
DEVELOPMENT OF A WET MUCK DATABASE AND DRAWPOINT SPILL HAZARD 

SUSCEPTIBILITY TOOL FOR AN OPERATING CAVE MINE  

by 

 

Jovian Varian 

 

B.Eng., University of Exeter, 2017 

M.Eng., The University of British Columbia, 2019 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

in 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 

(Geological Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 

 

March 2022 

 

© Jovian Varian, 2022 



ii 

 

The following individuals certify that they have read, and recommend to the Faculty of Graduate 

and Postdoctoral Studies for acceptance, the thesis entitled: 

Development of a Wet Muck Database and Drawpoint Spill Hazard Susceptible Tool for an 

Operating Cave Mine 

 

submitted by Jovian Varian in partial fulfillment of the requirements for 

the degree of Master of Applied Science 

in 
Geological Engineering 

 

Examining Committee: 

Dr. Scott McDougall, Geological Engineering, UBC 

Supervisor  

Dr. Erik Eberhardt, Geological Engineering, UBC 

Supervisory Committee Member  

Allan Moss, Mining Engineering, UBC 

Supervisory Committee Member 

Dr. Roger Beckie, Geological Engineering, UBC 

Supervisory Committee Member 

Dr. Doug Stead, Department of Earth Sciences, SFU 

Additional Examiner 

 

 



iii 

 

Abstract 

Wet muck (also known as mud rush) can be described as the sudden flow of fragmented rock into 

a drawpoint or other underground mine opening, exposing the mine to safety and operational risks. 

This hazard is analogous to an underground debris flow and is most commonly encountered in 

cave mines. Numerous fatalities, infrastructure damage, loss of reserves, and operational delays, 

have been reported in various caving operations.  

To better understand and manage this hazard, this thesis uses data and experiences from the PT 

Freeport Indonesia, Deep Ore Zone (DOZ) block cave mine in Indonesia where the ground 

conditions and operational factors that both increase the susceptibility of a drawpoint and act to 

trigger a wet muck event. Spatio-temporal relationships are drawn from this data, recognizing that 

the probability of wet muck events tends to increase as a cave matures, with increasing draw 

column heights contributing to increase secondary fragmentation and the generation of fines. Other 

contributing factors included in the analysis are extraction rate, uniformity of draw, Height of 

Draw (HoD), and drawpoint condition.  

Univariate and multivariate logistic regression models are developed, with the goal of improving 

prediction and mitigation of these events to improve safety and productivity in caving operations. 

Although the consequences of wet muck spill events are high, they are still relatively rare, resulting 

in an imbalanced dataset. Cost-sensitive learning is incorporated into the logistic regression models 

to address this technical challenge. These methods are used in this thesis to develop a spreadsheet-

based wet muck susceptibility tool, which includes implementation guidelines and Python scripts. 

The concepts, methodologies and tools developed from this research are not restricted to the DOZ 

but can also be implemented in other caving operations that are susceptible to wet muck spills.  



iv 

 

Lay Summary 

Wet muck spill hazards involve the sudden inflow of a mixture of finely broken rock, similar to 

sand, and water into an underground mine, posing major safety and economic risks. This thesis 

focuses on identifying the causative and triggering factors for this type of hazard based on data 

from an operating block cave mine. The key factors that were identified include the amount of 

fines and water content of the material being mined, the maturity of the cave (i.e., age of the mine), 

and the degree of mining activity for a given area. The result is the development of a wet muck 

susceptibility tool that improves the evaluation of wet muck hazards in advance of mining to allow 

for risk-mitigation strategies to be implemented. Overall, this research provides a conceptual 

framework and workflow that can be applied to other cave mines that are susceptible to wet muck 

spills. 
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Chapter 1:  Introduction 

Declining ore grade near-surface has motivated many mines to go deeper underground while also 

maintaining the production (i.e., tonnages mined) achieved from open-pit mining. Block and panel 

caving is the lowest cost method of underground mass mining (Heslop, 2000), which relies on 

natural, gravity-induced ore fragmentation. These caving methods offer high production rates 

similar to an open-pit operation and have a lower cost per ton compared to other underground 

mining methods (Brown, 2002). Despite its advantages, cave mining has generally been 

understudied, which has led to various engineering challenges, including cave stalls, drawpoint 

hang-ups, rockburst, air blast, and inrush hazards (Laubscher, 2000). 

Inrush hazards are known by several different names: wet muck spills, mud rushes, and running 

ground. They are defined as “sudden inflows of mud from drawpoints or other underground 

openings” (Butcher et al., 2000) and expose a mine to both safety and operational risks. Their 

occurrence increases as a cave matures, which has provoked many questions about the conditions 

that will lead to a spill. A better understanding of these conditions can provide insight for managing 

future events. This thesis examines wet muck spill conditions using detailed records and data 

provided by PT Freeport Indonesia’s (PTFI) Deep Ore Zone (DOZ) mine at the Grasberg Mining 

Complex in Tembagapura, Indonesia.  

1.1 Problem Statement 

One of the major challenges encountered by block caving operations in wet climates is wet muck 

spill hazards. It is difficult to predict exactly when one of these unique events will occur due to the 

randomness of and difficulty ascertaining when certain conditions are met. The occurrence of a 
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wet muck spill is a complex process requiring the simultaneous presence of four elements within 

the drawpoint vicinity (Butcher et al., 2000): (1) potential mud-forming materials (i.e., fines), (2) 

accumulation of water, (3) disturbance of the mud in the form of drawing or other mining activities, 

and (4) a discharge point. All of these elements are part of the nature of caving operations and are 

largely unavoidable. 

The history of wet muck spills at the Grasberg mining complex, including the Deep Ore Zone 

(DOZ), has led to insights into the causative and triggering factors, including complex geological 

conditions, high annual rainfall, cave orientation, uneven draw, suspension of operation, and static 

and dynamic disturbance (Widijanto et al., 2012). Several cave mines around the world, such as 

the El Teniente Mining Complex, Cadia East Mine, Palabora Mine, and Kimberley Mine, have 

also been impacted by various forms of inrushes, including wet muck spills, dry muck spills, and 

water inrushes. The inrush characteristics, susceptibility, and severity are different depending on 

the hydrogeological conditions, cave geometry, operational history, and orebody geology of each 

mine. Current knowledge and mitigation strategies are largely anecdotal and rely on experience 

from historical inrushes. Several of the strategies, such as drawpoint closures and tonnage 

restrictions, are believed to help limit the number of high-risk drawpoints; however, the success 

rates are unknown, and these strategies negatively impact production rates while still being unable 

to resolve the progressive appearance of mud at a drawpoint.  

The recently depleted DOZ mine recorded more than 1,900 spills since 2003. To proactively 

manage this hazard where future events are foreseeable at other cave mines, there has been 

extensive study of this data by PTFI personnel. The present work builds on this previous work 

using a complementary statistical analysis approach. 
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1.2 Research Objectives 

The overall goal of this thesis is to help improve the safety and productivity of caving operations 

impacted by wet muck and inrush hazards by improving our understanding of the contributing 

causative and triggering factors. To achieve this goal, the following two main research objectives 

were defined: 

1. Compile, systematically review, and statistically analyze wet muck spill data from an operating 

mine (PTFI’s DOZ). The existing database of over 1,900 historical wet muck spills at the DOZ 

provides a unique opportunity to reduce the current knowledge gap, systematically identify the 

various causes and triggers of wet muck spills and quantify their relative influence.  

2. Develop a data-supported tool to aid operational decision-making. Based on the results of the 

statistical analysis from Objective 1, new empirical relationships can be incorporated into a 

spreadsheet-based model to help improve existing wet muck prediction capabilities at the DOZ 

and, potentially, other caving operations (e.g., GBC and DMLZ). 

This thesis is part of a larger multi-disciplinary collaboration under the International Caving 

Research Network (ICaRN), which aims to address a broad scope of research covering orebody 

knowledge, cave-to-mill processes, and ground-control hazard management strategies. This thesis 

fits under the latter general topic. 

1.3 Research Approach and Thesis Structure 

This research makes use of a large collection of data from the DOZ Mine provided by PTFI. It 

incorporates six key research steps that include: (1) a comprehensive review of the existing wet 

muck spill literature, (2) a compilation of the data provided by PTFI into a new database, (3) an 
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exploratory analysis of the database, (4) a Univariate Logistic Regression (ULR) analysis, (5) a 

Multivariate Logistic Regression (MLR) analysis, and (6) the development of a spreadsheet tool 

based on the findings from steps 1 to 5. This research was carried out in close collaboration with 

personnel from PTFI and the DOZ. 

Chapter 2 documents Step 1, a comprehensive literature review covering wet muck spill 

mechanisms and behavior, including historical observations from various caving operations. The 

Grasberg Mining Complex study area and early experiences and lessons learned are also 

summarized in this chapter. This literature review helped identify hypothetical causative and 

triggering factors that were used in subsequent steps of this research.   

Chapter 3 documents Steps 2 and 3, the compilation and exploratory analysis of the new wet muck 

spill database. Data were collected in various forms at PTFI’s DOZ Mine between 2008 and 2019. 

Patterns in the data were identified through an exploratory data analysis, which informed 

subsequent detailed statistical analyses. 

Chapter 4 documents Steps 4 to 6, the statistical analyses performed using univariate and 

multivariate logistic regression, and subsequent development of a data-supported spreadsheet tool 

to aid operational decision-making. 

Chapter 5 summarizes the main conclusions of this research and contributions made and presents 

recommendations for future wet muck spill research. 
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1.4 Study Site 

1.4.1 Site Location and Mine Layout 

The Grasberg Mining Complex is operated by PTFI, a joint venture between Freeport-McMoRan 

and PT Indonesia Asahan Aluminium (INALUM). It is located in the southern area of Jaya Wijaya 

Mountain, West Papua, Indonesia, and is considered to be one of the largest copper (Cu) and gold 

(Au) deposits in the world. Operations began in 1967 with the first production from the Ertsberg 

open pit in 1973, followed by the Gunung Bijih Timur (GBT) cave mine, the Grasberg open pit, 

the Intermediate Ore Zone (IOZ) cave mine, and the Deep Ore Zone (DOZ) cave mine. These five 

mines have been depleted while PTFI continuously expands its underground mining operations.  

Three mines are currently operating: the GBC and DMLZ cave mines and the Big Gossan stoping 

mine (Casten et al., 2020). In addition, PTFI has several potential future operations, including the 

Kucing Liar and Gajah Tidur resources. Figure 1.1 illustrates the general layout of the different 

mines belonging to the Grasberg Mining Complex. 

By 2019, the DOZ mine had produced 300 million tonnes of ore since it opened in 2000 (Casten 

et al., 2020). It is the third lift of the block cave mine in the East Ertsberg Skarn System (EESS), 

after the GBT and IOZ mines. The DMLZ mine underlies these orebodies as the fourth lift. There 

are three main operating levels at the DOZ block cave (Ramadhan et al., 2015): (1) the undercut 

level at elevation 3146 m, (2) the extraction level at elevation 3126 m, and (3) the haulage level at 

elevation 3076-3079 m (Ramadhan et al., 2015). The extraction level is at a depth of approximately 

1200 m below the surface and includes 1347 drawpoints across 39 panels with column heights up 

to 750 m. The extraction level was constructed with an offset herringbone layout (Figure 1.2) to 
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minimize wet muck flow distances (Botha et al., 2008). It can be accessed either from the North 

Fringe Drift (NFD) or South Fringe Drift (SFD.  

 

Figure 1.1. The general layout of the PTFI Grasberg Mining Complex. From (Casten et al., 2020)  
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Figure 1.2. The layout of the DOZ extraction level. Image exported from DXF file provided by PT. Freeport 

Indonesia.  

As shown in Figure 1.3, at the extraction level, panels are spaced 30 m apart, and drawpoints are 

spaced 18 m apart along each panel. Drawbells separated by major and minor pillars funnel 

fragmented ore to the drawpoints. 
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Figure 1.3. The DOZ mine drawpoint spacing layout between the extraction and undercut levels (PT. Freeport 

Indonesia, 2010a). 

1.4.2 Geology 

As shown in Figure 1.4, Figure 1.5 and Figure 1.6, the DOZ mine is comprised of two main 

deposits: the Ertsberg East Skarn System (EESS) and the Ertsberg Stockwork Zone (ESZ) (Haflil 

et al., 2014). Although both of these deposits have different geological characteristics and 

properties, they are physically contiguous (Casten et al., 2004).  
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Geology of the DOZ Mine (PT. Freeport Indonesia, 2010b). 
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Figure 1.6. Geological cross-section through the GBT, IOZ, DOZ, and DMLZ mines. After Warren (2005). 

Soebari et al., (2013) describe the geological formation of the ESZ orebody. It is hosted entirely 

within the Ertsberg Intrusion south of the EESS. The orebody is oriented northwest-southeast, with 

a strike length of over 650 m and a width of approximately 300 m. Mineralization of Cu and Au 
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is associated with hydrothermal alteration centered in the late porphyry dikes enclosed by the Main 

Ertsberg Intrusion. Quartz-anhydrite-pyrite-chalcopyrite cuts across the entire system, which also 

introduced Cu-Au. During the final stage of ESZ hydrothermal system cooling, fluids along the 

contacts of the porphyry dikes caused propylitic alteration of the Main Ertsberg Intrusion and 

porphyry dikes. 

The EESS is characterized by the presence of forsterite, diopside, forsterite-magnetite, marble, and 

endoskarn, which are generally fair to poor in rock quality with a Rock Mass Rating (RMR) 

ranging between 30 and 55. Caving was initiated at the DOZ Mine in this material. The ESZ is 

characterized by diorite and endoskarn with joint infill by quartz, chalcopyrite, pyrite, and 

anhydrite, which are generally good in rock quality with an RMR ranging between 70 and 75 

(Widijanto et al., 2006). There is a high variability of rock types across the strike of the orebody, 

with ground conditions ranging from very poor at the hanging wall to very good at the footwall 

(Casten et al., 2004). The variability of each rock type is summarized in Table 1.1.  

Table 1.1. Geotechnical classification of each rock type in the DOZ Mine (Modified after Sahupala & Srikant, 

2007 and Widijanto, 2006). 

Rock Type UCS (MPa) RQD (%) RMR Class Percentage (%) 

DOZ Breccia 22 40 Very poor 9.6 

Marble - Sandstone 22 65 Poor 1.2 

Forsterite Skarn 127 84 Good 20.6 

Forsterite - Magnetite Skarn 57 67 Fair 16.3 

Magnetite Skarn 98 71 Good 1.9 

Diorite 111 80 Good 50 

Other - - - 0.5 
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1.4.3 Climate 

Papua province is one of the wettest regions in Indonesia, where it receives 2,500 to 4,500 mm of 

rainfall per year, with some areas, including Tembagapura can receive up to 7,000 mm per year 

(Prentice & Hope, 2007). Indonesia generally experiences two seasons, a dry season between April 

and October and a wet season between November and March. However, there is no seasonal 

pattern to the rainfall amounts in Papua; there is high variability in rain intensity that is received 

all year round (Figure 1.7). In 2020, the PTFI Grasberg operation recorded 5,000 mm of 

precipitation, and rainfall is considered one of the hazards at the operation (Freeport-McMoRan, 

2020). 

 

Figure 1.7. Tembagapura average monthly precipitation data (Retrieved from World Weather Online, 2022). 
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Chapter 2: Comprehensive Review of Wet Muck Spill Literature 

2.1 Introduction to Block and Panel Caving Methods 

The increasing depletion of near-surface resources mined by large open-pit operations has 

motivated mines to expand their operations deeper underground. Block and panel cave mining 

methods are underground mass mining methods that are predominantly favored for low-grade, 

weaker, massive, and steeply dipping orebodies. These methods have increasingly become 

preferred since they can achieve similar tonnages as an open pit operation and are lower cost-per-

ton compared to other underground mining methods (Laubscher, 2000). Advancements in 

technology, for instance, the use of hydraulic fracturing to precondition an orebody and increase 

its fragmentation and caveability, have allowed these methods to be used in more competent 

orebodies (Eberhardt et al., 2015). 

Caving relies on gravity- and stress-induced fracturing and fragmentation, where mining begins 

by progressively drilling and blasting below the base of the orebody, referred to as undercutting 

(Brown, 2002). Once undercut, the fractured rock collapses and caves into a series of bell-shaped 

ore passes, known as drawbells. The broken ore is extracted from drawpoints at the extraction or 

production level, which are developed underneath the drawbells. As the ore is removed by load-

haul-dump (LHD) machines at the drawpoints, the cave propagates upwards, with the rock above 

the cave back continuing to fragment due to gravity and stress redistribution.  

Block caving undercuts are done in a rectangular or square checkerboard pattern, where every 

block must be drawn evenly to maintain a near-horizontal cave back (Figure 2.1). Panel caving 

operates under the same principles as block caving. However, in panel caving, the orebody is 
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partially undercut in several panels or strips, resulting in a cave front that moves across the orebody 

at a constant angle to the direction of undercut advancement (Brown, 2002) (Figure 2.2). Despite 

these differences, the term “block caving” is commonly used for all types of gravity-induced 

caving methods. 

  

Figure 2.1. A typical block cave mine layout (Atlas Copco, 2007). 
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Figure 2.2. A typical panel cave mine layout; example from Resolution Copper Mine (Resolution Copper 

Mining, 2016). 

2.2 Inrush Hazards in Cave Mining 

Despite the economic advantages of cave mines, they are susceptible to operational hazards related 

to the geology and stress conditions, such as rockbursts, air blasts, and inrushes that can result in 

operational delays, economic losses, and/or fatalities. Butcher et al. (2000), Heslop (2000), Brown 

(2002), and Paetzold et al. (2020) classify inrush hazards in cave mining as follows: 

1. Air inrush or air blast: a rapid flow of air through an underground opening by compression of 

the air in a confined space. This phenomenon is caused by a period of stalled cave propagation 

that results in a void developing between the top of the draw column and cave back, followed 
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by a sudden collapse of the cave back. It causes rock and dust to become airborne, exposing 

personnel and infrastructure to this hazard.  

2. Wet muck spill or mud rush: sudden inflows of saturated fines from drawpoints or other 

underground openings. This phenomenon resembles a debris flow that occurs in an 

underground and confined environment. Wet muck spills can cause fatalities or infrastructure 

damage because the material travels at a high velocity. 

3. Water and slurry inrush: phenomena that resemble mud rush, but with higher water contents 

and lower fines contents. The source of water may come from surface structures (i.e., water 

storage dam, tailings dam, cave break through to surface that connects to the underground 

workings) or underground structures (i.e., backfilled stope, overlying cave mines). 

4. Dry inrush: an uncontrolled, free flow of dry, fine (sub-centimeter) caved material from a 

drawpoint. This phenomenon is similar to a wet muck spill but without a high water content in 

the flowing material. Although it has relatively low mobility, a dry inrush can still result in 

safety and operational issues. 

As wet muck spills are the main subject of this research, most of the literature review that follows 

is based on this hazard. However, lessons learned from dry inrush and water inrush mechanisms 

were also considered in this study. 

2.2.1 Fundamentals of Wet Muck Spills 

A wet muck spill (Figure 2.3) is a complex process due to confinement, stress, mobility, and the 

uncontrolled nature of different materials and size ranges when mobilized (Jakubec et al., 2016).  

Many terms are used in the industry to describe the sudden ingress of wet material into drawpoints 

or other underground excavations, including wet muck spill, mud rush, mud push, inundation, and 
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mudflow. This hazard is analogous to an underground debris flow. (Jakubec et al., 2016) describe 

the following terms:  

• Wet muck: a mixture of unsorted fine particles and water, which are mixed in proportions 

that can potentially flow by gravity if undermined or disturbed. 

• Wet muck spill: an uncontrollable or sudden ingress of wet muck into the underground 

workings (e.g., via the drawpoints).  

In other words, wet muck is a condition that can potentially lead to a mud rush or wet muck spill. 

 

Figure 2.3. An example of a wet muck spill, which buried an LHD at the DOZ Mine, Indonesia (Widijanto et 

al., 2012). 
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The phenomenon of a wet muck spill is a complex process requiring the simultaneous presence of 

four elements within the drawpoint vicinity (Butcher et al., 2000):  

• A source and accumulation of water from surface water-inflow and groundwater. 

• An accumulation of mud-forming material (fines), both internally (within cave zone) and 

/ or externally (at the surface). 

• A disturbance that causes the mud to flow towards the drawpoints. 

• Freedom for the mud to discharge into the underground workings. 

All of these elements are part of the nature of caving operations and are largely unavoidable. The 

ingress and accumulation of water entering the cave from an overlying open pit or subsidence 

crater around a cave that has broken through to the surface, along with the fines generated during 

the extraction process, will form wet muck. Depending on the conditions of the operating mine, 

an absence of water or fines can still result in inrushes, as described in the introduction to Section 

2.2.  

Once the fines and water conditions are fulfilled, Call & Nicholas Inc et al., (1998) described two 

triggers that can initiate wet muck spills: 

● Static (self-initiated): increase in pore pressure due to rising water level in a drawbell, static 

liquefaction, consolidation within the drawbell, or a combination of these processes.  

● Dynamic (external stimulus): secondary fragmentation, cave back collapse, seismic event, 

or mucking. 
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Butcher et al., (2000) classified wet muck entry modes into three categories:  

● External Wet Muck: generated externally to the underground physical environment by the 

inrush of caved material or stope backfill if a cave intersects an overlying cave/stope; or 

similarly, the inrush of tailings or slope failure debris if a cave breaches the surface or the 

bottom of an open pit.  

● Internal Wet Muck: mud formed internally within the cave draw column (muckpile) through 

secondary fragmentation or in clay-forming country rocks and clay mineral-rich ores, resulting 

in the accumulation of water, fine particles, and compaction.  

● Mixed Wet Muck: a mixture of both external and internal wet muck. 

Based on their flow characteristics and mobility, (Jakubec et al., 2016a) grouped wet muck spills 

into two categories: 

• Fluid muck: the debris tends to be shallow with uniformly graded mud resembling a thin slurry 

or water discharge; this has a higher moisture content (up to 50%). 

• Viscous muck: generally exhibits thixotropic properties and tends to be stiffer; this type of 

muck has a lower moisture content (17 - 23%), does not tend to flow as freely under gravity, 

and might extrude at the drawpoint. 

2.2.2 Conditions Influencing Wet Muck Spill Susceptibility 

The presence of fine grain-sized material is the first condition of wet muck spills and is a function 

of geology and comminution through the caved zone. The further the material travels down 

through the cave, the finer the particle size due to mechanical breakage (Butcher et al., 2000). This 
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cannot be controlled, and therefore the presence of fines must be recorded to identify wet muck 

risk areas. Water acts as the second condition and mainly comes from precipitation and/or 

groundwater entering into the cave. Through proper drainage, water entering the caved zone can 

be controlled.  

Jakubec et al., (2016) argued that the rainfall and wet muck spill relationship could be neglected 

in mature mines. It is still possible to change several drawpoints directly underneath the surface 

catchment during high rainfall or snow melt seasons. Water does not need to be excessive; if it can 

accumulate and flow through the caved zone, it will gradually increase the probability of mud 

formation. The gradual accumulation of groundwater in a mine is arguably more important to 

consider than a sudden inrush of groundwater or rainwater (Castro et al., 2018). Observations from 

several caving operations indicate that 100% of the water from rainfall and other surface run-off 

does not necessarily enter into the caved zone due to evaporation, water movement, and absorption 

into cave material; some estimates suggest only 30-50% of the water from the surface directly 

infiltrates and flows down through the cave (Laubscher, 2000). 

Wet muck spills can occur when a drawpoint is disturbed through mucking activities or secondary 

breakage. Mucking creates voids and changes material porosity, allowing water and fines to 

migrate. If a wet drawbell is not being pulled and the muck has been saturated, water levels can 

rise and migrate to the surrounding adjacent drawbells (Olua et al., 2015). No mucking activity 

can also lead to muck consolidation if the surrounding drawbells are in the wet area footprint. 

