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Abstract 

Structural design typically involves nonconvex criteria that need effective optimization 

algorithms which can find the global optimum or Pareto optima. Constraints create complex 

hyperspaces that are difficult to navigate, and traditional constraint handling techniques (CHTs) 

might not be capable of steering the search. Repair techniques are one type of CHTs that can 

be very effective but have a few limitations that restrict their use. We here present a new repair-

based CHT that addresses these issues by being: (i) adaptive to the share of infeasible solutions 

in a population and (ii) free of problem-specific heuristic for repair that a user typically needs 

to provide. Only the best performing infeasible solutions are repaired, to balance the normal 

operating procedure of the optimization algorithm with CHT, i.e., minimizing objectives and 

satisfying constraints. A procedure is proposed to apply artificial neural network (ANN) to 

automate the definition of problem-specific knowledge by identifying and ranking the most 

significant variables that influence each constraint. The proposed CHT approach is 

implemented in single-objective swarm algorithm PSO and multi-objective evolutionary 

algorithms NSGA-II and MOEA/D. The following test cases are considered: mathematical 

benchmark problem, truss optimization and structural optimization of a chemical tanker’s main 

frame. Trained ANN is used as surrogate model in the latter case. In comparison to the original 

algorithms, a few state-of-the-art algorithms and CHTs, all modified algorithms show 

significantly better performance. 
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Lay Summary 

Engineering problems and structures can be optimized using optimization algorithms. Failure 

criteria and other limitations of the problem often prevent the algorithms from finding the best 

solution. Constraint handling techniques e.g., repair techniques, can help optimization 

algorithms deal with complex design constraints. However, repair methods cannot be widely 

applied due to a few limitations. This thesis develops a new repair-based constraint handling 

technique that addresses these issues by using artificial neural networks to automate the repair 

process. The proposed approach has been embedded into three prominent optimization 

algorithms. Test problems involve one mathematical benchmark problem and two engineering 

problems. The results demonstrate the improved performance of the modified algorithms in 

comparison to the original algorithms, state-of-the-art algorithms, and a few other prominent 

constraint handling techniques. 
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1 Introduction 

1.1 Optimization formulations and definitions 

For natural problems with more than one potential solution, the procedure of selecting the best 

solution under certain criteria/criterion is called optimization. Optimization problems of sorts 

arise in all quantitative disciplines from computer science and engineering to operations 

research and economics. Mathematically, an optimization problem could be formulated as 

maximization or minimization of one or more functions, which are called objective functions. 

Typically, the input variables could be chosen from an allowed set and be required to satisfy 

one or more restricting functions called constraints. An optimization algorithm aims to reach 

the optimal design while satisfying all constraints. A constrained optimization problem can be 

mathematically formulated as: 

Minimize 𝒇(𝒙) = (𝑓1(𝒙),⋯ , 𝑓𝑚(𝒙))
𝑇
  

Subject to 

𝒈(𝒙) = (𝑔1(𝒙),⋯ , 𝑔𝑙(𝒙))
𝑇
≥ 0 

𝒉(𝒙) = (ℎ1(𝒙),⋯ , ℎ𝑝(𝒙))
𝑇

= 0 

(1-1) 

while  𝒙 = {(𝑥𝑖, ⋯ , 𝑥𝑛)
𝑇|𝑥𝑚𝑖𝑛,𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥,𝑖}  

where 𝒇(𝒙) is the set of m objective functions, 𝒈(𝒙) is the set of inequality constraint functions, 

𝒉(𝒙) is the set of equality constraint functions, and 𝒙 is the set vector of solutions or designs. 

The aim is to optimize vector x, while minimizing objective functions 𝒇(𝒙) and satisfying 

constraints 𝒈(𝒙)  and 𝒉(𝒙) . As equality constraints are not that frequent in engineering 

optimization problems, they are not considered later in this thesis. Maximization of an 

objective function can be treated the same way by multiplying the value with -1. If we give 
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weights to different objectives, we can transform the problem in Eq. (1-1) to a single objective 

problem. Often it is difficult to define weights in optimization beforehand, thus we need multi-

objective approaches, which are introduced below. Furthermore, optimization problems can 

contain local optima, which is the optimal solution within a neighboring set of candidate 

solutions. This contrasts with global optimum, which is the optimal solution among all possible 

solutions, not just those in a particular neighborhood of design values. One purpose in 

optimization is to avoid being trapped into the local optima and reach the global optima. 

Constraint functions can be linear or nonlinear, depending on the optimization problem. 

Typically, each variable 𝑥𝑖 can be bounded between a lower limit 𝑥𝑚𝑖𝑛,𝑖 and upper limit 𝑥𝑚𝑎𝑥,𝑖. 

A vector of variables 𝒙 is called a solution or a design. If all constraints are satisfied, we call 

this solution a feasible solution. Otherwise, if one or more constraints are violated, we call it 

an infeasible solution. Feasible solutions are members of the feasible set . 

 𝛀 = {𝒙 ∈ 𝑿|𝒈(𝒙) ≥ 0} (1-2) 

where X is the set of all possible solutions between lower 𝑥𝑚𝑖𝑛  and upper 𝑥𝑚𝑎𝑥  variable 

bounds. The solution of the optimization problem in the feasible space (Eq.(1-2)) is a Pareto 

optimal alternative 𝒙  which is non-dominated by other feasible alternatives in the objective 

space. For two solutions 𝒙1 and 𝒙2, if 𝒙1 is to dominate 𝒙2, the following requirements must 

be met [1]: 

1. 𝒙1 is no worse than 𝒙2 in all the objectives; 

2. 𝒙𝟏 is strictly better than 𝒙2 in at least one objective. 

In other words, there is no feasible solution better than �̂�  for all objectives. Such non-

dominated solutions �̂� belong to a set of feasible Pareto optima �̂�, also called the Pareto Front 

(PF): 



 

3 

 

 �̂� = {�̂� ∈ 𝜴|∄𝒙𝑘, 𝑓𝑖(𝒙
𝑘) < 𝑓𝑖(𝒙), ∀𝑖 ∈ [1,𝑚], ∀𝒙

𝑘 ∈ 𝜴, ∀𝒙 ∈ �̂�\�̂�}, (1-3) 

Thus, the Pareto Front can be considered as a set of nondominated solutions among all 

permutation solutions [1], and there isn’t one solution that is equally good or better than 

solutions in PF with respect to all objectives. In single-objective optimization problems, there’s 

no PF since only one objective is being optimized. However, in most multi-objective 

optimization problems, objective functions are in conflict, which means that there is no single 

solution with the best objective value for all objective functions. The best trade-offs between 

each objective form the PF. One aim of the multi-objective optimization algorithms is to find 

the PF accurately and effectively. 

1.2 Introduction to optimization algorithms 

Optimization algorithms are designed for solving optimization problems. Based on 

mathematical and physical knowledge, or inspired by natural phenomena, various types of 

optimization algorithms have been proposed in recent decades. In the following subsections, 

different types of optimization algorithms, together with the constraint handling techniques 

(CHTs), and their development for dealing with the engineering problems are described. 

1.2.1 General overview 

Based on the No Free Lunch Theorem [2], no optimization algorithm is suitable for all types 

of optimization problems. To determine which algorithm is the best for solving a given 

problem, it is necessary to understand the underlying principles and purpose of different 

optimization methods. For multivariate problems, optimization algorithms can be categorized 

into direct search methods, gradient-based methods, and nature- and physics-inspired methods. 

Direct search methods 
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As one of the most popular optimization methods, direct search methods could be easily 

implemented into non-linear programs [3]. The direct search method starts from a random 

location and iteratively improves a solution. Direct search methods can be the method of first 

recourse, even among well-informed users [4]. 

Pattern Search Method (PSM) is one of the earliest and still most common direct search 

methods. This method is characterized by a series of exploratory moves and patterns that 

consider the behavior of the objective function as a pattern of points. PSM tends to improve 

the objective value through pattern moves, which are considered successful if an improvement 

in the objective value is observed [4]. The exploratory move can be written as: 

 𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑑𝑘
𝑖  (1-4) 

where 𝑘 indicates the iteration, 𝑖 is the 𝑖𝑡ℎ variable and 𝑑𝑘
𝑖  is the step size in 𝑖𝑡ℎ coordinate. 

The variable value is kept if a better objective value is observed. The procedure is performed 

in all variable coordinates and the final vector of variables is called the base point. The vector 

difference between the current and previous base point indicates the direction of the pattern 

move [4]: 

 �́� = 𝒙𝑘 + ∆𝒌 (1-5) 

 ∆𝒌 = 𝒙𝑘 − 𝒙𝑘−1 (1-6) 

where �́� is a new vector of variables created based on the previous pattern direction ∆𝒌. The 

updating of variables will continue if a better objective value is found. Otherwise, the algorithm 

restarts the exploratory moves. The procedure will stop if no further improvement is achieved 

even with small step sizes [4]. The direct search method is suitable for simpler problems, but 

hard to converge for complex problems with a huge design space or large discontinuities. 
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Moreover, this type of method is computationally costly due to the low efficiency of pattern 

moves. 

Gradient-based methods 

Different from direct search methods, gradient-based methods utilize the gradient information 

of the objective functions. As one of the most well-known mathematical optimization 

approaches, the Lagrange multiplier is a method for finding the optimum under equality 

constraints [5]. One advantage of Lagrange multipliers is that no additional parameters need 

to be adjusted during optimization, which leads to a broad application of the method. 

Instead of directly finding the optimum, such as with the Lagrange multiplier, many algorithms 

tend to iteratively find an optimum, which can be either local or global. Gradient descent, also 

called the steepest descent, utilizes the gradient of the objective function at a point to define 

the direction of the search, and does so repeatedly until convergence [6]: 

 𝒙𝑘+1 = 𝒙𝑘 + 𝜇𝑘∇𝑓(𝒙𝑘) (1-7) 

where 𝒙𝑘+1 is the vector of variables in iteration 𝑘 + 1, which is improved from 𝒙𝑘 by adding 

a term 𝜇𝑘∇𝑓(𝒙𝑘). 𝜇𝑘 is the step coefficient for iteration 𝑘 and ∇𝑓(𝒙𝑘) is the gradient of the 

objective function at the current point: 

 ∇𝑓(𝒙) = [
𝜕𝑓

𝜕𝑥1
(𝒙) 

𝜕𝑓

𝜕𝑥2
(𝒙) ⋯ 

𝜕𝑓

𝜕𝑥𝑛
(𝒙)] (1-8) 

Other famous methods based on derivatives are the Newton’s method [7], Sequential quadratic 

programming [8], etc. The idea is similar as with Gradient descent: start from an initial guess 

𝒙0, and converge towards the optima point 𝒙∗ using the information of Hessian matrix H(x): 
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 H(𝒙) = ∇2𝑓(𝒙) =

[
 
 
 
 
 
𝜕2𝑓

𝜕𝑥1
2 ⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
⋯

𝜕2𝑓

𝜕𝑥𝑛2 ]
 
 
 
 
 

 (1-9) 

where ∇𝑓(𝒙) is the gradient of 𝑓(𝒙), which is defined beforehand. We consider a solution 𝑥∗ 

as optimum if it satisfies both necessary and sufficient optimality conditions. The necessary 

condition for 𝒙∗ to be the optimum is that the function’s gradient at the point is equal to zero, 

e.g., ∇𝑓(𝒙∗) = 0. The sufficient condition is that the corresponding Hessian matrix of the point 

is positive definite [9] if dealing with a minimization problem.  

Fast convergence to the (local) optima makes these optimization algorithms very popular in 

many fields, e.g., cost function optimization of an Artificial Neural Network (ANN), shape 

and topology optimization in mechanical and civil engineering [10], etc. However, these 

methods require the objective function and the constraints to be twice continuously 

differentiable, which is not applicable for more engineering problems. 

Nature- and physics-inspired methods 

Inspired by natural phenomena and biological systems, metaheuristic optimization algorithms 

have emerged as one of the most studied branches of Artificial Intelligence (AI) during the last 

decades [11]. Many researchers are trying to mimic the evolutional or hunting behavior of 

various species to address complex optimization problems. They rely solely on function values 

and not derivatives, which is beneficial when dealing with non-continuous functions and/or 

discrete design domains. However, this causes a low convergence rate in comparison to the 

gradient-based algorithms. Metaheuristic algorithms improve a set of solutions (population) 

through iterations (generations) using various operators. A detailed explanation of their control 

parameters can be found in Section 2.5.1. Modifying solutions includes some randomness, 
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which keeps the diversity of the whole population and prevents convergence to a local 

optimum [12]. 

Over the last few decades, a wide range of optimization algorithms has been published. Nature-

inspired algorithms show great success for various problems, from solving the famous 

Traveling Salesman Problem (TSP) and Knapsack Problem (KP) to structural engineering 

design. The idea of Evolutionary Programming (EP) and Evolutionary Strategy (ES) was firstly 

proposed by Fogel, Rechenberg and Schwefel in the late 60s and 70s [11,13]. After that, as 

one sub-class of the Evolutionary algorithms (EA), the emergence of Genetic Algorithm (GA) 

deeply inspired the community and derived various versions of optimizers [14]. With the 

development of the science and engineering field, problems with multi-objective caught the 

attention of many researchers. Increasing computational resources enables researchers to deal 

with more constraints, more objectives or even optimization problems with black-box 

functions. This gives advantages to the development of metaheuristic algorithms. Non-

dominated Sorting Genetic Algorithm-II (NSGA-II), as one of the most famous multi-objective 

optimization algorithms, shows great capability in dealing with various types of constrained 

optimization problems [15]. Multi-objective Evolutionary Algorithm based on Decomposition 

(MOEA/D) was proposed in 2007 as the most famous decomposition-type algorithm [16]. 

MOEA/D can generate a uniformly distributed PF, which makes this algorithm popular for 

decision-makers. In this thesis, NSGA-II and MOEA/D have been improved because of their 

efficiency and efficacy in dealing with different problems. The details of the modified 

algorithms can be found in Section 3. 

Another category of nature-inspired algorithms is swarm algorithms. Particle Swarm 

Optimizer (PSO) is one of their most popular algorithms, well-known for its high rate of 

convergence [17]. As mentioned above, swarm-based algorithms mimic the behavior of 

animals like bird flocks or fish schools. Following similar mechanisms, various swarm-based 
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algorithms have been proposed; examples include Grey Wolf Optimizer (GWO), Multi-

objective Bat Algorithm (MOBA), Firefly Algorithm (FA), Artificial Bee Colony algorithm 

(ABC), etc. [18–21]. 

