

ARTIFICIAL NEURAL NETWORK-ASSISTED REPAIR TECHNIQUE FOR

HANDLING CONSTRAINTS IN STRUCTURAL OPTIMIZATION

by

YUECHENG CAI

M.Eng., University of British Columbia, 2019

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Mechanical Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

January 2022

© Yuecheng Cai, 2022

ii

The following individuals certify that they have read, and recommend to the Faculty of

Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Artificial Neural Network-Assisted Repair Technique for Handling Constraints in Structural

Optimization

submitted by Yuecheng Cai in partial fulfilment of the requirements for

the degree of Master of Applied Science

in Mechanical Engineering

Examining Committee:

Dr. Jasmin Jelovica, Assistant Professor, Mechanical Engineering, UBC

Supervisor

Dr. Clarence De Silva, Professor, Mechanical Engineering, UBC

Supervisory Committee Member

Dr. Carl Ollivier-Gooch, Professor, Mechanical Engineering, UBC

Supervisory Committee Member

iii

Abstract

Structural design typically involves nonconvex criteria that need effective optimization

algorithms which can find the global optimum or Pareto optima. Constraints create complex

hyperspaces that are difficult to navigate, and traditional constraint handling techniques (CHTs)

might not be capable of steering the search. Repair techniques are one type of CHTs that can

be very effective but have a few limitations that restrict their use. We here present a new repair-

based CHT that addresses these issues by being: (i) adaptive to the share of infeasible solutions

in a population and (ii) free of problem-specific heuristic for repair that a user typically needs

to provide. Only the best performing infeasible solutions are repaired, to balance the normal

operating procedure of the optimization algorithm with CHT, i.e., minimizing objectives and

satisfying constraints. A procedure is proposed to apply artificial neural network (ANN) to

automate the definition of problem-specific knowledge by identifying and ranking the most

significant variables that influence each constraint. The proposed CHT approach is

implemented in single-objective swarm algorithm PSO and multi-objective evolutionary

algorithms NSGA-II and MOEA/D. The following test cases are considered: mathematical

benchmark problem, truss optimization and structural optimization of a chemical tanker’s main

frame. Trained ANN is used as surrogate model in the latter case. In comparison to the original

algorithms, a few state-of-the-art algorithms and CHTs, all modified algorithms show

significantly better performance.

iv

Lay Summary

Engineering problems and structures can be optimized using optimization algorithms. Failure

criteria and other limitations of the problem often prevent the algorithms from finding the best

solution. Constraint handling techniques e.g., repair techniques, can help optimization

algorithms deal with complex design constraints. However, repair methods cannot be widely

applied due to a few limitations. This thesis develops a new repair-based constraint handling

technique that addresses these issues by using artificial neural networks to automate the repair

process. The proposed approach has been embedded into three prominent optimization

algorithms. Test problems involve one mathematical benchmark problem and two engineering

problems. The results demonstrate the improved performance of the modified algorithms in

comparison to the original algorithms, state-of-the-art algorithms, and a few other prominent

constraint handling techniques.

v

Preface

The idea of this project was developed by Dr. Jasmin Jelovica and M.A.Sc student Yuecheng

Cai. Yuecheng Cai performed all the coding, analysis, and writing of the thesis draft. Part of

the computational experiments was conducted at UBC ARC Sockeye. This thesis was

supervised by Dr. Jasmin Jelovica. The validation of the research work was conducted by Dr.

Jasmin Jelovica and Yuecheng Cai.

Part of the thesis has been presented at the following conferences:

• Cai, Y., Jelovica, J. “Adaptive Constraint Handling in Optimization of Complex

Structures by Using Machine Learning”. Proc. 40th International Conference on Ocean,

Offshore and Arctic Engineering, June 2021.

• Cai, Y., Jelovica, J. “Improved multi-objective structural optimization using artificial

neural networks for repair-based constraint handling”. 1st International Conference on

Mechanistic Machine Learning and Digital Twins for Computational Science,

Engineering & Technology, San Diego, USA, September 2021.

vi

Table of Contents

Abstract .. iii

Lay Summary ... iv

Preface... v

Table of Contents ... vi

List of Tables .. ix

List of Figures ... x

List of Abbreviations... xii

List of Symbols ... xv

Acknowledgements ... xx

1 Introduction ... 1

1.1 Optimization formulations and definitions ... 1

1.2 Introduction to optimization algorithms ... 3

1.2.1 General overview ... 3

1.2.2 Constraint handling techniques .. 8

1.2.3 Optimization in engineering .. 12

1.3 Overview of machine learning .. 13

1.4 Aim of this thesis .. 16

1.5 Thesis outline .. 16

2 Basic concepts ... 18

2.1 Particle Swarm Algorithm... 18

2.2 Multi-objective Evolutionary Algorithm based on Decomposition 19

2.3 Non-dominated Sorting Genetic Algorithm-II .. 20

2.4 Novel optimization algorithms for comparison .. 22

2.5 Control parameters .. 24

2.5.1 General control parameters .. 24

vii

2.5.2 Specific control parameters.. 25

2.6 Prominent constraint handling methods.. 27

2.7 Performance measures .. 28

3 Proposed constraint-handling framework and implementation 30

3.1 Repair heuristic ... 30

3.2 Automated mapping based on ANN ... 34

3.3 Implementation to PSO ... 40

3.4 Implementation to MOEA/D .. 42

3.5 Implementation to NSGA-II ... 43

3.6 Repair-based Optimization Framework .. 44

4 Test case introduction ... 46

4.1 Mathematical benchmark problem ... 46

4.2 Truss problem optimization .. 46

4.3 Structural optimization of a tanker ... 48

4.3.1 Design variables and parameters ... 48

4.3.2 Design constraints .. 49

4.3.3 Design objectives ... 50

4.4 Control parameters .. 51

4.4.1 Parameter settings in optimization algorithms ... 51

4.4.2 Hyperparameter settings in ANN ... 52

5 Results ... 54

5.1 ANN accuracy investigation ... 54

5.2 ANN-based variable-constraint mapping .. 57

5.3 Optimization comparisons for single-objective problems .. 61

5.4 Optimization comparisons for multi-objective problems ... 65

6 Conclusion .. 74

viii

6.1 Overall conclusions ... 74

6.2 Limitation of the work .. 75

6.3 Future work ... 76

References ... 77

Appendices .. 86

Appendix A: Validation of the surrogate model ... 86

Appendix B: Variable bounds and stiffener dimensions ... 88

ix

List of Tables

Table 3.1. Donor selection probability. .. 42

Table 4.1. Parameter settings for testing algorithms... 52

Table 4.2. ANN hyperparameter settings. .. 53

Table 5.1. Most significant variables which influence each constraint for the truss problem,

defined by the automated mapping algorithm. ... 58

Table 5.2. The most significant variable that influences each constraint for the tanker problem,

defined by the automated mapping algorithm. ... 61

Table 5.3. Statistics of the algorithms’ performance at the end of optimization for single-

objective problems. ... 64

Table 5.4. Statistical values of the performance indicators at the end of optimization. 67

Table B.1. Variable bounds for the tanker optimization problem. ... 88

Table B.2. Allowable stiffener dimensions... 89

x

List of Figures

Figure 2.1. PSO algorithm configuration. ... 18

Figure 2.2. Pareto front and weight vectors in MOEA/D. .. 20

Figure 2.3. Non-dominated sorting in objective space [59]. ... 21

Figure 2.4. NSGA-II schematic procedure [15].. 22

Figure 2.5. Visualization of the performance measures (HV and IGD). 29

Figure 3.1. Repairing an infeasible solution in single-objective space................................... 30

Figure 3.2. Situation where infeasible solutions after successful repairing dominate the current

feasible solutions in multi-objective space [37]. ... 30

Figure 3.3. Illustration of the repair case 1. .. 32

Figure 3.4. Illustration of the repair case 2. .. 33

Figure 3.5. Artificial Neural Network architecture. .. 35

Figure 3.6. Dynamic selection of repair candidate. .. 41

Figure 3.7. Repair donor selection using Gauss probability. .. 42

Figure 3.8. Repair candidate selection in MOEA/D. .. 43

Figure 3.9. Possible location of sorted solutions in the population in NSGA-II [37]............. 44

Figure 3.10. Repair based optimization framework. ... 45

Figure 4.1. Configuration of the ten-bar truss... 47

Figure 4.2. Cross-section of the tanker [37]. Strake numbers are shown in circles. Dimensions

are in mm. ... 50

Figure 5.1. Accuracy and training time for shallow ANN used on tanker optimization problem.

... 55

Figure 5.2. Accuracy and training time for deep ANN with two hidden layers and one output

used on tanker optimization problem. ... 56

Figure 5.3. Influence of the training data size on the accuracy of a shallow neural network for

tanker optimization problem. .. 56

xi

Figure 5.4. Accuracy of automated mapping a) OSY problem b) Truss problem c) Tanker

problem. .. 59

Figure 5.5. The lowest value of the first objective of OSY throughout the optimization. 62

Figure 5.6. Minimum truss weight found by different algorithms. .. 63

Figure 5.7. Minimum tanker weight found by different algorithms. 64

Figure 5.8. Performance of the proposed repair CHT in OSY for tanker optimization. 65

Figure 5.9. Median performance indicators during optimization for MOEA/D with different

constraint handling approaches for OSY and tanker problem. ... 67

Figure 5.10. Median performance indicators during optimization for NSGA-II with different

constraint handling approaches for OSY and tanker problem. ... 68

Figure 5.11. Performance indicators for all considered multi-objective optimization algorithms

having repair or static penalty as constraint handling approach. .. 69

Figure 5.12. Performance of the proposed repair CHT in MOEA/D for tanker optimization.70

Figure 5.13. Performance of the proposed repair CHT in NSGA-II for tanker optimization. 71

Figure 5.14. Final non-dominated fronts of the best performing runs for both multi-objective

test problems. .. 72

Figure 5.15. a) Lower and upper bounds of each strake; b) scantlings of minimum mass and

maximum adequacy design. .. 73

Figure A.1. Performance metrics for NSGA-II with and without the full surrogate model in

tanker problem. ... 86

Figure A.2. Performance of the repair operator in NSGA-II including the switch from the

surrogate to the original structural model. .. 87

xii

List of Abbreviations

ABC Artificial Bee Colony algorithm

ANN Artificial Neural Network

AI Artificial Intelligence

CHT Constraint Handling Techniques

CNN Convolutional Neural Network

DBN Deep Belief Networks

DCGAN Deep Convolutional Generative Adversarial Network

DLH Dimension Learning-based Hunting

EA Evolutionary Algorithm

EBCH Evolutionary Bound Constraint Handling

EP Evolutionary Programming

ES Evolutionary Strategy

FA Firefly Algorithm

FEA Finite Element Analysis

GA Genetic Algorithm

xiii

GWO Grey Wolf Optimizer

GSA Gravitational Search Algorithm

HiDeNN Hierarchical Deep Learning Neural Network

HV Hypervolume Indicator

IGD Inverted Generational Distance

IGWO Inverted Grey Wolf Algorithm

KP Knapsack Problem

LSTM Long Short Term Memory network

ML Machine Learning

MOBA Multi-objective Bat Algorithm

MOEA/D Multi-objective Evolutional Algorithm based on Decomposition

MOGWO Multi-objective Grey Wolf Optimizer

MOMVO Multi-objective Multi-Verse Optimizer

MVO Multi-Verse Optimizer

NSGA-II Non-dominated Sorting Genetic Algorithm–II

PEBCH Probabilistic Evolutionary Bound Constraint Handling

xiv

PF Pareto Front

PMX Partially Mapped crossover

PSM Pattern Search Method

PSO Particle Swarm Optimizer

RBM Restricted Boltzmann Machines

RNN Recurrent Neural Network

SCA Sine-Cosine Algorithm

SR Stochastic Ranking

SVM Support Vector Machine

TBX Tie-breaking crossover

TDR Travelling Distance Rate

TSP Traveling Salesman Problem

WER Wormhole Existence Rate

xv

List of Symbols

𝑎 Activation of a neuron

acc Accuracy of an ANN

𝑎𝑙𝑝ℎ𝑎 Grid inflation parameter

𝒃 Bias vector

𝑏𝑒𝑡𝑎 Leader selection pressure parameter

𝑐1 Personal learning coefficient

𝑐2 Global learning coefficient

𝐶𝑖 Penalty coefficient

𝒇(𝒙) Vector of objective functions

F Feasible region

𝐹(𝒙) Fitness function

𝐹𝑡 Feasible solutions set

𝒈(𝒙) Vector of inequality constraint functions

𝐺 Activation function

𝐺𝑏𝑒𝑠𝑡
𝑡 Global best position of at generation t

xvi

𝒉(𝒙) Vector of equality constraint functions

H(x) Hessian matrix

𝑙 Number of constraint functions

𝐿 Depth of ANN

𝐿𝑓𝑒𝑎 Number of feasible solutions in 𝑃𝑡

m Number of objective functions

n Number of variables

𝑛𝐺𝑟𝑖𝑑 Number of grids per each dimension

𝑛𝑡 ANN testing data size

𝑁 Number of neurons in the hidden layer

𝑃(𝒙) Penalty function

𝑃𝑓 Probability factor in Stochastic ranking

𝑷𝑏𝑒𝑠𝑡
𝑡 Particle’s history best position of the particle at generation t

P* Set of solutions in the true Pareto Front

𝑝𝑐 Probability of crossover

𝑝𝑚 Probability of mutation

xvii

𝑃𝑡 Parent population

𝑄𝑡 Children population

S Search space

𝑇 ANN accuracy training threshold

𝑣𝑥 Displacement of node in x-direction

𝑣𝑦 Displacement of node in y-direction

𝑽𝑡 Particle’s moving velocity

𝑤 Inertia weight

𝑾 Neuron’s weight matrix

𝑊(𝐴) Weight function

𝒙 Vector of variables of a solution

�̂� Pareto optimal alternative

𝒙∗ Optima point

X All solution alternatives formed in an optimization algorithm

𝑋𝑖
0 ith input of ANN

Y Objective space

𝑌𝐾 ANN output for test example K

xviii

𝑧∗ Reference point

𝑍 Activation input

𝜇𝑘 Step coefficient

Ω Feasible solution set

∇𝑓(𝒙) Gradient of 𝑓(𝒙)

�̂� Pareto front

𝜑(𝒙) Penalized objective function

𝜆𝑖 ith weight vector

𝜏 Allowable violation threshold

η Variable influencing threshold

휀 Dynamic expansion factor

𝜇 Expectation of the gaussian distribution

𝜎 Standard deviation

𝜎𝑖 The stress of bar element

𝛾 Infeasible front

𝜔 Feasible front

xix

𝛼 Repair candidate collection in NSGA-II

xx

Acknowledgements

Here, I would like to show my greatest gratitude to my parents for everything done for me.

Your love and care make me a better person, the courage given by you always motivate me to

move forward.

Also, I am truly grateful to my girlfriend Ying Yang, who has accompanied me all the time. I

appreciate your understanding and confidence in me, and I wouldn’t make this without your

love and support. Additional thanks for helping me with the formatting.

Major thanks to my supervisor Dr. Jasmin Jelovica, who helped me a lot throughout the whole

master program. You have shown your great patience and taught me many things not limited

to doing research but also my life. Your continuous encouragement helps me a lot in finishing

my research work.

I also want to thank all my friends who helped me prepare the master’s thesis. Also, I appreciate

the UBC NAME group and UBC sockeye for providing me with a lot of computational

resources.

Lastly, I want to express my thanks to the Natural Sciences and Engineering Research Council

of Canada [grant number IRCPJ 550069-19] for the financial assistance.

1

1 Introduction

1.1 Optimization formulations and definitions

For natural problems with more than one potential solution, the procedure of selecting the best

solution under certain criteria/criterion is called optimization. Optimization problems of sorts

arise in all quantitative disciplines from computer science and engineering to operations

research and economics. Mathematically, an optimization problem could be formulated as

maximization or minimization of one or more functions, which are called objective functions.

Typically, the input variables could be chosen from an allowed set and be required to satisfy

one or more restricting functions called constraints. An optimization algorithm aims to reach

the optimal design while satisfying all constraints. A constrained optimization problem can be

mathematically formulated as:

Minimize 𝒇(𝒙) = (𝑓1(𝒙),⋯ , 𝑓𝑚(𝒙))
𝑇

Subject to

𝒈(𝒙) = (𝑔1(𝒙),⋯ , 𝑔𝑙(𝒙))
𝑇
≥ 0

𝒉(𝒙) = (ℎ1(𝒙),⋯ , ℎ𝑝(𝒙))
𝑇

= 0

(1-1)

while 𝒙 = {(𝑥𝑖, ⋯ , 𝑥𝑛)
𝑇|𝑥𝑚𝑖𝑛,𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥,𝑖}

where 𝒇(𝒙) is the set of m objective functions, 𝒈(𝒙) is the set of inequality constraint functions,

𝒉(𝒙) is the set of equality constraint functions, and 𝒙 is the set vector of solutions or designs.

The aim is to optimize vector x, while minimizing objective functions 𝒇(𝒙) and satisfying

constraints 𝒈(𝒙) and 𝒉(𝒙) . As equality constraints are not that frequent in engineering

optimization problems, they are not considered later in this thesis. Maximization of an

objective function can be treated the same way by multiplying the value with -1. If we give

2

weights to different objectives, we can transform the problem in Eq. (1-1) to a single objective

problem. Often it is difficult to define weights in optimization beforehand, thus we need multi-

objective approaches, which are introduced below. Furthermore, optimization problems can

contain local optima, which is the optimal solution within a neighboring set of candidate

solutions. This contrasts with global optimum, which is the optimal solution among all possible

solutions, not just those in a particular neighborhood of design values. One purpose in

optimization is to avoid being trapped into the local optima and reach the global optima.

Constraint functions can be linear or nonlinear, depending on the optimization problem.