Depending on the location of mud pockets, over-extraction and isolated/uneven draw may also 

lead to spills (Holder et al., 2013). Therefore, the probability of a wet muck spill may be related to 

the probability of drawing these mud pockets towards a drawpoint.  
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Butcher et al., (2000) explained that isolated or uneven draw begins with ground control issues 

that require maintenance or secondary fragmentation. This encourages the operation to introduce 

unplanned draws to achieve the production target. If these processes are repeated over time, it may 

lead to drawpoint closure due to the presence of wet muck, which in turn leads to reserve loss. 

Drawpoints that remain in good condition and are thus drawn over their planned capacity may 

create an increase in the porosity inside the drawbell, allowing wet muck to form and flow to those 

drawpoints. Even when best practices are applied, it is difficult to achieve a perfectly even draw. 

Furthermore, it may only delay the inevitable occurrence of future wet muck spills due to the 

nature of cave mines (Rachmad et al., 2011).  

There are three categories described by Widijanto et al. (2012) that result in an increased 

susceptibility to wet muck spills:  

• Ground conditions (hang-up, packed, or sticky materials).  

• Operational constraints (repair activity, political risks, or panel/drawpoint closure). 

• Poor mining practices (poor draw control or unrealistic production targets). 

2.3 Experiences of Wet Muck Spills at the Grasberg Mining Complex 

The Grasberg Mining Complex underground operation has a long history of wet muck spills since 

the GBT operation (Hubert et al., 2000). The GBT represents the first cave (or lift) in the series 

with the IOZ beneath it and the DOZ beneath the IOZ (Figure 1.1). The wet muck was generally 

understood to originate from comminution within the draw column combined with high rainfall 

(Edgar et al., 2020). The second lift IOZ mine was also impacted by wet muck spills leading to the 

implementation of the first remote loader technologies aimed at reducing employee exposure to 
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these hazards (Hubert et al., 2000). The DOZ mine experienced its first spill in 2003 (Ginting & 

Pascoe., 2020) and had recorded more than 1,900 spills as of July 5, 2019 (Figure 2.4 and Figure 

2.5). 

 

Figure 2.4. Historical wet muck spills at the DOZ mine, up to July 5, 2019. 

 

Figure 2.5. Historical wet muck spill drawpoint location at the DOZ mine, up to July 5, 2019. 
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2.3.1 IOZ Wet Muck Study 

One of the first PTFI wet muck studies was documented by Call & Nicholas Inc et al., (1998), who 

evaluated the structural geology, hydrology, water chemistry, and material properties at the IOZ. 

They concluded that the material grain size and saturation (a function of dry density and moisture 

content) are the predominant factors for wet muck spills. Material grain size and its degree of 

sorting and packing cannot be controlled but can be understood through geotechnical properties 

and their sensitivity to water content. Water content can be controlled by continuous water 

drainage and interception before it enters the caved zone. The main water sources were either 

surface water entering the cave, groundwater, or a mixture of both. Rainwater entering from the 

surface enters the cave when the caved zone intersects with the surface catchment and subsidence 

zone; locally, the flow of this water generally follows the draw pattern. Groundwater entering the 

cave can originate from the surrounding rock, especially if permeable (e.g., the limestone unit in 

the hanging wall of the IOZ), or if the cave intersects conductive geological structures such as 

faults.  

Geotechnical testing by Call & Nicholas Inc et al., (1998) identified a correlation between wet 

muck spills and the grain size distribution, density, void ratio, and moisture content of the 

drawpoint materials. These materials were sampled from the skarn domain, GBT material, and 

fine-grained in-situ material. Moisture content was used to determine the degree of saturation and 

mobility of the material.  

The Call & Nicholas Inc et al., (1998) study also considered a failure mechanism using a brittleness 

index derived from triaxial test data. The brittleness index indicates the loss in strength due to 

collapse when loose material is sheared. A significant change in the void ratio via consolidation 
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indicates the material is collapsible. When the material is less than 80% saturated, significant 

undrained pore pressure is unlikely to be sustained. At saturation greater than 80%, the excess pore 

pressure could result in mobile flows. In other words, the first condition of wet muck spills is the 

material grain size distribution, which is a function of geology and distance traveled through the 

cave. The material becomes finer the further it travels through the cave due to mechanical breakage 

(point loading, abrasion, comminution, etc.). Water is the second requirement to change the 

material behavior to be more fluid and easier to mobilize. Material with 8% moisture content will 

generate moderate mobility, while 10% moisture content corresponds to high mobility. However, 

this is not applicable for coarser materials, which were shown by the test results to be significantly 

less affected by similar moisture contents.  

Combining their findings, Call & Nicholas Inc et al., (1998) classified a drawpoint as having the 

potential to generate a wet muck spill where the following criteria are met: 

1. Unsorted material with greater than 20% sand-sized particles (grain size < 2mm). 

2. Material must be at least 80% saturated or greater than 8.5% water content. 

3. Drawpoint toe must be loosely packed (less than 90% relative density). 

2.3.2 DOZ Wet Muck Studies 

As described by Casten et al. (2020), the DOZ mine was originally designed for a maximum 

production rate of 25 ktpd, but was gradually increased up to 80 ktpd between 2000 and 2010 

(Figure 2.6). Between 2011 and 2014, the mine experienced a series of strikes and government 

restrictions that resulted in production delays. This significantly reduced the production to 50 ktpd. 
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Throughout this period, the delays in production caused extraction and undercut level damage, 

which allowed the build-up and migration of wet muck within the caved zone.  

Spill frequency significantly increased from 2015 onwards due to the cave experiencing more 

saturation, which in turn led to an increasing drawpoint closure rate to maintain safety. Very large 

spills have also occurred with up to 6000 m3 total volume; these spills flowed beyond the exclusion 

gate with a total distance of up to 150 m (Edgar et al., 2020). For reference, these large spill 

volumes are comparable to the volume of the drawbells, which are approximately 6350 m3 

(Widijanto et al., 2012). 

 

Figure 2.6. Historical production between 2000 and 2019 vs. cumulative wet muck spills (Casten et al., 2020). 

Widijanto et al., (2012) classified DOZ sources of fragmentation into three types: 

1. Original fine or clayey material – Dominated by DOZ breccia rock types (HALO), marble 

or dolomite, and IOZ fine material. 
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2. Fine material from comminution processes – Coarse forsterite skarn, magnetite skarn, and 

forsterite-magnetite skarn are comminuted into fines after traveling 125 m through the cave 

and draw column. 

3. Coarse material – More competent rock such as diorite and endoskarn are comparatively 

more difficult to comminute, which requires a longer travel distance at approximately 225 

m for endoskarn and 325 m for diorite. 

Water sources mixing with these materials in the DOZ reflect those of the Grasberg Mining 

Complex, which is heavily affected by high rainfall with approximately 5,500 mm per annum 

(Putra, 2016; Ramadhan et al., 2015; Widijanto et al., 2012). There has been various evidence of 

surface catchments trapping water, which then flows down through the GBT cave that breaches 

the surface, into the IOZ cave underneath it, and then into the DOZ cave underneath the IOZ (see 

Figure 1.1). The water infiltrating the DOZ has been observed to increase over time as the DOZ 

cave breaches and expands into the bottom of the IOZ cave. This water also includes any 

groundwater entering the GBT and IOZ, in addition to the groundwater that directly infiltrates into 

the DOZ mine. 

2.3.3 DOZ Water Source Studies  

Rachmad et al. (2011) suggest that rainfall alone is not able to saturate the DOZ drawpoints. There 

is at least 30 to 50% water loss due to evaporation and surface run-off. Combining rainfall with a 

larger groundwater catchment area can accumulate water, which then might infiltrate and saturate 

a drawpoint directly underneath it within a few days. There have been observations during heavy 

rainfall periods of dry drawpoints changing to moist or wet drawpoints. 
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There are five major bedrock units and fault systems that can serve as groundwater sources 

potentially entering the DOZ mine: (1) diorite to the SW-SE of the EESS, (2) the West Fault Zone 

to the west of the EESS, (3) limestone on the northern side of the EESS, (4) the East Fault Zone 

along the east side of the EESS, and (5) the diorite/skarn/marble contact to the SE of the EESS 

(PT. Freeport Indonesia, 2017).  

Various tracer tests have been conducted using tracer dyes released from the surface at key areas 

around and within the overlying GBT-IOZ-DOZ subsidence zone. These show that the rate of 

rainwater percolation down to the DOZ extraction level has increased over time, changing from 

14 days in 2000, to 4 days in 2005 and 2007, and to 24 hours in 2011 (Widijanto et al., 2012). In 

2017, another tracer test was conducted at the DOM (District Ore Mine) valley targeting the 

fractured diorite block where ponding and infiltration of water were observed. It took 72 to 96 

hours for the dye to be detected at the DOZ drawpoints. The difference between the travel time is 

caused by the high variability of permeability of the caved material. Surface water is not only 

flowing vertically but also sub-laterally through the fractured diorite, which discharges at both 

drawpoints and dewatering holes. It was concluded that there is a hydraulic connection between 

the DOM area and the southern panel of the DOZ, which increases the wet conditions experienced 

at the drawpoints (PT. Freeport Indonesia, 2017). 

2.3.4 DOZ Fines Migration Studies  

In time, the mixture of water and broken rock tends to mix and form mud. Depending on the 

density and permeability of the mud, these zones can concentrate and form layers of mud in the 

middle of the caved zone. This phenomenon is called pack-muck, frozen muck, or stuck muck 

(Olua et al., 2015) and is sensitive to stops in mining. The longer operations are stopped and 



29 

 

mucking at the drawpoints delayed, the higher the possibility of pack muck developing in response 

to no movement inside the caved zone. Various mitigation techniques, such as minor blasting and 

using a water cannon, have been applied to remove pack-muck, but were unsuccessful and have 

reduced the DOZ total ore reserve over time. 

Geological mapping is conducted at individual drawpoints to track and record mined rock type, 

grain size, changes of rock type, wetness, and clay content. The DOZ northern area (i.e., EESS) is 

dominated by forsterite skarn, whereas the southern area (i.e., ESZ) is dominated by diorite and 

endoskarn (Olua et al., 2015). Between 2012 and 2015, there was a gradual increase in endoskarn 

(Esk) percentage in the southern diorite area, as well as marble (Mbl) in the northern area (Figure 

2.7). The EESS forsterite (Fo) is a white fine-grain-sized granular mineral (<5cm) and can easily 

be distinguished from the coarser (>5cm) diorite and endoskarn material. Assuming the material 

in the cave and draw columns moves vertically, the EESS material would be expected to only 

appear at the drawpoints underlying the EESS area, not the adjacent ESZ area. However, data from 

DOZ Panel 3 (Figure 2.8) shows that the forsterite (Fo) laterally migrated to the southwest and 

was recorded at the diorite dominant ESZ drawpoints (Haflil et al., 2014). Material migration can 

be defined as rilling, where material tends to migrate laterally along the gap between the cave back 

and the top of the broken ore draw column, with flow following the direction of cave advancement 

and mucking.  
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Figure 2.7. The dominant rock types mapped during the period 2012 – 2015 (Olua et al., 2015). 

 

Figure 2.8. Example of the EESS forsterite (Fo) migrating laterally and appearing at the Diorite (Dio) 

dominant drawpoints under the ESZ in DOZ Panel 3 (Haflil et al., 2014).  
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Slow cave propagation and larger fragmentation of the diorite in the southwest area of the DOZ 

contribute to slower vertical movement of diorite blocks. In contrast, the finer forsterite can move 

faster than the coarser diorite (Haflil et al., 2014; Soebari et al., 2013). With respect to draw 

management, previous wet and dry muck mixing protocols for material handling at 1:3 for moist 

drawpoints and 1:6 for wet drawpoints  (PT. Freeport Indonesia, 2015) has resulted in a higher 

extraction rate (tonnage drawn per day) at newer drawpoints in the coarser diorite area. In addition, 

various panel or drawpoint maintenance activities (e.g., spill cleanup, repair) and secondary 

fragmentation have forced operations to increase the mining rate in the southern drawpoint area in 

order to achieve production targets. These factors have resulted in the forsterite material migrating 

laterally towards the higher concentration of mucking at the southern drawpoints (Olua et al., 2015; 

Soebari et al., 2013). 

Water can also migrate laterally. Numerous wet drawpoints were mapped in the more mature and 

higher height of draw (HoD) drawpoints, which mostly consist of fine-grained clays. The evidence 

of clays in the northern area mixing with the uneven mining pattern has created pack-muck, 

blocking water flow towards the underlying drawpoints and accumulating and migrating towards 

the southern drawpoints (Olua et al., 2015). Wet muck conditions have required the southern 

drawpoints to be changed to remote loader operation to safely manage wet muck spill hazards. The 

first visual evidence of a spill event in the southern part of the DOZ mine that was recorded in 

2013 and involved 10-15% EESS forsterite skarn material (Haflil et al., 2014) (Figure 2.8). Since 

then, numerous spill events have occurred in the vicinity, which continuously spread throughout 

the southern DOZ.  
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Furthermore, Ramadhan et al. (2015) considered the Fractured Diorite Zone (FDZ), which is 

located above the DOZ, capable of trapping and accumulating large amounts of water. When 

combined with Rock Quality Designation (RQD) values of less than 30% - 50%, and therefore 

potential to generate fines, these characteristics can act to trigger massive water and wet muck 

inrush into the DOZ.  

2.3.5 DOZ Drawpoint Response Studies  

A study by Rachmad et al. (2011) analyzed a spill event from a drawpoint that had last been 

classified as being fine and dry; the adjacent drawpoint from the same drawbell was mapped as 

coarse and wet (Figure 2.10). The sudden change of the drawpoint moisture content leading to the 

spill event was attributed to the near 100% depletion of the overlying DOZ draw column, with 

material from the IOZ and GBT appearing at the drawpoint toe. Given the high HoD this 

represents, the draw column was assumed to connect to the surface. Water might directly infiltrate 

from the surface to the drawbell within a few days, but not immediately, especially considering 

the preferred flow path would be through the coarser material of its adjacent drawpoint, which was 

wet. The spill drawpoint had no recorded mining activities for the previous 19 days, which would 

serve to consolidate the material above the drawpoint and possibly alter the flow paths, changing 

pockets of dry material to moist or wet. This introduces the possibility that the spill event was 

caused by static liquefaction due to pore pressure change, where liquefaction is a failure 

mechanism that can occur when saturated soils are subjected to static or dynamic loading (Taiebat 

et al., 2007). The buildup of pore pressure would result in material softening and sudden loss of 

effective shear strength, transforming the material to a viscous liquid and mobilizing it as a spill 

event. 
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Figure 2.9. Example of a wet muck spill with the unique condition of coarse and wet and fine and dry adjacent 

drawpoints belonging to the same drawbell (Rachmad et al., 2011). 

2.3.6 DOZ Uniformity Index Studies 

Uneven or isolated draw, defined as mucking activities concentrated at a drawpoint with limited 

or no mucking at the adjacent drawpoints, is a challenge at many cave mines (Butcher et al.,2000). 

This is especially true for the DOZ mine due to the heterogeneous rock mass conditions and 

different cave-ability rates between the skarn and diorite areas, which can lead to an isolated draw 

condition (Haflil et al., 2014; Olua et al., 2015; Soebari et al., 2013). An isolated draw will create 

a funnel for fines to migrate to the drawpoint. In doing so, it will create differential porosity and 

preferential water migration towards the adjacent least mucked drawpoints (Figure 2.11).  
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Figure 2.10. Example of isolated draw at the center drawbell causing water to migrate to the coarser drawpoint. 

The significant difference in tonnages drawn from drawpoints in the vicinity of one another over 

a given time period can be quantified using the Uniformity Index (UI), which was first developed 

by Susaeta (2004) to control dilution at the El Teniente mine in Chile and was based on a layout 

with six neighboring drawpoints. It was trialed at the DOZ mine to monitor draw uniformity. 

Several drawbacks were observed by Rachmad (2016), who proposed using a Specific Index of 

Uniformity (SPUI), where a completely uniform draw has a value of 0 and a completely isolated 

draw has a value of 1. The formula developed is summarized in Equation 2.1.  
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Equation 2.1. Uniformity Index Formula (Susaeta, 2004) 

: 

Δ:  number of inactive draw points in the drawpoint vicinity 

r:  factor of normalization, equal to 99/89 

tp  tonnage extracted from drawpoint p under analysis, in a specific period of time 

ti:  tonnage extracted from drawpoint i belonging to the drawpoints inside the radius of 

influence in the same period of time 

tmax:  maximum tonnage extracted inside the radius of influence in the same period of time 

tmin:  minimum tonnage extracted inside the radius of influence in the same period of time 

n: number of drawpoints inside the radius of influence 

2.3.7 DOZ Drawpoint Classification Studies 

Call & Nicholas Inc et al., (1998) found that loose packed, unsorted material with 20% sand-size 

particles and saturation at 80% is the predominant cause of wet muck spills. This led to the 

development of a wet muck drawpoint classification system based on grain size and moisture 

content at the loose toe of the drawpoint. This classification was categorized into six different 

classes from A to F (coarse dry to fine wet) and formed the basis for the classification system 

implemented by PTFI for the DOZ in 2000 (Table 2.1). 
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Between 2008 and mid-2018, PTFI added three middle wet muck classifications considering 

medium size material. The classification system categorized each drawpoint by visual observation 

and sampling on grain size and water content (Widijanto et al., 2012). Illustrations of each 

drawpoint classification are shown in Figure 2.12. This system determined the risk, loader type, 

and level of supervision necessary, as shown in Table 2.2. By the end of 2018, there were no drier 

drawpoints available at the DOZ mine, and this caused the operation to switch to mining all panels 

using remote LHDs (Edgar et al., 2020).  
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Table 2.1. Wet muck drawpoint classification developed for the IOZ and early DOZ (Modified from Samosir 

et al., 2008). 

Engineering Class Operational Class 

A: Coarse Dry 
70% or higher coarse 
fragmentation (>50mm) 
and moisture content 
less than 8.5% 

AL: Any Loader 
No supervision, even 
draw and check twice 
a week for a change B: Fine Dry 

30% or higher fine 
fragmentation (<50mm) 
and moisture content 
less than 8.5% 

C: Coarse Wet 
70% or higher coarse 
fragmentation (>50mm) 
and moisture content 
between 8.5% - 11% 

RL: Remote Loader 
Required supervision 
to set up loader, draw 
at least six buckets per 
shift, and check each 

shift 

D: Coarse Very Wet 
70% or higher coarse 
fragmentation (>50mm) 
and moisture content 
greater than 11% 

E: Fine Wet 
30% or higher fine 
fragmentation (<50mm) 
and moisture content 
between 8.5% - 11% 

F: Fine Very Wet 
30% or higher fine 
fragmentation (<50mm) 
and moisture content 
greater than 11% 
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Figure 2.11. Photo examples of each drawpoint classification at the DOZ mine (modified from PT. Freeport Indonesia, 2014).
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Table 2.2. PTFI drawpoint wet muck classification system (Modified from Widijanto et al., 2012). 

Wetness / Water Content 
Grain Size (M) > 5 cm 

M ≥ 70% 
(Coarser Grain) 

 70% ≥ M ≥ 30% 
(Medium Grain) 

M ≤ 30% 
(Finer Grain) 

Dry (< 8.5%) A1 B1 C1 
Moist (8.5% - 11.0%) A2 B2 C2 
Wet (> 11%) A3 B3 C3 

    
Green : Any Loader  
Yellow : Any Loader with Close Supervision 
Red : Remote Loader  

 

The above classification led to the empirical wet muck risk scoring system that is currently used 

at the DOZ operation (Table 2.3). Through experience and historical data, the six contributing 

factors shown in Table 2.3 were identified as contributing to wet muck risk for each individual 

drawpoint. The isolated drawpoints factor, refers to as inactive or not mucked drawpoint within 24 

hours, considers up to nine drawpoints near the drawpoint in question, as shown in Figure 2.13. 

The sum of neighbouring drawpoints that are considered isolated is then categorized as minor, 

moderate or significant, as shown in Table 2.3. The total risk score is based on a weighted sum, as 

shown in Equation 2.2 The results of the calculation are categorized as low, medium or high risk, 

and colour-coded accordingly to aid visualization using a daily wet muck risk map. The weighting 

factors are based on DOZ wet muck experience. The wet muck risk matrix enables the operation 

to estimate the likelihood of large spills from a drawpoint (Edgar et al., 2020). Other factors, such 

as rainfall, seismicity, and tonnages, are not considered in this system, but are still continuously 

monitored. 
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Table 2.3. Wet muck risk matrix currently used at the DOZ Mine (Modified from Edgar et al., 2020). 

Contributing Factor (CF) 
Range (R) Weighting 

Factor 
(WF) 

   
Minor 

(1) 
Moderate 

(2) 
Significant 

(3)  
Category Total Risk 

Score 

Drawpoint Class A1, B2, 
B1, C1 A3 B2, B3, C2, 

C3 30% 
 

Low Risk 0 - 1.5 

Total Spill Frequency  
(Since Drawpoint Opened) < 10 11 - 20 > 20 20% 

 
Medium 
Risk 1.6 - 2.0 

Isolated Drawpoints (DP) < 1 2 - 5 6 - 9 20%  High Risk 2.1 - 3.0 

Biggest Spill Volume (m3) < 500 500 - 100 > 1000 10%    
Longest Spill Distance (m) < 75 75 - 150 > 150 10%    

HoD (m) < 100 100 - 200 > 200 10%    
 

Equation 2.2. The DOZ Mine total risk score  

 

 

Figure 2.12. The current DOZ mine influential drawpoints (red dots) for wet muck spill observation from the 

observed drawpoint (yellow star).  
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In addition to the wet muck risk matrix, various mitigation strategies to reduce wet muck spills 

have been implemented throughout the DOZ operation (Edgar et al., 2020; Putra, 2016; Widijanto 

et al., 2012). These strategies include: 

1. Wet muck drawpoints are mucked with remote loader to minimize personnel exposure.  

2. Permanently closed wet muck drawpoints are sealed with a concrete wall to withstand long-

term loading. Temporarily closed drawpoints are secured with 100 m of fibrecrete on the 

drawpoint toe. Plastic drain pipes are installed to minimize water accumulation.  

3. After a spill has occurred, a 24-hour exclusion zone is employed within the influence area 

(the nine adjacent drawpoints, as per the wet muck risk matrix) until inspection and the 

drawpoints are declared safe to continue mining activities. 

4. Wet muck drawpoints require a 170 m stand-off distance for personnel after mucking for 

a minimum of 24 hours. 

5. Restrictions on mined tonnages are applied based on the level of drawpoint risk. High-risk 

drawpoints are only allowed to have a maximum of 9 buckets per shift, increasing to 17 

buckets per shift for medium-risk drawpoints and 27 buckets per shift for low-risk 

drawpoints. 

6. Mining activities such as mucking and secondary blasting for drawpoints closed because 

of high risk must use remote and automated equipment. 

7. Continuous dewatering is used within the periphery of the DOZ cave, with more than 300 

drainage holes intercepting groundwater and reducing water pressures. 

8. Rainfall monitoring with a 20mm/day threshold is used for early detection of water entering 

the caved zone, potentially changing the drawpoint class. 
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2.4 Experiences of Wet Muck Spills at Other Block and Panel Cave Mines 

2.4.1 El Teniente Mine, Chile 

The El Teniente Mine, located in the Andes of central Chile, is the world's largest copper-

molybdenum mine and one of the largest underground mines in the world. There are several 

operating sectors within the El Teniente mining complex (Figure 2.14): Diablo Regimiento Mine, 

Reservas Norte Mine, Block-1 Esmeralda Mine, Pipa Norte Mine and Sur Andes Pipa Mine. These 

operations have been impacted by wet muck spills over the past two decades (Castro et al., 2018). 