Besides species' natural behavior, physical laws and mathematical principles can also be the 

inspiration for optimization algorithms. Motivated by the interaction of multiple universes via 

white holes, black holes, and worm holes, Multi-Verse Optimizer (MVO) has great 

performance in dealing with mathematical optimization problems [22]. Based on the 

mathematical properties of trigonometric functions, Sine-Cosine Algorithm (SCA) has become 

popular in recent years due to its efficiency in solving constrained problems with unknown 

spaces [23]. Utilizing the theory of Newtonian physics, Gravitational Search Algorithm (GSA) 

was developed and can provide superior results for various standard benchmark optimization 

problems [24].  

1.2.2 Constraint handling techniques 

For constrained problems, in addition to optimizing the objective functions, optimization 

algorithms also need to ensure that constraints are not violated. Especially when dealing with 

complex constraints, an effective constraint handling technique (CHT) can increase 

optimization algorithms’ efficiency, meaning that the required number of function evaluations 

to reach the optima is reduced. Moreover, without a proper CHT, optima might not be found 

even with an excessive number of generations (algorithm’s iterations). In the following 

subsections, different categories of CHTs are introduced.  

Penalty function approaches 

Penalty functions are one of the oldest approaches used to consider constraints in optimization 

[25]. Penalty function is initially proposed by Courant [26], where the penalty term is added to 
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the objective function to penalize the designs with any violation of the constraints. Thus, 

constraint optimization problems can be transformed into unconstrained problems: 

 𝐹(𝒙) = 𝑓(𝒙) + 𝑃(𝒙) (1-10) 

where 𝐹(𝒙) is the fitness function, 𝑓(𝒙) is the original objective function, and 𝑃(𝒙) is the 

penalty function. When 𝑃(𝒙) equals zero, the solution is feasible. Instead of optimizing the 

objective function, algorithms optimize the function given with Eq. (1-10). Similar to 

Courant’s method, Joines [27] proposed the non-stationary penalty function, where the penalty 

term is the function of generations. As optimization proceeds, the extent of penalization 

increases. A higher penalty will lead to higher pressure on searching for feasible solutions. 

However, the penalization for each infeasible solution is the same regardless of the extent of 

constraint violation, which is inefficient and inappropriate if all solutions in a population are 

infeasible. To address this issue, Abdollah [28] proposed the systematic multi-level penalty 

handling method, where penalization is a stepwise function of constraints. After that, various 

penalty approaches were proposed, such as the Death penalty, Dynamic penalty [27], and Self-

adaptive penalty [25].  

However, most of these methods have significant flaws. Death penalty rejects every infeasible 

solution, which is inefficient and can lead to premature convergence. Dynamic penalty is more 

robust than the death penalty, but the parameter tuning requires precise control. Adaptive 

penalty requires fewer user-defined parameters, but the computational time of this method is 

higher.  

Special constraint handling operators 

Beside penalty functions, there are several other prominent CHTs. Proposed by Koziel [29], 

decoders showed a competitive performance in the 1990s. This method is based on the idea of 
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mapping the feasible region  onto an easier-to-sample space where a nature-inspired 

algorithm can provide a better performance. However, the high computational cost is the main 

drawback of this method [30]. 

Another popular approach that is widely used for constraint handling is Stochastic ranking (SR) 

initially proposed by Runarsson and Yao [31]. SR aims to deal with the inherent shortcomings 

of the penalty function. This method ranks the infeasible solutions based on the sum of 

constraint violation or objective value. However, some solutions may still get a good rank, 

although they are infeasible. 

Limited by the properties of different types of CHTs, some researchers came up with a hybrid 

method called the Ensemble constraints handling method. Proposed by Qu & Suganthan [32], 

three constraint handling approaches (self-adaptive penalty, superiority of feasible solution, 

and ε-constraint) were used simultaneously for evaluating the population. This method is more 

versatile than other approaches. However, the computational time increases in comparison with 

the other techniques. 

Repair techniques 

Different from the approaches above, repair methods aim to transform the solutions from 

infeasible to feasible. The idea is to benefit from the objective values of the prominent 

infeasible solutions which have a low constraint violation. A successful transformation of those 

solutions into feasible form can help optimization algorithms explore the objective space.  

P. Poon and J. Carter [33] proposed the partially mapped crossover (PMX) and the tie-breaking 

crossover (TBX), which apply crossover operator when performing repair process. In the PMX 

method, two solutions are repaired by changing variables randomly selected in the parents. 
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TBX method repairs the worst performance design based on the global behavior of the 

population.  

Due to the low repair success rate, other novel techniques are proposed to increase the search 

speed for feasible solutions. P.Koch, W. Konen, and C. Foussette [34] developed a repair 

technique based on the gradient information of the constraints functions called RI-2. This 

technique shows a high successful repair rate of 30% compared to other repair techniques [35]. 

However, the application of this method is limited to complex problems with discrete variable 

values or disconnected design domains. 

Repairing can also be conducted based on a heuristic, coming from user's understanding of the 

problem. For example, in a stacking sequence optimization of composite materials 

(combinatorial problem), constraints limit the maximum number of consecutive plies with the 

same fiber orientation, and if this is violated the solution is modified by the repair algorithm 

until it becomes feasible [36]. 

Recently, a novel repair operator was proposed by Samanipour and Jelovica [37] where a more 

general framework was proposed allowing prominent infeasible solutions to be repaired based 

on other solutions in a population using a variable-constraint mapping. The idea is that 

constraint violations can be traced back to the variables. The result shows that this novel repair 

method can successfully repair infeasible solutions and use them to converge to PF faster. 

However, the variable-constraint mapping needs to be provided by the user beforehand, which 

is not applicable for some complex problems.  

As an extension of this novel repair operator, this thesis addresses this issue and proposes a 

method that can automatically predict the mapping. The details of the proposed method can be 

found in Section 3.2. 
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1.2.3 Optimization in engineering 

In recent decades, optimization algorithms have been widely used in solving engineering 

problems in various fields. Complex engineering problems mostly require many variables to 

define a design. One of such problems is the structural design of marine vessels. The most 

important decisions are made during the conceptual and preliminary design of ships. Generally, 

it is impossible for engineers to find the optimal design using engineering experience and 

intuition for such complex problems. Therefore, optimization algorithms are needed to find 

global optimum or optima.  

In some cases, variables in engineering problems can only adopt discrete values due to market 

restrictions [1] which would result in inconsistencies and gaps in both design space and 

objective space. Some of the disjoint parts of objective space contain local optima, restricting 

further the optimization. Algorithms like steepest descent or Newton’s method would likely 

get trapped into local optimum due to their reliance on the gradient information of the functions. 

Moreover, gradients are difficult or impossible to estimate when dealing with discrete variable 

values.  

Evolutionary and swarm algorithms have become popular for dealing with engineering 

problems because they can properly address the aforementioned issues. Examples of 

engineering problems that are optimized using evolutionary algorithms can be found in [38–

44], starting from a simple truss optimization problem to a complex bridge design. One 

advantage is that evolutionary algorithms do not require gradient information of the functions. 

This makes EA applicable to most types of problems. Furthermore, most engineering problems 

have more than one objective.  This provides another advantage of using EA: due to the 

randomness of genetic operators, they can generate better distributed non-dominated fronts.  
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Even though evolutionary and swarm algorithms show good optimization capabilities, a high 

number of function evaluations makes them computationally very expensive. Traditionally, 

this difficulty is tackled by using reduced-order modes based on FEM and CFD, to save time 

when estimating objectives and constraints. Other than this, people also use surrogate models 

to predict constraints and objectives. Typical surrogate model techniques include Kriging 

models [45], response surface method [46], and ANNs [47]. As a subfield of Machine Learning 

(ML), ANNs have drawn a lot of attention due to advancements in data-driven models and 

deep neural networks [48]. Neural networks show the extraordinary capability to preserve the 

accuracy of high-fidelity models for only a fraction of the computational cost, which will be 

described in Section 1.3. In this thesis, we apply ANNs for two purposes: to generate a 

problem-specific variable-constraint mapping and to construct the surrogate model for 

optimization. These could be found in Section 3.2 and Section 5.1, respectively. 

1.3 Overview of machine learning 

Machine Learning (ML) is used in many fields, such as function approximation, computer 

vision, speech recognition, natural language processing, machine translation, etc [49,50]. ML 

has led to revolutionary progress in many subjects. 

In the 1940s and 1950s, ANNs were composed of a simple perceptron, which could only deal 

with simple problems. After that, the proposed backpropagation technique enabled ANNs to 

track and utilize the gradient information of each hidden layer. This allowed ANNs to deal 

with more complex problems. Subsequently, developed by Vladimir Vapnik with colleagues 

(Boser et al., 1992, Guyon et al., 1993, Vapnik et al., 1997), Support Vector Machine (SVM) 

became one of the most robust prediction methods in the 1990s. Nowadays, other ML 

techniques appear and show their capability of prediction. Based on whether the training data 

https://en.wikipedia.org/wiki/Vladimir_Vapnik
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is labelled or not, they can be categorized into supervised learning algorithms and unsupervised 

learning algorithms. The most famous of them are introduced as follows.  

Recurrent Neural Network (RNN) is a class of supervised learning algorithms, where the 

connections between neurons can form a directed graph along a temporal sequence [51]. This 

allows RNN to capture and predict the temporal dynamic features of the data. RNNs have 

demonstrated good performance in sequence labelling and predicting tasks, e.g. unsegmented, 

connected handwriting recognition, speech recognition, etc [52]. An example of the application 

of RNN can be found in [53], where the Long Short Term Memory network (LSTM) was 

applied for nonlinear structural seismic response prediction.  

Another famous supervised learning algorithm is Convolutional Neural Network (CNN), 

which has been widely used for image recognition or classification in recent years. Different 

from the typical feedforward neural network, the architecture of CNN contains lots of 

convolutional layers, which are designed for capturing various features of the image, such as 

vertical lines or honeycomb shapes. Furthermore, softmax layers serves as activation functions 

to output the probability distribution of convolutional layers. Based on CNN, systems such as 

face recognition and automatic driving can be efficiently constructed. For example, improved 

design of microstructural materials was presented in Ref. [54] based on deep convolutional 

generative adversarial network (DCGAN) and CNN.  

Autoencoder is one of the most popular types of the unsupervised neural network, used to learn 

efficient coding of unlabeled data [55]. Automatic learning from data makes autoencoders 

easily adaptable to a new (but related) task. Furthermore, autoencoders with more layers can 

significantly decrease the required training data size and shrink training time [56]. Thus, 

autoencoders could be used in dimensionality reduction, image processing, and anomaly 

detection [56–58], etc. 
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Deep Belief Network (DBN) is another type of unsupervised learning algorithm, being a 

probabilistic generative model that can establish a joint distribution between the observation 

data and the label. Constructed by multiple unsupervised networks such as Restricted 

Boltzmann Machines (RBM)s [59], DBN can reach a better accuracy for unsupervised learning 

than other ML techniques. For example, DBN is used in Ref. [60] to accelerate topology 

optimization.  

ML tools are reaching many engineering and research fields. For example, instead of using 

FEA, the deep learning model could be applied for modelling both elastic and inelastic 

responses of buildings. In other fields, ML and cell concatenation could be used in the design 

of novel acoustic metamaterials [61]. Ref. [62] presented Hierarchical Deep Learning Neural 

Network (HiDeNN), an AI framework for solving challenging problems in computational 

science and engineering. It was demonstrated that the network can achieve better accuracy than 

conventional finite element method by learning the optimal nodal positions and capturing the 

stress concentration with a coarse mesh.  

In many engineering optimization problems, evaluation of the functions may not be possible 

analytically. In this case, software simulations with FEM and CFD should be linked to the 

optimizer to perform the function evaluations [1]. Even though these tools are robust and 

accurate, their significant computational cost makes them inappropriate in some cases. For this 

purpose, ANNs are applied for function approximation as they can preserve the accuracy of 

high-fidelity models at a lower computational cost. Many researchers have proved that ANNs 

could accurately replace the original high-order models [63–65]. Furthermore, the universal 

approximation theorem states that a feedforward neural network with one hidden layer could 

accurately predict any continuous function arbitrarily well with respect to the uniform norm 

provided there are enough hidden units [66]. This gives us the confidence to use ANN for the 

aims given below. 
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1.4 Aim of this thesis 

The overarching objective of this thesis is to create a generic repair-based constraint handling 

technique that does not need user-provided information of the problem for repair. The proposed 

method aims to help different optimization algorithms to efficiently deal with complex 

constrained engineering problems. The background of the approach is a recent repair technique, 

which is limited with the need for the problem-specific heuristic. This thesis aims to overcome 

this limitation and decrease the required number of function evaluations to reach PF. The 

research is divided into the following objectives: 

1. Develop a method that can automatically discover the mapping between variables and 

constraints; 

2. Modify the recent repair-based constraint handling technique and implement the 

automated mapping; 

3. Implement the constraint handling procedure in few prominent algorithms for single- 

and multi-objective optimization; 

4. Construct surrogate model of ship response to decrease CPU time in optimization; 

5. Assess the framework’s performance on both mathematical and engineering problems. 

1.5 Thesis outline 

This thesis is organized as follows. Section 1 provides the background of the related research 

topics and outlines the thesis objectives. Section 2 introduces the original optimization 

algorithms used in this study. Also, several state-of-the-art optimization algorithms and some 

CHTs used for validation are presented. Section 3 of this thesis describes the repair-based CHT 
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and the proposed technique for automatically discovering the mapping. In addition, the 

implementation of the proposed approach to few types of optimization algorithms is presented. 

Section 4 introduces optimization case studies, involving one mathematical benchmark 

problem and two engineering problems. Section 5 discusses the parameters that influence the 

accuracy of the mapping and surrogate model. Further, the results obtained by the modified 

algorithms are compared with other state-of-the-art algorithms. In Section 6, the conclusion of 

this thesis, the limitation of the work and future work are presented. 
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2 Basic concepts 

This thesis considers both single- and multi-objective algorithms. PSO, NSGA-II and 

MOEA/D are selected due to their excellent performance for many types of problems. The 

operating principles of these algorithms and their control parameters are described below. 

2.1 Particle Swarm Algorithm 

One of the most frequently used single-objective algorithms nowadays in engineering is PSO 

[67], because of its rapid convergence rate. In nature, each individual in the swarm relies on 

both its own and swarm’s intelligence for finding food. If an individual finds out that another 

member in the swarm has a better path towards food, it will change its direction to follow that 

path. PSO follows a similar mechanism, as shown in Figure 2.1. Each solution is not only 

moving towards the swarm’s best position, but also towards the particle’s best position.  