Typically, each variable 𝑥𝑖 can be bounded between a lower limit 𝑥𝑚𝑖𝑛,𝑖 and upper limit 𝑥𝑚𝑎𝑥,𝑖.

A vector of variables 𝒙 is called a solution or a design. If all constraints are satisfied, we call

this solution a feasible solution. Otherwise, if one or more constraints are violated, we call it

an infeasible solution. Feasible solutions are members of the feasible set .

 𝛀 = {𝒙 ∈ 𝑿|𝒈(𝒙) ≥ 0} (1-2)

where X is the set of all possible solutions between lower 𝑥𝑚𝑖𝑛 and upper 𝑥𝑚𝑎𝑥 variable

bounds. The solution of the optimization problem in the feasible space (Eq.(1-2)) is a Pareto

optimal alternative 𝒙 which is non-dominated by other feasible alternatives in the objective

space. For two solutions 𝒙1 and 𝒙2, if 𝒙1 is to dominate 𝒙2, the following requirements must

be met [1]:

1. 𝒙1 is no worse than 𝒙2 in all the objectives;

2. 𝒙𝟏 is strictly better than 𝒙2 in at least one objective.

In other words, there is no feasible solution better than �̂� for all objectives. Such non-

dominated solutions �̂� belong to a set of feasible Pareto optima �̂�, also called the Pareto Front

(PF):

3

 �̂� = {�̂� ∈ 𝜴|∄𝒙𝑘, 𝑓𝑖(𝒙
𝑘) < 𝑓𝑖(𝒙), ∀𝑖 ∈ [1,𝑚], ∀𝒙

𝑘 ∈ 𝜴, ∀𝒙 ∈ �̂�\�̂�}, (1-3)

Thus, the Pareto Front can be considered as a set of nondominated solutions among all

permutation solutions [1], and there isn’t one solution that is equally good or better than

solutions in PF with respect to all objectives. In single-objective optimization problems, there’s

no PF since only one objective is being optimized. However, in most multi-objective

optimization problems, objective functions are in conflict, which means that there is no single

solution with the best objective value for all objective functions. The best trade-offs between

each objective form the PF. One aim of the multi-objective optimization algorithms is to find

the PF accurately and effectively.

1.2 Introduction to optimization algorithms

Optimization algorithms are designed for solving optimization problems. Based on

mathematical and physical knowledge, or inspired by natural phenomena, various types of

optimization algorithms have been proposed in recent decades. In the following subsections,

different types of optimization algorithms, together with the constraint handling techniques

(CHTs), and their development for dealing with the engineering problems are described.

1.2.1 General overview

Based on the No Free Lunch Theorem [2], no optimization algorithm is suitable for all types

of optimization problems. To determine which algorithm is the best for solving a given

problem, it is necessary to understand the underlying principles and purpose of different

optimization methods. For multivariate problems, optimization algorithms can be categorized

into direct search methods, gradient-based methods, and nature- and physics-inspired methods.

Direct search methods

4

As one of the most popular optimization methods, direct search methods could be easily

implemented into non-linear programs [3]. The direct search method starts from a random

location and iteratively improves a solution. Direct search methods can be the method of first

recourse, even among well-informed users [4].

Pattern Search Method (PSM) is one of the earliest and still most common direct search

methods. This method is characterized by a series of exploratory moves and patterns that

consider the behavior of the objective function as a pattern of points. PSM tends to improve

the objective value through pattern moves, which are considered successful if an improvement

in the objective value is observed [4]. The exploratory move can be written as:

 𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑑𝑘
𝑖 (1-4)

where 𝑘 indicates the iteration, 𝑖 is the 𝑖𝑡ℎ variable and 𝑑𝑘
𝑖 is the step size in 𝑖𝑡ℎ coordinate.

The variable value is kept if a better objective value is observed. The procedure is performed

in all variable coordinates and the final vector of variables is called the base point. The vector

difference between the current and previous base point indicates the direction of the pattern

move [4]:

 �́� = 𝒙𝑘 + ∆𝒌 (1-5)

 ∆𝒌 = 𝒙𝑘 − 𝒙𝑘−1 (1-6)

where �́� is a new vector of variables created based on the previous pattern direction ∆𝒌. The

updating of variables will continue if a better objective value is found. Otherwise, the algorithm

restarts the exploratory moves. The procedure will stop if no further improvement is achieved

even with small step sizes [4]. The direct search method is suitable for simpler problems, but

hard to converge for complex problems with a huge design space or large discontinuities.

5

Moreover, this type of method is computationally costly due to the low efficiency of pattern

moves.

Gradient-based methods

Different from direct search methods, gradient-based methods utilize the gradient information

of the objective functions. As one of the most well-known mathematical optimization

approaches, the Lagrange multiplier is a method for finding the optimum under equality

constraints [5]. One advantage of Lagrange multipliers is that no additional parameters need

to be adjusted during optimization, which leads to a broad application of the method.

Instead of directly finding the optimum, such as with the Lagrange multiplier, many algorithms

tend to iteratively find an optimum, which can be either local or global. Gradient descent, also

called the steepest descent, utilizes the gradient of the objective function at a point to define

the direction of the search, and does so repeatedly until convergence [6]:

 𝒙𝑘+1 = 𝒙𝑘 + 𝜇𝑘∇𝑓(𝒙𝑘) (1-7)

where 𝒙𝑘+1 is the vector of variables in iteration 𝑘 + 1, which is improved from 𝒙𝑘 by adding

a term 𝜇𝑘∇𝑓(𝒙𝑘). 𝜇𝑘 is the step coefficient for iteration 𝑘 and ∇𝑓(𝒙𝑘) is the gradient of the

objective function at the current point:

 ∇𝑓(𝒙) = [
𝜕𝑓

𝜕𝑥1
(𝒙)

𝜕𝑓

𝜕𝑥2
(𝒙) ⋯

𝜕𝑓

𝜕𝑥𝑛
(𝒙)] (1-8)

Other famous methods based on derivatives are the Newton’s method [7], Sequential quadratic

programming [8], etc. The idea is similar as with Gradient descent: start from an initial guess

𝒙0, and converge towards the optima point 𝒙∗ using the information of Hessian matrix H(x):

6

 H(𝒙) = ∇2𝑓(𝒙) =

[

𝜕2𝑓

𝜕𝑥1
2 ⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛
⋯

𝜕2𝑓

𝜕𝑥𝑛2]

 (1-9)

where ∇𝑓(𝒙) is the gradient of 𝑓(𝒙), which is defined beforehand. We consider a solution 𝑥∗

as optimum if it satisfies both necessary and sufficient optimality conditions. The necessary

condition for 𝒙∗ to be the optimum is that the function’s gradient at the point is equal to zero,

e.g., ∇𝑓(𝒙∗) = 0. The sufficient condition is that the corresponding Hessian matrix of the point

is positive definite [9] if dealing with a minimization problem.

Fast convergence to the (local) optima makes these optimization algorithms very popular in

many fields, e.g., cost function optimization of an Artificial Neural Network (ANN), shape

and topology optimization in mechanical and civil engineering [10], etc. However, these

methods require the objective function and the constraints to be twice continuously

differentiable, which is not applicable for more engineering problems.

Nature- and physics-inspired methods

Inspired by natural phenomena and biological systems, metaheuristic optimization algorithms

have emerged as one of the most studied branches of Artificial Intelligence (AI) during the last

decades [11]. Many researchers are trying to mimic the evolutional or hunting behavior of

various species to address complex optimization problems. They rely solely on function values

and not derivatives, which is beneficial when dealing with non-continuous functions and/or

discrete design domains. However, this causes a low convergence rate in comparison to the

gradient-based algorithms. Metaheuristic algorithms improve a set of solutions (population)

through iterations (generations) using various operators. A detailed explanation of their control

parameters can be found in Section 2.5.1. Modifying solutions includes some randomness,

7

which keeps the diversity of the whole population and prevents convergence to a local

optimum [12].

Over the last few decades, a wide range of optimization algorithms has been published. Nature-

inspired algorithms show great success for various problems, from solving the famous

Traveling Salesman Problem (TSP) and Knapsack Problem (KP) to structural engineering

design. The idea of Evolutionary Programming (EP) and Evolutionary Strategy (ES) was firstly

proposed by Fogel, Rechenberg and Schwefel in the late 60s and 70s [11,13]. After that, as

one sub-class of the Evolutionary algorithms (EA), the emergence of Genetic Algorithm (GA)

deeply inspired the community and derived various versions of optimizers [14]. With the

development of the science and engineering field, problems with multi-objective caught the

attention of many researchers. Increasing computational resources enables researchers to deal

with more constraints, more objectives or even optimization problems with black-box

functions. This gives advantages to the development of metaheuristic algorithms. Non-

dominated Sorting Genetic Algorithm-II (NSGA-II), as one of the most famous multi-objective

optimization algorithms, shows great capability in dealing with various types of constrained

optimization problems [15]. Multi-objective Evolutionary Algorithm based on Decomposition

(MOEA/D) was proposed in 2007 as the most famous decomposition-type algorithm [16].

MOEA/D can generate a uniformly distributed PF, which makes this algorithm popular for

decision-makers. In this thesis, NSGA-II and MOEA/D have been improved because of their

efficiency and efficacy in dealing with different problems. The details of the modified

algorithms can be found in Section 3.

Another category of nature-inspired algorithms is swarm algorithms. Particle Swarm

Optimizer (PSO) is one of their most popular algorithms, well-known for its high rate of

convergence [17]. As mentioned above, swarm-based algorithms mimic the behavior of

animals like bird flocks or fish schools. Following similar mechanisms, various swarm-based

8

algorithms have been proposed; examples include Grey Wolf Optimizer (GWO), Multi-

objective Bat Algorithm (MOBA), Firefly Algorithm (FA), Artificial Bee Colony algorithm

(ABC), etc. [18–21].

Besides species' natural behavior, physical laws and mathematical principles can also be the

inspiration for optimization algorithms. Motivated by the interaction of multiple universes via

white holes, black holes, and worm holes, Multi-Verse Optimizer (MVO) has great

performance in dealing with mathematical optimization problems [22]. Based on the

mathematical properties of trigonometric functions, Sine-Cosine Algorithm (SCA) has become

popular in recent years due to its efficiency in solving constrained problems with unknown

spaces [23]. Utilizing the theory of Newtonian physics, Gravitational Search Algorithm (GSA)

was developed and can provide superior results for various standard benchmark optimization

problems [24].

1.2.2 Constraint handling techniques

For constrained problems, in addition to optimizing the objective functions, optimization

algorithms also need to ensure that constraints are not violated. Especially when dealing with

complex constraints, an effective constraint handling technique (CHT) can increase

optimization algorithms’ efficiency, meaning that the required number of function evaluations

to reach the optima is reduced. Moreover, without a proper CHT, optima might not be found

even with an excessive number of generations (algorithm’s iterations). In the following

subsections, different categories of CHTs are introduced.

Penalty function approaches

Penalty functions are one of the oldest approaches used to consider constraints in optimization

[25]. Penalty function is initially proposed by Courant [26], where the penalty term is added to

9

the objective function to penalize the designs with any violation of the constraints. Thus,

constraint optimization problems can be transformed into unconstrained problems:

 𝐹(𝒙) = 𝑓(𝒙) + 𝑃(𝒙) (1-10)

where 𝐹(𝒙) is the fitness function, 𝑓(𝒙) is the original objective function, and 𝑃(𝒙) is the

penalty function. When 𝑃(𝒙) equals zero, the solution is feasible. Instead of optimizing the

objective function, algorithms optimize the function given with Eq. (1-10). Similar to

Courant’s method, Joines [27] proposed the non-stationary penalty function, where the penalty

term is the function of generations. As optimization proceeds, the extent of penalization

increases. A higher penalty will lead to higher pressure on searching for feasible solutions.

However, the penalization for each infeasible solution is the same regardless of the extent of

constraint violation, which is inefficient and inappropriate if all solutions in a population are

infeasible. To address this issue, Abdollah [28] proposed the systematic multi-level penalty

handling method, where penalization is a stepwise function of constraints. After that, various

penalty approaches were proposed, such as the Death penalty, Dynamic penalty [27], and Self-

adaptive penalty [25].

However, most of these methods have significant flaws. Death penalty rejects every infeasible

solution, which is inefficient and can lead to premature convergence. Dynamic penalty is more

robust than the death penalty, but the parameter tuning requires precise control. Adaptive

penalty requires fewer user-defined parameters, but the computational time of this method is

higher.

Special constraint handling operators

Beside penalty functions, there are several other prominent CHTs. Proposed by Koziel [29],

decoders showed a competitive performance in the 1990s. This method is based on the idea of

10

mapping the feasible region onto an easier-to-sample space where a nature-inspired

algorithm can provide a better performance. However, the high computational cost is the main

drawback of this method [30].

Another popular approach that is widely used for constraint handling is Stochastic ranking (SR)

initially proposed by Runarsson and Yao [31]. SR aims to deal with the inherent shortcomings

of the penalty function. This method ranks the infeasible solutions based on the sum of

constraint violation or objective value. However, some solutions may still get a good rank,

although they are infeasible.

Limited by the properties of different types of CHTs, some researchers came up with a hybrid

method called the Ensemble constraints handling method. Proposed by Qu & Suganthan [32],

three constraint handling approaches (self-adaptive penalty, superiority of feasible solution,

and ε-constraint) were used simultaneously for evaluating the population. This method is more

versatile than other approaches. However, the computational time increases in comparison with

the other techniques.

Repair techniques

Different from the approaches above, repair methods aim to transform the solutions from

infeasible to feasible. The idea is to benefit from the objective values of the prominent

infeasible solutions which have a low constraint violation. A successful transformation of those

solutions into feasible form can help optimization algorithms explore the objective space.

P. Poon and J. Carter [33] proposed the partially mapped crossover (PMX) and the tie-breaking

crossover (TBX), which apply crossover operator when performing repair process. In the PMX

method, two solutions are repaired by changing variables randomly selected in the parents.

11

TBX method repairs the worst performance design based on the global behavior of the

population.

Due to the low repair success rate, other novel techniques are proposed to increase the search

speed for feasible solutions. P.Koch, W. Konen, and C. Foussette [34] developed a repair

technique based on the gradient information of the constraints functions called RI-2. This

technique shows a high successful repair rate of 30% compared to other repair techniques [35].

However, the application of this method is limited to complex problems with discrete variable

values or disconnected design domains.

Repairing can also be conducted based on a heuristic, coming from user's understanding of the

problem. For example, in a stacking sequence optimization of composite materials

(combinatorial problem), constraints limit the maximum number of consecutive plies with the

same fiber orientation, and if this is violated the solution is modified by the repair algorithm

until it becomes feasible [36].

Recently, a novel repair operator was proposed by Samanipour and Jelovica [37] where a more

general framework was proposed allowing prominent infeasible solutions to be repaired based

on other solutions in a population using a variable-constraint mapping. The idea is that

constraint violations can be traced back to the variables. The result shows that this novel repair

method can successfully repair infeasible solutions and use them to converge to PF faster.

However, the variable-constraint mapping needs to be provided by the user beforehand, which

is not applicable for some complex problems.

As an extension of this novel repair operator, this thesis addresses this issue and proposes a

method that can automatically predict the mapping. The details of the proposed method can be

found in Section 3.2.

12

1.2.3 Optimization in engineering

In recent decades, optimization algorithms have been widely used in solving engineering

problems in various fields. Complex engineering problems mostly require many variables to

define a design. One of such problems is the structural design of marine vessels. The most

important decisions are made during the conceptual and preliminary design of ships. Generally,

it is impossible for engineers to find the optimal design using engineering experience and

intuition for such complex problems. Therefore, optimization algorithms are needed to find

global optimum or optima.

In some cases, variables in engineering problems can only adopt discrete values due to market

restrictions [1] which would result in inconsistencies and gaps in both design space and

objective space. Some of the disjoint parts of objective space contain local optima, restricting

further the optimization. Algorithms like steepest descent or Newton’s method would likely

get trapped into local optimum due to their reliance on the gradient information of the functions.

Moreover, gradients are difficult or impossible to estimate when dealing with discrete variable

values.

Evolutionary and swarm algorithms have become popular for dealing with engineering

problems because they can properly address the aforementioned issues. Examples of

engineering problems that are optimized using evolutionary algorithms can be found in [38–

44], starting from a simple truss optimization problem to a complex bridge design. One

advantage is that evolutionary algorithms do not require gradient information of the functions.

This makes EA applicable to most types of problems. Furthermore, most engineering problems

have more than one objective. This provides another advantage of using EA: due to the

randomness of genetic operators, they can generate better distributed non-dominated fronts.

13

Even though evolutionary and swarm algorithms show good optimization capabilities, a high

number of function evaluations makes them computationally very expensive. Traditionally,

this difficulty is tackled by using reduced-order modes based on FEM and CFD, to save time

when estimating objectives and constraints. Other than this, people also use surrogate models

to predict constraints and objectives. Typical surrogate model techniques include Kriging

models [45], response surface method [46], and ANNs [47]. As a subfield of Machine Learning

(ML), ANNs have drawn a lot of attention due to advancements in data-driven models and

deep neural networks [48]. Neural networks show the extraordinary capability to preserve the

accuracy of high-fidelity models for only a fraction of the computational cost, which will be

described in Section 1.3. In this thesis, we apply ANNs for two purposes: to generate a

problem-specific variable-constraint mapping and to construct the surrogate model for

optimization. These could be found in Section 3.2 and Section 5.1, respectively.

1.3 Overview of machine learning

Machine Learning (ML) is used in many fields, such as function approximation, computer

vision, speech recognition, natural language processing, machine translation, etc [49,50]. ML

has led to revolutionary progress in many subjects.