 

Figure 2.13. The El Teniente mining complex (Castro et al., 2018). 

The success rate of the current mitigation strategies for wet muck spills at El Teniente is still 

unknown. Draw control restrictions and drawpoint closure due to wet muck conditions have 

severely impacted the operations while progressively spreading wet muck into neighboring 
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drawpoints (Castro et al., 2018; Navia et al., 2014). It is known that the accumulation of water and 

stress conditions can increase pore pressure and cause mud material to fluidize. Three triggering 

mechanisms can be summarized as follows (Valencia et al., 2016):  

• Static mechanisms: increase in pore pressure and/or sudden increase of stress due to collapse 

of arches above or within a drawbell.  

• Dynamic mechanisms: mostly caused by disturbance, for example, secondary fragmentation 

efforts (blasting) and/or seismic activity. 

• Water as a movement force: increase in water content will change mud properties, resulting in 

a more fluid-like material.  

Various research has been conducted to systematically understand wet muck entry modes and ore 

geomechanical and geotechnical properties. The first attempted wet muck entry research was 

carried out by Navia et al. (2014) using a historical extraction database at the Diablo Regimiento 

Mine. They concluded that height and uniformity of draw are the main variables controlling wet 

muck entry. Castro et al. (2018) identified two wet muck entry modes at drawpoints: vertical entry 

and lateral entry (Figure 2.15). In the vertical entry mode, as cave material is extracted, the cave 

back continuously propagates to the surface, creating a channel for potential mud forming material 

and water to flow vertically to the ore column and appear at the drawpoint. In the lateral entry 

mode, extraction of ore in the vicinity of wet muck drawpoints allows wet muck to spread 

horizontally into the neighbouring drawpoint. Multivariate logistic regression approaches were 

used by Castro et al. (2018) to estimate the presence or absence likelihood of wet muck entry based 

on a series of risk variables, including: extraction rate, the presence of a topographic gutter, and 
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neighbouring drawpoint wet muck conditions. Wet muck entry generally occurs when a drawpoint 

is located underneath a topographic gutter, is over-drawn, and located in a wet muck area. 

 

Figure 2.14. Schematic cross-section showing wet muck entry modes at Diablo Regimiento Mine. Blue arrow 

shows a vertical entry and red arrow shows a lateral entry (modified from Castro et al., 2018). 

To define ore geotechnical characteristics and geomechanical behavior, three types of mud ore 

samples are taken from “critical risk” drawpoints in the Diablo Regimiento Mine. Mud ore is a 

semi-saturated fine-grained material, where its void ratio and porosity are uncertain due to the 

constant density changes caused by ore flowing inside the caved zone until it reaches the drawpoint 

(Castro et al., 2017). The mud ore is sampled based on its color, where grey mud is associated with 

sulphide ores, and yellow mud is associated with oxide ores (Vallejos et al., 2017). Consolidated 

Undrained (CU) and Unconsolidated Undrained (UU) triaxial tests were conducted by Vallejos et 

al. (2017) at the Universidad de Chile laboratory with two extreme cases of wet muck consolidation 

before failure. The CU tests simulated a low extraction rate, where ore can consolidate and 

dissipate excess pore pressure. The UU tests simulated a high extraction rate, where the rapid loss 

of confinement can result in undrained failure. The mud ore types from the Diablo Regimiento 

Mine only liquefied in UU conditions, meaning wet muck spills are more likely to occur under 

high drawing rates that loosen the drawpoint material and result in low stress and consolidation. 
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Also, the porosity of ore will increase, increasing pore pressure due to water accumulation 

(Vallejos et al., 2017). Comparing the three mud ore geomechanical properties, sulphide mud ore 

is more prone to flow with lower water content, at 11%, compared to other mud ore. Therefore, a 

critical risk drawpoint occurs when the drawpoint toe water content exceeds 11% (Table 2.4).  

Table 2.4. Drawpoint classification matrix at El Teniente cave mines (Modified from Becerra, 2011). 

Moisture Content 
Material Size (M ≤ 25 cm) 

M < 30%  
(Coarse Material) 

30% ≤ M < 70% 
(Medium Material) 

M ≥ 70% 
(Fine Material) 

< 4%       
4% - 7%       

7% - 10%       
≥ 10%       

    
  Normal Condition  
  Mud Observation  
  Critical Risk   

2.4.2 Palabora Mine, South Africa 

The Palabora Mine, located in South Africa, is a deep, hard rock block cave copper mine that is an 

extension of a depleted open pit operation above it. The first block cave lift (Lift 1) was the first 

block cave expansion at 400 m below the bottom of the open pit. Lift 2, located 450 m below 

Lift 1, is in its ramp-up stage (Paetzold et al., 2020). Both lifts utilize the same underground 

conveyor infrastructure, linked by an inclined conveyor system for material handling to the 

surface. The main conveyor connecting to four underground crushers was heavily damaged in a 

fire incident in July 2018, which caused fatalities and completely stopped the operation for ten 

months. Potential inrush risks were identified, where dry and wet muck spills might occur once 

mining in Lift 1 is recommenced (Paetzold et al., 2020).  
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An increased rate of dry and wet inrushes was identified during the nine-month restart period and 

reduced the production tonnage, where Lift 1 produced a monthly average of 800,000 tonnes 

before the incident and 460,000 tonnes after the incident. It is hypothesized by Paetzold et al., 

(2020) that operation suspension allowed water to accumulate in the cave, which mixed with fine 

material during cave restart. However, this hypothesis cannot be proven due to the limited 

available data in the caved zone. 

2.4.3 Kimberley Mine, South Africa 

The Kimberley Underground Mine, located in South Africa, consists of three cave mines: 

Dutoitspan, Bultfontein, and Wesselton. Unlike the previous case studies, the Kimberley 

underground cave mine is a diamond mine operation where the kimberlite host rock is weak and 

generates more fines. Holder et al. (2013) investigated a mud push at the Dutoitspan mine in 

November 2011 (Figure 2.16). It was fortunate that a mud push occurred instead of a mud rush, 

which travels at higher velocities. Well-trained personnel also reacted fast to the event, resulting 

in no fatalities. Several key contributing factors were identified, including poor drainage control, 

accumulation of water at a surface catchment, waste and/or dilution entry at a nearly depleted 

drawpoint, and the drawpoint condition.  
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Figure 2.15. Mud push event at the Dutoitspan Mine (Holder et al., 2013). 

The Kimberley Underground Mine implemented a mud rush risk scoring system for each 

drawpoint, consisting of the following factors: surface water ingress into the cave, underground 

water ingress into the cave, drawpoint moisture condition, drawpoint waste percentage, drawpoint 

depletion, three-month moving average draw control, drawpoint damage status, drawpoint 

condition, and hang-up status. Each risk score was empirically derived using engineering judgment 

to assign values to each variable based on the observed conditions. The outcome of the model 

classified drawpoints into low, moderate, high, and very high risk and has shown good correlations 

based on ten years of data. Further detail on Kimberley Underground Mine mud rush scoring 

system can be found in Holder et al., (2013) 
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2.5 Summary of Literature Review 

A review of documented experiences at several operating cave mines was carried out to identify 

the potential causes and triggers of wet muck spills. Key findings, which informed the subsequent 

work described in Chapters 3 and 4, are summarized in this section. 

The majority of cave operations have identified that wet muck (i.e., loosely packed, fine grained 

and highly saturated material) is a key factor leading to spill events. The wet muck condition of 

adjacent drawpoints is also an important factor to be considered. Where low porosity material 

prevents water from flowing out from a drawpoint, accumulated water in the drawbell can 

discharge to a drawpoint with a higher void ratio or porosity. 

The presence of fine grain-sized material is a function of geology and comminution through the 

caved zone. Increasing draw column height influences secondary fragmentation, resulting in finer 

material at the drawpoint toe. Furthermore, higher fine materials and water inflow are to be 

expected once the draw column connects to the surface or overlying caves. Various evidence of 

dilution entry also can be observed at nearly depleted and over-extracted drawpoints.  

Accumulation of rainwater in the surface catchment, operating in high rainfall areas, trapped water 

in the overlying caves, and groundwater has been identified as the main water source entering the 

caved zone. Rainwater run-off may or may not enter the caved zone due to evaporation, water 

movement, and absorption into cave material. Breakthrough to overlying caves or the surface 

increases cave saturation through the infiltration of trapped water and can create a channel for 

future water inflow.  
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Non-uniform draw is largely unavoidable because of temporary mucking suspensions caused by 

various operational challenges. Although the timeframe of non-uniform draw consequences is 

unknown, a non-uniform draw can accelerate the wet muck formation through changes in the cave 

stress. In addition, early dilution entry can also be seen at uneven draw drawpoints. 

Drawpoint mucking activity is a critical parameter that disturbs the drawpoint condition, loosens 

the drawpoint material, and causes dynamic liquefaction of material, transforming it into a viscous 

liquid and mobilizing it as a spill event. The porosity of the drawbell is also increased, creating a 

void inside the drawbells and preferential flow paths for wet muck material to migrate. Wet muck 

can migrate either laterally, vertically, or a combination of both. In addition, material migration 

can cause wet muck pockets to fluidize and flow to nearby actively mucked drawbells. However, 

mucking suspension in the wet area footprint can also lead to muck consolidation and migration 

to the surrounding adjacent drawbells. 
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Chapter 3: Wet Muck Database Compilation and Exploratory Analysis 

A wet muck database was compiled consisting of a historical archive of PTFI DOZ wet muck data, 

including spill locations and operational activities that are associated with potential wet muck 

causative and triggering factors. This chapter details the process of creating the wet muck database, 

including the workflow, filtering of useable variables, exploratory analysis, and data pre-

processing. Limitations of the dataset are also discussed. The different factors and variables 

considered important to wet muck spill susceptibility are presented. Definitions of the selected 

variables are provided in Appendix A. Detailed results of the exploratory analysis are provided in 

Appendix B. 

3.1 Database Development 

3.1.1 Data Sources 

The wet muck database was developed based on daily data recorded by PTFI for all 1,347 

drawpoints at the DOZ mine between January 2008 and June 2019. An early version of the 

database was initiated in 2018 as part of my M.Eng. project, which included a preliminary 

summary of lessons learned from wet muck spills at the DOZ mine and a preliminary analysis of 

potential correlations between spills and rainfall, tonnages, and drawpoint conditions (Varian, 

2019). This database was extended to include new data related to wet muck spill causative and 

triggering factors.  

Raw data to build the new database were provided by PTFI representatives; because the data 

requests evolved as new knowledge and understanding were gained, these requests were recorded 
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in a spreadsheet for tracking purposes. These data were transferred through a secure PTFI-UBC 

Sharepoint online portal to protect data confidentiality. If any data or reports received were 

corrupted, included errors, or did not match the request description, these data were re-requested 

from PTFI. Additional data were obtained from a site visit conducted in October 2019. The final 

database covers the period between 2008 January and 2019 June and consists of 5,656,053 daily 

drawpoint records, including 1,853 total spills that occurred from 374 drawpoints. A summary of 

the data is provided in Table 3.1. 

Table 3.1. Datasets and supporting documents received from PTFI. 

Received Dataset Supporting Documents 

Wet Muck Spill (2005 – 2019) Wet muck spill reports (2016 – 2019) 

Monthly height of draw (2000 – 2019) Weekly geoengineering reports 

Monthly extraction ratio (2005 – 2019) PTFI internal reports and presentation on 

wet muck spills at DOZ and GBC 

Daily tonnages (2000 – 2019) Previous research on wet muck spills 

Daily rainfall (2005 – 2020) Sample of DOZ daily draw order 

Daily drawpoint classification n/a 

DOZ and IOZ cave footprint n/a 

Surface topography (2017 - 2019) n/a 

Water discharge from drawpoint (2012 - 2020) n/a 

DOZ drawpoint material hydraulic conductivity 

(2012 – 2020) 

n/a 

DOZ seismic database n/a 

DOZ drawpoint hang-up status (2016 – 2019) n/a 

DOZ drawpoint geology mapping (2001 – 

2020) 

n/a 
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3.1.2 Data Quality Check 

For each drawpoint spill incident, PTFI produces a wet muck spill report that includes the spill 

location, time, total number of buckets drawn during the shift, spill class, and drawpoint class. 

These reports were used to carry out a quality check of the wet muck spill data by manually 

comparing the data records to the corresponding 2016 to 2019 wet muck spill reports to ensure 

consistency. In addition, missing drawpoint classification records were assumed to have similar 

conditions from the previous day. Wet muck spill records with errors or missing key identifiers 

were removed from the study database. For example, a spill event recorded as “multiple spills” 

triggered at a set of surrounding drawpoints was removed because its origin was not identified. 

Once the data quality check was completed, it was assumed that the dataset was sufficiently 

accurate for the purposes of statistical analysis. 

Mapped data on water flow, drawpoint rock distribution, and rock fragmentation size were not 

included in the present study database because these datasets were incomplete (e.g. due to the 

inability of personnel to access wet muck panels). However, these variables are likely important 

factors related to wet muck susceptibility and could be considered in future work.  

3.1.3 Data Challenges and Limitations 

The observational datasets, such as those derived from drawpoint mapping, are often prone to 

human biases (e.g., subjectivity) or limited by the impracticality of collecting data on a daily basis. 

The drawpoint mapping dataset consists of wet muck classification, mineral distribution, rock 

fragmentation, and water discharge. Drawpoint mapping activities are often conducted on a weekly 

basis and up to monthly, depending on the drawpoint availability for inspection. For example, due 
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to safety risks, personnel are not allowed to enter areas that are susceptible to a wet muck spill. 

Since most of the DOZ footprint is saturated and susceptible to wet muck spills, delays in 

drawpoint mapping led to inconsistencies and repetition in the datasets where previously mapped 

values are carried forward in the data record. 

Other key challenges that affect the data quality include:  

• Continuous mucking activity can cause the drawpoint classification to change to a worse 

class, but it is not always feasible to keep track of these changes due to operational 

constraints in the mapping frequency. 

• Historical wet muck spills prior to 2016 have no supporting documents (e.g., spill reports, 

weekly geoengineering reports) for quality checking. In addition, in the absence of specific 

information, wet muck spills were assumed to originate only from single drawpoints.  

• The spill class can differ from the drawpoint class, as run-out material can originate above 

the drawpoint toe (i.e., from areas that cannot be observed). The wet muck classification 

in the present study was based on the mapped drawpoint class unless other information was 

provided.  

• Most of the inaccuracies in the pre-2016 data were caused by infrequent and non-

systematic database updates.  

3.2 Data Pre-processing 

Once inconsistencies in the raw data were filtered, potential wet muck susceptibility variables were 

identified for further exploratory and detailed analysis. In total, 177 variables were identified. All 

of the variables are described in Appendix A.  
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3.2.1 Spatio-Temporal Data Manipulations 

3.2.1.1 Spatial Data Manipulation 

Wet muck formation in response to the cave development is largely influenced by the spatial 

movements of fines and water inside the cave. These cannot be observed directly, and instead, the 

corresponding spatial responses and interactions between neighboring drawpoints are analyzed 

using a radius of influence relative to each drawpoint. It is noted that the DOZ footprint is not 

symmetrical, as the spacing between minor pillars is approximately 18 m, the spacing between 

major pillars is approximately 20 m, and the spacing between drawpoints within the same drawbell 

is approximately 12 m. To capture this potential range, a multiplier of 12 m was used up to a 

maximum radius of 48 m around each drawpoint. Scenarios involving the nearest five and nearest 

seven drawpoints were also considered. Testing of radii greater than 48 m introduced too much 

noise into the spatial data. 

3.2.1.2 Temporal Data Manipulation 

The analysis of wet muck accumulation in the caved zone requires the identification of temporal 

patterns. Variables derived from tonnages (adjacent tonnages, differential tonnages, uniformity of 

draw, drawpoint mucking activities, adjacent drawpoint mucking activities, consecutive drawpoint 

mucking activities) and rainfall were temporally manipulated with lagging periods including one 

day, two days, three days, seven days, 14 days, 21 days, and 28 days. “Current day” data were 

excluded for the following main reasons: 

1. When a spill occurs, the drawpoint mucking tonnage and clean-up spill tonnage are not 

always separated. 
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2. Daily data are not always readily available. 

3.2.2 3D Mine Geometry Data 

The Mira Geoscience software package (GoCAD and Geoscience Analyst), Maptek, and 

AutoCAD were used to process the LiDAR and DXF data for the mine footprint geometry. Added 

to this information were the IOZ wireframe and yearly subsidence profiles above the DOZ mine 

between 2017 and 2019. The distance from each drawpoint to the IOZ horizon and surface was 

also processed using these software packages. 

3.2.3 Data Transformation 

Prior to data transformation, the database was split into a training and testing dataset. Details of 

the training-testing split are described in detail in Chapter 4. The split followed an 86:14 ratio of 

training to testing data, respectively. The training dataset covers the period 2008 to 2015, while 

the testing dataset covers the period between 2016 and June 2019. Three distinct data types are 

included in the wet muck database: numerical, categorical, and ordinal data types. Each of the data 

types was processed differently prior to the analysis presented in Chapter 4, as described below. 

3.2.3.1 Numerical Data 

Numerical data is measured/recorded either as a continuous variable through time or as a discrete 

value at a given point in time. The value of each numerical variable was standardized to prevent 

biases that would otherwise be introduced when using variables with different units and/or scales 

(Scikit Learn, 2021a). Standardizing the numerical variables results in the data mean (µ) being 



56 

 

equal to 0, with a standard deviation from the mean (σ) of 1. The standardization score, or z score, 

can be calculated with Equation 3.1, where x is the original value.  

Equation 3.1. Standardization z score formula 

𝑧𝑧 =
𝑥𝑥 − µ 

σ  

The standardization process utilized training data to calculate each numerical dataset mean and 

standard deviation. The testing datasets were also standardized based on the mean and standard 

deviation calculated from the training data. 

3.2.3.2 Categorical Data 

Categorical data is often represented in words or non-ordinal numerical values containing multiple 

classes. Each class is required to be converted into a machine-learning readable format. The 

presence or absence of wet muck spill (response variable) was indicated using a binary code, where 

presence is indicated by a value of 1 and absence is indicated by a value of 0. A similar approach 

was adopted for predictor variables that are represented by two classes. Multiple class predictor 

variables that have no ordinal relationship were encoded using “one-hot encoding”, in which a 

binary column is created to represent each class (Scikit Learn, 2021b). One-hot encoding removed 

the categorical variable and transformed it into one new binary variable for each unique category 

in the variable. 
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3.2.3.3 Ordinal Data 

Ordinal data is a type of data that has a natural rank order with an unknown distance between each 

rank. A number is assigned to each class based on its rank. The ordinal dataset is not standardized 

as it will not affect the statistical model due to its low-value range (e.g., the total number of wet 

muck drawpoints range between 0 and 24 drawpoints at a 48m sampling radius). 

3.3 Data Exploration and Descriptive Statistics 

3.3.1 Overview 

The statistical model development is an iterative process that begins with Exploratory Data 

Analysis (EDA). The EDA aims to screen, identify, and select relevant variables to be used in the 

statistical models. The HoD, extraction ratio, tonnages, and UI were initially plotted over time 

using an animation format to visually identify patterns of these variables with historical wet muck 

spills. Then, the distribution of wet muck spills corresponding to each variable in the study 

database was plotted (e.g., Figure 3.1 shows the distribution of wet muck spills corresponding to 

each drawpoint class). Although initially developed, the severity of each spill was not included in 

the EDA or statistical model, as it was not the focus of this study. 
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Figure 3.1. Distribution of wet muck spill events corresponding to each drawpoint class for the period 

January 2008 to June 2019. 

3.3.2 Results 

The results of the EDA are provided in Appendix B. The following sections summarize the main 

findings from the EDA. 

3.3.2.1 Wet Muck Spill Frequency 

The frequency of wet muck spills was observed to increase as the DOZ mine and cave matured. 

This increase in frequency corresponds with the increasing presence of fines and wet materials 

detected at the drawpoints. An increase in significant spill events started between the 2015 and 

2016 period, in parallel with the increased reporting of wet muck drawpoints (Figure 3.2). There 

were 402 spills between 2008 and 2015, compared to 1,451 spills between 2016 and June 2019. 

This increase also resulted in more than 100 drawpoints being closed since 2016.  
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Figure 3.2. Monthly wet muck spills at DOZ vs. total number of active drawpoints. 

3.3.2.2 Drawpoint Classification 

The drawpoint mapping data considers nine drawpoint classes for active drawpoints and ten 

drawpoint classes for adjacent drawpoints. For drawpoints that experience a spill event, the 

drawpoint class used in the database was the mapped drawpoint class prior to the spill. This means 

a spill classification can be different from the drawpoint classification. The data exploration shows 

that a majority of wet muck spills occurred at wet muck drawpoints, mostly drawpoint classes B3 

and C3 (Figure 3.1). Observing the adjacent drawpoints, spills often occurred when the adjacent 

drawpoints experienced wet muck (mostly B3 and C3) or were closed (Figure 3.3). Therefore, both 

variables (drawpoint class and adjacent drawpoint class) are considered to be significant 

explanatory variables. 
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Figure 3.3. Distribution of DOZ wet muck spill events corresponding to adjacent drawpoint class for the 

period January 2008 to June 2019. 

3.3.2.3 Total Number of Wet Muck Neighbors 

The occurrence of wet muck spill events was observed to correlate with neighboring drawpoints 

reporting wet muck, regardless of using a 24 m, 36 m, or 48 m radius zone of influence (Figure 

3.4, Figure 3.5, and Figure 3.6). There is an upward trend with these radii, where wet muck spills 

tend to increase with an increasing number of wet muck neighbors. These variables are 

hypothesized to be strong explanatory variables in the statistical models.  
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Figure 3.4. The DOZ mine spill frequency between January 2008 and June 2019 based on the total number of 

wet muck neighboring drawpoints within a 24-meter radius. 

 

Figure 3.5. The DOZ mine spill frequency between January 2008 and June 2019 based on the total number of 

wet muck neighboring drawpoints within a 36-meter radius. 
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Figure 3.6. The DOZ mine spill frequency between January 2008 and June 2019 based on the total number of 

wet muck neighboring drawpoints within a 48 meter radius. 

3.3.2.4 Height of Draw and Extraction Ratio 

The distribution of HoD data generally ranges between 170 m and 350 m (Figure 3.7). 

Breakthrough of the DOZ mine to the overlying IOZ restricted most of the draw column heights 

to approximately between 225 m to 300 m (Figure 3.7), although drawpoints within the IOZ 

boundary reached between 350 – 750 m. The DOZ drawpoints outside of the IOZ cave footprint 

reached more than 350 m and up to 750 m. Although this causes a skewed dataset that does not 

show a linear trend for the logistic regression input, HoD is still a significant variable, showing a 

trend between 170 m – 350 m, and therefore it was tested in the statistical analysis. The adjacent 

HoD shows similar trends, with drawpoint HoD data ranging between 125 m and 300 m (Figure 

3.8). The extraction ratios for both the individual drawpoints (Figure 3.9) and adjacent drawpoints 

(Figure 3.10) show a linear relationship with spills, where most spills tend to occur as drawpoints 



63 

 

reach depletion. Differences between drawpoints sharing the same drawbell were also developed, 

but no correlation could be identified, with spills mostly occurring between ± 25 m to ± 50 m for 

differential HoD (Figure 3.11) and -0.2 to 0 for differential extraction ratio (Figure 3.12). The DOZ 

HoD values as of June 2019 are shown in Figure 3.13. 

 

Figure 3.7. The DOZ mine HoD distribution at spill drawpoints between January 2008 and June 2019. 

 

Figure 3.8. The DOZ mine Adjacent HoD distribution at spill drawpoints between January 2008 and June 

2019. 
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Figure 3.9. The DOZ mine Extraction Ratio distribution at spill drawpoints between January 2008 and June 

2019. 