 

Figure 2.1. PSO algorithm configuration. 

Relocation of a particle in the design space is represented through velocity, which is controlled 

by the swarm’s best position, particle’s best position, and velocity of the previous generation. 

The velocity of a particle in generation t+1 is calculated as [68]: 
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 𝑽𝑡+1 = 𝑤 ∗ 𝑽𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑷𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑡) + 𝑐2 ∗ 𝑟2 ∗ (𝑮𝑏𝑒𝑠𝑡

𝑡 − 𝑿𝑡) (2-1) 

And the position is updated as: 

 𝑿𝑡+1 = 𝑿𝑡 + 𝑽𝑡+1 (2-2) 

where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are two control parameters defined by a user. 𝑟1 and 

𝑟2 are two random numbers from 0 to 1, which are used to ensure the randomness of the 

velocity vector. This helps the PSO avoid being trapped in the local optima. 𝑷𝑏𝑒𝑠𝑡
𝑡  and 𝑮𝑏𝑒𝑠𝑡

𝑡  

are the best position of the current particle and the entire swarm, respectively. 

2.2 Multi-objective Evolutionary Algorithm based on Decomposition 

As one of the most popular evolutionary optimization algorithms, MOEA/D has been applied 

in many fields due to its capability of generating well-distributed fronts. The essence of 

MOEA/D is to transform a multi-objective problem into a number of single-objective 

optimization problems through aggregate functions. The algorithm optimizes them 

simultaneously, which can be seen from Figure 2.2. 

MOEA/D transforms the multi-objective problem to N scalar subproblem through a set of 

evenly spread weight vectors 𝜆1, … , 𝜆𝑁. Each subproblem is a projection of multi-objective 

functions to the specific weight vector. In this study, we apply the Tchebycheff approach to 

present the jth subproblem [16]: 

 minimize 𝑔𝑡𝑒(𝒙|𝜆, 𝑧∗) = max
1≤𝑖≤𝑚

{𝜆𝑗
𝑖|𝑓𝑖(𝒙) − 𝑧𝑖

∗|} (2-3) 

where 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗ )  is the reference point and 𝑧𝑖
∗ = min{𝑓𝑖(𝒙)}, 𝑖 = 1,… ,𝑚 . Another 

major feature of MOEA/D is the definition of neighborhood. Each weight vector 𝜆𝑖 is defined 

as a neighborhood, which is a set of several closest weight vectors {𝜆1, ⋯ , 𝜆𝑁} . The 
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neighborhood of the ith subproblem consists of all the subproblems from the neighborhood of 

𝜆𝑖 . Thus, the optimization of one subproblem needs the information from its neighboring 

subproblems. 

 

Figure 2.2. Pareto front and weight vectors in MOEA/D. 

2.3 Non-dominated Sorting Genetic Algorithm-II 

In engineering design, one of the most frequently used multi-objective optimization algorithms 

is NSGA-II. Because of its adaptiveness, it is popular in many research fields, and shown in a 

review publication [69].  

NSGA-II modifies solutions based on genetic operators crossover and mutation. Crossover and 

mutation operators are commonly used in many optimization algorithms because they ensure 

randomness and give chance to population to get away from local optima. Different crossover 

and mutation operators are presented in the optimization literature for binary and real-

parameter encodings. The crossover operator randomly picks two solutions from the 

population as the parent solutions to create two new children solutions by re-combining them. 

The mutation operator is intended to create small changes by randomly flipping variables in 

some solutions. Those two operators are controlled by two parameters 𝑝𝑐 and 𝑝𝑚, which are 

the probability of crossover and the probability of mutation, respectively. 
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In NSGA-II, population is handled through non-domination sorting, which is performed by 

dividing feasible solutions into multiple non-dominated fronts in each generation. Once the 

non-dominated front is found, the solutions in that set will be temporally removed. A second 

non-dominated front will be found based on the remaining solutions. This procedure will be 

repeated until all the solutions are assigned to a certain non-dominated front, see Figure 2.3. 

 

Figure 2.3. Non-dominated sorting in objective space [59]. 

Based on non-domination sorting, the selection operator is performed to decide which solutions 

will be used in genetic operators to create offspring for the next generation. Specifically, two 

solutions are randomly picked and the one with a higher non-domination rank will be preserved. 

As shown in Figure 2.4, the selection operator will be repeated until the number of the selected 

solution reaches the population size. Thus, NSGA-II preserves the best solutions for each 

generation. Infeasible solutions will be granted a lower priority or completely discarded. 

Furthermore, the application of crowding distance helps NSGA-II keep a good diversity among 

solutions in a population. It is calculated as the average distance of a solution to its nearest 

neighbors in the same front. As such, crowding distance indicates the local density of solutions. 

Solutions in the same front with a lower crowding distance will be selected for genetic 
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operations (crossover and mutation). The exploration of the less populated area can help the 

algorithm to find a better spread of the PF and maintain the diversity of the solutions. 

 

Figure 2.4. NSGA-II schematic procedure [15]. 

2.4 Novel optimization algorithms for comparison 

In addition to PSO, NSGA-II, and MOEA/D, we use a few other optimization algorithms in 

this research for comparison.  

For single-objective algorithms, we apply Gravitational Search Algorithm (GSA) [24], Multi-

Verse Optimizer (MVO) [22], and Improved Grey Wolf Optimizer (IGWO) [70]. For multi-

objective algorithms, we conducted the comparison using Multi-Objective Grey Wolf 

Optimizer (MOGWO) [71] and Multi-Objective Multi-Verse Optimizer (MOMVO) [72]. 

Some description of these algorithms is shown below. 

GSA is an optimization algorithm inspired by the law of gravity and mass interactions. The 

search agent in GSA considers solutions as masses that interact with each other based on 

Newtonian gravity and the laws of motion. GSA could provide superior results for various 

standard benchmark problems in terms of other testing algorithms [24]. 
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IGWO is an improved and better performing version of GWO, as shown for engineering 

problems [70]. IGWO addresses the issues of insufficient population diversity, imbalance 

between exploitation and exploration, and premature convergence of GWO, by introducing a 

new movement strategy called Dimension Learning-based Hunting (DLH). Instead of moving 

toward the leader, solutions under the DLH strategy are learning from their neighbors. 

Therefore, IGWO selects the leader either from the original GWO or DLH search strategies. 

No extra parameters are needed for DLH. The control parameters for IGWO are the same as 

for GWO, which can be found in Section 4.4. 

As the multi-objective extension of GWO [18], MOGWO shows a very competitive 

performance compared to other state-of-the-art algorithms. MOGWO introduced two more 

strategies to deal with multi-objective problems: (i) prominent solutions are stored in an 

external archive at each generation, from which leaders (α, 𝛽, and 𝛿) could be selected [71]; 

(ii) using the grid to preserve the diversity of the archive solutions. Therefore, three parameters, 

grid inflation parameter 𝑎𝑙𝑝ℎ𝑎, leader selection pressure parameter 𝑏𝑒𝑡𝑎 and number of grids 

per each dimension 𝑛𝐺𝑟𝑖𝑑 are used to control the leader selection mechanism and the grid 

mechanism. The detailed parameter setting of MOGWO can be found in Section 4.4. 

MVO and MOMVO are recent population-based algorithms that mimic one of the theories in 

physics on the existence of multiple universes [22,72], for single-objective and multi-objective 

problems, respectively. The two algorithms have similar mechanisms, except that MOMVO 

requires an external archive to store the best non-dominated solutions obtained so far. The 

main inspiration of both algorithms is the interaction of multiple universes via white holes, 

black holes, and worm holes. Objects (variables) are transferred from a universe (solution) 

through a tunnel from a white hole to a black hole. Also, worm holes can move objects from 

one corner of a universe to another without a need for a white or black hole. Two adaptive 
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parameters are defined to control the exploration and exploitation of optimization design space. 

They are Wormhole Existence Rate (WER) and Travelling Distance Rate (TDR), respectively. 

2.5 Control parameters 

The performance of an optimization algorithm largely depends on control parameters. Some 

of the control parameters are common for all evolutionary algorithms, and others are unique. 

The following sub-sections introduce those parameters.  

2.5.1 General control parameters 

In evolutionary algorithms, general control parameters involve population size and the number 

of generations. Those two parameters are important as they decide the number of function 

evaluations in a run. Proper setting of population size and the number of generations may help 

optimization algorithm find the global optimum faster. 

Population size 

In evolutionary algorithms, population represents a set of current solutions. This set is 

iteratively updated until the algorithm meets the stopping criterion. Population size refers to 

the number of solutions in one population. A higher population size means that an algorithm 

needs to deal with more solutions simultaneously. Furthermore, a greater population size will 

provide optimization algorithms with a higher possibility of exploring the design space and a 

lower possibility of becoming trapped in a local optimum. In general, complex problems are 

defined with large number of variables, thus having a large design space for optimization 

algorithms to explore. A low population size will be less likely to reach the global optimum 

within a given amount of computational resources. Therefore, a complex optimization problem 
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always requires a high population size (50-300) [1]. Furthermore, a high population size for 

multi-objective algorithms could lead to better convergence and wider distributed final PF.  

Number of generations/iterations 

Iterations in EAs are called generations. Population is updated iteratively until a pre-defined 

number of generations is reached, although there could be other types of stopping criteria. In 

general, higher number of generations allows an algorithm to perform better. As mentioned 

above, a complex optimization problem generally involves a large design space. Thus, large 

number of generations is required, typically 500 to 1000 [1]. So that the optimization algorithm 

can get closer to the global optima or PF.  

2.5.2 Specific control parameters 

In addition to common control parameters, some optimization algorithms have specific 

parameters. 

PSO includes three inertia coefficients that are used to control particle’s velocity. The inertia 

weight 𝑤  is used to control the particle’s velocity inherited from the previous generation, 

which is normally set to 0.99, and aims to exploit the design space at the end of the optimization. 

𝑐1 and 𝑐2 are used to control the velocity towards the particle’s best position and the swarm’s 

best position. In general, a larger 𝑐1 and 𝑐2 will lead the algorithm to converge to an optimum 

faster, but it could be a local optimum. A lower 𝑐1 and 𝑐2 is recommended if the problem 

involves a large design space. 

Genetic operators in NSGA-II are controlled through probabilities of crossover and mutation. 

Crossover exchanges variable values between two designs and its probability 𝑝𝑐 determines 

whether the exchange will occur or not.  𝑝𝑐 is commonly set in the range of 0.6 to 0.95 [73]. 
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The probability of mutation 𝑝𝑚 determines whether a variable will be changed at random, and 

is generally calculated by 1/𝑛, where 𝑛 is the number of variables. For binary problems, 𝑛 

could be the number of bits to the chromosome. 𝑝𝑚 is always set as a small number, since large 

mutation probability might transform many feasible solutions to infeasible. 

MOEA/D involves neighborhood size to control the exploration and exploitation process of 

the algorithm. New solutions of MOEA/D are generated from the neighboring solutions by 

using crossover and mutation. Literature shows that a large neighborhood size grants MOEA/D 

a high searchability in the objective space [74]. However, a small neighborhood size is also 

shown to be beneficial for diversity maintenance in the objective space. 

In both MVO and MOMVO, the algorithm’s performance is controlled by WER and TDR. 

WEP was defined as the probability of wormholes’ existence in universes, which increases 

linearly from 0.2 to 1 to emphasize the exploitation process. Furthermore, TDR decreases from 

1 to 0, which controls the distance that an objective can be teleported by a wormhole around 

the current best universe. A lower TDR indicates a more precise search around the best-

obtained solution [22].  

The control parameters of IGWO are mostly the same as the original GWO. The mathematical 

form of the encircling behavior is controlled by two coefficient vectors, 𝐴 and 𝐶. Both are 

influenced by a component �⃗�, which decreased linearly from 2 to 0 [18,70]. Control parameters 

of MOGWO are different from the other GWO variants. As mentioned above, MOGWO is 

controlled by 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎, and 𝑛𝐺𝑟𝑖𝑑. These parameters are used to maintain the diversity of 

the archive during optimization, which are set to 0.1, 4, and 10 to obtain the best performance 

in test problems, respectively. 
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2.6 Prominent constraint handling methods 

This thesis considers two constraint handling approaches to validate the proposed approach: 

penalty function and adaptive threshold.  

As one of the most commonly used constraint handling methods which have been applied to 

many optimization algorithms [75], static penalty has been used for validation in this thesis. 

The penalized objective function is defined as: 

 𝜑(𝒙) = 𝑓(𝒙) +∑ 𝐶𝑖𝐺𝑖
𝑚

𝑖=1
, (2-4) 

 𝐺𝑖 = 𝑚𝑎𝑥{0, 𝑔𝑖(𝒙)}
𝛽 , (2-5) 

where 𝜑(𝑥) is the penalized objective function and 𝐶𝑖 is the penalty coefficient. We use few 

penalty coefficients in the numerical experiments, where the higher one (107) is found to give 

the best performance out of several that were tested in preliminary studies.  

Another constraint handling approach used for comparison is the adaptive threshold. The 

adaptive threshold approach was firstly introduced in [76] for MOEA/D, validated in [77] and 

shown to work the best among several other constraint handling approaches on NSGA-II in 

[78]. This approach defines a threshold in terms of constraint violation, until which infeasible 

solutions are accepted in the population. This method solved the issue for algorithms if 

initialized with total infeasible solutions. Solutions with a low constraint violation are closer 

to feasible design space and could be utilized to guide the algorithm toward the feasible space. 

No extra parameters are needed in this method, and the threshold is adaptively updated during 

the optimization process. The allowable violation τ is calculated as: 
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 𝐶𝑉𝑖 = 𝑣𝑖𝑜 ∗∑min(𝑔
𝑗
, 0)

𝑙

𝑗=1

, (2-6) 

 𝐶𝑉𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝐶𝑉𝑖

𝑁

𝑖=1

, (2-7) 

 𝐹𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒
, (2-8) 

 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝜏) = 𝐶𝑉𝑚𝑒𝑎𝑛 ∙ 𝐹𝑅, (2-9) 

where 𝑣𝑖𝑜 is denoted as the number of violated constraints for ith solution, 𝑔𝑗 is the value of 

the jth constraint, considered as violating if 𝑔𝑗 is negative. Eq. (2-6) to Eq. (2-9) shows that the 

allowable violation threshold 𝜏 is calculated based on the average level of the total population. 

