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Abstract 

High-rise residential buildings are considered as one of the best solutions to the current lack of 

space in urban areas. In high-density cities in the Canadian Pacific Northwest, reinforced concrete 

shear wall structures are one of the main typologies used in tall buildings design. This type of 

building is composed of a seismic-force resisting system and a gravity-force resisting system. 

While the former system is designed to resist lateral loads, failure of the gravity-force system is 

recognized as one of the main causes of building collapse under earthquake demands. Accurate 

estimation of seismic demands in this system is critical to provide a safe design. The goal of this 

study is to obtain gravity system flexural stiffness modifiers to safely estimate their seismic 

demands following a linear-elastic analysis. The proposed flexural stiffness modifiers were 

derived from the moment-curvature analysis of members within a nonlinear 3D reinforced 

concrete shear wall structural analysis building model (with both seismic-force and gravity-force 

resisting systems modelled as nonlinear). These quantitative results for individual members are 

used to perform regression analyses to develop generalized equations to estimate the flexural 

stiffness modifiers in gravity-frame columns and slabs. Typical flexural stiffness modifiers range 

from 3-100% and 18-85%, for columns and slabs, respectively. In most of the cases, the results 

show that the gravity system bending moment demands of a linear-elastic analysis model with the 

proposed effective stiffness modifiers are consistent with the moment demands in an equivalent 

nonlinear model. The proposed recommendations provide appropriate estimates of seismic 

demands in the gravity-force system by means of realistic stiffness factors. Moreover, they support 

the implementation of the Simplified Analysis procedure for the gravity-system design of 

reinforced concrete shear wall buildings as outlined in the Canadian concrete standard (CSA 

A23.3-19 § 21.11.2.1)   by practicing engineers. 
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Lay Summary 

This thesis provides recommendations and tools for practicing structural engineers on how to 

estimate the effective stiffness of reinforced concrete columns and slabs that are not part of the 

seismic-force resisting system in modern tall residential reinforced concrete shear wall buildings. 

With this information, structural engineers can accurately estimate the seismic demands in these 

elements by means of a simplified linear-elastic analysis procedure. Past earthquakes have shown 

that failure of slabs and columns that are part of a building’s gravity system can lead to building 

collapse. For this reason, accurate and realistic estimates of the earthquake forces induced in these 

elements is needed.  
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Glossary 

Wallumn: a column designed to resist gravity force with a cross-section depth at least two times 

larger than its width. The strong axis moment of inertia can attract significant seismic demands 

that are not generally accounted for in design.  
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Chapter 1: Introduction 

 

1.1 Background, Aim, and Objectives 

Southwest British Columbia is Canada’s most seismically active region. This area is exposed to a 

variety of seismic sources that can produce subduction, intraslab, and crustal earthquakes. 

Furthermore, this region holds one of the largest concentrations of population in Canada. Around 

2.5 million people live in Metro Vancouver and it is expected that by 2050 this number will 

increase to 3.6 million (Metro Vancouver, 2018). This population rise calls for more household 

units. According to Metro Vancouver (2018), apartments will make 62% of the housing 

development in the next 30 years. Tall tower apartment buildings are a great solution to the scarcity 

of land in cities with a high-density population. In seismically active regions, reinforced concrete 

shear walls (RCSW) are the preferred seismic-force resisting system (SFRS) for tall tower 

buildings. The large stiffness of this system is effective in controlling the large drifts imposed by 

lateral seismic loads. The earthquake energy dissipation is allocated at the base of the core walls 

and by hinging of the coupling beams. 

 

In addition to the SFRS, tall buildings have an additional structural system called gravity-force 

resisting system (GFRS). In contrast to the SFRS, this system is not designed to withstand 

earthquake forces. The GFRS is generally a frame structure composed by a combination of 

columns, slabs, and beams. These structural elements are intended to transfer the gravity forces, 

e.g., self-weight, superimposed dead load, live load, etc., to the foundation. Although they are 

detailed for gravity forces only, these elements will engage and take lateral seismic load if: 1) The 

frame system is stiff (in relation to the SFRS), or 2) the SFRS has yielded and therefore softened. 
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Moreover, the GFRS will need to accommodate the lateral displacement demands of the SFRS to 

achieve compatibility. These displacement demands could be significant because the SFRS is 

designed to be ductile and go into the nonlinear range.  Observations from past earthquake events 

in Northridge, CA (1994) and Christchurch, New Zealand (2011) (Mitchell, et al., 1995; Elwood, 

2013) demonstrate that one of the main reasons for building collapse is triggered by failure of 

elements not part of the SFRS. Some examples are the Pyne Gould Corporation building, 

Canterbury Television building, and the California State University parking. To address this 

problem, North American building codes for concrete design, CSA A23.3-19 (CSA, 2019) and 

ACI 318-19 (ACI, 2019), have developed prescriptive design clauses for structural engineers to 

evaluate the seismic demands in elements of the GFRS. The codes’ objective is to check if the 

GFRS gravity design is able to withstand the seismic displacement demands. If this is not fulfilled, 

appropriate seismic detailing is required to withstand earthquake actions. 

 

In Canada RCSW buildings are designed following the CSA A23.3-19 (CSA, 2019) and NBC 

2015 (NRC, 2015) requirements. These codes allow practicing engineers to follow a linear-elastic 

prescriptive approach for the SFRS and GFRS design of tall buildings. There are two prescribed 

procedures, the General Analysis and Simplified Analysis, to estimate the GFRS seismic demands. 

Both methods are described in Sections § 21.11.2.1 and § 21.11.2.2 of the CSA A23.3-19 standard, 

respectively. These procedures provide the practicing engineers a method to assess the seismic 

demands experienced by the GFRS after it has been designed for gravity forces only. Within these 

procedures, the engineer is required to evaluate the structure and subject it to the design 

displacement accounting for foundation movements, nonlinearity in the RCSW plastic hinge zone, 

and cracking of concrete in elements belonging to the GFRS. CSA A23.3-19 specifies that the 
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effective stiffness, should be an upper-bound value to safely estimate the demands (in this 

document, the effective stiffness represents the effective flexural stiffness). Larger values of 

effective stiffness attract more seismic loading resulting in a conservative estimation of seismic 

loads. It is common practice in structural design offices to assume a small value for the out-of-

plane flexural effective stiffness (i.e., effEI ) of slabs, usually 10-25% of their gross stiffness and 

0.70eff gEI EI= for columns (J. Centeno, personal communication, November 11, 2021). This has 

been adopted because the upper-bound stiffness modifiers are not explicitly defined in CSA A23.3-

19. Failure of columns could cause loss stability and trigger collapse. For this reason, the intention 

of this assumption is to allocate high demands in critical elements through high estimates of 

effective stiffness. These assumptions result in gravity columns that resemble those in moment 

resisting frames, which are capable of dissipating seismic demands through nonlinear deformation 

without loss of gravity load bearing capacity. By contrast, elements like slabs and beams have 

smaller arbitrary values because they are expected to release energy through cracking and yielding.  

 

This thesis aims to assess the flexural stiffness factors of the gravity-force system in RCSW shear 

wall buildings. The first objective is to obtain good agreement in the seismic demands between a 

full nonlinear RCSW 3D building model and a linear-elastic virtual twin building model with 

effective stiffness factors under same levels of displacement. A full nonlinear model was used 

because it is the best analysis tool to evaluate the performance of buildings. The results of this 

detailed nonlinear model are compared to a linear-elastic building since the latter is the most 

common analysis approach used by structural design engineers. Second, recommendations to 

estimate the GFRS stiffness modifiers according to the most influential design parameters are 
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provided as a tool for practicing engineers to correctly assess and estimate the seismic demands in 

the GFRS following a linear-elastic prescribed procedure. It is intended that these 

recommendations will support the implementation of clauses § 21.11.2.1 and § 21.11.2.2 of the 

CSA A23.3-19. 

 

1.2 Methodology 

The main goal of this thesis is to provide realistic flexural stiffness factors in elements that are part 

of the gravity-force resisting system to support the implementation of clauses § 21.11.2.1 and § 

21.11.2.2 of the Canadian concrete standard for practicing engineers. These flexural stiffness 

modifiers are intended to provide safe estimates of earthquake demands in members not part of 

the seismic-force system. The methodology adopted in this thesis is described in this section and 

shown in Figure 1.1. 

 

First, a full nonlinear 3D building model was designed and modelled in LS-Dyna (LSTC, 2020). 

The building was designed following the prescriptive approach from the Canadian standard for 

concrete design and the Canadian building code (CSA, 2019; NRC, 2015). The building is 

representative of a typical Vancouver high-rise residential tower. Nonlinear modelling validation 

of the SFRS was carried out against laboratory results (Eksir Monfared A. , 2020) to ensure 

adequate structural performance. The core was modelled using multi-layer shells able to capture 

shear-flexure interaction and the coupling beams were modelled using a lumped plasticity beam 

element able to replicate the hysteretic nonlinear behaviour of reinforced concrete coupling beams. 

The slabs and columns part of the GFRS were modelled using fibre elements which capture the 
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moment-axial force interaction. Consistent with the SFRS, the fibre-based modelling approach of 

the GFRS was validated against laboratory experimental results.  

 

The next step was to obtain the design displacements from a linear-elastic dynamic analysis 

following the NBC 2015 (NRC, 2015) clauses. With the design displacement of each direction, 

the drift profile for the cantilever and coupled direction was developed according to the Simplified 

Analysis clause §21.11.2.2 from the CSA A23.3-19 code. The 3D nonlinear model was subjected 

to the design displacement drift profile by means of a pushover analysis in each direction 

separately. The fibre element formulation of the GFRS elements assumes that cross-sections 

remain plain. With this, the strain through the height of the element was extracted from the model 

and the curvature was computed. The effective flexural stiffness of each member was obtained 

from the moment-curvature plots.  

 

The effective stiffness results inferred from the moment-curvature analyses were adopted in a 

linear-elastic virtual twin building model because this analysis is the most common approach used 

in design practice. This 3D linear-elastic building model was also subjected to the same pushover 

and drift profile described in the Simplified Analysis of CSA A23.3-19. The GFRS bending 

moment demands from this linear-elastic model were compared against the bending moment 

demands of the nonlinear model. Effective stiffness calibration was performed by comparing the 

linear-elastic vs nonlinear bending moment demands. These last two steps were iterated until good 

agreement between the linear-elastic and nonlinear building model was achieved.  
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To facilitate the implementation of the Simplified Analysis in structural design practice while 

leveraging the results of this study, prediction equations and recommendations on the effEI of slabs 

and columns are developed based on a single building case study. Through regression analyses, 

flexural effective stiffness predictor equations for gravity-frame columns and slabs are proposed 

for gravity systems with different geometric properties. The most influential and statistically 

significant design parameters were chosen to predict the effective stiffness in these structural 

members. Residual analysis was carried out to prove the validation of the regression models and 

recommendations are proposed. Finally, a validation of the equations’ prediction power is carried 

out. For this, two buildings with the same SFRS, but different GFRS will be used in the assessment. 

The first goal of this exercise is to ensure there is no significant loss of accuracy when using the 

generalized expressions. The second goal is to check the prediction power of the equations when 

a different GFRS is used. The linear-elastic buildings adopted the flexural stiffness modifiers 

obtained through the proposed flexural effective stiffness prediction equations. Both buildings 

were subjected to the Simplified Analysis drift profile in each direction separately and their linear-

elastic GFRS moment demands were benchmarked against the results of their detailed nonlinear 

virtual twin.  
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Figure 1.1 Methodology used in this study
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1.3 Thesis outline 

This thesis proposes flexural effective stiffness modifiers of the GFRS in tall residential RCSW 

buildings to provide realistic estimates of seismic demands in columns and slabs that are not part 

of the SFRS. The flexural effective stiffness factors were initially obtained from a single building 

case study. By performing regression analyses to the flexural stiffness results, proposed equations 

were developed to generalize the estimation of these modifiers to other gravity-frame members. 

Additionally, it provides flexural effective stiffness prediction equations for columns and slabs 

columns that belong to the GFRS to support the implementation of CSA A23.3-19 clause 

§21.11.2.2 in structural design practice. This thesis consists of the following chapters: 

 

Chapter 1 presents important background information, introduces the research problem, and 

describes the methodology adopted in this work. 

 

Chapter 2 provides a literature review on 1) the seismic design of RCSW in Canada, 2) case 

studies of building collapse triggered by failure of the GFRS, 3) the code requirements by CSA 

A23.3-19 and ACI 318-19 to quantify the seismic demands in the GFRS and a brief comparison 

between the two standards, 4) a non-prescriptive approach to obtain the seismic demands in the 

GFRS, 5) the effective width beam (EBW) modelling approach for slabs as an alternative method 

for lateral analysis, 5) the axial elongation of slabs and beams and its effect on the stiffness of these 

members, 6) wall-frame interaction, and 7) a discussion on the flexural effective stiffness of 

reinforced concrete elements and its multiple definitions. 
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Chapter 3 describes the structural layout of the studied building archetype. Material and geometric 

properties of the SFRS and GFRS are listed. Additionally, the gravity design of columns and slabs 

following the CSA A23.3-19 requirements is summarized.  

 

Chapter 4 describes the static pushover analysis for both linear and nonlinear models following 

the Simplified Analysis procedure. The modelling assumptions of the linear-elastic static 

(pushover) analysis are presented. Additionally, the feasibility of modelling the slabs as effective 

width elements is assessed. The next part of this chapter focuses on the nonlinear analysis of the 

studied building archetype. First, the constitutive material models for reinforced concrete and steel 

reinforcement are presented. Second, a brief description of the GFRS and SFRS element 

formulation is summarized. Third, a validation of the fibre-based element formulation used for the 

elements of the GFRS is performed by calibrating three virtual twin models to experimental results. 

Last, the induced compressive forces caused by the axial elongation of effective width slabs is 

discussed. 

 

Chapter 5 establishes and validates the procedure to obtain the moment-curvature plots from the 

nonlinear building model of Chapter 4. Additionally, the method to compute the flexural effective 

stiffness of the GFRS components is described. The iteration methodology to calibrate the flexural 

effective stiffness factors by comparing the linear-elastic against the nonlinear moment demands 

is discussed. After the iterations showed good agreement, the final flexural effective stiffness 

values for the GFRS are presented. 
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Chapter 6 utilizes the flexural effective stiffness data generated in Chapter 5 out of a single 

building case study to formulate equations for broader use in gravity systems with different 

geometric properties. These equations predict the flexural effective stiffness modifiers of columns 

and slabs not part of the SFRS. Several design parameters, geometric, and material variables were 

assessed to carry out regression analyses. Only statistically significant variables were included in 

the flexural effective stiffness prediction equations.  

 

Chapter 7 evaluates the prediction power of the equations developed in Chapter 6. For this, the 

flexural effective stiffness modifiers obtained through the proposed equations are included in two 

linear-elastic buildings models with different gravity-frame geometric properties but same SFRS. 

The bending moment demands of each linear-elastic model are benchmarked against its nonlinear 

twin to analyze the accuracy of the proposed equations. Additionally, the GFRS design compliance 

is assessed following the § 21.11 CSA A23.3-19 guidelines.  

 

Chapter 8 summarizes the contributions of this thesis, its conclusions and limitations, as well as 

recommendations to further enhance this research.   
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Chapter 2: Literature Review 

2.1 RCSW High-Rise Design Western Canada 

The seismic design of typical high-rise reinforced concrete shear wall buildings follows a 

prescriptive approach detailed in the National Building Code of Canada (NBC) (National 

Resources Canada (NRC), 2015). In Southwest BC (British Columbia), the SFRS of high-rise 

residential buildings is typically composed of cantilevered shear walls, coupled shear walls, or a 

combination of both. It is assumed that the SFRS will take the bulk of the lateral loads in the 

structure, i.e. wind and seismic. On the other hand, the gravity-force resisting system (GFRS) will 

be a combination of columns, bearing walls, slabs, and beams. The GFRS will be designed to take 

all the vertical loads caused by gravity demands, e.g.: self-weight, superimposed dead load, live 

load, etc.  

 

Assuming all the seismic load will be resisted by the SFRS yields a conservative design. By 

developing hinges at the base of the wall and in the coupling beams of the SFRS, the designer 

intends to protect the GFRS from collapse. The SFRS will yield first as it is the stiffest structural 

element in the building system, taking the largest portion of seismic demands. Once the seismic 

demands match the SFRS nominal capacity, concrete cracks and rebar yielding arise at the SFRS 

bottom walls and coupling beams. At this point, a complete softening of the SFRS occurs resulting 

in a negligible structural stiffness. Thus, the SFRS will not be able to take more seismic load, 

however, it can still dissipate seismic energy through inelastic deformations. As the SFRS is not 

able anymore to accommodate the seismic loads, the GFRS will engage and start accommodating 

the seismic demands as it is the next stiffer structural system. Consequently, the practicing 

engineer needs to ensure all the elements of the GFRS have either 1) enough capacity to remain 
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linear elastic under a seismic hazard or 2) enough ductility to accommodate lateral demands (CSA, 

2019). 

 

The GFRS is usually composed by columns and flat reinforced concrete slabs. A unique feature 

of typical gravity columns found in southwest BC is their large, elongated depth in relation to their 

narrow width. In contrast with square-like shaped cross-sections, these columns have a depth-to-

width ratios of at least 2:1, although in many cases the ratio is larger than this. Because of their 

elongated shape, which resembles that of a wall, they are commonly referred to as “wallumns”. 

As outlined by Adebar et al. (2010), there are a number of reasons to use wallumns as part of the 

GFRS, including: 1) the long depth reduces the slab span in one direction, resulting in a cost-

effective design and less serviceability concerns, 2) the narrow width provides the architect the 

opportunity to hide this structural element using a partition wall.  

 

2.2 Building Collapse Caused by GFRS Failure 

CSA A23.3-19, acknowledges that a “common cause” that leads to the collapse of structures 

during earthquakes is the failure of the GFRS (CSA, 2019). Observations of different authors 

(Mitchell, et al., 1995; Hyland, 2012; Elwood, 2013;) concluded that collapse was induced by 

failure of reinforced concrete elements that are not part of the SFRS due to poor detailing and 

brittle behaviour.  

 

During the 2011 Christchurch, New Zealand earthquake, the Canterbury Television building 

collapsed. 62% of all the earthquake fatalities occurred at this location (Ministry for Culture and 

Heritage, 2021). The six-storey building had a primary lateral system consisting of ductile shear 
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walls at the north and south sides of the building. Columns and beams were not intended to 

contribute the earthquake resistance (Hyland, 2012). The most certain possible collapse scenario 

was initiated by failure of an external column when the drift demand exceeded the column’s lateral 

displacement capacity. This put larger gravity loads on the interior columns. Their small cross-

section (400mm diameter) and poor transverse reinforcement confinement accelerated the collapse 

progression. Once the interior columns began to fail, the floor slabs fell down initiating the 

collapse.   

 

In the same 2011 Christchurch earthquake, the Pyne Gould Corporation building collapsed. The 

building had an eccentric core wall and a beam-column gravity frame (Elwood, 2013). In this case, 

the lightly reinforced wall failed first. This failure imposed large deformation demands in the 

gravity system which caused the joints and columns to snap leading to the loss of gravity load 

carrying capacity and resulting in the total collapse of the building. In this case, there is a clear 

necessity to provide seismic detailing to the columns and beams to withstand large nonlinear 

deformation imposed by the SFRS after a seismic event. 

 

After the 1994 Northridge, California earthquake (Mitchell, et al., 1995)  the California State 

University parking collapsed. The SFRS of this reinforced concrete structure was composed by an 

exterior ductile moment-frame. The interior columns, which triggered the collapse of the parking, 

were designed to sustain gravity loads only (Mitchell et al., 1995). The exterior ductile moment 

frame showed great ability to undergo large deformations and curvatures without the sudden loss 

of strength. However, the interior columns, which lacked seismic detailing, failed. This example 
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illustrates the need to account for seismic demands when designing members that are not part of 

the SFRS. 

 

The seismic performance and safety of gravity-loaded columns not part of the SFRS raises 

concerns about their collapse potential. One problematic aspect of these elements is the unknown 

amount of earthquake demands they attract, even if the SFRS has not yielded yet. This issue relates 

with the first building collapse example explained previously in this section. The second problem 

is related to the seismic detailing of the gravity columns. Unlike common practice in structural 

design offices in western United States, where the GFRS of reinforced concrete high-rise shear 

wall buildings is detailed as a moment-resisting frame (J. Hooper, personal communication, 

January 28, 2021), in Canada the GFRS is typically only designed to support gravity loads and 

later checked its ability to accommodate seismic displacement demands. 