 

Figure 3.10. The DOZ mine Differential HoD distribution at spill drawpoints between January 2008 and June 

2019. 
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Figure 3.11. The DOZ mine Adjacent Extraction Ratio distribution at spill drawpoints between January 2008 

and June 2019. 

 

Figure 3.12. The DOZ mine Differential Extraction Ratio distribution at spill drawpoints between January 

2008 and June 2019. 
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Figure 3.13. The Height of Draw (HoD) at the DOZ Mine as of June 2019. 
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3.3.2.5 Tonnage 

The daily tonnage datasets are often combined with spill clean-up, where clean-up activities can 

be started as soon as it is safe for the LHD to enter the panel. Depending on the spill volume, clean-

up can be completed within the same day. This will likely dilute the dataset, as tonnage drawn on 

spill days includes the clean-up tonnage. Therefore, the temporal manipulation of the drawpoint 

data considered data from the previous day. 

The distribution of tonnages shows a non-relationship with wet muck spill occurrences (Appendix 

B). Increasing draw rates at any given period did not show an uptrend relationship with wet muck 

spills. However, if tonnage data were converted into a categorical format, a clear relationship can 

be seen between 0 and 50 tonnes and greater than 250 tonnes per 2 days (eg., Figure 3.14, or refer 

to Appendix B for detailed results). This might indicate that wet muck spills can occur at any active 

drawpoint that is over- or under-drawn. Although operational experience indicates that spills 

occurred when adjacent drawpoints were drawn, the draw rates at adjacent drawpoints did not 

show a relationship with wet muck spills.  In addition, no correlation could be identified when 

analyzing differences between tonnages drawn from the two drawpoints that share the same 

drawbell. 
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Figure 3.14. The DOZ Mine two days cumulative tonnages distribution at spill drawpoints between January 

2008 and June 2019. 

3.3.2.6 Mucking 

A mucking dataset, with a value of 1 representing a draw of over 10 tonnes (approximately 

1 bucket) per day and a value of 0 representing a draw of less than 10 tonnes per day, was generated 

for both drawpoints and adjacent drawpoints. It was observed that wet muck spills often occurred 

at drawpoints that were actively drawn during any given period. The higher the temporal period, 

the higher the number of spills recorded at the mucked drawpoints (e.g., Figure 3.15 and Figure 

3.16, or refer to Appendix B for detailed results). However, this correlation can be misleading 

because the drawpoint might not be mucked consecutively over the given period. In compiling the 

dataset, mucking was designated as being present if the drawpoint was mucked at least one time 

during the specified period. This results in a higher presence of mucking when longer periods are 

considered. To address this deficiency, a consecutive mucking term was developed, defined as two 

consecutive days with mucking; this term shows a correlation with wet muck spills (e.g., Figure 
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3.17 or refer to Appendix B for detailed results). Further analysis on the mucking threshold is 

presented with the ULR results presented in Chapter 4, although it is noted here that definitions 

using more than two consecutive days of mucking do not show any correlations with wet muck 

spills. 

 

Figure 3.15. Wet muck spill distribution at the DOZ mine during 14 days of drawpoint mucking activities 

between January 2008 and June 2019. 

 

Figure 3.16. Wet muck spill distribution at the DOZ mine during 14 days of adjacent drawpoint mucking 

activities between January 2008 and June 2019. 
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Figure 3.17. Wet muck spill distribution at the DOZ Mine during two days of consecutive drawpoint mucking 

activities between January 2008 and June 2019. 

3.3.2.7 Total Number of No Mucking Days 

Although it was first hypothesized that wet muck spills are correlated with longer periods of no 

mucking, when mucking of a drawpoint has been suspended, the distribution of the total number 

of no mucking days shows no correlation with wet muck spills (Figure 3.18). 

 

Figure 3.18. The DOZ mine number of no mucking days distribution at spill drawpoints between January 

2008 and June 2019. 
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3.3.2.8 Uniformity Index, Specific Index of Uniformity, and Number of Inactive 

Drawpoints 

The UI and SPUI are calculated as a function of the total number of inactive drawpoints. As 

summarized in Appendix B, SPUI and the number of inactive drawpoints were tested in the EDA. 

However, there are no significant patterns that can be observed in both the number of inactive 

drawpoints (eg., Figure 3.19) and SPUI (eg., Figure 3.20). Using the seven nearest drawpoints, 

between a 1 day and 3-day lag, the results show a UI of 2 or higher is associated with the majority 

of wet muck spills under any drawpoint classification (Figure 3.21).  

 

Figure 3.19. Total number of inactive drawpoints within seven nearest drawpoints distribution at spill 

drawpoints between January 2008 and June 2019. 
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Figure 3.20. Specific Index of uniformity within seven nearest drawpoints distribution at spill drawpoints 

between January 2008 and June 2019. 

 

Figure 3.21. Uniformity Index within seven nearest drawpoints distribution at spill drawpoints between 

January 2008 and June 2019. 
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3.3.2.9 Rainfall 

Since rainfall is recorded from surface rainfall monitoring stations, the rainfall value is assumed 

to have the same value for all drawpoints. The data exploration shows that spills often occurred 

when rainfall was more than 10 mm to 15 mm per day (eg., Figure 3.22, or refer to Appendix B 

for detailed results). Although rainfall is one of the major sources of water entering the caved zone, 

it is difficult to analyze further because drawpoint mapping is conducted on a weekly to bi-weekly 

basis and specific data is not recorded at each drawpoint when high or low rainfall occurs. In 

addition, the percentage of rainwater entering the cave zone is unknown due to dewatering, 

evaporation or unknown water flow paths. Due to these uncertainties, rainfall data were not 

considered in the statistical model. 

 

Figure 3.22. The Grasberg Mining Complex cumulative seven days rainfall distribution at spill events 

between January 2008 and June 2019. 
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3.3.2.10 Distribution of Material Types at the Drawpoint Toe 

Due to the wet muck risks at the DOZ mine (e.g. inability for personnel to access wet muck 

drawpoints), the drawpoint material types were not mapped as frequently as other datasets, 

resulting in incomplete data. Therefore, information related to geological distribution was not 

included in the statistical model. 

3.3.2.11 Geological Domain and Vertical Distance to IOZ and Surface 

The geological domain of the DOZ mine is divided into the skarn area (east) and the diorite area 

(west). The data exploration shows an approximately equal spill distribution in these two areas 

(Figure 3.23). In addition, the classification of the geological domain at spill drawpoints did not 

consider wet muck migration mechanisms and, therefore, was not included in the subsequent 

statistical analysis.  

Three-dimensional mine geometry data, including the IOZ wireframe and yearly subsidence data, 

were transformed into numerical and categorical formats. Categorical topographic data is 

represented by the presence of drawpoint locations vertically underneath the IOZ and subsidence 

zones. Numerical data is based on the closest distance from each drawpoint to the subsidence zone 

and IOZ. The data exploration shows that wet muck spills are not related to the location of the 

drawpoints relative to the IOZ (Figure 3.24). In contrast, wet muck spills do tend to occur vertically 

below the subsidence zone (Figure 3.25). However, this dataset was developed using the 2017 to 

2019 subsidence LiDAR data and previous periods were not available. Therefore, the locations of 

drawpoints relative to the IOZ and subsidence zone were not included in the subsequent statistical 

analysis. 
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Figure 3.23. The DOZ mine spill frequency distribution in the skarn and diorite areas between January 2008 

and June 2019. 

 

Figure 3.24. The DOZ mine spill frequency distribution for drawpoint location relative to the IOZ cave 

between January 2008 and June 2019. 
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Figure 3.25. The DOZ mine spill frequency distribution for drawpoint location relative to the surface 

subsidence between January 2008 and June 2019. 

3.4 Discussion 

Exploratory data analysis has shown patterns in the hypothetical variables, which inform the 

consideration of the input variables for the logistic regression analysis in Chapter 4. A summary 

of key findings is included in this section. 

The developed drawpoint classification at the DOZ mine was effective in predicting wet muck 

spill events, where the majority of spills originated from wet muck class drawpoints (mainly B3 

and C3). However, B2 and C2 classifications were originally considered worse than the A3 

classification, yet more spills actually originated from the A3 class. This can be caused when 

drawpoints were previously mapped as A3, but conditions change before they can be remapped 

prior to a spill. The adjacent drawpoint classification is also an important variable to be included 

in the statistical model. There have been numerous events where the spill drawpoint was classified 

as coarse material and moist/wet conditions, while the adjacent drawpoint was classified as a wet 
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muck drawpoint, with finer-grained, lower permeability, and wetter material. Water from these 

low permeability drawpoints cannot drain properly from the drawpoint, which leads to the 

accumulation of water inside the drawbell. Once triggered, a spill can occur from a coarser 

drawpoint, with material originating from its adjacent water-saturated drawpoint. 

Drawpoints designated as being wet muck have increased at a steady rate since late 2011, 

contributing to drawpoint closures. An uneven draw pattern was then largely unavoidable, 

allowing wet muck materials to migrate to actively drawn drawpoints, which increased the number 

of wet muck class drawpoints in the active mining area. Finer and saturated material forms a wet 

muck material resembling a clay-like texture, which has created challenges in material handling 

and processing. This required the DOZ operation to start dry-wet material mixing (with one wet 

bucket to 3-6 dry buckets, depending on the material wetness). To comply with this mixing 

protocol, production has resulted in an uneven draw that has further exacerbated the increase in 

the number of wet muck drawpoints. This condition is hypothesized to be one of the causative 

factors for spill susceptibility leading to a non-uniform draw. 

Wet muck spills tend to occur when there is a high concentration of wet muck neighboring 

drawpoints in the vicinity. This also indicated that the area is highly saturated. It is hypothesized 

that the wet muck condition at the drawpoint has a similar condition above the drawbell, with 

material able to flow following the preferential path created by mucking activities following the 

mining direction. 

Various cave draw strategies have been implemented at the DOZ mine since the beginning of the 

operation. The increase of wet muck spills has forced the operation to adapt to the wet muck 

condition. The EDA shows that spills occurred at various draw rates, which suggests that mucking 
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activity acts as a triggering factor for wet muck spills.  The majority of spills occurred when there 

were drawpoint mucking activities. Active mucking loosens the drawpoint toe material and can 

result in liquefaction due to pore pressure changes. However, there were no significant patterns 

identified between spill events and adjacent drawpoint mucking or consecutive mucking. 

The operation has shown that increases of the HoD and extraction ratio have an upward trend 

alongside spill occurrences. Although the majority of the HoD ranges between 150 and 350 m at 

spill drawpoints, this corresponds with the limiting vertical distance between the DOZ mine and 

the overlying IOZ cave (approximately at 300 m). Breakthrough to the IOZ cave may have 

introduced additional fines and water trapped in the overlying caves. These wet muck materials 

can directly flow vertically to the DOZ drawpoints located within the IOZ footprint. However, 

there were insufficient data to identify migration patterns from IOZ to DOZ drawpoints. Therefore 

the potential correlation is not considered further in this research. 

Although rainfall is one of the major sources of water entering the caved zone, it is difficult to 

calculate the percentage of rainwater entering the caved zone. Therefore, only water contents 

indicated by the numeric attributes of the drawpoint classification were used as the water input 

variable for the logistic regression analysis.  

These findings were valuable in providing ideas for the downstream statistical analysis. However, 

it is important to note that the exploratory data analyses only considered variables in up to three-

dimensions. Wet muck spills are a complex engineering challenge that requires a more 

sophisticated method to analyze the inter-relationships for each variable. 
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Chapter 4: Logistic Regression Analyses and Tool Development 

4.1 Overview 

This chapter provides a comprehensive description of the procedures and analyses carried out in 

the development of an empirical wet muck spill predictive tool. The susceptibility of a wet muck 

spill at a drawpoint on a daily basis can be posed as a binary classification problem represented as 

class 0 or class 1. In this study, class 0 refers to a drawpoint that has not experienced a wet muck 

spill (also referred to as ‘negative’ with respect to an event occurring; i.e., not occurring), while 

class 1 indicates a drawpoint that has experienced a spill (i.e., ‘positive’ with respect to an event 

occurring). Logistic regression analysis is appropriate to use for these problems since their 

objective is to predict the probability of a binary outcome based on several explanatory variables 

(causative and triggering factors, covariates, independent variables) that can be either continuous 

or categorical. In addition, logistic regression results are easier to interpret, straightforward to 

develop and improve, and able to identify patterns in a large dataset. Interpretation of each 

independent variable and their coefficient can be directly utilized to determine important variables 

along with the magnitude and direction of association between independent and dependent 

variables (Höppner et al., 2021). 

The susceptibility model for wet muck spills at the DOZ was developed using the Python 

programming language.  The MLR module in the machine learning software uses sklearn, which 

is available from the Python library (Scikit Learn, 2021c). The selection of the explanatory 

variables was based on the hypothetical variables summarized in Appendix C, where each variable 

was first tested through ULR before being selected for the MLR probabilistic model. The initial 
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study database was divided into training and testing datasets, with consideration given to the 

temporal nature of the data. The models were assessed using a confusion matrix (classification or 

contingency table) and precision-recall scores. Model parameters were fit to the data using a cross-

validation package from sklearn, and balancing of the dataset was carried out using oversampling 

or by adjusting the class weight of the binary outcome. The illustration of the MLR concept in this 

study is illustrated in Figure 4.1. A comprehensive description of the process used to develop the 

empirical wet muck predictive tool is provided in the sub-sections below. 

 

Figure 4.1. Adopting the multivariate logistic regression concept for wet muck spill susceptibility analysis. 
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4.2 Data Sampling 

4.2.1 Training-Testing Data Split 

Logistic regression is a supervised machine learning technique that requires two sets of data: a 

training set and a testing set (Kuhn & Johnson, 2013; Pawluszek-Filipiak & Borkowski, 2020). 

The training set is used for the learning process and estimates the relationships between the seen 

input and output data, while the testing set evaluates the relationships derived by measuring the 

success of the predictions using unseen data (Liu & Wu, 2012). Both are derived from the same 

database, with the training set split being larger to achieve a higher classifier performance. During 

the learning process, the training dataset is further divided to split off a small validation dataset, 

which is used to optimize the input parameters for the logistic regression. This process is called 

hyper-parameter tuning.  

Since the wet muck spill database has a temporal nature, the train-test datasets must be divided 

based on the same time periods instead of being random. This approach provides an unbiased 

classifier result. The train-validation dataset was processed using the TimeSeriesSplit function 

from Python sklearn library (Scikit Learn, 2021d), which divides the dataset into defined iterations, 

referred to as folds, for validation (Figure 4.2).  
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Figure 4.2.TimeSeriesSplit example with 5 iteration at 86% : 14% train-test split. 

The training dataset consists of 1033 spill events from 2,074,145 observations between January 

2008 and December 2017. This comprises approximately 86% of the overall study database. The 

testing dataset samples the subsequent period from January 2018 to June 2019 and contains 776 

spill events from 325,171 observations (approximately 14% of the study database). For the training 

split, the validation set was processed using five iterations/folds, with the size of the validation set 

being kept constant for each iteration based on an 86% to 14% split between the training and 

validation sets. Using a longer period for the training dataset (extending beyond December 2017) 

did not have a significant influence on the model results. Therefore, the training dataset for the 

stated period was considered to have sufficient data for downstream correlation processes.  

4.2.2 Imbalanced Dataset 

Although wet muck spills are a relatively frequent occurrence, they did not occur on a daily basis. 

For instance, only one spill occurred for every 385 observations in 2018. In total, there were 1809 

spills (minority class) and 2,399,316 no-spills (majority class) over the 11.5 years of operational 
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history covered by the database. This is considered to be an imbalanced dataset, where the 

proportion of occurring (positive) spill events is very low compared to the proportion of non-

occurring (negative) no-spill events. The main challenges with an imbalanced dataset are poor 

model performance and a tendency for the results tend to be biased toward the majority class 

(Akosa, 2017; Jeni et al., 2013; Spelmen & Porkodi, 2018) 

There are two ways to address the issue of an imbalanced dataset: by assigning cost or weight to 

both the minority and majority classes, or by resampling the data using undersampling or 

oversampling (Akosa, 2017; Chawla et al., 2002). For the first approach, a cost-sensitive algorithm 

was used to assign different costs or penalties, where higher cost is assigned to misclassification 

of the minority class (false negatives) than misclassification of the majority class (false positives). 

Consequently, the training model is biased towards the minority class, thereby affecting the model 

parameters and performance (Akosa, 2017). In this study, the class weight is set to balance the 

minority class weight, which is calculated using Equation 4.1, where wi is the minority class 

weight, n is the number of observations, k is the total number of classes, and ni is the number of 

observations in the minority class (King & Zeng, 2001). 

Equation 4.1. Minority class weight 

𝑤𝑤𝑖𝑖 =
𝑛𝑛

𝑘𝑘 ∙ 𝑛𝑛𝑖𝑖
 

The logistic regression analysis using the sklearn package provides class weight specified as a 

model hyper parameter. A class_weight function is a dictionary that defines each class label (0 and 

1) and weight to be applied in the calculation of negative log-likelihood when fitting the model. 

Although it is possible to search for a variation of weight for 0 and 1, it is recommended to keep 
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the class weight as balanced as possible (King & Zeng, 2001). The best practice is to use the class 

weight that is the inverse of the class distribution proportional to their respective frequency present 

in the dataset (King & Zeng, 2001). A “balanced” class weight provides a higher cost to the 

minority class by increasing the weight so that it has a higher penalty of misclassification and, at 

the same time, reduces the weight of the majority class. Therefore, the algorithm error can be 

reduced when predicting the minority class. The open-source imbalanced learn library Imblearn 

(Imbalanced Learn, 2021) was used for both under- and over-sampling, where the dataset is set to 

have equal distribution for class 0 and class 1.  

The use of undersampling aims to balance the class distribution with roughly equal classes through 

the reduction or elimination of majority classes (Kotsiantis et al., 2006). However, undersampling 

can discard important data, specifically in severely imbalanced cases. The NearMiss and 

Condensed Nearest Neighbor algorithms in Imblearn were trialed to balance the dataset, but 

resulted in poor performance in the logistic regression stage. More than 2 million observations 

were removed, which left the model unable to differentiate between spill and no-spill. Given that 

one of the objectives of this study is to understand the causative and triggering factors associated 

with wet muck spills, removing any real data from the study database is not recommended. 

The use of oversampling methods creates extra training data from the minority class at a set 

percentage depending on the imbalanced ratio. For this, the Synthetic Minority OverSampling 

(SMOTE) technique can be utilized and has proven to be successful at the ULR stage. It aims to 

balance the class distribution by oversampling the minority class through the generation of 

synthetic data along with the feature space within the k-nearest neighbors (Chawla et al., 2002; 

Fernández et al., 2018). Depending upon the amount of oversampling required, neighbors from the 
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k nearest neighbors are randomly chosen. Further discussion on the SMOTE oversampling 

technique can be found in Chawla et al. (2002). 

The application of SMOTE is only applicable when the dataset is nominal. Therefore SMOTE-NC 

(Synthetic Minority Oversampling Technique - Nominal Continuous) was used instead to 

oversample both nominal and categorical attributes from the minority data. The categorical dataset 

was oversampled following the feature space of the nominal dataset applying similar principles 

from SMOTE.  

4.3 Logistic Regression Analysis 

4.3.1 Overview 

Logistic regression analyses are discussed in detail by Hosmer et al. (2013) and King & Zeng 

(2001) with respect to cost-sensitive methods. Predicting the presence or absence of a wet muck 

spill constitutes a classification problem where the outcome is binary encoded, with presence 

indicated by a value of 1 and absence indicated by a value of 0. Linear regression cannot be utilized 

to model wet muck susceptibility in this binary context, since it requires a continuous response 

variable. Instead, logistic regression is appropriate for binary response problems with multiple 

explanatory variables.  

Logistic regression (logistic or logit model) is a regression technique that analyzes the relationship 

between one or more independent variables and a binary or dichotomous outcome, and estimates 

the probability of occurrence by fitting the data with a logistic curve (Park, 2013). Similar to the 

fitted line in a linear regression model, the logit link function or logistic transformation (Equation 

4.2) is used to calculate the probability (P) of the binary outcome (Y) by taking the natural 
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logarithm of the odds of the event relative to one or more explanatory variables (x); the odds being 

the ratio of the probability of an event occurring to the probability of an event not occurring. Using 

only one variable (univariate), the continuous linear model (β0 + βx) can be applied in logistic 

regression, where the binary outcome is the sum of the intercept (β0) and slope or coefficient of a 

variable (β) multiplied by the value of variable x. Therefore, the probability of an event occurring 

(P|Y = 1) can be calculated by taking an inverse of Equation 4.3. Since the wet muck susceptibility 

model requires a MLR analysis, the logit link function can be extended into Equation 4.4; hence 

the probability of a wet muck spill occurring can be extended into Equation 4.5.  

Equation 4.2. Univariate logit link function 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑌𝑌) = ln(
𝑃𝑃

1 − 𝑃𝑃
) =  𝛽𝛽0 + 𝛽𝛽𝑋𝑋  

Equation 4.3. Univariate Logistic regression 

𝑃𝑃(𝑌𝑌 = 1) =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1
 

Equation 4.4. Multivariate logit link function 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑌𝑌) = ln(
𝑝𝑝

1 − 𝑝𝑝
) =  𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯ + 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 

Equation 4.5. Multivariate Logistic regression 

𝑃𝑃(𝑌𝑌 = 1) =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛
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The coefficient of logistic regression is associated with the change in logit corresponding to the 

change of value in the explanatory variable. For example, increasing an explanatory variable value 

of 1 multiplies the odds of having the outcome by eβ. A coefficient can be either positive or 

negative, where a positive coefficient reflects a higher probability of an event occurring and a 

negative coefficient reflects a lower probability of an event occurring. The significance of the 

logistic regression coefficient is represented by its magnitude; the further from zero, the more 

significant the variable is. The explanatory variable can either be categorical, continuous, or 

ordinal. A continuous variable coefficient represents the relative increase or decrease of the odds 

as the variable moves away from the mean by one standard deviation. It is scaled relative to the 

mean and standard deviation used in the training dataset. A coefficient for an ordinal variable 

represents the relative increase or decrease of the odds as the variable increases or decreases one 

order. A coefficient for a categorical variable uses one member of the category as a reference level. 

The ULR started by analyzing the 177 explanatory variables developed in the study database. Each 

of the explanatory variables is analyzed individually with the occurrence of a wet muck spill to 

identify its relationship. Any non-significant variables, indicated by poor performance metrics 

(low precision, low recall, and high false positives and false negatives), were not included in the 

downstream process. When two or more variables were derived from one primary dataset, only 

one variable was selected for the MLR to avoid multi-collinearity. For example, HoD is the column 

height of a drawpoint with respect to the equivalent volume mined from the drawpoint, and the 

extraction ratio is the percentage of the extracted column over the planned column height. These 

two variables are directly related and therefore follow the same trends. Accordingly, the ULR 

shows both HoD and extraction ratio as being statistically significant. At the multivariate stage, 



88 

 

HoD and extraction ratio were tested individually with other significant variables to identify which 

variable was more significant than the other. If both resulted in similar model performance, the 

selection was based on which variable is easier for the operation to monitor and control in the 

future. This approach was also applied to temporal variables that were derived from one primary 

dataset, where only one temporal period that had the highest performance was selected for 

downstream processes. 

The MLR approach is similar to the ULR, but with more than one independent variable included 

at this stage. Each of the explanatory variables was sequentially added, starting from a ULR model. 

The objective of using a MLR is to estimate the variable coefficient, its significance, and 

interrelationship with other variables. The inclusion or exclusion of an explanatory variable in the 

MLR model was determined through the model performance metrics. If the model performance 

was improved with the addition of the variable compared to its exclusion, it was considered to be 

significant and was included in the MLR (Hosmer et al., 2013).  

To achieve an optimum outcome, the logistic regression requires the model to be fitted correctly 

(not under- or over-fitted) and little to no multicollinearity between independent variables. 