In the 1940s and 1950s, ANNs were composed of a simple perceptron, which could only deal

with simple problems. After that, the proposed backpropagation technique enabled ANNs to

track and utilize the gradient information of each hidden layer. This allowed ANNs to deal

with more complex problems. Subsequently, developed by Vladimir Vapnik with colleagues

(Boser et al., 1992, Guyon et al., 1993, Vapnik et al., 1997), Support Vector Machine (SVM)

became one of the most robust prediction methods in the 1990s. Nowadays, other ML

techniques appear and show their capability of prediction. Based on whether the training data

https://en.wikipedia.org/wiki/Vladimir_Vapnik

14

is labelled or not, they can be categorized into supervised learning algorithms and unsupervised

learning algorithms. The most famous of them are introduced as follows.

Recurrent Neural Network (RNN) is a class of supervised learning algorithms, where the

connections between neurons can form a directed graph along a temporal sequence [51]. This

allows RNN to capture and predict the temporal dynamic features of the data. RNNs have

demonstrated good performance in sequence labelling and predicting tasks, e.g. unsegmented,

connected handwriting recognition, speech recognition, etc [52]. An example of the application

of RNN can be found in [53], where the Long Short Term Memory network (LSTM) was

applied for nonlinear structural seismic response prediction.

Another famous supervised learning algorithm is Convolutional Neural Network (CNN),

which has been widely used for image recognition or classification in recent years. Different

from the typical feedforward neural network, the architecture of CNN contains lots of

convolutional layers, which are designed for capturing various features of the image, such as

vertical lines or honeycomb shapes. Furthermore, softmax layers serves as activation functions

to output the probability distribution of convolutional layers. Based on CNN, systems such as

face recognition and automatic driving can be efficiently constructed. For example, improved

design of microstructural materials was presented in Ref. [54] based on deep convolutional

generative adversarial network (DCGAN) and CNN.

Autoencoder is one of the most popular types of the unsupervised neural network, used to learn

efficient coding of unlabeled data [55]. Automatic learning from data makes autoencoders

easily adaptable to a new (but related) task. Furthermore, autoencoders with more layers can

significantly decrease the required training data size and shrink training time [56]. Thus,

autoencoders could be used in dimensionality reduction, image processing, and anomaly

detection [56–58], etc.

15

Deep Belief Network (DBN) is another type of unsupervised learning algorithm, being a

probabilistic generative model that can establish a joint distribution between the observation

data and the label. Constructed by multiple unsupervised networks such as Restricted

Boltzmann Machines (RBM)s [59], DBN can reach a better accuracy for unsupervised learning

than other ML techniques. For example, DBN is used in Ref. [60] to accelerate topology

optimization.

ML tools are reaching many engineering and research fields. For example, instead of using

FEA, the deep learning model could be applied for modelling both elastic and inelastic

responses of buildings. In other fields, ML and cell concatenation could be used in the design

of novel acoustic metamaterials [61]. Ref. [62] presented Hierarchical Deep Learning Neural

Network (HiDeNN), an AI framework for solving challenging problems in computational

science and engineering. It was demonstrated that the network can achieve better accuracy than

conventional finite element method by learning the optimal nodal positions and capturing the

stress concentration with a coarse mesh.

In many engineering optimization problems, evaluation of the functions may not be possible

analytically. In this case, software simulations with FEM and CFD should be linked to the

optimizer to perform the function evaluations [1]. Even though these tools are robust and

accurate, their significant computational cost makes them inappropriate in some cases. For this

purpose, ANNs are applied for function approximation as they can preserve the accuracy of

high-fidelity models at a lower computational cost. Many researchers have proved that ANNs

could accurately replace the original high-order models [63–65]. Furthermore, the universal

approximation theorem states that a feedforward neural network with one hidden layer could

accurately predict any continuous function arbitrarily well with respect to the uniform norm

provided there are enough hidden units [66]. This gives us the confidence to use ANN for the

aims given below.

16

1.4 Aim of this thesis

The overarching objective of this thesis is to create a generic repair-based constraint handling

technique that does not need user-provided information of the problem for repair. The proposed

method aims to help different optimization algorithms to efficiently deal with complex

constrained engineering problems. The background of the approach is a recent repair technique,

which is limited with the need for the problem-specific heuristic. This thesis aims to overcome

this limitation and decrease the required number of function evaluations to reach PF. The

research is divided into the following objectives:

1. Develop a method that can automatically discover the mapping between variables and

constraints;

2. Modify the recent repair-based constraint handling technique and implement the

automated mapping;

3. Implement the constraint handling procedure in few prominent algorithms for single-

and multi-objective optimization;

4. Construct surrogate model of ship response to decrease CPU time in optimization;

5. Assess the framework’s performance on both mathematical and engineering problems.

1.5 Thesis outline

This thesis is organized as follows. Section 1 provides the background of the related research

topics and outlines the thesis objectives. Section 2 introduces the original optimization

algorithms used in this study. Also, several state-of-the-art optimization algorithms and some

CHTs used for validation are presented. Section 3 of this thesis describes the repair-based CHT

17

and the proposed technique for automatically discovering the mapping. In addition, the

implementation of the proposed approach to few types of optimization algorithms is presented.

Section 4 introduces optimization case studies, involving one mathematical benchmark

problem and two engineering problems. Section 5 discusses the parameters that influence the

accuracy of the mapping and surrogate model. Further, the results obtained by the modified

algorithms are compared with other state-of-the-art algorithms. In Section 6, the conclusion of

this thesis, the limitation of the work and future work are presented.

18

2 Basic concepts

This thesis considers both single- and multi-objective algorithms. PSO, NSGA-II and

MOEA/D are selected due to their excellent performance for many types of problems. The

operating principles of these algorithms and their control parameters are described below.

2.1 Particle Swarm Algorithm

One of the most frequently used single-objective algorithms nowadays in engineering is PSO

[67], because of its rapid convergence rate. In nature, each individual in the swarm relies on

both its own and swarm’s intelligence for finding food. If an individual finds out that another

member in the swarm has a better path towards food, it will change its direction to follow that

path. PSO follows a similar mechanism, as shown in Figure 2.1. Each solution is not only

moving towards the swarm’s best position, but also towards the particle’s best position.

Figure 2.1. PSO algorithm configuration.

Relocation of a particle in the design space is represented through velocity, which is controlled

by the swarm’s best position, particle’s best position, and velocity of the previous generation.

The velocity of a particle in generation t+1 is calculated as [68]:

19

 𝑽𝑡+1 = 𝑤 ∗ 𝑽𝑡 + 𝑐1 ∗ 𝑟1 ∗ (𝑷𝑏𝑒𝑠𝑡
𝑡 − 𝑿𝑡) + 𝑐2 ∗ 𝑟2 ∗ (𝑮𝑏𝑒𝑠𝑡

𝑡 − 𝑿𝑡) (2-1)

And the position is updated as:

 𝑿𝑡+1 = 𝑿𝑡 + 𝑽𝑡+1 (2-2)

where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are two control parameters defined by a user. 𝑟1 and

𝑟2 are two random numbers from 0 to 1, which are used to ensure the randomness of the

velocity vector. This helps the PSO avoid being trapped in the local optima. 𝑷𝑏𝑒𝑠𝑡
𝑡 and 𝑮𝑏𝑒𝑠𝑡

𝑡

are the best position of the current particle and the entire swarm, respectively.

2.2 Multi-objective Evolutionary Algorithm based on Decomposition

As one of the most popular evolutionary optimization algorithms, MOEA/D has been applied

in many fields due to its capability of generating well-distributed fronts. The essence of

MOEA/D is to transform a multi-objective problem into a number of single-objective

optimization problems through aggregate functions. The algorithm optimizes them

simultaneously, which can be seen from Figure 2.2.

MOEA/D transforms the multi-objective problem to N scalar subproblem through a set of

evenly spread weight vectors 𝜆1, … , 𝜆𝑁. Each subproblem is a projection of multi-objective

functions to the specific weight vector. In this study, we apply the Tchebycheff approach to

present the jth subproblem [16]:

 minimize 𝑔𝑡𝑒(𝒙|𝜆, 𝑧∗) = max
1≤𝑖≤𝑚

{𝜆𝑗
𝑖|𝑓𝑖(𝒙) − 𝑧𝑖

∗|} (2-3)

where 𝒛∗ = (𝑧1
∗, … , 𝑧𝑚

∗) is the reference point and 𝑧𝑖
∗ = min{𝑓𝑖(𝒙)}, 𝑖 = 1,… ,𝑚 . Another

major feature of MOEA/D is the definition of neighborhood. Each weight vector 𝜆𝑖 is defined

as a neighborhood, which is a set of several closest weight vectors {𝜆1, ⋯ , 𝜆𝑁} . The

20

neighborhood of the ith subproblem consists of all the subproblems from the neighborhood of

𝜆𝑖 . Thus, the optimization of one subproblem needs the information from its neighboring

subproblems.

Figure 2.2. Pareto front and weight vectors in MOEA/D.

2.3 Non-dominated Sorting Genetic Algorithm-II

In engineering design, one of the most frequently used multi-objective optimization algorithms

is NSGA-II. Because of its adaptiveness, it is popular in many research fields, and shown in a

review publication [69].

NSGA-II modifies solutions based on genetic operators crossover and mutation. Crossover and

mutation operators are commonly used in many optimization algorithms because they ensure

randomness and give chance to population to get away from local optima. Different crossover

and mutation operators are presented in the optimization literature for binary and real-

parameter encodings. The crossover operator randomly picks two solutions from the

population as the parent solutions to create two new children solutions by re-combining them.

The mutation operator is intended to create small changes by randomly flipping variables in

some solutions. Those two operators are controlled by two parameters 𝑝𝑐 and 𝑝𝑚, which are

the probability of crossover and the probability of mutation, respectively.

21

In NSGA-II, population is handled through non-domination sorting, which is performed by

dividing feasible solutions into multiple non-dominated fronts in each generation. Once the

non-dominated front is found, the solutions in that set will be temporally removed. A second

non-dominated front will be found based on the remaining solutions. This procedure will be

repeated until all the solutions are assigned to a certain non-dominated front, see Figure 2.3.

Figure 2.3. Non-dominated sorting in objective space [59].

Based on non-domination sorting, the selection operator is performed to decide which solutions

will be used in genetic operators to create offspring for the next generation. Specifically, two

solutions are randomly picked and the one with a higher non-domination rank will be preserved.

As shown in Figure 2.4, the selection operator will be repeated until the number of the selected

solution reaches the population size. Thus, NSGA-II preserves the best solutions for each

generation. Infeasible solutions will be granted a lower priority or completely discarded.

Furthermore, the application of crowding distance helps NSGA-II keep a good diversity among

solutions in a population. It is calculated as the average distance of a solution to its nearest

neighbors in the same front. As such, crowding distance indicates the local density of solutions.

Solutions in the same front with a lower crowding distance will be selected for genetic

22

operations (crossover and mutation). The exploration of the less populated area can help the

algorithm to find a better spread of the PF and maintain the diversity of the solutions.

Figure 2.4. NSGA-II schematic procedure [15].

2.4 Novel optimization algorithms for comparison

In addition to PSO, NSGA-II, and MOEA/D, we use a few other optimization algorithms in

this research for comparison.

For single-objective algorithms, we apply Gravitational Search Algorithm (GSA) [24], Multi-

Verse Optimizer (MVO) [22], and Improved Grey Wolf Optimizer (IGWO) [70]. For multi-

objective algorithms, we conducted the comparison using Multi-Objective Grey Wolf

Optimizer (MOGWO) [71] and Multi-Objective Multi-Verse Optimizer (MOMVO) [72].

Some description of these algorithms is shown below.

GSA is an optimization algorithm inspired by the law of gravity and mass interactions. The

search agent in GSA considers solutions as masses that interact with each other based on

Newtonian gravity and the laws of motion. GSA could provide superior results for various

standard benchmark problems in terms of other testing algorithms [24].

23

IGWO is an improved and better performing version of GWO, as shown for engineering

problems [70]. IGWO addresses the issues of insufficient population diversity, imbalance

between exploitation and exploration, and premature convergence of GWO, by introducing a

new movement strategy called Dimension Learning-based Hunting (DLH). Instead of moving

toward the leader, solutions under the DLH strategy are learning from their neighbors.

Therefore, IGWO selects the leader either from the original GWO or DLH search strategies.

No extra parameters are needed for DLH. The control parameters for IGWO are the same as

for GWO, which can be found in Section 4.4.

As the multi-objective extension of GWO [18], MOGWO shows a very competitive

performance compared to other state-of-the-art algorithms. MOGWO introduced two more

strategies to deal with multi-objective problems: (i) prominent solutions are stored in an

external archive at each generation, from which leaders (α, 𝛽, and 𝛿) could be selected [71];

(ii) using the grid to preserve the diversity of the archive solutions. Therefore, three parameters,

grid inflation parameter 𝑎𝑙𝑝ℎ𝑎, leader selection pressure parameter 𝑏𝑒𝑡𝑎 and number of grids

per each dimension 𝑛𝐺𝑟𝑖𝑑 are used to control the leader selection mechanism and the grid

mechanism. The detailed parameter setting of MOGWO can be found in Section 4.4.

MVO and MOMVO are recent population-based algorithms that mimic one of the theories in

physics on the existence of multiple universes [22,72], for single-objective and multi-objective

problems, respectively. The two algorithms have similar mechanisms, except that MOMVO

requires an external archive to store the best non-dominated solutions obtained so far. The

main inspiration of both algorithms is the interaction of multiple universes via white holes,

black holes, and worm holes. Objects (variables) are transferred from a universe (solution)

through a tunnel from a white hole to a black hole. Also, worm holes can move objects from

one corner of a universe to another without a need for a white or black hole. Two adaptive

24

parameters are defined to control the exploration and exploitation of optimization design space.

They are Wormhole Existence Rate (WER) and Travelling Distance Rate (TDR), respectively.

2.5 Control parameters

The performance of an optimization algorithm largely depends on control parameters. Some

of the control parameters are common for all evolutionary algorithms, and others are unique.

The following sub-sections introduce those parameters.

2.5.1 General control parameters

In evolutionary algorithms, general control parameters involve population size and the number

of generations. Those two parameters are important as they decide the number of function

evaluations in a run. Proper setting of population size and the number of generations may help

optimization algorithm find the global optimum faster.

Population size

In evolutionary algorithms, population represents a set of current solutions. This set is

iteratively updated until the algorithm meets the stopping criterion. Population size refers to

the number of solutions in one population. A higher population size means that an algorithm

needs to deal with more solutions simultaneously. Furthermore, a greater population size will

provide optimization algorithms with a higher possibility of exploring the design space and a

lower possibility of becoming trapped in a local optimum. In general, complex problems are

defined with large number of variables, thus having a large design space for optimization

algorithms to explore. A low population size will be less likely to reach the global optimum

within a given amount of computational resources. Therefore, a complex optimization problem

25

always requires a high population size (50-300) [1]. Furthermore, a high population size for

multi-objective algorithms could lead to better convergence and wider distributed final PF.

Number of generations/iterations

Iterations in EAs are called generations. Population is updated iteratively until a pre-defined

number of generations is reached, although there could be other types of stopping criteria. In

general, higher number of generations allows an algorithm to perform better. As mentioned

above, a complex optimization problem generally involves a large design space. Thus, large

number of generations is required, typically 500 to 1000 [1]. So that the optimization algorithm

can get closer to the global optima or PF.

2.5.2 Specific control parameters

In addition to common control parameters, some optimization algorithms have specific

parameters.

PSO includes three inertia coefficients that are used to control particle’s velocity. The inertia

weight 𝑤 is used to control the particle’s velocity inherited from the previous generation,

which is normally set to 0.99, and aims to exploit the design space at the end of the optimization.

𝑐1 and 𝑐2 are used to control the velocity towards the particle’s best position and the swarm’s

best position. In general, a larger 𝑐1 and 𝑐2 will lead the algorithm to converge to an optimum

faster, but it could be a local optimum. A lower 𝑐1 and 𝑐2 is recommended if the problem

involves a large design space.

Genetic operators in NSGA-II are controlled through probabilities of crossover and mutation.

Crossover exchanges variable values between two designs and its probability 𝑝𝑐 determines

whether the exchange will occur or not. 𝑝𝑐 is commonly set in the range of 0.6 to 0.95 [73].

26

The probability of mutation 𝑝𝑚 determines whether a variable will be changed at random, and

is generally calculated by 1/𝑛, where 𝑛 is the number of variables. For binary problems, 𝑛

could be the number of bits to the chromosome. 𝑝𝑚 is always set as a small number, since large

mutation probability might transform many feasible solutions to infeasible.

MOEA/D involves neighborhood size to control the exploration and exploitation process of

the algorithm. New solutions of MOEA/D are generated from the neighboring solutions by

using crossover and mutation. Literature shows that a large neighborhood size grants MOEA/D

a high searchability in the objective space [74]. However, a small neighborhood size is also

shown to be beneficial for diversity maintenance in the objective space.

In both MVO and MOMVO, the algorithm’s performance is controlled by WER and TDR.

WEP was defined as the probability of wormholes’ existence in universes, which increases

linearly from 0.2 to 1 to emphasize the exploitation process. Furthermore, TDR decreases from

1 to 0, which controls the distance that an objective can be teleported by a wormhole around

the current best universe. A lower TDR indicates a more precise search around the best-

obtained solution [22].

The control parameters of IGWO are mostly the same as the original GWO. The mathematical

form of the encircling behavior is controlled by two coefficient vectors, 𝐴 and 𝐶. Both are

influenced by a component �⃗�, which decreased linearly from 2 to 0 [18,70]. Control parameters

of MOGWO are different from the other GWO variants. As mentioned above, MOGWO is

controlled by 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎, and 𝑛𝐺𝑟𝑖𝑑. These parameters are used to maintain the diversity of

the archive during optimization, which are set to 0.1, 4, and 10 to obtain the best performance

in test problems, respectively.