 

Another challenging issue to satisfactorily design columns is that under a seismic event, both the 

SFRS and GFRS will need to deform the same amount to achieve compatibility. This means that 

the columns might experience larger deformations than those estimated in analysis due to the 

nonlinear deformations experienced at the base of the shear walls. If these elements only were 

detailed for gravity forces, they could experience brittle failure since their capacity will be 

exceeded when subjected to seismic deformations. Failure of these elements compromises the 

gravity-load carrying capacity of the structure and could lead to total or partial collapse. Therefore, 

proper reinforcement is required to prevent tragedies such as the Pyne Gould Corporation building 

collapse previously discussed.  
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2.3 Code Requirements to Quantify Seismic Demands in the GFRS  

The most accurate method to obtain the lateral demands in the GFRS is by carrying out a nonlinear 

time history analysis (NLTHA). In this assessment, the SFRS is modelled using nonlinear material 

models. The practicing engineer will need to decide if the GFRS elements will be modelled as 

linear-elastic (force-controlled) or nonlinear (deformation-controlled elements). If the first 

approach is considered, enough strength should be provided to the GFRS to ensure these elements 

remain linear elastic. If the GFRS is modelled as nonlinear, adequate seismic detailing should be 

provided to ensure consistent levels of ductility are achieved. 

 

Accurate NLTHA is challenging. It is a laborious and time-consuming process that requires a 

highly-skilled engineer or team to obtain reliable results. Furthermore, buildings in western 

Canada are designed following prescriptive requirements of NBC 2015 (NRC, 2015) and CSA 

A23.3-19 (CSA, 2019) which do not require a detailed nonlinear analysis. Instead, these codes 

follow a linear-elastic analysis to estimate the seismic demands in columns and slabs that do not 

belong to the SFRS once they have been designed for gravity forces only. The following sections 

provide an overview of the requirements in the Canadian (CSA A23.3-19) and United States (ACI 

318-19) concrete standards as they relate to the seismic design of elements of the GFRS. The ACI 

318-19 code clauses were not assessed in this study, but are provided to serve as a point of 

comparison.  

 

2.3.1 Canadian Code 

CSA A23.3-19 provides structural engineers with two approaches to estimate the seismic demands 

in the GFRS, the General Analysis and Simplified Analysis. The General Analysis has four 
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requirements to fulfill as described in Section 2.3.1.1. The Simplified Analysis is a shortcut to the 

General Analysis and complies with three of the General Analysis requirements by subjecting the 

building to the drift profile observed in Figure 2.1. Requirement c) listed in Section 2.3.1.1 is not 

satisfied by displacing the structure to the previously mentioned drift profile. 

 

2.3.1.1 General Analysis 

§ 21.11.2.1 of CSA A23.3-19 describes the general analysis to estimate the seismic demands in 

the GFRS. The requirements for a linear-elastic analysis are: 

a)  The full structure (GFRS and SFRS) needs to be subjected to the design displacement 

Δ. Δ is the design displacement at top of the gravity-frame obtained following § 4.1.8.13 

of NBC 2015. The displacement needs to account for torsion effects, accidental torsion, 

and foundations movements. Additionally, it needs to be multiplied by the ductility and 

overstrength factor, Rd and Ro, respectively.   

b) The SFRS must include reduced section properties at locations where plastic hinges are 

expected. This accounts for the inelastic displacement of the seismic-force resisting 

system. 

c) Upper-bound effective stiffness factors must be provided for all members not part of 

the SFRS to make a safe estimate of the forces in these elements. 

d) The interstorey drift ratio within the plastic hinge should not be less than 60% of 

inelastic rotational demand. This lower-bound drift limit is applied to account for the 

shear strains in this region.  
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2.3.1.2 Simplified Analysis 

The practicing engineer could decide to follow the previous procedure or carry out the Simplified 

Analysis described in § 21.11.2.2 of CSA A23.3-19 in order to obtain the demands in the GFRS: 

According to this Simplified Analysis procedure, Requirements a), b), and d) of the General 

Analysis are satisfied if the drift profile of Figure 2.1 is applied to the full structure. 

 

 

Figure 2.1 Envelope of minimum interstorey drift ratio over the building height (CSA, 2019). 

 

In Figure 2.1, Δ is the design displacement at the top of the gravity frame following the NBC 2015 

(NRC, 2015) guidelines. This displacement should account for torsion effects, including accidental 

torsion, and foundation movement.  
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The purpose of this clause is to ensure if the gravity design of the GFRS is able to accommodate 

the anticipated seismic demands. If the Simplified Analysis results indicate that the demands 

exceed the maximum allowed induced bending moment (refer to Section 7.4), proper seismic 

detailing is to be provided according to § 21.11.3 of the CSA 123.3-19 standard. Additionally, the 

vertical loads from the pushover analysis at the vertical elements of the GFRS is obtained by 

adding the shear forces at the immediate horizontal member above them and considering the 

contribution of all the superior levels. The minimum curvature for members of the GFRS within 

the should not be less than curvature demands described in § 21.5.7.2 and § 21.5.8.4.2 of the CSA 

A23.3-19 guidelines. For low seismicity regions in Canada or for stiff RCSW buildings this check 

could be omitted if any of the following conditions are met (Adebar, DeVall, & Mutrie, 2014): 

• (0.2) 0.35a ES I g⋅ <  

• 0.5 for all storeysiδ <  

Where (0.2)aS  is the spectral acceleration at 0.2 seconds, EI is the importance factor, and iδ is the 

interstorey drift ratio.  

 

Because requirement c) of the General Analysis (§ 21.11.2.1 of CSA A23.3-19) is not met by this 

Simplified Analysis, one of the goals of this study is to provide realistic flexural effective stiffness 

modifiers to support the implementation of the Simplified Analysis. With this, the requirement gap 

found in guideline § 21.11.2.2 of CSA A23.3-19 could be fulfilled and a comprehensive linear 

analysis following this prescriptive guideline could be implemented to estimate the seismic 

demands in the GFRS. 
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§ 18.14 of ACI 318-19 (ACI (American Concrete Institute), 2019) indicates that members that are 

not part of SFRS need to support gravity loads, vertical ground motion effects, and the seismic 

design displacement. Models used to estimate the anticipated displacement caused by the design 

earthquake should include, if applicable, effects of cracked concrete, foundation flexibility, and 

deformation of floor and roof diaphragms.  

 

The USA code has similar requirements on how to obtain the demands in the GFRS compared to 

the Canadian concrete standard. Both codes need the design engineer to apply the design 

displacement, consider the effect of cracking in concrete (effective stiffness factors), and account 

for foundation flexibility. However, ACI 318-19 does not specify a drift profile as a function of 

the SFRS inelastic displacement as done in the Canadian standard (refer back to Figure 2.1). 

 

2.4 Alternative Method to Quantify the Seismic Demands in the GFRS 

Beauchamp et al. (2017) proposed an alternative method to obtain the seismic demands in the 

GFRS components. This method does not support the implementation of the CSA A23.3-19 

General or Simplified Analysis procedure, but rather recommends a distinct approach.  

 

Beauchamp et al. (2017) proposed a response spectrum analysis in which elements of the GFRS 

had null stiffness. This method is labelled as GNS (GFRS with Null Stiffness). Although the scope 

of their study is limited to obtain the displacement demands in the columns, the authors mention 

that the method could be used to also compute the seismic demands in gravity-frame beams. The 

steps to obtain the seismic demands according to this method are as follows: 1) build the linear-

elastic model considering the SFRS only accounting for cracking of concrete in the SFRS 
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according to CSA A23.3-19, 2) from the previous step model, obtain Vd and Ve following the NBC 

2015 guidelines. Vd is the design base shear and Ve is the elastic base shear force, 3) include the 

GFRS in the building model developed in the first step, 4) assign the upper-bound stiffness factors 

to the GFRS. Beauchamp et al. (2017) computed these factors following the lower-bound CSA 

A23.3-19 recommendations for the SFRS of clause 21.2.5.2 and arbitrarily increase them by 25% 

to obtain upper-bound values, 5) multiply the GFRS stiffness by Fsr, which is a factor equal to 10-

2 to 10-3 to decrease its stiffness. Beauchamp et al. (2017) observed that a reduction factor equal to 

10-2 yielded good results, 6) perform the response spectrum analysis in the complete structure 

model (GFRS+SFRS), 7) extract the seismic demands in the null stiffness GFRS. This demands 

are labelled as FGNS, 8) last, compute the seismic demands of the GFRS following Equation (2.1) 

 

 1 d d o
GFRS GNS

sr e e

V R RF F
F V I

= ⋅ ⋅  (2.1) 

Rd is the modification factor for seismic analysis that accounts for ductility. Ro is the seismic force 

modification factor for overstrength. This method did not consider foundation movement, all 

building models were fixed at grade level, and the structure below grade was not modelled.  

 

Choinière et al. (2019) extend the method proposed by Beauchamp et al. (2017) by considering 

foundation movement. The soil structure interaction is assessed using two methods: a) a complete 

set of dashpots and springs and b) a single rotational spring under each RCSW. Method a) models 

the soil effect by adding dashpots and springs to every node below grade. Under the RCSW, a 

single rotational spring is included. The soil properties of dashpots and springs are obtained 

through impedance functions. “These functions can portray the dynamic properties of the soil 
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surrounding the retaining walls as well as below columns and RCSW foundations” Choinière et 

al. (2019). Method b) is a further modelling simplification of the first approach. This method only 

includes a single rotational spring under each RCSW and fixes the rest of the nodes at the structure 

below grade. Either method does not model lateral springs or dashpots at the surface level because 

the soil is not well compacted to provide passive lateral resistance. After the soil has been modelled 

using one of the methods, Beauchamp’s et al. (2017) procedure is followed to obtain the seismic 

demands at the GFRS components.  

 

2.5 Effective Beam Width (EBW) Modelling for RC Slabs 

In typical tall RCSW buildings, which have a central core and perimeter gravity framing, the slab 

provides a low framing flexural action throughout its full width when framing columns or walls. 

For this reason, it is a common practice for structural engineers to model the slabs using effective 

width beam elements. In this study, the slabs were modelled following Los Angeles Tall Buildings 

Structural Design Council guidelines (Los Angeles Tall Buildings Structural Design Council 

(LATBSDC), 2020). These guidelines are based on the findings of Hwang & Moehle (2000). A 

summary of how to obtain the effective beam width modelling approach is illustrated below. 

 

To find the effective width of the slab effb , Equation (2.2) from Hwang and Moehle (2000) is used. 

1c is the depth of the column or wall framing into the slab and 1l is the slab span. Figure 2.2 

illustrates the definitions of c1 and l1 for the EBW model in a typical floor plan. For any level of 

the building, half of the EBW that spans between the wallumn and core will be computed using 

the depth of the wallumn. The other half will be obtained using the core geometric properties.  
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The validation of EBW modelling will be assessed in Section 4.2.2 of this thesis.  

 

 

Figure 2.2 Floorplan definition of c1 and l1 for the x coupled and y cantilever direction. 
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2.6 Wall-Frame Interaction 

 In general, a cantilever wall system under lateral load deforms in a bending mode with single 

curvature. By contrast, a coupled wall system, will tend to deform in a shear mode (MacLeod, 

1971). A frame system with rigid slabs will deform in a shear mode resulting in a double curvature 

at the columns. The mode of deformation in columns when a cantilever or coupled wall is 

connected to a gravity-frame depends on a number of factors. The deformation mode in the full 

building will depend on 1) the drift profile applied, 2) relative stiffness between slabs and columns, 

3) amount of cracking in each element: walls, columns, and slabs. These will be explained in 

Section 2.6.1 of this thesis. 

 

Understanding the deformation mode in the building is very informative because it will dictate the 

curvature seen at the GFRS columns. The curvature will influence the amount of cracking and 

effective stiffness of columns. For example, if a shear mode is governing the upper storeys of the 

building, each storey will experience double curvature and the top and bottom sections of the 

columns will see the largest demands and cracking. By contrast, if the flexural mode governs at 

the bottom of the building, the bottom ends of each column in each storey will see the largest 

demands and cracking (Abrams & Sozen, 1979).  

 

2.6.1 Effect of Building Drift Profile on GFRS Column Curvature 

Unlike a typical pushover (i.e., a concentrated displacement at top of the building), which imposes 

a bending deformation mode on the gravity-frame system and a single curvature in all its column 

elements, the enforcement of different drift profiles, such as those observed in Figure 2.1 will enact 

either double curvature (shear mode) or single curvature (bending mode) in the columns. The 
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deformation mode when the Figure 2.1 drift profiles are applied depend on 1) relative stiffness 

between the EBW slabs and columns and 2) amount of cracking in the GFRS and SFRS. These 

effects are discussed below and supplemented with a sensitivity analysis included in Appendix A   

 

It is generally accepted that a lateral pushover analysis of a frame system with flexurally rigid slabs 

framing into flexible columns will yield double curvature in the columns (Bazargani, 2014). 

Nevertheless, beams are never fully rigid in bending. The mode of deformation will depend on 

how stiff the columns are in relation to the slabs or beams. For this context the slab or beam 

definition will be used indistinctively. MacLeod (1971) proposed the following parameter,λ , to 

assess the deformation mode in a frame. 

 
col col

slab slab

E I
h

E I
l

λ =  (2.3) 

The term col colE I  represents the flexural stiffness of the column, h is the height of the column,

slab slabE I represents the flexural stiffness of the slab, and l is the slab span. The closerλ is to zero 

the more likely a shear deformation mode will be dominant. Even a small amount of flexural 

stiffness in the slabs could be effective in restraining the flexural deformation imposed by lateral 

loads. However, if the slabs have yielded the load will be taken only by the columns and a bending 

deformation mode with single curvature will arise. Likewise, if the slabs are framing into stiff 

wallumns it is more likely to observe single curvature in these elements. Typical values (MacLeod, 

1971) of Equation (2.3) that result in a shear deformation mode in RCSW buildings, are between 

0.5 and 10. Within this range, contraflexure will be experienced by the GFRS frame columns 
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around mid-height. Upper and lower storeys will be governed by the bending deformation of the 

wall. Thus, single curvature will be observed at those gravity-frame columns. 

 

Under seismic loads, it is expected that the stiffer SFRS will take all the inertial forces. Once the 

walls have cracked or yielded, the GFRS will engage and start contributing to the lateral response. 

As the frame action in the GFRS is engaged, the slabs or beams will be the next member to 

experience large amounts of cracking and yielding, if a capacity design philosophy was followed. 

Once the beams yield, columns will experience a single curvature.   

 

2.7 Axial Elongation of Reinforced Concrete Beams and Slabs 

 When a reinforced concrete beam experiences positive sagging bending moment, concrete 

cracking on the bottom tension face will shift the neutral axis of the section upwards from its 

original location. Similarly, if the beam is exposed to negative hogging bending moments, the 

neutral axis will move downwards from its original location when the top tension face cracks. As 

a result, the mid-depth fibre of the beam will be under tension. This phenomenon, coupled with 

the fact that the tensile strains in the longitudinal steel are larger than the compressive strains in 

the extreme concrete fibre in compression results in an extension of the member (Fenwick & 

Megget, 1993). 

 

A beam free to elongate will not experience any additional stresses. However, in indeterminate 

structures the axial elongation of beams will be restrained by other elements. This will induce 

compression forces in beams or slabs. The axial elongation effect or beam growth has been 

experimentally tested. Results had shown that indeterminate frame assemblies have an overall 
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strength at least 20% larger than determinate frame assemblies, in terms of lateral load carrying 

capacity. Moreover, the axial compression force induced in beams part of indeterminate 

assemblies increased their flexural strength (Zerbe & Durrani, 1989) by as much as 50% (Sakata 

et al., 1987).  

 

The beam growth also affects the flexibility of beams and slabs. Large axial compression forces 

not only increase the strength of these elements, but also impact their stiffness. All restrained 

elements will see an increase in their stiffness caused by the induced compression forces. As a 

result, the assumption of having a very flexible beam element with low effective stiffness factors 

can be unrealistic.  

 

Common linear-elastic structural analysis software is not able to capture the cracking of beam 

elements and their axial growth. More detailed models (Kim et al., 2004) able to link the axial and 

rotational behaviour of beams are needed to capture the induced axial forces caused by axial 

elongation. More powerful nonlinear software can model this effect if the proper element 

formulation (e.g., fibre elements or multilayer shells) is selected. 

 

2.8 Effective Flexural Stiffness 

Effective flexural stiffness factors are used for linear-elastic seismic analysis to achieve similar 

results to those observed in nonlinear models that are able to capture the inelastic response of 

reinforced concrete elements, consisting of rebar yielding and concrete cracking. These stiffness 

factors are usually expressed as a fraction of the gross moment of inertia of the cross-section. 
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Priestley (1998) and Elwood & Eberhard (2009) defined the effective flexural stiffness, effEI , of a 

reinforced concrete member as: 

 y
eff

y

M
EI

φ
′

=
′

 (2.4) 

Where yM ′  is the moment at first yield and yφ′  is the curvature at first yield. Watson et al. (1994), 

Benzoni et al. (1996), Elwood & Eberhard (2009) defined yM ′  and yφ′  as the minimum moment and 

curvature developed when the extreme steel rebar in tension reaches the yield strain, yε , or when 

the extreme fibre concrete in compression reaches a strain equal to 0.002. This definition, 

hereinafter referred to as First Yield, is appropriate for elements that yield. For elements that do 

not yield, or experience demands lower than the yield force Equation (2.4) is not valid since it will 

result in an unreal flexural effective stiffness equal to the gross moment of inertia, even if member 

has cracked. Because the GFRS is not intended to dissipate seismic energy, less nonlinearity will 

be experienced by its members in relation to those of the SFRS. For these reasons, a different 

approach is required to characterize the effective flexural stiffness of its members. 

 

The General and Simplified Analysis of CSA A23.3-19 described in this document (Section 2.3.1.1 

and 2.3.1.2 of the standard) follows a displacement based approach rather than a force-based 

approach to determine the demands in the GFRS based on the notion that the gravity system will 

need to displace as much as the SFRS to achieve compatibility. One of the goals of this thesis is 

to find good agreement between the demands in the GFRS of a linear-elastic analysis model, by 

applying flexural effective stiffness factors, when compared to a detailed nonlinear model of the 

same structure when both models are subjected to the same level of deformation. An effective 
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stiffness definition that is consistent with the goals of this study was developed by Paulay (2001). 

This definition states that the effective stiffness is the secant line from the origin to the point where 

the last deformation and demand was observed. This approach, hereinafter referred to as the Secant 

Stiffness was used throughout the development of this research project.  

 

Figure 2.3 illustrates the effective flexural stiffness following the First Yield and Secant Stiffness 

approaches under different levels of bending moment demand, Mf. The First Yield approach will 

return the same flexural stiffness modifier whether the demands exceed M’y or have just reached 

this value. If these stiffness modifiers are used in a linear-elastic model, the chances of 

overestimating the linear-elastic bending moment demands for elements that experience 

deformations considerably beyond yielding are high. On the other hand, for members that 

experience demands lower than M’y the linear-elastic demands might be underestimated.     
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Figure 2.3  Effective stiffness approaches comparison for a member experiencing different 

levels of demands and deformation. 

 

The Secant Stiffness approach will provide a suitable flexural effective stiffness modifier as a 

function of the bending moment demands and curvature experienced by the structural member. At 

low levels of curvature and cracking, this method will yield stiffness modifiers close to the gross 

stiffness. At high levels of cracking and beyond the first yield, the resultant effective stiffness will 

be less.  
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Chapter 3: Archetype Building Description and Structural Design 

3.1 Building Description 

The archetype building evaluated in this study is a 30-storey residential structure representative of 

the most common typology of RCSW buildings in the Metro Vancouver region. The SFRS is 

composed by a 7.3 m long and 460 mm thick cantilever walls in the y direction, as shown in Figure 

3.1, and coupled walls in the x direction composed by 2.5 m long and 610 mm thick wall piers 

connected by 750 mm deep coupling beams. The floor plate dimensions are 25.9 m in the longer 

cantilevered direction and 25 m in the shorter coupled direction. The gravity-force system consists 

of 205 mm thick flat slabs spanning from the central core to perimeter columns. Square columns 

are used at the corners of the floor plate and wallumns with a depth-to-width ratio equal to 2.5 are 

used at other locations. The cross-section of these two vertical elements change throughout the 

height of the building as summarized in Table 3.4 and Table 3.5. The ground floor of the building 

has a storey height of 3.8 m, while upper storeys have a uniform height of 2.9 m each. The building 

has a 5 m tall bulkhead above the 30th floor, resulting in a total height above grade of 92.9 m. 

Below grade, there are three basement levels with a storey height of 3 m each. 
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Figure 3.1 Isometric and floorplan view of the assessed building model.  

 

A three-dimensional model of the building was created in Oasys (Arup, 2021) to obtain the design 

loads. The RCSW and retaining walls were modelled using two-dimensional shell elements. The 

columns and headers were modelled as one-dimensional beam-column elements. The slabs were 

also modelled with one-dimensional elements using an equivalent beam width approach. While 

the SFRS and GFRS above grade accounts for cracking of concrete, the basement is assumed to 

remain linear elastic. The flexural effetive stiffness of the SFRS walls are 0.5EcIg and 0.6EcIg (Eksir 

Monfared et al., 2021) for the coupled and cantilevered direction, respectively. Foundation 
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movement and flexibility of the soil surrounding the basement was neglected. The model was 

assumed to be fixed at the top of the mat foundation. 

 

Nominal concrete and steel material properties were used for the preliminary analysis and design 

of the SFRS and GFRS. Table 3.1 shows the nominal concrete properties assuming normal weight 

concrete with a density equal to 2400 kg/m3. Table 3.2 lists the material properties for steel 

reinforcement, which uses Grade 400W steel.  

 

Table 3.1 Nominal concrete material properties for design (Eksir Monfared, 2020). 