Although multicollinearity will not affect the model prediction capability, it will result in difficulty 

in identifying and interpreting significant variables, unstable coefficients, and overfitting 

(Shrestha, 2020). The Pearson correlation coefficient was plotted to show the collinearity between 

independent variables at the MLR stage. Several studies on the Pearson correlation coefficient cut-

off are summarized in Schober & Schwarte (2018), who classified the correlation strength category 

based on the correlation coefficient (Table 4.1). Depending on the dataset, it is recommended to 

use the variable when the correlation coefficient is less than 0.7 (Dormann et al., 2012) 



89 

 

Table 4.1. Pearson correlation matrix 

Correlation Coefficient Indication 

0 - 0.1 Very weak correlation 

0.1 - 0.39 Weak correlation 

0.4 - 0.69 Moderate correlation 

0.7 - 0.89 Strong correlation 

0.9 - 1 Very strong correlation 

 

Overfitting means the model has a very high complexity, but with large errors, unstable prediction, 

and unrealistic coefficients (Hosmer et al., 2013). This is shown when the training set score is 

higher than the test set score, and the model performs well at the training stage but poorly against 

realistic data (e.g., the test set). Underfitting is the opposite of overfitting, where the model has 

low complexity with no meaningful variables identified (Bilmes, 2020). This is shown by a high 

error rate on both the training and testing data. A model is optimum when it has a low training and 

a low testing error, or similar training to testing scores (Mani et al., 2019). The sklearn program 

provides model optimization through regularization to avoid overfitting (Scikit Learn, 2021c). 

Regularization reduces the insignificant coefficients close to zero, hence reducing the variance in 

the model. Cross-validation is conducted to find the best inverse of the regularization strength (C) 

and then select the C value that satisfies the optimum model.  

4.3.2 Performance Metrics 

A binary classifier labels the samples as either a positive occurrence (spill) or a negative 

occurrence (no-spill). Results from the classifier can be represented in a confusion matrix, also 

known as an error matrix or contingency table. The confusion matrix (Table 4.2) was used to 
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measure the classifier performance, which represents the counts of actual and predicted values 

from the test dataset (Kuhn & Johnson, 2013). The confusion matrix consists of: 

• True Positives (TP) – Model correctly predicts a positive outcome. 

• False Positives (FP) – Model incorrectly predicts a positive outcome. 

• True Negatives (TN) – Model correctly predicts a negative outcome. 

• False Negatives (FN) – Model incorrectly predicts a negative outcome. 

Table 4.2. A 2 × 2 Confusion Matrix 

Positive = 1 Actual Negative (y = 0) Actual Positive (y = 1) 

Predicted Negative (c = 0) True Negative (TN) False Positive (FP) 

Error Type 1 

Predicted Positive (c = 1) False Negative (FN) 

Error Type 2 

True Positive (TP) 

 

Various performance metrics exist, but there are no perfect metrics. Appropriate metrics need to 

be chosen according to the data, classification context, and objectives (Labatut & Cherifi, 2011). 

This study uses several common performance metrics for model evaluation, including accuracy, 

precision, recall, and the AUC-ROC curve (area under the receiver operator characteristic curve). 

The equations for these metrics are summarized below, as reported in Kulkarni et al. (2020). 

Accuracy measures the proportion of true instances from both positive and negative model 

outcomes (Equation 4.6) and is commonly used as a performance metric for machine learning. 

Precision measures the ratio of correct positive predictions made over all positive predictions 
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(Equation 4.7). Recall (also Sensitivity or True Positive Rate) measures the strength of a model to 

predict positive outcomes (Equation 4.8). The F1-score measures the weighted harmonic mean 

between the precision and recall outcomes (Equation 4.9). The receiver operator characteristic 

(ROC) curve evaluates the performance of the classifier by plotting the false positive rate (FPR) 

(Equation 4.10) on the x axis and the true positive rate (TPR) on the y axis. The Area Under the 

Curve (AUC) is calculated with a range from 0 to 1, with an ideal result having a value of 1 with 

the ROC curve located in the upper left corner. An AUC-ROC score below 0.5 represents a model 

that is performing poorer than random guessing, which is not desirable from a binary classifier 

model.  

Equation 4.6. Accuracy Formula 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

Equation 4.7. Precision Formula 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

Equation 4.8. Recall Formula 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

Equation 4.9. F1-Score Formula 

𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ×  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
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Equation 4.10. False Positive Rate Formula 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 

Several studies (Chawla, 2009; Fernández et al., 2019; He & Garcia, 2009; Juba & Le, 2019) have 

suggested that precision and recall are more appropriate for evaluating model performance when 

dealing with an imbalanced dataset. Accuracy is often misleading in imbalanced analyses because 

it assumes an equal weight between positive and negative classes and is more sensitive to detecting 

the majority class. In addition, accuracy treats all error costs equally, which is not applicable in 

imbalanced dataset analysis. A model can have high accuracy but still predict model outcomes 

comparable to a random guess or worse. Furthermore, although ROC-AUC curves are commonly 

used in binary classifier analysis, they cannot represent the true performance in an imbalanced 

dataset. Since the wet muck model tolerates high false positives, this will not affect the FPR in the 

AUC-ROC calculation. Therefore, the selection of variables in the wet muck spill susceptibility 

analysis was ultimately based on the precision, recall, and confusion matrix results. The spill 

threshold for the confusion matrix is set at 0.5, where a probability below 0.5 indicates a no-spill 

potential and a probability above 0.5 indicates a spill potential. 

4.3.3 Precision vs. Recall Score Selection 

Ideally, it is preferable to have a model with high precision and recall. However, the trade-off 

between precision and recall importance needs to be considered based on the misclassification cost 

during model parameter tuning for optimization purposes. If the model tolerates a high false 

positive, then recall is prioritized over precision and vice versa. A model with high recall – low 

precision provides a good overall positive prediction but includes many incorrect negative 
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outcomes (False Positives). For example, a drawpoint may be classified as being susceptible to 

wet muck spills, and if most of the contributing conditions are met but a spill does not occur on 

any given day, this results in a high number of false alarms. However, if a spill occurs, the 

drawpoint is most likely to be classified as wet muck spill susceptible. On the contrary, a model 

with high precision – low recall provides a higher number of correct positive predictions for a 

given period but poor overall positive prediction (FN). For example, a drawpoint is only classified 

as spill susceptible if certain conditions are met that result in a spill. However, a spill can also 

occur at a drawpoint that is not classified as being wet muck spill susceptible. 

The essence of the misclassification cost in this study considers that, even when a wet muck spill 

might not occur at a high spill-susceptible drawpoint, the operation can minimize operational, 

economic, and safety risks by classifying a drawpoint as spill susceptible when all factors are 

present. Wet muck spills have a severe impact that can lead to fatalities, operational delays, and 

economic losses, which require an early detection tool. In this context, it is more important to alert 

the operator of a potential wet muck spill rather than predict exactly when and where it will happen. 

Since a high number of false negatives are less tolerable, the model prioritizes a high recall score. 

Furthermore, the imbalanced database has a very low spill observation rate. Any hypothesized 

causative and triggering factors of wet muck spills can be present, but with the result of no-spill, 

which provides a high false-positive rate even if the model is set to achieve high precision. 

Historically, the DOZ has been operating under a high rate of false positives, with various 

mitigation strategies for wet muck spills enacted. Therefore, a low precision is acceptable for this 

study.  
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4.4 Logistic Regression Results 

4.4.1 Univariate Logistic Regression 

A total of 177 variables were initially assessed individually against the DOZ historical wet muck 

spill occurrences using the ULR analysis. Statistically significant variables were selected based on 

the performance metrics (precision and recall via the confusion matrix) and their capability to 

predict spill and no-spill conditions. All of the variables tested had a very low precision score, 

between 0 and 0.03, while the recall scores varied between 0.34 and 1. Although it is important 

for the model to precisely predict future wet muck spills, from a hazard and safety perspective, it 

is more important for the model to alert the operation to all potential wet muck spills, with the 

trade-off of a high number of false alarms. A missed prediction of a wet muck spill can result in 

fatalities, but a false alarm simply alerts the operation to a drawpoint condition that is susceptible 

to a spill. Therefore, the recall score and confusion matrix were prioritized for this initial stage of 

variable selection. In addition, selected variables for the MLR cannot have a similar nature in the 

data to avoid multicollinearity. From each spatial and temporal manipulated dataset, only one 

variable can be selected based on its confusion matrix results.  

Detailed results, including the variable coefficient and performance metrics from the ULR variable 

selection, are tabulated in Appendix C. The following points highlight the findings from the ULR 

and are summarized at the end of this section in Table 4.3: 

1. Both extraction ratio and HoD provided similar results (Figure 4.3), as did their 

corresponding values for the adjacent drawpoints (e.g., adjacent extraction ratio). Since the 

extraction ratio is a function of the height of the draw, only one of these variables should 
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be selected for the final prediction model. However, both were further tested separately in 

the MLR stage to help with this selection. Differential HoD did not perform as strongly, 

while and differential extraction ratio showed a negative correlation. These variables were 

therefore not tested further. 

 

Figure 4.3. Univariate logistic regression coefficients for draw column variables. 

2. Drawpoint class showed a strong correlation with wet muck spills, where wet muck 

drawpoints have a high positive coefficient and non-wet muck drawpoints have a high 

negative coefficient (Figure 4.4). Drawpoint class is, therefore, one of the significant 

variables that was carried forward to the MLR stage. 
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Figure 4.4. Univariate logistic regression coefficients for drawpoint classification variables. 

3. Similar to the drawpoint class, the adjacent drawpoint class showed a strong positive 

correlation to wet muck spills, with high positive coefficients except for adjacent drawpoint 

classes A1 and B1 (Figure 4.5). Adjacent drawpoint class is therefore one of the significant 

variables that was included at the MLR stage. 

 

Figure 4.5. Univariate logistic regression coefficients for adjacent drawpoint classification variables. 
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4. Wet muck neighboring drawpoint at any radius showed similar performance, with a 

positive correlation to wet muck spills (Figure 4.6) and high true positives. However, no 

spatially manipulated variables were able to predict no-spill events effectively, resulting in 

high false positive numbers.  

 

Figure 4.6. Univariate logistic regression coefficients for the total number of wet muck neighboring 

drawpoint variables. 

5. Tonnage variables showed a positive correlation (Figure 4.7) with high recall scores, true 

positives, and true negatives. Comparing adjacent drawpoint tonnages, all variables 

showed negative correlations to wet muck spills (Figure 4.8), as the model cannot predict 

no-spill events effectively. Differential tonnage variables at any temporally manipulated 

period showed a positive correlation, with similar trends observed in drawpoint tonnage 

variables (Figure 4.9). However, performance metrics for the differential tonnage variables 

were poorer than those for drawpoint tonnage. Therefore, drawpoint tonnage datasets with 

periods between 7 and 28 days were tested at the MLR stage. 
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Figure 4.7. Univariate logistic regression coefficients for drawpoint tonnage variables. 

 

Figure 4.8. Univariate logistic regression coefficients for adjacent drawpoint tonnage variables. 
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Figure 4.9. Univariate logistic regression coefficients for drawpoint differential tonnage variables. 

6. The UI, SPUI, and the number of inactive drawpoints were tested at various radii of 

influence. The number of inactive drawpoints at any radius and the corresponding period 

did not show a correlation with spills (Appendix C) and therefore were not considered for 

downstream analysis. The MLR analysis considered a 2-to-7-day range. Although showing 

a higher positive correlation, it is not operationally feasible to control uniform draw within 

a short time period at a radius of influence of 24 m, 36 m, or 48 m, since every drawpoint 

is then associated with a different number of surrounding drawpoints. Therefore, only the 

5 and 7 nearest drawpoints were considered for the MLR stage, as it showed a positive 

correlation (Figure 4.10 and Figure 4.11). Since the UI considers both SPUI and the number 

of inactive drawpoints, only UI was selected as one of the controllable variables for 

downstream analysis. 
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Figure 4.10. Univariate logistic regression coefficients for Uniformity Index within five nearest drawpoint 

variables. 

 

Figure 4.11. Univariate logistic regression coefficients for Uniformity Index within seven nearest drawpoint 

variables. 

7. All mucking variables showed strong positive correlations to wet muck spills (Figure 4.12), 

with longer periods resulting in higher true positives but lower true negatives. With regard 

to adjacent drawpoint mucking activities, the ULR showed negative correlations to all 

adjacent mucking variables (Figure 4.13), with shorter periods resulting in higher true 
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positives but lower true negatives. Since there is a significant difference in the confusion 

matrix between 3 and 7 days and a minimal difference between 21 and 28 days (Appendix 

C1), the drawpoint mucking and adjacent drawpoint mucking variables between 7 and 21 

days were tested to identify the optimum period. To be consistent, both the period for 

drawpoint and adjacent drawpoint mucking needs to be the same (i.e., seven days 

drawpoint mucking and seven days adjacent drawpoint mucking) when brought into the 

MLR model. Furthermore, only two days of consecutive mucking showed a positive 

correlation (Figure 4.14), with high true negatives compared to the other consecutive 

mucking periods.  

 

Figure 4.12. Univariate logistic regression coefficients for drawpoint mucking variables. 
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Figure 4.13. Univariate logistic regression coefficients for adjacent drawpoint mucking variables. 

 

Figure 4.14. Univariate logistic regression coefficients for drawpoint consecutive mucking variables. 
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Table 4.3. Summary of the univariate logistic regression results 

No Variable Coefficient Precision Recall True Positive True Negative False Positive False Negative 
1 Height of Draw 1.1 0 0.44 345 227,049 97,346 431 
2 Adjacent Height of Draw 0.82 0 0.43 330 212,105 112,290 446 
3 Differential Height of Draw 0.21 0 0.45 349 190,568 133,827 427 
4 Extraction Ratio 0.94 0 0.44 338 194,754 129,641 438 
5 Adjacent Extraction Ratio 1.18 0 0.47 414 196,456 127,939 414 
6 Differential Extraction Ratio -0.34 0 0.46 354 195,861 128,534 422 
7 Drawpoint Class Varies 0 0.97 752 127,062 197,333 24 
8 Adjacent Drawpoint Class Varies 0 0.87 678 109,397 214,998 98 
9 Wet Muck Neighbour 24m 0.57 0 0.94 732 83,699 240,696 44 

10 Wet Muck Neighbour 36m 0.29 0 0.91 706 89,020 235,375 70 
11 Wet Muck Neighbour 48m 0.17 0 0.9 701 86,494 237,901 75 
12 7 Days Tonnage 0.19 0.01 0.73 567 278,619 45,776 209 
13 14 Days Tonnage 0.12 0.01 0.78 605 271,231 53,164 171 
14 21 Days Tonnage 0.09 0.01 0.78 609 267,192 57,203 167 
15 28 Days Tonnage 0.07 0.01 0.79 610 264,472 59,923 166 
16 2 Days UI at 5 DP 0.52 0 0.73 570 196,846 127,549 206 
17 3 Days UI at 5 DP 0.49 0 0.72 556 186,688 137,707 220 
18 7 Days UI at 5 DP 0.35 0 0.67 517 173,602 150,793 259 
19 2 Days UI at 7 DP 0.64 0 0.76 587 182,591 141,804 189 
20 3 Days UI at 7 DP 0.63 0 0.74 573 171,747 152,648 203 
21 7 Days UI at 7 DP 0.51 0 0.66 511 156,465 167,930 265 
22 3 Days Mucking 1.22 0.01 0.88 682 234,754 89,641 94 
23 7 Days Mucking 1.465 0.005 0.93 720 199,924 124,472 56 
24 14 Days Mucking 1.71 0 0.98 758 165,093 159,302 18 
25 7 Days Adjacent Mucking -0.75 0 0.58 449 103,319 221,077 327 
26 14 Days Adjacent Mucking -0.68 0 0.49 381 130,563 193,832 395 
27 21 Days Adjacent Mucking -0.7 0 0.44 339 147,560 176,835 437 
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4.4.2 Multivariate Logistic Regression 

Since the DOZ mine has been using drawpoint classification to indicate the drawpoint wet muck 

susceptibility condition, the MLR reveals the susceptibility model improvement from a one-

dimensional matrix into multi-dimensional matrices. A decision framework for variable addition 

or exclusion at this stage is illustrated in Figure 4.15. Each of the significant explanatory variables 

identified in Section 4.4.1 was gradually added into the MLR model, starting with the drawpoint 

classification.  

 

Figure 4.15. Variable inclusion/exclusion flow chart in the multivariate logistic regression process. 

Multiple models were developed to compare other significant variables (i.e., HoD vs. extraction 

ratio) to identify the optimum variable inclusion for the MLR analysis (Table 4.4). The following 

points summarize the model comparisons and the selection of optimum variables. 
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1. Height of draw and adjacent height of draw: In order to be consistent, Model 1 was 

developed using HoD and adjacent HoD, while Model 2 was developed using extraction 

ratio and adjacent extraction ratio. Comparison of these two models showed that HoD and 

extraction ratio produced similar results. Model 1 had a higher true positive, while Model 

2 had a higher true negative. Since it is more important to alert the operation to wet muck 

spill events, HoD and adjacent HoD were selected as the more appropriate draw column 

variables. These datasets can also be easily obtained by caving operations on a monthly 

basis. 

2. Total number of wet muck drawpoint neighbors: Sensitivity analyses between 24 m 

(Model 3), 36 m (Model 4), and 48 m (Model 5) were carried out to identify the optimum 

radius of influence for predicting a wet muck spill. Each of these models had a similar 

performance with high recall and low precision. However, Model 4 had the highest true 

positives compared to the other models, and hence 36 m was selected for the optimum 

radius of wet muck drawpoint neighbors.  

3. Drawpoint and Adjacent Mucking Activity: The period for drawpoint mucking and 

adjacent drawpoint mucking activity needed to be the same for consistency, where Model 

6 considers seven days, Model 7 considers 14 days, and Model 8 considers 21 days. Models 

6 and 7 performed similarly, while Model 8 performed poorly. With Model 7 having the 

highest true positives, the 14 day period was included in the final MLR model. In addition, 

increasing the mucking activity period would only restrict mine operations further from 

mucking activity needed to meet production targets. 

4. Uniformity Index: Although the MLR model with a UI within 36 m had good performance 

metrics, discussions with PTFI indicated that a 36 m radius contains a high number of 
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drawpoints needing to be controlled/managed within a short period of time. Both the five 

nearest drawpoints and seven nearest drawpoints were tested instead. Model 9 considered 

2Days-5DP, Model 10 considered 3Days-5DP, Model 11 considered 7Days-5DP, Model 

12 considered 2Days-7DP, Model 13 considered 3Days-7DP, and Model 14 considered 

7Days-7DP. Models 10, 12, and 13 were very similar, with Model 13 having the highest 

number of true positives. Discussions with PTFI indicated that three days is optimum for 

the operation to control uniform draw, and therefore, three days uniformity index with the 

seven nearest drawpoints was used as the controllable factor.  

5. Tonnages: Periods of 7-, 14-, 21- and 28-days cumulative tonnage were tested during the 

MLR stage in Model 15, Model 16, Model 17, and Model 18, respectively. Each of these 

models reduced the number of true negatives in the MLR model when combined with the 

other variables mentioned above (Models 9 to 14). Therefore, the tonnage dataset was 

excluded in the final MLR analyses. 
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Table 4.4. Sensitivity analysis of each model prior to optimum variable selection.  

Model Precision Recall True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Model 1 0.99 0.01 769 188,186 136,209 7 
Model 2 0.99 0.01 766 189,090 135,305 10 
Model 3 0.99 0.01 766 191,080 133,314 10 
Model 4 0.99 0.01 769 188,186 136,209 7 
Model 5 0.99 0.01 767 187,290 137,105 9 
Model 6 0.98 0.01 761 169,681 154,714 15 
Model 7 0.99 0.01 769 188,186 136,209 7 
Model 8 0.98 0.01 764 190,218 134,177 12 
Model 9 0.99 0.01 767 187,668 136,727 9 

Model 10 0.99 0.01 766 186,889 137,506 10 
Model 11 0.99 0.01 767 185,930 138,465 9 
Model 12 0.99 0.01 767 188,635 135,760 9 
Model 13 0.99 0.01 769 188,186 136,209 7 
Model 14 0.99 0.01 767 185,930 138,465 9 
Model 15 0.99 0.01 769 187,234 137,161 7 
Model 16 0.99 0.01 769 187,138 137,257 7 
Model 17 0.99 0.01 769 187,384 137,011 7 
Model 18 0.99 0.01 768 187,623 136,772 8 

 

The development of the MLR model is started with drawpoint classification where the DOZ mine 

is currently using as their primary drawpoint susceptibility assessment. Thus, through the 

sensitivity analyses of variable inclusion or exclusion carried out during the MLR stage, the initial 

model consists of: (A-1) daily drawpoint classification, (B-1) daily adjacent drawpoint 

classification, (C-1) the daily total number of wet muck drawpoints within a 36 m radius, (D-1) 

daily HoD, (E-1) daily adjacent HoD, (F-1) 3 days UI within seven nearest drawpoints, (G-1) 14 

days drawpoint mucking activity, (H-1) 14 days adjacent drawpoint mucking activity, and (I-1) 2 

days consecutive mucking. Each of these nine variables was added sequentially to show the 

improvement of the susceptibility model (Table 4.5). There is a gradual increase in true positives 
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by adding more variables, while true negatives start to increase when mucking variables are added 

from models G-1, H-1, and I-1. The initial Model I-1 coefficients are shown in Figure 4.16.  

Table 4.5. Gradual improvement of the wet muck spill susceptibility model by adding significant variables. 

MLR Model Recall Precision 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Model A-1 0.97 0 752 127,062 197,333 24 

Model B-1 0.97 0 753 128,740 195,655 23 

Model C-1 0.98 0 757 121,458 202,937 19 

Model D-1 0.98 0 760 120,901 203,494 16 

Model E-1 0.98 0 760 120,995 203,400 16 

Model F-1 0.98 0 763 120,942 203,453 13 

Model G-1 0.99 0.01 767 186,201 138,194 9 

Model H-1 0.99 0.01 769 186,286 138,109 7 

Model I-1 0.99 0.01 769 188,186 136,209 7 
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Figure 4.16. Multivariate logistic regression initial model coefficients Model I-1. 

To analyze the multicollinearity in this initial proposed model, a Pearson correlation coefficient 

heat map was plotted to identify each independent variable’s correlation strength (Figure 4.17). 

All of the variables showed low correlation strength, except HoD with Adj HoD, with a correlation 

strength of 0.76. This causes the adjacent HoD to have a negative correlation. Since it is necessary 

to remove highly correlated variables to minimize overfitting, adjacent HoD was not included in 

the final proposed model. Exclusion of adjacent HoD reduces the true positives to 768 and true 
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negatives to 187,264 when comparing Model I-1 to Model H-2, but does not significantly change 

the other variables’ coefficients (Figure 4.18). 

With the exclusion of adjacent HoD, each variable from the initial model was gradually re-added 

to show the incremental model improvements (Table 4.6). The updated model consists of: (A-2) 

daily drawpoint classification, (B-2) daily adjacent drawpoint classification, (C-2) daily total 

number of wet muck drawpoints within 36 m radius, (D-2) daily HoD, (E-2) 3 days UI within 

seven nearest drawpoints, (F-2) 14 days drawpoint mucking activity, (G-2) 14 days adjacent 

drawpoint mucking activity, and (H-2) 2 days consecutive mucking. The updated model still had 

a good fit, with a low training score and a low test score with similar values. No high correlations 

between variables were observed in the Pearson correlation coefficient heat map, as shown in 

Figure 4.19. Therefore, it can be concluded that the MLR model that was developed achieved an 

optimum result. 
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Figure 4.17. Model I-1 correlation heatmap based on the Pearson Correlation Matrix. 
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Figure 4.18. Multivariate logistic regression coefficients for Model H-2. 
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Table 4.6. The gradual improvement of wet muck model susceptibility by adding significant variables. 