FR is increasing during the optimization, while CVmean is severely decreasing, thus 𝜏  is 

decreasing as well. In the optimization process, the solutions with violations less than the 

threshold 𝜏  are treated as feasible. Hence, some infeasible solutions with relatively small 

constraint violation would remain in the population and transferred to the next generation. 

2.7 Performance measures 

For single-objective problems, algorithm’s performance could be analyzed by tracking the best 

objective value found during optimization. An algorithm is considered more efficient if it needs 

a lower number of function evaluations. 

However, in multi-objective optimization, the performance should be quantified based on the 

non-dominated front of the current generation. The purpose of algorithms is to find a solution 

set with high diversity and high proximity to the true Pareto front. Therefore, both the 

convergency and diversity of the solution set indicate the performance of the current non-
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dominated front. This thesis uses two performance matrices, namely Hypervolume (HV) and 

Inverted Generational Distance (IGD). Configuration for both performance indicators is shown 

in Figure 2.5. HV [79] calculates the dominated hypervolume (or area in 2D space) with respect 

to a reference point. IGD [80] measures the average of the Euclidean distances of each solution 

in the true Pareto front to the nearest solution in the population’s non-dominated front. Only 

feasible solutions are considered when calculating both HV and IGD. The IGD evaluation 

requires that the true PF be known. IGD is calculated as: 

 𝐼𝐺𝐷(𝑃, 𝑃∗) =
∑ 𝑚𝑖𝑛𝐵∈𝑃𝑑𝑖𝑠(𝐴, 𝐵)𝐴𝜖𝑃∗

|𝑃∗|
, (2-10) 

where P represents the solutions of the current non-dominated front, P* is a set of uniformly 

distributed solutions in the true Pareto front. 𝑑𝑖𝑠(𝐴, 𝐵) is the Euclidean distance in objective 

space between solutions A and B. In this thesis, both reference point and P* are defined by the 

best combination of objective values encountered in all history optimization runs, thus being 

set after all runs have been performed. Higher HV values and lower IGD values are preferred. 

Both performance matrices are calculated in normalized objective space. 

              

Figure 2.5. Visualization of the performance measures (HV and IGD). 
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3 Proposed constraint-handling framework and implementation 

3.1 Repair heuristic 

In this thesis, a new CHT is developed as an improvement of a recently published repair-based 

constraint handling method. The recent repair technique can handle complex constraints and 

has shown excellent performance in dealing with completely infeasible populations [37]. This 

is enabled by variable-constraint mapping which allows constraint violations to be traced back 

to variables. 

In this thesis, we extend this repair technique, and modify its operating principle, to make it 

more logical and adaptive to both single- and multi-objective algorithms. Details of the 

modified repair technique are shown below. 

 

Figure 3.1. Repairing an infeasible solution in single-objective space.  

 

Figure 3.2. Situation where infeasible solutions after successful repairing dominate the current feasible 

solutions in multi-objective space [37]. 
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In the optimization process, some infeasible solutions might have a better objective value 

(show dominance in multi-objective problems) than the existing feasible solutions. Those 

solutions are closer to the PF and can improve the optimization if we transform them to be 

feasible, see Figure 3.1 and Figure 3.2. The repair technique performs this by replacing the 

variables that caused infeasibility (constraint violation) using variable-constraint mapping. 

Examples of the mapping can be found in Figure 3.3 and Figure 3.4. It is modelled as a matrix 

of size l × n, where l is the number of constraints and n is the number of variables. A non-zero 

value in each row indicates that the variable significantly affects the constraint. According to 

this mapping, infeasible solutions (repair candidates) can be repaired based on the donor 

solutions. 

Repair candidates are selected based on the objective value and constraint violations of the 

solutions. Generally, infeasible solutions with prominent objective values are considered as 

repair candidates. One could also add some limitations on candidate selection, such as 

controlling the maximum number of repair candidates to preserve the diversity of the 

population. Different from the repair candidates’ selection, the strategy of donor selection 

depends on the current population's situation, partially infeasible or completely infeasible. 

Following the different donor selection strategies, the repair strategy also changes. Therefore, 

repair strategies for two different population cases are described below. 

Repair Case 1 (Population partially infeasible) 

If the current population is partially infeasible, only feasible solutions will be considered as 

donors since that raises the probability of successful repair. For each repair candidate, the 

closest feasible solution will be selected as the donor based on their Euclidean distance in the 

normalized objective space. Therefore, the donor might differ for different repair candidates. 

Figure 3.3 shows how the repair operator works in this case. For a repair candidate that violates 
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one or more constraints, all the variables that need to be replaced can be found using the 

variable-constraint mapping. After that, the repair technique is performed by replacing all 

marked variables using variables from the donor solution.  

 

Figure 3.3. Illustration of the repair case 1. 

Repair Case 2 (Entire population infeasible) 

If the current population doesn’t have any feasible solution, prominent infeasible solutions will 

be selected as repair donors. As Figure 3.4 shows, similar to the repair case 1, if a solution 

violates a constraint, corresponding variables can be found based on the mapping. Afterwards, 

the repair technique will mark all the constraints influenced by those variables. Solutions that 

satisfy all those constraints are the potential donors. The advantage of this modified approach 

is to prevent violation of other constraints while repairing. If all solutions violate the same 

constraint, the solution with the least amount of violation is selected as the donor. A few donors 

might be used for each repair candidate, as they might violate different constraints. 
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Figure 3.4. Illustration of the repair case 2. 

The idea behind repairing is to make small changes to the solution to preserve its position in 

objective space. For this purpose, the donors are prioritized starting from solutions nearest to 

the candidate solution while being in the best front (if applicable). Therefore, donors may be 

different for each repair candidate. Combining the above two cases, the pseudo-code for the 

modified repair technique is described below. Note that all the solutions are stored in an 

external archive, to ensure the consistency of the donor selection. 

Repair Operator 

Input: Input population 𝑃𝑡; Variable-constraint mapping; Number of variables 𝑛; Number of 

constraints l; Generation number t. 

Start Repair Operator 

Compute the number of feasible solutions in 𝑃𝑡 as 𝐿𝑓𝑒𝑎 

Collect the feasible solutions as a set 𝐹𝑡 

For each solution (𝑖 = 1,⋯ , 𝑛) do 

If solution is infeasible (repair candidate) do 

If 𝐿𝑓𝑒𝑎  ≠ 0 do 
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(i) Sort feasible solutions 𝐹𝑡 based on the Euclidean distance to the repair 

candidate. Select the closest solution as the 𝑑𝑜𝑛𝑜𝑟. 

(ii) Replace the variables that caused infeasibility of the candidate solution 

from the 𝑑𝑜𝑛𝑜𝑟 based on the mapping. 

Else do 

For each violated constraint do 

(i) Find the significant variables based on the mapping. 

(ii) Find the constraints that are affected by those variables. 

(iii) Sort all solutions 𝑃𝑡  based on the Euclidean distance to the repair 

candidate. Set the closest solution that satisfies the above constraints as the 

𝑑𝑜𝑛𝑜𝑟. 

(iv) Replace the variables that causing the specific constraint violation of 

the candidate solution from the 𝑑𝑜𝑛𝑜𝑟 based on the mapping. 

End For 

End If 

End If 

End For 

End Repair Operator 

Output: Repaired solutions 

3.2 Automated mapping based on ANN 

As introduced above, the dependency matrix (the mapping) points out to variables that affect 

each constraint. It is modelled as a matrix of size 𝑙 × 𝑛, where 𝑙 is the number of constraints in 

a problem and 𝑛 is the number of variables. A non-zero value in each row denotes that the 
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variable significantly affects the constraint. The mapping for one of the problems in this paper 

is shown in Figure 5.4. To automatically define the mapping matrix, we use artificial neural 

networks. Other ML techniques have also been investigated to generate the mapping in a 

preliminary study, such as Canonical Correlation Analysis (CCA). CCA can find the most 

significant variable, but could decrease in accuracy for following variables, which is 

insufficient for this research, thus is not pursued further. Figure 3.5 shows the general 

architecture of a typical feedforward ANN. A shallow neural network has only one hidden 

layer. A deep neural network has at least two. It is generally accepted that deep neural networks 

have higher predicting accuracy than shallow networks. However, deep networks require more 

training data and more computational resources. 

 
Figure 3.5. Artificial Neural Network architecture. 

We define the significance of variables based on their statistical contribution to the 

optimization criteria. Significance was used in [81] to construct the best performing radial basis 

function neural network. The strength of the connection between neurons in different layers is 

defined in the current study by the neuron’s weight, and if this value is significant, the input 

neuron has a significant effect on the output neuron. As each input neuron is connected to the 

output neuron through a network, removing one input neuron will lead to the change of the 
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output result. The percentage of change indicates the contribution of that input neuron to the 

output. Optimization variables are input neurons to the ANN, while constraints and objectives 

(i.e. criteria) are the output neurons. Therefore, the mapping could be generated based on the 

variables that significantly contribute to the outputs. This method is applicable to artificial 

neural networks with one or more hidden layers. 

For a feedforward neural network, the activation of a neuron 𝑎𝐼
(𝑄)

 (𝐼𝑡ℎ neuron of layer 𝑄) can 

be represented as: 

 𝑎𝐼
(𝑄)

= 𝐺(𝑄) (𝑍𝐼
(𝑄)) , (3-1) 

where 𝐺(𝑄) is the activation function of the layer 𝑄 and 𝑍𝐼
(𝑄)

 is the input to the activation 

function for neuron 𝐼. Specifically, the input 𝑍𝐼
(𝑄)

 can be written as: 

 𝑍𝐼
(𝑄)

= ∑ 𝑊𝐾
[𝐼](𝑄)

𝑎𝐾
(𝑄−1)

+ 𝒃(𝑄)
𝑁𝑄−1

𝐾=1

, (3-2) 

where 𝑊𝐾
[𝐼](𝑄)

 is the weight between neuron 𝐾 in layer (𝑄 − 1) to the neuron 𝐼 in layer 𝑄, 

𝒃(𝑄) is the bias vector for hidden layer (𝑄 − 1), and 𝑁𝑄−1 is the number of neurons in layer 

(𝑄 − 1). 𝑎𝐾
(𝑄−1)

 is the activation of the previous hidden layer, which is equal to 𝑋 in the first 

layer. For example, the final output of the 𝑢𝑡ℎ output neuron can be expressed as:  

 

𝑌𝑢 = 𝑔
(𝐿) [𝑤1

[𝑢](𝐿)
𝑥1
(𝐿−1) + 𝑤2

[𝑢](𝐿)
𝑥2
(𝐿−1)⋯+𝑤𝐽

[𝑢](𝐿)
𝑥𝐽
(𝐿−1)⋯

+𝑤
𝑁𝐿−1−1

[𝑢](𝐿)
𝑥
𝑁𝐿−1−1

[𝑢](𝐿−1)
+ 𝑤

𝑁𝐿−1
[𝑢](𝐿)

𝑥
𝑁𝐿−1
(𝐿−1)

+ 𝒃(𝐿)] , 
(3-3) 
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where 𝐿 is the depth of the neural network. For a shallow neural network, 𝐿 is two (hidden and 

output layer). Eq. (3-2) shows that the input of the activation function could be represented as 

the linear combination of weights multiplied by activation of the previous layer. For example, 

if the input value is fixed, the corresponding weight of each input neuron could directly control 

the input of the activation function. 

Neurons with larger weight contribute more to the activation function and vice versa. Based 

on this, we introduce the Significance of an input neuron. For an input neuron I, we can write 

the activation for the neuron of the first hidden layer in expanded form as: 

 

𝑎𝐼
(1)
= 𝐺(1) [𝑊1

[𝐼](1)
𝑋1
(0) +𝑊2

[𝐼](1)
𝑋2
(0)⋯+𝑊𝐽

[𝐼](1)
𝑋𝐽
(0)⋯+𝑊

𝑁0−1

[𝐼](1)
𝑋
𝑁0−1

(0)

+ 𝑤
𝑁0
[𝐼](1)

𝑋
𝑁0
(0)
+ 𝒃(1)] , 

(3-4) 

The activation of this neuron when the weight 𝑊𝐽
[𝐼](1)

 is equal to 0 can be written as:  

 

𝑎𝐼−𝐽
(1)

= 𝐺(1) [𝑊1
[𝐼](1)

𝑋1
(0) +𝑊2

[𝐼](1)
𝑋2
(0)⋯+𝑊𝐽−1

[𝐼](1)
𝑋𝐽−1
(0) +𝑊𝐽+1

[𝐼](1)
𝑋𝐽+1
(0) ⋯

+𝑊
𝑁0−1

[𝐼](1)
𝑋
𝑁0−1

(0)
+𝑊

𝑁0
[𝐼](1)

𝑋
𝑁0
(0)
+ 𝒃(1)] , 

(3-5) 

where 𝑎𝐼
(1)

 is the original output of the neuron I in the first hidden layer and 𝑎𝐼−𝐽
(1)

 is the 

activation of the neuron I without input J. Therefore, the contribution of the neuron J to the 

activation is controlled by the weight 𝑊𝐽
[𝐼](1)

, which can be set to zero to test the significance 

of the input neuron 𝑋𝐽. 

Furthermore, we introduce accuracy to evaluate the performance of the neural network. 

Abbreviated as acc, it is calculated as: 
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 𝐴𝑐𝑐 = 1 − 𝑎𝑣𝑔 [∑ 𝑎𝑏𝑠

𝑛𝑡

𝐾=1

{
𝑌𝐾(𝑝𝑟𝑒𝑑𝑖𝑐𝑡) − 𝑌𝐾(𝑒𝑥𝑎𝑐𝑡)

𝑌𝐾(𝑒𝑥𝑎𝑐𝑡)
}] , (3-6) 

where nt is the testing data size, 𝑌𝐾(𝑝𝑟𝑒𝑑𝑖𝑐𝑡) is the predicted output value for test example K, 

and 𝑌𝐾(𝑒𝑥𝑎𝑐𝑡) is the correct output given by the test data. The value in the square bracket is 

averaged over all the test data, due to statistical variation. Therefore, for accuracy equal to one 

the network perfectly predicts constraints and/or objectives in optimization. Common loss 

functions, such as Mean Square Error (MSE) or Root Mean Square Error (RMSE), can vary 

greatly depending on the type of problem (constraints in our case). To make sure that the 

accuracy of the ANN is not affected by different ranges of inputs, we use Eq. (3-6) to calculate 

the accuracy. 

