing baseline data processing and quality control. However, in 3 out of 11

datasets, samples that failed control checks showed statistically significantly higher P(outlier) values (Figure

C.1A), and in dataset 5, the number of samples that failed at least one control check was a large proportion

of the dataset, 32/88 (36%) (Table 4.2). However each of 27 Illumina data quality control checks measures

a different aspect of DNAm signal quality, and even if samples fail some Illumina controls, other measures

of DNAm data quality may be normal (90). A list of the specific controls that failed for each dataset is

described in Table C.1. Overall, however, poor quality data, as measured by the number of samples that

failed these quality control checks, could not fully account for samples with high P(outlier) values, leaving

the possibility that genotype mixing could be occurring in the remainder of the samples.
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Figure 4.1: Estimated DNA contamination in placental DNAm data. Placental DNAm microarray
(450k/850k Illumina) from 13 datasets was downloaded. Genotype contamination was estimated using a
mixture model approach from ewastools R package. A) P(outlier), a measure of genotype mixing, estimated
across all 13 placental datasets. B) Samples that failed 1 or more Illumina quality control checks tended to
have higher P(outlier) values.

4.3.3 PCA assessment of sample contamination

To estimate the proportion of placental samples with P(outlier)>0.15 that were likely contaminated with

maternal cells, we performed several other analyses based on DNAm variation. Wan 2019 used a PCA based

approach that identified a set of placental samples that clustered near maternal blood and decidua, reflecting

a globally altered methylation profile that was increasingly similar to the putative contaminating tissues (95).

To increase the power of this approach, we modified the PCA approach by using only highly tissue-specific

(maternal blood vs placenta, decidua vs placenta) CpG sites. PCA using the top 500 hypo- and hyper-

methylated CpGs between placenta and either maternal blood or decidua (2x tissues = 2000 CpGs total)
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Table 4.2: Number of samples that failed 1 or more of 27 Illumina data quality control checks.

Dataset n n failed    Some controls that failed
1 78 4 Bisulfite Conversion I Green, Bisulfite Conversion II
2 97 0
3 48 0
4 179 0
5 88 32 Non-polymorphic Green
6 17 0
7 335 8 Non-polymorphic Green
8 343 8 Non-polymorphic Red
9 411 0

10 42 1 Bisulfite Conversion I Red, Bisulfite Conversion II
11 24 0

resulted in the first principal component PC1 (94% variance explained) being able to separate placental and

maternal samples (Figure 4.2A). This tissue-specific approach was more sensitive than using PCA on all

CpGs (Figure C.2A). Placental samples were labeled based on how many standard deviations (SD) away

from the placenta mean on PC1, and towards decidua and maternal blood samples (Figure 4.2A, Table 4.1).

PC1 was positively associated (p<0.001, reference category: “x < mean”) with high P(outlier) values (Figure

4.2B), indicating that more maternal tissue-like DNAm profiles in placental samples had correspondingly

higher genotype mixing. Treating PC1 as a continuous variable, a linear model between P(outlier) versus

PC1 was statistically significant (p<0.001, slope = 3.26, Figure 4.2C). Interestingly, we observed a concave

shape to the nonlinear fit using the “LOESS” regression option in ggplot2). This “increasing and then

decreasing” relationship of P(outlier) is consistent with a model of genotype mixing, where after a sample

becomes more than 50% contamination, the contaminant becomes the primary component of the sample

and P(outlier) will start to decrease. Two extreme outliers, both from dataset 11, drive the decreasing side

of this relationship 4.2C) and displayed a cell composition profile consistent with high blood contamination

(increased nucleated red blood cells and Hofbauer cells, Figure 4.2D)), as estimated from DNAm-based

placental cell deconvolution (84,86,175).
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Figure 4.2: Maternal contamination alters DNAm profiles of placental samples. A) Principal component
analysis (PCA) using 2000 tissue-specific CpG sites resulted in PC1 being able to discriminate between
placental and maternal tissue samples. B) Categorization of placental samples based on PC1. Samples
with higher PC1 values were associated with higher P(outlier) values. C) A positive statistically significant
relationship between P(outlier) and PC1 was observed (p<0.001) using linear regression (green). A non-
linear fit is shown in blue. Samples with high PC1 but low P(outlier) are shown in red. D) Cell composition
of dataset 11, estimated from DNAm-based placental cell deconvolution. The two outlier samples (red) with
high PC1 values are shown having a high immune cell profile. nRBC: nucleated red blood cells, sd: standard
deviation, MBD: maternal blood decidua dataset.
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4.3.4 Evaluating epigenetic age

We hypothesized that because of the large difference in epigenetic age between maternal (adult) and placental

(fetal) tissue, maternally contaminated placental samples should display increased epigenetic age estimates.

To test this we applied both adult and placental epigenetic age clocks on all placental samples (105,177).

The adult epigenetic age (EA) clock (which was built on somatic tissues) was not effective in accurately

separating GA in placental samples (Figure C.3A). However, there was a small, but statistically significant

association between adult EA and P(outlier) in placental samples (p <0.01, slope = 0.0125 P(outlier) / year;

Figure 34.3A)), an effect that was largely driven by two datasets, 1 and 4 (Figure C.3B). Placental epigenetic

gestational age (EGA), which was highly accurate on placental samples (mean difference = +1.07 weeks, sd

= 0.88), yielded estimates of EGA that was not as high as expected for decidua (mean = 43.0 weeks) and

maternal blood (mean = 44.2 weeks), indicating that EGA is likely to have low sensitivity for maternal

contamination (Figure C.3C). The difference between EGA and reported was not significantly associated

with P(outlier) (Figure 4.3B, slope = -0.002, n.s.).
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Figure 4.3: Epigenetic age and XY signal intensity analysis. A) Adult epigenetic age on placental chorionic
villi samples was associated with P(outlier) (p<0.01, slope = 0.013). B) The difference between placental
epigenetic gestational age and reported gestational age was not significantly associated with P(outlier). C)
Total XY signal intensity normalized to total autosomal signal intensity. Male samples (top left) deviations
towards female samples (bottom right) are consistent with maternal contamination. D) Males flagged in XY
intensity analysis have significantly (p<0.01) higher P(outlier) values than other placental villi samples.
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4.3.5 XY signal intensity analysis

A common approach to check for sample misannotation in DNAm analysis is to compare samples’ recorded

sex and overall signal intensity from the X and Y chromosome probes. Additionally, samples that deviate

from the male and female sample clusters can be indicative of contamination with DNA from a different

sex, although this can in rare cases also occur for biological reasons (i.e. sex chromosome mosaicism). We

hypothesized that maternal contamination in the placenta from male pregnancies would be reflected using

XY signal intensity analysis. Based on XY signal intensity normalized to autosomal signal intensity using

ewastools (90), 6 datasets had male samples that appear more female-like (trending towards the female

cluster) (Figure 4.3C). Although the number of samples flagged by this analysis was small (17/754 males

total), flagged samples had significantly increased P(outlier) (p < 0.01, mean = 0.24 versus 0.04, Figure

4.3D).

4.3.6 No association of maternal contamination with pathology

Maternal immune cells infiltration into placental tissues can occur in response to placental inflammatory

signals, as can occur in chorioamnionitis (178). Moreover, a very small proportion of the normal placental

composition consists of maternal macrophages (93). Thus, maternal genotype mixing might be from infil-

trating maternal cells as part of a biological process, not an unwanted technical artifact. To determine if

putative contamination may be due to biological processes, we tested for the association between our con-

tamination variables and available clinical and placental phenotypes. We were limited to sample variables

made available on GEO, but in almost all cases we were able to test for the main phenotypes for each study

(preeclampsia, acute chorioamnionitis, neural tube defects, assisted reproductive technologies). We found

no statistically significant associations between placental phenotype and any of our measures of genetic and

maternal contamination. P(outlier) was only significantly associated with late-onset preeclampsia samples

in dataset 2 (p < 0.05, slope = -0.0084), but not in any of the other 3 preeclampsia datasets. PC1, generated

from our tissue-specific approach described above, was associated with early-onset preeclampsia (p<0.001,

slope = -0.0016), which does not necessarily indicate maternal cell presence given the large methylation

alterations associated with severe preeclampsia (99). Overall, we were unable to robustly detect the presence

of maternal cells in placental samples due to biological processes, which suggests that these approaches are

not sensitive enough to detect the small number of maternal cells that infiltrate due to inflammation.
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4.4 Discussion

We assessed whether the presence of maternal DNA could be detected in Illumina DNAm data derived from

placental samples. Although DNAm microarray data was the subject of this study, our findings are relevant

to all placental studies where technical of biological contamination from maternal tissue is a concern. While

detecting contamination in genomic studies is a challenge, it can, to an extent, be addressed through bioin-

formatic data analysis after data has been generated. Our analysis builds upon the decade of bioinformatics

development of DNAm-specific array data. We expect that accounting for contamination will improve and

become more routine as bioinformatic approaches continue to develop, especially with the generation of new

genomic technologies. Using this multi-pronged approach, we show that maternal contamination can likely

influences a proportion of the 11 placental datasets included in this study. The dataset -specific variation

observed in these placental datasets likely reflects variability in sample processing protocols between differ-

ent research groups. As all data is from previously published studies, our findings represent a conservative

estimate of the prevalence of maternal contamination in placental sampling in general, since highly contam-

inated samples may have been removed through standard QC and data analysis pipelines because of the

resulting severely altered DNAm.

The variety of approaches used in this study have their own individual usefulness in identifying

different aspects of maternal contamination in placental DNAm data. Although high values of P(outlier)

(>0.15) were associated with altered clustering, XY signal intensity, and epigenetic (adult) age, we found

that some datasets had high P(outlier) samples with no other evidence of maternal contamination. Because

P(outlier) is essentially a measurement of noise and variability of signal intensity, we suspect that dataset-

specific variability in background noise will be important to account for when employing this approach, and

that dataset-specific considerations are likely important to fine-tune the thresholds of these types of analyses.

The combination of the genetic contamination measure with PCA-based clustering of chorionic villi

samples with more decidua / blood-like DNAm profiles, is strongly indicative that maternal contamination

is present. But in the absence of genotype contamination, deviations on the PC1 variable can be influenced

by other biological factors, such as cell composition variability, disease, environment, and genetics. Selection

of CpG sites that are highly tissue-specific can amplify the maternal signal and minimize these other sources

of variation, as demonstrated by the increased discrimination we showed in our study compared to when

using PCA with all array CpGs. However, this set of CpG sites can be improved since only a low number

(n<13) of maternal decidua and maternal blood samples were used to for CpG selection, making the analysis

underpowered.
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Other limitations for the other approaches are also important to consider when identifying con-

tamination. P(outlier) as noted previously, is also function of signal noise, and is not specific to maternal

contamination but can be also useful in identifying sample-sample contamination which we did not explore

in this study. Epigenetic age, we found to have little sensitivity to maternal contamination. We found that

the placental age clock was not able to robustly discriminate maternal decidua and blood samples from villi,

to the degree needed to use this as a measure of maternal contamination. Adult epigenetic age (105) was

slightly associated with genetic contamination, indicating it has some use in identifying contamination. XY

signal intensity analysis, which Heiss 2018 also explored to assess sample contamination in DNAm data,

we found to have a strong association with genetic contamination. However, the restriction of XY analysis

for identifying maternal contamination is only possible in male placental samples, and therefore we limit

this approach for use as a secondary validation analysis after applying other contamination checks. Overall,

our study highlights the importance of using a variety of bioinformatic approaches to identify and magnify

different aspects maternal contamination from placental DNAm microarray data.

The bioinformatic approaches described in this study to assess different aspects of contamination,

although are specific to the Illumina DNAm arrays and to placental tissue, these approaches can be adopted

to other genomic data types and to other tissues. For example, in this study we used CpG sites that were

differentially methylated between villi and decidua or maternal blood; however, in cord blood studies, where

maternal contamination is also a challenge, a cord-blood specific set of CpG sites could be used instead.

We found that P(outlier) variable based on the 59-65 SNP probes on the 450k/850k methylation arrays to

be a fruitful measure of genetic contamination, but this approach could be generalizable to other sets of

SNPs such as high-density genotyping arrays, of which many EWAS datasets have available too. Although,

Morin 2017 found that genetic contamination measured from genotyping arrays was not correlated with

other DNAm-based measures of contamination (97). Morin 2017 used the amount of genotype “no-calls,”

which are when a genotype cannot be confidently discerned from the raw signal intensity array data, as their

measure of contamination; this approach is more stringent than the P(outlier) measurements used in this

study. Further studies evaluating SNP data their usefulness in estimating contamination are needed.
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5 Discussion

This chapter is original and unpublished

5.1 Summary and significance of findings

In this dissertation, I investigated some of the major sources of variation of placental DNAm: genetic

ancestry and ethnicity, cell type, and the presence of maternal cells in placental tissues. Regarding these, I

discovered the following insights. Ethnicity and genetic ancestry can be accurately predicted from placental

DNAm microarray data, using both DNAm markers and SNPs. Many placental-specific DNAm features,

such as PMDs, placental-specific imprinting, and repetitive element DNAm, can be found in trophoblast

populations, and are often not present in the other constituent placental cell types. Lastly, I found that

maternal contamination can occur in placental samples and can be bioinformatically identified from previous

placental DNAm studies.

The ethnicity predictor trained on 450k placental DNAm data builds on previous studies and adds a

placental-specific approach to the toolbox of methods for accounting for population stratification and genetic

ancestry in EWAS (31–33). Although my placental ethnicity predictor, planet, was trained on self-reported

ethnicity, I found that the modelled DNAm patterns are highly genotype-dependent, and that my ethnicity

predictor is highly correlated with genetic ancestry. In the placental data for which I compared planet to other

approaches of inferring genetic ancestry and ethnicity, I found that my tissue-specific approach performed

better. This affirms this study’s original hypothesis, which was that because DNAm is highly tissue-specific,

and that genotype-DNAm relationships can also be highly tissue-specific (41), methods to infer biological

variables such as ethnicity and genetic ancestry from DNAm are likely also to be tissue-specific.

Self-reported ethnicity has several shortcomings that my DNAm-based ethnicity predictor addresses.

Self-reported ethnicity is often reported for the parents for placental studies, and is often missing from the

paternal information. Self-reported ethnicity is also variably defined between countries, institutions, and

individuals. In research of biological data such as DNAm, self-reported ethnicity is included as a often

inadequate (36) surrogate of genetic ancestry, which should be accounted for in any population-based study

such as the common EWAS design. Ethnicity or genetic ancestry, defined instead using DNAm and/or

genotyping data is more reproducible and measurable, and therefore comparable across studies. It is unclear

if DNAm-based genetic ancestry and ethnicity is more appropriate to use in EWAS compared to using

genetic ancestry based on genotyping information, but in the absence of genotyping data, I demonstrate that

DNAm-based genetic ancestry and ethnicity is a highly useful alternative to self-reported ethnicity.
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Epigenetic modifications such as DNAm have highly cell-specific patterns to regulate cell-specific

gene expression. To investigate the cell-specificity of placental DNAm, I characterized the methylomes of

5 major placental cell types in first trimester and term placentas. This work builds on previous research

that investigated epigenetics in placental cell types, which was done using either lower resolution profiling

technologies (46), and / or other epigenetic marks (57,179). I found highly placental cell-specific DNAm

using the 850k Illumina DNAm microarray. Cell-specific DNAm often occured at promoters and regulatory

elements (i.e. enhancers, CpG Islands) near known placental-specific genes, some of which had DNAm

that previously had not been characterized before. Interestingly, I found that for many placental-specific

DNAm features, such as PMDs, placental-specific imprinting, and repetitive elements, I found were present

in trophoblasts, variably or intermediately present in endothelial and stromal cells, and mostly absent in

Hofbauer cells. Conservation of placental features in trophoblasts is not unsurprising, given that trophoblast

make up the bulk of placenta throughout pregnancy. However, trophoblast is itself a heterogenous population,

with STB becoming the more predominant subtype in later gestation (155).

Lastly, I assessed cell composition in placental chorionic villi samples using the cell-specific methy-

lomes as a reference for cell deconvolution. I found that cell composition of chorionic villi between first

trimester and term placentas to be highly consistent with previous literature reports from using histology to

measure cell composition. First trimester chorionic villi had little STB, and was instead mostly CTB, but at

term, the bulk of chorionic villi becomes STB. This is consistent with our understanding of STB dynamics

throughout gestation. STB undergoes little apoptosis but instead accrues inactive nuclei throughout gesta-

tion, while concurrently growing from constant fusion of the underlying CTB layer (155,179). Dieckmann

2021 also found similar cell composition patterns, estimated with our reference data, in chorionic villi samples

from 3 cohorts, which included samples collected at term (n = 470, n = 139, n = 137) and from first trimester

(n = 264) (180). Overall, Dieckmann 2021 found cell composition patterns that were largely consistent with

ours, although there was significant variability between their cohorts, which may be in part attributed to

the differing methods of placental sampling, as well as variation in factors such as environmental exposures

and genetics (180).

It will be interesting to investigate whether cell composition changes associated with placental

phenotype can be detected using placental DNAm cell deconvolution, since placental-mediated health con-

ditions are often correlated with cell-specific and structural changes in the placenta. For example, fetal

growth is associated with gross placental morphological changes, such as placental diameter and thickness,

and placental weight relative to birth weight (181). However, it is unclear if cell composition also increases

proportionally or if the relative proportion of specific cell populations becomes altered. Successes in applying
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cell deconvolution to other tissues, such as blood, promises that the future will contain exciting insights for

placental DNAm research. DNAm-based cell deconvolution has been demonstrated to be a predictor of

disease, treatment response, and cancer survival (184). Moreover, regular improvements have been made

to reference datasets and bioinformatic applications, allowing for selection of better quality reference CpGs,

and accounting for other sources of variation, such as age (i.e. fetal versus adult) (160,185–188). Therefore,

it is expected that similar improvements to placental reference data, and increased usage of DNAm-based

cell deconvolution in varying types of placental data will occur, and in turn lead to a better understanding

of the cellular variation associated with placental phenotypes.