27

2.6 Prominent constraint handling methods

This thesis considers two constraint handling approaches to validate the proposed approach:

penalty function and adaptive threshold.

As one of the most commonly used constraint handling methods which have been applied to

many optimization algorithms [75], static penalty has been used for validation in this thesis.

The penalized objective function is defined as:

 𝜑(𝒙) = 𝑓(𝒙) +∑ 𝐶𝑖𝐺𝑖
𝑚

𝑖=1
, (2-4)

 𝐺𝑖 = 𝑚𝑎𝑥{0, 𝑔𝑖(𝒙)}
𝛽 , (2-5)

where 𝜑(𝑥) is the penalized objective function and 𝐶𝑖 is the penalty coefficient. We use few

penalty coefficients in the numerical experiments, where the higher one (107) is found to give

the best performance out of several that were tested in preliminary studies.

Another constraint handling approach used for comparison is the adaptive threshold. The

adaptive threshold approach was firstly introduced in [76] for MOEA/D, validated in [77] and

shown to work the best among several other constraint handling approaches on NSGA-II in

[78]. This approach defines a threshold in terms of constraint violation, until which infeasible

solutions are accepted in the population. This method solved the issue for algorithms if

initialized with total infeasible solutions. Solutions with a low constraint violation are closer

to feasible design space and could be utilized to guide the algorithm toward the feasible space.

No extra parameters are needed in this method, and the threshold is adaptively updated during

the optimization process. The allowable violation τ is calculated as:

28

 𝐶𝑉𝑖 = 𝑣𝑖𝑜 ∗∑min(𝑔
𝑗
, 0)

𝑙

𝑗=1

, (2-6)

 𝐶𝑉𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝐶𝑉𝑖

𝑁

𝑖=1

, (2-7)

 𝐹𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒
, (2-8)

 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝜏) = 𝐶𝑉𝑚𝑒𝑎𝑛 ∙ 𝐹𝑅, (2-9)

where 𝑣𝑖𝑜 is denoted as the number of violated constraints for ith solution, 𝑔𝑗 is the value of

the jth constraint, considered as violating if 𝑔𝑗 is negative. Eq. (2-6) to Eq. (2-9) shows that the

allowable violation threshold 𝜏 is calculated based on the average level of the total population.

FR is increasing during the optimization, while CVmean is severely decreasing, thus 𝜏 is

decreasing as well. In the optimization process, the solutions with violations less than the

threshold 𝜏 are treated as feasible. Hence, some infeasible solutions with relatively small

constraint violation would remain in the population and transferred to the next generation.

2.7 Performance measures

For single-objective problems, algorithm’s performance could be analyzed by tracking the best

objective value found during optimization. An algorithm is considered more efficient if it needs

a lower number of function evaluations.

However, in multi-objective optimization, the performance should be quantified based on the

non-dominated front of the current generation. The purpose of algorithms is to find a solution

set with high diversity and high proximity to the true Pareto front. Therefore, both the

convergency and diversity of the solution set indicate the performance of the current non-

29

dominated front. This thesis uses two performance matrices, namely Hypervolume (HV) and

Inverted Generational Distance (IGD). Configuration for both performance indicators is shown

in Figure 2.5. HV [79] calculates the dominated hypervolume (or area in 2D space) with respect

to a reference point. IGD [80] measures the average of the Euclidean distances of each solution

in the true Pareto front to the nearest solution in the population’s non-dominated front. Only

feasible solutions are considered when calculating both HV and IGD. The IGD evaluation

requires that the true PF be known. IGD is calculated as:

 𝐼𝐺𝐷(𝑃, 𝑃∗) =
∑ 𝑚𝑖𝑛𝐵∈𝑃𝑑𝑖𝑠(𝐴, 𝐵)𝐴𝜖𝑃∗

|𝑃∗|
, (2-10)

where P represents the solutions of the current non-dominated front, P* is a set of uniformly

distributed solutions in the true Pareto front. 𝑑𝑖𝑠(𝐴, 𝐵) is the Euclidean distance in objective

space between solutions A and B. In this thesis, both reference point and P* are defined by the

best combination of objective values encountered in all history optimization runs, thus being

set after all runs have been performed. Higher HV values and lower IGD values are preferred.

Both performance matrices are calculated in normalized objective space.

Figure 2.5. Visualization of the performance measures (HV and IGD).

30

3 Proposed constraint-handling framework and implementation

3.1 Repair heuristic

In this thesis, a new CHT is developed as an improvement of a recently published repair-based

constraint handling method. The recent repair technique can handle complex constraints and

has shown excellent performance in dealing with completely infeasible populations [37]. This

is enabled by variable-constraint mapping which allows constraint violations to be traced back

to variables.

In this thesis, we extend this repair technique, and modify its operating principle, to make it

more logical and adaptive to both single- and multi-objective algorithms. Details of the

modified repair technique are shown below.

Figure 3.1. Repairing an infeasible solution in single-objective space.

Figure 3.2. Situation where infeasible solutions after successful repairing dominate the current feasible

solutions in multi-objective space [37].

31

In the optimization process, some infeasible solutions might have a better objective value

(show dominance in multi-objective problems) than the existing feasible solutions. Those

solutions are closer to the PF and can improve the optimization if we transform them to be

feasible, see Figure 3.1 and Figure 3.2. The repair technique performs this by replacing the

variables that caused infeasibility (constraint violation) using variable-constraint mapping.

Examples of the mapping can be found in Figure 3.3 and Figure 3.4. It is modelled as a matrix

of size l × n, where l is the number of constraints and n is the number of variables. A non-zero

value in each row indicates that the variable significantly affects the constraint. According to

this mapping, infeasible solutions (repair candidates) can be repaired based on the donor

solutions.

Repair candidates are selected based on the objective value and constraint violations of the

solutions. Generally, infeasible solutions with prominent objective values are considered as

repair candidates. One could also add some limitations on candidate selection, such as

controlling the maximum number of repair candidates to preserve the diversity of the

population. Different from the repair candidates’ selection, the strategy of donor selection

depends on the current population's situation, partially infeasible or completely infeasible.

Following the different donor selection strategies, the repair strategy also changes. Therefore,

repair strategies for two different population cases are described below.

Repair Case 1 (Population partially infeasible)

If the current population is partially infeasible, only feasible solutions will be considered as

donors since that raises the probability of successful repair. For each repair candidate, the

closest feasible solution will be selected as the donor based on their Euclidean distance in the

normalized objective space. Therefore, the donor might differ for different repair candidates.

Figure 3.3 shows how the repair operator works in this case. For a repair candidate that violates

32

one or more constraints, all the variables that need to be replaced can be found using the

variable-constraint mapping. After that, the repair technique is performed by replacing all

marked variables using variables from the donor solution.

Figure 3.3. Illustration of the repair case 1.

Repair Case 2 (Entire population infeasible)

If the current population doesn’t have any feasible solution, prominent infeasible solutions will

be selected as repair donors. As Figure 3.4 shows, similar to the repair case 1, if a solution

violates a constraint, corresponding variables can be found based on the mapping. Afterwards,

the repair technique will mark all the constraints influenced by those variables. Solutions that

satisfy all those constraints are the potential donors. The advantage of this modified approach

is to prevent violation of other constraints while repairing. If all solutions violate the same

constraint, the solution with the least amount of violation is selected as the donor. A few donors

might be used for each repair candidate, as they might violate different constraints.

33

Figure 3.4. Illustration of the repair case 2.

The idea behind repairing is to make small changes to the solution to preserve its position in

objective space. For this purpose, the donors are prioritized starting from solutions nearest to

the candidate solution while being in the best front (if applicable). Therefore, donors may be

different for each repair candidate. Combining the above two cases, the pseudo-code for the

modified repair technique is described below. Note that all the solutions are stored in an

external archive, to ensure the consistency of the donor selection.

Repair Operator

Input: Input population 𝑃𝑡; Variable-constraint mapping; Number of variables 𝑛; Number of

constraints l; Generation number t.

Start Repair Operator

Compute the number of feasible solutions in 𝑃𝑡 as 𝐿𝑓𝑒𝑎

Collect the feasible solutions as a set 𝐹𝑡

For each solution (𝑖 = 1,⋯ , 𝑛) do

If solution is infeasible (repair candidate) do

If 𝐿𝑓𝑒𝑎 ≠ 0 do

34

(i) Sort feasible solutions 𝐹𝑡 based on the Euclidean distance to the repair

candidate. Select the closest solution as the 𝑑𝑜𝑛𝑜𝑟.

(ii) Replace the variables that caused infeasibility of the candidate solution

from the 𝑑𝑜𝑛𝑜𝑟 based on the mapping.

Else do

For each violated constraint do

(i) Find the significant variables based on the mapping.

(ii) Find the constraints that are affected by those variables.

(iii) Sort all solutions 𝑃𝑡 based on the Euclidean distance to the repair

candidate. Set the closest solution that satisfies the above constraints as the

𝑑𝑜𝑛𝑜𝑟.

(iv) Replace the variables that causing the specific constraint violation of

the candidate solution from the 𝑑𝑜𝑛𝑜𝑟 based on the mapping.

End For

End If

End If

End For

End Repair Operator

Output: Repaired solutions

3.2 Automated mapping based on ANN

As introduced above, the dependency matrix (the mapping) points out to variables that affect

each constraint. It is modelled as a matrix of size 𝑙 × 𝑛, where 𝑙 is the number of constraints in

a problem and 𝑛 is the number of variables. A non-zero value in each row denotes that the

35

variable significantly affects the constraint. The mapping for one of the problems in this paper

is shown in Figure 5.4. To automatically define the mapping matrix, we use artificial neural

networks. Other ML techniques have also been investigated to generate the mapping in a

preliminary study, such as Canonical Correlation Analysis (CCA). CCA can find the most

significant variable, but could decrease in accuracy for following variables, which is

insufficient for this research, thus is not pursued further. Figure 3.5 shows the general

architecture of a typical feedforward ANN. A shallow neural network has only one hidden

layer. A deep neural network has at least two. It is generally accepted that deep neural networks

have higher predicting accuracy than shallow networks. However, deep networks require more

training data and more computational resources.

Figure 3.5. Artificial Neural Network architecture.

We define the significance of variables based on their statistical contribution to the

optimization criteria. Significance was used in [81] to construct the best performing radial basis

function neural network. The strength of the connection between neurons in different layers is

defined in the current study by the neuron’s weight, and if this value is significant, the input

neuron has a significant effect on the output neuron. As each input neuron is connected to the

output neuron through a network, removing one input neuron will lead to the change of the

36

output result. The percentage of change indicates the contribution of that input neuron to the

output. Optimization variables are input neurons to the ANN, while constraints and objectives

(i.e. criteria) are the output neurons. Therefore, the mapping could be generated based on the

variables that significantly contribute to the outputs. This method is applicable to artificial

neural networks with one or more hidden layers.

For a feedforward neural network, the activation of a neuron 𝑎𝐼
(𝑄)

 (𝐼𝑡ℎ neuron of layer 𝑄) can

be represented as:

 𝑎𝐼
(𝑄)

= 𝐺(𝑄) (𝑍𝐼
(𝑄)) , (3-1)

where 𝐺(𝑄) is the activation function of the layer 𝑄 and 𝑍𝐼
(𝑄)

 is the input to the activation

function for neuron 𝐼. Specifically, the input 𝑍𝐼
(𝑄)

 can be written as:

 𝑍𝐼
(𝑄)

= ∑ 𝑊𝐾
[𝐼](𝑄)

𝑎𝐾
(𝑄−1)

+ 𝒃(𝑄)
𝑁𝑄−1

𝐾=1

, (3-2)

where 𝑊𝐾
[𝐼](𝑄)

 is the weight between neuron 𝐾 in layer (𝑄 − 1) to the neuron 𝐼 in layer 𝑄,

𝒃(𝑄) is the bias vector for hidden layer (𝑄 − 1), and 𝑁𝑄−1 is the number of neurons in layer

(𝑄 − 1). 𝑎𝐾
(𝑄−1)

 is the activation of the previous hidden layer, which is equal to 𝑋 in the first

layer. For example, the final output of the 𝑢𝑡ℎ output neuron can be expressed as:

𝑌𝑢 = 𝑔
(𝐿) [𝑤1

[𝑢](𝐿)
𝑥1
(𝐿−1) + 𝑤2

[𝑢](𝐿)
𝑥2
(𝐿−1)⋯+𝑤𝐽

[𝑢](𝐿)
𝑥𝐽
(𝐿−1)⋯

+𝑤
𝑁𝐿−1−1

[𝑢](𝐿)
𝑥
𝑁𝐿−1−1

[𝑢](𝐿−1)
+ 𝑤

𝑁𝐿−1
[𝑢](𝐿)

𝑥
𝑁𝐿−1
(𝐿−1)

+ 𝒃(𝐿)] ,
(3-3)

37

where 𝐿 is the depth of the neural network. For a shallow neural network, 𝐿 is two (hidden and

output layer). Eq. (3-2) shows that the input of the activation function could be represented as

the linear combination of weights multiplied by activation of the previous layer. For example,

if the input value is fixed, the corresponding weight of each input neuron could directly control

the input of the activation function.

Neurons with larger weight contribute more to the activation function and vice versa. Based

on this, we introduce the Significance of an input neuron. For an input neuron I, we can write

the activation for the neuron of the first hidden layer in expanded form as:

𝑎𝐼
(1)
= 𝐺(1) [𝑊1

[𝐼](1)
𝑋1
(0) +𝑊2

[𝐼](1)
𝑋2
(0)⋯+𝑊𝐽

[𝐼](1)
𝑋𝐽
(0)⋯+𝑊

𝑁0−1

[𝐼](1)
𝑋
𝑁0−1

(0)

+ 𝑤
𝑁0
[𝐼](1)

𝑋
𝑁0
(0)
+ 𝒃(1)] ,

(3-4)

The activation of this neuron when the weight 𝑊𝐽
[𝐼](1)

 is equal to 0 can be written as:

𝑎𝐼−𝐽
(1)

= 𝐺(1) [𝑊1
[𝐼](1)

𝑋1
(0) +𝑊2

[𝐼](1)
𝑋2
(0)⋯+𝑊𝐽−1

[𝐼](1)
𝑋𝐽−1
(0) +𝑊𝐽+1

[𝐼](1)
𝑋𝐽+1
(0) ⋯

+𝑊
𝑁0−1

[𝐼](1)
𝑋
𝑁0−1

(0)
+𝑊

𝑁0
[𝐼](1)

𝑋
𝑁0
(0)
+ 𝒃(1)] ,

(3-5)

where 𝑎𝐼
(1)

 is the original output of the neuron I in the first hidden layer and 𝑎𝐼−𝐽
(1)

 is the

activation of the neuron I without input J. Therefore, the contribution of the neuron J to the

activation is controlled by the weight 𝑊𝐽
[𝐼](1)

, which can be set to zero to test the significance

of the input neuron 𝑋𝐽.

Furthermore, we introduce accuracy to evaluate the performance of the neural network.

Abbreviated as acc, it is calculated as:

38

 𝐴𝑐𝑐 = 1 − 𝑎𝑣𝑔 [∑ 𝑎𝑏𝑠

𝑛𝑡

𝐾=1

{
𝑌𝐾(𝑝𝑟𝑒𝑑𝑖𝑐𝑡) − 𝑌𝐾(𝑒𝑥𝑎𝑐𝑡)

𝑌𝐾(𝑒𝑥𝑎𝑐𝑡)
}] , (3-6)

where nt is the testing data size, 𝑌𝐾(𝑝𝑟𝑒𝑑𝑖𝑐𝑡) is the predicted output value for test example K,

and 𝑌𝐾(𝑒𝑥𝑎𝑐𝑡) is the correct output given by the test data. The value in the square bracket is

averaged over all the test data, due to statistical variation. Therefore, for accuracy equal to one

the network perfectly predicts constraints and/or objectives in optimization. Common loss

functions, such as Mean Square Error (MSE) or Root Mean Square Error (RMSE), can vary

greatly depending on the type of problem (constraints in our case). To make sure that the

accuracy of the ANN is not affected by different ranges of inputs, we use Eq. (3-6) to calculate

the accuracy.

Using the same test dataset for ANN with and without 𝑊𝐽, we can define accuracy of both

networks. The loss of accuracy is defined as significance, and for variable J, the significance

can be expressed as:

 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒(𝐽) = 𝐴𝑐𝑐(𝐴𝑁𝑁) − 𝐴𝑐𝑐(𝐴𝑁𝑁 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑊𝐽) (3-7)

The more significant the neuron is, the larger error will occur if removed. Significance close

to 𝐴𝑐𝑐(𝐴𝑁𝑁) means that the constraint is completely controlled by this variable, and

significance equal to 0 indicates that the constraint is un-correlated to the variable. We

introduce a threshold which is used to determine whether the variable is significant or not. In

this study, the threshold value of 0.1 is used, and variables whose significance is larger than

the threshold (if they exist) will be determined as variables that affect that constraint. For

problems in this research only one or two variables are above the threshold, for each constraint,

and in some cases the number is zero, if constraint is never violated. This approach allows us

to automatically generate the link. In addition, the trained ANN can be used as the surrogate

39

model in optimization. Surrogate model creation and automated mapping generator are shown

in pseudo-code 2.

Pseudo-code 2: Surrogate model and automated mapping generator

Input: Number of variables 𝑛; Number of constraints l; Significance threshold η

Parameter: ANN accuracy 𝑇 (T = 99% here); max number of training iterations = 20;

Start Surrogate model and automated mapping generator

Randomly generate training data, evaluate objectives and constraints

While 𝐴𝑐𝑐 ≤ 𝑇 or max number of training iterations not reached do

Train ANN based on the training data.

Update ANN if 𝐴𝑐𝑐 > 𝐴𝑐𝑐(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡).