Using the same test dataset for ANN with and without 𝑊𝐽, we can define accuracy of both 

networks. The loss of accuracy is defined as significance, and for variable J, the significance 

can be expressed as: 

 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒(𝐽) = 𝐴𝑐𝑐(𝐴𝑁𝑁) − 𝐴𝑐𝑐(𝐴𝑁𝑁 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑊𝐽) (3-7) 

The more significant the neuron is, the larger error will occur if removed. Significance close 

to 𝐴𝑐𝑐(𝐴𝑁𝑁)  means that the constraint is completely controlled by this variable, and 

significance equal to 0 indicates that the constraint is un-correlated to the variable. We 

introduce a threshold which is used to determine whether the variable is significant or not. In 

this study, the threshold value of 0.1 is used, and variables whose significance is larger than 

the threshold (if they exist) will be determined as variables that affect that constraint. For 

problems in this research only one or two variables are above the threshold, for each constraint, 

and in some cases the number is zero, if constraint is never violated. This approach allows us 

to automatically generate the link. In addition, the trained ANN can be used as the surrogate 
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model in optimization. Surrogate model creation and automated mapping generator are shown 

in pseudo-code 2.  

Pseudo-code 2: Surrogate model and automated mapping generator  

Input: Number of variables 𝑛; Number of constraints l; Significance threshold η 

Parameter: ANN accuracy 𝑇 (T = 99% here); max number of training iterations = 20; 

Start Surrogate model and automated mapping generator  

Randomly generate training data, evaluate objectives and constraints 

While 𝐴𝑐𝑐 ≤  𝑇 or max number of training iterations not reached do 

Train ANN based on the training data. 

Update ANN if 𝐴𝑐𝑐 > 𝐴𝑐𝑐(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡). 

End While 

For each constraint (𝑖 = 1,⋯ , 𝑙) do  

For each input variable (𝑗 = 1,⋯ , 𝑛) do 

Set 𝑊𝑗
[𝐼](1)(𝐼 = 1,⋯ ,𝑚𝑎𝑥) = 0, and reconstruct the ANN. 

Compute Significance(j) for each variable. 

End For 

Rank Significance for each variable, select the variable(s) with Significance greater 

than η, generate row vector of Mapping. 

End For 

End Surrogate model and automated mapping generator  

Output: Automated mapping; Artificial Neural Network surrogate model 
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3.3 Implementation to PSO 

In this thesis, the novel repair-based CHT is implemented into PSO as one of the prominent 

single-objective algorithms. In the modified PSO, particles will not move toward infeasible 

solutions. Only feasible solutions are considered for particle’s and swarm’s best position. To 

ensure exploration and exploitation of the design space, two more features are introduced for 

the repair technique in PSO: dynamic selection of repair candidates and selection of repair 

donor based on Gaussian distribution. 

Dynamic selection of repair candidate 

Instead of only repairing the infeasible solutions with better objective value than the 𝐺𝑏𝑒𝑠𝑡, 

infeasible solutions whose objective value is slightly worse than 𝐺𝑏𝑒𝑠𝑡 could also be repaired. 

An example can be found in Figure 3.6, where the second-best infeasible solution is also 

repaired. Initially, infeasible solutions could easily surpass 𝐺𝑏𝑒𝑠𝑡 in terms of the objective as 

the design space is not deeply explored. Later when the population gets closer to the global 

optimum, generated infeasible solutions become less likely to outperform 𝐺𝑏𝑒𝑠𝑡. In this case, 

to further explore the objective space, the criteria of selecting the repair candidates becomes 

less strict as the generation number increases. 

In other words, for a minimization problem, infeasible solutions with an objective value 

smaller than an adaptive threshold can be repaired. This value can be formulated as: 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 휀 × 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐺𝑏𝑒𝑠𝑡), (3-8) 

where 휀 is defined in this thesis as the dynamic expansion factor, which can be expressed as: 

 휀 = 1 +
𝑡

𝑀𝑎𝑥 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
, (3-9) 
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where 𝑡 is the current generation number. At the beginning of the optimization, the repair 

technique works normally as 휀 is equal to one and increases to two in the end. 

 

Figure 3.6. Dynamic selection of repair candidate.  

Selection of repair donor based on Gaussian distribution 

Repair operator allows infeasible solutions to become feasible. However, many solutions might 

share the same variables after the repair, which might influence the population’s diversity. In 

single-objective problems, objective space is in 1-D, meaning that the closest feasible solution 

of all prominent infeasible solutions is 𝐺𝑏𝑒𝑠𝑡 . This will dramatically reduce population 

diversity if all the candidates are being repaired based on the same donor. For this reason, we 

give some randomness for donor selection. Gaussian distribution has been used here to decide 

the donor index as this is one of the most basic probability distributions. Figure 3.7 shows an 

example of this procedure: instead of selecting the closest feasible solution, the second or the 

third closest feasible solution can also be selected as repair donors. In this research, two 

parameters 𝜇 and 𝜎 are used to control the shape of the probability density function. The index 

of the repair donor could be written as: 

 𝑖𝑛𝑑𝑒𝑥𝑑𝑜𝑛𝑜𝑟 = max (1, 𝑟𝑜𝑢𝑛𝑑 (𝑎𝑏𝑠(𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝜇, 𝜎)))), (3-10) 

where 𝜇 is the mean or expectation of the gaussian distribution and 𝜎 is the standard deviation. 

In this thesis, 𝜇 is defined as one and 𝜎 is defined as two. Statistically, based on Eq. (3-10), the 

probability of selecting the ith closest feasible as the repair donor is shown in Table 3.1. 
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Figure 3.7. Repair donor selection using Gauss probability.  

Table 3.1. Donor selection probability. 

Donor index 1 2 3 4 5 6 7 8 

Probability (%) 49.21 24.48 14.71 7.58 3.10 0.63 0.18 0.1 

 

3.4 Implementation to MOEA/D 

In MOEA/D, the proposed CHT has been embedded to update the position of the prominent 

infeasible solutions at each generation. Another modification of MOEA/D in this thesis is that 

each solution is re-assigned to the weight vector that gives it the lowest aggregate value. 

Because the essence of MOEA/D is to optimize multiple single-objective problems, and this 

modification can position every solution closer to the PF. As shown in Figure 3.8, any 

infeasible solution that is better than the current best solution of a weight vector will be selected 

as the repair candidate. Furthermore, the donor is selected from the repair candidate’s 

corresponding neighborhood solutions. If all neighborhood solutions are infeasible, the donor 

will be selected from the nearby neighborhoods, starting from the nearest one.  
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Figure 3.8. Repair candidate selection in MOEA/D. 

3.5 Implementation to NSGA-II 

The proposed approach is also embedded into NSGA-II for handling multi-objective problems. 

Original NSGA-II uses constrained dominance principle (CDP) as CHT. CDP says that the 

solution with a larger constraint violation is always dominated by the one with a lower 

constraint violation, and an infeasible solution is always dominated by a feasible one. 

The operating procedure of the modified NSGA-II is the same as [37], where infeasible 

solutions are also sorted based on the non-domination principle by ignoring their violation and 

only considering their objective values. As could be seen from Figure 3.9, 𝛾(𝑗)
(𝑡)

 denotes the 𝑗𝑡ℎ 

ranking of the infeasible front at generation 𝑡, while the symbol 𝜔 denotes the feasible front. 

Prominent infeasible solutions from different ranks are collected as 𝛼(𝑡)  based on non-

domination sorting and repaired.  
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Figure 3.9. Possible location of sorted solutions in the population in NSGA-II [37]. 

In modified NSGA-II, the repair-based CHT is performed before the genetic operator and non-

domination sorting. In each generation, solutions in 𝛼(𝑡)  from 𝑃𝑡  will be selected as repair 

candidates, and they will be modified based on the donors. The donor selection strategy in 

modified NSGA-II follows the procedure described in Section 3.1. Afterwards, 𝑄𝑡  is 

composed of repaired solutions and solutions generated by the genetic operator. Non-

dominated sorting is conducted later to select solutions for the next generation. 

3.6 Repair-based Optimization Framework 

The flowchart of the repair-based optimization framework is presented in Figure 3.10. In this 

thesis, the three algorithms follow a similar flow except for the selection of repair candidates 

and donors, which has been explained in the previous sections. In this framework, a set of 

solutions is randomly generated at the beginning to train the ANN. Afterwards, ANN defines 

the variable-constraint mapping and is ready to be used as surrogate model in optimization 

(used in this thesis only for the tanker problem). The detailed setting of ANN training can be 

found in Section 4.4.2 and Section 5.1. After the complete preparation of the surrogate model 

and automated mapping, the optimization process starts. In each generation, repair operator is 

invoked before evaluation. Solutions are updated afterwards using surrogate model.  
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Figure 3.10. Repair based optimization framework. 

It is worth mentioning that the surrogate model is used throughout the whole tanker 

optimization. However, since the surrogate model is trained from randomly generated data, its 

accuracy inevitably decreases as the exploration of the design space progresses. To validate 

the influence of the surrogate model’s accuracy on the algorithm’s performance, we conducted 

an additional test on NSGA-II with the repair where the algorithm will switch from the 

surrogate model back to the original structural model at 80% of maximum generations. The 

results in Appendix A show that NSGA-II using the surrogate model throughout the whole 

process can reach the same level of accuracy at the end of the optimization. Therefore, limited 

by the computational resources, we apply the surrogate model for the whole optimization 

process in the rest of the thesis.  
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4 Test case introduction 

4.1 Mathematical benchmark problem 

In this thesis, a constrained benchmark mathematical problem called OSY is used to evaluate 

the performance of both single- and multi-objective optimization algorithms. The details of the 

OSY problem are described below, where two objective functions need to be optimized subject 

to six constraints. 

In multi-objective testing, both objectives are considered, while only the first objective is 

considered for single-objective testing. OSY is defined as: 

 𝑚𝑖𝑛 {

𝑓1(𝑥) = −25(𝑥1 − 2)
2 − (𝑥2 − 2)

2 − (𝑥3 − 1)
2 − (𝑥4 − 4)

2 − (𝑥5 − 1)
2

𝑓2(𝑥) =∑𝑥𝑖
2

6

𝑖=1

} (4-1) 

 

s. 𝑡. =

{
  
 

  
 

𝑔1(𝑥) = 𝑥1 + 𝑥2 − 2 ≥ 0

𝑔2(𝑥) = 6 − 𝑥1 − 𝑥2 ≥ 0

𝑔3(𝑥) = 2 + 𝑥1 − 𝑥2 ≥ 0

𝑔4(𝑥) = 2 − 𝑥1 + 3𝑥2 ≥ 0

𝑔5(𝑥) = 4 − (𝑥3 − 3)
2 − 𝑥4 ≥ 0

𝑔6(𝑥) = (𝑥5 − 3)
2 + 𝑥6 − 4 ≥ 0

 

0 ≤ 𝑥1, 𝑥2, 𝑥6 ≤ 10, 

1 ≤ 𝑥3, 𝑥5 ≤ 5. 

(4-2) 

4.2 Truss problem optimization 

In this thesis, the common 10-bar truss design problem is used for single-objective algorithms’ 

performance testing. The configuration of this problem is shown in Figure 4.1, where the cross-

sectional area of each bar needs to be optimized to minimize the total weight [82].  
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Figure 4.1. Configuration of the ten-bar truss. 

In Figure 4.1, the length of the members 𝑙7−10 is 509 in, while the length of the rest members 

is 360 in. The member’s cross-sectional areas are denoted as 𝐴𝑖, ranges from 0.1 in2 to 33.5 

in2. The node 5 and node 6 are fixed by the hinges [83]. Thus, the displacement of node 5 and 

node 6 are zero. Two external loads P of 100 kips are applied in node 2 and node 4, respectively. 

Furthermore, the maximum allowable stress in any member of the truss is ±25 ksi, and the 

maximum nodal deflection in both vertical and horizontal directions is ±2 inch [84]. The 

density of the truss material is 0.1 lb/in3 and the modulus of elasticity is 107 psi. Based on this, 

this problem can be formulated as: 

 min          𝑊(𝐴) = 0.1∑𝑙𝑖𝐴𝑖,

10

𝑖=1

 (4-3) 

 

𝑠. 𝑡.     𝜎𝑖 ≤ 25𝑘𝑠𝑖, (𝑖 = 1,2,⋯ ,10), 

𝑣𝑘𝑥, 𝑣𝑘𝑦 ≤ 2𝑖𝑛, (𝑘 = 1,2,3,4), 

(4-4) 

where 𝑊(𝐴) is the weight function representing the objective, 𝑙𝑖 is the length of the ith bar 

element, 𝜎𝑖 is stress in each truss member, and 𝑣𝑘𝑥 and 𝑣𝑦𝑘 are the displacements of the node 
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k in x and y direction. The response of the structure has been analyzed using FEA code in 

Matlab. 

4.3 Structural optimization of a tanker 

For real-life engineering optimization problem, we consider chemical tanker which is 180 m 

long, 32 m wide and 18 m deep, with a draught of 11.5 m. It is operating under normal service 

condition. The layout of this tanker is shown in Figure 4.2. Optimization is performed on 

longitudinal structural members. Problem modelling, optimization and result analysis is 

conducted using Matlab and Fortran. The problem was introduced in [42] and optimized later 

in [85] and [37]. Variables, structural constraints and objectives are described below.  

4.3.1 Design variables and parameters 

The tanker is subjected to lateral pressure from sea and cargo. Because of the local difference 

between buoyancy force and ship’s weight, vertical shear force and bending moment arise 

along the ship, under sagging and hogging conditions [86]. Figure 4.2 (a) shows the distribution 

of vertical bending moment and shear force along the ship. The maximum bending moment is 

2.93·106 kNm and 2.41·106 kNm for sagging and hogging conditions, respectively, and the 

maximum vertical shear force is 48·103 kN for both conditions. 

Figure 4.2 (b) shows the detailed drawing of the half cross-section of the tanker. Due to 

symmetry, one half of the midship section is considered in optimization, nonetheless mass is 

presented as the total mass of the structure in the results. The structure consists of 47 strakes, 

each of them defined by five parameters: plate thickness, stiffener size, stiffener type, number 

of stiffeners, and panel’s material type. Plate thickness and stiffener size of each strake are 

considered as the variables of the problem (total of 94 variables). The other three are assumed 

as fixed, together with the transverse structures. The choice of decision variables will influence 
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the final values of the objectives and consideration of all five parameters above could lead to 

more optimized structure, however, the aim of the study is to compare different optimization 

algorithms, and this comparison remains qualitatively the same once optimization problem is 

set up. Plate thickness is considered from 5 mm to 26 mm with a step of one millimeter. 