In addition to variation in placental cell composition, maternal cells can be found present in placen-

tal samples. Although effort is often made to avoid maternal tissue contamination during placental tissue

processing, it can be difficult especially in earlier gestation samples, where placentas are much smaller. In

chapter 4, I assessed whether maternal cells can be detected in placental samples, using DNAm data measured

from chorionic villi from 13 different placental datasets on GEO. I developed an approach to bioinformatically

identify maternal cell contamination from placental DNAm data and found that maternal contamination is

frequently found in placental samples from previous studies. The approaches I developed rely on existing

ideas and tools from Heiss 2018 and Wan 2019(90,95), to create a highly placenta-specific approach that I

show to be reliably able to identify maternal contamination from placental DNAm. Applying tissue-specific

knowledge to develop bioinformatic tools to infer contamination from DNAm has been previously done for

other tissues such as cord blood (189). This study demonstrates the importance of considering maternal

cells in placental tissues in placental DNAm studies, which can arise either from sample processing, or due

to biological processes such as inflammation.

5.2 Strengths and limitations

Throughout this dissertation, I supported accessibility and open data access practices through several con-

crete actions. I implemented user friendly R packages and functions to enable the easy usage of the bioin-

formatic approaches I developed. This R package, planet, now includes the placental ethnicity predictor

and cell composition reference for deconvolution. Additionally, I developed the “Placental cell methylome

browser,” which is a web application that provides a user-friendly interface to access and explore the DNAm

data. Lastly, throughout my dissertation, I made each of my studies’ DNAm data available on GEO, for

reproducibility and data sharing purposes. These accessibility practices, I am extremely proud of, and I

hope will bring more value to the research I have conducted for my dissertation.

Public open-access data practices were essential to my research. Specifically, I relied heavily on
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placental DNAm microarray data deposited on GEO for the bulk of my research data for chapter 2 and 4. In

chapter 2, I used 5 placental DNAm datasets that were collected across various sites around North America.

The variety in human populations that my datasets comprised of, was especially useful in chapter 2, since

population stratification was a main focus. In chapter 4, I used 13 different GEO datasets comprising of

various placental tissues to assess maternal contamination from placental DNAm data. Because maternal

contamination is generally low and can be highly dataset-specific - a result of the variable sample processing

protocols that different research groups use, having several different datasets increased my power to detect

maternal contamination at level that was more appropriate for my analysis. Having access to a variety

of placental datasets allowed me to develop the bioinformatics with the necessary sample sizes needed for

sufficient power.

Without public data repositories like GEO, and an open-access data culture that promotes sharing

of genomic data, my work would be greatly limited, and my findings less robust and generalizable. However,

there are still significant improvements to data-sharing practices for genomic data. In particular, standard-

ization of data files and types is needed. For example, DNAm microarray data should be deposited into

repositories like GEO as .IDAT files, which are the most raw form of the data - the data that are downloaded

from the microarray scanners. Instead, GEO allows researchers to deposit the data as plain text files, which

means that some important quality control information is lost, and sometimes SNP probes can be missing.

Another area in genomic data sharing practices needing significant improvement is the attention towards

better quality sample information or study metadata. Often, genomic data is deposited without the neces-

sary metadata (e.g. sex, ethnicity, gestational age, health information) to reproduce previous findings, or to

conduct meaningful follow-up analyses. Part of my thesis addresses this limitation, by using the genomic

DNAm data directly to infer such sample variables. Still though, DNAm-based inference of sample variables

is limited, and having reported sample information has benefits such as cross-checking for misannotation

and sample mixups.

The high resolution DNAm microarrays from Illumina were used to assess DNAm in all studies in

this thesis. Although cost efficient, and ease-of-use, this results in several limitations. First, these microarrays

are limited in their coverage to 450,000 and 850,000 CpGs (450k/850k arrays respectively), which amount

to 1.5 and 3% of all CpGs in the genome. These arrays also do not provide uniform coverage; the 450k

array focuses on gene elements, such as CpG island promoters (190), whereas the 850k array improves on

the 450k design with the addition of coverage over distal elements such as enhancers (21). Although this

specific coverage is aimed at including genomic regions with most likelihood of meaningful DNAm variation,

improvements in total coverage are an obvious area to improve in future array generations.
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The topic of my research was to identify and characterize major sources of variation in placental

DNAm. One significant limitation of the studies in this dissertation, is a main focus was on term placenta,

with exception of chapter 2 where first trimester samples were included, albeit at lower sample numbers

than term samples (n=7-9 vs 19-20 for term). Placental DNAm varies significantly throughout gestation

(177), likely from the dramatic development-related changes that occur within placental cell types and also

in placental cell composition throughout pregnancy. From a bionformatics point of view, developing the

placental analysis tools in term placenta was ideal because most placental research is conducted in term

samples. However, many critical processes occur during gestation at earlier timepoints; for example at 10-12

weeks intervillous blood flow dramatically increases with corresponding increases in oxygen tension (191).

Increased oxygen levels promotes placental extra-trophoblasts to start differentiating and to acquire invasive

behaviour (192), which is critical to a healthy pregnancy. For exampe, in preeclampsia, extra-trophoblast

invasion is reduced, resulting in lowered blood flow to the baby and hypertension in the mother (193).

Investigation of the molecular processes, such as DNAm, that occur at early gestation timepoints in the

placenta are therefore needed for a comprehensive understanding of placental biology and health.

Early gestation samples, however, are difficult to collect due to the safety risks posed by invasive

sampling procedures. To this end, advances in non-invasive technologies and in-vitro models will be highly

beneficial. Cell free DNA, which targets the placental DNA that has been shedded into the maternal

blood stream, is a promising new non-invasive genomic technique. A key challenge of cell free DNA for

measurement of placental DNA, however, is that sensitivity is a function of the proportion of placental DNA

to maternal DNA, which increases with gestation itself (194). Currently, non-invasive prenatal testing can

reliably detect large chromosomal abnormalities (195), but future developments will determine whether high

resolution profiling such as sequencing and microarrays can be reliably used as well. Although in utero

profiling provides the most accurate information, recent organoid developments promises a more convenient

in vitro option that is not weighted with the challenges of non-invasive technologies (196).

5.3 Future directions

I developed several bioinformatic approaches to help analyze placental DNAm data, and implemented these

in user-friendly applications for usage in future placental DNAm studies. These approaches allow factors

that can significantly contribute to DNAm variability to be predicted, modeled, and accounted for. With

these predicted variables, measuring placental DNAm provides a multi-facetted picture of each placental

sample that can be useful for identifying changes associated with disease and environment. However, given

the limitations of the studies and techniques outlined above, there are significant improvements that can be
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still made.

It is untested how planet will perform in other continents of diverse populations. However, because

planet was developed in diverse human populations from North America, it is possible that planet may

generalize well to other populations. Related to this, more placental research in additional human populations

are needed, and future improvements to planet and other population stratification methods can include

additional populations. It is also still unclear if a machine learning -based approach is superior to semi-

supervised PCA -based approaches for accounting for genetic ancestry in EWAS. Much of the existing

literature focuses on PCA -based approaches, given their success in accounting for genetic ancestry in GWAS

(197). However, machine learning approaches in DNAm data, to estimate or types of sample variables such

as epigenetic age and cancer subtypes, have been highly robust and useful (141,177,198). In my study

of predicting ethnicity from placental DNAm, I show that using both approaches can be complementary:

machine learning to predict discrete categories (ethnicity), and semi-supervised PCA to generate continuous

variables (genetic ancestry).

My study characterizing the DNAm in placental cell types from first trimester and term placentas,

is the first to do so, and has provided a useful reference for placental studies already (15,180,199). Aside

from improvements in genomic coverage, as mentioned previously, inclusion of additional cell populations

and gestational timepoints are needed. In this study, trophoblasts represented by mostly CTB, and STB

were collected. However, an important additional trophoblast subtype, EVTs, which are responsible for in-

vasion and arterial remodelling in maternal tissue, were not included. EVTs play important additional roles

to nutrient transport and placental development, and when impaired are associated with various placental-

mediated disease phenotypes such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent

abortion (200). STB were profiled for DNAm, but the nuclei in this cell layer condense of a heterogeneous

mixture of gestationally varied nuclei, with a higher proportion of older nuclei condensing into syncytial knots

at later gestation (201). Placental-associated maternal macrophages are also present in the placenta that

adhere to and aid repair of the placental surface (202). Placental single cell RNA-seq (scRNAseq) studies

have also demonstrated significant cell-type heterogeneity defined by gene expression clustering (203,204),

which suggests that there there may be significant cell type heterogeneity in placental DNAm to be explored.

To this end, single cell whole genome bisulfite sequencing (scWGBS) is an obvious next step for the unbiased

characterization of DNAm in placental cell types (205). Novel cell types can be discovered using scWGBS,

that can be missed when using other technologies like scRNAseq. For example, using scWGBS, Luo 2017

discoverd novel cell subtypes in brain cortex that were missed in past scRNAseq analysis (206). Additionally,

because DNAm reflects developmental lineages and cell function, scWGBS is particularly well-suited for the

72



study of cell lineage, which can help resolve some areas of placental development, for example trophoblast

differentiation (200). Therefore, placental scWGBS can clarify the relationships of various trophoblast sub-

types, and additionally lead to insights into the epigenetic regulation of specific gene programs underlying

placental development.

5.4 Conclusion

Our understanding of variation in placental DNAm is growing at an unprecendented rate, due to advances

in genomic profiling technologies, bioinformatics, and placental-specific sampling and modelling technologies.

This dissertation provides insights into placental DNAm and three contributing factors: ethnicity and genetic

ancestry, cell-specific epigenetics and cell composition, and maternal cell contamination. These insights into

placental DNAm improve our understanding of the molecular dynamics of placental biology, which may

lead to future insights into how placental biology contributes to maternal and fetal health. Future studies,

however, are still needed to further characterize the rich source of biological information, that is the placental

methylome.
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Appendix A - Supplementary information for Chapter 2
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Figure A.1: Dataset-specific effects. PC1 by PC2 scatterplot from PCA computed on scaled and centered
DNAme beta values from 499 samples and 319233 sites.
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Figure A.2: Performance between machine learning algorithms in training. Resampling results for each
machine learning algorithm. a performance (LogLoss) between machine learning algorithms in predicting
ethnicity, and b class-specific accuracy.
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Figure A.3: Threshold analysis for determining “ambiguous” samples. Various cutoffs for predicted mem-
bership probabilities were compared with respect to changes in predictive performance.
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Figure A.4: Dataset-specific performance. PlaNET’s classification performance was calculated for each
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Figure A.5: Enrichment analysis on ethnicity-predictive HM450K sites. PlaNET’s CpG sites used to predict
ethnicity was tested for enrichment with respect to a chromosomal location, and b relation to CpG islands.
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Figure A.6: Association of population structure PCs with technical and biological variables. PCs were
computed on the following sets of HM450K sites: ethnicity-predictive sites, 59 SNPs, EPISTRUCTURE,
and Barfield’s method. Each PC was tested for their association with various cohort-specific technical and
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Figure A.7: PlaNET vs Zhou et al. 2017 snp-based classifier. PlaNET‘s ethnicity classification performance
was compared to Zhou et al. 2017 (33) SNP-based ethnicity classifier in cohorts C3, C4, and C5.
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Figure A.8: Estimating k number of ancestral populations using in genetic admixture inference program
LEA. The cross-entropy criterion was used to determine the number of ancestral populations for estimating
genetic ancestry coefficients. The number of ancestral populations was chosen at the point k = 3, when the
cross-entropy criterion decreases signficantly less with each integer-increase in k.
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Figure A.10: Evaluation of Barfield’s alternative location-based filtering approaches. The signal associated
with ethnicity and genetic ancestry was measured in relation to the distance of which a genetic variant lies
to a CpG site (0, 1, 2, 5, 10, 50 bp). a Amount of variance explained in PCi (i = 1, 2, 3, …, 10) by either
ethnicity or genetic ancestry. b Whether there was difference in the amount of ethnicity or genetic ancestry
-associated variation in PCi, depending on distance to a genetic variant. Direction of association is indicated,
where the reference group is the 0 bp set.
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Table A.1: PlaNET’s cohort-specific ethnicity classification performance. PlaNET’s classification perfor-
mance described across cohorts, assessed using LODOCV.

Cohort Accuracy Kappa

C1 0.8055556 0.6522939

C2 0.9166667 0.8500000

C3 0.9273356 0.7109036

C4 0.7954545 0.6102362

C5 0.9428571 0.8507463

C6 0.9259259 0.8125000

Table A.2: PlaNET’s ethnicity classification performance described by class. PlaNET’s classification perfor-
mance described across ethnicity groups, assessed using LODOCV.

Predicted Ethnicity Reported Ethnicity Frequency proportion of reported class Cohort

African African 10 0.7692308 C1

Asian African 0 0.0000000 C1

Caucasian African 0 0.0000000 C1

Ambiguous African 3 0.2307692 C1

African Asian 0 0.0000000 C1

Asian Asian 3 0.2307692 C1

Caucasian Asian 1 0.0769231 C1

Ambiguous Asian 9 0.6923077 C1

African Caucasian 0 0.0000000 C1

Asian Caucasian 0 0.0000000 C1

Caucasian Caucasian 45 0.9782609 C1

Ambiguous Caucasian 1 0.0217391 C1

African African 12 0.9230769 C2

Asian African 0 0.0000000 C2

Caucasian African 0 0.0000000 C2

Ambiguous African 1 0.0769231 C2

African Asian 0 0.0000000 C2
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Asian Asian 0 0.0000000 C2

Caucasian Asian 0 0.0000000 C2

Ambiguous Asian 1 1.0000000 C2

African Caucasian 0 0.0000000 C2

Asian Caucasian 0 0.0000000 C2

Caucasian Caucasian 10 1.0000000 C2

Ambiguous Caucasian 0 0.0000000 C2

African African 20 0.8695652 C3

Asian African 0 0.0000000 C3

Caucasian African 1 0.0434783 C3

Ambiguous African 2 0.0869565 C3

African Asian 0 0.0000000 C3

Asian Asian 8 0.8888889 C3

Caucasian Asian 0 0.0000000 C3

Ambiguous Asian 1 0.1111111 C3

African Caucasian 1 0.0038911 C3

Asian Caucasian 4 0.0155642 C3

Caucasian Caucasian 240 0.9338521 C3

Ambiguous Caucasian 12 0.0466926 C3

African African 5 0.7142857 C4

Asian African 0 0.0000000 C4

Caucasian African 1 0.1428571 C4

Ambiguous African 1 0.1428571 C4

African Asian 0 0.0000000 C4

Asian Asian 5 0.4166667 C4

Caucasian Asian 7 0.5833333 C4

Ambiguous Asian 0 0.0000000 C4

African Caucasian 0 0.0000000 C4

Asian Caucasian 0 0.0000000 C4

Caucasian Caucasian 25 1.0000000 C4

Ambiguous Caucasian 0 0.0000000 C4
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African African 0 0.0000000 C5

Asian African 0 0.0000000 C5

Caucasian African 1 1.0000000 C5

Ambiguous African 0 0.0000000 C5

African Asian 0 0.0000000 C5

Asian Asian 15 0.8333333 C5

Caucasian Asian 2 0.1111111 C5

Ambiguous Asian 1 0.0555556 C5

African Caucasian 0 0.0000000 C5

Asian Caucasian 0 0.0000000 C5

Caucasian Caucasian 51 1.0000000 C5

Ambiguous Caucasian 0 0.0000000 C5

African African 0 0.0000000 C6

Asian African 0 0.0000000 C6

Caucasian African 1 1.0000000 C6

Ambiguous African 0 0.0000000 C6

African Asian 0 0.0000000 C6

Asian Asian 6 0.8571429 C6

Caucasian Asian 1 0.1428571 C6

Ambiguous Asian 0 0.0000000 C6

African Caucasian 0 0.0000000 C6

Asian Caucasian 0 0.0000000 C6

Caucasian Caucasian 19 1.0000000 C6

Ambiguous Caucasian 0 0.0000000 C6

Table A.3: PE linear modeling results while adjusting for predicted ethnicity. Results containing 651 PE-
associated sites from linear modeling while adjusting for predicted ethnicity.