End While

For each constraint (𝑖 = 1,⋯ , 𝑙) do

For each input variable (𝑗 = 1,⋯ , 𝑛) do

Set 𝑊𝑗
[𝐼](1)(𝐼 = 1,⋯ ,𝑚𝑎𝑥) = 0, and reconstruct the ANN.

Compute Significance(j) for each variable.

End For

Rank Significance for each variable, select the variable(s) with Significance greater

than η, generate row vector of Mapping.

End For

End Surrogate model and automated mapping generator

Output: Automated mapping; Artificial Neural Network surrogate model

40

3.3 Implementation to PSO

In this thesis, the novel repair-based CHT is implemented into PSO as one of the prominent

single-objective algorithms. In the modified PSO, particles will not move toward infeasible

solutions. Only feasible solutions are considered for particle’s and swarm’s best position. To

ensure exploration and exploitation of the design space, two more features are introduced for

the repair technique in PSO: dynamic selection of repair candidates and selection of repair

donor based on Gaussian distribution.

Dynamic selection of repair candidate

Instead of only repairing the infeasible solutions with better objective value than the 𝐺𝑏𝑒𝑠𝑡,

infeasible solutions whose objective value is slightly worse than 𝐺𝑏𝑒𝑠𝑡 could also be repaired.

An example can be found in Figure 3.6, where the second-best infeasible solution is also

repaired. Initially, infeasible solutions could easily surpass 𝐺𝑏𝑒𝑠𝑡 in terms of the objective as

the design space is not deeply explored. Later when the population gets closer to the global

optimum, generated infeasible solutions become less likely to outperform 𝐺𝑏𝑒𝑠𝑡. In this case,

to further explore the objective space, the criteria of selecting the repair candidates becomes

less strict as the generation number increases.

In other words, for a minimization problem, infeasible solutions with an objective value

smaller than an adaptive threshold can be repaired. This value can be formulated as:

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 휀 × 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐺𝑏𝑒𝑠𝑡), (3-8)

where 휀 is defined in this thesis as the dynamic expansion factor, which can be expressed as:

 휀 = 1 +
𝑡

𝑀𝑎𝑥 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
, (3-9)

41

where 𝑡 is the current generation number. At the beginning of the optimization, the repair

technique works normally as 휀 is equal to one and increases to two in the end.

Figure 3.6. Dynamic selection of repair candidate.

Selection of repair donor based on Gaussian distribution

Repair operator allows infeasible solutions to become feasible. However, many solutions might

share the same variables after the repair, which might influence the population’s diversity. In

single-objective problems, objective space is in 1-D, meaning that the closest feasible solution

of all prominent infeasible solutions is 𝐺𝑏𝑒𝑠𝑡 . This will dramatically reduce population

diversity if all the candidates are being repaired based on the same donor. For this reason, we

give some randomness for donor selection. Gaussian distribution has been used here to decide

the donor index as this is one of the most basic probability distributions. Figure 3.7 shows an

example of this procedure: instead of selecting the closest feasible solution, the second or the

third closest feasible solution can also be selected as repair donors. In this research, two

parameters 𝜇 and 𝜎 are used to control the shape of the probability density function. The index

of the repair donor could be written as:

 𝑖𝑛𝑑𝑒𝑥𝑑𝑜𝑛𝑜𝑟 = max (1, 𝑟𝑜𝑢𝑛𝑑 (𝑎𝑏𝑠(𝑛𝑜𝑟𝑚𝑟𝑛𝑑(𝜇, 𝜎)))), (3-10)

where 𝜇 is the mean or expectation of the gaussian distribution and 𝜎 is the standard deviation.

In this thesis, 𝜇 is defined as one and 𝜎 is defined as two. Statistically, based on Eq. (3-10), the

probability of selecting the ith closest feasible as the repair donor is shown in Table 3.1.

42

Figure 3.7. Repair donor selection using Gauss probability.

Table 3.1. Donor selection probability.

Donor index 1 2 3 4 5 6 7 8

Probability (%) 49.21 24.48 14.71 7.58 3.10 0.63 0.18 0.1

3.4 Implementation to MOEA/D

In MOEA/D, the proposed CHT has been embedded to update the position of the prominent

infeasible solutions at each generation. Another modification of MOEA/D in this thesis is that

each solution is re-assigned to the weight vector that gives it the lowest aggregate value.

Because the essence of MOEA/D is to optimize multiple single-objective problems, and this

modification can position every solution closer to the PF. As shown in Figure 3.8, any

infeasible solution that is better than the current best solution of a weight vector will be selected

as the repair candidate. Furthermore, the donor is selected from the repair candidate’s

corresponding neighborhood solutions. If all neighborhood solutions are infeasible, the donor

will be selected from the nearby neighborhoods, starting from the nearest one.

43

Figure 3.8. Repair candidate selection in MOEA/D.

3.5 Implementation to NSGA-II

The proposed approach is also embedded into NSGA-II for handling multi-objective problems.

Original NSGA-II uses constrained dominance principle (CDP) as CHT. CDP says that the

solution with a larger constraint violation is always dominated by the one with a lower

constraint violation, and an infeasible solution is always dominated by a feasible one.

The operating procedure of the modified NSGA-II is the same as [37], where infeasible

solutions are also sorted based on the non-domination principle by ignoring their violation and

only considering their objective values. As could be seen from Figure 3.9, 𝛾(𝑗)
(𝑡)

 denotes the 𝑗𝑡ℎ

ranking of the infeasible front at generation 𝑡, while the symbol 𝜔 denotes the feasible front.

Prominent infeasible solutions from different ranks are collected as 𝛼(𝑡) based on non-

domination sorting and repaired.

44

Figure 3.9. Possible location of sorted solutions in the population in NSGA-II [37].

In modified NSGA-II, the repair-based CHT is performed before the genetic operator and non-

domination sorting. In each generation, solutions in 𝛼(𝑡) from 𝑃𝑡 will be selected as repair

candidates, and they will be modified based on the donors. The donor selection strategy in

modified NSGA-II follows the procedure described in Section 3.1. Afterwards, 𝑄𝑡 is

composed of repaired solutions and solutions generated by the genetic operator. Non-

dominated sorting is conducted later to select solutions for the next generation.

3.6 Repair-based Optimization Framework

The flowchart of the repair-based optimization framework is presented in Figure 3.10. In this

thesis, the three algorithms follow a similar flow except for the selection of repair candidates

and donors, which has been explained in the previous sections. In this framework, a set of

solutions is randomly generated at the beginning to train the ANN. Afterwards, ANN defines

the variable-constraint mapping and is ready to be used as surrogate model in optimization

(used in this thesis only for the tanker problem). The detailed setting of ANN training can be

found in Section 4.4.2 and Section 5.1. After the complete preparation of the surrogate model

and automated mapping, the optimization process starts. In each generation, repair operator is

invoked before evaluation. Solutions are updated afterwards using surrogate model.

45

Figure 3.10. Repair based optimization framework.

It is worth mentioning that the surrogate model is used throughout the whole tanker

optimization. However, since the surrogate model is trained from randomly generated data, its

accuracy inevitably decreases as the exploration of the design space progresses. To validate

the influence of the surrogate model’s accuracy on the algorithm’s performance, we conducted

an additional test on NSGA-II with the repair where the algorithm will switch from the

surrogate model back to the original structural model at 80% of maximum generations. The

results in Appendix A show that NSGA-II using the surrogate model throughout the whole

process can reach the same level of accuracy at the end of the optimization. Therefore, limited

by the computational resources, we apply the surrogate model for the whole optimization

process in the rest of the thesis.

46

4 Test case introduction

4.1 Mathematical benchmark problem

In this thesis, a constrained benchmark mathematical problem called OSY is used to evaluate

the performance of both single- and multi-objective optimization algorithms. The details of the

OSY problem are described below, where two objective functions need to be optimized subject

to six constraints.

In multi-objective testing, both objectives are considered, while only the first objective is

considered for single-objective testing. OSY is defined as:

 𝑚𝑖𝑛 {

𝑓1(𝑥) = −25(𝑥1 − 2)
2 − (𝑥2 − 2)

2 − (𝑥3 − 1)
2 − (𝑥4 − 4)

2 − (𝑥5 − 1)
2

𝑓2(𝑥) =∑𝑥𝑖
2

6

𝑖=1

} (4-1)

s. 𝑡. =

{

𝑔1(𝑥) = 𝑥1 + 𝑥2 − 2 ≥ 0

𝑔2(𝑥) = 6 − 𝑥1 − 𝑥2 ≥ 0

𝑔3(𝑥) = 2 + 𝑥1 − 𝑥2 ≥ 0

𝑔4(𝑥) = 2 − 𝑥1 + 3𝑥2 ≥ 0

𝑔5(𝑥) = 4 − (𝑥3 − 3)
2 − 𝑥4 ≥ 0

𝑔6(𝑥) = (𝑥5 − 3)
2 + 𝑥6 − 4 ≥ 0

0 ≤ 𝑥1, 𝑥2, 𝑥6 ≤ 10,

1 ≤ 𝑥3, 𝑥5 ≤ 5.

(4-2)

4.2 Truss problem optimization

In this thesis, the common 10-bar truss design problem is used for single-objective algorithms’

performance testing. The configuration of this problem is shown in Figure 4.1, where the cross-

sectional area of each bar needs to be optimized to minimize the total weight [82].

47

Figure 4.1. Configuration of the ten-bar truss.

In Figure 4.1, the length of the members 𝑙7−10 is 509 in, while the length of the rest members

is 360 in. The member’s cross-sectional areas are denoted as 𝐴𝑖, ranges from 0.1 in2 to 33.5

in2. The node 5 and node 6 are fixed by the hinges [83]. Thus, the displacement of node 5 and

node 6 are zero. Two external loads P of 100 kips are applied in node 2 and node 4, respectively.

Furthermore, the maximum allowable stress in any member of the truss is ±25 ksi, and the

maximum nodal deflection in both vertical and horizontal directions is ±2 inch [84]. The

density of the truss material is 0.1 lb/in3 and the modulus of elasticity is 107 psi. Based on this,

this problem can be formulated as:

 min 𝑊(𝐴) = 0.1∑𝑙𝑖𝐴𝑖,

10

𝑖=1

 (4-3)

𝑠. 𝑡. 𝜎𝑖 ≤ 25𝑘𝑠𝑖, (𝑖 = 1,2,⋯ ,10),

𝑣𝑘𝑥, 𝑣𝑘𝑦 ≤ 2𝑖𝑛, (𝑘 = 1,2,3,4),

(4-4)

where 𝑊(𝐴) is the weight function representing the objective, 𝑙𝑖 is the length of the ith bar

element, 𝜎𝑖 is stress in each truss member, and 𝑣𝑘𝑥 and 𝑣𝑦𝑘 are the displacements of the node

48

k in x and y direction. The response of the structure has been analyzed using FEA code in

Matlab.

4.3 Structural optimization of a tanker

For real-life engineering optimization problem, we consider chemical tanker which is 180 m

long, 32 m wide and 18 m deep, with a draught of 11.5 m. It is operating under normal service

condition. The layout of this tanker is shown in Figure 4.2. Optimization is performed on

longitudinal structural members. Problem modelling, optimization and result analysis is

conducted using Matlab and Fortran. The problem was introduced in [42] and optimized later

in [85] and [37]. Variables, structural constraints and objectives are described below.

4.3.1 Design variables and parameters

The tanker is subjected to lateral pressure from sea and cargo. Because of the local difference

between buoyancy force and ship’s weight, vertical shear force and bending moment arise

along the ship, under sagging and hogging conditions [86]. Figure 4.2 (a) shows the distribution

of vertical bending moment and shear force along the ship. The maximum bending moment is

2.93·106 kNm and 2.41·106 kNm for sagging and hogging conditions, respectively, and the

maximum vertical shear force is 48·103 kN for both conditions.

Figure 4.2 (b) shows the detailed drawing of the half cross-section of the tanker. Due to

symmetry, one half of the midship section is considered in optimization, nonetheless mass is

presented as the total mass of the structure in the results. The structure consists of 47 strakes,

each of them defined by five parameters: plate thickness, stiffener size, stiffener type, number

of stiffeners, and panel’s material type. Plate thickness and stiffener size of each strake are

considered as the variables of the problem (total of 94 variables). The other three are assumed

as fixed, together with the transverse structures. The choice of decision variables will influence

49

the final values of the objectives and consideration of all five parameters above could lead to

more optimized structure, however, the aim of the study is to compare different optimization

algorithms, and this comparison remains qualitatively the same once optimization problem is

set up. Plate thickness is considered from 5 mm to 26 mm with a step of one millimeter.

Stiffeners are selected from a standard table of profiles given by the steel producers [87],

ranging from HP 100x5 to HP 430x17.

4.3.2 Design constraints

In this problem, the yield strength of the cargo tanks’ plating is 460 MPa and for the rest of the

structure it is 355 MPa. 8 constraints are considered for each strake, namely stiffener yielding,

plate yielding, plate buckling, stiffener web buckling, flange buckling, lateral buckling,

tripping and crossover. To prevent uncontrolled panel collapse, crossover constraint ensures

that the global buckling strength is larger than the plate or stiffener buckling strength [88].

Stresses from global loads (shear force and bending moments) are calculated using Coupled

Beam (CB) method [89] at each part of the cross-section under both hogging and sagging

conditions. Local stresses (plate and stiffener under pressure loading) are calculated using

classic plate and beam theory. Local stresses are superimposed to the ones arising from global

loads and the worst possible combination is taken at each strake. Finally, constraints are

normalized based on non-linear normalization function [90] :

 𝑔𝑗(𝒙) =
𝐴𝑗(𝒙) − |𝐵𝑗(𝒙)|

𝐴𝑗(𝒙) + |𝐵𝑗(𝒙)|
, (4-5)

where 𝐴𝑗(𝒙) is the capacity of the structural element j, and 𝐵𝑗(𝒙) is the stress acting on it.

Normalized constraints range from -1 to 1, where negative value indicates violation and zero

represents the boundary. Large majority of computational time in the tanker problem goes

towards the assessment of constraints.

50

Figure 4.2. Cross-section of the tanker [37]. Strake numbers are shown in circles. Dimensions are in mm.

4.3.3 Design objectives

Two objectives are considered: (a) minimization of the structural mass and (b) maximization

of deck’s adequacy. Mass is calculated by multiplying steel density of 8 t/m3 with cross

sectional area of longitudinal members, extending them for the whole ship’s length (and

breadth), effectively considering the ship to be prismatic. Moreover, 21.44 t is added as the

mass of the transverse structure every 3.56 m. The second objective aims to increase structural

safety by reducing stresses in the deck in order to decrease occurrence of significant fatigue

cracks. The deck is selected as the critical part of the structure since other parts of the structure

have higher redundancy due to the double-plated construction. Therefore, the second objective

is formulated as the sum of the normalized deck constraints, which reach the maximum value

of one when stress approaches zero; see Eq. (4-5). The deck’s adequacy was taken as a

simplified measure of safety for the purpose of comparing the optimization algorithms. More

refined models should be used for engineering purposes; see e.g. Ref. [91] .We can anticipate

51

a conflict between the two objectives: lighter solutions have higher stresses in the deck, thus

lower deck adequacy. The second objective is leading the solutions away from the constraint

boundary and deeper into the feasible space, which makes the structure heavier. It is worth

mentioning that since ANN is used as the surrogate model to predict constraints, and

constraints are used to calculate the second objective (adequacy), the surrogate model is

predicting the second objective for the tanker problem, until we revert back to the original

structural code.

4.4 Control parameters

4.4.1 Parameter settings in optimization algorithms

Since certain steps in metaheuristic optimization algorithms are carried out at random, 100

independent runs are performed for the OSY problem and the 10-bar truss problem. Limited

by the computation resources, the tanker problem is optimized for 30 times. An initial

population can be manually provided by the user beforehand so that the algorithm could get

better results from a good starting point. To prevent bias and allow fair comparisons, initial

populations can be generated randomly using the uniform distribution of the variables between

their upper and lower bounds. For complex engineering problems, the randomly generated

initial population could be completely infeasible which is challenging for optimization

algorithms to start from. Nonetheless, this is a suitable way to evaluate the algorithms’

performance. Furthermore, all simulations for the tanker are performed based on the same

initial populations to alleviate the influence of the optimization algorithms’ starting position.

The following general control parameters are used for all test optimization algorithms for

consistency. Population size is set as 100 for all test problems. It is worth mentioning that the

size of the population is fixed even when using the repair, in which case the number of “normal”

solutions is reduced. The number of generations is 1000 for tanker optimization, while this

52

number is 50 for OSY and truss problem since these are easier to optimize. We use continuous

variables for OSY and truss problem. However, the variables for the tanker problem are

discrete, thus a solution is defined with a 400-bit-long chromosome.

Algorithm-specific parameters are listed in Table 4.1. Most of the parameters are taken from

the suggested value in their original papers as they all show the best performance in the

preliminary tests [1,16,18,37,71,72]. An exception is MOGWO, whose control parameters are

optimized to obtain a better result.

Table 4.1. Parameter settings for testing algorithms.

Algorithms Settings

NSGA-II 𝑝𝑐 = 0.9; 𝑝𝑚 = 1/𝑛

MOEA/D Neighborhood size 𝑇 = 20

PSO 𝑤 = 0.99; 𝑐1 = 1.5; 𝑐2 = 2

PSO repair 𝜎 = 2; 𝜇 = 1

MVO & MOMVO WEP was linearly increased from 0.2 to 1; 𝑝 = 6 in TDR

IGWO 𝑎 was linearly decreased from 2 to 0

MOGWO 𝑎𝑙𝑝ℎ𝑎 = 0.5; 𝑏𝑒𝑡𝑎 = 10; 𝑛𝐺𝑟𝑖𝑑 = 10

Note that n is the number of variables in continuous problems and the number of bits in discrete problems.