Elements Level Nominal f’c [MPa] Nominal cE [MPa] 

SFRS + GFRS 

columns 

21 to 31 30 29,300 

11 to 21 35 31,100 

Basement to 11 45 34,300 

GFRS slabs Basement to 31 35 31,100 

 

 

Table 3.2 Nominal steel reinforcement material properties for design for all levels and structural 

members. 

Nominal yf [MPa] sE [MPa] 

400 200,000 
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3.2 SFRS Design  

The modelling and design of the SFRS was done as part of Eksir’s Monfared (2020) Master’s 

Thesis. An overview of the design process and modelling assumptions is provided here, but the 

reader can refer to Eksir Monfared (2020) and Eksir Monfared et al. (2021) for further details. 

 

A linear-elastic model was developed in GSA (Arup, 2021). RCSW, slabs, and retaining walls 

below grade were modeled as 2D shell elements. Columns and coupling beams were modelled 

using 1D beam-column elements. Moment releases were applied to the ends of the gravity-frame 

columns to prevent any sort of contribution to the lateral resistance of the building system. “The 

building was designed for a 2% in 50 years hazard level Site Class C spectrum, including 10% of 

accidental torsion” (Eksir Monfared et al., 2021). The gravity loads considered for design can be 

retrieved from Table 3.3. The total seismic mass for the modal analysis resulted in 144MN. The 

first three periods of the building are 5.57 s, 5.41 s, and 2.85 s for the translational coupled 

direction, translational cantilevered direction, and torsional mode, respectively. “The ductility and 

overstrength factors, Rd and Ro, are equal to 3.5 and 1.6, respectively, in the cantilevered direction, 

and 4 and 1.7, respectively in the coupled direction” (Eksir Monfared et al., 2021). The coupling 

beams were designed first, as their overstrength affects the RCSW design. Large nonlinear 

deformations are expected in these elements. For this reason, “demand-to-capacity ratios up to 

1.25 are permitted by the standard. The amplifying factor of axial forces at grade for the RCSW 

due to the effect of coupling beam overstrength was found to be 1.6” (Eksir Monfared et al., 2021). 

The plastic hinge length in the RCSW walls was limited to 12.9 m as required by CSA A23.3-14. 

Amplification of shear demands due to flexural overstrength and higher modes was accounted 

when providing the steel reinforcement for the boundary regions in the RCSW.  
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At all levels, the provided coupling beams had a depth of 750 mm, a width of 460 mm, the 

longitudinal reinforcement was 6-30M at 16.2°, and 10M buckling prevention ties were provided 

every 100 mm. All boundary regions of the RCSW had 10M ties every 150 mm from level -3 to 

6, at other levels the tie spacing was increased to 300 mm. For levels -3 to 21, 12-25M longitudinal 

steel rebars were provided at the corner boundary regions of the C-shape RCSW, for levels 21 to 

31 the longitudinal reinforcement provided was 12-20M. At the inner boundary region located in 

the coupled piers, the provided longitudinal reinforcement was 10-25M for -3 to 21, for levels 21 

to 31 the longitudinal reinforcement was set to 10-20M. At the cantilevered wall pier panel zone, 

2-15M longitudinal rebars were provided every 350 mm for all levels. The cantilevered panel shear 

reinforcement was 2-20M @ 150 mm for levels -3 to 6, 2-15M @ 200 mm between levels 6 to 21, 

and 2-15M @ 300 mm at other levels. The coupled wall pier panel zone was provided with 2-15M 

@ 250 mm for longitudinal reinforcement. The provided shear reinforcement in the coupled panel 

zone was 2-20M @ 200 mm for levels -3 to 6 and 2-15M @ 250 mm for other levels. 

 

3.3 GFRS Design 

The GFRS was designed for gravity forces only as is typically done in design practice. This system 

will later be checked in Section 7.4 to ensure it can accommodate lateral demands. The design 

shown in this section was done by Dr. Jose Centeno and Glotman Simpson Consulting Engineers. 

The geometry and reinforcement layout for columns and slabs part for the GFRS, see Table 3.4, 

Table 3.5 were designed follwing the NBC 2015 (NRC, 2015) load combinations and CSA A23.3-

14 (CSA, 2014) gravity design clauses for reinforced concrete. The CSA A23.3-14 concrete 

standard clauses were followed over the CSA A23.3-19 design guidelines because the CSA A23.3-
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14 is the design standard for concrete structures enforced in Vancouver, BC at the time of writing. 

The loads for gravity design are found in Table 3.3.  

 

Table 3.3 Design Gravity Loads. 

Load Type Value 

Dead Loads 

Selfweight 2400 kg/m3 

Superimposed dead load 0.72 kPa 

Façade 1.9 kN/m 

Live Loads 

Tower live load 1.9 kPa 

Grade live load 4.8 kPa 

Basement live load 2.4 kPa 

 

The superimposed dead load is applied at all levels. The façade load is applied around the perimeter 

of the tower and grade levels. Equation (3.1) is the factored load combination (NRC, 2015) for 

gravity design of columns of slabs. 

 

 1.25 1.5D L+  (3.1) 

In this equation, D and L are the dead and live loads, respectively.  

 

3.3.1 Columns Gravity Design  

For the gravity design, the longitudinal reinforcement for columns was obtained through a 

compressive analysis following Equation (3.2) of clause § 10.10.3 of CSA A23.3-14 (CSA, 2014). 
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 ,max (0.2 0.002 ) 0.8r ro roP h P P= + ≤  (3.2) 

Pr,max is the maximum compressive force resistance and Pro is defined in Equation (3.3) 

 

 '
1 ( )ro c c g st s y stP f A A f Aα φ φ= − +  (3.3) 

Where 1α is the ratio of average stress in the rectangular compression block to the specified 

concrete strength. cφ is the material strength reduction factor for concrete, '
cf is the specified 

concrete strength, gA is the section gross area, stA is the longitudinal steel reinforcement area, sφ is 

the material strength reduction factor for steel bars and yf is the specified yield strength for steel.  

 

The longitudinal reinforcement obtained from Equations (3.2) and (3.3) needs to fulfill the 

minimum requirement specified in § 10.5.1.2 of CSA A23.3-14 (CSA, 2014). Equation (3.4) 

denotes the minimum longitudinal reinforcement proportioned at each section of the structural 

column. 

 ,min

0.2 c
s t

y

f
A b d

f
′

=  (3.4) 

Where As,min is the minimum longitudinal reinforcement, bt and d is the width of the tension zone 

and member depth, respectively.  

 

Ties for compression members followed the recommendations of clause § 7.6.5 (CSA, 2014). The 

diameter of ties is the minimum recommended, i.e., 10M. The ties spacing, s, was selected 

following Equation (3.5). 
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Where lφ is the diameter for longitudinal reinforcement, tφ is the diameter for transverse 

reinforcement, b and d are the width and depth of the member, respectively. The building’s plastic 

hinge zone is in the first 5 storeys (Eksir Monfared A. , 2020). Larger demands are expected within 

this region. As a result, column ties at the plastic hinge were spaced following buckling prevention 

ties clause § 21.2.8 (CSA, 2014), see Equation (3.6). 
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 (3.6) 

The summary of the geometry and reinforcement layout for wallumns and square columns is 

presented in Table 3.4 and 3.5, respectively. All wallumns have ten longitudinal reinforcing bars 

and all square columns have eight. Wallumns and square columns are detailed with 10M ties and 

5 cm of clear cover.  

 

 

 

 

 

 

 



38 

 

Table 3.4 Geometry and reinforcement layout summary for wallumns. 

Level Depth (d) 
[mm] 

Width (b) 
[mm] 

Longitudinal 
Bar Size ( lφ ) 

10M Tie Spacing 
(s) [mm] 

21 to 31 760 305 10-25M 300 

11 to 21 1015 405 10-30M 300 

6 to 11 1140 460 10-35M 300 

1 to 6 1140 460 10-35M 200 

 

 

Figure 3.2 Wallumns layout. 
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Table 3.5 Geometry and reinforcement layout summary for corner square columns. 

Level Side (l) [mm] Longitudinal Bar Size ( lφ ) 10M Tie Spacing (s) [mm] 

21 to 31 460 10-25M 300 

11 to 21 610 10-30M 300 

6 to 11 660 10-35M 300 

1 to 6 660 10-35M 200 

 

 

Figure 3.3 Square columns layout. 

 

3.3.2 Slabs Gravity Design 

The bending moment demands for the gravity design of the slabs come from the factored gravity 

forces at the columns, see Table 3.3. A cross-sectional analysis was performed to obtain the 

longitudinal reinforcement for sagging and hogging bending moment. It was checked that the 

factored bending moment demands Mf were larger than the factored bending moment capacity Mr. 

The factored bending moment capacity is defined in Equation (3.7).  
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 (3.7) 

 The sagging and hogging longitudinal reinforcement, As, from Equation (3.7) was compared  

against the minimum required from Equation (3.4). The thickness of all the slabs was set to 205 

mm and shear studs were provided at the slab-to-column and slab-to-core connections to prevent 

punching shear failure. The reinforcement layout designed by Dr. Jose Centeno and Glotman 

Simpson Consulting Engineers for both connections is displayed in Figure 3.4. 

 

 

Figure 3.4 Steel reinforcement for slabs 
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Chapter 4: Linear and Nonlinear Static (Pushover) Analysis Modelling  

In this chapter, the drift envelope applied to both linear-elastic and nonlinear models will be 

described in Section 4.1. The modelling assumptions considered for the linear-elastic and 

nonlinear static (pushover) analyses are discussed in Sections 4.2 and 4.3, respectively.  

 

4.1 Drift Profile for Pushover Analysis 

A static pushover analysis that enforces the drift profile of the Simplified Analysis described in § 

21.11.2.2 of CSA A23.3-19 is required to obtain the GFRS seismic demands. This pushover 

analysis was done to ensure that the demands from a three-dimensional linear-elastic analysis 

model with appropriate flexural effective stiffness modifiers are in good agreement with the 

demands of an equivalent full nonlinear model. By carrying out these static pushover analyses it 

is possible to answer the questions of what the appropriate flexural stiffness modifiers for the 

elements of the GFRS are. The factored gravity forces applied on both models follow the gravity 

loads and factored load combination described in Table 3.3 and Equation (3.1), respectively. The 

seismic displacement applied in the static pushover analysis is the Simplified Analysis drift profile 

of clause § 21.11.2.2 of the CSA A23.3-19 standard. The design displacements in the cantilevered 

and coupled direction are required to define the Simplified Analysis drift profile. These design 

displacements are summarized in Table 4.1 and were obtained from the SFRS design, recall 

Section 3.2. which follows the NBC 2015 guidelines (NRC, 2015). 

 

 

 

 



42 

 

Table 4.1 Design displacements for the definition of the Simplified Analysis drift profile. 

Direction ∆ [m] 

Cantilever  0.997 

Coupled 0.927 

 

The drift profile shown in Figure 4.1 is the drift applied in each direction to both the linear-elastic 

and nonlinear models. The drift accounts for torsional effect, including accidental torsion, which 

was explicitly considered in the SFRS design. This correspondent drift was applied at all the nodes 

of each level.  

 

 

Figure 4.1 Storey drift ratio applied in the (a) cantilevered and (b) coupled direction.  
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Expected concrete and steel material properties, as recommended by PEER (Pacific Earthquake 

Engineering Research Center, 2017), were used in both linear and nonlinear static pushover 

analyses. Usually, linear-elastic analyses do not consider expected material properties because the 

purpose of this type of models is to design the structural elements. Nevertheless, one of the goals 

of this thesis is to achieve good agreement in the seismic demands between a detailed nonlinear 

model against an equivalent linear-elastic one. Because of this, it is important to compare both 

models with identical material properties. The impact of this assumption in the linear-elastic model 

results in having a SFRS and GFRS with the same stiffness as in the nonlinear model. Table Table 

4.2 shows the expected concrete properties assuming a normal weight concrete density equal to 

2400 kg/m3. Table Table 4.3 lists the material properties for steel reinforcement, which uses Grade 

400W steel.  

 

Table 4.2 Concrete material properties for static pushover analyses. 

Elements Level Expected cef ′ [MPa] Expected cE [MPa] 

SFRS + GFRS 
columns 

21 to 31 39.0 28,100 

11 to 21 45.5 30,350 

Basement to 11 58.5 34,400 

GFRS slabs Basement to 31 45.5 30,350 

 

 

 

 



44 

 

Table 4.3 400W steel reinforcement material properties for static pushover analyses. 

Expected yef [MPa] Expected uef [MPa] sE [MPa] 

460 620 200,000 

 

The variables shown in Tables Table 4.2 and Table 4.3 represent the following: ' '1.3ce cf f= is the 

expected concrete strength, cE is the Young Modulus for concrete; 1.15ye yf f= is the expected 

yield stress of steel; 1.35ue yef f=  (CSA, 2009) is the expected ultimate stress of steel; and sE is 

the Young Modulus for steel reinforcement. Except for the expected ultimate steel stress, the 

concrete and steel reinforcement expected strength values follow the LATBSDC (2020) 

recommendations. 

 

4.2 Linear-Elastic Static Pushover Modelling  

4.2.1 Slabs Modelling 

For lateral analysis, it is possible to model the slabs following an effective width approach (Hwang 

& Moehle, 2000). Section 2.5 of this study summarized this method. To obtain the design demands 

in the slabs, these elements were initially modelled as 2D shell elements in the linear-elastic model, 

recall Section 3.1. For the static (pushover) analysis, the 2D shell elements were substituted by 

beam-column 1D effective beam width (EBW) slabs. The latter modelling technique was used 

since the slabs in the 3D nonlinear model were implemented as beam-column distributed plasticity 

fibre elements to obtain their moment-curvature response, see Section 5.1.  
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The EBW slabs are assorted into two groups. The first group represents the slabs that frame into 

the RCSW piers (EBW-to-core slabs) and the second group represents the slabs that frame into the 

wallumns (EBW-to-wallumn slabs). Equation (2.2) for interior frames is used to compute the 

effective with for core-to-slab and wallumn-to-slab connections. The EBW slab geometry and 

reinforcement used for the static (pushover) analyses are displayed in Figure 4.2 and Table 4.4, 

respectively. A validation of the EBW approach is shown in Section 4.2.2.  

 

Table 4.4 Geometry and reinforcement layout summary for EBW slabs. 

Direction Level Effective width 
(beff) [mm] 

15M bars 
(hogging 
moment) 

10M bars 
(sagging 
moment) 

Connection 
type 

Cantilever 2 to 31 7000 40 14 
EBW-to-

core 
Coupled 2 to 31 7300 32 14 

Cantilever 

21 to 31 4060 24 8 

EBW-to-
wallumn 

12 to 20 4570 24 10 

2 to 11 4820 24 10 

Coupled 

21 to 31 3970 27 8 

12 to 20 4480 27 10 

2 to 11 4730 27 10 
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Figure 4.2 EBW slabs layout. 

 

4.2.2 EBW Modelling Validation 

It is crucial to verify that the EBW modelling technique does not affect the dynamic characteristics 

and stiffness of the building. To guarantee that this modelling approach does not alter the 

building’s characteristics, the dynamic properties of a liner elastic model using EBW elements to 

simulate the slabs were benchmarked against the model used in design, which utilized 2D shell 

elements to model the slabs. The results of this exercised are summarized in Table 4.5. The 

comparison was made using cracked properties for the SFRS and moment releases at the GFRS 

columns.   

Table 4.5 Dynamic properties of the linear-elastic building modelling slabs as 2D shell and 

EBW beam-column elements. 

Mode 
Description 

Periods [s] Mass Participation 
2D Shells EBW 2D Shells EBW 

1st Translational Coupled 5.572 5.439 67.0% 66.2% 

2nd Translational Cantilever 5.413 5.234 65.0% 64.1% 

3rd Torsional 2.847 2.316 78.8% 64.3% 
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As observed in Table 4.5, the modelling of slabs as 2D shells or EBW results in small changes to 

the periods and mass participation in the first two translational modes. While the differences are 

more pronounced in the third torsional mode, this is of less importance because the building will 

only be subjected to a pushover analysis in both translational directions.  

 

4.2.3 Analysis Stages for Linear-Elastic Static (Pushover) Analysis 

The linear-elastic static (pushover) analysis was carried out in two different stages: 1) all elements 

except for the EBW slabs were analyzed and the corresponding gravity load was applied to the 

columns, as opposed to apply the uniform distributed load in the EBW slabs. This was done to 

prevent shifting of axial loads, from the wallumns to the core, caused by the high stiffness ratio of 

core walls in relation to the gravity columns; 2) the drift profile defined in Figure 4.1 was applied 

as a displacement to all the nodes of the same level. In this stage, all the building elements were 

considered for analysis. The two-stage analysis was required to ensure the gravity load wallumns 

were experiencing their intended axial load before the drift profile was applied. Table 4.6 

summarizes the stages.  

 

Table 4.6 Staged static (pushover) analysis for the linear-elastic model. 

Stage Structural elements in analysis Applied load/displacement 

1  All elements excluding EBW slabs Factored gravity loads 

2 All elements Simplified Analysis drift profile 

 
Using superposition, the results of the 1st plus the 2nd stage resulted in the overall demands at the 

GFRS in the linear-elastic model. 



48 

 

4.3 Nonlinear Static Pushover Analysis 

To obtain the moment-curvature and the flexural effective stiffness of the GFRS elements, a 

detailed full nonlinear model of the structure was developed in LS-Dyna (LSTC, 2020). Basement 

components were modelled as linear-elastic elements. The model geometry is consistent with that 

of the linear elastic model, as previously shown in Figure 3.1. Prior to assigning the nonlinear 

material properties, in order to ensure the Oasys GSA and the LS-Dyna models had consistent 

dynamic characteristics, an eigen value analysis of both structural models was conducted 

(assuming uncracked section properties). The purpose of this comparison was to ensure the 

dynamic characteristics of both models were equivalent. While trivial, this check is important 

when developing equivalent models using different structural analysis software tools. A summary 

of the translational modes is shown Figure 4.1.  The similarity in the translational periods serves 

as a point of departure to the linear and nonlinear static (pushover) analyses, in Oasys GSA and 

LS-Dyna, respectively. 
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Figure 4.3 Uncracked periods comparison between the GSA and LS-Dyna building model. 

 

 

4.3.1 Constitutive Material Models 

This section provides an overview of the material constitutive models used in the fibre-based 

elements modelling approach of outrigger wallumns, non-outrigger square columns, and EBWs. 

The *MAT_CONCRETE_EC2 (ID 172) material card in LS-Dyna was used to model the confined 

and unconfined concrete fibres in the columns and EBW slabs. This model can capture concrete 

crushing in compression and cracking in tension. For all the unconfined concrete fibres of the 

GFRS under compression, the strain at maximum stress, cε , is set to 0.002. The crushing concrete 

strain, cuε , was assumed to be 0.0035 as per CSA A23.3-14 recommendations (CSA, 2014). The 
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spalling of unconfined concrete strain, spε , was set to 0.005 (LATBSDC, 2020). The tensile 

concrete behaviour was computed following Massicotte et al. (1990) and LSTC (2020) 

recommendations. The tensile strength was calculated as / 3t cef f′ ′=  (Collins & Mitchell, 1987) 

and the cracking strain was defined as /cr t cf Eε ′=  (Massicotte et al., 1990). Last, the ultimate 

tensile strength is 5 / 0.22ut crε ε=  (Massicotte et al., 1990; LSTC, 2020). Refer to Table 4.7 for a 

summary of unconfined concrete properties in compression and tension. 

 

Table 4.7 Unconfined concrete parameters for all GFRS components. 

GFRS 
Components Level 

Compression Parameters Tension Parameters 

cef ′ [MPa] cε  cuε  spε  tf ′ [MPa] crε  utε  

All 

21 to 31 39.0 0.002 0.0035 0.005 2.08 0.00007 0.0017 

11 to 21 45.5 0.002 0.0035 0.005 2.25 0.00007 0.0017 

1 to 11 58.5 0.002 0.0035 0.005 2.55 0.00007 0.0017 

 

The Mander et al. (1988) model for confined concrete was used to obtain the confined concrete 

strength and strain at maximum stress, ccf ′  and ccε , respectively. The confined crushing concrete 

strain was computed as 5cu ccε ε=  and the confined spalling strain is 0.004sp cuε ε= + . The confined 

crushing and spalling strain follow the equations used in Karthik and Mander (2011). The 

parameters for the confined concrete in tension are the same as for unconfined concrete. The 

summary of confined concrete properties for the GFRS square columns and wallumns is presented 
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in Table 4.8. The EBW slabs do not have confinement reinforcement, therefore, no confined 

concrete fibres were used.  

Table 4.8  Confined concrete parameters for the GFRS square columns and wallumns. 