Closest_TSS_gene_name cpg Discovery Cohort p value Validation Cohort p value

LAPTM4A cg09394306 0.1743197 0.0960837

AX747766 cg17850498 0.1907809 0.1152059
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ERGIC1 cg26813604 0.1733287 0.0754164

KRT15 cg26625897 0.2956765 0.1968648

ST3GAL1 cg00592695 0.2765183 0.1265308

INHBA cg11079619 0.2106447 0.1121199

C10orf10 cg02334081 0.1225511 0.0747605

DENND2D cg20317872 0.1762978 0.0943016

LIMCH1 cg03822934 0.1662338 0.0827407

TMEM242 cg05002580 0.1021112 0.0587353

FAM110A cg16606561 0.1700186 0.0969453

TRIB3 cg15799353 0.1343169 0.0859857

PIGS cg24569276 0.1131509 0.0563061

NCF4 cg08612539 0.1378323 0.1022450

ERN1 cg12779575 0.1880272 0.0841852

LOC400238 cg10108710 0.1661197 0.0980662

KIAA0182 cg16804825 0.1248011 0.0713625

CMIP cg10246581 0.1763644 0.0670743

AMZ1 cg14605117 0.1859248 0.0877467

GDPD5 cg05521767 0.1709337 0.0999695

PIK3AP1 cg27479162 0.1408997 0.0659398

GALNT2 cg23677911 0.1686504 0.0941019

FAM105B cg18190824 0.1659260 0.0926267

FHL2 cg13754437 0.2136664 0.0786833

SYDE1 cg18584265 0.1518324 0.0801390

PHLDA3 cg07950244 0.1906623 0.1125482

NDRG1 cg14143441 0.2069285 0.1425393

FLNB cg23730027 0.1756390 0.0953749

STARD13 cg26651514 0.2002187 0.1195384

FLJ32224 cg26185836 0.1068574 0.0707043

C9orf46 cg14025883 0.1323388 0.0846568

IL1R2 cg24617203 0.1554369 0.0859868

SLCO2A1 cg15765546 0.1371885 0.0833081
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ZNF395 cg01713086 0.1401826 0.0866359

TGM1 cg23696550 0.1451398 0.0751740

NCOR2 cg21626573 0.1356429 0.0738186

LOC644215 cg04869006 0.1105658 0.0592862

SNORA11B cg05131266 0.1560187 0.0736005

CEBPA cg22526990 0.1376826 0.0859620

MORC3 cg00622655 0.1657418 0.0700953

NCOR2 cg20352351 0.1902014 0.1056166

PHYHIP cg26509870 0.1873843 0.1208976

CYP11A1 cg15903956 0.1813276 0.0988874

LINC00310 cg25032603 0.1625371 0.0752787

LOC100505839 cg19140548 0.1902205 0.1277972

Mir_548 cg26986443 0.1396634 0.0507085

LINC00284 cg05452692 0.1685425 0.0841893

IER5L cg13908988 0.1267195 0.0664032

MIR3150A cg07158065 0.1561546 0.0968439

HK1 cg15258080 0.1479864 0.0923529

DUSP16 cg15429134 0.1624628 0.0985726

PAPPA2 cg10994126 0.1649658 0.1056620

GRIP2 cg10586672 0.1596497 0.0827229

FN1 cg12436772 0.2697080 0.1578415

ST3GAL1 cg00736681 0.1648769 0.0813991

BCL6 cg17394304 0.1405970 0.0734435

LOC100507582 cg01180628 0.1624389 0.0813336

MSH4 cg17966362 0.1453088 0.0867641

RRBP1 cg12632411 0.1767792 0.0985087

KRT80 cg00822797 0.1412933 0.0788241

PARD6B cg10187713 0.1898356 0.0939787

MLL5 cg07351322 0.1455964 0.0946419

KRT39 cg17464043 0.1556423 0.0830882

CORO1C cg09182455 0.1722001 0.0982596
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BET1 cg16568084 0.1527294 0.0772224

HSD3B1 cg16175792 0.1496510 0.1083410

C1orf98 cg19694404 0.1479230 0.0720177

POLE4 cg13547665 0.1499997 0.0659762

VIT cg26638266 0.1079296 0.0500626

FLNB cg24204017 0.1424196 0.0823461

SDC1 cg22344841 0.1310884 0.0725977

CALML3 cg17115419 0.1877563 0.1028913

SMARCB1 cg01912455 0.1285538 0.0800784

DUSP1 cg02029908 0.1668786 0.0789647

PDLIM2 cg26366616 0.1339218 0.0960141

EPAS1 cg08900316 0.1442795 0.0710788

LOC100507582 cg20971407 0.2013550 0.1149395

FOS cg10565512 0.1153105 0.0764266

TANK cg22060367 0.1183919 0.0906283

ALAD cg01257194 0.1101688 0.0517497

STX1A cg20663219 0.1404756 0.0727859

ZBTB4 cg07168214 0.1271096 0.0655327

AMN1 cg08198187 0.1190541 0.0874172

ARHGEF4 cg25500616 0.1444241 0.1063410

CMIP cg02547035 0.1238429 0.0588209

FLJ32224 cg01924561 0.1713013 0.1021101

ZNF385A cg09676376 0.1340021 0.0827121

SRPRB cg16275903 0.1043673 0.0567156

VILL cg06641593 0.1150055 0.0828387

ANO6 cg25162927 0.1334856 0.0862408

GRHL1 cg21560697 0.1232018 0.0707512

HSD17B8 cg17066452 0.1179542 0.0517812

VGLL4 cg22278433 0.1070755 0.0695603

DUSP1 cg04577249 0.1269161 0.0748897

DLG5 cg27328839 0.1528907 0.1086311
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IFFO2 cg13173305 0.1100890 0.0563851

C1orf65 cg12458966 0.1053474 0.0564588

CTRC cg17843487 0.1564664 0.0796085

TRNA_Arg cg21545548 0.1403227 0.1288812

ZNF385A cg12150931 0.1157498 0.0689389

PPFIA1 cg18564881 0.1338774 0.0778110

ADAM12 cg02494582 0.1470507 0.0923198

ZP3 cg00502662 0.1044143 0.0713550

AL109706 cg12290217 0.1206158 0.0435867

ITPRIP cg16301004 0.1616608 0.1133359

TBC1D1 cg01723031 0.1454914 0.0732966

KAZALD1 cg02448743 0.1098813 0.0641338

LOC285954 cg14704980 0.1874618 0.0897959

IL22RA2 cg00415333 0.1563723 0.0759062

AMZ1 cg03653726 0.1594232 0.1211834

TNFSF18 cg22626683 0.1609253 0.0873861

MAFK cg23843484 0.1614536 0.0821419

SLC45A1 cg11283860 0.1483595 0.0786322

DKFZp547K2416 cg05364179 0.1399604 0.0531375

FLNB cg23812679 0.1127883 0.0739406

A2ML1 cg03490200 0.1056508 0.0643527

KRT80 cg27278470 0.1479152 0.1009707

BCL6 cg05663031 0.1226802 0.0660343

LOC100507091 cg05399718 0.1048972 0.0665540

GAS7 cg25379762 0.1019104 0.0519777

TIMP3 cg25245338 0.1926282 0.0896477

SSFA2 cg07835482 0.1034387 0.0719331

FLNB cg02770406 0.2045698 0.1116934

DHX32 cg23997887 0.1093727 0.0789230

SIPA1L2 cg01432692 0.1028119 0.0577209

NPAT cg12892243 0.1179568 0.0816362
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KRT86 cg22193385 0.1870489 0.1002310

ACOX3 cg17055207 0.1023086 0.0716877

IRF8 cg09684264 0.1048425 0.0470659

PSG8 cg11387248 0.1220635 0.0690789

LIMS2 cg13795819 0.1212842 0.0822778

FAM160B2 cg20576064 0.1544276 0.0862692

NCOR2 cg09676622 0.1037704 0.0583922

NPB cg21823502 0.1234261 0.0754399

TINAGL1 cg16103203 0.1039215 0.0796571

CLEC2L cg01581050 0.1088211 0.0596923

SLC11A1 cg17010118 0.1436974 0.1029795

FAM18A cg03777414 0.2031475 0.0892948

CLDN7 cg13724311 0.1086586 0.0657885

PAPPA2 cg25103772 0.1571566 0.0864519

MB21D2 cg20970886 0.1321369 0.0772116

BUB1B cg25653839 0.1159770 0.0723955

KDELC1 cg06377626 0.1089064 0.0565417

CCL27 cg13562353 0.1279251 0.0659571

KIAA1614 cg13467459 0.1375105 0.1133960

SNORD54 cg02508743 0.1059206 0.0544641

LNPEP cg24598187 0.1314568 0.0730223

PWWP2B cg25961733 0.1118772 0.0762420

JHDM1D cg26800802 0.1316227 0.0536699

SFT2D3 cg24925163 0.1545132 0.0894288

MYO7A cg15433043 0.1172271 0.0648499

MBNL2 cg03099780 0.1377552 0.0849551

LOC90246 cg19234171 0.1176429 0.0731066

EPAS1 cg15129144 0.1367486 0.0952318

KIAA1211 cg08112737 0.1173152 0.0662634

TCF25 cg05412696 0.1003144 0.0708257

KRT86 cg05169499 0.1126673 0.0626144
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FNIP2 cg11637968 0.1465957 0.0888873

C2 cg11049439 0.1048472 0.0747960

GATA3 cg01522692 0.1014322 0.0584117

CLN8 cg19366147 0.1027786 0.0435880

SAP30BP cg20938708 0.1313375 0.0559659

AMBRA1 cg07819010 0.1266005 0.0710908

PAPPA2 cg18236464 0.2087063 0.1115184

CSGALNACT1 cg14854503 0.1949079 0.0894706

MSI2 cg04573500 0.1241051 0.0794701

DQX1 cg02034222 0.1007056 0.0654533

SOX6 cg19578175 0.1241422 0.0556661

TEAD3 cg10893014 0.2445801 0.1454212

MARCKS cg16090790 0.1539983 0.0994383

MIR4499 cg23485627 0.1213576 0.0873941

GALNTL4 cg12511310 0.1067030 0.0547135

SPTLC3 cg16404259 0.1167299 0.0858556

AX747408 cg24233594 0.1047879 0.0439804

C22orf31 cg20080983 0.1187853 0.0675299

INSIG1 cg12979992 0.1624063 0.1184165

NFKBIZ cg06056170 0.1052324 0.0858157

KLF5 cg26531076 0.1179189 0.1060172

YPEL5 cg02766770 0.1194489 0.0843706

CD47 cg23521980 0.1015381 0.0604525

FLJ43663 cg14343652 0.1115396 0.0571380

ZNF783 cg18783886 0.1100744 0.0815151

RRBP1 cg00990977 0.1438861 0.1005321

SLC19A3 cg04730276 0.1195528 0.0412091

ARID3A cg25298189 0.1026607 0.0811279

PLEC cg08161931 0.1011361 0.0633463

XIRP1 cg01127412 0.1121725 0.0681052

MFHAS1 cg12077460 0.1106951 0.0587861
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DNASE1L3 cg24260359 0.1071034 0.0486690

U6 cg27378762 0.1051074 0.0582850

HTR1D cg11811391 0.1598232 0.0762471

ZBTB38 cg14500070 0.1330913 0.0811329

STK24 cg19861486 0.1302341 0.0800659

ERICH1 cg13175060 0.1541380 0.0967391

PHF17 cg03078141 0.1103623 0.0742171

LIMCH1 cg25740652 0.1558911 0.0725388

EGFR cg04156940 0.1171728 0.0522893

C14orf1 cg01284448 0.1428878 0.0583578

C10orf26 cg20340720 0.1288316 0.0834984

C2orf61 cg14327359 0.1342867 0.0601988

TNFAIP1 cg01257345 0.1438181 0.0723548

CSF3R cg07285167 0.1013814 0.0722714

LTF cg13672136 0.1304416 0.1023745

C11orf16 cg14402562 0.1105523 0.0823094

SNORA70 cg25103160 0.1107223 0.0272466

GLDN cg07888040 0.1140518 0.0557577

FLNB cg17338821 0.1003480 0.0748550

NEBL cg00496126 0.1525362 0.0971906

ART4 cg10047173 0.1500502 0.0790102

IGF2BP2 cg03554286 0.1063125 0.0683139

CMIP cg08946161 0.1034375 0.0639131

EPAS1 cg25589945 0.1312678 0.0929107

TMEM139 cg08261841 0.1145982 0.0821436

INHBA cg18413237 0.1240939 0.0858612

SIAH2 cg21331845 0.1231915 0.0671214

MIR205 cg01334432 0.1042360 0.0573961

LOC285696 cg25503410 0.1186930 0.0675671

SLC30A2 cg26922451 0.1318192 0.0821282

POLD3 cg00453717 0.1205471 0.0726315
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PWWP2B cg26450254 0.1217395 0.0819728

CLIP4 cg17417693 0.1519117 0.0976928

SLC11A2 cg25493658 0.1297838 0.0964564

CORO1C cg12647920 0.1681368 0.1266417

NAGLU cg01515741 0.1136608 0.0917036

PLAC4 cg14867395 0.1194561 0.0766978

LOC728743 cg11034318 0.1301698 0.0575724

JUNB cg22996170 0.2065297 0.1331657

UBR5 cg12517050 0.1037187 0.0684140

GATA3 cg07989490 0.1053503 0.0486932

GUCA2A cg09278187 0.1085280 0.0617985

SNORA11B cg21906866 0.1267400 0.0783527

C9orf46 cg23598352 0.1054446 0.0586757

LMNA cg27182012 0.1714848 0.1257018

TCF25 cg07891440 0.1201064 0.1018249

ETV5 cg01519765 0.1264343 0.0733472

NCK2 cg03105244 0.1001367 0.0686878

DNASE1L3 cg10235741 0.1219790 0.0781700

RALGDS cg14103123 0.1227093 0.0953999

C14orf181 cg20016914 0.1047761 0.0659774

MIR4284 cg06480942 0.1438235 0.1014500

NR3C1 cg23400056 0.1129706 0.0605575

CSRNP1 cg13062627 0.1481665 0.0934153

TRIM8 cg17782974 -0.1013934 -0.0604044

AK122764 cg18743287 0.1557075 0.0900433

XYLT1 cg00840341 0.1048457 0.0523269

LGALS8 cg07913153 0.1022334 0.0667470

GPR110 cg22572071 0.1280648 0.0641043

AK123450 cg26548682 0.1163168 0.0839074

CHSY1 cg12361046 0.1584981 0.1083621

BTG3 cg08875503 0.1203667 0.0621265
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C10orf90 cg04507071 0.1045761 0.0577496

C8orf42 cg02341578 0.1222670 0.0837226

TECR cg24143196 0.1089459 0.0822994

INHBA cg12261055 0.1537256 0.1068337

CYP11A1 cg06285340 0.1032612 0.0721988

PMEL cg08869883 0.1050266 0.0646207

PHF17 cg17233452 0.1080484 0.0736370

AX747368 cg11624780 0.1082280 0.0659777

ASAP1 cg00659129 0.1040518 0.0475575

IFITM3 cg20151221 -0.1173911 -0.0651992

RERE cg27561786 0.1004465 0.0745782

CAMSAP3 cg15512156 0.1266321 0.1006686

PGRMC2 cg21491609 0.1008235 0.0473572

TRAM2 cg26301143 0.1140431 0.0467347

TRIM29 cg26247168 0.1289521 0.1017392

TTC7A cg02286857 0.1055675 0.0667863

MAB21L3 cg24311182 0.1093634 0.0743636

CAB39L cg01427300 0.1005192 0.0727096

HIST1H1T cg19722391 0.1363634 0.1102061

TIMP3 cg27221424 0.1102110 0.0805264

U6 cg02275040 0.1131576 0.0824383

RDH13 cg20669049 0.1114053 0.1043323

BC035370 cg27307465 0.1488085 0.0923239

C15orf52 cg12732548 0.1052788 0.0390361

LOC145837 cg25175240 0.1307522 0.0620420

FLNB cg02026180 0.1115888 0.0645682

CGA cg07981495 0.1528186 0.0807794

CALD1 cg03188976 0.1156296 0.0515970

KLHL29 cg00886182 0.1030936 0.0627003

SLC4A3 cg18199208 0.1095529 0.0654031

LOC100131551 cg00490976 0.1023943 0.0181881
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SOD3 cg22183373 0.1009750 0.0445267

FAM150B cg13467628 0.1306837 0.0606305

MOB3A cg07381806 0.1296334 0.0785332

LOC100505839 cg03880642 0.1193863 0.0696841

ZNF175 cg10668363 0.1777645 0.1330086

PPP2CA cg18514949 0.1128646 0.0556066

SLC7A5 cg06665333 0.1254069 0.0837035

HS3ST3A1 cg09174601 0.1235391 0.0551345

MED13L cg07060505 0.1376905 0.0749720

ITCH cg09049982 0.1196241 0.0777704

MIR149 cg11479811 0.1153183 0.0723402

GNA12 cg08799766 0.1541177 0.0789335

SLC45A4 cg20555854 0.1209705 0.1032588

CLMN cg16336066 0.1205331 0.0580211

BCL6 cg06070445 0.1239877 0.0734827

TRIM8 cg16654458 0.1288605 0.1083717

C2orf72 cg05647720 0.1035748 0.0670920

HIST3H3 cg04103490 0.1298763 0.0789691

COL17A1 cg13553455 0.1368860 0.1058703

GUCA2A cg03730249 0.1282421 0.0735506

UBE2E1 cg03668982 0.1441141 0.0880851

GALM cg22860917 0.1373979 0.0789049

AK125516 cg01144019 0.1160873 0.0824130

DL489896 cg18474072 0.1503834 0.1216858

DGCR8 cg20012247 0.1378600 0.0967745

MIR4711 cg19773937 0.1005233 0.0648673

LIMCH1 cg22204103 0.1157463 0.0600224

EPS8L2 cg27649971 0.1350507 0.0508469

FSTL1 cg11622516 0.1319501 0.0756418

CEP41 cg09507697 0.1116043 0.0608925

ERRFI1 cg14178899 0.1306096 0.0766995

114



CSF1R cg07284261 0.1292712 0.0867693

LOC100507582 cg26269881 0.1014920 0.0782483

CPPED1 cg01323840 0.1151815 0.0604709

BC048114 cg10092779 0.1123170 0.0279655

PITRM1 cg18912160 -0.1232990 -0.0578447

TBXAS1 cg24431161 0.1699414 0.0791880

MIG7 cg15113123 0.1081305 0.0954038

RAD1 cg15003812 0.1078510 0.1043787

ZNF366 cg12508655 0.1211084 0.0769666

PWWP2B cg05467828 0.1028622 0.0598790

PTPN3 cg13715502 0.1026235 0.0707956

RAB5C cg20438445 0.1059765 0.0641981

SH3BP5 cg18444702 0.1256924 0.1079884

PNMA2 cg01862311 0.1212113 0.0522759

GAB1 cg12379954 0.1000227 0.0723453

CREB1 cg10440877 0.1016099 0.0492983

LIMCH1 cg23653457 0.1292172 0.0620651

SMOC2 cg02448805 0.1221783 0.0718814

TBCD cg14605961 0.1148927 0.1179104

NRN1 cg05254646 0.1044441 0.0678944

RRM2B cg20157339 0.1032087 0.0480085

BC044741 cg23751171 0.1121906 0.0867376

FLT4 cg10660844 0.1032464 0.0610380

MRVI1 cg00510149 0.1108835 0.0699342

LOC646324 cg20428989 0.1174069 0.0852193

EFCAB1 cg16100845 0.1035427 0.0769750

CUX1 cg05910443 -0.1016964 -0.0559258

MIR4708 cg01703196 0.1268545 0.1154066

MTA1 cg14377923 0.1053661 0.0806536

C17orf110 cg11619216 0.1018524 0.0817162

TBCD cg24481782 0.1447773 0.0348348
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Mir_633 cg04541146 0.1036194 0.0674555