Stiffeners are selected from a standard table of profiles given by the steel producers [87], 

ranging from HP 100x5 to HP 430x17.  

4.3.2 Design constraints 

In this problem, the yield strength of the cargo tanks’ plating is 460 MPa and for the rest of the 

structure it is 355 MPa. 8 constraints are considered for each strake, namely stiffener yielding, 

plate yielding, plate buckling, stiffener web buckling, flange buckling, lateral buckling, 

tripping and crossover. To prevent uncontrolled panel collapse, crossover constraint ensures 

that the global buckling strength is larger than the plate or stiffener buckling strength [88]. 

Stresses from global loads (shear force and bending moments) are calculated using Coupled 

Beam (CB) method [89] at each part of the cross-section under both hogging and sagging 

conditions. Local stresses (plate and stiffener under pressure loading) are calculated using 

classic plate and beam theory. Local stresses are superimposed to the ones arising from global 

loads and the worst possible combination is taken at each strake. Finally, constraints are 

normalized based on non-linear normalization function [90] : 

 𝑔𝑗(𝒙) =
𝐴𝑗(𝒙) − |𝐵𝑗(𝒙)|

𝐴𝑗(𝒙) + |𝐵𝑗(𝒙)|
, (4-5) 

where 𝐴𝑗(𝒙) is the capacity of the structural element j, and 𝐵𝑗(𝒙) is the stress acting on it. 

Normalized constraints range from -1 to 1, where negative value indicates violation and zero 

represents the boundary. Large majority of computational time in the tanker problem goes 

towards the assessment of constraints. 
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Figure 4.2. Cross-section of the tanker [37]. Strake numbers are shown in circles. Dimensions are in mm. 

4.3.3 Design objectives 

Two objectives are considered: (a) minimization of the structural mass and (b) maximization 

of deck’s adequacy. Mass is calculated by multiplying steel density of 8 t/m3 with cross 

sectional area of longitudinal members, extending them for the whole ship’s length (and 

breadth), effectively considering the ship to be prismatic. Moreover, 21.44 t is added as the 

mass of the transverse structure every 3.56 m. The second objective aims to increase structural 

safety by reducing stresses in the deck in order to decrease occurrence of significant fatigue 

cracks. The deck is selected as the critical part of the structure since other parts of the structure 

have higher redundancy due to the double-plated construction. Therefore, the second objective 

is formulated as the sum of the normalized deck constraints, which reach the maximum value 

of one when stress approaches zero; see Eq. (4-5). The deck’s adequacy was taken as a 

simplified measure of safety for the purpose of comparing the optimization algorithms. More 

refined models should be used for engineering purposes; see e.g. Ref. [91] .We can anticipate 
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a conflict between the two objectives: lighter solutions have higher stresses in the deck, thus 

lower deck adequacy. The second objective is leading the solutions away from the constraint 

boundary and deeper into the feasible space, which makes the structure heavier. It is worth 

mentioning that since ANN is used as the surrogate model to predict constraints, and 

constraints are used to calculate the second objective (adequacy), the surrogate model is 

predicting the second objective for the tanker problem, until we revert back to the original 

structural code. 

4.4 Control parameters  

4.4.1 Parameter settings in optimization algorithms 

Since certain steps in metaheuristic optimization algorithms are carried out at random, 100 

independent runs are performed for the OSY problem and the 10-bar truss problem. Limited 

by the computation resources, the tanker problem is optimized for 30 times. An initial 

population can be manually provided by the user beforehand so that the algorithm could get 

better results from a good starting point. To prevent bias and allow fair comparisons, initial 

populations can be generated randomly using the uniform distribution of the variables between 

their upper and lower bounds. For complex engineering problems, the randomly generated 

initial population could be completely infeasible which is challenging for optimization 

algorithms to start from. Nonetheless, this is a suitable way to evaluate the algorithms’ 

performance. Furthermore, all simulations for the tanker are performed based on the same 

initial populations to alleviate the influence of the optimization algorithms’ starting position.  

The following general control parameters are used for all test optimization algorithms for 

consistency. Population size is set as 100 for all test problems. It is worth mentioning that the 

size of the population is fixed even when using the repair, in which case the number of “normal” 

solutions is reduced. The number of generations is 1000 for tanker optimization, while this 
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number is 50 for OSY and truss problem since these are easier to optimize. We use continuous 

variables for OSY and truss problem. However, the variables for the tanker problem are 

discrete, thus a solution is defined with a 400-bit-long chromosome.  

Algorithm-specific parameters are listed in Table 4.1. Most of the parameters are taken from 

the suggested value in their original papers as they all show the best performance in the 

preliminary tests [1,16,18,37,71,72]. An exception is MOGWO, whose control parameters are 

optimized to obtain a better result. 

Table 4.1. Parameter settings for testing algorithms. 

Algorithms Settings 

NSGA-II 𝑝𝑐 = 0.9; 𝑝𝑚 = 1/𝑛 

MOEA/D Neighborhood size 𝑇 = 20 

PSO 𝑤 = 0.99; 𝑐1 = 1.5; 𝑐2 = 2 

PSO repair 𝜎 = 2; 𝜇 = 1 

MVO & MOMVO WEP was linearly increased from 0.2 to 1; 𝑝 = 6 in TDR 

IGWO 𝑎 was linearly decreased from 2 to 0 

MOGWO 𝑎𝑙𝑝ℎ𝑎 = 0.5; 𝑏𝑒𝑡𝑎 = 10; 𝑛𝐺𝑟𝑖𝑑 = 10 

Note that n is the number of variables in continuous problems and the number of bits in discrete problems. 

4.4.2 Hyperparameter settings in ANN 

Other than the control parameters of the optimization algorithms, hyperparameter settings of 

the ANN are also listed here. It is well known that the hyperparameters profoundly affect its 

accuracy and the time required for training. Hyperparameters considered here are the training 

size, learning rate, activation functions, loss function optimizer, regularization method and 

architecture. Except for the ANN architecture, the other hyperparameters could be easily 

optimized. Several preliminary tests have been done and the settings of those hyperparameters 

are shown in Table 4.2. 
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Table 4.2. ANN hyperparameter settings. 

Hyperparameters Settings 

Initial learning rate 0.1 

Activation functions Sigmoid and Purelin 

Optimizer Levenberg-Marquardt backpropagation 

Regularization method Early stopping 

Maximum number of epochs 2000 

 

It is worth mentioning that the early stopping is applied to prevent overfitting. To avoid 

underfitting, maximum of 2000 epochs has been set for the optimizer to fully reach the optimal 

weight matrices. Sigmoid and Purelin activation functions are used in the hidden layers and 

the output layer, respectively. Levenberg-Marquardt backpropagation results in the best 

training among other options in Matlab.  
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5 Results 

5.1 ANN accuracy investigation 

As mentioned in Section 4.4.2, ANN’s accuracy largely depends on hyperparameter settings. 

Some hyperparameters have been optimized as shown in Table 4.2. 

In this thesis, the purpose of applying ANN is to help improve optimization algorithm’s 

efficiency. Thus, minimizing ANN training time is equally important as maximizing ANN 

accuracy. The hyperparameters that influence both factors the most are training data size and 

ANN architecture. The influence of data size will be discussed in the end as it is widely known 

that more data improves the accuracy. In contrast, ANN architecture needs to be adjusted 

properly, as a wider and deeper network will slow down the training process and may lead to 

overfitting. Further, a narrow and shallow ANN cannot meet the desired accuracy. In this thesis, 

we present the performance for different ANN architectures with the other hyperparameters 

fixed. We focus on the tanker optimization case, since OSY and truss problem are much 

simpler. For the tanker, ANN is used as surrogate model, besides defining the variable-

constraint mapping. The term “total time” is used to denote time it takes to train a network up 

to 20 times to predict all constraints in a problem. We focus on constraints since their 

assessment takes the most of computational resources; objectives are simple explicit functions. 

Since large number of ANNs need to be trained, in order to save computational time, they are 

not be trained after reaching accuracy of more than 99% (Eq. (3-6)). For come constraints that 

are hard to predict, ANN needs to be trained multiple times. The maximum number of training 

attempts is set to 20; if accuracy is less than 99% for all, the best network is selected. The 

number of independent training runs is set to 20 because of the influence of training data 

sequence on the ANN accuracy. Hence, for each independent training, we randomly shuffle 
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the sequence of training data. The error is reported for the most accurate network. The training 

set consists of 3,000 randomly generated solutions.  

Figure 5.1 shows the prediction error and training time when using shallow ANN with different 

numbers of outputs (constraints) for the tanker. We would normally want to predict a larger 

number of constraints with a single network. However, we can observe from Figure 5.1 that 

both the error and training time increase with a larger number of outputs, thus a network with 

only one output is selected as the most appropriate. We can see that ANN shows the lowest 

error of 3.57% with five neurons in the hidden layer. The network takes 1.3 hours to train, 

which is acceptable for the optimization process, given that the optimization of the tanker takes 

about 100 hours using the original structural model with 1000 generations. Further increasing 

the neural network capacity decreases the accuracy as more neurons may cause overfitting.  

   
Figure 5.1. Accuracy and training time for shallow ANN used on tanker optimization problem. 

Figure 5.2 shows the performance of a neural network with two hidden layers and a single 

output. The lowest error is 3.55% when the ANN contains five neurons in the first hidden layer 

and three neurons in the second. This is very close to the performance with a single hidden 

layer, but it requires more time to train. The training time for the best performing deep neural 

network (two hidden layers) is 47% higher than the time for the best performing shallow 

network. Similar results are found for deep neural networks with two and four outputs, where 

the smallest error is 3.55% and 3.57%, respectively, but it requires longer training. The same 

trend for accuracy and training time continues with higher number of hidden layers, thus is not 
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pursued. Therefore, a shallow ANN is used in continuation, where the network with one to 

seven neurons is trained, tested and the best one is selected for each constraint (376 constraints 

in the tanker case). Generally, if a more complex problem is optimized, deep network might 

be beneficial to reduce the error. 

 

Figure 5.2. Accuracy and training time for deep ANN with two hidden layers and one output used on 

tanker optimization problem. 

The size of the training data is also an important factor that influences the accuracy of ANNs. 

As shown in Figure 5.3, more data causes the error to decrease quite fast initially and 

afterwards much slower. Training time increases gradually from 2.25 hours to 57.8 hours as 

the data size increases from 500 to 10,000. The error of ANN goes down from 6.56% to 3.13%. 

Considering both ANN training time and accuracy, optimization results in Section 5.3 and 

Section 5.4 involve ANN trained with 10,000 solutions. 

 

Figure 5.3. Influence of the training data size on the accuracy of a shallow neural network for tanker 

optimization problem. 
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5.2 ANN-based variable-constraint mapping 

As discussed in Section 3.2 the variable-constraint mapping outlines the most significant 

variables that affect constraints. More accurate variable-constraint mapping could improve the 

efficacy of the proposed repair technique. Section 3.2 describes the procedure to automate the 

mapping using a trained ANN. In this subsection, the effect of training data size on the accuracy 

of the mapping is discussed. 

Figure 5.4 (a) shows the mapping for the OSY problem, which could be defined manually 

based on the closed-form functions. For the truss problem or tanker that is much harder (even 

impossible) to define, thus we use ANN as outlined in Section 3.2. The training data are 

randomly generated set of variable values and their resulting constraints. We can see that even 

a relatively small data size of 60 points leads to the correct definition of the mapping matrix 

for the OSY. 

On the other hand, the constraint formulas for the truss problem are more complex. Both stress 

and displacement constraints are influenced by several structural members. A user can hardly 

define the variables that significantly influence each constraint. We assume that ANN trained 

with high amount of data leads to the correct mapping. We can see from Figure 5.4 the 

convergence of the mapping for the truss problem as the data size increases. 

The difference is only 5.6% (1 constraint incorrectly predicted) when going from 4000 to 2000 

data samples. It is worth mentioning that due to the randomness of ANN, the significance value 

generated for each variable fluctuates. Thus, those variables with significance around the 

threshold η might not be selected sometimes. This explains the fluctuation of difference when 

the ANN contains more training data. 
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Table 5.1 shows the details of the automated mapping for the truss problem, including all 

constraints and significant variables. We can notice that some members can be categorized into 

groups, and the members of the group will affect each other's stress. Two groups are found: 

bar #1, #3, #7, #8, and bar #2, #4, #6, #9, #10. Furthermore, the variables that influence the 

displacement are mostly bars #1, #3, #7, and #8.  

Table 5.1. Most significant variables which influence each constraint for the truss problem, defined by the 

automated mapping algorithm. 

Constraint Member(s) that affect the constraint: 

Stress in bar #1 1,3,7,8 

Stress in bar #2 2,4,6,9,10 

Stress in bar #3 1,3,7,8 

Stress in bar #4 2,4,9,10 

Stress in bar #5 3,5,7,8,9 

Stress in bar #6 4,6,9,10 

Stress in bar #7 1,3,7,8 

Stress in bar #8 1,3,7,8 

Stress in bar #9 2,6,9,10 

Stress in bar #10 2,6,9,10 

Node 1 displacement in x-direction 1,3,7,8 

Node 1 displacement in y-direction 1,3,7,8 

Node 2 displacement in x-direction 1,3,7,8 

Node 2 displacement in y-direction 1,3,7,8,9 

Node 3 displacement in x-direction 1,2,3,7,8 

Node 3 displacement in y-direction 1,3,7,8,9,10 

Node 4 displacement in x-direction 1,3,7,8 

Node 4 displacement in y-direction 1,3,7,8 
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a) 

 
b) 

 
c) 

 
Figure 5.4. Accuracy of automated mapping a) OSY problem b) Truss problem c) Tanker problem. 
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The tanker problem is even more complex and requires a much larger training data. Similar to 

the truss problem, we don’t know the correct mapping matrix for such a complex problem, as 

constraints could be affected by any number of variables. Therefore, we also assume that the 

prediction is correct for a large data size. We can see from Figure 5.4 that the deviation from 

the mapping decreases as we increase the training data size. Initially with 500 data samples, 

the deviation is 10.6%, which decreased rapidly to 3.19% with 2000 points. The deviation can 

be further decreased to 0.79% when the data size increases to 20,000, even though a large 

training time is required. Thus, a training size of 3,000 data points (with 2.66% mapping 

deviation) is used to be consistent with ANN training for the purpose of surrogate model 

definition. It is worth mentioning that the automated mapping for the tanker is generally sparse, 

having only 220 non-zero members out of 376×94 matrix (𝑙 × 𝑛). This is even more sparse 

than assumed in Ref. [37]. 