GFRS 
component Level 

Compression Parameters Tension Parameters 

cef ′
[MPa] 

ccf ′
[MPa] ccε  cuε  spε  tf ′

[MPa] crε  utε  

Square 
columns 

21 to 31 39.0 40.2 0.0025 0.013 0.017 2.08 0.00007 0.0017 

11 to 21 45.5 47.3 0.0026 0.013 0.017 2.25 0.00007 0.0017 

6 to 11 58.5 60.4 0.0027 0.014 0.018 2.55 0.00007 0.0017 

1 to 6 58.5 62.0 0.0030 0.015 0.019 2.55 0.00007 0.0017 

Wallumns 

21 to 31 39.0 40.2 0.0024 0.012 0.016 2.08 0.00007 0.0017 

11 to 21 45.5 47.3 0.0026 0.013 0.017 2.25 0.00007 0.0017 

6 to 11 58.5 60.3 0.0027 0.013 0.017 2.55 0.00007 0.0017 

1 to 6 58.5 62.0 0.0030 0.015 0.019 2.55 0.00007 0.0017 

 

The compression and tension properties for concrete described in Table 4.7 and Table 4.8 are 

displayed in Figure 4.4 
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Figure 4.4 Concrete material model for nonlinear (static) pushover analysis. 

 

4.3.1.1 Steel Reinforcement Model 

The *MAT_HYSTERETIC_REINFORCEMENT (ID 203) material card in LS-Dyna (LSTC, 

2020) was used to model the steel rebar fibres. This material model is ideal to capture the hysteretic 

behaviour of steel rebars. The tensile and compressive response is shown in Figure 4.5. Although 

no dynamic analyses are carried out in this study, the steel model follows a Bauschinger-type curve 

under cyclic loading and reloading. The steel buckles in compression at the onset of the cuε  (Marafi 

et al., 2020), these values are found in Table 4.8. The common strain rupture value for grade 400W 

steel is equal to 0.13 (CSA, 2009) and the strain hardening was defined as 0.006shε =  (Paultre et 

al., 2001). 
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Figure 4.5 Tensile and compressive behaviour of the steel rebar fibres 

 

4.3.2 Seismic-Force Resisting System Nonlinear Modelling 

An overview of the SFRS modelling assumptions is provided here. The reader can refer to Eksir 

Monfared et al. (2021) for further details. The nonlinear behaviour of coupling beams was 

modelled using lumped plasticity flexural hinges at both ends of the beam element. The hysteretic 

behaviour of these elements was calibrated using experimental tests. “A cyclic backbone curve 

was used to describe the moment-rotation relationship of the flexural hinges and the stiffness terms 

were modified per PEER TBI (2017)” (Eksir Monfared et al., 2021). The cracking moment Mcr 

was calculated using the rupture modulus fr = 0.6(f’c)0.5. “A constant moment resistance from 

initiation of yielding, My, to the ultimate point of the backbone, Mu, is assumed” (Eksir Monfared 

et al., 2021). The moment resistance of these elements was increased by 30% to account for the 
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strength contribution of the slabs. The shear walls were defined using multi-layer shell elements. 

This type of shell element can capture the shear-flexure interaction. The longitudinal and 

transverse reinforcement was explicitly defined with specific orientations for each one. The 

confined and unconfined concrete were also included into the modelling. “The reinforcing steel 

follows a Bauschinger-type curve but is not able to capture fatigue. The post-yield properties of 

the reinforcement are: εsh = 0.006, εrup = 0.13, and fu = 1.35fy. The constitutive material model for 

concrete followed the Mander model. εco was assumed equal to 0.002 and εcu = 0.003 for 

unconfined concrete and 0.0036 and 0.016 for confined concrete, respectively” (Eksir Monfared 

et al., 2021). The nonlinear behaviour of the walls was calibrated against experimental tests that 

“exhibited both nonlinear flexural and shear deformation towards the lateral displacement of the 

wall. The multi-layered shells performed well in terms of capturing the strength, stiffness, and 

cyclic behaviour of the experimental tests, therefore, enabled the validation of this element 

formulation” (Eksir Monfared et al., 2021).  

 

4.3.3 Gravity-Force Resisting System Nonlinear Modelling 

Fibre beam-column elements were chosen to capture the nonlinearity in the GFRS. With this 

element-type formulation it was possible to obtain the strain profile through the cross-sections of 

square columns, wallumns, and slabs. The strain profile is required to obtain the moment-curvature 

and consequently the flexural effective stiffness as will be described later in Chapter 5. The fibre 

beam-column elements follow a Hughes-Liu beam formulation (Hughes & Liu, 1981a; Hughes & 

Liu, 1981b) able to capture axial-flexural interaction. The slab-to-column and -to-wall nodal 

connection is modelled as rigid.  
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Figure 4.6 shows a diagram of the nonlinear GFRS storey modelling following a beam-column 

fibre element formulation. By default, LS-Dyna assigns a single integration point per beam-

column element. Therefore, when modelling the square columns and wallumns, three beam-

column elements were used at each storey to obtain an accurate picture of the cracking distribution 

throughout the elements’ height (at the ends and mid-span). Sensitivity analyses showed that two 

or three beam-column elements per storey were enough to correctly capture the nonlinear 

behaviour without loss of objectivity in the GFRS beam-column elements.  More than four beam-

column elements yielded localization of strains at the base of the columns.  The EBW slabs were 

modelled with two beam-column elements at each EBW-to-core and EBW-to-wallumn connection 

(i.e., four elements through the EBW span). Extensive analyses also showed that at least 30 fibres 

were needed to obtain realistic results. 54 fibres were used for the square columns, 55 for 

wallumns, and 64 on average for the EBW slabs. 

 

Figure 4.6 GFRS analytical model. 
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To validate the nonlinear modeling of the columns, different experimental tests (Saatciouglu & 

Ozcebe, 1989; Kono et al., 2006) were calibrated against virtual twins in LS-Dyna. As observed 

in Figure 4.7, which illustrates a subset of these experiments, the fibre beam-column element 

modelling approach performs well in terms of stiffness, strength, and cyclic behaviour. In general, 

the initial stiffness of the virtual experiments is slightly larger than that observed experimentally.  

This is explained by the following reasons: 1) The fibre model is stiffer than the experimental 

specimen because it does not account for shrinkage and temperature cracking effects that occur 

prior to the laboratory cyclic test (Spacone et al., 1996). 2) The concrete modulus of elasticity was 

estimated following the CSA A23.3-14 (CSA, 2014) recommendations (i.e., it was not reported in 

the experiments). This CSA 2014 equation provides a best estimate of the modulus of elasticity 

based on assumptions of aggregate size, which may differ from those employed in the laboratory 

specimens. 

 

 

Figure 4.7 Virtual calibration against experimental tests of fibre beam-column elements; (a) 

D1N30 specimen (Kono et al., 2006); (b) D1N60 specimen (Kono et al., 2006); (c) U4 specimen 

(Saatciouglu & Ozcebe, 1989). 
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A flexural failure mode is expected at the EBW slabs. This assumption is valid since shear studs 

are provided at the EBW-to-core and EBW-to-wallumn connections which aims to prevent a 

punching shear failure. No experimental slabs specimens were validated against a EBW slab 

virtual twin model due to the lack of access to slabs experiments that failed in a pure flexural mode. 

However, the modelling behaviour was validated by checking the capacity of the EBW slabs 

against code equations in both positive and negative bending.  

 

4.3.4 Analysis Stages for Nonlinear Static (Pushover) Analysis 

As well as in the linear-elastic analysis, a two-stage analysis was needed in the nonlinear static 

analysis in order to prevent shifting of axial loads from the wallumns to the core. This was required 

to ensure the gravity-load wallumns had their intended axial design load before the pushover was 

carried out. This effect was caused by the high stiffness of EBW-to-core components. The 

elements considered in each stage are described in Table 4.6 and are the same as in the linear-

elastic analysis performed in GSA.  In the GSA linear-elastic analysis, each stage was a separate 

analysis and superposition was performed to obtain the overall demands in the model. By contrast, 

in the nonlinear LS-Dyna model, a single analysis was carried out, but each stage is introduced at 

different time intervals. The staged nonlinear static (pushover) analysis is shown in Figure 4.8 and 

summarized in the next paragraph.  

 

In the first stage, all the elements except for the EBW slabs were included at the time t1 = 0.0 s and 

the stiffness and mass of all the elements in this stage were ramped up in the following 2 s through 

the application of an acceleration representative of gravity. Here, all the gravity load was applied 

to the gravity-columns and RCSW to ensure they experience the appropriate factored axial load. 
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The six second interval time between t2 = 2.0 s to t3 = 8.0 s was adopted as a stabilization period 

in all the elements included in first stage. At t3 = 8.0 s the second stage commenced. All the EBW 

slabs were included into the nonlinear model and their stiffness and mass was ramped up in the 

following 2 s. The EBW slabs were introduced in the second stage to prevent shifting of the gravity 

loads from the core to the outrigger wallumns. The addition of the EBW slabs caused larger 

dynamic effects in all building components. For this reason, a 10 s time interval from t4 = 10.0 s 

to t5 = 20.0 s was included to damp the dynamic effects caused by the inclusion of EBW slabs. 

Finally, at t5 = 20.0 s the Simplified Analysis drift profile was applied. It took ten seconds to 

achieve the drift specified in Figure 3.5. The analysis ended at t6 = 30.0 s. The addition of new 

elements at each stage causes vibration. Stiffer elements, like the EBW slabs, will cause larger 

dynamic effects. For this reason, mass damping is applied during the first twenty seconds of the 

analysis observed in Figure 4.8 until the element response converges. No frequency specific 

damping was applied since this is a static pushover analysis.  
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Figure 4.8 Timeline during the two-stage analysis of the nonlinear pushover in LS-Dyna. 

 

4.3.5 Axial Elongation in EBW slabs 

Referring back to Section 2.7, the nonlinear EBW slabs will crack and elongate. Consequently, 

internal compression forces will develop caused by the constraints of the indeterminate building 

system. On average, it was found that the EBW slabs in the LS-Dyna nonlinear model experience 

an axial load ratio of about 0.1 to 0.2Agf’ce when subjected to the drift profile described in Figure 

4.1. This finding has the following effects: 1) the EBW slabs will be stiffer than anticipated due to 

the additional compressive axial force, attracting larger seismic demands; and 2) the slab’s nominal 

flexural capacity will increase when considering the interaction of axial load and bending moment. 

The following figures in this section illustrate that the induced compressive force changes in 

proportion to the applied displacement, i.e., as the lateral displacement increases, rotations also 
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increase, resulting in more cracking, axial elongation, and additional compressive axial forces. The 

rotation was computed as (d/2)·k, where d/2 is the assumed plastic hinge length and k is the 

curvature.  

 

The EBWs were classified according to the connection type, i.e. connection to a column/wallumn 

or to the core, and based on whether they were positioned in the “tension” or “compression” side 

of the analysis. The “tension” or “compression” side refers to the axial force that the outrigger 

wallumns experience. The wallumns that were in the “tension” side experienced less axial force, 

although the net axial load was always compressive. The “compression” wallumns experienced 

larger axial compressive demands. Figure 5.7 shows a diagram of the GFRS elements located in 

the “tension” or “compression” side for the cantilevered and coupled nonlinear static (pushover) 

analyses. 

 

Figure 4.9 and Figure 4.10 show that the compressive axial force in the EBW slabs increase as 

lateral displacement and cracking in these elements build-up, supporting the literature review in 

Section 2.7. The axial load ratios in the EBW slabs range from 0.1 to 0.2Agf’ce, approximately. 

These axial load ratios are consistent, according to the axial stiffness of the beams and slabs, to 

what is observed in other experimental (Zerbe & Durrani, 1989) and analytical studies (Kim et al., 

2004). Zerbe & Durrani (1989) observed a 5% axial load ratio in the beam elements of an 

indeterminate multi-span experimental test. The beams in the experimental test had an axial 

stiffness 16 to 25 times smaller than the EBW slabs adopted in this nonlinear static (pushover) 

analysis study and described in Table 4.4. Kim et al’s. (2004) analytical model of a five-storey 
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four-bay frame building, observed around 10% of axial load ratio in beams with an axial stiffness 

1.5 to 2.2 times smaller than the EBWs analyzed in this thesis.  

 

 

Figure 4.9 Increase in compressive axial force vs rotation for EBW slabs in the cantilevered 

direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) 

EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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Figure 4.10 Increase in compressive axial force vs rotation for EBW slabs in the coupled 

direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) 

EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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Chapter 5: GFRS Component Effective Stiffness Results and Calibration 

In Canada, the current code-prescriptive method to assess if the GFRS within a RCSW building 

can accommodate seismic displacements is the General Analysis (CSA, 2019) previously 

described in Section 2.3.1.1. However, practicing engineers could also choose to use the Simplified 

Analysis (CSA, 2019) which fulfills three out of four requirements of the General Analysis method 

by means of a prescribed drift profile previously illustrated in Figure 2.1. The only outstanding 

requirement is to ensure that upper-bound stiffness estimates of components of the GFRS are used 

in the analysis. Currently, the Canadian standard for design of concrete structures (CSA, 2019) 

does not provide specific stiffness modifiers to comply with this requirement. As it was previously 

discussed, structural design offices have adopted a flexural stiffness value of 10-25% of the gross 

stiffness for slabs and 70% for columns (J. Centeno, personal communication, November 11, 

2021). Although this is a well-informed approach, a formal calibration of stiffness coefficients for 

effEI based on nonlinear analyses is needed for the linear seismic analysis of square columns, 

wallumns, and slabs that form part of the GFRS.  

 

This chapter discusses the method followed to obtain flexural effective stiffness factors for 

members of the GFRS by leveraging results from the nonlinear model in LS-Dyna, as well as how 

these can be used for implementation in a linear-elastic analysis model to comply with the 

outstanding requirement of the Simplified Analysis. Section 5.1 describes the steps to follow to 

construct the moment-curvature plots for the GFRS components using the strain profile of cross-

sections of relevant members in order to derive flexural effective stiffness values. Section 5.2 

provides an overview of how these flexural effective stiffness modifiers were adopted in the linear-
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elastic model and an iterative calibration process followed to find agreement between seismic 

demands in the linear-elastic and the nonlinear analysis models. Section 5.3 provides a comparison 

between the linear-elastic and nonlinear bending moment demands observed in the components of 

the GFRS. Additionally, Section 5.4 summarizes the GFRS flexural effective stiffness factors 

obtained from this calibration exercise in support of appropriate stiffness factor recommendations 

for use in the Simplified Analysis procedure (CSA, 2019).  

 

5.1 Moment-Curvature Analysis of Elements of the GFRS 

The fibre beam-column element formulation used to model the GFRS in the nonlinear analysis 

model follows the assumption that plane sections remain plane. This results in a linear distribution 

of strain along the depth of the cross-section. Figure 5.1 shows the typical strain profile of a GFRS 

column throughout the nonlinear analysis pushover. Initially, when the global drift, Δ, is equal to 

zero, the cross-section strain profile is uniform since the member only experiences gravity loads, 

(refer back to Section 4.3.4). As the pushover analysis beings, some fibres will start to experience 

tensile strains resulting in cracking of the cross section. For the GFRS element shown in Figure 

5.1, this first crack occurs when Δ = 0.64Δy, where Δy denotes the yield drift of the story. As the 

displacement continues, more concrete cracking is observed, which shifts the position of the 

neutral axis.  
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Figure 5.1 Typical strain profile evolution over time observed in the GFRS components obtained 

from the nonlinear pushover analysis. 

 

5.1.1 Curvature Computation 

LS-Dyna does not output the moment-curvature results of fibre-based beam elements. For this 

reason, the curvature was computed from the strain profile at each time step. The curvature is 

defined (Hibbeler, 2011) in Equation (5.1) 

 k
y
ε−

=  (5.1) 

 

Whereε  is the strain observed at a specific fibre and y is the distance from the neutral axis to the 

chosen fibre. Accordingly, the strain values of a fibre along with the distance from that fibre to the 
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neutral axis are required at every time step to obtain the full moment-curvature analysis of the 

GFRS elements. While the strain is known at each time step as a direct output of the analysis, the 

y values need to be computed. The y distance varies at each analysis time step because the strain 

profile changes according to the deformation and cross-section cracking. Figure 5.2  shows how 

the distance from a specific fibre to the neutral axis decreases as the pushover analysis is carried 

out.  

 

 

Figure 5.2 Distance variation from a specific fibre to the neutral axis over time. 

 

Nevertheless, the y distance can be calculated by similar triangles since the vertical length from 

the mid-depth fibre to any other fibre along the member depth is known, as well as their 
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corresponding strain values. This approach is illustrated in Figure 5.3. for two cases: 1) one where 

the mid-depth fibre is in compression; and 2) one where the mid-depth fibre is in tension. 

 

 

Figure 5.3 Geometrical relationships to compute y.  

 

In Figure 5.3, d1 and d2 are the distances from the mid-depth fibre to other two fibres, fibre 1 and 

fibre 2, respectively. 1ε and 2ε are the observed strains at fibres 1 and 2, respectively. ΔC and ΔT are 

the missing distances to solve for y based on similar triangles as follows. For Case 1, when the 

mid-depth fibre is in compression, the value of ΔC is first required to solve for y. The geometrical 

relationship of Equation (5.2) was developed to find its value. 

 

 2 1

2 1

C Cd d
ε ε

∆ + ∆ +
=  (5.2) 

Solving Equation (5.2) for ΔC yields Equation (5.3). 
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Next, the similar triangles relationship required to obtain y is expressed in Equation (5.4). 

 

 2

1 2

C dy
ε ε

∆ +
=  (5.4) 

The ΔC value of Equation (5.3) is substituted in Equation (5.4) and y can be expressed in terms of 

known variables. Equation (5.5) is the expression used to obtain the distance from the neutral axis 

to fibre 1 at every time step when the mid-depth fibre is in compression.  

 

 ( )1 1 2

1 2

d d
y

ε
ε ε

−
=

−
 (5.5) 

For Case 2, when the mid-depth fibre is in tension, Equations (5.6) and (5.7) were used to obtain 

the y value in terms of known variables.  

 

 1 2T y d d∆ = − +  (5.6) 

 
1 2

Ty
ε ε

∆
=  (5.7) 

By substituting (5.6) into (5.7) the expression for y when the mid-depth fibre experiences tensile 

strain is obtained. The resulting equation is the same as in Case 1, see Equation (5.5). Now it is 

possible to obtain the curvature at every time step by replacing the distance from the neutral axis 

to fibre 1 from Equation (5.5) into Equation (5.2) together with 1ε . The method defined in this 

section is used to obtain the full moment-curvature plot of the GFRS members, as illustrated in 

Figure 5.4. 
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Figure 5.4 Full moment-curvature plot from the pushover analysis of a wallumn in the coupled 

direction.  

 

To ensure the moment-curvature of GFRS components was computed using the method previously 

described, a simple exercise was carried out to ensure the results were independent of the fibres 

chosen to carry out the calculations (i.e., to ensure any two fibers would yield consistent moment-

curvature results).  
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Figure 5.5 Moment-curvature of a GFRS component using three different set of fibres to obtain 

the curvature. 

 

Figure 5.5 validates the methodology introduced in Section 5.1.1 to calculate the curvature. Using 

three different sets of fibres, Equation (5.5) yields the same curvature regardless the fibres’ 

position or corresponding material. Fibres 1, 2, 6, 7, and 18 are unconfined concrete fibres. Fibre 

31 is a confined concrete fibre. The curvature of the GFRS component can be computed as long 

as the strain of two different fibres throughout the depth of the cross-section is known.  

 

5.1.2 GFRS Secant Stiffness from the Moment-Curvature Plots 

From the moment-curvature relation, the Secant Stiffness (Paulay, 2001) at the end of the analysis 

is calculated in order to establish the flexural effective stiffness, EIeff, for GFRS elements. The 
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Secant Stiffness of an element is the relationship between the observed demands and deformation. 

For this study, EIeff was obtained by dividing the last observed moment demand over its 

corresponding curvature. For instance, the flexural effetive stiffness of the top, middle, and bottom 

portions of the GFRS column shown in Figure 5.4 is displayed in Figure 5.6. In this example, the 

column experiences double curvature with almost no seismic demands observed at mid-height.  

 

 

Figure 5.6 Effective flexural stiffness of a wallumn element. 

 

For practical purposes, it is not efficient to assign a flexural effective stiffness value to each linear-

elastic column throughout the storey height. Industry practice allocates a single flexural effective 

stiffness factor for the column element at the corresponding story. Therefore, the weighted average 

value of the three beam-column elements of each storey was computed for use in the linear-elastic 

analysis model. The columns could bend in single or double curvature as explained in Section 2.6. 
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This results in a different cracking level depending on the observed curvature. For instance, the 

bottom portion of the column will experience the largest cracking if it bends in single curvature. 

In contrast, the bottom and top portions of the column will observe the largest cracking if it bends 

in double curvature. Thus, this average value yields a good estimate of the column’s cracking 

(Paulay & Priestley, 1992) throughout its length. In contrast with the approach followed to 

determine the flexural effective stiffness of the columns, the effective stiffness value used in the 

linear-elastic EBW slabs was retrieved from the beam-column element connecting the wallumn or 

core. This approach was considered since the cross-section of the EBW components connecting 

the wallumn is different from those connecting the core.  

 

5.2 Effective Stiffness Calibration in the Linear-Elastic Model 

The flexural effective stiffness modifiers estimated for the different components of the GFRS, 

obtained as described in Section 5.1.2, were adopted in the linear-elastic model. Upon subjecting 

the linear-elastic analysis model to the prescribed drift profile, described earlier in Section 4.1, it 

was observed that the bending demands in some GFRS elements differed from those in the 

nonlinear model. In order to obtain better agreement, the original EIeff values were calibrated 

through an iterative process described in Equation (5.8). 