PAQR8 cg07907670 0.1011613 0.0684461

RILPL1 cg23825057 0.1046165 0.0677902

CAMK1 cg20782816 0.1067637 0.0450816

LRP5 cg16365302 0.1079796 0.0637344

TNFAIP8L2-SCNM1 cg16565154 0.1117180 0.0508165

FRMD6 cg22800400 0.1041551 0.0745392

HECW1 cg03873694 0.1001198 0.0299642

PWWP2B cg23249922 0.1076791 0.0674789

CSGALNACT1 cg11155735 0.1102377 0.0558490

BTBD3 cg20981848 -0.1097683 -0.0570965

USHBP1 cg14584702 0.1022332 0.1078845

FBLN1 cg05248804 0.1025982 0.0646462

ASAP1 cg13629652 0.1126874 0.0595073

NACC2 cg14350701 0.1277542 0.0664427

SLC16A12 cg26568031 0.1051765 0.0588520

TBC1D9 cg03407966 0.1103353 0.0809053

MAN1C1 cg12701302 0.1443433 0.0945245

SH3BP5 cg04858987 0.1442992 0.1328360

SCIN cg18695259 0.1142665 0.0702054

AK056252 cg04365699 0.1000710 0.0677121

GNA12 cg04849508 0.1866925 0.0854574

5S_rRNA cg11033588 0.1072733 0.0798587

FJX1 cg21913652 0.1314089 0.0787613

MGAT3 cg05541460 0.1024101 0.0628478

TAP2 cg03438552 0.1057367 0.0680240

DLC1 cg26244164 -0.1027766 -0.0447400

AK091866 cg05211068 0.1035508 0.0651143

ATP5G3 cg20497304 0.1188227 0.0491627

APOL4 cg11178302 0.1489536 0.1198913

PHC2 cg06953325 0.1378397 0.0885950
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MIR3182 cg01750200 0.1047989 0.0635478

DIAPH3 cg00623826 0.1111177 0.0291128

ANKDD1A cg18926409 0.1010817 0.0676463

LOC100288428 cg21908673 0.1048143 0.0823316

NRXN2 cg21660452 0.1200305 0.1055005

ZFP36L1 cg06617636 0.1215385 0.0943922

IMPG1 cg16423738 0.1076020 0.0459714

TRNA_Leu cg20430841 0.1075810 0.0650972

C6orf186 cg17295389 0.1031338 0.0387928

MIR938 cg07437737 0.1166480 0.1107562

FBN2 cg02252421 0.1203530 0.0894573

BAIAP2L1 cg15059474 0.1068322 0.0740438

WDR69 cg09638264 0.1206870 0.1296782

SCOC cg05347925 0.1010942 0.0958568

COL17A1 cg15715892 0.1232077 0.0984267

5S_rRNA cg16710042 0.1033686 0.0524693

ADHFE1 cg10895168 0.1009293 0.0675347

AK127270 cg27547053 0.1191767 0.0564561

FAP cg03506656 0.1053281 0.0609395

LOC100130275 cg00110654 -0.1129978 -0.0482570

PTPN14 cg06826449 0.1140376 0.0824830

PCAT1 cg25632577 0.1180590 0.0625875

PKP2 cg19677302 0.1113568 0.0762706

ERRFI1 cg00768179 0.1003417 0.0865060

TMEM184A cg21368161 0.1084437 0.0797038

GTDC1 cg03678729 0.1002414 0.0727596

QSOX1 cg27056501 0.1232767 0.0804161

MIR29A cg11370011 0.1012887 0.0327260

INHBA cg00159987 0.1047375 0.0868566

RNF126P1 cg08805241 0.1011680 0.0592222

EIF4H cg26311610 0.1053510 0.0872803
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DUSP5 cg23608075 0.1135498 0.0928904

SERINC5 cg26075213 0.1025161 0.0973443

STK38L cg03766264 0.1029616 0.0679093

EGFR cg23757825 0.1109838 0.0768403

LOC100507582 cg16582517 0.1297090 0.0665812

SIX3 cg02657654 -0.1536524 -0.0434080

NUDT9P1 cg26276667 0.1221499 0.0494058

LOC100130987 cg11758697 0.1255752 0.0790006

LOC729799 cg20444525 0.1171663 0.0172050

AK097119 cg07502782 0.1261420 0.0831680

FAM196A cg11503487 0.1039182 0.0642767

GPD1L cg15318697 0.1113799 0.0517759

PKIG cg19554235 0.1200539 0.0781402

TBCD cg16518729 0.1489467 0.0229759

7SK cg05510339 0.1045678 0.0541506

CTAGE1 cg20586124 0.1274574 0.0947300

HDAC4 cg27433031 0.1088437 0.0778873

TFAP2A cg14993900 0.1085764 0.0810844

GNA12 cg13928313 0.1010088 0.0671306

U2 cg18751231 0.1298065 0.1414841

DNAJC6 cg18191867 0.1054921 0.0901807

IL12A cg26187205 0.1004155 0.0702951

FMNL2 cg13923497 0.1059254 0.0708492

CUX1 cg14466759 0.1281262 0.0988289

ST3GAL4 cg12804791 0.1426295 0.0847261

BC048982 cg26947626 -0.1022112 -0.0057109

LINC00163 cg11327657 0.1493850 0.0763327

SLC39A10 cg05418915 0.1044852 0.0569594

TSPAN5 cg02304751 0.1005088 0.0582228

SAPCD1 cg10158997 0.1186199 0.0886067

DEPDC1B cg12995421 0.1251520 0.0748640
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ANKRD52 cg20059881 0.1084219 0.0753146

VNN2 cg13130224 0.1001317 0.0598166

LINC00085 cg22278033 0.1043312 0.0450697

C4orf26 cg10409560 0.1041299 0.0994824

PCDHB13 cg03631455 -0.1106805 -0.0003045

BC047484 cg21594328 0.1080598 0.0525451

RGS4 cg07835293 0.1019896 0.0629711

ANKRD13A cg02927618 0.1011876 0.0771450

ZNF727 cg01176516 -0.1303795 -0.0612574

IDH2 cg19674091 0.1563880 0.1115881

PXDN cg26137290 0.1016939 0.0559345

EDNRB cg23648516 0.1018177 0.0752002

GNA12 cg01839603 0.1328468 0.0713629

GPC6 cg26530275 0.1033434 0.0227496

ABLIM2 cg07296849 0.1023259 0.0649949

EPHA1 cg05385805 0.1039086 0.0673299

LIFR cg08219241 0.1056169 0.1149519

Mir_633 cg15015143 0.1018028 0.0588296

EXTL2 cg04098985 0.1269597 0.1114514

PDPN cg24671344 -0.1186792 -0.0539037

AK125212 cg15448894 0.1011026 0.0718488

IQCE cg10688297 0.1108185 0.0810201

AK098012 cg27543214 -0.1161200 -0.0344788

FRZB cg02625481 0.1049542 0.0602340

DDR1 cg14279856 0.1150937 0.1008434

RBPMS cg07575193 -0.1080789 -0.0223641

MTUS1 cg05799058 0.1014948 0.0788375

ENPP2 cg01874183 0.1138941 0.0600458

SHFM1 cg01534613 0.1071936 0.0889347

CCDC140 cg25596297 -0.1139630 -0.0495734

SIX3 cg22884656 -0.1545105 -0.0781166
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FOXP1 cg20891481 -0.1000147 -0.0739368

LRRFIP1 cg21708130 0.1382708 0.0836199

ADAMTS6 cg21033632 0.1092575 0.1055919

HOXD13 cg07802350 -0.1509524 -0.0880126

MEIS2 cg09205538 -0.1060544 -0.0084153

FGF2 cg07095252 0.1057079 0.0527533

KRT7 cg18689240 0.1084419 0.0487002

SFSWAP cg02495552 0.1102770 0.0832737

AK055631 cg03326762 -0.1122530 -0.0457710

PIM1 cg21950107 0.1132253 0.0890689

INHBA cg19323059 0.1088729 0.0938924

ETS1 cg21121082 0.1009837 0.0459503

EPHA2 cg05797770 0.1096481 0.0813233

FOXB1 cg00970361 -0.1200376 -0.0101300

BTBD3 cg15582126 0.1074323 0.0951913

TSPAN8 cg04950931 0.1109606 0.0330566

FAM150B cg04709035 -0.1394304 -0.0664550

GPR39 cg24964130 0.1095576 0.0277418

PTPRK cg20639396 -0.1252792 -0.0161954

RASA3 cg00458564 0.1096073 0.0672541

NUP160 cg16282339 0.1514743 0.0903178

MLLT1 cg06633438 -0.1039302 -0.0688399

GJA3 cg21554895 0.1068586 0.0994095

AP4E1 cg24311373 0.1268986 0.1395025

FOXA1 cg11760593 -0.1104974 -0.0486145

CACNA1C cg13939602 -0.1086387 -0.1403057

WIBG cg08338281 0.1136902 0.0874294

OLIG3 cg12744820 -0.1402366 -0.0207167

CD200 cg13671536 0.1049106 0.1008612

HOXD3 cg05864326 -0.1360797 -0.0363825

HDAC4 cg17939889 -0.1104113 -0.0761938
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MIR4750 cg05213896 0.1081023 0.0898183

HES1 cg22305268 0.1500393 0.1213995

CCDC81 cg01663953 0.1083143 0.0681647

PML cg01947066 -0.1061350 -0.0552786

LOC100130872 cg17227257 -0.1200439 -0.0799425

SLC39A1 cg25064552 0.1109112 0.0984771

MTMR10 cg18120790 0.1026694 0.1090240

LOC728640 cg26159090 0.1044333 0.0744315

AK127787 cg25102293 0.1029914 0.0343238

HLX cg17108958 0.1032405 0.0449790

SRPK2 cg02813710 0.1131485 0.1250638

PCDHA13 cg25027798 -0.1016931 -0.0447850

KCND2 cg15536401 0.1125496 0.0413750

DCDC5 cg21758962 0.1298383 0.0509047

ALX4 cg25363445 -0.1687768 -0.0679886

ZFHX3 cg05340094 -0.1002702 -0.0212161

SLC5A12 cg05862393 0.1194612 0.0406921

DACT2 cg04680393 -0.1292147 -0.0297330

BC025350 cg26104143 -0.1025550 -0.0402475

CTXN3 cg23309843 0.1051087 0.0606455

AK092048 cg25161868 0.1107768 0.0585350

SALL1 cg00683332 -0.1436805 -0.0045126

NKX2-6 cg09618933 -0.1093871 -0.0631415

TET3 cg14702570 -0.1149805 -0.0137546

HS3ST1 cg05521150 0.1049740 0.0653794

SLC5A12 cg26210364 0.1067078 0.0466491

MIR340 cg11860760 0.1080024 0.1130163

SHANK2 cg07579831 0.1103508 0.0316507

PPIL2 cg27512565 0.1031035 0.1191705

DKFZp547J0510 cg12750431 0.1040196 0.0195708

TYRP1 cg25989745 0.1084904 0.0639991
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KCNB1 cg26709285 -0.1000245 -0.0130675

POU3F3 cg03928875 -0.1453285 -0.0876868

CCDC140 cg06916239 -0.1242459 -0.0608652

OBSL1 cg04447708 0.1033495 0.0988812

SLC7A5 cg01829163 0.1105368 0.0944486

BC047484 cg01491071 0.1011019 0.0310873

PDX1 cg17200768 -0.1143192 -0.0893012

ZIC4 cg00334063 -0.1205338 -0.0531493

TNFRSF11B cg03489427 0.1004217 0.0479695

ADCY4 cg25556905 -0.1100087 -0.0797854

ADCY4 cg23179456 -0.1400501 -0.0656607

BARHL2 cg00088183 -0.1097612 -0.0073072

SIX3 cg13905258 -0.1045044 -0.0598212

MIR183 cg21743907 -0.1036419 -0.0452294

NKX2-3 cg03711485 -0.1086765 -0.0255120

mir-108-1 cg03986418 0.1079746 0.1318765

SIX3 cg08696165 -0.1046349 -0.0392362

LOC255480 cg16559598 -0.1178727 -0.0210367

ADCYAP1 cg14200170 -0.1013491 -0.0036157

EBF3 cg16589299 -0.1021720 -0.0316996

SLC5A12 cg20092728 0.1146445 0.0453458

PAX3 cg16529477 -0.1096832 -0.0815705

NPC1 cg13421439 -0.1194738 -0.0487079

RHOJ cg13199429 -0.1057039 -0.0454063

AK024936 cg14393923 0.1038193 0.0905213

FAM207A cg02930963 0.1035153 0.0848348

MIR1243 cg06254768 0.1040927 0.0024179

CBLN1 cg06919440 -0.1194981 -0.1349869

PAX3 cg18077971 -0.1579233 -0.1261241

BC040304 cg15844438 0.1122886 0.0817321

ETS1 cg23774988 -0.1016640 -0.0686372
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TXNIP cg10713626 -0.1037301 -0.0744196

SCCPDH cg14094521 0.1067686 0.1089175

SP9 cg08813062 -0.1240808 -0.0365725

NR4A2 cg18786593 -0.1175889 -0.0604366

CNR2 cg03611151 -0.1055246 -0.0148517

LOC100128239 cg16082695 0.1040723 0.0791492

ISM2 cg02034328 0.1042289 0.1019556

ADCY4 cg13631572 -0.1174449 -0.0351177

DPP6 cg10552126 -0.1122217 -0.0003559

ADCY4 cg16215203 -0.1172913 -0.0597037

POPDC3 cg16734734 0.1039432 0.0533165

DMRTA2 cg23097402 -0.1051854 -0.0363167

RALYL cg25757598 -0.1077858 -0.0372598

RGS20 cg24645214 -0.1150925 -0.0483674

AX747372 cg18448949 -0.1187160 -0.0392604

LGALS8 cg18322510 0.1062610 0.2014020

ABCA13 cg02845274 -0.1062262 -0.0050174

BARHL2 cg24453699 -0.1216496 -0.0131754

MIR124-1 cg18246262 -0.1043957 -0.0352377

TRIM36 cg14132888 -0.1225024 -0.0156796

PDGFRA cg06973595 -0.1238537 -0.0082039

LOC154860 cg27393010 -0.1051439 -0.0223084

FOXB1 cg21253459 -0.1166186 -0.0074233

FOXA1 cg19578835 -0.1022915 -0.0412477

TAC1 cg01287975 -0.1174638 -0.0438560

PAX3 cg09424526 -0.1035105 -0.0236433

GPR39 cg12157646 0.1164163 0.0475691

AGPAT4 cg26872907 -0.1014030 -0.0553293

LRRC4C cg17949440 -0.1189794 -0.1094734

MEIS1 cg07809589 -0.1126549 -0.0703398

ARHGEF16 cg10328768 0.1001278 0.0725527
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HDGFL1 cg26230039 0.1085959 0.0822853

FLJ23152 cg24071719 -0.1220715 -0.0866560

MIR4300 cg20219053 0.1021268 0.0036703

T cg23302682 -0.1106680 -0.0748138

FAM3B cg09179211 -0.1280524 -0.1927753

FOXG1 cg25078444 -0.1081361 -0.0862568

SLC5A7 cg26001902 -0.1280932 -0.0789488

LOC286184 cg02197192 -0.1314968 -0.0727589

LOC145845 cg04640920 -0.1042300 -0.0247391

CCDC140 cg01841641 -0.1145781 -0.0490557

ZBTB20 cg10911004 0.1022476 0.0562652

LRRC4C cg19849428 -0.1079825 -0.0829319

EBF2 cg08283882 -0.1289306 -0.0508039

CD38 cg15994026 -0.1129467 -0.0650444

LOC100130155 cg15715477 -0.1202482 -0.0937751

CNR2 cg26404511 -0.1335413 -0.0252860

STRA8 cg23903035 0.1006868 0.0937747

FAM207A cg10007534 0.1225716 0.1120182

CASR cg11008866 -0.1017786 -0.0059483

SIM2 cg21697851 -0.1027212 -0.0038089

PAX6 cg20014398 -0.1236693 -0.0711978

CBLN1 cg02809746 -0.1206720 -0.0541757

RNF175 cg18355902 -0.1271932 -0.0729838

SATB2 cg10168149 -0.1009922 -0.0334369

FOXD1 cg18063312 -0.1237103 -0.1122693

C13orf33 cg19863655 -0.1145676 -0.0079773

LOC100506274 cg06720768 -0.1106381 -0.0176291

ADCY8 cg13912117 -0.1024663 -0.0130179

TBR1 cg22794704 -0.1469631 -0.0355343

DSCR6 cg16886987 -0.1178744 -0.0411601

EVX2 cg15133351 -0.1493974 -0.0731471
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GBA3 cg24512731 -0.1093054 -0.0023675

PRDM6 cg02081006 -0.1285646 -0.0618576

LOC286189 cg21479226 -0.1269771 -0.0076465

EVX2 cg14118515 -0.1610922 -0.0403519

HTR4 cg12825070 -0.1009211 -0.0231072

NR4A2 cg11856078 -0.1170576 -0.0050271

FAM3B cg10054197 -0.1137068 -0.1407630

PRDM14 cg11229513 -0.1050604 -0.0588580

DMRT3 cg19291576 -0.1396551 -0.0563173

PKNOX2 cg03419885 -0.1017826 -0.0281104

NBLA00301 cg22517735 -0.1011068 -0.0329391

MARCH11 cg16150752 -0.1071953 -0.0324181

SLC6A5 cg02027945 -0.1212780 -0.0282470

BC031238 cg04597985 0.1000892 0.0255522

LOC100130992 cg18794404 -0.1132725 -0.0217928

EOMES cg11642106 -0.1014266 -0.0324487

PKDCC cg14882311 0.1064891 0.1379679

OCA2 cg04803843 -0.1310316 -0.0117010

DMRTA2 cg26560222 -0.1073123 -0.0411774

SALL1 cg08526074 -0.1042057 -0.0675537

TBX4 cg00037457 -0.1130234 -0.1103478

LINC00461 cg24804195 -0.1026727 -0.1258471

LHX9 cg06371502 -0.1184641 -0.0015204

BC062758 cg13336662 0.1132549 0.0614202

AF071167 cg21404045 -0.1065988 -0.0075464

EVX2 cg11359133 -0.1107262 -0.0419957

SLIT2 cg10947633 0.1040768 0.0445162

LHX9 cg16353957 -0.1101648 -0.0321444

OTOP1 cg03160466 -0.1025783 -0.0511647
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Table A.4: GO enrichment analysis results. GO terms specifically enriched based on the 651 PE-associated
sites obtained from linear modeling.