4.4.2 Hyperparameter settings in ANN

Other than the control parameters of the optimization algorithms, hyperparameter settings of

the ANN are also listed here. It is well known that the hyperparameters profoundly affect its

accuracy and the time required for training. Hyperparameters considered here are the training

size, learning rate, activation functions, loss function optimizer, regularization method and

architecture. Except for the ANN architecture, the other hyperparameters could be easily

optimized. Several preliminary tests have been done and the settings of those hyperparameters

are shown in Table 4.2.

53

Table 4.2. ANN hyperparameter settings.

Hyperparameters Settings

Initial learning rate 0.1

Activation functions Sigmoid and Purelin

Optimizer Levenberg-Marquardt backpropagation

Regularization method Early stopping

Maximum number of epochs 2000

It is worth mentioning that the early stopping is applied to prevent overfitting. To avoid

underfitting, maximum of 2000 epochs has been set for the optimizer to fully reach the optimal

weight matrices. Sigmoid and Purelin activation functions are used in the hidden layers and

the output layer, respectively. Levenberg-Marquardt backpropagation results in the best

training among other options in Matlab.

54

5 Results

5.1 ANN accuracy investigation

As mentioned in Section 4.4.2, ANN’s accuracy largely depends on hyperparameter settings.

Some hyperparameters have been optimized as shown in Table 4.2.

In this thesis, the purpose of applying ANN is to help improve optimization algorithm’s

efficiency. Thus, minimizing ANN training time is equally important as maximizing ANN

accuracy. The hyperparameters that influence both factors the most are training data size and

ANN architecture. The influence of data size will be discussed in the end as it is widely known

that more data improves the accuracy. In contrast, ANN architecture needs to be adjusted

properly, as a wider and deeper network will slow down the training process and may lead to

overfitting. Further, a narrow and shallow ANN cannot meet the desired accuracy. In this thesis,

we present the performance for different ANN architectures with the other hyperparameters

fixed. We focus on the tanker optimization case, since OSY and truss problem are much

simpler. For the tanker, ANN is used as surrogate model, besides defining the variable-

constraint mapping. The term “total time” is used to denote time it takes to train a network up

to 20 times to predict all constraints in a problem. We focus on constraints since their

assessment takes the most of computational resources; objectives are simple explicit functions.

Since large number of ANNs need to be trained, in order to save computational time, they are

not be trained after reaching accuracy of more than 99% (Eq. (3-6)). For come constraints that

are hard to predict, ANN needs to be trained multiple times. The maximum number of training

attempts is set to 20; if accuracy is less than 99% for all, the best network is selected. The

number of independent training runs is set to 20 because of the influence of training data

sequence on the ANN accuracy. Hence, for each independent training, we randomly shuffle

55

the sequence of training data. The error is reported for the most accurate network. The training

set consists of 3,000 randomly generated solutions.

Figure 5.1 shows the prediction error and training time when using shallow ANN with different

numbers of outputs (constraints) for the tanker. We would normally want to predict a larger

number of constraints with a single network. However, we can observe from Figure 5.1 that

both the error and training time increase with a larger number of outputs, thus a network with

only one output is selected as the most appropriate. We can see that ANN shows the lowest

error of 3.57% with five neurons in the hidden layer. The network takes 1.3 hours to train,

which is acceptable for the optimization process, given that the optimization of the tanker takes

about 100 hours using the original structural model with 1000 generations. Further increasing

the neural network capacity decreases the accuracy as more neurons may cause overfitting.

Figure 5.1. Accuracy and training time for shallow ANN used on tanker optimization problem.

Figure 5.2 shows the performance of a neural network with two hidden layers and a single

output. The lowest error is 3.55% when the ANN contains five neurons in the first hidden layer

and three neurons in the second. This is very close to the performance with a single hidden

layer, but it requires more time to train. The training time for the best performing deep neural

network (two hidden layers) is 47% higher than the time for the best performing shallow

network. Similar results are found for deep neural networks with two and four outputs, where

the smallest error is 3.55% and 3.57%, respectively, but it requires longer training. The same

trend for accuracy and training time continues with higher number of hidden layers, thus is not

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

E
rr

o
r

(%
)

Number of hidden neurons

 Error

 Total time

Minimum Error = 3.57%

1 OUTPUT

0

1

2

3

4

5

T
o
ta

l
ti

m
e

(h
)

0 5 10 15 20
2

4

6

8

10

12

14

16

E
rr

o
r

(%
)

Number of hidden neurons

 Error

 Total time

Minimum Error = 3.58%

2 OUTPUTS

0

2

4

6

8

T
o

ta
l

ti
m

e
(h

)

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

E
rr

o
r

(%
)

Number of hidden neurons

 Error

 Total time

Minimum Error = 3.58%

4 OUTPUTS

0

5

10

15

T
o
ta

l
ti

m
e

(h
)

56

pursued. Therefore, a shallow ANN is used in continuation, where the network with one to

seven neurons is trained, tested and the best one is selected for each constraint (376 constraints

in the tanker case). Generally, if a more complex problem is optimized, deep network might

be beneficial to reduce the error.

Figure 5.2. Accuracy and training time for deep ANN with two hidden layers and one output used on

tanker optimization problem.

The size of the training data is also an important factor that influences the accuracy of ANNs.

As shown in Figure 5.3, more data causes the error to decrease quite fast initially and

afterwards much slower. Training time increases gradually from 2.25 hours to 57.8 hours as

the data size increases from 500 to 10,000. The error of ANN goes down from 6.56% to 3.13%.

Considering both ANN training time and accuracy, optimization results in Section 5.3 and

Section 5.4 involve ANN trained with 10,000 solutions.

Figure 5.3. Influence of the training data size on the accuracy of a shallow neural network for tanker

optimization problem.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

E
rr

o
r

(%
)

Training size

 Error

 Total time

0.0

10.0

20.0

30.0

40.0

50.0

60.0

T
o

ta
l

ti
m

e
(h

)

57

5.2 ANN-based variable-constraint mapping

As discussed in Section 3.2 the variable-constraint mapping outlines the most significant

variables that affect constraints. More accurate variable-constraint mapping could improve the

efficacy of the proposed repair technique. Section 3.2 describes the procedure to automate the

mapping using a trained ANN. In this subsection, the effect of training data size on the accuracy

of the mapping is discussed.

Figure 5.4 (a) shows the mapping for the OSY problem, which could be defined manually

based on the closed-form functions. For the truss problem or tanker that is much harder (even

impossible) to define, thus we use ANN as outlined in Section 3.2. The training data are

randomly generated set of variable values and their resulting constraints. We can see that even

a relatively small data size of 60 points leads to the correct definition of the mapping matrix

for the OSY.

On the other hand, the constraint formulas for the truss problem are more complex. Both stress

and displacement constraints are influenced by several structural members. A user can hardly

define the variables that significantly influence each constraint. We assume that ANN trained

with high amount of data leads to the correct mapping. We can see from Figure 5.4 the

convergence of the mapping for the truss problem as the data size increases.

The difference is only 5.6% (1 constraint incorrectly predicted) when going from 4000 to 2000

data samples. It is worth mentioning that due to the randomness of ANN, the significance value

generated for each variable fluctuates. Thus, those variables with significance around the

threshold η might not be selected sometimes. This explains the fluctuation of difference when

the ANN contains more training data.

58

Table 5.1 shows the details of the automated mapping for the truss problem, including all

constraints and significant variables. We can notice that some members can be categorized into

groups, and the members of the group will affect each other's stress. Two groups are found:

bar #1, #3, #7, #8, and bar #2, #4, #6, #9, #10. Furthermore, the variables that influence the

displacement are mostly bars #1, #3, #7, and #8.

Table 5.1. Most significant variables which influence each constraint for the truss problem, defined by the

automated mapping algorithm.

Constraint Member(s) that affect the constraint:

Stress in bar #1 1,3,7,8

Stress in bar #2 2,4,6,9,10

Stress in bar #3 1,3,7,8

Stress in bar #4 2,4,9,10

Stress in bar #5 3,5,7,8,9

Stress in bar #6 4,6,9,10

Stress in bar #7 1,3,7,8

Stress in bar #8 1,3,7,8

Stress in bar #9 2,6,9,10

Stress in bar #10 2,6,9,10

Node 1 displacement in x-direction 1,3,7,8

Node 1 displacement in y-direction 1,3,7,8

Node 2 displacement in x-direction 1,3,7,8

Node 2 displacement in y-direction 1,3,7,8,9

Node 3 displacement in x-direction 1,2,3,7,8

Node 3 displacement in y-direction 1,3,7,8,9,10

Node 4 displacement in x-direction 1,3,7,8

Node 4 displacement in y-direction 1,3,7,8

59

a)

b)

c)

Figure 5.4. Accuracy of automated mapping a) OSY problem b) Truss problem c) Tanker problem.

0

20

40

60

80

100

0 1000 2000 3000 4000%
 o

f
In

co
rr

et
ly

L
in

k
ed

 C
o

n
st

ra
in

ts

Training size

Truss Mapping

0

2

4

6

8

10

12

0 6000 12000 18000 24000

%
 o

f
In

co
rr

et
ly

 L
in

k
ed

 C
o

n
st

ra
in

ts

Training size

Tanker Mapping

60

The tanker problem is even more complex and requires a much larger training data. Similar to

the truss problem, we don’t know the correct mapping matrix for such a complex problem, as

constraints could be affected by any number of variables. Therefore, we also assume that the

prediction is correct for a large data size. We can see from Figure 5.4 that the deviation from

the mapping decreases as we increase the training data size. Initially with 500 data samples,

the deviation is 10.6%, which decreased rapidly to 3.19% with 2000 points. The deviation can

be further decreased to 0.79% when the data size increases to 20,000, even though a large

training time is required. Thus, a training size of 3,000 data points (with 2.66% mapping

deviation) is used to be consistent with ANN training for the purpose of surrogate model

definition. It is worth mentioning that the automated mapping for the tanker is generally sparse,

having only 220 non-zero members out of 376×94 matrix (𝑙 × 𝑛). This is even more sparse

than assumed in Ref. [37].

Table 5.2 shows the most significant variable which affects each type of constraint for the

tanker problem, defined by the automated mapping. In some cases, the constraints are always

satisfied, which can be explained by the choice of variable bounds. This shows one advantage

of using ANN to define the mapping: only ‘active’ constraints are linked to their variables,

which is hard for a user to assume beforehand, for such complex problems. Preliminary

investigation revealed similar success of the repair technique in creating feasible solutions

using automated mapping and the mapping assumed in Ref. [37]. Since the training data shows

that some constraints are never violated, training could be omitted in such cases, but since

some of them are used for the second objective, that is not pursued for the ease of

implementation. Moreover, the total training time is relatively short (10 hours) in comparison

to the normal optimization run with the original structural model (100 hours).

Another phenomenon observed in automated mapping is that ANN considers all variables as

‘insignificant’ for some constraints. This validates what we assumed in Section 3.2: multiple

61

variables are equally important, and no variable significantly influences that constraint. This

shows the second advantage of automated mapping: even if no variable is selected,

insignificant variables will not be selected to define the mapping.

Table 5.2. The most significant variable that influences each constraint for the tanker problem, defined by

the automated mapping algorithm.

Constraint Automated mapping defined it as the function of *:

Plate yielding Plate thickness in 70% of strakes*

Plate buckling Plate thickness in 95% of strakes*

Stiffener yielding Stiffener size in 57% of strakes*

Stiff. web buckling Constraint is always satisfied*

Stiff. flange buckling Constraint is always satisfied*

Stiff. lateral buckling Stiffener size in 70% of strakes*

Stiff. torsional buckling Plate thickness in 10% of strakes, stiffener size in 15% of strakes*

Crossover Plate thickness in 8.5% of strakes, stiffener size in 17% of strakes*

* In remaining strakes the constraint is always satisfied.

5.3 Optimization comparisons for single-objective problems

In this subsection, the results of single-objective optimization algorithms are compared. We

apply static penalty in PSO, IGWO, GSA, and MVO to handle constraints. Together with PSO

with repair, the minimum objective value found by those algorithms at each generation for

each test problem is shown in Figure 5.5 to Figure 5.7. Note that the initial study tested several

penalty factors for the static penalty approach; the best performance for all problems was

achieved with a high penalty factor. Thus, we apply the penalty factor as 107 for most

comparisons. Moreover, all the tests are conducted for 100 runs except the tanker problem

which is limited by the computational resources, and the median value is selected for plotting

the results.

Figure 5.5 shows the history of the minimum value of the first objective value for OSY. Since

OSY is relatively easy to optimize, the algorithms quickly reach the global minimum. PSO

62

with repair converges to the global optimum at the 32nd generation. PSO and IGWO with static

penalty take a longer time, 80 and 200 generations, respectively. However, the median of GSA

and MVO fails to reach the global optimum within 1000 generations. Median objective values

can be found in Table 5.3. Static penalty shows a good ability to handle constraints, which

leads to a competitive performance of PSO, IGWO, and MVO. GSA does not perform so well

on this problem.

Figure 5.5. The lowest value of the first objective of OSY throughout the optimization.

In Figure 5.6, we can observe a similar trend as in Figure 5.5, where PSO with the repair

achieves the best result. The optimum has already been obtained in [83], which is shown as a

horizontal line in Figure 5.6. Only PSO with repair fully converges to the global optimum

within 50 generations. PSO and IGWO with static penalty require about 560 and 980

generations to reach the same point. Similar to Figure 5.5, median GSA and MVO with static

penalty cannot find the global optimum solution in 1000 generations. Further, PSO with static

penalty shows the second-best performance. IGWO and MVO are relatively worse, while GSA

fails to improve the solutions after the 6th generation.

0 10 20 30 40 50
-280

-260

-240

-220

-200

-180

-160

O
b

je
ct

iv
e

Generations

 PSO Repair

 PSO SP 107

 IGWO SP 107

 GSA SP 107

 MVO SP 107

OSY

63

Figure 5.6. Minimum truss weight found by different algorithms.

Figure 5.7 shows the history of the minimum weight design for the tanker. The starting point

of each curve indicates when the algorithm finds feasible solutions. Due to high complexity of

the tanker problem, solutions randomly generated at the initial stage are all infeasible.

Algorithms need to properly handle constraints to reach feasible design space. PSO with static

penalty finds the feasible space at generation 22, while it takes 102 generations for GSA.

IGWO and MVO take relatively longer to find their first feasible solution, at generation 337

and 384, respectively. Even though IGWO is slow to find feasible space at the initial stage, it

converges fast and finds similar result as PSO with the repair at the end, see Table 5.3.

In contrast, PSO and GSA with static penalty show a slow convergence. PSO with repair

outperforms other algorithms, and converges to the global optimum at generation 107, which

is nine times faster than IGWO with static penalty which obtains a similar result at the end.

The excellent convergence of PSO with the repair indicates that this approach could be

potentially applied to the early design of engineering problems.

0 10 20 30 40 50
4500

5000

5500

6000

6500

7000

T
ru

ss
 W

ei
g

h
t

(l
b

)

Generations

 PSO Repair

 PSO SP 107

 IGWO SP 107

 GSA SP 107

 MVO SP 107

 Ref. [83]

Truss

64

Figure 5.7. Minimum tanker weight found by different algorithms.

Table 5.3. Statistics of the algorithms’ performance at the end of optimization for single-objective

problems.

 Median Average St.Dev. Best

PSO

PSO Repair -274.0 -274.0 0.00026 -274.0

PSO SP 107 -262.2 -260.6 7.693 -272.3

IGWO SP 107 -267.8 -267.1 2.546 -271.2

GSA SP 107 -189.2 -184.5 26.34 -228.9

MVO SP 107 -262.0 -261.6 5.240 -270.2

Truss

PSO Repair 4657 4657 1.777 4656

PSO SP 107 4695 4702 20.48 4676

IGWO SP 107 4797 4798 24.50 4751

GSA SP 107 6681 6644 258.0 5692

MVO SP 107 4765 4771 30.56 4723

Tanker

PSO Repair 7148 7153 68.71 6984

PSO SP 107 7252 7254 106.1 7020

IGWO SP 107 7120 7125 51.34 7024

GSA SP 107 7860 7960 134.9 7696

MVO SP 107 7664 7664 156.0 7264

0 100 200 300 400 500 600 700 800 900 1000
7.0

7.5

8.0

8.5

9.0

9.5

M
in

im
u
m

 W
ei

g
h

t
(1

0
0

0
t)

Generations

 PSO Repair

 PSO SP 107

 IGWO SP 107

 GSA SP 107

 MVO SP 107

Tanker

65

Analysis of the repair-based CHT in PSO

Figure 5.8 shows the median performance of the repair operator during optimization for the

tanker problem. Only the first 300 generations are shown since PSO with repair is fully

converged after that. At the beginning of the optimization, the algorithm generates many

infeasible solutions to explore the design space. Later the algorithm focuses on the exploitation

where more prominent infeasible solutions are selected as repair candidates (see Section 3.3

dynamic selection of repair candidate). This could be observed from the red dots, where up to

60% of the solutions are repaired at generation 80. Most of the solutions are successfully

repaired, while the unsuccessful could be explained with inaccuracies in the automated

mapping. Afterwards, the number of generated infeasible solutions and repaired solutions is

decreased. This indicates that the algorithm has converged to the global optima.

Figure 5.8. Performance of the proposed repair CHT in OSY for tanker optimization.

5.4 Optimization comparisons for multi-objective problems

In this subsection, we discuss the influence of repair-based CHT on multi-objective

optimization algorithms, in comparison to other CHTs. Figure 5.9 presents median values of

the performance indicators throughout the optimization for MOEA/D with different constraint

0 50 100 150 200 250 300
0

20

40

60

80

100
 Infeasible Solutions (PSO)

 Repaired Solutions (PSO Repair)

 Successfully Repaired Solutions (PSO Repair)

N
u
m

b
er

 o
f

S
o
lu

ti
o
n

s

Generation

Repair in PSO

66

handling approaches. We can see that constraint handling approach can significantly alter the

performance of the optimization algorithm. For the OSY problem, essentially the same

performance is achieved with repair and adaptive threshold, having the same final HV value

and almost the same IGD, see Table 5.4. This is significantly better than with static penalty.