Table 5.2 shows the most significant variable which affects each type of constraint for the 

tanker problem, defined by the automated mapping. In some cases, the constraints are always 

satisfied, which can be explained by the choice of variable bounds. This shows one advantage 

of using ANN to define the mapping: only ‘active’ constraints are linked to their variables, 

which is hard for a user to assume beforehand, for such complex problems. Preliminary 

investigation revealed similar success of the repair technique in creating feasible solutions 

using automated mapping and the mapping assumed in Ref. [37]. Since the training data shows 

that some constraints are never violated, training could be omitted in such cases, but since 

some of them are used for the second objective, that is not pursued for the ease of 

implementation. Moreover, the total training time is relatively short (10 hours) in comparison 

to the normal optimization run with the original structural model (100 hours). 

Another phenomenon observed in automated mapping is that ANN considers all variables as 

‘insignificant’ for some constraints. This validates what we assumed in Section 3.2: multiple 
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variables are equally important, and no variable significantly influences that constraint. This 

shows the second advantage of automated mapping: even if no variable is selected, 

insignificant variables will not be selected to define the mapping. 

Table 5.2. The most significant variable that influences each constraint for the tanker problem, defined by 

the automated mapping algorithm. 

Constraint Automated mapping defined it as the function of *: 

Plate yielding Plate thickness in 70% of strakes* 

Plate buckling Plate thickness in 95% of strakes* 

Stiffener yielding Stiffener size in 57% of strakes* 

Stiff. web buckling Constraint is always satisfied* 

Stiff. flange buckling Constraint is always satisfied* 

Stiff. lateral buckling Stiffener size in 70% of strakes* 

Stiff. torsional buckling Plate thickness in 10% of strakes, stiffener size in 15% of strakes* 

Crossover Plate thickness in 8.5% of strakes, stiffener size in 17% of strakes* 

* In remaining strakes the constraint is always satisfied. 

5.3 Optimization comparisons for single-objective problems 

In this subsection, the results of single-objective optimization algorithms are compared. We 

apply static penalty in PSO, IGWO, GSA, and MVO to handle constraints. Together with PSO 

with repair, the minimum objective value found by those algorithms at each generation for 

each test problem is shown in Figure 5.5 to Figure 5.7. Note that the initial study tested several 

penalty factors for the static penalty approach; the best performance for all problems was 

achieved with a high penalty factor. Thus, we apply the penalty factor as 107 for most 

comparisons. Moreover, all the tests are conducted for 100 runs except the tanker problem 

which is limited by the computational resources, and the median value is selected for plotting 

the results. 

Figure 5.5 shows the history of the minimum value of the first objective value for OSY. Since 

OSY is relatively easy to optimize, the algorithms quickly reach the global minimum. PSO 
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with repair converges to the global optimum at the 32nd generation. PSO and IGWO with static 

penalty take a longer time, 80 and 200 generations, respectively. However, the median of GSA 

and MVO fails to reach the global optimum within 1000 generations. Median objective values 

can be found in Table 5.3. Static penalty shows a good ability to handle constraints, which 

leads to a competitive performance of PSO, IGWO, and MVO. GSA does not perform so well 

on this problem. 

 

Figure 5.5. The lowest value of the first objective of OSY throughout the optimization. 

In Figure 5.6, we can observe a similar trend as in Figure 5.5, where PSO with the repair 

achieves the best result. The optimum has already been obtained in [83], which is shown as a 

horizontal line in Figure 5.6. Only PSO with repair fully converges to the global optimum 

within 50 generations. PSO and IGWO with static penalty require about 560 and 980 

generations to reach the same point. Similar to Figure 5.5, median GSA and MVO with static 

penalty cannot find the global optimum solution in 1000 generations. Further, PSO with static 

penalty shows the second-best performance. IGWO and MVO are relatively worse, while GSA 

fails to improve the solutions after the 6th generation. 
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Figure 5.6. Minimum truss weight found by different algorithms. 

Figure 5.7 shows the history of the minimum weight design for the tanker. The starting point 

of each curve indicates when the algorithm finds feasible solutions. Due to high complexity of 

the tanker problem, solutions randomly generated at the initial stage are all infeasible. 

Algorithms need to properly handle constraints to reach feasible design space. PSO with static 

penalty finds the feasible space at generation 22, while it takes 102 generations for GSA. 

IGWO and MVO take relatively longer to find their first feasible solution, at generation 337 

and 384, respectively. Even though IGWO is slow to find feasible space at the initial stage, it 

converges fast and finds similar result as PSO with the repair at the end, see Table 5.3.  

In contrast, PSO and GSA with static penalty show a slow convergence. PSO with repair 

outperforms other algorithms, and converges to the global optimum at generation 107, which 

is nine times faster than IGWO with static penalty which obtains a similar result at the end. 

The excellent convergence of PSO with the repair indicates that this approach could be 

potentially applied to the early design of engineering problems.  

0 10 20 30 40 50
4500

5000

5500

6000

6500

7000

T
ru

ss
 W

ei
g

h
t 

(l
b

)

Generations

 PSO Repair

 PSO SP 107

 IGWO SP 107

 GSA SP 107

 MVO SP 107

 Ref. [83]

Truss



 

64 

 

 

Figure 5.7. Minimum tanker weight found by different algorithms. 

Table 5.3. Statistics of the algorithms’ performance at the end of optimization for single-objective 

problems. 

  Median Average St.Dev. Best 

PSO 

PSO Repair -274.0 -274.0 0.00026 -274.0 

PSO SP 107 -262.2 -260.6 7.693 -272.3 

IGWO SP 107 -267.8 -267.1 2.546 -271.2 

GSA SP 107 -189.2 -184.5 26.34 -228.9 

MVO SP 107 -262.0 -261.6 5.240 -270.2 

Truss 

PSO Repair 4657 4657 1.777 4656 

PSO SP 107 4695 4702 20.48 4676 

IGWO SP 107 4797 4798 24.50 4751 

GSA SP 107 6681 6644 258.0 5692 

MVO SP 107 4765 4771 30.56 4723 

Tanker 

PSO Repair 7148 7153 68.71 6984 

PSO SP 107 7252 7254 106.1 7020 

IGWO SP 107 7120 7125 51.34 7024 

GSA SP 107 7860 7960 134.9 7696 

MVO SP 107 7664 7664 156.0 7264 
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Analysis of the repair-based CHT in PSO 

Figure 5.8 shows the median performance of the repair operator during optimization for the 

tanker problem. Only the first 300 generations are shown since PSO with repair is fully 

converged after that. At the beginning of the optimization, the algorithm generates many 

infeasible solutions to explore the design space. Later the algorithm focuses on the exploitation 

where more prominent infeasible solutions are selected as repair candidates (see Section 3.3 

dynamic selection of repair candidate). This could be observed from the red dots, where up to 

60% of the solutions are repaired at generation 80. Most of the solutions are successfully 

repaired, while the unsuccessful could be explained with inaccuracies in the automated 

mapping. Afterwards, the number of generated infeasible solutions and repaired solutions is 

decreased. This indicates that the algorithm has converged to the global optima. 

 

Figure 5.8. Performance of the proposed repair CHT in OSY for tanker optimization. 

5.4 Optimization comparisons for multi-objective problems 

In this subsection, we discuss the influence of repair-based CHT on multi-objective 

optimization algorithms, in comparison to other CHTs. Figure 5.9 presents median values of 

the performance indicators throughout the optimization for MOEA/D with different constraint 
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handling approaches. We can see that constraint handling approach can significantly alter the 

performance of the optimization algorithm. For the OSY problem, essentially the same 

performance is achieved with repair and adaptive threshold, having the same final HV value 

and almost the same IGD, see Table 5.4. This is significantly better than with static penalty. 

Here, we show MOEA/D with penalty factors 102 and 107 for comparison. On the tanker 

problem, repair outperforms adaptive threshold approach, not just in the end but also at every 

generation, which is important for practical purposes when optimization needs to be interrupted 

prematurely due to e.g., lack of time or resources.  

Similar to PSO with repair, the novel repair-based CHT helps MOEA/D find feasible solutions 

at the initial optimization stage (2nd generation). It is worth mentioning that the first generation 

is entirely infeasible with solutions violating 25 to 35 constraints for the tanker problem, which 

is the reason that other approaches take about 50 generations to find the feasible space, thus 

having initial HV values of zero. This could be observed in all approaches from Figure 5.9 to 

Figure 5.11 except for the algorithms with the repair technique. 30 runs that were made with 

each approach start with the same 30 randomly generated populations to eliminate the 

influence of algorithms’ starting position. Table 5.4 gives median, average, standard deviation, 

and the best values of performance indicators at the end of optimization. 
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Figure 5.9. Median performance indicators during optimization for MOEA/D with different constraint 

handling approaches for OSY and tanker problem. 

Table 5.4. Statistical values of the performance indicators at the end of optimization. 

 
HV IGD 

Med. Avg. St.Dev. Best Med. Avg. St.Dev. Best 

OSY 

MOEA/D Repair 0.9020 0.9003 0.0064 0.9020 0.0109 0.0119 0.0046 0.0094 

MOEA/D Ad. Th. 0.9018 0.9003 0.0127 0.9021 0.0108 0.0128 0.0171 0.0094 

MOEA/D SP 107 0.8665 0.8349 0.1041 0.9017 0.0424 0.0684 0.0745 0.0116 

MOEA/D SP 102 0.7294 0.7587 0.0550 0.8640 0.2038 0.1875 0.0559 0.0621 

NSGA-II Repair 0.8662 0.8336 0.1137 0.9016 0.0386 0.0694 0.0860 0.0063 

NSGA-II Ad. Th. 0.8629 0.8131 0.1166 0.8994 0.0462 0.1009 0.0995 0.0078 

NSGA-II SP 107 0.8635 0.8079 0.1241 0.9004 0.0439 0.0990 0.1003 0.0068 

NSGA-II Original 0.8645 0.8238 0.1128 0.9003 0.0457 0.0927 0.0925 0.0074 

MOMVO SP 107 0.8886 0.8518 0.0900 0.8963 0.0244 0.0634 0.0798 0.0175 

MOGWO SP 107 0.6972 0.6820 0.1086 0.8113 0.0183 0.0195 0.0041 0.0155 

Tanker 

MOEA/D Repair 0.8238 0.8218 0.0121 0.8378 0.0282 0.0288 0.0052 0.0193 

MOEA/D Ad. Th. 0.8145 0.8105 0.0234 0.8505 0.0363 0.0380 0.0126 0.0143 

MOEA/D SP 107 0.7100 0.6974 0.0378 0.7600 0.1230 0.1207 0.0176 0.0930 

MOEA/D SP 102 0.6648 0.6661 0.0252 0.7148 0.1174 0.1180 0.0241 0.0688 

NSGA-II Repair 0.8376 0.8366 0.0115 0.8676 0.0234 0.0229 0.0062 0.0060 

NSGA-II Ad. Th. 0.7532 0.7246 0.0511 0.7864 0.0672 0.0816 0.0264 0.0527 

NSGA-II SP 107 0.7113 0.7147 0.0429 0.7948 0.0899 0.0884 0.0205 0.0496 

NSGA-II Original 0.6908 0.6953 0.0491 0.7981 0.0974 0.0961 0.0266 0.0449 

MOMVO SP 107 0.5410 0.5381 0.0325 0.5980 0.2125 0.2173 0.0238 0.1800 

MOGWO SP 107 0.2745 0.2757 0.0108 0.2980 0.3870 0.3861 0.0209 0.3440 
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Similar to MOEA/D, different constraint handling approaches are embedded into NSGA-II. 

Together with its original version, the performance of those algorithms for both multi-objective 

test problems is shown in Figure 5.10. Since static penalty with low penalty factor shows a 

poor performance as mentioned above, only the high penalty factor is used. We can see that 

the repair approach significantly improves the performance of NSGA-II. It should be noted 

that the original NSGA-II uses constrained non-domination for CHT, however, MOEA/D is 

proposed for unconstrained problems, thus the original MOEA/D is not considered in this 

research since all test problems are constrained. We can see from Figure 5.10 that static penalty 

improves the performance of NSGA-II, while further improvement is achieved with adaptive 

threshold. However, the most significant improvement of NSGA-II is achieved through the 

repair technique. 

 

 

Figure 5.10. Median performance indicators during optimization for NSGA-II with different constraint 

handling approaches for OSY and tanker problem. 
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Since the field of metaheuristic optimization is constantly evolving, we need to compare the 

performance of MOEA/D and NSGA-II with recent swarm algorithms. Figure 5.11 brings to 

perspective MOMVO and MOGWO. Static penalty is used on all four algorithms. Performance 

with the repair-based constraint handling in MOEA/D and NSGA-II is shown for comparison. 

We can see that on OSY problem MOMVO with static penalty is initially making rather slow 

progress, but in the end, it outperforms NSGA-II with repair. However, MOEA/D with repair 

still achieves better results. MOGWO initially progresses fast but does not yield desirable 

performance in the end. MOMVO and MOGWO did not perform that well on the tanker 

problem. Final HV and IGD values are given in Table 5.4. According to the no free lunch 

theorem [2], an optimization algorithm is not suited for all types of problems. We can see here 

that MOEA/D and NSGA-II work better on tanker problem than those recent swarm algorithms, 

despite them being superior on typical optimization benchmark problems in literature. 

 

 

Figure 5.11. Performance indicators for all considered multi-objective optimization algorithms having 

repair or static penalty as constraint handling approach. 
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Analysis of the repair-based CHT in MOEA/D and NSGA-II 

Similar to Section 5.3, we track the progress of the repair when dealing with the tanker problem 

for both MOEA/D and NSGA-II. As shown in Figure 5.12, in MOEA/D the median share of 

infeasible solutions is large. Thus, many infeasible solutions are repaired, about 35% of the 

whole population. However, the percentage of the successfully repaired solutions decreases 

significantly. A lower number of solutions still dominates the existing feasible solutions after 

being repaired.  

 

Figure 5.12. Performance of the proposed repair CHT in MOEA/D for tanker optimization. 