Closest_TSS_gene_name cpg Discovery Cohort p value Validation Cohort p value

LAPTM4A cg09394306 0.1762488 0.1155985

ERGIC1 cg26813604 0.1793689 0.1018817

AX747766 cg17850498 0.1924544 0.1370919

KRT15 cg26625897 0.2981361 0.2393815

INHBA cg11079619 0.2159444 0.1154296

NCF4 cg08612539 0.1489004 0.1278609

C10orf10 cg02334081 0.1270129 0.0764630

DENND2D cg20317872 0.1824586 0.1115317

ST3GAL1 cg00592695 0.2622026 0.1675079

TGM1 cg23696550 0.1571351 0.0918194

STARD13 cg26651514 0.2159330 0.1720341

LOC100505839 cg19140548 0.2106330 0.1345067

MIR3150A cg07158065 0.1649417 0.1087298

LIMCH1 cg03822934 0.1697386 0.0898849

ZNF395 cg01713086 0.1398992 0.0993220

CEBPA cg22526990 0.1490031 0.1122649

PCDH1 cg23044186 0.1053694 0.0980231

GDPD5 cg05521767 0.1756805 0.1253889

FAM110A cg16606561 0.1726153 0.1265220

ANO6 cg25162927 0.1492231 0.0879258

AMN1 cg08198187 0.1293568 0.1163599

FAM105B cg18190824 0.1724711 0.1077959

CMIP cg16353318 0.1328936 0.0970200

AMZ1 cg14605117 0.1968040 0.1150958

HK1 cg15258080 0.1559307 0.1034492

PIK3AP1 cg27479162 0.1393245 0.0965035

DLG5 cg27328839 0.1679715 0.1232817

FLJ32224 cg26185836 0.1118404 0.0820114
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NDRG1 cg14143441 0.2167347 0.1654555

AMZ1 cg03653726 0.1661188 0.1341008

FN1 cg12436772 0.2704475 0.1908631

PHYHIP cg26509870 0.1914165 0.1480857

IL1R2 cg24617203 0.1575016 0.1111186

IER5L cg13908988 0.1310268 0.0690969

C1orf98 cg19694404 0.1588839 0.0793082

CMIP cg01033642 0.1346521 0.1117363

CYP11A1 cg15903956 0.1834619 0.1159416

MSH4 cg17966362 0.1547178 0.0852058

TANK cg22060367 0.1319618 0.0933415

TRIB3 cg15799353 0.1310048 0.1028805

CALML3 cg17115419 0.2037900 0.1361790

SRPRB cg16275903 0.1164611 0.0582654

DHX32 cg23997887 0.1180493 0.0825463

GRIP2 cg10586672 0.1640134 0.0986082

ZNF385A cg09676376 0.1343436 0.1137443

NCOR2 cg21626573 0.1257014 0.1026060

ZP3 cg16772533 0.1093900 0.0878149

LINC00284 cg05452692 0.1720094 0.1091923

CHI3L2 cg26366091 0.1718769 0.0843807

CMIP cg10246581 0.1560846 0.1085283

PHLDA3 cg07950244 0.1843856 0.1242228

FLNB cg23730027 0.1653212 0.1054604

BUB1B cg25653839 0.1324543 0.0792319

GALNT2 cg23677911 0.1656313 0.1393207

SLCO2A1 cg15765546 0.1299143 0.0823860

ARHGEF4 cg25500616 0.1479462 0.1090096

CORO1C cg09182455 0.1719971 0.1022355

LOC400238 cg10108710 0.1520188 0.1303691

ST3GAL1 cg00736681 0.1553735 0.0947189
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RRBP1 cg12632411 0.1794180 0.1030725

BSCL2 cg07094785 0.1152064 0.0585061

TINAGL1 cg16103203 0.1141249 0.0848134

LIMS2 cg13795819 0.1218462 0.1014617

BET1 cg16568084 0.1477034 0.1025327

PAPPA2 cg10994126 0.1511426 0.1173865

SLC11A1 cg17010118 0.1565582 0.1221889

NPAT cg12892243 0.1319349 0.0816390

LINC00310 cg25032603 0.1521295 0.0810892

TIMP3 cg25245338 0.1984709 0.1535695

ZBTB4 cg07168214 0.1238338 0.0844725

PARD6B cg10187713 0.1883095 0.1071141

FLJ32224 cg01924561 0.1720685 0.1200934

KRT86 cg22193385 0.1976942 0.1139649

BCL6 cg17394304 0.1408706 0.0766436

CHI3L2 cg10045881 0.2356582 0.1208264

PAPPA2 cg18236464 0.2148526 0.1231496

PDLIM2 cg26366616 0.1253932 0.1109417

SNORD54 cg02508743 0.1042322 0.0879402

ZNF385A cg12150931 0.1175044 0.0793333

IFITM3 cg20151221 -0.1416310 -0.0662126

RALGDS cg14103123 0.1399157 0.0972403

LTF cg13672136 0.1306179 0.1425736

PHF17 cg03078141 0.1264031 0.0675889

TRIM29 cg26247168 0.1449313 0.1125867

VILL cg06641593 0.1151523 0.1097128

FLNB cg24204017 0.1304899 0.0934378

TRNA_Arg cg21545548 0.1435637 0.1662567

LOC285954 cg14704980 0.2042223 0.0730101

MMP15 cg04211309 0.1067482 0.0645321

PHF17 cg17233452 0.1202395 0.0723816
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NR2F2 cg17661642 0.1185910 0.1190850

MBNL2 cg03099780 0.1443609 0.1221243

CSF3R cg07285167 0.1071080 0.0951602

PWWP2B cg25961733 0.1186476 0.0944467

FAM160B2 cg20576064 0.1498508 0.0786766

PPFIA1 cg18564881 0.1300447 0.0840991

C11orf16 cg14402562 0.1144046 0.0720752

MIR4284 cg06480942 0.1539992 0.0906186

MLL5 cg07351322 0.1352379 0.1085833

LIMCH1 cg22204103 0.1482763 0.0672620

DQX1 cg24544105 0.1027483 0.0775145

XIRP1 cg01127412 0.1267807 0.0749353

JUNB cg22996170 0.2145465 0.1404922

SNORA11B cg21906866 0.1403945 0.0744550

RDH13 cg20669049 0.1260385 0.1152781

LNPEP cg24598187 0.1386856 0.0854524

A2ML1 cg03490200 0.1053874 0.0656080

SIPA1L2 cg01432692 0.1047955 0.0633543

TEAD3 cg10893014 0.2468720 0.1912331

AMBRA1 cg07819010 0.1327321 0.0785149

MSI2 cg04573500 0.1344202 0.0788883

RBM47 cg06332621 0.1067688 0.0745359

MYO7A cg15433043 0.1140219 0.0859117

PKM2 cg22234930 0.2032501 0.0994724

GALNTL4 cg12511310 0.1063327 0.0816910

ADAM12 cg02494582 0.1425002 0.0880331

C22orf31 cg20080983 0.1202626 0.0873451

C2 cg11049439 0.1041528 0.0946484

LEP cg06987369 0.1052829 0.0877503

FLNB cg02770406 0.2004214 0.0934495

POLD3 cg00453717 0.1249826 0.0917825
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LOC100507091 cg05399718 0.1035536 0.0893499

CLEC2L cg01581050 0.1018998 0.0900954

DKFZp547K2416 cg05364179 0.1385653 0.0742379

DQX1 cg02034222 0.1045459 0.0720015

NFKBIZ cg06056170 0.1115525 0.0945533

FNIP2 cg11637968 0.1517075 0.1030839

TRIM8 cg16654458 0.1457415 0.1243255

U6atac cg10189029 0.1392404 0.0946701

PLEKHA6 cg11131599 0.1100419 0.0707025

MIR4499 cg23485627 0.1191803 0.1076308

KIAA1614 cg13467459 0.1354345 0.1129899

FAM150B cg13467628 0.1283506 0.0746500

AP1G1 cg10407113 0.1192888 0.0701779

CMIP cg08946161 0.1083718 0.0756837

SLC45A1 cg11283860 0.1457413 0.1234598

KIAA1211 cg08112737 0.1141088 0.0767745

DGCR8 cg20012247 0.1559105 0.0977748

KAZALD1 cg02448743 0.1012339 0.0792401

PCID2 cg10350215 0.1080837 0.0838975

ITPRIP cg16301004 0.1514493 0.1319952

PSG11 cg07920195 0.1003350 0.0901322

EPAS1 cg15129144 0.1376505 0.1049498

ARID5A cg05933789 0.1087142 0.0621318

CAPNS1 cg18709710 0.1074846 0.0971703

CORO1C cg12647920 0.1775886 0.1179099

ZSWIM4 cg25722029 0.1251416 0.0654344

LPP cg17317338 0.1052743 0.0759132

CSRNP1 cg13062627 0.1540136 0.0866311

EGFR cg04156940 0.1185266 0.0896936

GBX2 cg26454433 0.1026525 0.0676502

FAM18A cg03777414 0.2038463 0.1079243
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NR3C1 cg23400056 0.1214372 0.0741881

LMNA cg27182012 0.1762920 0.1649320

C10orf90 cg04507071 0.1104607 0.0689047

GNA12 cg08799766 0.1596030 0.1189175

BCL6 cg05663031 0.1195386 0.0689620

TIMP3 cg27221424 0.1132492 0.1196439

C10orf26 cg20340720 0.1228038 0.0926289

PEX14 cg22715764 0.1011310 0.0550781

EPAS1 cg25589945 0.1249127 0.0897729

CLIP4 cg17417693 0.1537936 0.1072281

FLNB cg17338821 0.1010904 0.0815451

U6 cg02275040 0.1191463 0.1066391

INHBA cg18413237 0.1255024 0.0932958

OLFML2A cg00992055 0.1117773 0.0897939

STON1-GTF2A1L cg26837192 0.1032263 0.0693357

COL17A1 cg13553455 0.1557471 0.1194540

RRBP1 cg00990977 0.1480687 0.1274827

A2LD1 cg20198393 0.1032439 0.0807160

HIST1H1T cg19722391 0.1444891 0.1910316

LOC100505839 cg03880642 0.1158724 0.1152257

CMIP cg04897892 0.1475595 0.1327736

ENSA cg11147155 0.1121804 0.0724865

SCOC cg05347925 0.1201696 0.0960729

LOC646324 cg20428989 0.1186111 0.0801354

UBE2E1 cg03668982 0.1554643 0.1039143

TRAM2 cg26301143 0.1107192 0.0853976

FSTL1 cg11622516 0.1442870 0.0818265

NPB cg21823502 0.1085694 0.0945396

MGAT3 cg05541460 0.1058957 0.0673778

TCF25 cg07891440 0.1229996 0.1183821

PMEL cg08869883 0.1048622 0.0667430
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PLA2G4E cg12452386 0.1576734 0.1111678

KLF5 cg26531076 0.1152145 0.1050242

EPS8L2 cg27649971 0.1448863 0.0976509

STK24 cg19861486 0.1233168 0.1020152

SH3BP5 cg04858987 0.1667636 0.1539031

LINC00163 cg11327657 0.1726848 0.1114610

MOB3A cg07381806 0.1319074 0.1250795

PNMA2 cg01862311 0.1361850 0.0826204

PWWP2B cg26450254 0.1109619 0.1021787

DL489896 cg18474072 0.1599509 0.1675220

RANBP3L cg15169286 0.1124261 0.0798795

ZNF783 cg18783886 0.1046545 0.1042132

NACC2 cg14350701 0.1470443 0.0855510

C2orf61 cg14327359 0.1252225 0.0673201

ANKDD1A cg18926409 0.1090146 0.0803986

CHSY1 cg12361046 0.1527898 0.1329554

ITCH cg09049982 0.1150276 0.0829737

FAM124B cg00392155 0.1020767 0.0630411

CEP41 cg09507697 0.1067296 0.0845174

EPHA1 cg05385805 0.1209984 0.0694392

FLJ13197 cg24279243 0.1034128 0.0581950

INSIG1 cg12979992 0.1504744 0.1465894

GRHL3 cg13987674 0.1012415 0.0862911

CREB1 cg10440877 0.1104541 0.0669938

CPPED1 cg01323840 0.1284753 0.0538420

USHBP1 cg14584702 0.1080895 0.1357364

AX748283 cg15676500 0.1149958 0.0728982

AK122764 cg18743287 0.1433035 0.1097513

OR52K2 cg12250761 0.1234940 0.0707486

LOC100130275 cg00110654 -0.1177342 -0.0621028

C14orf1 cg01284448 0.1257140 0.1195566
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PABPC3 cg14920808 0.1281780 0.0800569

CGA cg07981495 0.1522790 0.1054230

SLC45A4 cg20555854 0.1199058 0.0930851

C8orf42 cg02341578 0.1178303 0.0881730

STC2 cg25592413 0.1408410 0.0302803

CTAGE1 cg20586124 0.1447415 0.1233495

GALM cg22860917 0.1407808 0.0837119

SLC7A5 cg06665333 0.1203619 0.1322104

TBCD cg14605961 0.1121029 0.1552277

PWWP2B cg05467828 0.1067891 0.0772865

JPH2 cg18942298 -0.1034076 -0.0929964

ZNF175 cg10668363 0.1674458 0.1949214

GNA12 cg01839603 0.1469256 0.0912815

NEBL cg00496126 0.1381810 0.1058340

TNFAIP8L2-SCNM1 cg16565154 0.1153559 0.0470728

ZHX2 cg15531512 0.1018891 0.0843642

EIF4H cg26311610 0.1087352 0.1188633

5S_rRNA cg11033588 0.1055937 0.0879960

C4orf26 cg10409560 0.1062920 0.1158302

ZFP36L1 cg06617636 0.1245903 0.1194213

STRA8 cg06825631 0.1367064 0.1419325

SLC11A2 cg25493658 0.1048224 0.0581554

CALD1 cg03188976 0.1030026 0.0675175

RAD1 cg15003812 0.1069456 0.1099495

MIR4708 cg01703196 0.1299448 0.1240728

EXTL2 cg04098985 0.1445115 0.1167884

BC044741 cg23751171 0.1093071 0.0908032

SH3BP5 cg18444702 0.1166323 0.1097695

KCP cg00139092 0.1008959 0.0789227

WDR69 cg09638264 0.1196858 0.1317754

SLC20A2 cg22855020 0.1127744 0.1207485
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MTMR10 cg18120790 0.1265137 0.1179497

LOC152225 cg03538833 -0.1024445 -0.0525828

AK091866 cg05211068 0.1003265 0.0851387

SERTAD4 cg11214507 -0.1043236 -0.0664014

GPR132 cg21510995 0.1209976 0.0852175

RYBP cg10805254 0.1090491 0.0817135

ERRFI1 cg00768179 0.1033485 0.0958330

PKP2 cg19677302 0.1109476 0.0834394

DNAJC6 cg18191867 0.1072833 0.0745990

SYDE1 cg00713022 0.1431890 0.1056350

PCAT1 cg25632577 0.1166528 0.0833044

PTPN3 cg13715502 0.1016954 0.0855104

INHBA cg00159987 0.1041149 0.1010672

MIR340 cg11860760 0.1272976 0.1164016

FNIP2 cg03227611 0.1117606 0.1039792

CABLES1 cg01288184 0.1277758 0.0387460

APOL4 cg11178302 0.1573320 0.1100429

EN1 cg01165776 -0.1143348 -0.0750388

ACSL6 cg27097034 0.1045707 0.0611043
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TRNA_Leu cg20430841 0.1037816 0.0831308

MFSD10 cg13785473 0.1072274 0.0948475

AX747853 cg14792548 0.1124007 0.0911584

HIPK4 cg09412728 0.1041352 0.0882879

COL17A1 cg15715892 0.1305339 0.1473990

ZFP42 cg00469814 -0.1070747 -0.0483893

GALNT2 cg17737409 -0.1011384 -0.0686482

UNC79 cg10532364 -0.1251421 -0.1095131

ST3GAL4 cg12804791 0.1439781 0.1188859

SHFM1 cg01534613 0.1155720 0.0884691

LOC100507582 cg16582517 0.1269999 0.0772773
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DDR1 cg14279856 0.1221406 0.1070260