Here, we show MOEA/D with penalty factors 102 and 107 for comparison. On the tanker

problem, repair outperforms adaptive threshold approach, not just in the end but also at every

generation, which is important for practical purposes when optimization needs to be interrupted

prematurely due to e.g., lack of time or resources.

Similar to PSO with repair, the novel repair-based CHT helps MOEA/D find feasible solutions

at the initial optimization stage (2nd generation). It is worth mentioning that the first generation

is entirely infeasible with solutions violating 25 to 35 constraints for the tanker problem, which

is the reason that other approaches take about 50 generations to find the feasible space, thus

having initial HV values of zero. This could be observed in all approaches from Figure 5.9 to

Figure 5.11 except for the algorithms with the repair technique. 30 runs that were made with

each approach start with the same 30 randomly generated populations to eliminate the

influence of algorithms’ starting position. Table 5.4 gives median, average, standard deviation,

and the best values of performance indicators at the end of optimization.

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y

p
er

v
o

lu
m

e
In

d
ic

at
o

r
(H

V
)

Generations

 MOEA/D Repair

 MOEA/D Adaptive Threshold

 MOEA/D SP 107

 MOEA/D SP 102

OSY

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y

p
er

v
o

lu
m

e
In

d
ic

at
o

r
(H

V
)

Generations

 MOEA/D Repair

 MOEA/D Adaptive Threshold

 MOEA/D SP 107

 MOEA/D SP 102

Tanker

67

Figure 5.9. Median performance indicators during optimization for MOEA/D with different constraint

handling approaches for OSY and tanker problem.

Table 5.4. Statistical values of the performance indicators at the end of optimization.

HV IGD

Med. Avg. St.Dev. Best Med. Avg. St.Dev. Best

OSY

MOEA/D Repair 0.9020 0.9003 0.0064 0.9020 0.0109 0.0119 0.0046 0.0094

MOEA/D Ad. Th. 0.9018 0.9003 0.0127 0.9021 0.0108 0.0128 0.0171 0.0094

MOEA/D SP 107 0.8665 0.8349 0.1041 0.9017 0.0424 0.0684 0.0745 0.0116

MOEA/D SP 102 0.7294 0.7587 0.0550 0.8640 0.2038 0.1875 0.0559 0.0621

NSGA-II Repair 0.8662 0.8336 0.1137 0.9016 0.0386 0.0694 0.0860 0.0063

NSGA-II Ad. Th. 0.8629 0.8131 0.1166 0.8994 0.0462 0.1009 0.0995 0.0078

NSGA-II SP 107 0.8635 0.8079 0.1241 0.9004 0.0439 0.0990 0.1003 0.0068

NSGA-II Original 0.8645 0.8238 0.1128 0.9003 0.0457 0.0927 0.0925 0.0074

MOMVO SP 107 0.8886 0.8518 0.0900 0.8963 0.0244 0.0634 0.0798 0.0175

MOGWO SP 107 0.6972 0.6820 0.1086 0.8113 0.0183 0.0195 0.0041 0.0155

Tanker

MOEA/D Repair 0.8238 0.8218 0.0121 0.8378 0.0282 0.0288 0.0052 0.0193

MOEA/D Ad. Th. 0.8145 0.8105 0.0234 0.8505 0.0363 0.0380 0.0126 0.0143

MOEA/D SP 107 0.7100 0.6974 0.0378 0.7600 0.1230 0.1207 0.0176 0.0930

MOEA/D SP 102 0.6648 0.6661 0.0252 0.7148 0.1174 0.1180 0.0241 0.0688

NSGA-II Repair 0.8376 0.8366 0.0115 0.8676 0.0234 0.0229 0.0062 0.0060

NSGA-II Ad. Th. 0.7532 0.7246 0.0511 0.7864 0.0672 0.0816 0.0264 0.0527

NSGA-II SP 107 0.7113 0.7147 0.0429 0.7948 0.0899 0.0884 0.0205 0.0496

NSGA-II Original 0.6908 0.6953 0.0491 0.7981 0.0974 0.0961 0.0266 0.0449

MOMVO SP 107 0.5410 0.5381 0.0325 0.5980 0.2125 0.2173 0.0238 0.1800

MOGWO SP 107 0.2745 0.2757 0.0108 0.2980 0.3870 0.3861 0.0209 0.3440

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.1

1

In
v

er
te

d
 G

en
er

at
io

n
al

 D
is

ta
n

ce
 (

IG
D

)

Generations

 MOEA/D Repair

 MOEA/D Adaptive Threshold

 MOEA/D SP 107

 MOEA/D SP 102

OSY

0 100 200 300 400 500 600 700 800 900 1000

0.1

In
v

er
te

d
 G

en
er

at
io

n
al

 D
is

ta
n

ce
 (

IG
D

)

Generations

 MOEA/D Repair

 MOEA/D Adaptive Threshold

 MOEA/D SP 107

 MOEA/D SP 102

Tanker

68

Similar to MOEA/D, different constraint handling approaches are embedded into NSGA-II.

Together with its original version, the performance of those algorithms for both multi-objective

test problems is shown in Figure 5.10. Since static penalty with low penalty factor shows a

poor performance as mentioned above, only the high penalty factor is used. We can see that

the repair approach significantly improves the performance of NSGA-II. It should be noted

that the original NSGA-II uses constrained non-domination for CHT, however, MOEA/D is

proposed for unconstrained problems, thus the original MOEA/D is not considered in this

research since all test problems are constrained. We can see from Figure 5.10 that static penalty

improves the performance of NSGA-II, while further improvement is achieved with adaptive

threshold. However, the most significant improvement of NSGA-II is achieved through the

repair technique.

Figure 5.10. Median performance indicators during optimization for NSGA-II with different constraint

handling approaches for OSY and tanker problem.

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y
p

er
v
o

lu
m

e
In

d
ic

at
o
r

(H
V

)

Generations

 NSGA-II Repair

 NSGA-II Adaptive Threshold

 NSGA-II Original

 NSGA-II SP 107

OSY

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y

p
er

v
o

lu
m

e
In

d
ic

at
o

r
(H

V
)

Generations

 NSGA-II with Repair

 NSGA-II Adaptive Threshold

 NSGA-II Original

 NSGA-II SP 107

Tanker

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.1

1

In
v

er
te

d
 G

en
er

at
io

n
al

 D
is

ta
n
ce

 (
IG

D
)

Generations

 NSGA-II Repair

 NSGA-II Adaptive Threshold

 NSGA-II Original

 NSGA-II SP 107

OSY

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.1

1

In
v

er
te

d
 G

en
er

at
io

n
al

 D
is

ta
n

ce
 (

IG
D

)

Generations

 NSGA-II with Repair

 NSGA-II Adaptive Threshold

 NSGA-II Original

 NSGA-II SP 107

Tanker

69

Since the field of metaheuristic optimization is constantly evolving, we need to compare the

performance of MOEA/D and NSGA-II with recent swarm algorithms. Figure 5.11 brings to

perspective MOMVO and MOGWO. Static penalty is used on all four algorithms. Performance

with the repair-based constraint handling in MOEA/D and NSGA-II is shown for comparison.

We can see that on OSY problem MOMVO with static penalty is initially making rather slow

progress, but in the end, it outperforms NSGA-II with repair. However, MOEA/D with repair

still achieves better results. MOGWO initially progresses fast but does not yield desirable

performance in the end. MOMVO and MOGWO did not perform that well on the tanker

problem. Final HV and IGD values are given in Table 5.4. According to the no free lunch

theorem [2], an optimization algorithm is not suited for all types of problems. We can see here

that MOEA/D and NSGA-II work better on tanker problem than those recent swarm algorithms,

despite them being superior on typical optimization benchmark problems in literature.

Figure 5.11. Performance indicators for all considered multi-objective optimization algorithms having

repair or static penalty as constraint handling approach.

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y
p

er
v
o

lu
m

e
In

d
ic

at
o
r

(H
V

)

Generations

 MOEA/D Repair

 MOEA/D SP 107

 NSGA-II Repair

 NSGA-II SP 107

 MOMVO SP 107

 MOGWO SP 107

OSY

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y
p

er
v
o

lu
m

e
In

d
ic

at
o
r

(H
V

)

Generations

 MOEA/D Repair

 MOEA/D SP 107

 NSGA-II with Repair

 NSGA-II SP 107

 MOMVO SP 107

 MOGWO SP 107

Tanker

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.1

1

In
v
er

te
d
 G

en
er

at
io

n
al

 D
is

ta
n
ce

 (
IG

D
)

Generations

 MOEA/D Repair

 MOEA/D SP 107

 NSGA-II Repair

 NSGA-II SP 107

 MOMVO SP 107

 MOGWO SP 107

OSY

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.1

1

In
v
er

te
d
 G

en
er

at
io

n
al

 D
is

ta
n
ce

 (
IG

D
)

Generations

 MOEA/D Repair

 MOEA/D SP 107

 NSGA-II with Repair

 NSGA-II SP 107

 MOMVO SP 107

 MOGWO SP 107

Tanker

70

Analysis of the repair-based CHT in MOEA/D and NSGA-II

Similar to Section 5.3, we track the progress of the repair when dealing with the tanker problem

for both MOEA/D and NSGA-II. As shown in Figure 5.12, in MOEA/D the median share of

infeasible solutions is large. Thus, many infeasible solutions are repaired, about 35% of the

whole population. However, the percentage of the successfully repaired solutions decreases

significantly. A lower number of solutions still dominates the existing feasible solutions after

being repaired.

Figure 5.12. Performance of the proposed repair CHT in MOEA/D for tanker optimization.

In contrast, the repair in NSGA-II shows a different trend (Figure 5.13). Because of the genetic

operators and non-domination sorting, the algorithm generates sufficient number of prominent

infeasible solutions at each generation. The number of repaired solutions is even gradually

increasing as the optimization progresses. Different from the repair processes in PSO and

MOEA/D, the repair operator shows a steady capacity of providing new non-dominated

solutions. This explains why the NSGA-II with repair shows a good performance in tanker

optimization.

0 200 400 600 800 1000
0

20

40

60

80

100
 Infeasible Solutions (MOEA/D)

 Repaired Solutions (MOEA/D Repair)

 Successfully Repaired Solutions (MOEA/D Repair)

N
u

m
b

er
 o

f
S

o
lu

ti
o

n
s

Generation

Repair in MOEA/D

71

Figure 5.13. Performance of the proposed repair CHT in NSGA-II for tanker optimization.

Non-dominated fronts and optimized tanker with minimum weight

Considered performance indicators quantify the spread and distribution of non-dominated

fronts. Figure 5.14 shows the actual non-dominated fronts at the end of optimization. Out of

100 runs for OSY and 30 runs for the tanker problem, the run with the best (lowest) IGD value

is presented for each algorithm. We can see that NSGA-II and MOEA/D find the PF of the

OSY case with fairly even distribution, except for the bottom right corner which is somewhat

sparse. MOMVO and MOGWO clearly lack diversity which is the reason for their somewhat

worse performance indices. The differences are larger for the tanker problem. In this case,

MOMVO and MOGWO are significantly worse. NSGA-II and MOEA/D with repair find

designs with low mass that are very difficult to reach because the design space is highly

constrained in that region. The lowest-weight solutions found by both algorithms are 7191 tons

and 7132 tons, respectively. Considered constraints prevent failures which generally occur for

structural members with low thickness and thus low weight. Therefore, it is comparably easier

to find designs with high adequacy than low weight.

0 200 400 600 800 1000
0

20

40

60

80

100
 Infeasible Solutions (NSGA-II)

 Repaired Solutions (NSGA-II Repair)

 Successfully Repaired Solutions (NSGA-II Repair)

N
u

m
b

er
 o

f
S

o
lu

ti
o

n
s

Generation

Repair in NSGA-II

72

Figure 5.14. Final non-dominated fronts of the best performing runs for both multi-objective test problems.

Optimized tanker cross-section structures

Figure 5.15 (b) shows scantlings of the two designs on the extreme sides of the Pareto front:

one with minimum mass and one with maximum adequacy. Structure was not standardized

before presented here nor was it given any corrosion addition. Designs obtained in this research

are the result of considered constraints and objectives and as such are simplified. This can

explain some differences between neighbouring strakes, which could be improved by

considering production constraints. However, the focus in this research is on conceptual design

where production constraints might be omitted. Structural elements in double bottom, side

shell and deck structure from the minimum mass design follow vertically the beam distribution

of weight, in order to satisfy the area moment. Side has the lowest plate thicknesses and

stiffener sizes, while the bottom elements are additionally increased to resist the water pressure.

Inner bottom elements in the cargo tanks are larger than in the bottom because of the increased

cargo density, and the same is valid for the inner side. For the outer cargo tank, reduction in

scantlings can be seen in the longitudinal bulkhead and inner side when going upwards in the

direction of decreasing cargo pressure. The same happens in the central tank but with generally

-300 -250 -200 -150 -100 -50 0
0

20

40

60

80
 MOEA/D Repair

 NSGA-II Repair

 MOMVO SP 107

 MOGWO SP 107
O

b
je

ct
iv

e
2

Objective 1Min

M
in

OSY

7.0 7.5 8.0 8.5 9.0 9.5
12

13

14

15

16

17

18

19

20

 MOEA/D Repair

 NSGA-II Repair

 MOMVO SP 107

 MOGWO SP 107

A
d

eq
u

ac
y

 (
-)

Mass(1000 t)Min

M
ax

Tanker

73

higher plate thicknesses and stiffener sizes due to higher density. Comparing to this design,

structure with the maximum adequacy differs in the deck and nearby strakes, and double

bottom. As can be expected, plates are thicker and stiffeners are larger in the deck, but also in

the strakes immediately below since they contribute to stress reduction in the deck. Likewise,

double bottom is reinforced to decrease global stress component. Other minor differences

between the two design alternatives (for example close to the neutral axis) can be explained by

the randomness of the algorithm’s working principle.

a) b)

Figure 5.15. a) Lower and upper bounds of each strake; b) scantlings of minimum mass and maximum

adequacy design.

y

z

20; 430x17
5; 160x8

20; 430x17 21; 280x12
6; 180x8

26; 430x17
11; 280x11

20; 200x9
5; 100x7

20; 200x9
5; 100x7

20; 200x9
5; 100x7

20; 200x9
5; 100x7

20; 300x12
5; 100x5 20; 320x13

5; 100x8

20; 320x13
5; 100x8

20; 320x13

20; 320x13
5; 100x8

20; 300x12
5; 100x5

20; 340x14
5; 120x6

20; 340x14
5; 120x6

20; 340x14
5; 120x6

20; 340x14
5; 120x6

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 180x9
5; 100x5

22; 320x13

22; 320x13
7; 200x12

20; 300x12
5; 100x5

20; 260x11
5; 160x7

27; 300x12 20; 260x11
5; 260x7

20; 260x11
5; 160x7

22; 340x14
7; 220x12

20; 300x12

20; 300x12

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 180x9
5; 100x5

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 300x12
5; 100x5

20; 180x9
5; 100x5

20; 300x12
5; 100x5

20; 300x12

20; 300x12
5; 100x5

22; 400x16
7; 260x10

20; 200x9
5; 100x7

5; 100x5

5; 100x8

5; 100x5

5; 100x5

7; 200x12

5; 180x10

5; 280x11

Cargo density =

1.850 t/m3 Cargo density =

1.250 t/m3

20; 180x9
5; 100x5

20; 180x9
5; 100x5

20; 180x9
5; 100x5

20; 180x9
5; 100x5

y

z

10; 120x7
9; 140x7

17; 160x9
9; 120x5

17; 160x9
9; 120x5

17; 180x8
9; 120x5

20; 300x11
13; 200x9 20; 280x11

10; 160x7

20; 320x12
12; 300x12

13; 240x10

17; 260x10
14; 240x11

17; 300x12
13; 260x11

16; 240x12
14; 260x10

15; 260x11
15; 260x10

14; 260x11
14; 260x10

17; 300x11
17; 280x11

20; 300x12
9; 180x8

17; 300x12
10; 300x11

9; 100x6
9; 100x7

17; 260x12

16; 320x13
16; 280x11

13; 260x10
13; 280x11

20; 120x5
8; 120x5

6; 160x9
6; 120x5

6; 100x6
5; 100x6

5; 120x7
5; 100x8

18; 230x12
14; 260x10

13; 260x10 20; 240x12
15; 260x10

19; 260x11
15; 260x10

19; 320x13
17; 280x11

9; 200x10

9; 200x9

18; 260x10
10; 160x7

20; 300x12
8; 160x9

8; 160x7
7; 160x7

5; 260x10
6; 100x7

7; 180x9
5; 120x7

20; 300x12
9; 140x7

5; 120x8
5; 100x7

13; 300x11
13; 220x10

13; 220x10

13; 240x10
13; 220x10

18; 320x12
18; 340x12

18; 160x8
9; 120x5

13; 220x10

13; 240x10

9; 200x9

9; 200x10

17; 260x12

13; 260x10

20; 430x17

Cargo density =

1.250 t/m3

20; 430x17
11; 260x11

20; 430x17 21; 280x11
11; 260x10

26; 400x16
26; 370x15

Cargo density =

1.850 t/m3

74

6 Conclusion

6.1 Overall conclusions

This thesis presents an automated repair-based technique to handle complex constraints with

optimization algorithms. This is achieved by automatically identifying and ranking the most

significant variables that influence constraints in optimization, which is useful when constraint

functions are not given in closed-form. Deep and shallow artificial neural networks (ANN) are

used for this purpose. This information replaces a heuristic typically provided by designer for

constraint handling with repair algorithm. We have modified the recent adaptive repair

algorithm and tailored it into both single- and multi-objective algorithms, PSO, MOEA/D and

NSGA-II, due to their wide adoption in the optimization field. Modified algorithms have been

compared with few other population-based algorithms. GSA, IGWO and MVO are used for

single-objective algorithms’ performance comparison, while MOMVO and MOGWO are

applied for multi-objective cases. Two constraint handling techniques (CHT) are embedded

into those algorithms for evaluation: static penalty and adaptive threshold. Both mathematical

and engineering problems are studied in this thesis to present the effectiveness of this approach,

including a common benchmark problem from literature, truss weight optimization and real-

life structural design of a chemical tanker. Proposed repair based CHT significantly improves

the original algorithms’ performance for all test problems. Several conclusions can be made as

follows:

Automatic mapping: ANN can be used to automate the variable-constraint mapping, where

the significance of each variable is quantified from 0 to 1 to represent whether the variable is

significantly influencing a constraint. The procedure essentially replaces a user-provided

knowledge of a problem, which in many cases cannot even be devised by human. The mapping

is embedded into the novel repair based CHT and validated against few other CHTs.