 

 1
1

i iNL
eff effi

LE

MEI EI
M

−
−=  (5.8) 

Where for each element, the flexural effective stiffness at iteration i, EIi
eff , is equal to the bending 

moment demand obtained from the nonlinear model, MNL, divided by the bending moment demand 

obtained from the linear-elastic model in the previous iteration, Mi-1
LE, multiplied by the flexural 



73 

 

effective stiffness from the previous iteration, EIi-1
eff. This calibration was carried out for all the 

GFRS components regardless of the initial degree of convergence. It was observed that for GFRS 

elements that showed an initial good agreement in the first iteration, this calibration did not 

significantly alter the effective flexural stiffness value, primarily because the MNL/Mi-1
LE ratio 

remained close to 1.0 throughout the calibration. The overall calibration routine ceased when either 

1) most of the elements reached good agreement, i.e., the MNL/Mi-1
LE ratio is within ±10% of 1.0 

or 2) the linear-elastic bending moment demands converged, even if the MNL/Mi-1
LE ratio was not 

close to 1.0, which usually occurred around the tenth iteration.  

 

Generally, the bending demands in the EBW elements within the linear-elastic model reached good 

agreement against their nonlinear twins around the fourth iteration. For the square columns and 

wallumns, the demands converged around the tenth iteration. While results were not always 

identical on an element by element basis, they showed better agreement than in the first iteration. 

One of the reasons why the moment demands in the columns of the linear-elastic model could not 

closely match those of the nonlinear model at certain locations is attributed to the project constraint 

of developing a single flexural effective stiffness modifier for each column type. The columns in 

the nonlinear model consist of three beam-column elements per storey. In principle, this would 

translate to three different flexural effective stiffness modifiers per storey in the linear-elastic 

model. However, the calibration intends to derive a single flexural stiffness modifier per story, as 

typically done in practice, resulting in discrepancies at some building locations. 
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5.3 Nonlinear vs Linear-Elastic GFRS Moment Demands  

 The results of the calibration exercise described in Section 5.2, are summarized here in both the 

cantilevered and coupled building directions. Referring back to Figure 3.1, the building layout is 

symmetrical. This permitted grouping GFRS components according to their experienced demands 

and behaviour. The columns were grouped in three categories: square columns, “tension” 

wallumns, and “compression” wallumns. Because the square corner columns are not in the SFRS 

plane, they are non-outrigger columns and behave in a similar fashion. On the other hand, the 

wallumns, which are in the SFRS plane, are outrigger elements due to the framing action with the 

central core. The wallumns experienced different axial forces depending on their position in the 

floorplan. The wallumns that were in the “tension” side experienced less axial force, although the 

net axial load was always compressive. The “compression” wallumns experienced larger axial 

compressive demands. The EBWs were classified according to the connection type, i.e. connection 

to a wallumn or to the core, and based on whether they were positioned in the “tension” or 

“compression” side of the analysis. Figure 5.7 shows a diagram of the GFRS elements located in 

the “tension” or “compression” side for the (a) cantilevered and (b) coupled pushover analyses. 
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Figure 5.7 “Tension” and “Compression” sides for each direction during the pushover static 

analyses; (a) cantilevered direction; (b) coupled direction. 

 

Cantilevered Direction 

Figure 5.8 compares the linear-elastic bending moment demands after the flexural effective 

stiffness modifiers calibration was performed against the nonlinear demands of columns in the 

cantilevered direction. Three main observations could be pointed out, 1) the demands in the linear-

elastic model and the nonlinear model columns are in good agreement in the top two thirds of the 

building’s height; 2) the linear-elastic model tends to overestimate the demands at the base of 

columns in the cantilever direction; and 3) the large demands observed in levels 7-10 in the 

nonlinear models, where these elements experience considerable nonlinear behaviour, could not 

be replicated in the linear-elastic models. The peaks in bending moment demand, which are 
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observed at around one third of the building height, regardless the column type, are attributed to 

the drift profile. A more detailed discussion on the effect of the drift profile in the column demands 

is provided in Appendix A  . 

 

 

Figure 5.8 Linear-elastic vs nonlinear bending moment demands comparison for columns in the 

cantilevered direction: (a) “compression” wallumn; (b) “tension” wallumn; (c) square columns. 

 

As observed in Figure 5.9,  the EBW demands in the linear-elastic model and the nonlinear model 

columns are in good agreement. Even though the intent by design is for EBW slabs to yield (to 

replicate strong-column weak-beam type behaviour), this was not observed primarily due to the 

induced compressive forces, caused by axial elongation (refer back to Section 4.3.5) and the 

associated increased in the elements capacity, which typically doubled.   
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Figure 5.9 Linear-elastic vs nonlinear bending moment demands comparison for EBW slabs in 

the cantilevered direction: (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn 

“tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 

 

Coupled Direction 

The linear-elastic column demands in the coupled direction follow the nonlinear moment demands 

with great accuracy. As observed in Figure 5.10, there is a pattern in the demands for all column 

types. As with the columns in the cantilever direction, this is attributed to the drift profile as 

described in more detail in Appendix A  . 
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Figure 5.10 Linear-elastic vs nonlinear bending moment demands comparison for columns in 

the coupled direction: (a) “compression” wallumn; (b) “tension” wallumn; (c) square columns. 

 

The linear-elastic EBW slabs in the coupled direction were also capable to match the nonlinear 

demands with good accuracy, as observed in Figure 5.11.  
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Figure 5.11 Linear-elastic vs nonlinear bending moment demands comparison for EBW slabs in 

the coupled direction: (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” 

side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 

 

5.4 Summary of Flexural Stiffness Factors for the GFRS members 

This section summarizes the flexural stiffness modifiers associated with the demands previously 

report in Section 5.2. Namely, the modifiers based on the results presented in Figure 5.8, Figure 

5.9, Figure 5.10, and Figure 5.11. The plan view of Figure 5.7 shows there are 12 columns in the 

gravity-frame, each of them has three-beam column elements per storey, and the weighted average 

value of the three beam-column elements of each storey was computed for use in the linear-elastic 

analysis model. This results in 30 flexural stiffness modifiers for each gravity-column. There is 

also one EBW slab at each level per connection type which results in 30 different flexural effective 
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stiffness modifiers for each EBW slab. These results will be used later in Chapter 6 to develop 

prediction equations to compute flexural effective stiffness factors for GFRS members with 

different geometric properties. Figure 5.12 and Figure 5.13 show the flexural effective stiffness 

values for the GFRS members in the cantilevered direction. The flexural effective stiffness values 

for the columns and EBW slabs in the coupled direction are presented in Figure 5.14 and Figure 

5.15, respectively. 

 

Cantilevered Direction 

The compression outrigger wallumn in Figure 5.12(a) presents a range of flexural effective 

stiffness modifiers from 0.09EIg to 1.0EIg. Its average value is 0.56EIg. The minimum and 

maximum flexural stiffness modifiers for the cantilevered outrigger tension wallumn in Figure 

5.12(b) are 0.06EIg and 1.0EIg, respectively. The average flexural stiffness modifier is equal to 

0.64EIg. The square columns minimum and maximum flexural stiffness modifier are 0.27EIg and 

1.0EIg, respectively (refer back to Figure 5.12(c)). The average flexural effective stiffness modifier 

in square columns is 0.71EIg. In general, all columns in the cantilevered direction presented smaller 

flexural effective stiffness modifiers at levels 4, 13, and 16. In contrast, their flexural effective 

stiffness modifiers remained equal or very close to EIg at levels seven to nine.   
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Figure 5.12 Calibrated effective stiffness values for columns in the cantilever direction; (a) 

“compression” wallumn; (b) “tension” wallumn; (c) square columns. 

 

Figure 5.13(a) and (b) shows that the range of flexural effective stiffness modifiers for the EBW-

to wallumn slabs are [0.24EIg, 0.54EIg] and [0.49EIg, 0.62EIg] for the “compression” and “tension” 

side, respectively. The average flexural effective stiffness modifier for the “compression” and 

“tension” EBW-to-wallumn slab is 0.40EIg and 0.63EIg, respectively. From Figure 5.13(c), the 

minimum and maximum flexural stiffness modifiers for the EBW-to-core slab in the 

“compression” side are 0.18EIg and 0.64EIg, respectively; its average value is 0.34EIg. The 

“tension” EBW-to-core slab in Figure 5.13(d) shows that the minimum and maximum flexural 

effective stiffness modifiers are 0.30EIg and 0.85EIg, respectively; the average flexural effective 
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stiffness modifier for this member is 0.50EIg. In average, the EBW-to-wallumn slabs present larger 

flexural stiffness modifiers compared to the core connection when they are position on the same 

side (i.e., “compression” or “tension” side).  

 

 

Figure 5.13 Calibrated effective stiffness values for EBW slabs in the cantilever direction; (a) 

EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) EBW-to-core 

“compression” side; (d) EBW-to-core “tension” side. 

 

 

 

 



83 

 

Coupled Direction  

Figure 5.14 shows that the flexural effective stiffness factors range for the (a) “compression” 

wallumn, (b) “tension” wallumn, and (c) square columns are [0.03EIg, 1.0EIg], [0.06EIg, 1.0EIg], 

and [0.13EIg, 1.0EIg], respectively. Their average flexural stiffness modifier is 0.37EIg, 0.42EIg, 

and 0.53EIg, respectively. For all three column types, level 13 flexural stiffness is equal to the 

gross stiffness and the smaller flexural effective stiffness values are observed at grade, levels eight 

to nine, and 17 to 18.  

 

 

Figure 5.14 Calibrated effective stiffness values for columns in the coupled direction; (a) 

“compression” wallumn; (b) “tension” wallumn; (c) square columns. 
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Figure 5.15 shows that the flexural effective stiffness modifiers range for the (a) “compression” 

EBW-to-wallumn, (b) “tension” EBW-to-wallumn, (c) “compression” EBW-to-core, and (d) 

“tension” EBW-to-core members are [0.30EIg, 0.56EIg], [0.49EIg, 0.80EIg], [0.20EIg, 0.54EIg], 

and [0.25EIg, 0.76Ig] respectively. Their average flexural effective stiffness modifier is 0.40EIg, 

0.59EIg, 0.35EIg, and 0.50EIg, respectively. In average, the EBW-to-wallumn slabs present larger 

flexural effective stiffness modifiers compared to the core connection when they are positioned on 

the same side (i.e., “compression” or “tension” side).  

 

 

Figure 5.15 Calibrated effective stiffness values for EBW slabs in the coupled direction; (a) 

EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) EBW-to-core 

“compression” side; (d) EBW-to-core “tension” side. 
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Chapter 6: GFRS Flexural Effective Stiffness Modifiers Prediction Equations 

This chapter presents the development of empirical prediction equations to estimate appropriate 

flexural effective stiffness modifiers for elements of the GFRS for use in the General or Simplified 

Analysis procedures outlined in § 21.11.2.1 and § 21.11.2.2 of CSA A23.3-19. The relationships 

were formulated following a multivariate regression analysis with the data obtained in Chapter 5. 

The predictor equations are a function of geometric and material properties.  

 

Section 6.1 states the applicability and limitations of the proposed equations. Section 6.2 

introduces the statistical procedure to obtain the prediction equations. Sections 6.3 and 6.4 present 

the predictions equations for the GFRS components in the cantilevered and coupled directions, 

respectively. The equations developed for the cantilevered and coupled direction are not the same. 

This is because 1) the drift profile applied to each direction is different and 2) the interaction 

between a cantilever wall and a gravity-frame is different from a coupled wall and gravity-frame. 

The recommendations developed in this chapter will be tested and analyzed in Chapter 7. 

 

6.1 Applicability and Limitations  

The flexural effective stiffness predictor equations, hereinafter referred to as the Proposed 

Equations, are intended for use when adopting the General Analysis or Simplified Analysis in § 

21.11.2.1 and § 21.11.2.2 of CSA A23.3-19 for the design of the GFRS in RCSW buildings 

consistent with the archetype presented in this study. Each equation is applicable to a specific 

component type regardless of whether it is positioned in the “tension” or “compression” side.  
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The equations presented in this chapter allow the structural engineer to compute the flexural 

effective stiffness factors of each GFRS component throughout the height of the building based on 

set of predictor variables that are readily available. For columns, this will result in a different 

flexural effective stiffness factor at each storey. For EBW slabs, the flexural effective stiffness 

modifier will change at each level. If, for practical purposes, the practicing engineer prefers to 

apply a single value to each GFRS component type throughout the entire building, as opposed to 

assigning individual stiffness modifiers to each element, a conservative solution would be to assign 

the largest flexural stiffness modifier to all GFRS components with the same cross-section layout. 

For example, if the building has 30 storeys and the cross-section layout of the columns changes 

every ten storeys the first step would be to obtain the thirty effective stiffness modifiers (one per 

storey). Next, the largest flexural effective stiffness modifier of each cross-section layout group is 

selected, resulting in three flexural effective stiffness modifier categories, one for every ten 

storeys. Finally, each upper-bound flexural effective stiffness factor will be assigned to the 

columns that share the same cross-section layout (one for the bottom ten storeys, one for the middle 

ten and one for the top ten).  

 

The limitations are the following: 

• The recommendations are based in a single SFRS and GFRS design. As a result, the 

Proposed Equations may not return appropriate flexural effective stiffness modifiers for 

other building configurations. Different sizes of columns and slabs should be evaluated to 

increase the range of validity of the regression models. The effect of distance from the 

outrigger wallumns to the core also needs to be assessed. Multiple building configurations 

with different RCSW cross-section dimensions should be explored. As future studies 
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explore the effects of varying cross section and building geometry, the proposed equations 

can be expanded. to other buildings 

.  

• The EBW slabs Proposed Equations are not meant for transfer or post-tensioned slabs. 

• Foundation movement was not accounted for when computing the drift profile. Because of 

this, the Proposed Equations are valid for building where the foundation movement is 

small or could be neglected.  

• The flexural effective stiffness modifiers for the EBW slabs should be applied to one-

dimensional beam elements and not to two-dimensional linear-elastic shell elements. 

 

6.2 Statistical Methods 

To develop the regression model, the flexural effective stiffness modifiers estimated in Chapter 5 

were grouped according to their component type. This enabled the development of equations for 

outrigger wallumns, non-outrigger square columns, and EBW slabs in both the cantilevered and 

the coupled directions. The symmetrical building layout allowed the columns and EBW slabs to 

be grouped according to their experienced demands and behaviour. Because of this, the outrigger 

wallumn data set was composed of 60 flexural stiffness modifiers, 30 of them extracted from the 

“compression” wallumns and the other 30 from the “tension” wallumns. All the non-outrigger 

square columns behaved similarly, therefore, this GFRS group was composed of 30 data points. 

Last, the EBW slabs data set had a total of 120 effective stiffness values, 30 from each connection 

type, i.e.,  “compression” EBW-to-wallumn, “tension” EBW-to-wallumn, “compression EBW-to-

core, and “tension” EBW-to-core. The earthquake inertial forces exert a load reversal at each 

GFRS member. Because of this, it is not practical to assign a different value for the “compression” 
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and “tension” members of the building model for design purposes. Thus, the “compression” and 

“tension” flexural stiffness modifiers of the same GFRS members are lumped into the same 

regression model, with the intention to obtain a prediction equation that captures the general 

behaviour of both sides.  

 

Once the data was gathered into corresponding groups, predictors variables were selected based 

on their capability to estimate the flexural stiffness modifiers. These variables were chosen based 

on 1) the accessibility of the data, i.e., design variables known to the structural designer such as 

material and geometric properties, 2) first principles, e.g., concrete cracking is affected by the level 

of demands and axial load, and 3) past research aimed at developing stiffness modifiers for other 

structural components.  

 

All the selected variables were dimensionless for consistency with the EIeff /EIg ratio. Once the 

data and the predictor variables were defined, an appropriate form for each equation was 

established. A detailed review of the data scatter plots and the shape of the bending moment 

demands throughout the building height were crucial to determine a suitable regression model for 

each GFRS component.  

 

Standard multiple linear and nonlinear regression analyses were performed in MATLAB (2021). 

The Stepwise approach (Chatterjee & Hadi, 2006) was used to ensure only statistically significant 

variables at a 95% level were used in the predictive equations. In general, this approach enabled 

the inclusion of a new variable at each stage if its p-value is less than 0.05, as well as delete another 

variable if it was not significant at a 95% level. A predictor that was significant at an earlier stage 
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could be removed from the regression model at a later stage. In the development of the Proposed 

Equations the process was to explore a minimum of six to ten variables to understand their 

prediction power. Consequently, the predictor variables were narrowed down to the handful of 

variables that were significant and allowed the development of an appropriate prediction equation.  

 

As commonly done in the literature (Lignos & Krawinkler, 2011; Sadeghian & Fam, 2015), the 

prediction power of linear and nonlinear equations proposed was evaluated using the coefficient 

of determination (R2) and the Root Mean Squared Error (RMSE). R2 is a measure of the linear 

correlation between the predicted and observed values whereas RMSE indicates how distanced the 

predicted values are from the experimental values. Moreover, a 45-degree line plot of observed vs 

predicted values is presented as this visual illustration represents how effective the model is in 

making estimations (Devore, 2011). In the context of this study, RMSE and the 45-degree line plot 

are considered the best indices to assess the prediction capability of the proposed equations. 

Because R2 measures the goodness of fit along a straight line, for nonlinear regression models, this 

metric can yield misleading values that might not reflect the true prediction power of the proposed 

equations. As noted by Sadeghian & Fam (2015), in the hypothetical poor prediction case of 

observing the predicted vs experimental values laying along a 10-degree line, R2 will report values 

close to 1.0, whereas RMSE will be able to show the flaws of the regression model. Furthermore, 

RMSE and the 45-degree line plot are related. The closer the data points are to the 45-degree line, 

the closer the RMSE values are to zero. Devore (2011) suggests also to plot the standardized 

residuals against the predicted values to assess the validity of the model. The scatter plot of the 

standardized residuals should have a random distribution and 95% of the data points should fall 

within two standard deviations.  
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6.3 Cantilever Direction Prediction Equations 

6.3.1 Outrigger Wallumns 

The selected variables to formulate the prediction equation for outrigger wallumns in the cantilever 

direction are: 

• a/d  = shear span-to-wallumn depth ratio. 

• d/b  = depth-to-width ratio. 

• ρ  = longitudinal reinforcement ratio. 

• fye/f’ce  = expected yield strength to expected unconfined concrete strength. 

• P/Agf’ce = axial load ratio, factored gravity loads divided by the product of the gross 

area and expected unconfined concrete strength. 

• δi  = interstorey drift ratio. 

• MD   = Mn/f’ced3 = dimensionless nominal moment (Priestley, 2003). Nominal 

moment capacity accounting for factored gravity loads divided by the product of the 

expected unconfined concrete strength and the cubed depth. 

• ui/umax  = column displacement at the storey mid-height over the displacement at 

the roof. Both variables result from subjecting the building to the Simplified Analysis drift 

profile.  

• d/t  = wallumn depth-to-slab thickness.  

 

Terms a/d, d/b, ρ, f’ye/f’ce, and d/t are geometric and material properties known to the structural 

designer after carrying out the gravity design for the for the GFRS. P/Agf’ce accounts for the fact 

that the axial load ratio is inversely proportional to the level of concrete cracking. By contrast, δi 

and ui/umax are included based on the knowledge that larger demands will result in larger cracking 
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of the RC component, hence lower stiffness modifiers. MD was developed by Priestley (2003) to 

study the influence of axial load ratio in the capacity of bridge columns to formulate flexural 

effective stiffness modifiers. The scatter plot of the predictor variables mentioned above was 

plotted against the flexural effective stiffness modifiers presented in Chapter 5 to identify possible 

trends, as seen in Figure 6.1. 

 

 

Figure 6.1 Scatter plot of the predictor variables used to develop the outrigger wallumn flexural 

effective stiffness predictor equation in the cantilever direction.  

 

Out of the nine variables shown in Figure 6.1, the predictors that show a clearer trend are δi and 

ui/umax. The pattern they present is close to a wave function. Referring back to plots (a) and (b) of 

Figure 5.8, the drift demands in the cantilevered direction exert and oscillatory moment demand 
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pattern in the outrigger wallumns throughout the building’s height. This shape could possibly be 

predicted using sine and cosine functions. With these inferences and the 60 data points of flexural 

stiffness modifiers obtained from Chapter 5, the proposed equation for outrigger wallumns in the 

cantilever direction is summarized below. 

 

 ( ) ( ) ( )0.553 0.220cos 4072 0.387sin 4072 cos 1005 1.0eff
D D i

g

EI
M M

EI
δ= − − ≤  (6.1) 

R2 = 0.522 RMSE = 0.228 

Equation (6.1) presents two variables that directly relate to the cracking level of an RC member. 

MD explicitly accounts for the cross-section dimensions, material properties, and capacity. δi 

considers the level of lateral displacement at the outrigger wallumn. 