IDH2 cg19674091 0.1565227 0.1687085

SLC20A2 cg10806146 0.1092828 0.1477129

AK125212 cg15448894 0.1093031 0.0687104

LINC00310 cg19118951 0.1135028 0.0915168

TFAP2A cg14993900 0.1045150 0.0998829

SAPCD1 cg10158997 0.1246066 0.1111205

RCBTB2 cg18731055 -0.1017133 -0.0912764

DUSP5 cg23608075 0.1066479 0.1336834

NRXN2 cg21660452 0.1092307 0.1008692

MIR938 cg07437737 0.1091087 0.1270809

PDPN cg24671344 -0.1144931 -0.0636435

ANKRD52 cg20059881 0.1112127 0.0308736

CTBP2 cg17191109 0.1374573 0.1681589

GNA12 cg04849508 0.1472580 0.1525895

LRRFIP1 cg21708130 0.1387597 0.1133808

AF339817 cg22223119 0.1013930 0.1162137

NEDD4 cg20612128 -0.1016248 -0.0957753

EGFR cg23757825 0.1044328 0.0984762

SIX3 cg13905258 -0.1238786 -0.0717545

TMEM174 cg22120063 -0.1014325 -0.1078645

mir-108-1 cg03986418 0.1237650 0.1492405

LOC157627 cg21762788 -0.1199716 -0.0596098

U1 cg24967553 0.1080177 0.0885870

TRIM40 cg12612406 0.1276182 0.1442272

RHOJ cg13199429 -0.1322748 -0.0933939

STRA8 cg23903035 0.1390035 0.1620199

ACPL2 cg18802720 -0.1258434 -0.0370503

AK097686 cg08530838 -0.1264907 -0.1020174

NR2F2 cg07379949 -0.1137175 -0.0419030

PXK cg24175188 -0.1079104 -0.0764821
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LOC401022 cg10159630 -0.1314751 -0.1108394

LEP cg19594666 0.1332098 0.0920887

PDX1 cg17200768 -0.1193134 -0.0598558

MIR603 cg21396949 -0.1008504 -0.0532213

AJAP1 cg13056990 0.1066677 0.1146372

CAST cg12866104 0.1011459 0.0930617

AK024936 cg14393923 0.1245521 0.1159032

GPR39 cg24964130 0.1088200 0.0359574

DIO3AS cg05369857 0.1071648 0.1268123

SLC39A1 cg25064552 0.1190307 0.1763146

HOXA1 cg18557185 -0.1229324 -0.0076852

USP34 cg03589282 0.1095716 0.1908809

SRGAP1 cg01099855 0.1004787 0.0821632

TBXAS1 cg24431161 0.1313699 0.1203989

IQCG cg21915659 -0.1002350 -0.0425345

MED30 cg00592871 0.1055723 0.0470123

MIR4750 cg05213896 0.1107362 0.1218362

TBCD cg16094026 -0.1071515 -0.0055439

SLC1A3 cg21050001 0.1425513 0.1451981

AP4E1 cg24311373 0.1164390 0.1230426

Mir_548 cg13007502 0.1354421 0.1597983

CADPS cg15253604 -0.1029813 -0.0089923

EPHA2 cg05797770 0.1093776 0.1002196

ALX4 cg06245037 -0.1105070 -0.0043119

CCDC81 cg01663953 0.1041392 0.0780464

GPR39 cg17091301 0.1095570 0.0282611

ODZ4 cg02980047 -0.1135685 -0.1353950

WIBG cg08338281 0.1000529 0.1429603

LOC100128239 cg16082695 0.1144923 0.1070973

PML cg01947066 -0.1024238 -0.0617708

IGFBP2 cg06271720 -0.1064898 -0.0663750
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NRN1 cg04187403 -0.1029897 -0.1057090

ATP5G3 cg07298772 -0.1038753 -0.0522010

CFLAR cg23681745 0.1251774 0.1919709

LGALS8 cg18322510 0.1141797 0.1961030

FOXD1 cg18063312 -0.1559150 -0.1052904

MNX1 cg13345957 -0.1001399 -0.0286152

BARHL2 cg00088183 -0.1106928 -0.0089216

TBX4 cg00037457 -0.1549207 -0.1067988

HIVEP3 cg19619028 -0.1000616 -0.1464566

ZFYVE28 cg07042007 -0.1010364 -0.0841700

WRAP73 cg19135761 -0.1055765 -0.0935807

LOC401022 cg02746725 -0.1037036 -0.0242127

LOC154860 cg27393010 -0.1176741 -0.0304895

Mir_548 cg25029529 0.1001944 0.1692182

UBE2MP1 cg01947695 0.1031825 0.1467774

CD38 cg15994026 -0.1230982 -0.0249218

FAM207A cg02930963 0.1071846 0.1367691

KCNIP2 cg03557857 0.1053333 0.0991780

LINC00085 cg16854917 0.1148057 0.1477937

LOC1720 cg05779458 -0.1103677 -0.0202628

Mir_548 cg05391892 0.1015469 0.1404382
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Appendix B - Supplementary information for Chapter 3

A)

B)

Hof

C)

D) E)

DAPI KRT7
VIM

DAPI CD68

DAPI
CD31

DAPI KRT7
VIM

Figure B.1: Fluorescence-activated cell-sorting and immune fluorescence staining. A) Fluorescence-activated
cell-sorting (FACS) workflow schematic. B-E) Immunofluorescence staining (IF) of term cell-sorted sample
with known characteristic cell type markers that were not selected for in the FACS procedure. Nuclei are
shown via DAPI staining (blue). Scale bars: 100µm. B) Trophoblasts (KRT7: green, VIM: red). C)
Hofbauer cells (CD68: green). D) Endothelial cells (CD31: green). E) Stromal cells (VIM: red).
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Figure B.2: Identifying maternal contamination. A) Total intensity over all probes from X and Y chromo-
somes normalized to total autosomal intensity can be used to determine sex. B) Within-donor sample-sample
correlation on SNP probes. C) SNP distributions (n = 59 probes). D) Theoretical relationship between
the average probability SNP is an outlier from the expected distribution, and maternal contamination. E)
Empirically observed relationship between the average probability a SNP is an outlier, and normalized Y
intensity, in male samples. Normalized Y intensity is a quantifiable measure of maternal contamination in
male samples. F) Training a linear predictor of maternal contamination in male samples, then applying it
to female samples. G) Estimated maternal contamination (y-axis) across first trimester and term samples.
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Figure B.3: Principal component (PC) associations with phenotype variables. Principal components were
tested for their association with various biological and technical sample variables. Each PC was tested
individually in a simple linear model with each sample variable.
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Figure B.4: First trimester differentially methylated CpGs enrichment for genomic location. First trimester
differentially methylated CpGs were tested for enrichment at various genomic features (e.g. CpG island,
enhancers, gene transcripts, PMDs).
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Figure B.5: Mean DNAm for each cell type across CpGs in selected functionally-relevant genes. Average
term placental cell-specific DNA methylation across select genes. Differentially methylated regions (defined
as regions with a high density of differentially methylated CpGs), are highlighted with a grey background.
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Figure B.6: Mean DNAm for each cell type across CpGs in selected preeclampsia genes. Average term
placental cell-specific DNA methylation across select genes. Differentially methylated regions (defined as
regions with a high density of differentially methylated CpGs), are highlighted with a grey background.
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Figure B.7: Density graphs of CpGs in imprinted regions. A) Density plots (y-axis) of imprinted regions
divided into those that are imprinted in more than one tissue (top) and placental-specific (bottom). The
percentage of CpGs falling within 25%-75% is labelled in each plot. First trimester samples are shown.
B) Maternal imprinted regions. Density of DNAm at CpGs in maternally imprinted regions. The total
percentage of CpGs that have 25% - 75% DNAm are shown in each plot. C) Paternally imprinted regions.
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Figure B.8: DNAm at imprinted regions for specific genes. A) Cell-specific DNAm at placental-specific
imprinted regions for genes FGF8 and B) FGF12.
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Figure B.9: DNAm at imprinted regions for specific genes. A) Cell-specific DNAm at placental-specific
imprinted regions for genes JMJD1C and B) FGF14.
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Figure B.10: DNAm at imprinted regions for specific genes. Cell-specific DNAm at placental-specific im-
printed regions for genes RASGRF1.
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Figure B.11: DNAm summarized over repetitive elements. A) Repetitive element DNA methylation. CpG
sites overlapping Alu and Line 1 (L1) elements were determined using the ‘rmsk’ track from UCSC. Mean
DNAm over these CpGs was calculated for each sample. B) First trimester mean DNAm across repetitive
elements and all 850k CpGs. C) REMP-predicted repetitive element DNAm in third trimester samples.
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A)

B)

Figure B.12: Comparison of cell deconvolution algorithms. A) Estimated percentage by deconvolution (y-
axis) by actual percentage used to construct in silico mixtures (x-axis). Performance metrics are shown for
each algorithm and cell type. RMSE, root mean squared error; R2, R squared; MAE, mean absolute error.
B) Distribution of deviations from deconvolution estimates and actual percentages for in silico mixtures.
The mean deviation (estimated minus actual) is labelled in each panel as text, and as the dotted vertical
line.
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Figure B.13: Validating cell composition estimates. A) Cell deconvolution was applied to n=5 (labelled A-E)
cultured trophoblast samples from Yuen et al. 2011 produced trophoblast-dominant samples. Trophoblast
samples were treated in varying oxygen levels (1%, 8%, 20%). Half were maintained as CTB (top) and the
other half was cultured for 48 hours (bottom), which promotes syncytialization. B) Enzymatic treatment
to separate chorionic villi samples into inner mesenchyme and outer trophoblast layer samples. Both types
of samples are heterogeneous in cell composition but mesenchymal samples are enriched from endothelial
and stromal cells, whereas the outer chorionic villi samples are mostly trophoblast. C) Chorionic villi was
processed to isolate large stem villi, produced samples that resulted in mainly stromal in proportion compared
to normally processed villi. CTB: cytotrophoblast; STB: syncytiotrophoblast.
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Table B.1: Top 10 GO enrichment for cell DMCs.

Group Celltype TERM P.DE FDR Generatio
First Endothelial immune response 0.0e+00 0.0000000 0.2715691
First Endothelial immune system process 0.0e+00 0.0000000 0.2657495
First Endothelial leukocyte activation 0.0e+00 0.0000000 0.3001723
First Endothelial cell activation 0.0e+00 0.0000000 0.2942748
First Endothelial cell activation involved in immune response 0.0e+00 0.0000000 0.3151694
First Endothelial leukocyte activation involved in immune response 0.0e+00 0.0000000 0.3125926
First Endothelial immune effector process 0.0e+00 0.0000000 0.2852650
First Endothelial myeloid leukocyte activation 0.0e+00 0.0000000 0.3160000
First Endothelial cytokine production 0.0e+00 0.0000002 0.2987128
First Endothelial actin cytoskeleton organization 0.0e+00 0.0000004 0.3779528
First Hofbauer immune response 0.0e+00 0.0000000 0.2992444
First Hofbauer leukocyte activation 0.0e+00 0.0000000 0.3323285
First Hofbauer immune system process 0.0e+00 0.0000000 0.2855419
First Hofbauer cell activation 0.0e+00 0.0000000 0.3243003
First Hofbauer cell activation involved in immune response 0.0e+00 0.0000000 0.3532155
First Hofbauer leukocyte activation involved in immune response 0.0e+00 0.0000000 0.3508642
First Hofbauer vesicle-mediated transport 0.0e+00 0.0000000 0.3203248
First Hofbauer immune effector process 0.0e+00 0.0000000 0.3083258
First Hofbauer regulation of immune system process 0.0e+00 0.0000000 0.3007246
First Hofbauer myeloid leukocyte activation 0.0e+00 0.0000000 0.3429333
First Stromal actin filament-based process 0.0e+00 0.0000006 0.3862069
First Stromal cytosol 0.0e+00 0.0000006 0.2695285
First Stromal actin cytoskeleton organization 0.0e+00 0.0000010 0.3937008
First Stromal enzyme binding 0.0e+00 0.0000076 0.3065025
First Stromal small GTPase mediated signal transduction 0.0e+00 0.0000222 0.3928571
First Stromal regulation of small GTPase mediated signal transduction 0.0e+00 0.0000340 0.4492063
First Stromal vesicle-mediated transport 0.0e+00 0.0001380 0.2893312
First Stromal guanyl-nucleotide exchange factor activity 1.0e-07 0.0001730 0.4733010
First Stromal GTPase binding 1.0e-07 0.0001730 0.3895582
First Stromal nucleoside-triphosphatase regulator activity 1.0e-07 0.0001730 0.4150641
Term Endothelial cytosol 0.0e+00 0.0000061 0.2534909
Term Endothelial enzyme binding 0.0e+00 0.0000722 0.2891020
Term Endothelial intracellular signal transduction 1.0e-07 0.0005720 0.2658375
Term Endothelial adherens junction 2.0e-07 0.0007310 0.3707224
Term Endothelial nucleoplasm 2.0e-07 0.0007310 0.2526930
Term Endothelial anchoring junction 2.0e-07 0.0007310 0.3659889
Term Endothelial macromolecule modification 4.0e-07 0.0012195 0.2480502
Term Endothelial regulation of GTPase activity 7.0e-07 0.0020470 0.3678161
Term Endothelial cellular protein modification process 1.7e-06 0.0038387 0.2502562
Term Endothelial protein modification process 1.7e-06 0.0038387 0.2502562
Term Hofbauer immune response 0.0e+00 0.0000000 0.2648041
Term Hofbauer leukocyte activation 0.0e+00 0.0000001 0.2941430
Term Hofbauer regulation of immune system process 0.0e+00 0.0000001 0.2819293
Term Hofbauer cell activation 0.0e+00 0.0000002 0.2889313
Term Hofbauer immune system process 0.0e+00 0.0000002 0.2590514
Term Hofbauer positive regulation of immune system process 0.0e+00 0.0000006 0.2936275
Term Hofbauer myeloid leukocyte activation 0.0e+00 0.0000024 0.3096000
Term Hofbauer positive regulation of cell adhesion 0.0e+00 0.0000027 0.3814433
Term Hofbauer intracellular signal transduction 0.0e+00 0.0000035 0.2766643
Term Hofbauer regulation of cell adhesion 0.0e+00 0.0000035 0.3482549
Term Stromal actin filament-based process 0.0e+00 0.0004610 0.3489655
Term Stromal collagen-containing extracellular matrix 0.0e+00 0.0005570 0.3428571
Term Stromal extracellular matrix 5.0e-07 0.0034671 0.3153693
Term Stromal collagen binding 9.0e-07 0.0050212 0.5447761
Term Stromal actin cytoskeleton organization 1.8e-06 0.0081906 0.3448819

150



Term Stromal actin cytoskeleton 4.9e-06 0.0184389 0.3512873
Term Stromal anchoring junction 9.1e-06 0.0296833 0.3505853

Table B.2: KEGG enrichment for cell DMCs.