MLR Model Recall Precision 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

Model A-2 0.97 0 752 127,062 197,333 24 

Model B-2 0.97 0 753 128,740 195,655 23 

Model C-2 0.98 0 757 121,458 202,937 19 

Model D-2 0.98 0 760 120,901 203,494 16 

Model E-2 0.98 0 763 120,892 203,503 13 

Model F-2 0.99 0.01 767 185,272 139,123 9 

Model G-2 0.99 0.01 768 186,261 138,134 8 

Model H-2 

(Final Model) 
0.99 0.01 768 187,264 137,131 8 

 

.
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Figure 4.19. Model H-2 correlation heatmap based on the Pearson Correlation Matrix.
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A comparison was made between the cost-sensitive (weighted) and SMOTE balancing techniques 

based on Model H-2 (Table 4.7). The SMOTE technique resulted in lower performance metrics 

compared to the weighted technique, although its coefficients showed a similar pattern (Figure 

4.20). The SMOTE model obtained two more true positives at the cost of 14,085 false positives. 

Therefore, the weighted logistic regression model was selected for deployment. 

Table 4.7. Confusion matrix comparison between cost-sensitive (weighted) and SMOTE balancing techniques 

based on Model H-2. 

Balancing 

Technique 
Cost-Sensitive (Weighted) SMOTE 

TP 768 770 

TN 187,264 173,179 

FP 137,131 151,216 

FN 8 6 
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Figure 4.20. Multivariate logistic regression coefficients for Model H-2 using SMOTE. 

4.4.3 MLR Model Deployment 

The final model, based on Model H-2, was deployed using 100% of the available data as the 

training set (Figure 4.21). This final model was not tested using more recent data (i.e., post-June 

2019). Further testing and re-training using recent data may improve the model performance, but 

is beyond the scope of this thesis. The statistical and mechanistic understanding of the deployed 

model is discussed in Section 4.6. 



117 

 

 

Figure 4.21. Multivariate logistic regression coefficients based on Model H-2 using 100% of the data as the 

training set (final deployed model).  

4.5 Development of Data-Supported Tool for Wet Muck Spill Prediction 

4.5.1 Suggested Grasberg Mining Complex Uniformity Index Matrix 

Through discussion with the PTFI site team, an updated UI matrix, building on the original work 

by Susaeta (2004), is suggested for the PTFI operation based on the seven nearest drawpoints. The 
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original UI was initially developed for the layout at the El Teniente mine in Chile (see Section 

2.3.6 for UI development and Section 2.4.1 for El-Teniente Mine studies), which is based on six 

neighboring drawpoints (4 between the minor apex and two between the major apex). The El 

Teniente mine also operates in mostly dry conditions. In contrast, the DOZ drawpoint layout is 

constructed with an offset herringbone pattern, for which most drawpoints have seven nearest 

neighbors (5 along the minor apex and two along the major apex). In addition, site experience 

indicates that Susaeta’s UI might not be applicable under wet conditions and needs to be modified 

for semi-uniform to isolated draw. Therefore, an updated UI matrix was developed for this study, 

as shown in Table 4.8. 

The UI values below 2 were observed to have a low impact on the predictive model, although 0.6 

to 1 and 1.4 to 2 are annotated as a non-uniform draw. Since the logit link function is a linear 

model that fits the logistic regression, it assumes a linear increase of a value will increase the log-

odds of an event occurring. This is one of the limitations of the model. To overcome this limitation, 

the UI is suggested to be within the uniform draw range even though the logistic regression 

provides a negative correlation when the value is between 0.6 to 1 and 1.4 to 2.  
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Table 4.8. Proposed UBC Uniformity Index Matrix for the DOZ Mine. 

Number of Inactive 

Drawpoints 

Specific Index of Uniformity 

0 - 0.2 0.2 - 0.4 0.4 - 0.6 0.6 - 0.8 0.8 - 1.0 

0 Uniform Uniform Uniform Non-Uniform Non-Uniform 

1 Uniform Uniform Non-Uniform Non-Uniform Non-Uniform 

2 Uniform Non-Uniform Non-Uniform Non-Uniform Non-Uniform 

3 Non-Uniform Non-Uniform Non-Uniform Non-Uniform Non-Uniform 

4 Non-Uniform Non-Uniform Non-Uniform Non-Uniform Non-Uniform 

5 Non-Uniform Non-Uniform Non-Uniform Non-Uniform Non-Uniform 

6 Non-Uniform Non-Uniform Non-Uniform Non-Uniform Non-Uniform 

7 Non-Uniform Non-Uniform Non-Uniform Non-Uniform Non-Uniform 

 

4.5.2 UBC-ICaRN Wet Muck Spill Susceptibility Tool Development 

A spreadsheet-based wet muck spill susceptibility prediction tool, named the UBC-ICaRN Wet 

Muck Spill Susceptibility Tool, was developed based on the eight most significant variables 

identified in the MLR model analyses. The aim of this tool is to provide the daily probability of a 

wet muck occurrence for every drawpoint, calculated using the MLR equation (Equation 4.5). The 

spill probability for each drawpoint is then updated relative to the frequency that the input 

parameters are updated. If a drawpoint is closed permanently, which might involve building a 

barricade in front of the drawpoint, the probability of a wet muck spill is zero, as there are no 

discharge point available for a wet muck spill to occur.  

The spreadsheet also includes an adjustable worksheet that can be used as a drawpoint-specific 

forecast planning tool . An example of a probability calculation is shown in Table 4.9 for a 

drawpoint classified as C3, actively being mucked, and located in the wet area. This results in a 
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probability of a spill event occurring of 0.71. Assuming the spill threshold is set to 0.5, this 

drawpoint is predicted to have a relatively high likelihood of experiencing a spill for each day the 

conditions remain and do not subside. A second example is shown in Table 4.10 for drawpoint 

with similar conditions, except it is in a drier area, resulting in a probability of a spill event of 0.45. 

Assuming a similar spill threshold at 0.5, this drawpoint is predicted to have a relatively low 

likelihood of experiencing a spill for each day the conditions remain. 

Table 4.9. Example 1 of the UBC-ICaRN Wet Muck Susceptibility forecasting tool. 

Variable Condition (x) Coefficient (β) β* x 

Intercept  -6.83  

Drawpoint Class C3 2.85 2.85 

Adjacent Drawpoint Class B2 0.31 0.31 

Number Wet Muck Drawpoints at 36m 10 0.19 1.90 

Height of Draw (m) 250 0.24 0.13 

3 Days Uniformity Index 7DP 3.00 0.32 0.15 

14 Days Mucking Activities 1 2.42 2.42 

14 Days Adjacent Mucking Activities 0 0.24 0.00 

2 Days Consecutive Mucking 0 1.16 0.00 

Prediction   0.71 

 

𝑃𝑃(𝑌𝑌 = 1) =
𝑒𝑒−6.83+2.85 ∙ 1+0.31 ∙ 1+0.19 ∙ 10 +0.24 ∙250−179

133 +0.32 ∙3−2
2.2 +2.42 ∙ 1+0.24 ∙ 0+1.16 ∙ 0

1 + 𝑒𝑒−6.83+2.85 ∙ 1+0.31 ∙ 1+0.19 ∙ 10 +0.24 ∙250−179
133 +0.32 ∙3−2

2.2 +2.42 ∙ 1+0.24 ∙ 0+1.16 ∙ 0
= 0.71 
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Table 4.10. Example 2 of the UBC-ICaRN Wet Muck Susceptibility forecasting tool. 

Variable Condition (x) Coefficient (β) β* x 

Intercept  -6.83  

Drawpoint Class C3 2.85 2.85 

Adjacent Drawpoint Class B2 0.31 0.31 

Number Wet Muck Drawpoints at 36m 4 0.19 0.76 

Height of Draw (m) 250 0.24 0.13 

3 Days Uniformity Index 7DP 3.00 0.32 0.15 

14 Days Mucking Activities 1 2.42 2.42 

14 Days Adjacent Mucking Activities 0 0.24 0.00 

2 Days Consecutive Mucking 0 1.16 0.00 

Prediction   0.45 

 

𝑃𝑃(𝑌𝑌 = 1) =
𝑒𝑒−6.83+2.85 ∙ 1+0.31 ∙ 1+0.19 ∙ 4 +0.24 ∙250−179

133 +0.32 ∙3−2
2.2 +2.42 ∙ 1+0.24 ∙ 0+1.16 ∙ 0

1 + 𝑒𝑒−6.83+2.85 ∙ 1+0.31 ∙ 1+0.19 ∙ 4 +0.24 ∙250−179
133 +0.32 ∙3−2

2.2 +2.42 ∙ 1+0.24 ∙ 0+1.16 ∙ 0
= 0.45 

Since there is uncertainty in the model, specifying only one spill susceptibility cut-off threshold 

(e.g., 0.5) may not be effective in assisting operational planning. Different strategies and mitigation 

procedures can be applied to different susceptibility thresholds. The following interim thresholds 

for wet muck susceptibility are suggested following a traffic light protocol (green, yellow, red): 

1. Low Susceptibility: spill probabilities between 0 and 0.4, color-coded green. 

2. Medium Susceptibility: spill probabilities between 0.4 and 0.75, color-coded yellow. 

3. High Susceptibility: spill probabilities between 0.75 and 1, color-coded red. 
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These susceptibility threshold cut-offs are based on the model H-2 test set results (Figure 4.22). 

Out of 776 wet muck spills between 2018 and June 2019, the model was able to predict the majority 

of these events, with 723 (93.2%) being classified as high susceptibility and 49 (6.3%) being 

classified as medium susceptibility. Only 4 (0.5%) were misclassified as having a low 

susceptibility to a wet muck spill. Since this study encountered an imbalanced dataset in wet muck 

spill distribution, a high false positive (false alarm) rate cannot be avoided. There were 86,183 

false alarms, where drawpoints experienced no-spill but were classified as high susceptibility.  

As shown in Figure 4.23, if the threshold is lowered by 0.1 at each susceptibility level (i.e., low 

susceptibility up to 0.3, medium susceptibility between 0.3 and 0.65, and high susceptibility 

greater than 0.65), the model only misclassified two spills within the low susceptibility class, but 

with the trade-off of a higher false alarm rate. There were 100,350 cases where drawpoints 

experienced no-spill but were classified as high susceptibility. On the contrary, if the spill 

threshold is increased by 0.1 at each susceptibility level (Figure 4.24) (i.e., low susceptibility up 

to 0.5, medium susceptibility between 0.5 and 0.85, and high susceptibility greater than 0.85), the 

model misclassified eight spills within the low susceptibility class. However, it reduces the false 

alarms to 64,629 cases.  



123 

 

 

Figure 4.22. Proposed model (Model H-2) performance on the test set with interim susceptibility thresholds. 

 

Figure 4.23. Proposed model (Model H-2) performance on the test set with lower susceptibility thresholds. 
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Figure 4.24. Proposed model (Model H-2) performance on the test set with higher susceptibility thresholds. 

It is important that the interim thresholds suggested above be reviewed and modified to suit the 

operation’s risk tolerance and associated wet muck spill mitigation strategies (e.g., limiting the 

number of buckets per shift that can be drawn at drawpoints in each susceptibility range). For 

example, raising the threshold between low and medium susceptibility ranges could ease 

operational strategies on mucking, but result in higher false negatives that may lead to 

infrastructure damage and production interruptions. For communication purposes, the calculated 

spill susceptibility for every open drawpoint can be plotted using the traffic light protocol; an 

example for the DOZ operation is shown as a susceptibility map for the extraction level footprint 

(Figure 4.25) and as a gridded engineering map (Figure 4.26).  

Details for the four false negatives based on the interim thresholds, where the model incorrectly 

missed predicting a spill event, are shown in Table 4.11. The spill event that occurred in drawpoint 

P1A-17E appears to be an anomaly. The spill class was recorded as A2 (coarse, moist), but there 
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were no supporting documents to confirm this. Drawpoint P01-01E experienced a spill even 

though the drawpoint had not been mucked over the previous 14 days. However, on the day of the 

spill, mucking started, which triggered the spill. The other two spills were classified as A3 yet 

were misclassified by the model, or the drawpoint material may have changed before it could be 

remapped. If the low susceptibility threshold is lowered to 0.3, the spills at P01-01E and P1F-10W 

would be better classified as medium susceptibility. But again, there is a trade-off between 

reducing the false negatives at the cost of higher false alarms, as well as potential lower production 

rates due to additional safety measures that may be implemented at medium to high susceptibility 

drawpoints. 

 

  



126 

 

 

Figure 4.25. Example of DOZ cave footprint susceptibility traffic light protocol map. 
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Figure 4.26. Example of DOZ engineering map between Panel L and Panel D. Each susceptibility value and color-code is based on Figure 4.22.  
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Table 4.11. Details of four false negatives that were identified based on the Model H-2 test set. 

Drawpoint Date 
Drawpoint 

Class 

Adjacent 

Drawpoint 

Class 

HoD 

UI 3 

Days at 

7DP 

Wet muck 

Neighbour 

36m 

14 Days 

Mucking 

Activity 

14 Days 

Adjacent 

Mucking 

Activity 

2 Days 

Consecutive 

Mucking 

Activity 

Spill 

Probability 

P01-01E 25-04-18 C2 C3 253.6 4 9 0 1 0 0.30 

P1A-17E 25-04-18 A2 A2 183.6 4.66 11 1 1 0 0.043 

P1F-10W 01-01-19 A3 B3 84.5 0.58 14 1 1 0 0.36 

P03-29W 02-01-19 A3 A3 202 3.58 9 1 0 0 0.28 
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4.6 Discussion 

4.6.1 Statistical Understanding (Correlation) 

Explanatory variables in the proposed model, as summarized below, were assessed based on their 

statistical correlations to wet muck spills at the DOZ mine. The sensitivity of input changes at each 

explanatory variable is illustrated in Appendix D. 

Drawpoint Classification: DOZ drawpoints classified as wet muck (A3, B2, C2, and C3; refer to 

Table 2.2 for drawpoint class descriptions) represent the strongest predictors of wet muck spills 

(refer to Figure 4.21 for the MLR coefficients), with 99.6% of wet muck spills originating from 

wet muck class drawpoints (refer to Figure 3.1 for spill class illustration), including 83.9% 

originating from B3 and C3 drawpoints (i.e., wet and fine to medium grain). However, only 9% of 

spills originated from B2 and C2 drawpoints and 6.7% of spills originated from A3 drawpoints, 

although classified as wet muck class. This shows that the combination of high water content with 

the reduction in fragmentation size contributes to higher spill susceptibility. In contrast, non-wet 

muck class drawpoints experienced a total of only eight spill events (0.4%), indicating a strong 

negative relationship to wet muck spills. However, the conditions at these drawpoints may have 

changed since they were last mapped. 

Adjacent Drawpoint Classification: The adjacent drawpoint class similarly represents one of the 

strongest predictors of wet muck spills, including when classified as wet or closed permanently 

(refer to Figure 3.3 for adjacent drawpoint wet muck classes) with 95.7% of wet muck spills 

originating from adjacent wet muck class and closed drawpoints. Notably, adjacent drawpoints 

classified as A1 and C1 (i.e., dry) also showed positive relationships, although not as strong as 
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those classified as wet muck class. A similar pattern as drawpoint classification was observed, 

where a low percentage of B2 and C2 adjacent drawpoint classes (16.5%) had wet muck spills.  

Total Number of Wet Muck Drawpoints within 36 m: The MLR identified a positive 

relationship between an increased total number of wet muck drawpoints within 36 m and wet muck 

spills. Every increase of one wet muck drawpoint within the 36 m radius increases the coefficient 

by 0.19 (Figure 4.21). This result also supports the EDA results (Figure 3.4, Figure 3.5, and Figure 

3.6), which suggested spill occurrences increase with an increasing number of wet muck 

drawpoints.  

Height of Draw: Although HoD shows a positive correlation, it was not a strong predictor of wet 

muck spills (Figure 4.21). The model predicts that HoD starts to become significant at the DOZ 

once the draw column exceeds 170 meters. At HoD values below 170 m, a negative correlation 

was observed. 

3 Days Uniformity Index at 7 Drawpoints: As one of the controllable variables, operationally, 

the UI shows a positive correlation with wet muck spills. UI values greater than 2 result in a 

positive coefficient. Compared to drawpoint classification and adjacent drawpoint classification, 

UI is not a strong predictor of wet muck spills since a maximum UI value of 8 only produces a 

coefficient of 0.91. This shows that a wet muck spill is likely to occur even though a uniform draw 

is applied to a wet muck drawpoint. Based on the proposed UI matrix, there is a non-linearly 

increasing probability of wet muck spills when the UI value is in the ranges of 0.6 to 1 and 1.4 to 

2, which are considered non-uniform or isolated draw (Table 4.8). UI values in these ranges 

provide negative coefficients, which indicates a reduction in the spill probability.  
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14 Days Mucking Activity: Mucking activity represents the strongest controllable predictor of 

wet muck spills, acting as a triggering mechanism; most of the drawpoints that experienced spills 

were actively being mucked. The presence of mucking is associated with a coefficient of 2.42 

(Figure 4.21), which increases the wet muck spill susceptibility prediction. The proposed model 

contained one missed prediction of wet muck spill, where no mucking activities were observed 

within 14 days at the drawpoint (Table 4.11). However, there was mucking activity at the 

drawpoint on the day of the spill. Therefore, it is suggested to change the value from 0 (absence) 

to 1 (presence) when the operation is planning to muck a drawpoint on the analysis date, in order 

to obtain a more realistic spill susceptibility calculation. 

14 Days Adjacent Mucking Activity: Although discussions with PTFI suggested that adjacent 

mucking activity is an important predictor of wet muck spills, the model did not show a strong 

positive correlation to this variable (Figure 4.21). The presence of 14 days of adjacent drawpoint 

mucking activity only increases the wet muck spill susceptibility calculation by a coefficient of 

0.24. However, exclusion of this variable reduces the model performance by one true positive and 

989 true negatives, when comparing model F-2 (without 14 days adjacent drawpoint mucking) to 

model G-2 (with 14 days adjacent drawpoint mucking). This shows that adjacent drawpoint 

mucking activity contribute to wet muck spills, although its influence is minimal. 

2 Days Consecutive Mucking Activity: Consecutive days mucking at a drawpoint showed a 

positive relationship to wet muck spills (Figure 4.21). The presence of two days of consecutive 

mucking is associated with a coefficient of 1.16, which increases the wet muck spill susceptibility. 

Although the EDA did not reveal the impact of consecutive days mucking (Figure 3.16), its 

combination with other variables shows that such activity influences spills.  
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4.6.2 Mechanistic Inferences and Understanding (Causation) 

Explanatory variables in the proposed model, as summarized below, were assessed based on their 

possible mechanistic influence on drawpoint behavior and wet muck spills at the DOZ mine.  

Drawpoint Classification: Drawpoint classes A3, B3, and C3 were observed to have the strongest 

influence on wet muck spill susceptibility. This result agrees with PTFI’s experiences and the wet 

muck classification system they have developed, where A3, B2, B3, C2, and C3 drawpoints are 

designated as being medium to high risk (see Table 2.2 and Table 2.3). These classes include those 

with fines, high water content, or both. This aligns with the key elements of wet muck spills (fine 

material and water) as outlined by Butcher et al. (2000) based on findings from South African 

mines. The mobility of broken rock, debris, etc., is known to increase with an increasing percentage 

of fines and water (Jakubec et al., 2016). Therefore, the drawpoint class is an important indicator 

of wet muck spill potential. 

Adjacent Drawpoint Classification: Various spill events have occurred in the DOZ record from 

drawpoints classified as coarse, but where the adjacent drawpoint is fine and/or wet. As reported 

by Rachmad et al. (2011), a small number of spills have occurred from A3 drawpoints, which are 

coarse (and wet), but where the adjacent drawpoint is classified as C3 fine (and wet). If water from 

the C3 drawpoint is trapped in the drawbell above due to low permeability fines below and cannot 

discharge through the drawpoint opening, the water can accumulate, building up pore pressures 

and causing a reduction of shear strength, leading to a spill from the adjacent drawpoint sharing 

the same drawbell, even if it is coarser and/or drier. It is most likely that the water is backing up 

above the drawbell and spilling over into the adjacent drawbell. 
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Therefore, it is necessary to consider the adjacent drawpoint classification and monitor any 

changes in its fragmentation and saturation when it is classified as a wet drawpoint or permanently 

closed. 

Total Number of Wet Muck Drawpoints within 36 m: The clustering of wet muck drawpoints 

within the radius of influence indicates a concentration of fines and water across a larger area. It 

is assumed that wet muck drawpoints reflect the condition in the drawbell, but also above the 

drawbell, with the latter enabling a migration of wet muck that follows the mining direction (i.e., 

drawpoints being mined more aggressively than others). In other words, if the increase of fines 

and water is contained inside the drawbell, the adjacent drawpoint sharing the same drawbell is 

similarly at risk. If an accumulation of fines and water builds up above the drawbell, then the wet 

muck material can migrate to the surrounding drawbells, resulting in an increased likelihood of 

spills triggered by mining activities at drawpoints within the radius of influence (Castro et al., 

2018). For this situation, a 36 m radius was observed to have higher performance metrics related 

to the total number of wet muck drawpoints, but also encompasses the drawbell interaction 

between its minor and major apexes. Since the origin of wet muck migration is unknown inside 

the cave, different radii were tested for their sensitivity. Using a 24 m radius was seen to be too 

restrictive, as it only allows the model to capture material migration for up to 7 adjacent 

drawpoints, while a 48 m radius considers too many neighbors, which introduces noise into the 

analysis. 

Height of Draw: Finer fragmentation is often associated with higher heights of draw due to the 

higher cave loads and longer distances the material travels through the cave until it reaches a 

drawpoint (Dorador, 2016). Thus, the higher the HoD, the more comminution the material 
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expereinces, and the more likely the drawpoint will change to a class indicating fines, resulting in 

a long-term susceptibility to fines. A linear increase of HoD with wet muck spills is consistent 

with the findings of this study summarized in Section 4.6.1. 

3 Days Uniformity Index at 7 Drawpoints: Non-uniform draw is generally not recommended 

for caving operations, as it often results in negative impacts, such as early dilution entry, changes 

in cave load, and changes in cave porosity, which can lead to preferential flow for wet muck 

material to flow into an isolated drawpoint (Butcher et al., 2000; Castro et al., 2018; Holder et al., 

2013; Widijanto et al., 2012). The UI is one of the controllable factors that needs to be monitored 

closely; the PTFI historical operation UI has a high average value of 3.5 at wet muck drawpoints 

(Figure 4.27). Although the UI is not a strong explanatory variable, it needs to be controlled, as 

low as operationally possible, to reduce the wet muck susceptibility based on the findings in 

Section 4.6.1.  

 

Figure 4.27. Distribution of 3-days uniformity index at seven nearest drawpoint at each drawpoint class. 
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14 Days Mucking Activity: Mucking activity was observed to be the key, if not only, triggering 

factor. As illustrated in Figure 4.28, the combination of mucking activities within a 14 day period 

led to the majority of spills at the DOZ mine. Mucking serves to loosen the drawpoint material at 

its toe, material that serves as a buttress supporting the material in the drawpoint above. 

Destabilizing this buttress can trigger the mobilization of accumulated water and fines through 

liquefaction inside the drawbell, and can also progressively draw mud pockets inside the caved 

zone into the drawbell.  

 

Figure 4.28. Distribution of wet muck spill occurrences at the DOZ mine with the presence or absence of 14 

days of drawpoint mucking activities at each drawpoint classification. 