 

 

Figure 6.2 Regression model validation of Equation (6.1): (a) 45-degree line plot; (b) 

standardized residuals plot. 
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Plot (a) of Figure 6.2 shows that the predicted values of Equation (6.1) are in most cases consistent 

with the observed flexural effective stiffness modifiers. Plot (b) demonstrates a random 

distribution of errors and only one residual laying beyond the two standard deviations limit. It 

could be concluded that the model of Equation (6.1) is valid. The ranges of the parameters used in 

Equation (6.1) are: 

• 0.0289 ≤ MD ≤ 0.0516 

• 0.78% ≤ δi ≤ 1.71% 

 

6.3.2 Non-outrigger Square Columns 

The variables used to formulate the prediction equation for this component are the same as in 

Section 6.3.1. The d/t predictor was omitted from the regression model because these components 

are not connected to the core through a EBW slab.  

 

Figure 6.3 illustrates the scatter plot of the predictor variables for the non-outrigger square 

columns. As seen in the figure, the d/b variable does not provide any meaningful correlation, 

therefore, it is not considered in the regression model. Out of the other seven predictors, the 

variables that present an oscillatory pattern are P/Agf’ce, δi, MD, and ui/umax. δi shows the clearest 

wave pattern and MD the most subtle. It is interesting to observe, based on the ui/umax plot, that the 

elements at the top of the non-outrigger square columns remain almost linear-elastic (i.e., EIeff = 

1.0). These are also the elements that experience the smallest axial load ratios. One of the possible 

reasons for this observation is the cantilever behaviour of these non-outrigger elements due to 

absence of framing action. A cantilever element will experience the least amount of demands at 
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the unrestricted end, remaining linear elastic. The d/b variable remains constant for all square 

columns because their depth is equal to the width.  

 

 

Figure 6.3 Scatter plot of the variables used to develop the non-outrigger square column flexural 

effective stiffness predictor equation in the cantilever direction. 

 

As well as with the outrigger wallumns, the non-outrigger square columns also presented an 

oscillatory moment demand shape, refer back to plot (c) of Figure 5.8. This observation coupled 

with the 30 data points resulted in Equation (6.2) as a flexural effective stiffness predictor for non-

outrigger square columns in the cantilevered direction. 
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 ( ) ( )( )0.3610.668 0.364cos 1164 0.235sin 1164 56.089 1.0eff
i i D

g

EI
M

EI
δ δ= + − + ≤  (6.2) 

R2 = 0.667 RMSE = 0.161 

P/Agf’ce and ui/umax were not significant when assessing the regression model of Equation (6.2) 

because there is an existing correlation between the variables. P/Agf’ce is implicitly accounted in 

MD and ui/umax was computed from the interstorey drift ratio.  

 

 

Figure 6.4 Regression model validation of Equation (6.2): (a) 45-degree line plot; (b) 

standardized residuals plot. 

 

Figure 6.4 demonstrates a good agreement between predicted and observed values for the proposed 

equation for non-outrigger square columns in the coupled direction. No irregularities are observed 

in plot (b) of Figure 6.4. Therefore, the regression model is deemed as plausible. The ranges of the 

predictors used to develop Equation (6.2) are: 
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• 0.0674 ≤ MD ≤ 0.1385 

• 0.78% ≤ δi ≤ 1.71% 

6.3.3 EBW slabs 

The variables considered to develop an appropriate prediction equation for the EBW slabs in the 

cantilever direction regardless of their connection type are: 

• a/t  = shear span-to-slab thickness ratio. 

• beff/t  = effective width-to-thickness ratio. 

• ρ-/m  = longitudinal reinforcement ratio for sagging bending moment per meter 

of slab width. 

• fye/f’ce  = expected yield strength to expected unconfined concrete strength. 

• a/beff  = shear span-to-effective width ratio. 

• EIpier/EIEBW = gross inertia of the framing element over the gross inertia of the EBW 

slab. For EBW-to-wallumn connections EIpier is the gross inertia of the wallumn. For EBW-

to-core connections EIpier is the gross inertia of the wall pier.   

• ui/umax  = lateral displacement in the EBW over the displacement atop of the roof 

after applying the Simplified Drift Profile.  

 

a/t, beff/t, ρ-/m, f’ye/f’ce, and a/beff are geometric and material properties known to the structural 

designer after carrying out the gravity design of the GFRS. EIpier/EIEBW was included to assess if 

the interaction between the GFRS components could explain the values of the flexural effective 

stiffness modifiers. ui/umax was included based on the knowledge that larger demands will result in 

larger cracking of the corresponding RC members. The scatter plots of the variables used for the 

regression model of the EBW slabs are summarized in Figure 6.5. 
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Figure 6.5 Scatter plot of the variables used to develop the EBW slabs flexural effective stiffness 

predictor equation in the cantilever direction. 

 

The only possible trend to observe in Figure 6.5 is the almost constant relationship between the 

flexural effective stiffness modifiers and ui/umax. It would seem feasible to develop and equation 

using this variable. Nevertheless, after attempting multiple regression models, it was observed that 

the scatter of the flexural stiffness modifiers in the ui/umax plot was excessively large to obtain a 

useful prediction equation. By sorting the flexural effective stiffness values of the EBW according 

to their connection (to a wallumn or to a pier), it was observed that the EBW-to-wallumn flexural 

stiffness modifiers presented the largest dispersion, as seen in Figure 6.6(a). 
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Figure 6.6 Distribution of flexural effective stiffness values for the EBW slabs in the 

cantilevered direction; (a) EBW-to-wallumn; (b) EBW-to-core. 

 

The larger flexural effective stiffness modifiers deviation in the EBW-to-wallumn components can 

be attributed to the wide range of wallumn sizes, refer back to Table 3.4, which results in a larger 

spread of flexural stiffness modifiers. By contrast, the EBW-to-core slabs always frame into the 

same cantilever wall pier size, refer back to Figure 3.1, which results in less variability. Based on 

these observations, separate equations were developed for each EBW connection type. Sections 

6.3.3.1 and 6.3.3.2 discuss the development of EBW-to-wallumn and EBW-to-core stiffness 

modifier predictor equations, respectively.  

 

6.3.3.1 EBW-to-Wallumn 

The variables previously described in Section 6.3.3 were also used to develop a prediction equation 

for the EBW-to-wallumn connection. However, it was found that the coefficient of determination 
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for the best regression model was still very low (R2 ≈ 0.30). As a result, the development of a 

nonlinear regression model was explored for the most critical elements only, i.e., the “tension” 

side values. These values are the most critical because they experienced the largest demands, as 

previously reported in Figure 5.9. The scatter of the variables using the 30 flexural stiffness data 

points of the EBW-to-wallumn slabs on the “tension” side is displayed in Figure 6.7. 

 

 

Figure 6.7 Scatter plot of the “tension” side variables used to develop the EBW-to-wallumn 

flexural effective stiffness predictor equation in the cantilevered direction. 

 

a/t, ρ-/m, and fye/f’ce were not included in the regression models since they do not explain nor 

contribute on the estimation of the flexural effective stiffness factors, as observed in Figure 6.7. 

The proposed regression model is presented in Equation (6.3). It includes a predictor that describes 
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the geometric properties and a variable that accounts for the lateral deformation observed at each 

EBW-to-wallumn connection, beff/t and ui/umax, respectively.  

 

 
max

0.064cos 21.2 0.029 1.0eff effi

g

EI bu
EI u t

 
= + ≤ 

 
 (6.3) 

R2 = 0.435 RMSE = 0.064 

 

Equation (6.3) is a clear example why RMSE is preferred over R2. The R2 results alone would 

imply the proposed equation might not be a good flexural effective stiffness estimator for EBW-

to-wallumn members in the cantilevered direction. However, as observed in plot (a) of Figure 6.8,  

the predicted vs observed values lay closely around the 45-degree line, which suggests the model 

can accurately predict the corresponding flexural stiffness factors. The RMSE index validates the 

latter conclusion. This regression model supports the statement presented in Section 6.2 about the 

coefficient of determination being misleading when assessing nonlinear models. 
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Figure 6.8 Regression model validation of Equation (6.3): (a) 45-degree line plot; (b) 

standardized residuals plot. 

 

The variables of Equation (6.3) are in between the following intervals: 

• 0.0227 ≤ ui/umax ≤ 0.9321 

• 19.7919 ≤ beff/t ≤ 23.4992 

 

6.3.3.2 EBW-to-Core 

The same predictors previously described in Section 6.3.3  were used to determine the predictive 

equation for EBW-to-core members in the cantilevered direction. Contrary to the EBW-to-

wallumn slabs, both “tension” and “compression” values were included when developing the 

regression model because the scatter of the flexural stiffness values is less, refer back to Figure 

6.6.  
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The scatter of the 60 EBW-to-core data points against their possible predictors is summarized in 

Figure 6.9. With the exception of ui/umax, the remaining variables do not contribute to the 

estimation and were disregarded from the regression model. ui/umax appears to have a somewhat 

linear relationship with EIeff/EIg.  

 

 

Figure 6.9 Scatter plot of the variables used to develop the EBW-to-core slabs flexural effective 

stiffness predictor equation in the cantilevered direction. 

 

The resulting regression model for EBW-to-core slabs in the cantilever direction is presented in 

Equation (6.4).   
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max

0.588 0.383 1.0eff i

g

EI u
EI u

= − ≤  (6.4) 

R2 = 0.492 RMSE = 0.109 

Equation (6.4) does not present a variable that describes the geometric properties. This is because 

the effective width of the EBW-to-core slabs does not change throughout the building’s height. 

The effective width is dependent on the wallumn or wall pier depth the slab frames into (refer back 

to Equation (2.2) and Figure 2.2). Since the depth of the cantilever wall pier is constant throughout 

the building height, the EBW-to-core effective width does not change and does not explain the 

variability of the flexural effective stiffness modifiers, as previously shown in Figure 6.9.   

   

 

 

Figure 6.10 Regression model validation of Equation (6.4): (a) 45-degree line plot; (b) 

standardized residuals plot 
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Figure 6.10 illustrates the accuracy and soundness of Equation (6.4). The ranges of the predictor 

for the proposed equation are: 

• 0.0227 ≤ ui/umax ≤ 0.9321 

 

6.4 Coupled Direction Prediction Equations 

6.4.1 Outrigger Wallumns 

The variables used to build the regression model for the outrigger wallumns in the coupled 

direction are consistent with those introduced in Section 6.3.1, with the exception of δi. This is 

because the Simplified Analysis drift profile in the coupled direction is uniform. In lieu of δi, the 

influence of the longitudinal rebar diameter-to-depth ratio, dB/d, was explored. This ratio is also 

known by the structural engineer once the GFRS design has been carried out. 

 

During the preliminary regression analyses it was found that the behaviour of three data points was 

not captured by any regression model. As defined by Anderson et al. (2010) “an outlier is a point 

that does not fit the trend shown by the remaining data”. These data points could influence the 

accuracy of the developed flexural stiffness modifiers prediction equation. Devore (2011) suggests 

the following when potential outliers are detected: “When plots or other evidence suggest that the 

data set contains outliers or points having large influence on the resulting fit, one possible approach 

is to omit these outlying points and recompute the estimated regression equation. This would 

certainly be correct if it were found that the outliers resulted from errors in recording data values 

or experimental errors. If no assignable cause can be found for the outliers, it is still desirable to 

report the estimated equation both with and without outliers omitted”. As it was explained in 

Section 5.2, one of the reasons why the linear-elastic columns’ moment demands could not closely 
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match the nonlinear moment demands at certain locations is attributed to the need to assign a single 

flexural effective stiffness modifier to each column type, resulting in experimental errors. 

Moreover, other authors (Sadeghian & Fam, 2015), removed these atypical values from the 

database to prevent saturation of the RMSE index (i.e., to reduce the mean error between the 

observed and predicted values).  

 

Following Devore’s (2011) approach, the prediction equation including the three outliers is shown 

first, refer to Equation (6.5). Then the scatter of the 57 flexural stiffness modifiers that resulted in 

the best regression model is presented in Figure 6.11. Last, the best regression model with only 57 

flexural stiffness modifiers is shown in Equation (6.6). Goodness-of-fit estimators (R2
 and RMSE) 

are used to compare Equations (6.5) and (6.6). Thus, this will demonstrate why including the three 

potential outliers decreases the prediction power of the proposed regression model for outrigger 

wallumns in the coupled direction.  

 

 

2 2

max max
0.155 0.758

0.0445 0.320

0.616 0.305 3.737 1.0

i iu u
u u

eff
D

g

EI
e e M

EI

       −   −    
      − −      
      
         = + + ≤  (6.5) 

R2 = 0.213 RMSE = 0.250 
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Figure 6.11 Scatter plot of the variables used to develop the flexural effective stiffness predictor 

equation for the outrigger wallumn equation in the coupled direction. 

 

Referring back to Figure 5.10, the largest moment demands at the outrigger wallumns in the 

coupled direction are observed in the bottom storeys. An oscillatory moment demand shape is also 

noticeable. From this assessment, two possible functions could model this behaviour 1) an 

exponential function that can predict the bottom peak demand or 2) sine or cosine functions that 

describe the moment demand shape pattern. Equation (6.6) was the best regression model for 

outrigger wallumns in the coupled direction.  
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max max
0.155 0.758

0.0445 0.320

0.616 0.305 3.737 1.0

i iu u
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eff
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EI
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       −   −    
      − −      
      
         = + + ≤  (6.6) 

R2 = 0.496 RMSE = 0.158 

 

Equation (6.5), which includes the three potential outliers, presents and R2 = 0.213 and RMSE = 

0.250. In contrast, Equation (6.6), while not considering the potential outliers, has a better 

prediction power demonstrated by a higher R2 = 0.496 and a lower RMSE = 0.158. R2
 and RMSE 

support the assumption that these three outliers do not fit the remaining data of this model which 

may have occurred as an experimental error caused by the calibration procedure described in 

Section 5.2. Because of this, Equation (6.6) is deemed as a better flexural effective stiffness 

modifier prediction equation for outrigger wallumns in the coupled direction.  

 

In contrast with Equation (6.1) for outrigger wallumns in the cantilevered direction, the equation 

for outrigger wallumns in the coupled direction includes ui/umax instead of δi. As mentioned earlier, 

this is because the uniform interstorey drift ratio in the coupled direction results in δi values that 

do not add variability to the prediction. Figure 6.12 shows that the predicted values of Equation 

(6.6) are in good agreement with the experimental values.  
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Figure 6.12 Regression model validation of Equation (6.6): (a) 45-degree line plot; (b) 

standardized residuals plot. 

 

The predictors’ intervals of the proposed equation for outrigger wallumns in the coupled direction 

are: 

• 0.0205≤ ui/umax ≤ 0.9306 

• 0.0291≤ MD ≤ 0.0537 

 

6.4.2 Non-outrigger Square Columns 

The predictor variables used for non-outrigger square columns in the coupled direction are 

consistent with those used in the cantilevered direction, as described earlier in Section 6.3.1. As 

with the non-outrigger square columns in the cantilever direction, the d/t variable was removed 

from the regression model because it only applies to outrigger elements. Also, δi was substituted 
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by dB/d since the interstorey drift profile in the coupled direction is uniform as previously explained 

in Section 6.4.1.  

 

Along with the outrigger wallumns in the coupled direction, the potential single outlier that 

saturated the RMSE index was eliminated from the database (Sadeghian & Fam, 2015). Devore’s 

(2011) approach previously explained in Section 6.4.1 is used to demonstrate that the outlier does 

not fit the trend of the remaining data. First the regression model of Equation (6.7), which includes 

the potential outlier, is presented. Second, the scatter of the predictors that resulted in the best 

regression model and do not consider the potential outlier is summarized in Figure 6.13. Last, the 

best regression model with only 29 flexural stiffness modifiers is shown in Equation (6.8). 

Goodness-of-fit estimators (R2
 and RMSE) are used to compare Equations (6.7) and (6.8). Thus, 

this will demonstrate why including the single potential outlier decreases the prediction power of 

the proposed regression model for non-outrigger square columns in the coupled direction.  

  

 
max max

0.512 0.214cos 24.982 0.152sin 24.982 1.0eff i i

g

EI u u
EI u u

   
= − − ≤   

   
 (6.7) 

R2
 = -0.281 RMSE = 0.273 
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Figure 6.13 Scatter plot of the variables used to develop the flexural effective stiffness predictor 

equation for the non-outrigger square columns equation in the coupled direction. 

 

From Figure 6.13, it is observed that d/b does not explain the data, hence it was removed from the 

analysis. It can also be observed that variables MD and ui/umax show an oscillatory pattern. 

Referring back to plot (c) of Figure 5.10, the shape of the bending moment demands suggests that 

a regression model that takes the form of an exponential function might be able to replicate the 

peak demand at the bottom storeys. Based on these observations and iterative analysis, Equation 

(6.8) presents the proposed regression model for non-outrigger square columns in the coupled 

direction.  
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max max

0.512 0.214cos 24.982 0.152sin 24.982 1.0eff i i

g

EI u u
EI u u

   
= − − ≤   

   
 (6.8) 

R2
 = 0.659 RMSE = 0.144 

 

Equation (6.7) presents and R2 = -0.281 and RMSE = 0.273. In contrast, Equation  (6.8)has a better 

prediction power demonstrated by a higher R2 = 0.659 and a lower RMSE = 0.144. The negative 

R2 value of the regression model that includes the potential outlier proves itself that the outlier 

does not fit the remaining data of this model. As previously described in Section 6.4.1 experimental 

errors may have occurred by following the calibration procedure described in Section 5.2. Because 

of this, Equation (6.8), which does not include the outlier, is deemed as a better flexural effective 

stiffness modifier prediction equation for non-outrigger square columns in the coupled direction.  

 

Equation (6.8) does not include any variables that describes the geometry or material properties of 

the non-outrigger square columns. The cross-section properties of these elements, previously 

presented in Table 3.5, shows small variability, particularly in the bottom 20 storeys. This results 

in a limited contribution of the cross-section properties to the prediction equation. By contrast, the 

variable ui/umax is a good predictor according to R2 and the RMSE indices. These findings are also 

supported by the 45-degree line plot showed in Figure 6.14. 
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Figure 6.14 Regression model validation of Equation (6.8): (a) 45-degree line plot; (b) 

standardized residuals plot. 

 

The ranges of the variable seen in Equation (6.8) are: 

• 0.0205≤ ui/umax ≤ 0.9306 

 

6.4.3 EBW slabs 

The predictors used for the EBW slabs in the coupled direction are the same as those used in the 

cantilevered direction, presented earlier in Section 6.3.3. The scatter of the 120 flexural effective 

stiffness data points for all the EBW slabs in the coupled direction is shown in Figure 6.15. The 

ui/umax variable appears to be linearly related to the flexural effective stiffness.  
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Figure 6.15 Scatter plot of the variables used to develop the flexural effective stiffness predictor 

equation for EBW slabs equation in the coupled direction. 

 

Contrary to the EBW slabs in the cantilevered direction, in the coupled direction it was possible to 

propose a single equation for all the EBW slabs regardless of their connection type because the 

dispersion of ui/umax is less pronounced in the coupled direction than in the cantilevered, as 

observed by comparing  Figure 6.5 and Figure 6.15. Equation (6.9) is the proposed equation for 

EBW slabs in the coupled direction. 

 

 
max

0.209 0.012 0.163 1.0eff eff i

g

EI b u
EI t u

= + − ≤  (6.9) 

R2 = 0.570 RMSE = 0.086 
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Equation (6.9) is conformed by two variables. beff/t characterizes the geometric properties of the 

EBW component and ui/umax accounts for the level of lateral displacement.  

 

 

Figure 6.16 Regression model validation of Equation (6.9): (a) 45-degree line plot; (b) 

standardized residuals plot. 

Based on the results presented in Figure 6.16, the proposed equation for EBW slabs in the coupled 

direction is satisfactory. Even though five residuals are beyond the two standard deviation limit, 

these outliers represent less than 5% of the database. The ranges of the variables expressed in 

Equation (6.9) are: 

• 19.34≤beff/t≤35.61 

• 0.0409≤ ui/umax ≤ 0.9462 
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Chapter 7: Prediction Power of Proposed Equations 

This chapter intends to evaluate the effectiveness of Equations (6.1) to (6.4), (6.6), (6.8), and (6.9) 

presented in Chapter 6, as tools to estimate the flexural effective stiffness modifiers for elements 

of the GFRS for use in the implementation of the General and Simplified Analysis procedures 

described in § 21.11.2.1 and § 21.11.2.2 of CSA A23.3-19 , respectively. To assess their prediction 

power, the seismic demands in GFRS components derived by means of a linear-elastic model that 

employs flexural effective stiffness modifiers as derived from the Proposed Equations will be 

compared against the observed demands in a detailed nonlinear analysis model, when both models 

are subjected to the same drift profile. Furthermore, the performance of the proposed flexural 

effective stiffness modifiers will be benchmarked against the recommendations found in CSA 

A23.3-19 for the SFRS members if applied to the GFRS components. This is described in Section 

7.1. 