Group Celltype Description P.DE FDR
First Endothelial Cytokine-cytokine receptor interaction 0.0041570 0.0483066
First Endothelial Pathways in cancer 0.0035835 0.0483066
First Endothelial Shigellosis 0.0002610 0.0147357
First Endothelial Natural killer cell mediated cytotoxicity 0.0029434 0.0472351
First Endothelial Chemokine signaling pathway 0.0003500 0.0147357
First Endothelial Malaria 0.0043265 0.0486011
First Endothelial Proteoglycans in cancer 0.0040161 0.0483066
First Endothelial TGF-beta signaling pathway 0.0025529 0.0441775
First Endothelial Chagas disease 0.0010931 0.0263131
First Endothelial Relaxin signaling pathway 0.0044760 0.0486581
First Endothelial Th17 cell differentiation 0.0046636 0.0491133
First Endothelial Osteoclast differentiation 0.0005920 0.0166272
First Endothelial HIF-1 signaling pathway 0.0041166 0.0483066
First Endothelial Autophagy - animal 0.0015393 0.0324209
First Endothelial Rap1 signaling pathway 0.0005400 0.0165576
First Endothelial PD-L1 expression and PD-1 checkpoint pathway in cancer 0.0019094 0.0378519
First Endothelial Focal adhesion 0.0021166 0.0396271
First Endothelial Regulation of actin cytoskeleton 0.0000474 0.0053291
First Endothelial Leukocyte transendothelial migration 0.0002970 0.0147357
First Endothelial Phospholipase D signaling pathway 0.0038427 0.0483066
First Endothelial Inflammatory bowel disease 0.0004180 0.0156348
First Endothelial Platelet activation 0.0003410 0.0147357
First Endothelial Fc gamma R-mediated phagocytosis 0.0041153 0.0483066
First Endothelial Parathyroid hormone synthesis, secretion and action 0.0039164 0.0483066
First Endothelial Cholinergic synapse 0.0034570 0.0483066
First Endothelial AGE-RAGE signaling pathway in diabetic complications 0.0006890 0.0178643
First Endothelial Colorectal cancer 0.0013794 0.0309896
First Endothelial Fc epsilon RI signaling pathway 0.0026218 0.0441775
First Endothelial Yersinia infection 0.0000064 0.0021490
First Endothelial Pancreatic cancer 0.0005070 0.0165576
First Endothelial Acute myeloid leukemia 0.0001620 0.0136244
First Endothelial Adherens junction 0.0000199 0.0033455
First Hofbauer Chemokine signaling pathway 0.0005350 0.0257466
First Hofbauer Human T-cell leukemia virus 1 infection 0.0014401 0.0478661
First Hofbauer Osteoclast differentiation 0.0010920 0.0408882
First Hofbauer Apelin signaling pathway 0.0015624 0.0478661
First Hofbauer Yersinia infection 0.0001490 0.0167683
First Hofbauer T cell receptor signaling pathway 0.0004130 0.0231995
First Hofbauer Autophagy - animal 0.0000555 0.0093599
First Hofbauer B cell receptor signaling pathway 0.0003330 0.0224440
First Hofbauer Acute myeloid leukemia 0.0010745 0.0408882
First Hofbauer Bacterial invasion of epithelial cells 0.0002930 0.0224440
First Hofbauer Fc gamma R-mediated phagocytosis 0.0000210 0.0070602
First Stromal Shigellosis 0.0001850 0.0172432
First Stromal Chemokine signaling pathway 0.0004410 0.0297071
First Stromal Ras signaling pathway 0.0006990 0.0336638
First Stromal Endocytosis 0.0000622 0.0104790
First Stromal Rap1 signaling pathway 0.0002050 0.0172432
First Stromal Focal adhesion 0.0012680 0.0427305
First Stromal AGE-RAGE signaling pathway in diabetic complications 0.0009770 0.0365750
First Stromal Yersinia infection 0.0000312 0.0104790
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First Stromal Longevity regulating pathway 0.0005360 0.0300840
First Stromal EGFR tyrosine kinase inhibitor resistance 0.0008950 0.0365750
First Trophoblasts ECM-receptor interaction 0.0000133 0.0044964
Term Endothelial Adherens junction 0.0000515 0.0173604
Term Hofbauer Cytokine-cytokine receptor interaction 0.0004400 0.0494750
Term Hofbauer Apelin signaling pathway 0.0002600 0.0437646
Term Hofbauer Hematopoietic cell lineage 0.0000158 0.0053238
Term Trophoblasts Regulation of actin cytoskeleton 0.0000278 0.0093774
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Table B.3: List of imprinted genes and regions from multiple studies.

position Methylated

allele

Tissue Gene publication

1:6684860-6685996 M placental-specific THAP3 hanna
1:7827139-7827709 M other zink
1:19614429-19615702 M placental-specific AKR7A3 hanna
1:36184400-36184863 M placental-specific C1orf216 hanna
1:38200920-38201123 M other EPHA10 hanna
1:39559602-39559980 M other PPIEL zink
1:40024626-40026520 M other PPIEL court, hanna
1:54940382-54941170 M placental-specific ACOT11 hanna
1:55504848-55506512 M placental-specific PCSK9 hanna
1:67772896-67773725 M placental-specific IL12RB2 hanna
1:68050532-68051790 M other DIRAS3/GNG12-AS1 zink
1:68511835-68513486 M other DIRAS3 court, hanna
1:68515433-68517545 M other DIRAS3 court, hanna
1:175568216-175568710 M placental-specific TNR hanna
1:177032657-177032837 M other zink
1:181286640-181287967 M placental-specific CACNA1E hanna, hamada
1:209848306-209849445 M placental-specific G0S2 hanna, hamada, hanna, hamada
1:211589678-211590292 M placental-specific LINC00467 hanna
2:27484942-27488313 M placental-specific SLC30A3 hanna, hamada
2:42067938-42068648 M placental-specific C2orf91 hanna, hamada
2:45231226-45232888 M placental-specific SIX2 hanna
2:46655894-46657384 M placental-specific TMEM247 sanchez delgado, hamada
2:74345587-74348298 M placental-specific TET3 sanchez delgado, hamada
2:94871304-94872050 P other zink
2:130037382-130038260 M other zink
2:131300169-131300522 M other zink
2:136766706-136767019 M other zink
2:196933266-196934154 M placental-specific DNAH7 hanna
2:206249787-206253341 P other ZDBF2/GPR1-AS zink
2:206254404-206255173 P other ZDBF2 zink
2:206255756-206258686 P other ZDBF2 zink
2:206259834-206260336 P other ZDBF2 zink
2:206261783-206265613 P other ZDBF2/GPR1-AS zink
2:206266861-206268649 P other ZDBF2 zink
2:206269197-206270970 P other ZDBF2 zink
2:206271479-206272728 P other ZDBF2 zink
2:206273392-206274051 P other ZDBF2 zink
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2:207066967-207069445 M placental-specific GPR1-AS court, hanna
2:207114583-207136544 P other court
2:209208321-209209864 M other zink
2:229043530-229047055 M placental-specific SPHKAP hanna, sanchez delgado, hamada,

hanna, sanchez delgado, hamada
2:232351651-232352005 M other zink
2:240557132-240557566 M other zink
3:11704930-11705437 M other zink
3:21790873-21792537 M placental-specific ZNF385D sanchez delgado, hamada
3:30894288-30894468 M other zink
3:30936070-30936531 M placental-specific GADL1 hanna
3:39501848-39502216 M other zink
3:49314155-49314920 M placental-specific C3orf62 hanna, hamada
3:51740741-51741473 M other GRM2 hanna
3:128336483-128337044 M placental-specific RPN1 hanna, hamada
3:128564782-128565090 M other RAB7A hanna
3:182815725-182817627 M placental-specific MCCC1 court, hanna
3:192124589-192127457 M placental-specific FGF12 hanna, sanchez delgado, hamada
3:192571291-192571834 M other zink
3:196756621-196756875 M other MFI2 hanna
4:4576220-4577911 M placental-specific STX18-AS1 sanchez delgado
4:6104931-6106089 M other JAKMIP1 zink
4:6107021-6107791 M other JAKMIP1 hanna
4:8580973-8581784 M other zink
4:17641982-17642265 M other zink
4:88697379-88698217 M other NAP1L5/HERC3 zink
4:89617925-89619237 M other NAP1L5 court, hanna
4:93226245-93227270 M placental-specific GRID2 hanna, hamada, hanna, hamada
4:102711702-102712397 M placental-specific BANK1 hanna
4:119455534-119455914 M other zink
4:121932574-121933160 M other zink
4:154709200-154715220 M placental-specific SFRP2 sanchez delgado, hamada, sanchez

delgado, hamada
4:169774385-169774935 M other zink
4:187065417-187066505 M placental-specific FAM149A hanna
5:1594021-1595048 M placental-specific SDHAP3 hanna, hamada
5:15271459-15271770 M other zink
5:15384409-15384881 M other zink
5:58333774-58336554 M placental-specific PDE4D court, hanna
5:95066568-95068092 M placental-specific RHOBTB3 hanna
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5:135767915-135768919 M other zink
5:135769815-135771319 M other zink
5:135778208-135778521 M other zink
5:136078784-136080957 M other VTRNA2-1 zink
5:178593785-178594990 M other ZNF354C hanna
6:3848512-3850359 M other FAM50B court, hanna, zink
6:14117480-14118415 M placental-specific CD83 hanna
6:18387077-18387809 M other RNF144B hanna
6:31627653-31628935 M other C6orf47 hanna
6:37616410-37617124 M placental-specific MDGA1 hanna
6:39901897-39902693 M placental-specific MOCS1 hanna
6:103332287-103333035 M other zink
6:105400631-105402559 M placental-specific LIN28B court, hanna
6:106957945-106961974 M placental-specific AIM1 court, hanna
6:144007163-144009025 M other PLAGL1 zink
6:144328078-144329922 M other PLAGL1 court, hanna
6:160005255-160006715 M other IGF2R zink
6:160426558-160427561 M other court
6:161188022-161188822 M placental-specific PLG hanna
6:169577181-169577797 M other zink
6:169654367-169655912 M other WDR27 zink
6:170054504-170055618 M other court
7:12609907-12610833 M placental-specific SCIN hanna
7:16850625-16851508 M other zink
7:22122473-22123315 M placental-specific RAPGEF5 hanna, hamada
7:23490380-23491301 M other RPS2P32 zink
7:24323128-24325371 M placental-specific NPY hanna, hamada, hanna, hamada
7:42856558-42857371 M other zink
7:43151828-43153950 M placental-specific HECW1 hanna
7:50781399-50783614 M other GRB10 zink
7:50848726-50851312 M other court
7:64575091-64575739 M other zink
7:81240257-81240667 M other HGF hanna
7:94285501-94287960 M other PEG10/SGCE court, hanna
7:100091181-100091786 M placental-specific NYAP1 hanna
7:101006052-101006963 M placental-specific EMID2 hanna, hamada
7:106300098-106302548 M placental-specific CCDC71L hanna, hamada, hanna, hamada
7:130130122-130134388 M other MEST/MESTIT1 court, hanna
7:130489758-130494000 M other MEST zink
7:134671024-134672011 M placental-specific AGBL3 court, hanna
7:134831752-134832178 M other zink
7:138664014-138664236 M other SVOPL zink
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7:149389444-149389941 M other KRBA1 hanna, hamada
7:154585539-154586375 M other DPP6 hanna
7:154861569-154863382 M other HTR5A court, hanna
7:155070814-155072164 M other HTR5A zink
8:8702335-8703302 M other zink
8:11659497-11660209 M other FDFT1 hanna
8:22010755-22011096 M other zink
8:23145610-23146931 M placental-specific R3HCC1 sanchez delgado
8:27182871-27183342 M other PTK2B hanna
8:37604992-37606088 M other ERLIN2 court, hanna
8:61626185-61627281 M other CHD7 hanna, hamada
8:94119077-94120749 M other zink
8:102527935-102529486 M other zink
8:135707227-135710114 M placental-specific court
8:140035407-140035811 P other zink
8:140038516-140038940 P other zink
8:140085725-140086791 P other zink
8:140088744-140088969 P other zink
8:140097560-140101293 M other TRAPPC9 zink
8:141107717-141111081 M other TRAPPC9 court, hanna
8:142215227-142216514 M placental-specific DENND3 sanchez delgado, hamada, sanchez

delgado, hamada
9:73568-73835 M placental-specific PGM5P3-AS1 hanna
9:4297279-4300432 M placental-specific GLIS3 court, hanna
9:34989434-34989605 M placental-specific DNAJB5 hanna
9:37800140-37802937 M placental-specific DCAF10 court, hanna
9:86136501-86137778 M placental-specific FRMD3 sanchez delgado
9:86151350-86154260 M placental-specific FRMD3 sanchez delgado, hamada
9:137416835-137418376 M other zink
9:140301079-140302117 M placental-specific EXD3 hanna
10:11936672-11937255 M placental-specific PROSER2-AS1 hanna, hamada, hanna, hamada
10:15761192-15762312 M placental-specific ITGA8 hanna, hamada
10:27702309-27703547 M other PTCHD3 hanna, hamada, hanna, hamada
10:65224441-65225999 M placental-specific JMJD1C hanna, hamada
10:103534501-103536348 M placental-specific FGF8 hanna
10:121577530-121578846 M other INPP5F court, hanna
10:128993405-128995242 M placental-specific FAM196A/DOCK1 court, hanna
10:130190919-130191634 M other zink
10:135278717-135279147 M other SPRN hanna
10:135341528-135343280 M placental-specific CYP2E1 hanna, hamada
11:2016513-2024740 P other H19 court, hanna
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11:2132351-2133881 P other IGF2 zink
11:2145821-2149292 P other IGF2 zink
11:2153991-2155112 P other court
11:2168333-2169768 P other court
11:2490964-2492685 M placental-specific KCNQ1 sanchez delgado
11:2699100-2700636 M other KvDMR1 zink
11:2719948-2722440 M other KCNQ1OT1 court, hanna
11:3662967-3663842 M other ART5 hanna
11:7088843-7089383 M other zink
11:10562070-10563302 M placental-specific RNF141 hanna
11:19366443-19368277 M placental-specific NAV2 hanna
11:45201741-45202557 M placental-specific PRDM11 hanna
11:45921134-45922184 M placental-specific MAPK8IP1 hanna
11:60647012-60647445 M other zink
11:68451396-68452097 M placental-specific GAL hanna
11:109962727-109964976 M placental-specific ZC3H12C court, hanna
12:203429-204151 M other zink
12:2800562-2800919 M placental-specific CACNA1C sanchez delgado
12:4433587-4433983 M placental-specific C12orf5 hanna, hamada
12:22487219-22488465 M placental-specific ST8SIA1 hanna
12:34218926-34219575 P other zink
12:34362974-34363820 M other zink
12:34372206-34374112 M other zink
12:65121923-65122279 M other zink
12:65218069-65218869 M placental-specific TBC1D30 hanna
13:33000694-33002597 M placental-specific N4BP2L1 court, hanna
13:48317165-48320825 M other RB1 zink
13:48892341-48895763 M other court
13:51417469-51418614 M other DLEU7 hanna
13:60267520-60269245 M other zink
13:70680712-70683111 M other KLHL1 hanna
13:80654825-80655272 M other zink
13:102568126-102569981 M placental-specific FGF14 sanchez delgado, hamada
14:24563095-24564067 M placental-specific NRL hanna, hamada
14:33799741-33800646 M other zink
14:52734156-52736420 M placental-specific PTGDR hanna, hamada
14:68874777-68874992 M other zink
14:100727514-100728411 M other zink
14:100807670-100811737 P other IG-DMR zink
14:100823704-100825381 P other MEG3 zink
14:100826012-100828230 P other MEG3 zink
14:100835999-100836272 M other zink
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14:100900401-100901267 M other zink
14:100904519-100905081 M other MEG8 zink
14:101067986-101069282 M other zink
14:101072233-101073637 M other zink
14:101151414-101151997 P other zink
14:101275427-101278058 P other court
14:101290524-101293978 P other MEG3 court, hanna
14:101370741-101371419 M other court
14:101635099-101635431 P other zink
14:105830606-105830859 M other PACS2 hanna
15:23364409-23364521 M other zink
15:23534531-23535315 P other zink
15:23606638-23609456 P other zink
15:23629039-23629213 M other zink
15:23634077-23634289 M other zink
15:23642878-23643103 M other zink
15:23647776-23648881 M other MAGEL2 zink
15:23661255-23662817 P other zink
15:23674115-23675360 P other zink
15:23686304-23688131 M other NDN zink
15:23769176-23769945 P other zink
15:23782845-23783768 P other zink
15:23797680-23798290 M other zink
15:23807086-23812495 M other court
15:23829311-23829706 P other zink
15:23854644-23855506 M other zink
15:23857016-23857880 M other zink
15:23858683-23861887 M other zink
15:23869240-23869921 M other zink
15:23877454-23878654 M other zink
15:23883075-23883432 P other zink
15:23892425-23894029 M other court
15:23896280-23898594 M other PWRN4 zink
15:23908972-23909688 P other zink
15:23914065-23915807 P other zink
15:23922214-23923177 P other zink
15:23931257-23933138 P other court, zink
15:23939735-23940870 P other zink
15:23967138-23967845 P other zink
15:23968767-23970583 P other zink
15:23971255-23971960 P other zink
15:23975861-23977507 P other zink
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15:23984693-23986673 P other zink
15:23999391-24001886 P other zink
15:24004599-24005919 P other zink
15:24009020-24009903 P other zink
15:24019161-24019660 P other zink
15:24029218-24029630 P other zink
15:24050087-24051502 P other zink
15:24086139-24087500 P other zink
15:24101056-24101995 M other SNRPN zink
15:24111944-24113625 P other zink
15:24115509-24117169 P other zink
15:24132683-24133507 P other zink
15:24156357-24157105 P other zink
15:24163134-24163879 P other zink
15:24174217-24175175 P other zink
15:24225156-24227501 P other zink
15:24239642-24241406 P other zink
15:24252735-24254128 P other zink
15:24274859-24275806 P other zink
15:24300755-24301849 P other zink
15:24346736-24347142 M other court
15:24406235-24407327 P other zink
15:24416085-24417692 P other zink
15:24426478-24427389 M other SNRPN zink
15:24535702-24537396 P other zink
15:24551067-24552042 P other zink
15:24552829-24553614 P other zink
15:24561446-24562639 P other zink
15:24566428-24567551 P other zink
15:24576113-24576926 P other zink
15:24578494-24579011 P other zink
15:24606385-24608581 P other zink
15:24648973-24649668 P other zink
15:24671872-24672679 M other court
15:24689074-24690306 P other zink
15:24722753-24723071 M other court
15:24733127-24735542 P other zink
15:24747566-24748890 P other zink
15:24768838-24769120 P other zink
15:24772760-24773758 M other SNRPN zink
15:24784260-24785474 M other zink
15:24809111-24810320 P other zink
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15:24816493-24817798 P other zink
15:24823417-24824759 M other SNRPN zink
15:24828587-24829569 P other zink
15:24833609-24834203 P other zink
15:24846843-24848681 M other SNRPN zink
15:24856474-24859220 M other SNRPN zink
15:24877552-24880264 M other SNRPN zink
15:24885960-24886572 P other zink
15:24887240-24888535 P other zink
15:24901543-24903906 P other zink
15:24910643-24911281 P other zink
15:24949168-24949368 P other zink
15:24954493-24957248 M other SNURF/SNRPN zink
15:24996577-24998201 P other zink
15:25000817-25000975 P other zink
15:25005051-25005302 P other zink
15:25015223-25015809 P other zink
15:25017924-25018886 M other court
15:25039354-25039564 P other zink
15:25048423-25049425 P other zink
15:25060537-25061269 P other zink
15:25062432-25064422 P other zink
15:25064951-25066060 P other zink
15:25066776-25067078 P other zink
15:25068564-25069481 M other court
15:25075739-25076861 P other SNORD116-10,SNORD116-

11,SNORD116-12,SNORD116-

13,SNORD116-14,SNORD116-

15,SNORD116-16,SNORD116-

17,SNORD116-19,SNORD116-

19,SNORD116-18,SNORD116-

20,SNORD116-21,SNORD116-

22,SNORD116-23,SNORD116-24

zink
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15:25080754-25081544 P other SNORD116-10,SNORD116-