14 Days Adjacent Mucking Activity: Although adjacent mucking can disturb a wet muck 

drawpoint and trigger a wet muck spill, the model shows that mucking activities at a given 

drawpoint are more significant than those at an adjacent drawpoint. As illustrated in Figure 4.29, 

not all adjacent drawpoint mucking activities led to wet muck spills. At high susceptibility 
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conditions, it is preferred to minimize mucking activity at adjacent drawpoints to reduce the spill 

susceptibility. Adjacent drawpoint mucking can disturb the material inside the drawbell, but can 

also loosen the drawpoint material at its toe. However, mucking at adjacent wet muck class 

drawpoints can increase the material porosity, allowing water to flow out and reducing the 

accumulation of water inside the drawbell. These study findings cannot completely conclude the 

positive influence of adjacent drawpoint mucking on wet muck spills, and therefore need to be 

analyzed further. 

 

Figure 4.29. Distribution of wet muck spills occurrences at the DOZ mine with the presence or absence of 14 

days adjacent drawpoint mucking activities at each drawpoint classification. 

2 Days Consecutive Mucking Activity: If a wet muck drawpoint is constantly disturbed, there is 

a high probability of a spill being triggered from that drawpoint. The presence of two days of 

consecutive mucking activity at wet muck drawpoints shows correspondingly high spill 

occurrences (Figure 4.30). However, there were also high spill occurrences where the absence of 
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two days of consecutive mucking was observed. This correlates with the findings from Section 

4.6.1, as this variable is also a wet muck spill predictor but not as strong as 14 days mucking 

activities. 

 

Figure 4.30. Distribution of wet muck spill occurrences at the DOZ mine with the presence or absence of 2 

days consecutive mucking activities at each drawpoint classification. 
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Chapter 5: Conclusions and Recommendations for Future Work 

To date, research on wet muck spill causative and triggering factors has been mostly based on 

operational experiences and engineering judgment, with limited published results. This study 

provides an opportunity to improve the statistical understanding of wet muck spill occurrences at 

the DOZ mine and develop a tool that can improve safety and operation productivity. The research 

includes the development of the DOZ database, data exploration, descriptive analysis, and the 

development of statistical models to predict and explain the presence or absence of a wet muck 

spill occurrence at the DOZ mine. A cost-sensitive logistic regression model was used to evaluate 

each explanatory variable and its statistical relationship with wet muck spills. This approach 

allowed the model to reduce the effects of the severely imbalanced nature of the dataset, applying 

equal weight to spill and no-spill data. The work represents a significant advancement beyond 

Castro et al.’s (2018) multivariate logistic regression approach to identify wet muck entry or non-

entry at a drawpoint. 

A key deliverable of this study is a wet muck database (UBC-ICaRN Wet Muck Database) and 

spreadsheet-based tool (UBC-ICaRN Wet Muck Susceptibility Tool), which includes 

implementation guidelines and Python scripts so that it can be adapted to other caving operations 

and build upon current prediction methods used by PTFI. Furthermore, this research delivers a 

concept of wet muck susceptibility tool development using a cost-sensitive multivariate logistic 

regression, which can be applicable to other caving operations around the world that experience 

wet muck spill hazards. 
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5.1 Summary of Findings 

The main results of this research are summarized below: 

1. The UBC wet muck database was compiled from the PTFI raw data and used to identify 

177 hypothetical variables that can correlate with wet muck spills. The research covered 

the DOZ mine database between the period 2008 January to 2019 June, which consisted of 

more than 5 million observations. The data confidence was improved through the 

validation of each spill observation with the associated attributes through available 

supporting documents. 

2. Exploratory data analysis revealed that wet muck spills were correlated with mucking 

activities, and the combination of high-water content and finer fragmentation size, as 

shown by B3 and C3 classifications. Although B2 and C2 classifications are considered 

wet muck, only a small percentage of spill events originated from these classes. The wet 

muck condition at the adjacent drawpoint also confirmed the hypothesis summarized in 

Section 2.5. Water from the low permeability drawpoints cannot be appropriately drained 

and migrated to the higher permeability drawpoints.  

3. A sensitivity analysis of drawpoint radius of influence concluded that 36 m is the optimum 

distance when considering wet muck neighboring drawpoints. A drawpoint will have a 

higher likelihood of wet muck spills when the surrounding drawpoints are identified as wet 

muck drawpoints. The UI radii were optimum when including the seven nearest 

drawpoints, adopting similar considerations from Susaeta (2004) UI based on the El 

Teniente layout. 
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4. The DOZ geological domain and distance to the surface or IOZ mine were not compatible 

with short-term wet muck susceptibility predictions. Similarly, rainfall data were recorded 

from a rainfall station at the surface, but the proportion of surface water entering the cave 

zone and distributing to each drawpoint is unknown. In addition, the influence of high or 

low rainfall cannot be immediately mapped at each drawpoint because the mapping is 

carried out weekly to bi-weekly. 

5. The imbalanced distribution of a binary outcome creates challenges for the model fitting. 

A cost-sensitive multivariate logistic regression is an effective machine learning tool to 

analyze binary classifier problems involving a large and severely imbalanced dataset. It 

can provide a statistical understanding of the magnitude and interrelationship of multiple 

explanatory variables to the binary outcome. The statistical model, based on 776 known 

drawpoint wet muck spills from month 2018 to June 2019, identified 723 of these as high 

susceptibility drawpoints and 49 as medium susceptibility drawpoints. The model had a 

high recall score (99%) but a low precision score (1%). This means that the proposed model 

cannot provide a precise prediction (in the temporal sense of when a wet muck spill might 

occur at a specific drawpoint), but can be used as a spatial forecasting tool to alert the 

operation to drawpoints where spills are more likely to occur, and mitigation strategies may 

be most effective. 

6. The HoD showed a positive correlation above 170 m, indicating where and when finer 

fragmentation is more likely to be generated. Furthermore, the UI shows a positive 

correlation to wet muck spills above a UI value of 2. This result matched with the proposed 

UI matrix (Table 4.8), where isolated draw is indicated by a UI value of 2.2. 
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7. The statistical model confirmed that PTFI’s existing drawpoint classification system is a 

good predictor of wet muck spills. The 14-days mucking activity was also identified as a 

triggering factor. This study improves the susceptibility analysis by adding dimensionality 

from a two-parameter drawpoint classification matrix to an eight-parameter matrix, which 

is able to improve current spill and no-spill outcomes. Following is the order of significant 

variables, from highest to lowest: (1) drawpoint classification, (2) 14-day drawpoint 

mucking activity, (3) total wet muck neighbors within 36 m, (4) 2-day consecutive mucking 

activity, (5) adjacent drawpoint classification, (6) 3-day UI within the seven nearest 

drawpoints, (7) HoD, and (8) 14-day adjacent drawpoint mucking. Although the UI is not 

one of the strongest explanatory variables, it is still an important factor that can be 

controlled, with the goal of achieving uniform draw, when all of the uncontrollable 

contributing factors are present. 

8. Significant variables were classified as controllable or uncontrollable based on the 

operational capability to control the variable. Controllable variables consist of 14-day 

drawpoint mucking activity, 14-day adjacent drawpoint mucking, 2-day consecutive 

mucking, and 3-Day UI within the seven nearest drawpoints. Uncontrollable variables 

include drawpoint classification, adjacent drawpoint classification, total wet muck 

neighbors within 36 m, drawpoint HoD, and adjacent drawpoint HoD. 

9. A spreadsheet-based wet muck susceptibility tool was developed using the eight most 

significant variables identified from this research. This tool can provide daily drawpoint 

susceptibility, annotated through a traffic light system, with interim thresholds for low 

susceptibility (< 0.4), medium susceptibility (0.4 – 0.75) and high susceptibility (> 0.75). 

Based on the test dataset between 2018 January and 2019 June, the susceptibility threshold 
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shows a good performance. However, due to the imbalanced dataset, there were still false 

alarms. 

10. The outcome of this research provides a concept of using a logistic regression approach to 

calculate drawpoint spill susceptibility that can be applied to other caving operations 

susceptible to wet muck spills. The developed UBC-ICaRN wet muck susceptibility tool 

can also provide an empirical guideline to other operations. In addition, an updated UBC 

Uniformity Index for the offset herringbone drawpoint layout was developed based on 

Susaeta’s (2004) Uniformity Index matrix for the El Teniente drawpoint layout. 

5.2 Challenges and Limitations 

1. Analysis of the observational datasets, such as drawpoint classification and wet muck 

neighboring drawpoints within 36m is challenging because observations can be subjective 

and vary between different mine workers mapping and recording the data at different times. 

The susceptibility model strongly correlates with these observational variables. A wet 

muck class drawpoint might not be mapped as frequently as a non-wet muck class 

drawpoint due to safety risks limiting access for mapping. Consequently, information on 

drawpoint class and its associated variables do not necessarily reflect reality. 

2. The collection of data related to wet muck spills has improved over time, particularly since 

2016. The study database is assumed to be accurate, with significant outliers removed. 

However, some potentially important factors, including drawpoint water discharge, 

hydraulic conductivity, and rock type distributions, were not considered in this study due 

to incompleteness of the datasets. In addition, the tonnage dataset is skewed because 
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various strategies (wet-dry tons mixing ratio, unrecorded tonnage combined with spill 

cleanup) were implemented throughout the history of the operation.  

3. Only significant variables were selected for use in the susceptibility model. However, these 

explanatory variables have their limitations. For example, differential HoD did not reveal 

its correlation to wet muck spills. However, a high difference between HoD in a drawbell 

can result in a shear failure that can lead to a wet muck spill. Other variables include UI, 

where the tonnage threshold for the total number of inactive drawpoints (Δ) is unknown. 

Uneven draw can occur even with a low UI value. For example, a drawpoint being mucked 

400 tons per three days while each surrounding drawpoint is mucked 100 tons per three 

days results in a UI of 0.55, while an inactive drawpoint counts as zero. However, over an 

extended period, the drawpoint will experience isolated draw, causing uneven cave shape.  

4. A logistic regression model is a generalized linear model that assumes a linear relationship 

between the logit link function and explanatory variables (Dobson & Barnett, 2018). 

However, wet muck spills are a complex problem that may involve non-linear 

relationships. For example, the UI is a nonlinear variable where UI values between 0.6 and 

1 and 1.4 and 2 are considered uniform draw, but the susceptibility model negatively 

correlates these values to wet muck spills. Therefore, it is still recommended to maintain a 

uniform draw following the developed UI matrix (Table 4.8). 

5. The susceptibility model predicts a short-term drawpoint susceptibility to wet muck spills. 

Calculations with higher temporal inputs might not result in higher accuracy. The 

explanatory variables selected were primarily operational factors. The consequences of 

poor draw strategies were not statistically feasible to analyze due to data record limitations. 
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In addition, further research is required to validate the results of this statistical model to 

identify the mechanistic links between the significant variables and wet muck spills. 

5.3 Model Implementation and Recommendations for the Grasberg Mining Complex 

5.3.1 Implementation at DOZ 

Even though the DOZ susceptibility model produces a high false alarm rate, it can be utilized as a 

forecasting tool to alert the operation to drawpoints that have relatively high susceptibility to spills. 

Instead of classifying the model outcomes into spill or no-spill categories using a single threshold, 

spill susceptibility is suggested to be classified into three categories (refer to section 4.5.2). The 

proposed susceptibility categories were obtained from the testing process using data between 2018 

and June 2019. This model should be tested again with newer data to validate its ongoing 

performance and retrained if necessary. Similarly, the susceptibility class thresholds should be 

reviewed in the context of PTFI’s risk tolerance and evolving risk management strategies.  

Updating the DOZ mine susceptibility map daily is recommended to reflect near real-time 

operational conditions. Although not all data are readily available on a daily basis, updating the 

variables as soon as they are reported strengthens the model predictive capability. The calculation 

of drawpoint susceptibility needs to consider the planned date of mucking activity at drawpoints 

and adjacent drawpoints. If a drawpoint experienced no mucking activity over the past 14 days (0) 

and is planned to be mucked on the day of the susceptibility calculation, the drawpoint 14 days 

mucking activity should be manually adjusted to active mucking (1). 
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5.3.2 Implementation at GBC and DMLZ 

The DOZ model can provide an empirical guideline for the GBC and DMLZ mine, but the 

explanatory variables might be different since the mine is not operating under the exact same 

conditions. For example, the proposed model considers HoD to be significant above 170 m. 

However, this reflects the specific geology and conditions at the DOZ, where the average distance 

to the IOZ is approximately 250 m. The GBC mine might have a lower planned HoD since the 

existing Grasberg Open Pit is directly above it, and fines and water may flow directly into the cave 

after it breaks through the surface. Furthermore, the GBC and DMLZ mine has adopted the El 

Teniente drawpoint layout, which is different from the offset herringbone layout used at the DOZ. 

The radius of influence should therefore be re-analyzed to obtain the optimum value for the GBC. 

This research delivers a concept, using cost-sensitive multivariate logistic regression, which can 

be applied to develop a similar wet muck susceptibility tool for these mines. Newly recorded data, 

such as water discharge and hydraulic conductivity, should be tested in each respective mine 

model. Finally, the GBC and DMLZ mine is a newer operation for which the database is not as 

extensive as that of the DOZ mine. As more data becomes available at the GBC, the model should 

be updated. 
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5.3.3 Additional Variables and Updating Susceptibility Model 

Since the operation is continuously improving their database, previous manually recorded data 

were updated into a cloud database. However, not all of the manually recorded data could be used. 

For example, water discharge, hydraulic conductivity, and drawpoint rock type distributions were 

not considered in this study, as noted above. These variables should be tested as more data become 

available, and added to the model if they are determined to be significant. Other new variables 

should also be considered, such as drawpoint fragmentation. The influence of large-scale 

geological structures and domains could also be analyzed to identify potential large-scale spatial 

and/or long-term temporal correlations with wet muck conditions at drawbells or clusters of 

drawpoints.  

5.3.4 Physical and Numerical Modelling 

This study provides a statistical understanding of causative and triggering factors for wet muck 

spills at the DOZ mine. Limited information was available on long-term factors related to historical 

wet muck spills at the DOZ. Consequently, these factors were not considered in this analysis. 

Long-term spatial-temporal influences, such as the formation of wet muck, geological conditions, 

secondary cave fragmentation, wet muck preferential flow paths, and muckpile shear failure at 

drawpoints or drawbells are potential topics for future research, through numerical modeling 

and/or physical tests. 
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5.3.5 Influence of draw-related strategies 

Hypothetically, wet muck spills are correlated with high draw rates and isolated/uneven draw, 

which can create preferential flow paths for wet muck materials to migrate. However, the model 

did not reveal that higher draw rates result in high spill susceptibility. As the explanatory variables 

for this study were selected based on the model performance metrics, insignificant hypothetical 

variables were not included in the final model. It may be possible to further define the influence 

of draw strategies on wet muck spills through additional research focused on medium to high 

susceptibility drawpoints. Furthermore, the UI has its own limitations, and should be updated 

further. Spatial clustering, drawbell interactions through various draw strategies, global cave 

footprint draw patterns, and differential movement between draw columns may provide insights 

into the causation of wet muck spills due to poor draw strategies. 
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 Appendices 

Appendix A - Variable Development, Descriptions, and Assumptions 

The analysis was completed for each drawpoint, where each drawpoint coordinate and elevation 

was provided by PTFI and used to develop each drawpoint distance for spatially manipulated 

variables. The study database was developed based on daily drawpoint observations ranging from 

January 2008 to June 2019. Each drawpoint has multiple attributes associated with hypothetical 

wet muck spill causative and triggering factors experienced from various caving operations 

totaling 177 variables. Publicly available software, Python, was used for data processing and 

statistical analysis. The Mira Geoscience software package was used to convert LiDAR data into 

the CSV format. A description of each variable development, the spatio-temporal manipulation, 

and associated assumptions are described below: 

A.1 Wet Muck Spill 

A list of confirmed wet muck spills at the DOZ mine, including the run-out characteristics, seismic 

events, mining activities, and severity, was provided by PTFI. At the DOZ mine, an uncontrollable 

muck discharge is considered a wet muck spill when the muck outflow surpasses the opposite 

panel rib. For every drawpoint in the study database, events were recorded as spill (1) or no-spill 

(0) on a daily basis, with the assumption of the absence of wet muck spill when there were no 

reported spills. Daily repetitive spills from a drawpoint were recorded as one event ignoring the 

frequency. 
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A.2 Drawpoint Wet Muck Classification 

All permanently closed drawpoints were removed from the study database, as the drawpoints were 

no longer operational. Actively drawn drawpoints with wet muck spills recorded at closed 

drawpoints were checked and adjusted based on the supporting documents. The drawpoint 

classification describes the fragmentation size and water content of a drawpoint. Each drawpoint 

is mapped through an Android table, capturing the material fragmentation and water content, water 

discharge, and rock types. At PTFI caving operations, fragmentation size is recorded in alphabet 

convention, while water content is recorded in numbering convention (Figure X). PT. Freeport 

Indonesia (2020) defines each convention as follows: 

• A – Dominant coarse material(>5cm) with a percentage of above 70%. 

• B – Mixture of coarse and fines (< 5cm) with the percentage between 30% to 70% 

• C – Dominant fine muck (< 5cm) with a percentage of above 70% 

• 1 – Dry condition muck 

• 2 – Moist condition muck with 8.5% to 11% water content 

• 3 – Wet condition with water content greater than 11% 

The A3, B2, B3, C2, and C3 classifications are considered as wet muck drawpoints. A drawpoint 

is reported as Closed Temporary (CT) when there is drawpoint maintenance, spill clean-up, hang-

up, or high spill susceptibility, while a drawpoint is reported as Closed Permanently (CP) when it 

is no longer operational. The CP drawpoints were removed from the study database, while the CT 

drawpoints were manually adjusted following the previous class. Although it is important to 

continuously update drawpoint class, it is not feasible to map all potential wet muck drawpoints 
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due to the safety risks. To reduce this data gap, it was assumed that wet muck drawpoints do not 

change classification until they are mapped again. An adjacent drawpoint is created based on the 

drawpoint coordinate, which is filled with the drawpoint class. In this study database, an adjacent 

drawpoint refers to a neighboring drawpoint within the same drawbell. 

A.3 Total Number of Wet Muck Neighboring Drawpoints 

The total number of wet muck neighboring drawpoints was calculated by summing the total 

number of wet muck class drawpoints within a specified radius of influence on each day. The 

radius of influence was set at 24 m, 36 m, and 48 m with a circular layout. This variable represents 

the general wet muck condition of each drawpoint within the specified radius of influence. It is 

hypothesized that wet muck material can migrate to surrounding drawpoints, changing the 

drawpoint classification to a worse classification. 

A.4 Height of Draw and Extraction Ratio 

The HoD is a vertical distance of a drawpoint draw column, while extraction ratio is the ratio of 

actual HoD over the planned HoD. At the DOZ mine, HoD and extraction ratio are measured on a 

monthly basis. Adjacent HoD and adjacent extraction ratio were also developed to analyze the 

influence of differential HoD and differential extraction ratio at the drawbell. 

The wet muck susceptibility analysis requires these datasets to be converted on a daily basis with 

the exact value from the first day to the last day of the month. Interpolation of the data on a daily 

basis had very minimal influence as the changes from month to month are small and did not have 

any effect on the data distribution. 



162 

 

A.5 Tonnages 

The tonnage dataset, which represents the amount of material drawn for production from each 

drawpoint, was recorded on a daily basis. Several temporal periods were developed for the tonnage 

dataset at lags of 1 day, 2 days, 3 days, 7 days, 14 days, 21 days, and 28 days to understand the 

cumulative influence of tonnage on wet muck spills. It is hypothesized that the higher the tonnage 

drawn from a drawpoint, the higher the probability of a wet muck spill occurrence. At a spill 

drawpoint, the recorded tonnages may be combined with the production tonnages and spill clean-

up tonnages. It is unknown whether a spill clean-up is conducted within the same day as the spill. 

Therefore, the temporal period considered cumulative lagging of the specified period, starting from 

one day before. A similar principle was applied to the development of the adjacent tonnage dataset. 

Differential tonnage for each temporal period was calculated by deducting the drawpoint tonnage 

from the adjacent drawpoint tonnage within the same drawbell. 

A.6 Mucking Activity. 

The presence of mucking activity (1) in the drawpoint was set when the drawpoint was drawn over 

10 tonnes (1 bucket) per day, while mucking lower than 10 tonnes was recorded as absent (0). This 

threshold was set to minimize bias in the tonnage dataset caused by the tonnage drawn and clean-

up of spills. In this study database, mucking activity was transformed from lags of 1 day, 2 days, 

3 days, 7 days, 14 days, 21 days and 28 days to analyze the impact of mucking on spill 

susceptibility. A similar approach was applied to the adjacent drawpoint mucking activity. 
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A.7 Cumulative Days of No Mucking. 

The cumulative days of no mucking activity were developed using the daily mucking activity 

dataset. If a drawpoint was consecutively mucked over 10 tonnes per day over the specified period, 

it was considered as presence (1) and absence (0) when no consecutive mucking activities were 

observed.  

A.8 Vertical Distance from Drawpoint to IOZ and Surface Subsidence 

The nearest distance between the IOZ cave footprint and yearly surface subsidence was measured 

from each DOZ drawpoint in meters. In addition, the presence (1) or absence (0) of the overlying 

IOZ and surface subsidence above each drawpoint was assigned to each drawpoint. 

A.9 Uniformity of Draw (UI, SPUI, and number of inactive drawpoints) 

The UI is a function of tonnage, which adds the value of the specific index of uniformity and the 

total of inactive drawpoinst within the radius of influence and time period (Equation 2.1). The 

SPUI is measured from the difference in tonnages drawn from drawpoints in the vicinity of one 

another over a given time period. At PTFI, UI input data is calculated through the sum of tonnage 

over “n” days. The calculation of average “n” days UI provides calculation bias, as it is not 

operationally feasible to muck all drawpoints and have a low average UI value. SPUI and the 

number of inactive drawpoint datasets were also developed to analyze their correlation with wet 

muck spills. Various radii of influence were developed based on the five nearest drawpoints, seven 

nearest drawpoints, drawpoints within 24 m, drawpoints within 36 m, and drawpoints within 48 

m. In addition, each of the radii was extended for each temporal period from lags of 1 day, 2 days, 

3 days, 7 days, 14 days, 21 days, and 28 days. 
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A.10 Rainfall 

Rainfall data is recorded at the nearby station on the surface. Since it is unknown how much 

precipitation entering the cave flows to each drawpoint, it was assumed that every drawpoint 

experienced the same rainfall intensity throughout the footprint on any given day, temporally 

manipulated from daily to a cumulative lag of 28 previous days. 

A.11 Geological Domain 

The DOZ mine consists of two different geological domains: the EESS (mainly skarn) and ESZ 

(mainly diorite). Drawpoints located in the EESS domain were specified with a value of 1, while 

drawpoints located in the ESZ domain were specified with a value of 2. 
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Appendix B - Exploratory Data Analysis 

B.1 Draw Column Distributions 

 

Figure B.1. Height of draw (left) and adjacent height of draw (right) distribution at each drawpoint class. 

 

Figure B.2. Extraction ratio (left) and adjacent extraction ratio (right) distribution at each drawpoint class.  
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B.2 Uniformity of Draw Distributions 

 

Figure B.3. Distribution of wet muck spills with uniformity index within five nearest drawpoints (left) and 

uniformity index within seven nearest drawpoints (right). 

 

Figure B.4. Distribution of wet muck spills with specific index of uniformity within five nearest drawpoints 

(left) and specific index of uniformity within seven nearest drawpoints (right). 
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3  

Figure B.5. Distribution of wet muck spills with total inactive drawpoints within five nearest drawpoints (left) 

and total inactive drawpoints within seven nearest drawpoints (right). 
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B.3 Tonnages Dataset Distributions 

 

Figure B.6. Distribution of wet muck spills at lag one-day drawpoint tonnages. 

 

Figure B.7. Distribution of wet muck spills at cumulative lag two days drawpoint tonnages. 
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Figure B.8. Distribution of wet muck spills at cumulative lag three days drawpoint tonnages. 