 

Two buildings, hereinafter called Building Model 1 and 2, with the same SFRS, but distinct GFRS 

will be used in the assessment. The major differences are 1) the depth-to-width wallumn ratio was 

increased from 2.5 to 5.25 in average, 2) the effective width of EBW-to-wallumn slabs was 

increased by 21% in average. A more detailed description of the differences between both 

buildings is presented in Section 7.3. The first goal of this exercise is to ensure there is no 

significant loss of accuracy when using the generalized expressions. The second goal is to check 

the prediction power of the equations when a different GFRS is used. The flexural effective 

stiffness modifiers used in each Building Model 1 and 2 are summarized in Appendix C   
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7.1 CSA A23.3-19 Stiffness Modifiers 

The General Analysis of CSA A23.3-19 in its requirements for the upper-bound effective stiffness 

for the GFRS components states: “Low estimates of average section properties such as those given 

in Clause 21.2.5.2 are used for the SFRS to make a safe estimate of the design displacements of 

the overall building. Higher estimates of section properties must be used for each structural 

members not considered part of the SFRS to make a safe estimate of the forces induced in these 

members by the design displacements of the SFRS” (pp. 204-205). The low estimates of § 21.2.5.2 

are: 

 

 
0.5 0.6  for columns

0.2 for slabs

eff
g c

g

P
EI A f
EI

 + ′= 



 (7.1) 

Although the code is clear that the above equations are not meant to estimate the GFRS forces, the 

wording could be seen to imply that the resulting stiffness modifiers shown above serve as a lower 

bound factors for elements of the GFRS . For this reason, the results presented in this chapter also 

include the results obtained by adopting the expressions presented above, hereinafter referred to 

as Code Equations, in lieu of those derived in Chapter 6. To be consistent with the Proposed 

Equations, f’c in Equation (7.1) was replaced by f’ce.  

 

7.2 Building Model 1 

This first model is consistent with the archetype building used throughout this study. This building 

follows the typology described in Section 3.1 and displayed in Figure 3.1. The material and 

geometric properties of the GFRS could be retrieved from Table 3.1, Table 3.2, Table 3.4, Table 
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3.5, and Table 4.4. The main reason to assess this building is to check if the Proposed Equations 

return flexural effective stiffness modifiers that result in consistent linear-elastic demands 

compared to the nonlinear virtual twin (i.e., there is no loss of accuracy).  

 

In their designs, structural engineers will group element types that will be defined for the largest 

demands. For instance, if all columns in the lowermost stories have the same cross section 

geometry, the largest demands will be used to detail the cross-section and define the necessary 

material properties. In the case study archetype building, the columns were divided into three 

groups, previously reported in Table 3.4 and Table 3.5. Column group A contains all columns from 

grade to level 11, column Group B contains all columns from level 11 to 21, and column group C 

contains all columns from level 21 to 31. These groups will be hereinafter referred to as the bottom, 

middle, and top groups for comparison purposes. While the same rationale was applied for EBW 

slabs, the resulting EBW-to-core slabs were identical through all levels, therefore, a single group 

applies to these components. To assess the prediction power of the Proposed Equations and the 

Code Equations, the maximum linear-elastic flexural demands of each component group are 

compared against the peak moment demands derived from the detailed nonlinear analysis model.  

 

7.2.1 Cantilever Direction 

7.2.1.1 Columns 

Figure 7.1 shows the moment demands throughout the height of the building as predicted by the 

linear-elastic models with flexural effective stiffness modifiers from the Proposed and Code 

Equations as well as those from the nonlinear model for outrigger wallumns and non-outrigger 

square columns. The resulting demands using both the Proposed and the Code equations follow a 
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similar pattern and peak values. Both the linear-elastic Proposed and Code demands overestimate 

the nonlinear moment demand at grade. Both sets of equations were unable to capture the nonlinear 

demands observed from levels 7 to 10 in all the column types. An explanation about this is found 

in Section 5.2. 

 

 

Figure 7.1 Linear-elastic Building Model 1 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for columns in the cantilever direction; (a) “compression” wallumn; (b) “tension” 

wallumn; (c) square columns. 

 

Figure 7.2 illustrates the peak linear-elastic bending moment demands to peak nonlinear bending 

moment demands ratio of outrigger wallumns and non-outrigger square columns. The Proposed 
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and Code Equations captured the maximum observed nonlinear moment demand in most of the 

component groups. With the exception of the square columns in the middle storeys, both sets of 

equations provided safe estimates of demands (i.e., they overestimate the bending moments 

predicted by the nonlinear model). The linear-elastic moment demands of the middle storeys in 

plots (a) and (c) illustrate a better agreement between the linear-elastic and nonlinear demands 

when the Proposed Equations are used. Equation (6.2) underestimates the demands in the middle 

storeys of plot (c) by 21%, whereas the Code Equation falls short by 27%.  

 

 

Figure 7.2 Building Model 1 peak linear-elastic-to- peak nonlinear moment demands ratio for 

columns in the cantilever direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) 

square columns. 
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7.2.1.2 EBW slabs 

Figure 7.3 summarizes the linear-elastic and nonlinear bending moment demands for the EBW 

components. In contrast with the results presented in Section 7.2.1.1 for the columns, which 

showcased fairly consistent behaviour between the Proposed and Code equations, the EBW slabs 

demands indicate considerably better alignment between the Proposed Equations and the 

nonlinear model. The results in Figure 7.3 showcase how the Code Equation considerably 

underestimates the flexural demands in the slabs.  
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Figure 7.3 Linear-elastic Building Model 1 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for EBW slabs in the cantilever direction; (a) EBW-to-wallumn “compression” side; (b) 

EBW-to-wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core 

“tension” side. 

 

Figure 7.4 provides the peak linear-elastic to peak nonlinear bending moment demand ratio for 

EBW components. As observed in the figure, the Proposed Equations for EBW slabs in the 

cantilevered direction are consistent with the observed nonlinear moment demands. By contrast, 

the 0.2 effective stiffness value of the Code Equation for all slabs provided a poor prediction. The 

Code Equation fell 21 to 63% short in all the storeys and connection types. 
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Figure 7.4 Building Model 1 peak linear-elastic-to-peak nonlinear moment demands ratio for 

EBW slabs in the cantilever direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 

 

7.2.2 Coupled Direction 

7.2.2.1 Columns 

The Code Equation to compute the flexural effective stiffness modifier for columns returned 

moment demands that excessively overestimate the nonlinear value at grade level. The Proposed 

Equations (6.6) and (6.8) yield flexural effective stiffness factors that result in more consistent 

moment demands at grade, as seen in Figure 7.5. The Proposed and Code Equations seem to 

capture the proper moment demand shape and values at levels above grade. 
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Figure 7.5 Linear-elastic Building Model 1 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for columns in the coupled direction; (a) “compression” wallumn; (b) “tension” 

wallumn; (c) square columns. 

 

Figure 7.6 shows that the Code Equation provided a more conservative, although unrealistic, 

estimate of demands for all column types at grade level. By contrast, the Proposed Equations for 

columns in the coupled direction were closer to the nonlinear demands than the Code Equation in 

the bottom storeys as seen in Figure 7.6(a) to 7.6(c). Both sets of equations slightly underestimated 

the demand at the top and middle storeys for the “compression” outrigger wallumn and non-

outrigger square columns. When the Proposed and Code Equations fell short, they underestimate 

the demands by 26% and 21% in average, respectively.  
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Figure 7.6 Building Model 1 peak linear-elastic-to-peak nonlinear moment demands ratio for 

columns in the coupled direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) square 

columns. 

 

7.2.2.2 EBW slabs 

For the EBW slabs in the coupled direction, except for the EBW-to-wallumn in the “tension” side, 

the EIeff factors computed through the Proposed Equation (6.9) resulted in accurate estimates of 

linear-elastic demands, as shown in Figure 7.7. The Code value of 0.2 underestimated the moment 

demands observed in the nonlinear model.  
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Figure 7.7 Linear-elastic Building Model 1 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for EBW slabs in the coupled direction; (a) EBW-to-wallumn “compression” side; (b) 

EBW-to-wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core 

“tension” side. 

 

Figure 7.8 demonstrates that the Proposed Equation for EBW slabs in the coupled direction 

yielded more conservative estimates of moment demands in most of the cases. The Proposed 

Equation did not capture the maximum nonlinear moment demands for EBW-to-wallumn 

components in the “tension” side. Nevertheless, it returned better estimates than the Code equation. 

In all cases, the Code stiffness modifier of 0.2 miscalculated the moment demands, 

underestimating their values by 43 to 60%.  
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Figure 7.8 Building Model 1 peak linear-elastic-to-peak nonlinear moment demands ratio for 

EBW slabs in the coupled direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 

 

7.3 Building Model 2 

This building model adopts the same SFRS as the building assessed in Section 7.2, but introduces 

some modifications to the GFRS. The non-outrigger square columns layout is the same as in the 

building presented in Section 7.2, i.e., it follows Table 3.5. Nevertheless, the cross-section 

properties of outrigger wallumns and EBW-to-wallumn slabs were modified. Compared to 

Building Model 1, the depth-to-width wallumn ratio was increased from 2.5 to 5.25 on average. 

The effective width of EBW-to-wallumn slabs was increased by 21% in average because the 

wallumn depth increased, refer back to Section 2.5. The layout of EBW-to-core slabs remained the 
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same. The revised geometric properties of Building Model 2 are summarized in Table 7.1 and 

Table 7.2, where the original dimensions of Building Model 1 are shown in parenthesis. A visual 

contrast between the two models is shown in Figure 7.9. It is clear that the Building Model 1 

outrigger wallumns are less elongated than those in Building Model 2. Moreover, the EBW-to-

wallumn is smaller in Building Model 1 compared to Building Model 2. The prediction power of 

the cantilevered direction Equations (6.1) to (6.4) are discussed in Section 7.3.1. The coupled 

direction Equations (6.6), (6.8), and (6.9) are evaluated in Section 7.3.2. The component groups 

and peak moment comparison follow the same rationale explained for Building Model 1 in Section 

7.2. The GFRS of Building Model 2 is able to accommodate the design gravity demands described 

in Table 3.3.  

 

 

Figure 7.9 GFRS differences between Building Model 1 and 2. 
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Table 7.1 Building Model 2 geometry and reinforcement layout summary for outrigger 

wallumns. 

Level Depth (D) 
[mm] 

Width (b) 
[mm] 

Longitudinal 
Bar Size ( lφ ) 

10M Tie Spacing 
(s) [mm] 

21 to 31 (760) 1140 (305) 250 (10) 12-25M 300 

11 to 21 (1015) 1520 (405) 305 (10) 12-30M 300 

6 to 11 (1140) 1700 (460) 305 (10) 12-35M 300 

1 to 6 (1140) 1700 (460) 305 (10) 12-35M 200 
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Table 7.2 Building Model 2 geometry and reinforcement layout summary for EBW slabs. 

Direction Level Effective width 
(beff) [mm] 

15M bars 
(hogging 
moment) 

10M bars 
(sagging 
moment) 

Connection 
type 

Cantilever 2 to 31 7000 40 14 
EBW-to-

core 
Coupled 2 to 31 7300 32 14 

Cantilever 

21 to 31 (4060) 4820 24 (8) 10 

EBW-to-
wallumn 

12 to 20 (4570) 5580 24 (10) 12 

2 to 11 (4820) 5940 24 (10) 12 

Coupled 

21 to 31 (3970) 4730 27 (8) 10 

12 to 20 (4480) 5490 27 (10) 12 

2 to 11 (4730) 5850 27 (10) 12 

 

7.3.1 Cantilever Direction  

7.3.1.1 Columns 

Consistent with the results of Building Model 1, Figure 7.10 shows that neither the Proposed nor 

the Code Equations were able to capture the peak demand between levels 7 and 11 in Building 

Model 2. A possible explanation about this observation is found in Section 5.2. At other levels, the 

Proposed and Code Equations predicted flexural effective stiffness modifiers that returned linear-

elastic bending moment demands consistent with the observed nonlinear bending moments.  
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Figure 7.10 Linear-elastic Building Model 2 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for columns in the cantilever direction; (a) “compression” wallumn; (b) “tension” 

wallumn; (c) square columns. 

 

Figure 7.11 demonstrates that the Proposed and Code Equations estimate flexural effective 

stiffness values that in most of the cases return safe linear-elastic moment demands. When 

comparing the linear-elastic vs nonlinear peak moment demand, the Proposed Equations slightly 

underestimate the demands in the middle and bottom storeys at the “compression” outrigger 

wallumns and at the non-outrigger square column. The Code Equation results fell somewhat short 

at the middle and bottom storeys of the “compression” outrigger wallumns and at the middle 

storeys of the non-outrigger square columns. The Proposed Equations deficiency was 16% less in 
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average when the peak linear-elastic-to-peak nonlinear moment demands ratios were below one. 

By contrast, the two occasions when the Code Equations returned peak linear-elastic-to-peak 

nonlinear moment demands ratios below one they were 5% and 29% short.  

 

 

Figure 7.11 Building Model 2 peak linear-elastic-to- peak nonlinear moment demands ratio for 

columns in the cantilever direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) 

square columns. 
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7.3.1.2 EBW Slabs 

In the Building Model 2, the linear-elastic EBW slabs in the cantilevered direction with flexural 

effective stiffness modifiers computed using the Proposed Equations yielded demands consistent 

with those of the nonlinear virtual twin, as shown in Figure 7.12. The Code Equations 

underestimated the moment demands in all EBW slabs.   

 

 

Figure 7.12 Linear-elastic Building Model 2 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for EBW slabs in the cantilever direction; (a) EBW-to-wallumn “compression” side; (b) 

EBW-to-wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core 

“tension” side. 
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Figure 7.13 demonstrates the good performance of the Proposed Equations by evaluating the peak 

linear-elastic-to-peak nonlinear moment demands. In all the cases, when using the flexural 

effective stiffness modifiers following the Proposed Equations the linear-elastic GFRS 

experiences similar demands compared to the nonlinear model. For the “compression” EBW-to-

wallumn slab in the cantilevered direction, the linear-elastic demands are overestimated by 73% 

in average compared their nonlinear twin. By contrast, the Code Equation underestimates the 

demand in all linear-elastic EBW slabs by 18 to 62%.  

 

 

Figure 7.13 Building Model 2 peak linear-elastic-to-peak nonlinear moment demands ratio for 

EBW slabs in the cantilever direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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7.3.2 Coupled Direction  

7.3.2.1 Columns 

The Proposed Equations for columns in the coupled direction underestimated the bending moment 

at grade level. On the contrary, the Code Equation overestimated it, as seen in Figure 7.14. Except 

for levels 5 to 7, the Proposed and Code Equations predicted flexural effective stiffness modifiers 

that yielded the moment demand patterns consistent with the nonlinear virtual twin.  

 

 

Figure 7.14 Linear-elastic Building Model 2 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for columns in the coupled direction; (a) “compression” wallumn; (b) “tension” 

wallumn; (c) square columns. 
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Figure 7.15 summarizes peak linear-elastic-to-peak nonlinear ratio for columns in the coupled 

direction. The Proposed Equations failed to predict flexural effective stiffness modifiers that meet 

the nonlinear bending moment demand in 8 out 9 component groups. On average, they fell short 

by 27%. The Code Equations estimated effective stiffness modifiers that resulted in more 

consistent linear-elastic demands compared to the nonlinear model. The Code Equations 

underestimated the nonlinear demand in 3 out 9 component groups. These component groups were 

deficient by 15% on average.   

 

 

Figure 7.15 Building Model 2 peak linear-elastic-to- peak nonlinear moment demands ratio for 

columns in the coupled direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) square 

columns. 
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7.3.2.2 EBW slabs 

Except for the upper “tension” EBW-to-wallumn slabs, the Proposed Equations returned 

appropriate flexural stiffness modifiers that yielded linear-elastic bending moments consistent with 

the nonlinear model, as seen in Figure 7.16. For all the EBW slabs in the “compression” side, the 

linear-elastic demands were overestimated, see plots (a) and (c) of Figure 7.16. The Code effective 

stiffness recommendation of 0.2 underestimated the demands in all the EBW slabs in the coupled 

direction.  
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Figure 7.16 Linear-elastic Building Model 2 demands with EIeff values computed through the 

proposed prediction equations (red) and code equations (blue) vs nonlinear bending moment 

demands for EBW slabs in the coupled direction; (a) EBW-to-wallumn “compression” side; (b) 

EBW-to-wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core 

“tension” side. 

 

Figure 7.17 shows that the Proposed Equations predicted flexural effective stiffness modifiers that 

returned linear-elastic moment demands that are consistent with the peak nonlinear bending 

moment. The Proposed Equations for EBW slabs in the coupled direction only underestimated the 

demands in the EBW-to-wallumn “tension” side by 16% on average, as seen in plot (b) of Figure 

7.17. By contrast, the Code Equation underestimated all the EBW slabs bending moment demands 

by 29 to 59%. 
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Figure 7.17 Building Model 2 peak linear-elastic-to-peak nonlinear moment demands ratio for 

EBW slabs in the coupled direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 

 

7.4 GFRS Code Compliance Design  

Elements of the GFRS, i.e., columns, wallumns and EBW slabs, need to satisfy the limits 

introduced in CSA A23.3-19 clauses § 21.11.3.3.3 and 21.11.3.3.4. These limits are given as the 

ratio of the induced bending moment, Mf, from the General of Simplified analysis (i.e., the drift 

envelope introduced in Section 2.3.1) over the factored moment resistance, Mr. The GFRS columns 

employed in Building Model 1 and 2 were designed exclusively as other columns tied as 

compression members, refer to the last row of Table 7.3. The EBW components were designed to 
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withstand gravity load demands only with no additional requirements, (i.e., first row of Table 7.4). 

Figures 7.18 through 7.25 show the ratio of the maximum absolute induced bending moment 

demand to factored capacity, |Mf|/Mr, for the component group of each gravity-frame structural 

element.  

 

The maximum induced bending moment limits for gravity-columns were computed following the 

CSA A23.3-19 clause § 21.11.3.3.3 as shown in Table 7.3. This section intends to define the 

maximum seismic bending moment demand that gravity-columns can experience as a function of 

their axial load ratio and ductility. For intermediate values of axial compression, interpolation 

should be used. The maximum induced bending moment limits for the EBW components 

according to their seismic bending moment demands and ductility detailing are shown in Table 

7.4. 

 

With the information presented in these figures, it is possible to determine if the gravity-frame 

members require to comply with additional detailing requirements.  
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Table 7.3 Maximum induced bending moment for columns according to CSA A23.3-19 § 

21.11.3.3.3 

Type of Column Axial Compression 
Ps ≤ 0.2Agf’c Ps > 0.4Agf’c 

Ductile columns satisfying clauses § 21.3.2.2, § 
21.3.2.5, § 21.3.2.6, and § 21.3.2.7 5Mr 3Mr 

Moderately ductile columns satisfying § 21.4.2.2, 
§ 21.4.4, except § 21.4.4.2, and § § 21.4.5 3Mr 2Mr 

Tied columns satisfying § 7.6.5 and the 
dimensional limitations of § 21.4.2.2 2Mr 1.5Mr 

Other columns tied as compression members 
satisfying clause § 7.6.5 along their full length 1.5Mr 1Mr 

 

Table 7.4 Induced bending moment limits for EBW slabs according to CSA A23.3-19 § 

21.11.3.3.4 

Induced Bending Moment Beam Detailing Requirements 

< 1Mr No additional requirements 

≥ 1Mr; but < 2Mr Limited ductility, § 21.11.3.4.2 

≥ 2Mr; but < 3Mr Moderately ductile, § 21.11.3.4.3 

≥ 3Mr; but < 5Mr Ductile, § 21.11.3.4.4 
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7.4.1 Building Model 1 

7.4.1.1 Cantilever Direction 

7.4.1.1.1 Columns 

In Figure 7.18 plots (a) and (b), the absolute induced bending moment demand to factored capacity 

ratios for outrigger wallumns are 1.66, 1.38, and 2.68 for the top, middle, and bottom component 

groups, respectively. According to their axial load ratio and clause § 21.11.3.3.3, the maximum 

induced bending moment that these structural elements can experience as a function of their 

factored resistance is 1.5Mr, 1.36Mr, and 1.28Mr for the top, middle, and bottom component 

groups, respectively. Because of this, it is recommended that the top and middle components 

should be redesigned as tied columns (i.e., third row of Table 7.3). The bottom components should 

be redesigned as moderately ductile columns, refer back to the second row of Table 7.3. 
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Figure 7.18 Building Model 1 maximum induced bending moment to factored capacity ratio for 

columns in the cantilever direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) 

square columns. 

 

The absolute induced bending moment demand to factored capacity ratio for non-outrigger square 

columns for the top, bottom, and bottom component groups are 1.06, 0.67, and 1.25, respectively; 

as seen Figure 7.18 plot (c). According to their axial load ratio and clause § 21.11.3.3.3, the 

maximum allowed induced bending moment limits are 1.5Mr, 1.36Mr, and 1.24Mr for top, middle, 

and bottom storeys, respectively. Only the bottom component group exceeds its maximum allowed 

limit. Thus, this component group should be redesigned as a tied column following the clauses 

shown in the third row of Table 7.3.  
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7.4.1.1.2 EBW Slabs 

Figure 7.19 plots (a) and (b) show the maximum |Mf|/Mr ratios for EBW-to-wallumns slabs equal 

to 2.44, 2.33, and 2.06 for top, middle, and bottom component groups, respectively. The induced 

bending moment demand is larger than 2Mr and smaller than 3Mr in all group storeys. As a result, 

the EBW-to-wallumns slabs in the cantilever direction should be detailed as moderately ductile 

gravity-beams, refer to the third row of Table 7.4. 