In contrast, the repair in NSGA-II shows a different trend (Figure 5.13). Because of the genetic 

operators and non-domination sorting, the algorithm generates sufficient number of prominent 

infeasible solutions at each generation. The number of repaired solutions is even gradually 

increasing as the optimization progresses. Different from the repair processes in PSO and 

MOEA/D, the repair operator shows a steady capacity of providing new non-dominated 

solutions. This explains why the NSGA-II with repair shows a good performance in tanker 

optimization. 
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Figure 5.13. Performance of the proposed repair CHT in NSGA-II for tanker optimization. 

 

Non-dominated fronts and optimized tanker with minimum weight 

Considered performance indicators quantify the spread and distribution of non-dominated 

fronts. Figure 5.14 shows the actual non-dominated fronts at the end of optimization. Out of 

100 runs for OSY and 30 runs for the tanker problem, the run with the best (lowest) IGD value 

is presented for each algorithm. We can see that NSGA-II and MOEA/D find the PF of the 

OSY case with fairly even distribution, except for the bottom right corner which is somewhat 

sparse. MOMVO and MOGWO clearly lack diversity which is the reason for their somewhat 

worse performance indices. The differences are larger for the tanker problem. In this case, 

MOMVO and MOGWO are significantly worse. NSGA-II and MOEA/D with repair find 

designs with low mass that are very difficult to reach because the design space is highly 

constrained in that region. The lowest-weight solutions found by both algorithms are 7191 tons 

and 7132 tons, respectively. Considered constraints prevent failures which generally occur for 

structural members with low thickness and thus low weight. Therefore, it is comparably easier 

to find designs with high adequacy than low weight.  
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Figure 5.14. Final non-dominated fronts of the best performing runs for both multi-objective test problems. 

 

Optimized tanker cross-section structures 

Figure 5.15 (b) shows scantlings of the two designs on the extreme sides of the Pareto front: 

one with minimum mass and one with maximum adequacy. Structure was not standardized 

before presented here nor was it given any corrosion addition. Designs obtained in this research 

are the result of considered constraints and objectives and as such are simplified. This can 

explain some differences between neighbouring strakes, which could be improved by 

considering production constraints. However, the focus in this research is on conceptual design 

where production constraints might be omitted. Structural elements in double bottom, side 

shell and deck structure from the minimum mass design follow vertically the beam distribution 

of weight, in order to satisfy the area moment. Side has the lowest plate thicknesses and 

stiffener sizes, while the bottom elements are additionally increased to resist the water pressure. 

Inner bottom elements in the cargo tanks are larger than in the bottom because of the increased 

cargo density, and the same is valid for the inner side. For the outer cargo tank, reduction in 

scantlings can be seen in the longitudinal bulkhead and inner side when going upwards in the 

direction of decreasing cargo pressure. The same happens in the central tank but with generally 
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higher plate thicknesses and stiffener sizes due to higher density. Comparing to this design, 

structure with the maximum adequacy differs in the deck and nearby strakes, and double 

bottom. As can be expected, plates are thicker and stiffeners are larger in the deck, but also in 

the strakes immediately below since they contribute to stress reduction in the deck. Likewise, 

double bottom is reinforced to decrease global stress component. Other minor differences 

between the two design alternatives (for example close to the neutral axis) can be explained by 

the randomness of the algorithm’s working principle.  

a) b) 

  
Figure 5.15. a) Lower and upper bounds of each strake; b) scantlings of minimum mass and maximum 

adequacy design. 

  

y

z

20; 430x17
5; 160x8

20; 430x17 21; 280x12
6; 180x8

26; 430x17
11; 280x11

20; 200x9
5; 100x7

20; 200x9
5; 100x7

20; 200x9
5; 100x7

20; 200x9
5; 100x7

20; 300x12
5; 100x5 20; 320x13

5; 100x8

20; 320x13
5; 100x8

20; 320x13

20; 320x13
5; 100x8

20; 300x12
5; 100x5

20; 340x14
5; 120x6

20; 340x14
5; 120x6

20; 340x14
5; 120x6

20; 340x14
5; 120x6

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 180x9
5; 100x5

22; 320x13

22; 320x13
7; 200x12

20; 300x12
5; 100x5

20; 260x11
5; 160x7

27; 300x12 20; 260x11
5; 260x7

20; 260x11
5; 160x7

22; 340x14
7; 220x12

20; 300x12

20; 300x12

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 180x9
5; 100x5

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 180x9
5; 100x5

20; 300x12
5; 100x5

20; 300x12

20; 300x12
5; 100x5

22; 400x16
7; 260x10

20; 200x9
5; 100x7

5; 100x5

5; 100x8

5; 100x5

5; 100x5

7; 200x12

5; 180x10

5; 280x11

Cargo density =

1.850 t/m3 Cargo density =

1.250 t/m3

20; 180x9
5; 100x5

20; 180x9
5; 100x5

20; 180x9
5; 100x5

20; 180x9
5; 100x5

y

z

10; 120x7
9; 140x7

17; 160x9
9; 120x5

17; 160x9
9; 120x5

17; 180x8
9; 120x5

20; 300x11
13; 200x9 20; 280x11

10; 160x7

20; 320x12
12; 300x12

13; 240x10

17; 260x10
14; 240x11

17; 300x12
13; 260x11

16; 240x12
14; 260x10

15; 260x11
15; 260x10

14; 260x11
14; 260x10

17; 300x11
17; 280x11

20; 300x12
9; 180x8

17; 300x12
10; 300x11

9; 100x6
9; 100x7

17; 260x12

16; 320x13
16; 280x11

13; 260x10
13; 280x11

20; 120x5
8; 120x5

6; 160x9
6; 120x5

6; 100x6
5; 100x6

5; 120x7
5; 100x8

18; 230x12
14; 260x10

13; 260x10 20; 240x12
15; 260x10

19; 260x11
15; 260x10

19; 320x13
17; 280x11

9; 200x10

9; 200x9

18; 260x10
10; 160x7

20; 300x12
8; 160x9

8; 160x7
7; 160x7

5; 260x10
6; 100x7

7; 180x9
5; 120x7

20; 300x12
9; 140x7

5; 120x8
5; 100x7

13; 300x11
13; 220x10

13; 220x10

13; 240x10
13; 220x10

18; 320x12
18; 340x12

18; 160x8
9; 120x5

13; 220x10

13; 240x10

9; 200x9

9; 200x10

17; 260x12

13; 260x10

20; 430x17

Cargo density =

1.250 t/m3

20; 430x17
11; 260x11

20; 430x17 21; 280x11
11; 260x10

26; 400x16
26; 370x15

Cargo density =

1.850 t/m3
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6 Conclusion 

6.1 Overall conclusions 

This thesis presents an automated repair-based technique to handle complex constraints with 

optimization algorithms. This is achieved by automatically identifying and ranking the most 

significant variables that influence constraints in optimization, which is useful when constraint 

functions are not given in closed-form. Deep and shallow artificial neural networks (ANN) are 

used for this purpose. This information replaces a heuristic typically provided by designer for 

constraint handling with repair algorithm. We have modified the recent adaptive repair 

algorithm and tailored it into both single- and multi-objective algorithms, PSO, MOEA/D and 

NSGA-II, due to their wide adoption in the optimization field. Modified algorithms have been 

compared with few other population-based algorithms. GSA, IGWO and MVO are used for 

single-objective algorithms’ performance comparison, while MOMVO and MOGWO are 

applied for multi-objective cases. Two constraint handling techniques (CHT) are embedded 

into those algorithms for evaluation: static penalty and adaptive threshold. Both mathematical 

and engineering problems are studied in this thesis to present the effectiveness of this approach, 

including a common benchmark problem from literature, truss weight optimization and real-

life structural design of a chemical tanker. Proposed repair based CHT significantly improves 

the original algorithms’ performance for all test problems. Several conclusions can be made as 

follows:  

Automatic mapping: ANN can be used to automate the variable-constraint mapping, where 

the significance of each variable is quantified from 0 to 1 to represent whether the variable is 

significantly influencing a constraint. The procedure essentially replaces a user-provided 

knowledge of a problem, which in many cases cannot even be devised by human. The mapping 

is embedded into the novel repair based CHT and validated against few other CHTs. 
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Generality: The proposed approach has been tailored for three optimization algorithms: PSO, 

NSGA-II and MOEA/D, the first being single-objective and the latter two multi-objective. 

Only repair candidate and donor selection strategies require modification. This indicates that 

the approach could be broadly implemented into other algorithms. 

Time saving: Following the automatic mapping, the trained ANNs can be used as surrogate 

model for predicting constraints in optimization. Hyperparameters of ANN have been 

optimized to show the best performance. The proposed approach can save up to 90% of the 

total CPU time in tanker optimization. This is very useful to designers who need to get the 

optimal solution in a relatively short time.   

Convergence and diversity: Modified algorithms are assessed using both mathematical and 

engineering problems. Hypervolume and inverted generational distance are selected as the 

performance indicators to evaluate multi-objective optimization algorithms. The proposed 

repair-based CHT can provide a significant improvement for the optimization algorithms: 

(i) For an equal number of function evaluations, modified algorithms can reach a better 

front compared to their original version and other constraint handling techniques. 

(ii) Modified multi-objective algorithms can lead to wider spread of the final front than 

other state-of-the-art optimization algorithms. 

6.2 Limitation of the work 

The performance of the proposed approach largely depends on the ANN accuracy, which is 

important for both variable-constraint mapping and surrogate model. For a different problem 

ANN accuracy might decrease.  
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The proposed CHT is not suitable for solving optimization problems involving only a few 

variables. For instance, if a problem contains only one variable, repairing a solution is 

equivalent to replacing the solution. This could significantly reduce the diversity of the 

population. 

Modified PSO shows a limited capability of exploring the design space as the algorithm 

converges quickly at the initial optimization stage in tanker optimization. Even though the 

modified algorithm can rapidly approach the global optimum, premature convergence might 

be a problem in some cases. 

The threshold η is defined as 0.1 in this thesis, which potentially needs to be adjusted for 

different problems. Change of η will directly influence the automated mapping matrix. 

6.3 Future work 

Future work could be focused on applying more advanced ML techniques to generate more 

accurate mapping and surrogate model. The operating principle of the repair-based technique 

needs to be improved to adapt to more general problems. In addition, the way to embed repair 

CHT to PSO could be modified, as fixing the issue of premature convergence might further 

improve the overall performance of the algorithm. Moreover, the definition of the 

threshold η should be investigated, for example, using an adaptive parameter instead of a fixed 

value.  
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Appendices 

Appendix A: Validation of the surrogate model 

Figure A.1 shows the performance of NSGA-II with repair for the tanker optimization. The 

red curve represents the algorithm using the surrogate model throughout the whole 

optimization process. To validate the surrogate model in optimization, we switched the 

algorithm from the surrogate model back to the original structural code at the 800th generation, 

whose performance metrics are shown as the black curve in the figure. Both cases start from 

the same initial population. The median value is presented in each case out of 30 runs. Control 

parameters are the same. 

 

Figure A.1. Performance metrics for NSGA-II with and without the full surrogate model in tanker 

problem. 

Both performance measures noticeably deteriorate when the algorithm switches to the original 

structural model. ANN bears an error compared to the original structural model used for 

training, whose error becomes even larger with deeper exploration of the design space. At this 

stage, both the number of infeasible solutions and non-dominated infeasible solutions increases 

significantly, see Figure A.2. This leads to a performance reduction for both HV and IGD. 

Again, the repair operator aids in this situation: both the number of repaired solutions and the 
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number of successfully repaired solutions are increased significantly in a few generations after 

the switch. After that, the performance improves and reaches a similar level as the algorithm 

with original structural model. 

 

Figure A.2. Performance of the repair operator in NSGA-II including the switch from the surrogate to the 

original structural model. 
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Appendix B: Variable bounds and stiffener dimensions 

For the tanker problem, the variable bounds and their corresponding stiffener scantlings are 

shown here. In Table B.1, we can see the lower and upper bounds of plate thinness and stiffener 

ID per strake. The dimensions of the bulb profiles are given in Table B.2. 

Table B.1. Variable bounds for the tanker optimization problem.  

Strake # 
Plate thickness (mm) 

Strake # 
Stiffener size ID 

xmin  xmax xmin xmax 

1 5 20 1 12 27 

2 5 20 2 17 32 

3 5 20 3 12 27 

4 5 20 4 12 27 

5 7 22 5 22 37 

6 7 22 6 26 41 

7 5 20 7 1 16 

8 7 22 8 20 35 

9 7 20 9 20 16 

10 5 20 10 1 16 

11 5 20 11 13 44 

12 5 20 12 29 44 

13 6 21 13 15 30 

14 11 26 14 29 44 

15 5 20 15 1 32 

16 5 20 16 1 32 

17 5 20 17 1 32 

18 5 20 18 1 32 

19 5 20 19 4 35 

20 5 20 20 4 35 

21 5 20 21 4 35 

22 5 20 22 4 35 

23 5 20 23 1 32 

24 5 20 24 1 32 

25 5 20 25 1 32 

26 5 20 26 1 32 

27 5 20 27 1 32 

28 5 20 28 1 32 

29 5 20 29 6 37 

30 5 20 30 6 37 

31 5 20 31 6 37 

32 5 20 32 6 37 

33 5 20 33 1 32 

34 5 20 34 1 32 

35 5 20 35 1 32 

36 5 20 36 1 32 

37 5 20 37 1 32 
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38 5 20 38 1 16 

39 5 20 39 1 16 

40 5 20 40 1 16 

41 5 20 41 1 16 

42 5 20 42 1 16 

43 5 20 43 3 18 

44 5 20 44 3 18 

45 5 20 45 3 18 

46 5 20 46 3 18 

47 5 20 47 3 18 

 

Table B.2. Allowable stiffener dimensions. 

Identification number (ID) Thickness (mm) Height (mm) 

1 5 100 

2 6 100 

3 7 100 

4 8 100 

5 5 120 

6 6 120 

7 7 120 

8 8 120 

9 7 140 

10 8 140 

11 10 140 

12 7 160 

13 8 160 

14 9 160 

15 8 180 

16 9 180 

17 10 180 

18 9 200 

19 10 200 

20 12 200 

21 10 220 

22 12 220 

23 10 240 

24 11 240 

25 12 240 
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26 10 260 

27 11 260 

28 12 260 

29 11 280 

30 12 280 

31 11 300 

32 12 300 

33 13 300 

34 12 320 

35 13 320 

36 12 340 

37 14 340 

38 13 370 

39 15 370 

40 14 400 

41 16 400 

42 14 430 

43 15 430 

44 17 430 

 