 

Figure B.9. Distribution of wet muck spills at cumulative lag seven days drawpoint tonnages. 
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Figure B.10. Distribution of wet muck spills at cumulative lag fourteen days drawpoint tonnages. 

 

Figure B.11. Distribution of wet muck spills at cumulative lag twenty-one days drawpoint tonnages. 
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Figure B.12. Distribution of wet muck spills at cumulative lag twenty-eight days drawpoint tonnages. 

 

Figure B.13. Distribution of wet muck spills at lag one-day adjacent drawpoint tonnages. 
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Figure B.14. Distribution of wet muck spills at cumulative lag two days adjacent drawpoint tonnages. 

 

Figure B.15. Distribution of wet muck spills at cumulative lag two days adjacent drawpoint tonnages. 
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Figure B.16. Distribution of wet muck spills at cumulative lag three days adjacent drawpoint tonnages. 

 

Figure B.17. Distribution of wet muck spills at cumulative lag seven days adjacent drawpoint tonnages. 
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Figure B.18. Distribution of wet muck spills at cumulative lag fourteen days adjacent drawpoint tonnages. 

 

Figure B.19. Distribution of wet muck spills at cumulative lag twenty-one days adjacent drawpoint tonnages. 
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Figure B.20. Distribution of wet muck spills at cumulative lag twenty-eight days adjacent drawpoint tonnages. 

 

Figure B.21. Distribution of wet muck spills at lag one-day differential drawpoint tonnages. 



176 

 

 

Figure B.22. Distribution of wet muck spills at cumulative lag two days differential drawpoint tonnages. 

 

Figure B.23. Distribution of wet muck spills at cumulative lag three days differential drawpoint tonnages. 
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Figure B.24. Distribution of wet muck spills at cumulative lag seven days differential drawpoint tonnages. 

 

Figure B.25. Distribution of wet muck spills at cumulative lag fourteen days differential drawpoint tonnages. 
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Figure B.26. Distribution of wet muck spills at cumulative lag twenty-one days differential drawpoint tonnages. 

 

Figure B.27. Distribution of wet muck spills at cumulative lag twenty-eight days differential drawpoint tonnages. 
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B.4 Rainfall Dataset Distributions 

 

Figure B.28. Distribution of daily rainfall (left) and lag one-day rainfall (right) with wet muck spills occurrences. 

 

Figure B.29. Distribution of cumulative two days rainfall (left) and three days rainfall (right) with wet muck spills occurrences. 
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Figure B.30. Distribution of cumulative seven days rainfall (left) and fourteen days rainfall (right) with wet muck spills occurrences. 

 

Figure B.31.Distribution of cumulative twenty-one days rainfall (left) and twenty-eight days rainfall (right) with wet muck spills occurrences. 
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B.5 Mucking Activities Distribution 

 

Figure B.32. Distribution of wet muck spills with the presence or absence of daily mucking activity (left) and lag one-day mucking activity (right). 

 

Figure B.33. Distribution of wet muck spills with the presence or absence of cumulative lag two days mucking activity (left) and cumulative lag three-

day mucking activity (right). 
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Figure B.34.Distribution of wet muck spills with the presence or absence of cumulative lag two days mucking activity (left) and cumulative lag three-

day mucking activity (right). 

 

Figure B.35. Distribution of wet muck spills with the presence or absence of cumulative lag two days mucking activity (left) and cumulative lag three-

day mucking activity (right). 
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Figure B.36. Distribution of wet muck spills with the presence or absence of daily adjacent mucking activity (left) and lag one-day adjacent mucking 

activity (right). 

 

Figure B.37. Distribution of wet muck spills with the presence or absence of lag two days adjacent mucking activity (left) and lag three days adjacent 

mucking activity (right). 
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Figure B.38. Distribution of wet muck spills with the presence or absence of lag seven days adjacent mucking activity (left) and lag fourteen days 

adjacent mucking activity (right). 

 

Figure B.39. Distribution of wet muck spills with the presence or absence of lag twenty-one days adjacent mucking activity (left) and lag twenty-eight 

days adjacent mucking activity (right). 
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Figure B.40. Distribution of wet muck spills with the presence or absence of two days consecutive mucking activities (left) and three days consecutive 

mucking activities (right). 

 

Figure B.41. Distribution of wet muck spills with the presence or absence of seven days consecutive mucking activities (left) and fourteen days 

consecutive mucking activities (right). 
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Figure B.42. Distribution of wet muck spills with the presence or absence of twenty-one days consecutive mucking activities (left) and twenty-eight days 

consecutive mucking activities (right). 
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Appendix C - Univariate Logistic Regression Coefficient and Performance Metric Results 

Table C.1.Summary of univariate logistic regression results assigned to each hypothesized variable. 

No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

1 Height of Draw 1.1 0 0.44 345 227049 97346 431 

2 Adjacent Height of Draw 0.82 0 0.43 330 212105 112290 446 

3 Differential Height of Draw 0.21 0 0.45 349 190568 133827 427 

4 Extraction Ratio 0.94 0 0.44 338 194754 129641 438 

5 Adjacent Extraction Ratio 1.18 0 0.47 414 196456 127939 414 

6 Differential Extraction Ratio -0.34 0 0.46 354 195861 128534 422 

7 Drawpoint Class Varies 0 0.97 752 127062 197333 24 

8 Adjacent Drawpoint Class Varies 0 0.87 678 109397 214998 98 

9 Wet Muck Neighbour 24m 0.57 0 0.94 732 83699 240696 44 

10 Wet Muck Neighbour 36m 0.29 0 0.91 706 89020 235375 70 

11 Wet Muck Neighbour 48m 0.17 0 0.9 701 86494 237901 75 

12 Daily Tonnage 0.56 0.03 0.77 597 301,899 22,496 179 

13 1 Day Tonnage 0.28 0.02 0.6 463 296,946 27,449 313 

14 2 Days Tonnage 0.27 0.01 0.65 501 290,774 33,621 275 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

15 3 Days Tonnage 0.24 0.01 0.67 519 286,546 37,849 257 

16 7 Days Tonnage 0.19 0.01 0.73  567   278,619   45,776   209  

17 14 Days Tonnage 0.12 0.01 0.78  605   271,231   53,164   171  

18 21 Days Tonnage 0.09 0.01 0.78  609   267,192   57,203   167  

19 28 Days Tonnage 0.07 0.01 0.79  610   264,472   59,923   166  

20 Daily Adjacent Tonnage -0.55 0 0.77  598   47,320   277,075   178  

21 1 Day Adjacent Tonnage -0.36 0 0.78  604   44,093   280,302   172  

22 2 Days Adjacent Tonnage -0.46 0 0.74  576   56,207   268,188   200  

23 3 Days Adjacent Tonnage -0.5 0 0.7  543   62,952   261,443   233  

24 7 Days Adjacent Tonnage -0.6 0 0.63  492   78,413   245,982   284  

25 14 Days Adjacent Tonnage -0.7 0 0.59  455   91,397   232,998   321  

26 21 Days Adjacent Tonnage -0.72 0 0.57  441   97,023   227,372   335  

27 28 Days Adjacent Tonnage -0.71 0 0.55  428   100,564   223,831   348  

28 Daily Differential Tonnage 0.57 0.02 0.76  586   294,179   30,216   190  

29 1 Day Differential Tonnage 0.29 0.01 0.58  451   288,452   35,943   325  

30 2 Days Differential Tonnage 0.28 0.01 0.63  491   280,059   44,336   285  

31 3 Days Differential Tonnage 0.25 0.01 0.66  515   274,610   49,785   261  

32 7 Days Differential Tonnage 0.2 0.01 0.72  556   265,424   58,971   221  

33 14 Days Differential Tonnage 0.15 0.01 0.77  596   256,238   68,157   180  
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

34 21 Days Differential Tonnage 0.12 0.01 0.77  601   252,122   72,273   175  

35 28 Days Differential Tonnage 0.12 0.01 0.78  604   249,933   74,462   172  

36 Daily UI at 5 DP 0.47 0 0.69  539   186,539   137,856   237  

37 1 Day UI at 5 DP 0.47 0 0.69  539   186,539   137,856   237  

38 2 Days UI at 5 DP 0.52 0 0.73  570   196,846   127,549   206  

39 3 Days UI at 5 DP 0.49 0 0.72  556   186,688   137,707   220  

40 7 Days UI at 5 DP 0.35 0 0.67  517   173,602   150,793   259  

41 14 Days UI at 5 DP 0.25 0 0.59  457   167,628   156,767   319  

42 21 Days UI at 5 DP 0.2 0 0.54  421   166,356   158,039   355  

43 28 Days UI at 5 DP 0.18 0 0.52  400   166,941   157,454   376  

44 Daily SPUI at 5 DP 0.58 0.01 0.61  476   273,813   50,582   300  

45 1 Day SPUI at 5 DP 0.58 0.01 0.61  476   273,813   50,582   300  

46 2 Days SPUI at 5 DP 0.59 0.01 0.67  522   280,775   43,620   254  

47 3 Days SPUI at 5 DP 0.64 0.01 0.71  549   275,024   49,371   227  

48 7 Days SPUI at 5 DP 0.72 0.01 0.74  572   263,332   61,063   204  

49 14 Days SPUI at 5 DP 0.74 0.01 0.76 593 252,900 71,495 183 

50 21 Days SPUI at 5 DP 0.74 0.01 0.77 598 246,170 78,225 178 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

51 28 Days SPUI at 5 DP 0.76 0.01 0.78 605 242,053 82,342 171 

52 Daily Total Inactive Drawpoint at 5 DP -0.1 0.01 0.57 444 241,170 83,225 332 

53 1 Day Total Inactive Drawpoint at 5 DP -0.1 0.01 0.57 444 241,170 83,225 332 

54 2 Days Total Inactive Drawpoint at 5 DP -0.08 0.01 0.51 398 258,857 65,538 378 

55 3 Days Total Inactive Drawpoint at 5 DP -0.13 0.01 0.62 482 241,257 83,138 294 

56 7 Days Total Inactive Drawpoint at 5 DP -0.2 0.01 0.57 444 244,083 80,312 332 

57 14 Days Total Inactive Drawpoint at 5 DP -0.22 0 0.72 558 210,303 114,092 218 

58 21 Days Total Inactive Drawpoint at 5 DP -0.23 0 0.79 616 187,283 137,112 160 

59 28 Days Total Inactive Drawpoint at 5 DP -0.22 0 0.83 645 169,832 154,563 131 

60 Daily UI at 7 DP 0.63 0 0.74 573 171,747 152,648 203 

61 1 Day UI at 7 DP 0.6 0 0.72 561 171,526 152,869 215 

62 2 Days UI at 7 DP 0.64 0 0.76 587 182,591 141,804 189 

63 3 Days UI at 7 DP 0.63 0 0.74 573 171,747 152,648 203 

64 7 Days UI at 7 DP 0.51 0 0.66 511 156,465 167,930 265 

65 14 Days UI at 7 DP 0.41 0 0.57 441 147,560 176,935 335 

66 21 Days UI at 7 DP 0.38 0 0.52 303 136,701 197,694 372 

67 28 Days UI at 7 DP 0.4 0 0.49 384 140,884 183,511 392 

68 Daily SPUI at 7 DP 0.62 0.01 0.69 536 278,382 46,013 240 

69 1 Day SPUI at 7 DP 0.55 0.01 0.58 453 277,321 47,074 323 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

70 2 Days SPUI at 7 DP 0.57 0.01 0.66 513 283,562 40,833 263 

71 3 Days SPUI at 7 DP 0.62 0.01 0.69 536 278,382 46,013 240 

72 7 Days SPUI at 7 DP 0.7 0.01 0.71 553 268,471 55,924 223 

73 14 Days SPUI at 7 DP 0.73 0.01 0.74 577 259,396 64,999 199 

74 21 Days SPUI at 7 DP 0.74 0.01 0.77 598 253,460 70,935 178 

75 28 Days SPUI at 7 DP 0.76 0.01 0.78 605 250,009 74,386 171 

76 Daily Total Inactive Drawpoint at 7 DP -0.01 0.01 0.51 396 252,070 72,325 380 

77 1 Day Total Inactive Drawpoint at 7 DP 0.01 0 0.52 405 72,401 251,994 371 

78 2 Days Total Inactive Drawpoint at 7 DP 0.02 0 0.59 460 56,401 267,994 316 

79 3 Days Total Inactive Drawpoint at 7 DP -0.01 0.01 0.51 396 252,070 72,325 380 

80 7 Days Total Inactive Drawpoint at 7 DP -0.04 0 0.44 342 250,145 74,250 434 

81 14 Days Total Inactive Drawpoint at 7 DP -0.04 0 0.55 430 222,260 102,135 346 

82 21 Days Total Inactive Drawpoint at 7 DP -0.04 0 0.59 460 202,811 121,584 316 

83 28 Days Total Inactive Drawpoint at 7 DP -0.02 0 0.54 418 217,356 107,039 358 

84 Daily UI at 24m 0.68 0.01 0.81 625 218,652 105,743 151 

85 1 Day UI at 24m 0.54 0.01 0.74 573 217,610 106,785 203 

86 2 Days UI at 24m 0.69 0 0.76 590 197,407 126,988 186 

87 3 Days UI at 24m 0.67 0 0.75 581 186,933 137,462 195 

88 7 Days UI at 24m 0.56 0 0.67 522 170,812 153,583 254 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

89 14 Days UI at 24m 0.46 0 0.57 442 148,912 175,483 334 

90 21 Days UI at 24m 0.43 0 0.53 414 149,810 174,585 362 

91 28 Days UI at 24m 0.42 0 0.5 391 153,447 170,948 385 

92 Daily SPUI at 24m 0.66 0.02 0.78 608 295,415 28,980 168 

93 1 Day SPUI at 24m 0.46 0.01 0.61 471 292,218 32,177 305 

94 2 Days SPUI at 24m 0.58 0.01 0.66 513 283,160 41,235 263 

95 3 Days SPUI at 24m 0.63 0.01 0.69 537 277,830 46,565 239 

96 7 Days SPUI at 24m 0.71 0.01 0.71 553 267,729 56,666 223 

97 14 Days SPUI at 24m 0.74 0.01 0.74 578 258,255 66,140 198 

98 21 Days SPUI at 24m 0.75 0.01 0.77 598 252,320 72,075 178 

99 28 Days SPUI at 24m 0.77 0.01 0.78 606 248,898 75,497 170 

100 Daily Total Inactive Drawpoint at 24m 0.27 0.01 0.78 604 219,056 105,339 172 

101 1 Day Total Inactive Drawpoint at 24m 0.23 0.01 0.7 543 219,190 105,205 233 

102 2 Days Total Inactive Drawpoint at 24m 0.05 0 0.57 440 77,246 247,149 336 

103 3 Days Total Inactive Drawpoint at 24m 0.02 0 0.46 360 93,846 230,549 416 

104 7 Days Total Inactive Drawpoint at 24m -0.02 0 0.48 361 235,944 88,451 415 

105 14 Days Total Inactive Drawpoint at 24m -0.02 0 0.58 452 205,911 118,484 324 

106 21 Days Total Inactive Drawpoint at 24m -0.02 0 0.51 394 221,481 102,914 382 

107 28 Days Total Inactive Drawpoint at 24m -0.002 0 0.56 433 206,869 117,526 343 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

108 Daily UI at 36m 0.69 0 0.85 662 181,509 142,886 114 

109 1 Day UI at 36m 0.59 0 0.77 596 180,969 143,426 180 

110 2 Days UI at 36m 0.6 0 0.81 631 150,053 174,342 145 

111 3 Days UI at 36m 0.57 0 0.78 603 140,667 183,728 173 

112 7 Days UI at 36m 0.43 0 0.7 540 120,116 204,279 236 

113 14 Days UI at 36m 0.34 0 0.6 465 122,239 202,156 311 

114 21 Days UI at 36m 0.31 0 0.56 433 126,728 197,667 343 

115 28 Days UI at 36m 0.3 0 0.54 422 123,896 200,499 354 

116 Daily SPUI at 36m 0.64 0.02 0.75 584 299,985 24,410 192 

117 1 Day SPUI at 36m 0.41 0.02 0.58 449 296,293 28,102 327 

118 2 Days SPUI at 36m 0.5 0.01 0.62 483 289,445 34,950 293 

119 3 Days SPUI at 36m 0.54 0.01 0.65 504 285,627 38,768 272 

120 7 Days SPUI at 36m 0.61 0.01 0.68 531 278,633 45,762 245 

121 14 Days SPUI at 36m 0.65 0.01 0.69 536 272,172 52,223 240 

122 21 Days SPUI at 36m 0.67 0.01 0.71 554 268,360 56,035 222 

123 28 Days SPUI at 36m 0.71 0.01 0.71 552 266,081 58,314 224 

124 Daily Total Inactive Drawpoint at 36m 0.12 0.01 0.34 293 271,251 53,144 483 

125 1 Day Total Inactive Drawpoint at 36m 0.11 0 0.34 266 267,692 56,703 510 

126 2 Days Total Inactive Drawpoint at 36m 0.03 0 0.68 525 70,518 253,877 251 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

127 3 Days Total Inactive Drawpoint at 36m 0.02 0 0.69 534 67,915 256,480 242 

128 7 Days Total Inactive Drawpoint at 36m 0.003 0 0.58 453 83,012 241,383 323 

129 14 Days Total Inactive Drawpoint at 36m 0.004 0 0.55 427 92,360 232,035 349 

130 21 Days Total Inactive Drawpoint at 36m 0.01 0 0.49 382 113,134 211,261 394 

131 28 Days Total Inactive Drawpoint at 36m 0.02 0 0.52 401 108,501 215,894 375 

132 Daily UI at 48m 0.72 0 0.85 664 163,649 160,746 113 

133 1 Day UI at 48m 0.61 0 0.82 635 161,955 162,440 141 

134 2 Days UI at 48m 0.59 0 0.78 604 138,108 186,287 172 

135 3 Days UI at 48m 0.56 0 0.74 572 129,439 194,956 204 

136 7 Days UI at 48m 0.43 0 0.66 513 115,763 208,632 263 

137 14 Days UI at 48m 0.34 0 0.58 449 110,512 213,883 327 

138 21 Days UI at 48m 0.32 0 0.54 416 118,420 205,975 360 

139 28 Days UI at 48m 0.39 0 0.51 394 116,205 208,190 382 

140 Daily SPUI at 48m 0.6 0.03 0.74 573 302,073 22,322 203 

141 1 Day SPUI at 48m 0.38 0.02 0.56 434 298,440 25,955 342 

142 2 Days SPUI at 48m 0.48 0.01 0.6 468 29,1294 33,101 308 

143 3 Days SPUI at 48m 0.52 0.01 0.63 490 287,816 36,579 286 

144 7 Days SPUI at 48m 0.59 0.01 0.67 518 281,129 43,266 258 

145 14 Days SPUI at 48m 0.63 0.01 0.68 530 275,294 49,101 246 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

146 21 Days SPUI at 48m 0.65 0.01 0.7 546 272,007 52,388 230 

147 28 Days SPUI at 48m 0.69 0.01 0.7 540 270,067 54,328 236 

148 Daily Total Inactive Drawpoint at 48m -0.05 0 0.59 454 109,522 214,873 322 

149 1 Day Total Inactive Drawpoint at 48m -0.05 0 0.59 457 109,480 214,915 319 

150 2 Days Total Inactive Drawpoint at 48m 0.03 0 0.65 504 63,274 261,121 272 

151 3 Days Total Inactive Drawpoint at 48m 0.02 0 0.65 504 65,279 259,116 272 

152 7 Days Total Inactive Drawpoint at 48m 0.01 0 0.62 478 69,873 254,522 298 

153 14 Days Total Inactive Drawpoint at 48m 0.01 0 0.54 421 84,775 239,620 355 

154 21 Days Total Inactive Drawpoint at 48m 0.01 0 0.48 372 104,591 219,804 404 

155 28 Days Total Inactive Drawpoint at 48m 0.02 0 0.43 334 120,143 204,252 442 

156 Daily Mucking 1.22 0.01 0.86 668 274,110 50,285 108 

157 1 Day Mucking 0.81 0.01 0.74 576 269,672 54,723 200 

158 2 Days Mucking 1.01 0.01 0.82 637 250,633 73,762 139 

159 3 Days Mucking 1.22 0.01 0.88 682 234,754 89,641 94 

160 7 Days Mucking 1.47 0.01 0.93 720 199,924 124,472 56 

161 14 Days Mucking 1.71 0 0.98 758 165,093 159,302 18 

162 21 Days Mucking 1.96 0 0.98 761 143,278 181,117 15 

163 28 Days Mucking 1.97 0 0.99 766 127,347 197,048 10 

164 Daily Adjacent Mucking -0.69 0 0.54 421 110,375 214,020 355 
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No Variable Coefficient Precision Recall 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 

165 1 Day Adjacent Mucking -0.97 0 0.78 605 43,806 280,589 171 

166 2 Days Adjacent Mucking -0.88 0 0.72 557 63,229 261,166 219 

167 3 Days Adjacent Mucking -0.82 0 0.67 517 76,074 248,321 259 

168 7 Days Adjacent Mucking -0.75 0 0.58 449 103,319 221,077 327 

169 14 Days Adjacent Mucking -0.68 0 0.49 381 130,563 193,832 395 

170 21 Days Adjacent Mucking -0.7 0 0.44 339 147,560 176,835 437 

171 28 Days Adjacent Mucking -0.73 0 0.41 318 160,092 164,303 458 

172 2 Days Consecutive Mucking 0.32 0.01 0.44 343 296,932 27,463 433 

173 3 Days Consecutive Mucking -0.08 0 0.73 568 16,515 307,880 208 

174 7 Days Consecutive Mucking -0.89 0 1 761 1,539 322,856 15 

175 14 Days Consecutive Mucking -0.9 0 1 774 1,351 323,044 2 

176 21 Days Consecutive Mucking -0.86 0 1 776 667 323,728 0 

177 28 Days Consecutive Mucking -0.97 0 1 776 339 324,056 0 
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Appendix D - Sensitivity of Variable Input Values to Wet Muck Susceptibility Prediction 

For each explanatory variable, the sensitivity of wet muck spill susceptibility was generated across 

the range of values in the data or each category member. In the plots below, the predicted wet 

muck susceptibilities are compared to the proportion of spill drawpoints. Other model variables 

were held at a constant value, typically at the mean or median value. The illustration in Appendix 

D uses the constant values in Table D.1. 

Table D.1.  The constant values used for the wet muck spill susceptibility variable sensitivity. 

Variable Condition 

Drawpoint Class B3 

Adjacent Drawpoint Class B3 

Wet Muck Neighboring Drawpoint within 36m 7 

Height of Draw 250 

3 Days Uniformity Index at 7 nearest DP 3.50 

14 Days Mucking Activities 1 

14 Days Adjacent Mucking Activities 1 

2 Days Consecutive Mucking Activities 1 
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Figure D.1. Wet muck spill susceptibility predictions based on each change in drawpoint classification. 

 

Figure D.2. Wet muck spill susceptibility predictions based on each change in adjacent drawpoint 

classification. 
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Figure D.3. Wet muck spill susceptibility predictions based on each increase of the number of wet muck 

neighboring drawpoint within 36 m.  

 

 

Figure D.4. Wet muck spill susceptibility predictions based on each increase of HoD per 50m. 
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Figure D.5. Wet muck spill susceptibility predictions based on each increase of three days uniformity index at 

seven drawpoint per 0.5. 

 

Figure D.6. Wet muck spill susceptibility predictions based on the presence or absence of 14 days of 

drawpoint mucking activities. 
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Figure D.7. Wet muck spill susceptibility predictions based on the presence or absence of 14 days adjacent 

drawpoint mucking activities. 

 

 

Figure D.8. Wet muck spill susceptibility predictions based on the presence or absence of 2 days of 

consecutive drawpoint mucking activities. 
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