11,SNORD116-12,SNORD116-

13,SNORD116-14,SNORD116-

15,SNORD116-16,SNORD116-

17,SNORD116-19,SNORD116-

19,SNORD116-18,SNORD116-

20,SNORD116-21,SNORD116-

22,SNORD116-23,SNORD116-24

zink

15:25083328-25085575 P other SNORD116-10,SNORD116-

11,SNORD116-12,SNORD116-

13,SNORD116-14,SNORD116-

15,SNORD116-16,SNORD116-

17,SNORD116-19,SNORD116-

19,SNORD116-18,SNORD116-

20,SNORD116-21,SNORD116-

22,SNORD116-23,SNORD116-24

zink

15:25093008-25093829 M other court
15:25123027-25123905 M other court
15:25200004-25201976 M other SNURF/SNRPN court, hanna
15:40486055-40486903 M other zink
15:45314789-45315642 M placental-specific SORD hanna
15:50909603-50909875 M other zink
15:76030565-76031591 M other DNM1P35 hanna
15:79382548-79383980 M placental-specific RASGRF1 hanna
15:93614758-93616859 M placental-specific RGMA court, hanna
15:98865575-98867104 M other IGF1R zink
15:99408496-99409650 M other court
15:101626335-101626824 M placental-specific LRRK1 hanna
16:806879-808764 M other zink
16:817075-818443 M other zink
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16:863240-863884 M placental-specific PRR25 hanna
16:3254405-3254770 P other zink
16:3364797-3366488 P other MTRNR2L4 zink
16:3413769-3414262 P other zink
16:3431450-3432387 M other ZNF597 zink
16:3434920-3435926 M other zink
16:3442978-3444462 P other ZNF597/NAA60/ZNF597,NAA60 zink
16:3481801-3482388 M other court
16:3492724-3494463 P other ZNF597/NAA60 court, hanna
16:10707754-10708438 M other zink
16:30816719-30817779 M placental-specific ZNF629 hanna, hamada
16:48399731-48400475 M placental-specific SIAH1 hanna
16:58534681-58535556 M placental-specific NDRG4 hanna
16:66637919-66639593 M placental-specific CMTM3 hanna
16:68572892-68573971 M placental-specific ZFP90 hanna
16:74734230-74734885 M other MLKL hanna, hamada
16:78079569-78080193 M other CLEC3A hanna
17:259426-260589 M placental-specific C17orf97 hanna
17:409552-410094 M other zink
17:4900360-4902310 M other zink
17:56609082-56609687 M placental-specific 12:00 AM hanna
17:66596155-66597643 M placental-specific FAM20A court, hanna
18:32956510-32957683 M placental-specific ZNF396 court, hanna
18:47667786-47668339 M other zink
18:60051870-60052464 M other TNFRSF11A hanna
18:79899277-79899991 M other zink
18:80147168-80149255 M other zink
19:1324834-1325348 M other MUM1 hanna
19:10303506-10306415 M placental-specific DNMT1 court, hanna
19:11784246-11785337 M placental-specific ZNF833P hanna
19:12075601-12076549 M other ZNF763 hanna
19:13614882-13618186 M placental-specific CACNA1A sanchez delgado
19:17438249-17439339 M other ANO8 hanna
19:21482472-21484491 M other zink
19:36266285-36266855 M other zink
19:38527504-38528578 M other zink
19:38543710-38544472 M other zink
19:53536955-53539153 M other ZNF331 zink
19:53553367-53555638 M other ZNF331 zink
19:54040510-54042212 M other ZNF331 court, hanna
19:54057086-54058425 M other court
19:54150515-54155608 M placental-specific C19MC court, hanna
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19:56725960-56726738 M other zink
19:56829669-56829913 P other zink
19:56837802-56840915 M other PEG3 zink
19:56864809-56865037 M other zink
19:57348493-57353271 M other PEG3 court, hanna
19:58055058-58055675 P other zink
20:30134663-30135933 M other MCTS2P/HM13 court, hanna
20:30618874-30619244 M placental-specific C20orf160 hanna
20:31547246-31548401 M other MCTS2P/HM13/HM13 zink
20:34638489-34639686 M other LINC00657 hanna
20:36147042-36150528 M other BLCAP/NNAT court, hanna
20:37519780-37521655 M other BLCAP/NNAT/BLCAP,NNAT zink
20:42142005-42144040 M other L3MBTL1 court, hanna
20:43514638-43515399 M other L3MBTL/L3MBTL1 zink
20:48384392-48385349 M other zink
20:52789646-52791472 M placental-specific CYP24A1 hanna, hamada
20:57413694-57418612 P other GNAS court, hanna
20:57425157-57428033 M other GNAS-AS1 court, hanna
20:57428905-57431463 M other GNAS XL court, hanna
20:57463265-57465201 M other court
20:58838984-58843556 P other GNAS/GNAS-AS1 zink
20:58846210-58846670 P other zink
20:58850116-58853207 M other NESP-AS/GNAS-AS1/GNAS-

AS1,GNAS

zink

20:58854498-58856228 M other GNAS/GNAS-AS1,GNAS zink
20:58888210-58889085 M other GNAS/LOC101927932,GNAS zink
20:58889838-58890443 M other GNAS/LOC101927932,GNAS zink
20:59526001-59526478 M other zink
20:60540388-60541082 M placental-specific TAF4 hanna
20:63938417-63938769 M other zink
21:39385677-39386349 M other WRB zink
21:39387837-39388701 M other zink
21:40757510-40758276 M other court
21:42218551-42219853 M placental-specific TMPRSS3 hanna, hamada
21:46661264-46661774 M other zink
21:48087452-48088150 M placental-specific PRMT2 hanna
22:19973978-19974866 M placental-specific ARVCF hanna
22:32026380-32026975 M other PISD hanna
22:37464839-37465279 M placental-specific KCTD17 hanna
22:38412407-38412798 M other zink
22:40057496-40061223 M placental-specific CACNA1I sanchez delgado
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22:41681734-41682868 M other NHP2L1/SNU13 zink
22:42077774-42078873 M other NHP2L1 court, hanna
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Table B.4: Linear modelling results of repetitive element methylation and cell type.

Trimester test Tissue estimate p.value p_value p_value_adj p_value_adj_label
Third Alu Trophoblasts cs -0.0117235 0.0008400 <0.001 0.0336012 0.034
Third Alu Stromal cs -0.0051651 0.1313044 0.131 1.0000000 >0.999
Third Alu Hofbauer cs 0.0696154 0.0000000 <0.001 0.0000000 <0.001
Third Alu Endothelial cs 0.0207889 0.0000000 <0.001 0.0000009 <0.001
Third L1 Trophoblasts cs -0.0144791 0.0016805 0.002 0.0672202 0.067
Third L1 Stromal cs 0.0109213 0.0164964 0.016 0.6598560 0.66
Third L1 Hofbauer cs 0.0970748 0.0000000 <0.001 0.0000000 <0.001
Third L1 Endothelial cs -0.0033859 0.4506288 0.451 1.0000000 >0.999
Third REMP_Alu Trophoblasts cs 0.0071025 0.1415773 0.142 1.0000000 >0.999
Third REMP_Alu Stromal cs 0.0123476 0.0115689 0.012 0.4627559 0.463
Third REMP_Alu Hofbauer cs 0.0495099 0.0000000 <0.001 0.0000000 <0.001
Third REMP_Alu Endothelial cs 0.0221681 0.0000124 <0.001 0.0004980 <0.001
Third REMP_L1 Trophoblasts cs 0.0005080 0.9248994 0.925 1.0000000 >0.999
Third REMP_L1 Stromal cs 0.0425323 0.0000000 <0.001 0.0000000 <0.001
Third REMP_L1 Hofbauer cs 0.0896848 0.0000000 <0.001 0.0000000 <0.001
Third REMP_L1 Endothelial cs 0.0296470 0.0000003 <0.001 0.0000134 <0.001
Third all_probes Trophoblasts cs -0.0076146 0.0109680 0.011 0.4387200 0.439
Third all_probes Stromal cs -0.0096135 0.0014818 0.001 0.0592724 0.059
Third all_probes Hofbauer cs 0.0496159 0.0000000 <0.001 0.0000000 <0.001
Third all_probes Endothelial cs -0.0160625 0.0000004 <0.001 0.0000156 <0.001
First Alu Trophoblasts cs -0.0190449 0.1848773 0.185 1.0000000 >0.999
First Alu Stromal cs 0.0413275 0.0019516 0.002 0.0780648 0.078
First Alu Hofbauer cs 0.1017086 0.0000014 <0.001 0.0000547 <0.001
First Alu Endothelial cs 0.0626632 0.0000256 <0.001 0.0010229 0.001
First L1 Trophoblasts cs -0.0308210 0.1400921 0.14 1.0000000 >0.999
First L1 Stromal cs 0.0687587 0.0005180 <0.001 0.0207215 0.021
First L1 Hofbauer cs 0.1439364 0.0000020 <0.001 0.0000794 <0.001
First L1 Endothelial cs 0.0855743 0.0000557 <0.001 0.0022290 0.002
First REMP_Alu Trophoblasts cs -0.0125097 0.2254359 0.225 1.0000000 >0.999
First REMP_Alu Stromal cs 0.0299786 0.0018370 0.002 0.0734782 0.073
First REMP_Alu Hofbauer cs 0.0767463 0.0000006 <0.001 0.0000256 <0.001
First REMP_Alu Endothelial cs 0.0472673 0.0000135 <0.001 0.0005400 <0.001
First REMP_L1 Trophoblasts cs -0.0337078 0.0363391 0.036 1.0000000 >0.999
First REMP_L1 Stromal cs 0.0573872 0.0001710 <0.001 0.0068439 0.007
First REMP_L1 Hofbauer cs 0.1254843 0.0000002 <0.001 0.0000071 <0.001
First REMP_L1 Endothelial cs 0.0717158 0.0000135 <0.001 0.0005420 <0.001
First all_probes Trophoblasts cs -0.0283173 0.0301032 0.03 1.0000000 >0.999
First all_probes Stromal cs 0.0326958 0.0048211 0.005 0.1928456 0.193
First all_probes Hofbauer cs 0.0961799 0.0000004 <0.001 0.0000178 <0.001
First all_probes Endothelial cs 0.0494214 0.0001100 <0.001 0.0044187 0.004
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Table B.5: Performance metrics for deconvolution algorithms on in-silico mixtures.

algorithm component .estimate_rmse .estimate_rsq .estimate_mae
epidish (CBS) Endothelial 0.0388516 0.9737324 0.0212150
epidish (CBS) Hofbauer 0.0519962 0.9536757 0.0223685
epidish (CBS) nRBC 0.0205382 0.9927641 0.0120923
epidish (CBS) Stromal 0.0487289 0.9615058 0.0288258
epidish (CBS) Syncytiotrophoblast 0.0282039 0.9862831 0.0178662
epidish (CBS) Trophoblasts 0.0800551 0.8896896 0.0387900
epidish (CP) Endothelial 0.0400325 0.9721659 0.0221737
epidish (CP) Hofbauer 0.0532140 0.9510740 0.0244164
epidish (CP) nRBC 0.0201766 0.9930678 0.0116109
epidish (CP) Stromal 0.0474398 0.9615222 0.0280432
epidish (CP) Syncytiotrophoblast 0.0324855 0.9816575 0.0199726
epidish (CP) Trophoblasts 0.0821854 0.8837051 0.0411788
epidish (RPC) Endothelial 0.0389847 0.9737806 0.0208709
epidish (RPC) Hofbauer 0.0528783 0.9515670 0.0225016
epidish (RPC) nRBC 0.0205564 0.9930958 0.0118227
epidish (RPC) Stromal 0.0459021 0.9638079 0.0271040
epidish (RPC) Syncytiotrophoblast 0.0274391 0.9869849 0.0178080
epidish (RPC) Trophoblasts 0.0794303 0.8925289 0.0392630
Houseman (CP) Endothelial 0.0400965 0.9720581 0.0222576
Houseman (CP) Hofbauer 0.0533663 0.9508613 0.0247614
Houseman (CP) nRBC 0.0197231 0.9932896 0.0113504
Houseman (CP) Stromal 0.0474257 0.9616552 0.0280482
Houseman (CP) Syncytiotrophoblast 0.0325610 0.9817015 0.0198326
Houseman (CP) Trophoblasts 0.0821157 0.8843876 0.0410057
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Table B.6: Statistical testing results for cell composition versus sex, ethnicity, and gestational age. Each cell
type proportion was tested against each sample variable.

component r.squared p.value adj_p p_value testing_variable
Trophoblasts 0.0414868 0.4175567 0.4462719 0.45 within Third trimester-reported - ga
Trophoblasts 0.1622335 0.0873036 0.1455060 0.15 within Third trimester-estimated - ga
Stromal 0.1051078 0.1893443 0.2524591 0.25 within Third trimester-reported - ga
Stromal 0.2097722 0.0486107 0.1240732 0.12 within Third trimester-estimated - ga
Hofbauer 0.3260707 0.0133178 0.0697651 0.07 within Third trimester-reported - ga
Hofbauer 0.3034171 0.0145180 0.0697651 0.07 within Third trimester-estimated - ga
Endothelial 0.1801355 0.0791734 0.1439517 0.14 within Third trimester-reported - ga
Endothelial 0.2081063 0.0496293 0.1240732 0.12 within Third trimester-estimated - ga
Syncytiotrophoblast 0.1843137 0.0754120 0.1439517 0.14 within Third trimester-reported - ga
Syncytiotrophoblast 0.3964107 0.0038684 0.0697651 0.07 within Third trimester-estimated - ga
Trophoblasts 0.7091501 0.0174413 0.0697651 0.07 within First trimester-reported - ga
Trophoblasts 0.2963436 0.2064526 0.2580657 0.26 within First trimester-estimated - ga
Stromal 0.6666725 0.0250298 0.0834328 0.08 within First trimester-reported - ga
Stromal 0.4579729 0.0949887 0.1461365 0.15 within First trimester-estimated - ga
Hofbauer 0.0409975 0.6632646 0.6632646 0.66 within First trimester-reported - ga
Hofbauer 0.2777403 0.2242003 0.2637651 0.26 within First trimester-estimated - ga
Endothelial 0.7158684 0.0163998 0.0697651 0.07 within First trimester-reported - ga
Endothelial 0.5375077 0.0608190 0.1351534 0.14 within First trimester-estimated - ga
Syncytiotrophoblast 0.1315468 0.4239583 0.4462719 0.45 within First trimester-reported - ga
Syncytiotrophoblast 0.3604387 0.1540597 0.2200853 0.22 within First trimester-estimated - ga
Trophoblasts 0.0102904 0.6794432 1.0000000 >0.999 Sex
Stromal 0.0552617 0.3326524 1.0000000 >0.999 Sex
Hofbauer 0.1991480 0.0554656 0.2773280 0.277 Sex
Endothelial 0.0548712 0.3344163 1.0000000 >0.999 Sex
Syncytiotrophoblast 0.0789358 0.2439496 1.0000000 >0.999 Sex
Trophoblasts 0.0594006 0.3458482 1.0000000 >0.999 ancestry
Stromal 0.0080693 0.7317058 1.0000000 >0.999 ancestry
Hofbauer 0.0009310 0.9074792 1.0000000 >0.999 ancestry
Endothelial 0.0285027 0.5171480 1.0000000 >0.999 ancestry
Syncytiotrophoblast 0.0531260 0.3734547 1.0000000 >0.999 ancestry
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Appendix C - Supplementary information for Chapter 4
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Figure C.1: Samples that failed 1 or more 27 Illumina data quality control checks had higher P(outlier) than
samples that passed quality control.
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Figure C.2: Principal component analysis (PCA) using placental and maternal tissue samples.
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Figure C.3: Epigenetic age analysis. A) Adult epigenetic age (EA) estimated on placental samples was not
associated with reported gestational age. B) Adult EA was associated with P(outlier) in 2 placental datasets.
C) Placental epigenetic gestational age estimated in decidua, maternal blood, and chorionic villi samples was
compared to reported gestational age.
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Table C.1: Number of samples that failed quality control checks per dataset.

Dataset
Quality control metric 1 2 3 4 5 6 7 8 9 10 11 12
n failed 4 0 0 0 32 0 8 8 0 1 0 6
Restoration 0 0 0 0 0 0 0 0 0 0 0 0
Staining Green 0 0 0 0 0 0 0 0 0 0 0 0
Staining Red 0 0 0 0 4 0 0 1 0 0 0 0
Extension Green 0 0 0 0 0 0 0 0 0 0 0 0
Extension Red 0 0 0 0 0 0 0 0 0 0 0 0
Hybridization High/Medium 0 0 0 0 0 0 0 0 0 0 0 6
Hybridization Medium/Low 0 0 0 0 0 0 0 0 0 0 0 6
Target Removal 1 0 0 0 0 0 0 0 0 0 0 0 0
Target Removal 2 0 0 0 0 0 0 0 0 0 0 0 0
Bisulfite Conversion I Green 2 0 0 0 0 0 1 1 0 0 0 0
Bisulfite Conversion I Red 0 0 0 0 0 0 1 0 0 1 0 0
Bisulfite Conversion II 1 0 0 0 0 0 1 0 0 1 0 0
Specificity I Green 0 0 0 0 0 0 0 0 0 0 0 0
Specificity I Red 0 0 0 0 0 0 0 0 0 0 0 0
Specificity II 0 0 0 0 0 0 0 0 0 0 0 0
Non-polymorphic Green 0 0 0 0 31 0 7 2 0 0 0 0
Non-polymorphic Red 1 0 0 0 0 0 0 4 0 0 0 0
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