 

 

Figure 7.19 Building Model 1 maximum induced bending moment to factored capacity ratio for 

EBW slabs in the cantilever direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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Plots (c) and (d) of Figure 7.19 show that the EBW-to-core slabs in the cantilever ratio present an 

induced bending moment equal to 1.7Mr. Since 1.0 < |Mf|/Mr < 2.0 These EBW slabs should be 

designed as limited ductility beams, refer back to the second row of Table 7.4. 

 

7.4.1.2 Coupled Direction 

7.4.1.2.1 Columns 

Building Model 1 outrigger wallumns in the coupled direction experience induced bending 

moments equal to 0.73Mr, 0.52Mr, and 1.88Mr for the top, middle, and bottom component groups, 

respectively; as seen in plots (a) and (b) of Figure 7.20. According to their axial load ratio and 

clause § 21.11.3.3.3, the maximum allowed induced bending moment limits are 1.5Mr, 1.5Mr, and 

1.2Mr for top, middle, and bottom storeys, respectively. The seismic demands in the bottom 

outrigger wallumns are larger than the upper-bound limit bending resistance, therefore, they should 

be redesigned as tied columns, refer back to the third row of Table 7.3. 

 

Figure 7.20 plot (c) shows the induced bending moment to bending resistance for non-outrigger 

square columns. These values are 0.54Mr, 0.57Mr, and 1.30Mr for top, middle, and bottom storeys, 

respectively. According to their axial load ratio and clause § 21.11.3.3.3, their maximum allowed 

induced bending moment limits are 1.5Mr, 1.5Mr, and 1.25Mr for top, middle, and bottom storeys, 

respectively. The seismic demands in the bottom outrigger wallumns are larger than the upper-

bound limit bending resistance, therefore, their redesign as tied columns is required, refer back to 

the third row of Table 7.3. 
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Figure 7.20 Building Model 1 maximum induced bending moment to factored capacity ratio for 

columns in the coupled direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) square 

columns. 

7.4.1.2.2 EBW Slabs 

Plots (a) and (b) demonstrate that the |Mf|/Mr ratios for EBW-to-wallumns slabs are equal to 1.14, 

1.64, and 1.94 for top, middle, and bottom component groups, respectively. The induced bending 

moment demand is larger than 1Mr and smaller than 2Mr. Thus, the EBW-to-wallumns slabs in the 

coupled direction should be detailed as limited ductile gravity-beams, refer back to the second row 

of Table 7.4. 
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Figure 7.21 Building Model 1 maximum induced bending moment to factored capacity ratio for 

EBW slabs in the coupled direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 

 

On the contrary, the EBW-to-core slabs for Building Model 1 in the coupled direction present 

induced bending moments 2.56 times larger than their factored resistance. Thus, these GFRS 

elements need to be detailed as moderately ductile gravity-beams, refer back to the third row of 

Table 7.4. 
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7.4.2 Building Model 2 

7.4.2.1 Cantilever Direction 

7.4.2.1.1 Columns 

In the Building Model 2, the outrigger wallumns in the cantilever direction present an induced 

bending moment demand equal to 2.42Mr, 1.27Mr, and 1.70Mr for top, middle, and bottom storeys, 

respectively; as seen in Figure 7.22 plots (a) and (b). According to their axial load ratio and clause 

§ 21.11.3.3.3, the maximum allowed induced bending moment limits are 1.5Mr, 1.45Mr, and 1.2Mr 

for top, middle, and bottom storeys, respectively. Except for the middle component group, all 

outrigger wallumns in the cantilever direction need to be redesigned. The top components should 

be detailed as moderately ductile columns, refer back to the second row of Table 7.3. The bottom 

outrigger wallumn components should be redesigned as tied columns, refer back to the third row 

of Table 7.3. 

 

Figure 7.22 plot (c) shows the induced bending moment to bending resistance for non-outrigger 

square columns. These values are 1.08Mr, 0.67Mr, and 1.06Mr for top, middle, and bottom storeys, 

respectively. According to their axial load ratio and clause § 21.11.3.3.3, the maximum allowed 

induced bending moment limits are 1.5Mr, 1.38Mr, and 1.25Mr for top, middle, and bottom storeys, 

respectively. The seismic demands are less than the upper-bound limit bending resistance, 

therefore, no redesign is required.  
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Figure 7.22 Building Model 2 maximum induced bending moment to factored capacity ratio for 

columns in the cantilever direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) 

square columns. 

7.4.2.1.2 EBW Slabs 

In Figure 7.23 plots (a) and (b), the EBW-to-wallumn slabs induced bending moment demands are 

equal to 3.4Mr, 3.26Mr, and 2.8Mr for top, middle, and bottom storeys, respectively. Thus, the top 

and middle EBW-to-wallumn slabs in the cantilever direction will need to be detailed as ductile 

EBW gravity slabs, refer back to the fourth row of Table 7.4. The bottom EBW-to-wallumn slabs 

should be redesigned as moderately ductile gravity, refer back to the third row of Table 7.4. 
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The EBW-to-core slabs induced bending moment ratio is equal to 1.77Mr for all the levels, as seen 

in Figure 7.24 plots (c) and (d). With this amount of inelastic flexural deformation, the EBW-to-

core slabs should be detailed as limited ductility, refer back to the second row of Table 7.4. 

 

 

Figure 7.23 Building Model 2 maximum induced bending moment to factored capacity ratio for 

EBW slabs in the cantilever direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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7.4.2.2 Coupled Direction 

7.4.2.2.1 Columns 

In Figure 7.24 plots (a) and (b) the outrigger wallumns in the coupled direction experience an 

induced bending moment demand equal to 0.73Mr, 0.54Mr, and 1.26Mr for top, middle, and bottom 

storeys, respectively. According to their axial load ratio and clause § 21.11.3.3.3, the maximum 

allowed induced bending moment limits are 1.5Mr, 1.5Mr, and 1.13Mr for top, middle, and bottom 

storeys, respectively. Thus, only the bottom outrigger wallumns in the coupled direction need to 

be redesigned as tied columns, refer back to the third row of Table 7.3. 

 

 

Figure 7.24 Building Model 2 maximum induced bending moment to factored capacity ratio for 

columns in the coupled direction; (a) “compression” wallumn; (b) “tension” wallumn; (c) square 

columns 
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Figure 7.24 plot (c) shows the induced bending moment to bending resistance for square columns. 

These values are 0.54Mr, 0.57Mr, and 1.20Mr for top, middle, and bottom storeys, respectively. 

According to their axial load ratio and clause § 21.11.3.3.3, the maximum allowed induced bending 

moment limits are 1.5Mr, 1.5Mr, and 1.25Mr for top, middle, and bottom storeys, respectively. The 

seismic demands are less than the upper-bound limit bending resistance, therefore, no redesign is 

required.  

 

7.4.2.2.2 EBW Slabs 

In Figure 7.25 plots (a) and (b) the EBW-to-wallumn slabs induced bending moment demands are 

equal to 1.49Mr, 2.15Mr, and 2.56Mr for top, middle, and bottom storeys, respectively. Thus, the 

top EBW-to-wallumn slabs in the coupled direction will need to be detailed as limited ductility 

EBW gravity slabs, refer back to the second row of Table 7.4. The middle and bottom EBW-to-

wallumn slabs should be redesigned as moderately ductile gravity slabs, refer back to the third row 

of Table 7.4. 

 

The EBW-to-core slabs induced bending moment ratio is equal to 2.64Mr for all the levels, see 

Figure 7.25 plots (c) and (d). With this amount of inelastic flexural deformation, the EBW-to-core 

slabs should be detailed as moderately ductile elements, refer back to the third row of Table 7.4. 

. 
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Figure 7.25 Building Model 2 maximum induced bending moment to factored capacity ratio for 

EBW slabs in the coupled direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-

wallumn “tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side 

 

With the exception of the bottom square columns in Building Model 1, it was found that the non-

outrigger square columns do not need to be redesigned. In Building Model 1 and 2 the bottom 

outrigger wallumns in the coupled direction needed to be redesigned as tied columns. For both 

Building Model 1 and 2, the outrigger wallumns in the cantilevered direction had to be redesigned 

in at least two of the group components. Additionally, at least one group component needs to be 

detailed as a moderately ductile column. Last, all EBW components need to have any sort of 

additional ductile detailing. As described earlier in Section 2.2, it is not uncommon in the US 

practice to detail all the GFRS components as ductile elements. The Simplified Analysis of CSA 
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A23.3-19 clause 21.11.2.2 shows that ductile detailing is required at some gravity-frame locations, 

but not everywhere. Thus, the CSA A23.3-19 approach might result in cost savings if the structural 

designer is strategic about the amount of seismic detailing that goes into each GFRS component.  
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Chapter 8: Summary of Contributions, Conclusions, Limitations, and 

Recommendations for Future Work 

This thesis aimed to develop flexural effective stiffness modifiers for the GFRS components of 

RCSW buildings to estimate their seismic demands following the General or Simplified Analysis 

procedures of CSA A23.3-19. This analysis was carried out after completing the gravity design of 

the GFRS to assess if the columns, wallumns and slabs that do not belong to the SFRS system 

have adequate strength and ductility to accommodate lateral earthquake demands. Generalized 

equations were proposed to estimate the flexural effective stiffness modifiers of these elements for 

use in the General or Simplified Analysis procedure described in clauses § 21.11.2.1 and § 

21.11.2.2 of CSA.A23.3-19, respectively. 

 

8.1 Summary of Contributions 

This is the first time a study aimed at to provide estimates on the flexural effective stiffness factors 

for elements of the GFRS in RCSW buildings for implementation in the General or Simplified 

Analysis procedure described in clauses § 21.11.2.1 and § 21.11.2.2 of CSA.A23.3-19, 

respectively. Other methods (Beauchamp et al., 2017; Choinière et al., 2019) have been proposed 

to estimate seismic demands in the GFRS via alternate means. However, they do not support the 

implementation of the CSA A23.3-19 General or Simplified Analysis clause, i.e., no values are 

provided to account for concrete cracking in the GFRS. This study spearheads the quantification 

of flexural effective stiffness modifiers in the gravity-frame system, making it possible to satisfy 

all the requirements of the General and Simplified Analysis requirements to check if the GFRS 
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can accommodate lateral demands. This allows structural engineers to implement this check in 

their designs following a linear-elastic analysis of the entire structure (SFRS and GFRS).  

 

In general, the Proposed prediction equations deliver appropriate effective flexural stiffness 

modifiers reducing the uncertainty around realistic stiffness values of GFRS members. The 

Proposed Equations provide a new tool to approximate the level of cracking in RC gravity frames, 

which makes a complete code-prescribed building analysis possible. With this, the Structural 

Engineer of Record will be able to document the code compliance of the full building system, as 

opposed to carry out isolated member checks.   

 

8.2 Conclusions 

Regardless of the GFRS cross-section, the Proposed Equations for gravity-frame columns and 

EBW slabs in the cantilever direction provided flexural effective stiffness factors for use in linear-

elastic analysis that returned consistent bending moment demands compared to their nonlinear 

virtual twin. The Proposed Equation for EBW slabs in the coupled direction also provided safe 

estimates of the seismic moment demands. By contrast, the Code Equation is as good or better 

than the Proposed Equation for columns in the coupled direction by providing more realistic 

estimates of linear-elastic moment demands.  

 

The Code Equation for columns in the cantilevered direction yielded similar demands to the 

Proposed Equations. Both sets of equations were in good agreement with the nonlinear values and 

provided accurate estimates of moment demands with flexural effective stiffness modifiers in the 

[50-69%] and [10-100%] range, respectively.  
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The Proposed Equations for the EBW slabs in the cantilevered direction returned flexural effective 

stiffness modifiers that result in consistent linear-elastic demands compared to their nonlinear 

counterpart with stiffness modifiers in the 22 to 90% range. On average, the peak linear-elastic to 

nonlinear moment demand ratio was about 1.3. The Code Equation, which results in a flexural 

effective stiffness value of 20%, returned moment demands 21 to 62% smaller in all the gravity-

frame EBW slabs. Therefore, the current simplifying assumption, which is common in design 

practice, that assigns an out-plane flexural stiffness value between 10%-25% could lead to non-

conservative estimates of seismic demands.  

 

For the columns in the coupled direction, the Code Equation, which assigns a flexural effective 

stiffness modifier of 50 to 69% provided safer bending moment estimates for all column types. At 

the bottom storeys, the Proposed Equations predicted flexural effective stiffness modifiers that 

resulted in linear-elastic moment demands values closer to the nonlinear demands than the Code 

Equation. However, the Proposed Equations failed to meet the maximum observed nonlinear 

demand. Both sets of equations slightly underestimated the demand at the top and middle storeys 

for the “compression” outrigger wallumn and non-outrigger square columns. When the Proposed 

and Code Equations fell short, on average they underestimated the demands by 25% and 19%, 

respectively. 

 

As well as with the EBW slabs in the cantilevered direction, the Proposed Equations for slabs in 

the coupled direction provided appropriate flexural effective stiffness estimates that yielded 

accurate linear-elastic demands with stiffness modifiers in the 28 to 62% range. By contrast, the 
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peak linear-elastic to nonlinear moment demand ratios associated with the Code Equation fell short 

by 29 to 60%. 

 

The analysis results suggested that the EBW slabs cracked less than is typically assumed in design 

practice. This was caused by the axial elongation effect, which induced compressive forces in these 

indeterminate elements once they cracked, resulting in less out-of-plane flexibility.  

 

The Simplified Analysis drift profiles exert a double or single curvature in the column elements 

depending on their position along the building’s height. The cantilevered drift profile develops the 

largest column moment demands around 1/3 of the building’s height. The coupled drift profile 

causes the largest moment column demands at grade and in the lower storeys.   

 

8.3 Limitations and Recommendations for Future Work 

The flexural effective stiffness modifiers recommendations are based in a single SFRS and GFRS 

design. As a result, the Proposed Equations may not return appropriate flexural effective stiffness 

modifiers for other building configurations. The intent of developing the flexural effective stiffness 

prediction equations, is to expand the applicability of this study to other buildings in future studies. 

Even though the Proposed Equations provided appropriate flexural stiffness when the GFRS was 

modified in Building Model 2, further refinements of these equations can de made. Different sizes 

of columns and slabs should be evaluated to increase the range of validity of the regression models. 

The effect of distance from the outrigger wallumns to the core still needs to be assessed, and 

multiple building configurations with different RCSW cross-section dimensions need to be 

explored.  
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The Proposed Equations were obtained without considering the foundation movement effect in 

the drift profile. Depending on the foundation type, soil, and structural system, this effect could 

significantly increase the drift applied to the gravity frames. To improve the estimation of the 

flexural stiffness modifiers, soil-structure interaction effects should be considered.  

 

Transfer slabs are commonly used in RCSW buildings in Western Canada to provide commercial 

spaces at the ground level. The Proposed Equations are not meant for this type of building 

configuration. A different analysis, which considers this structural feature, should be developed to 

obtain the stiffness factors for transfer slabs.  

 

In this study only the flexural effective stiffness modifier was assessed, i.e., it only provides 

guidance on the moment demands at the GFRS components. To obtain the seismic shear demands 

in the gravity frame, accurate shear stiffness factors are required. If the GFRS fails, a ductile failure 

mode is desired. For this reason, the estimation of realistic moment demands is critical to provide 

the right seismic detailing for the GFRS component according to CSA A23.3-19 clauses § 

21.11.3.3.3 and 21.11.3.3.4. Because brittle shear failures should be avoided, the shear stiffness 

assumed in the analysis of gravity frame members was 100%. 

 

The axial load ratio of EBW observed in the analysis (0.1Agf’c to 0.2Agf’c), which was caused by 

the axial elongation of these components is consistent with other experimental (Zerbe & Durrani, 

1989) and analytical (Kim et al., 2004) studies. However, further studies need to be carried out to 

assess the impact of the axial load observed in the EBWs and in their flexural stiffness as they are 

higher than what is assumed in design practice.  
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Appendices 

 

Appendix A  Drift Profile Effect on the Curvature of GFRS Columns 

From Section 2.6.1, it was inferred that the Simplified Analysis displacement profiles for the 

cantilever and coupled walls is one of the reasons to observe either single or double curvature in 

the GFRS columns. To check this, the cantilever direction of the nonlinear building was first 

displaced following the cantilever drift profile seen in A.1. Later, the coupled direction of the same 

building was subjected to the cantilever drift profile. The normalized moment demand throughout 

the building’s height was plotted.  

 

Figure A.1 Moment pattern caused by the cantilever drift profile applied to the cantilever and 

coupled directions 
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Figure A.1 demonstrates that the curvature imposed in the columns GFRS is independent on the 

building direction. The drift profile causes single curvature in the first 2 storeys, between the first 

and third level. Above this, the storeys experience either single or double curvature. For example, 

the sixth storey experiences single curvature whereas the thirteenth storey experiences double 

curvature.  

 

The Simplified Analysis coupled drift profile was also applied to both building’s directions to 

observe if it influences the columns’ curvature, see Figure A.2. 

 

 

Figure A.2 Moment pattern caused by the coupled drift profile applied to the cantilever and 

coupled directions 
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As well as with the Simplified Analysis cantilever profile, Figure A.2 proves that the curvature of 

the GFRS columns is dependent on the coupled drift profile regardless the building’s direction.  

The coupled drift profile enforces a single curvature in the first two storeys and double curvature 

at the third. Above this storey, the storey could experience either single or double curvature. It is 

also fundamental to understand that the single or double curvature observed in the vertical 

elements depend not only on the drift profile, but also on other factors as discussed in Section 2.6.  

 

Last, it is important to note that each drift profile enforces a specific moment shape pattern 

throughout the building’s height regardless of the column type, axial load, and position within the 

floorplan. The cantilever drift profile exerts the largest moment demands around a quarter of the 

building’s height, between levels 6 and 12. The coupled drift profile results in having the largest 

moment demands at grade and in the first third of the building’s height.  
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Appendix B  Nonlinear Rotation in GFRS Elements 

In this appendix, the maximum observed rotation of GFRS elements during the pushover analysis 

is reported for Building Model 1 and 2. The rotation was computed as (d/2)·k, where d/2 is the 

assumed plastic hinge length and k is the curvature.  

 

B.1 Building Model 1 GFRS Nonlinear Rotations 

Cantilever Direction 

 

Figure B.1 Building Model 1 maximum nonlinear rotations for columns in the cantilever 

direction; (a) compression outrigger wallumn; (b) tension outrigger wallumn; (c) non-outrigger 

square columns 
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Figure B.2 Building Model 1 maximum nonlinear rotations for EBW slabs in the cantilever 

direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) 

EBW-to-core “compression” side; (d) EBW-to-core “tension” side 
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Coupled Direction 

 

Figure B.3 Building Model 1 maximum nonlinear rotations for columns in the coupled direction; 

(a) compression outrigger wallumn; (b) tension outrigger wallumn; (c) non-outrigger square 

columns 
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Figure B.4 Building Model 1 maximum nonlinear rotations for EBW slabs in the coupled 

direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) 

EBW-to-core “compression” side; (d) EBW-to-core “tension” side 
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B.2 Building Model 2 GFRS Nonlinear Rotations 

Cantilever Direction 

 

Figure B.5 Building Model 2 maximum nonlinear rotations for columns in the cantilever 

direction; (a) compression outrigger wallumn; (b) tension outrigger wallumn; (c) non-outrigger 

square columns 
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Figure B.6 Building Model 2 maximum nonlinear rotations for EBW slabs in the cantilever 

direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) 

EBW-to-core “compression” side; (d) EBW-to-core “tension” side 
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Coupled Direction 

 

Figure B.7 Building Model 2 maximum nonlinear rotations for columns in the coupled direction; 

(a) compression outrigger wallumn; (b) tension outrigger wallumn; (c) non-outrigger square 

columns 
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Figure B.8 Building Model 2 maximum nonlinear rotations for EBW slabs in the coupled 

direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn “tension” side; (c) 

EBW-to-core “compression” side; (d) EBW-to-core “tension” side 
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Appendix C  Flexural Stiffness Modifiers Computed for Building Model 1 and 2 

In this appendix, the flexural stiffness modifiers of the GFRS components computed using the 

Proposed Equations are presented for Building Model 1 and 2. 

 

Building Model 1 

 

 

Figure C.1 Building Model 1 flexural stiffness modifiers for columns in the cantilevered 

direction, plots (a) to (c) and coupled direction, plots (d) to (f). 
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Figure C.2 Building Model 1 flexural stiffness modifiers for EBW slabs in the cantilevered 

direction and coupled direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn 

“tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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Building Model 2 

 

 

Figure C.3 Building Model 2 flexural stiffness modifiers for columns in the cantilevered 

direction, plots (a) to (c) and coupled direction, plots (d) to (f). 
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Figure C.4 Building Model 2 flexural stiffness modifiers for EBW slabs in the cantilevered 

direction and coupled direction; (a) EBW-to-wallumn “compression” side; (b) EBW-to-wallumn 

“tension” side; (c) EBW-to-core “compression” side; (d) EBW-to-core “tension” side. 
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