75

Generality: The proposed approach has been tailored for three optimization algorithms: PSO,

NSGA-II and MOEA/D, the first being single-objective and the latter two multi-objective.

Only repair candidate and donor selection strategies require modification. This indicates that

the approach could be broadly implemented into other algorithms.

Time saving: Following the automatic mapping, the trained ANNs can be used as surrogate

model for predicting constraints in optimization. Hyperparameters of ANN have been

optimized to show the best performance. The proposed approach can save up to 90% of the

total CPU time in tanker optimization. This is very useful to designers who need to get the

optimal solution in a relatively short time.

Convergence and diversity: Modified algorithms are assessed using both mathematical and

engineering problems. Hypervolume and inverted generational distance are selected as the

performance indicators to evaluate multi-objective optimization algorithms. The proposed

repair-based CHT can provide a significant improvement for the optimization algorithms:

(i) For an equal number of function evaluations, modified algorithms can reach a better

front compared to their original version and other constraint handling techniques.

(ii) Modified multi-objective algorithms can lead to wider spread of the final front than

other state-of-the-art optimization algorithms.

6.2 Limitation of the work

The performance of the proposed approach largely depends on the ANN accuracy, which is

important for both variable-constraint mapping and surrogate model. For a different problem

ANN accuracy might decrease.

76

The proposed CHT is not suitable for solving optimization problems involving only a few

variables. For instance, if a problem contains only one variable, repairing a solution is

equivalent to replacing the solution. This could significantly reduce the diversity of the

population.

Modified PSO shows a limited capability of exploring the design space as the algorithm

converges quickly at the initial optimization stage in tanker optimization. Even though the

modified algorithm can rapidly approach the global optimum, premature convergence might

be a problem in some cases.

The threshold η is defined as 0.1 in this thesis, which potentially needs to be adjusted for

different problems. Change of η will directly influence the automated mapping matrix.

6.3 Future work

Future work could be focused on applying more advanced ML techniques to generate more

accurate mapping and surrogate model. The operating principle of the repair-based technique

needs to be improved to adapt to more general problems. In addition, the way to embed repair

CHT to PSO could be modified, as fixing the issue of premature convergence might further

improve the overall performance of the algorithm. Moreover, the definition of the

threshold η should be investigated, for example, using an adaptive parameter instead of a fixed

value.

77

References

[1] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester,

England ; Toronto, ON : John Wiley & Sons; 2001.

[2] Wolpert DH, Macready WG. No Free Lunch Theorems for Optimization 1997;1:67–82.

[3] Lobato FS, Steffen V. Multi-Objective Optimization Problems: Concepts and Self-

Adaptive Parameters with Mathematical and Engineering Applications. 2017.

[4] Lewis RM, Torczon V, Trosset MW, William C. Direct Search Methods : Then and

Now Operated by Universities Space Research Association. Science (80-)

2000;124:191–207.

[5] Hoffmann, Laurence D.; Bradley GL. Calculus for Business, Economics, and the Social

and Life Sciences (8th ed.) 2004:575–588.

[6] Lemaréchal C. Cauchy and the Gradient Method. Doc Math 2012;ISMP:251–4.

[7] Nocedal J, Wright SJ. Numerical optimization / {Jorge} {Nocedal}, {Stephen} {J}.

{Wright}. 2006.

[8] Boggs PT, Tolle JW. Sequential quadratic programming for large-scale nonlinear

optimization. J Comput Appl Math 2000;124:123–37. https://doi.org/10.1016/S0377-

0427(00)00429-5.

[9] Arora JS. Numerical Methods for Unconstrained Optimum Design. Introd to Optim Des

2004:277–304. https://doi.org/10.1016/b978-012064155-0/50008-2.

[10] Svanberg K. MMA and GCMMA – two methods for nonlinear optimization 2007;1:1–

15.

[11] Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, et al. Bio-

inspired computation: Where we stand and what’s next. Swarm Evol Comput

2019;48:220–50. https://doi.org/10.1016/j.swevo.2019.04.008.

[12] Aguiar H, Junior O. Evolutionary Global Optimization, Manifolds and Applications.

2016.

78

[13] Lawrence J. Fogel, Alvin J. Owens MJW. Artificial intelligence through simulated

evolution. 1966.

[14] Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology. Control Artif Intell 1975.

[15] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6:182–97.

https://doi.org/10.1109/4235.996017.

[16] Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on

decomposition. IEEE Trans Evol Comput 2007;11:712–31.

https://doi.org/10.1109/TEVC.2007.892759.

[17] Clerc M. Particle Swarm Optimization. Part Swarm Optim 2010:1942–8.

https://doi.org/10.1002/9780470612163.

[18] Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv Eng Softw 2014;69:46–

61. https://doi.org/10.1016/j.advengsoft.2013.12.007.

[19] Laudis LL, Shyam S, Jemila C, Suresh V. MOBA: Multi Objective Bat Algorithm for

Combinatorial Optimization in VLSI. Procedia Comput Sci 2018;125:840–6.

https://doi.org/10.1016/j.procs.2017.12.107.

[20] Yang XS. Firefly algorithm, Lévy flights and global optimization. Res Dev Intell Syst

XXVI Inc Appl Innov Intell Syst XVII 2010:209–18. https://doi.org/10.1007/978-1-

84882-983-1_15.

[21] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function

optimization: Artificial bee colony (ABC) algorithm. J Glob Optim 2007;39:459–71.

https://doi.org/10.1007/s10898-007-9149-x.

[22] Mirjalili S, Mirjalili SM, Hatamlou A. Multi-Verse Optimizer: a nature-inspired

algorithm for global optimization. Neural Comput Appl 2016;27:495–513.

https://doi.org/10.1007/s00521-015-1870-7.

[23] Mirjalili S. SCA: A Sine Cosine Algorithm for solving optimization problems.

Knowledge-Based Syst 2016;96:120–33. https://doi.org/10.1016/j.knosys.2015.12.022.

79

[24] Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: A Gravitational Search Algorithm.

Inf Sci (Ny) 2009;179:2232–48. https://doi.org/10.1016/j.ins.2009.03.004.

[25] Coello Coello CA. Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: A survey of the state of the art. Comput Methods Appl Mech

Eng 2002;191:1245–87. https://doi.org/10.1016/S0045-7825(01)00323-1.

[26] Courant R. Variational methods for the solution of elliptic equations 1974:157–202.

https://doi.org/10.1090/mmono/042/04.

[27] Joines JA, Houck CR. On the use of non-stationary penalty functions to solve nonlinear

constrained optimization problems with GA’s. IEEE Conf Evol Comput - Proc

1994:579–84. https://doi.org/10.1109/icec.1994.349995.

[28] Homaifar A, Qi CX, Lai SH. Constrained optimization via genetic algorithms.

Simulation 1994;62:242–54. https://doi.org/10.1177/003754979406200405.

[29] Koziel S, Michalewicz Z. A decoder-based evolutionary algorithm for constrained

parameter optimization problems. Lect Notes Comput Sci (Including Subser Lect Notes

Artif Intell Lect Notes Bioinformatics) 1998;1498 LNCS:231–40.

https://doi.org/10.1007/bfb0056866.

[30] Mezura-Montes E, Coello Coello CA. Constraint-handling in nature-inspired numerical

optimization: Past, present and future. Swarm Evol Comput 2011;1:173–94.

https://doi.org/10.1016/j.swevo.2011.10.001.

[31] Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization.

IEEE Trans Evol Comput 2000;4:284–94. https://doi.org/10.1109/4235.873238.

[32] Qu BY, Suganthan PN. Constrained multi-objective optimization algorithm with an

ensemble of constraint handling methods. Eng Optim 2011;43:403–16.

https://doi.org/10.1080/0305215X.2010.493937.

[33] Poon PW, Carter JN. Genetic algorithm crossover operators for ordering applications.

Comput Oper Res 1995;22:135–47. https://doi.org/10.1016/0305-0548(93)E0024-N.

[34] Koch P, Konen W, Foussette C, Krause P, Bäck T. A New Repair Method For

Constrained Optimization 2015:273–80.

80

[35] Chootinan P, Chen A. Constraint handling in genetic algorithms using a gradient-based

repair method. Comput Oper Res 2006;33:2263–81.

https://doi.org/10.1016/j.cor.2005.02.002.

[36] Todoroki A, Haftka RT. Stacking sequence optimization by a genetic algorithm with a

new recessive gene like repair strategy 1998;8368:277–85.

[37] Samanipour F, Jelovica J. Adaptive repair method for constraint handling in multi-

objective genetic algorithm based on relationship between constraints and variables.

Appl Soft Comput J 2020;90:106143. https://doi.org/10.1016/j.asoc.2020.106143.

[38] Mirjalili S, Lewis A. The Whale Optimization Algorithm. Adv Eng Softw 2016;95:51–

67. https://doi.org/10.1016/j.advengsoft.2016.01.008.

[39] Mirjalili S, Jangir P, Saremi S. Multi-objective ant lion optimizer: a multi-objective

optimization algorithm for solving engineering problems. Appl Intell 2017;46:79–95.

https://doi.org/10.1007/s10489-016-0825-8.

[40] Zavala G, Nebro AJ, Luna F, Coello Coello CA. Structural design using multi-objective

metaheuristics. Comparative study and application to a real-world problem. Struct

Multidiscip Optim 2016;53:545–66. https://doi.org/10.1007/s00158-015-1291-3.

[41] Garcia R de P, de Lima BSLP, Lemonge AC de C, Jacob BP. A rank-based constraint

handling technique for engineering design optimization problems solved by genetic

algorithms. Comput Struct 2017;187:77–87.

https://doi.org/10.1016/j.compstruc.2017.03.023.

[42] Klanac A, Jelovica J. A concept of omni-optimization for ship structural design. Adv

Mar Struct - Proc MARSTRUCT 2007, 1st Int Conf Mar Struct 2007:473–81.

[43] Kumar R, Parida PP, Gupta M. Topological design of communication networks using

multiobjective genetic optimization. Proc 2002 Congr Evol Comput CEC 2002

2002;1:425–30. https://doi.org/10.1109/CEC.2002.1006272.

[44] Brownlee AEI, Wright JA. Constrained, mixed-integer and multi-objective optimisation

of building designs by NSGA-II with fitness approximation. Appl Soft Comput J

2015;33:114–26. https://doi.org/10.1016/j.asoc.2015.04.010.

[45] Liu Y, Collette M. Improving surrogate-assisted variable fidelity multi-objective

81

optimization using a clustering algorithm. Appl Soft Comput J 2014;24:482–93.

https://doi.org/10.1016/j.asoc.2014.07.022.

[46] Myers RH, Montgomery DC, Geoffrey Vining G, Borror CM, Kowalski SM. Response

Surface Methodology: A Retrospective and Literature Survey. J Qual Technol

2004;36:53–78. https://doi.org/10.1080/00224065.2004.11980252.

[47] Smith M. Neural Networks for Statistical Modeling. 1st editio. Van Nostrand Reinhold;

1993.

[48] Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44.

https://doi.org/10.1038/nature14539.

[49] Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image

classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2012:3642–

9. https://doi.org/10.1109/CVPR.2012.6248110.

[50] Hu J, Niu H, Carrasco J, Lennox B, Arvin F. Voronoi-Based Multi-Robot Autonomous

Exploration in Unknown Environments via Deep Reinforcement Learning. IEEE Trans

Veh Technol 2020;69:14413–23. https://doi.org/10.1109/TVT.2020.3034800.

[51] Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J. A novel

connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern

Anal Mach Intell 2009;31:855–68. https://doi.org/10.1109/TPAMI.2008.137.

[52] Senior A. Long Short-Term Memory Recurrent Neural Network Architectures for Large

Scale Acoustic Modeling Has n.d.

[53] Zhang R, Chen Z, Chen S, Zheng J, Büyüköztürk O, Sun H. Deep long short-term

memory networks for nonlinear structural seismic response prediction. Comput Struct

2019;220:55–68. https://doi.org/10.1016/j.compstruc.2019.05.006.

[54] Tan RK, Zhang NL, Ye W. A deep learning–based method for the design of

microstructural materials. Struct Multidiscip Optim 2020;61:1417–38.

https://doi.org/10.1007/s00158-019-02424-2.

[55] Kramer MA. Nonlinear principal component analysis using autoassociative neural

networks. AIChE J 1991;37:233–43. https://doi.org/10.1002/aic.690370209.

82

[56] Heaton J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet

Program Evolvable Mach 2018;19:305–7. https://doi.org/10.1007/s10710-017-9314-z.

[57] Morales-Forero A, Bassetto S. Case Study: A Semi-Supervised Methodology for

Anomaly Detection and Diagnosis. IEEE Int Conf Ind Eng Eng Manag 2019:1031–7.

https://doi.org/10.1109/IEEM44572.2019.8978509.

[58] Theis L, Shi W, Cunningham A, Huszár F. Lossy image compression with compressive

autoencoders. 5th Int Conf Learn Represent ICLR 2017 - Conf Track Proc 2017:1–19.

https://doi.org/10.17863/CAM.51995.

[59] Wang S, Zhang X, Ye P, Du M. Deep Belief Networks based toponym recognition for

Chinese text. ISPRS Int J Geo-Information 2018;7. https://doi.org/10.3390/ijgi7060217.

[60] Kallioras NA, Kazakis G, Lagaros ND. Accelerated topology optimization by means of

deep learning. Struct Multidiscip Optim 2020;62:1185–212.

https://doi.org/10.1007/s00158-020-02545-z.

[61] Wu RT, Liu TW, Jahanshahi MR, Semperlotti F. Design of one-dimensional acoustic

metamaterials using machine learning and cell concatenation. Struct Multidiscip Optim

2021;63:2399–423. https://doi.org/10.1007/s00158-020-02819-6.

[62] Saha S. Hierarchical Deep Learning Neural Network (HiDeNN): An artificial

intelligence (AI) framework for computational science and engineering. Comput

Methods Appl Mech Eng 2021;373:113452. https://doi.org/10.1016/j.cma.2020.113452.

[63] Liu PX, Zuo MJ, Meng MQH. Using neural network function approximation for optimal

design of continuous-state parallel-series systems. Comput Oper Res 2003;30:339–52.

https://doi.org/10.1016/S0305-0548(01)00100-9.

[64] Ait Gougam L, Tribeche M, Mekideche-Chafa F. A systematic investigation of a neural

network for function approximation. Neural Networks 2008;21:1311–7.

https://doi.org/10.1016/j.neunet.2008.06.015.

[65] Li FJ. Constructive function approximation by neural networks with optimized

activation functions and fixed weights. Neural Comput Appl 2019;31:4613–28.

https://doi.org/10.1007/s00521-018-3573-3.

[66] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal

83

approximators. Neural Networks 1989;2:359–66. https://doi.org/10.1016/0893-

6080(89)90020-8.

[67] Kennedy J, Eberhart R. Particle swarm optimization. Proc. ICNN’95 - Int. Conf. Neural

Networks, vol. 4, 1995, p. 1942–8 vol.4. https://doi.org/10.1109/ICNN.1995.488968.

[68] Pulido GT, Coello Coello CA. A constraint-handling mechanism for particle swarm

optimization. Proc 2004 Congr Evol Comput CEC2004 2004;2:1396–403.

https://doi.org/10.1109/cec.2004.1331060.

[69] Nguyen AT, Reiter S, Rigo P. A review on simulation-based optimization methods

applied to building performance analysis. Appl Energy 2014;113:1043–58.

https://doi.org/10.1016/j.apenergy.2013.08.061.

[70] Nadimi-shahraki MH, Taghian S, Mirjalili S. An improved grey wolf optimizer for

solving engineering problems. Expert Syst Appl 2021;166:113917.

https://doi.org/10.1016/j.eswa.2020.113917.

[71] Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS. Multi-objective grey wolf optimizer:

A novel algorithm for multi-criterion optimization. Expert Syst Appl 2016;47:106–19.

https://doi.org/10.1016/j.eswa.2015.10.039.

[72] Mirjalili S, Jangir P, Mirjalili SZ, Saremi S, Trivedi IN. Optimization of problems with

multiple objectives using the multi-verse optimization algorithm. Knowledge-Based

Syst 2017;134:50–71. https://doi.org/10.1016/j.knosys.2017.07.018.

[73] Problem TS, Algorithm E, Algorithms INO, Networking IB, Algorithms INO. Cross-

over Mutation Advances in Geophysics Analysis of Algorithms 2015.

[74] Purshouse RC, Fleming PJ, Fonseca CM, Greco S, Eds JS, Hutchison D. LNCS

7811Evolutionary Multi-Criterion Optimization. 2013.

[75] Hussain SF, Iqbal S. Genetic ACCGA: Co-similarity based Co-clustering using genetic

algorithm. Appl Soft Comput J 2018;72:30–42.

https://doi.org/10.1016/j.asoc.2018.07.045.

[76] Asafuddoula M, Ray T, Sarker R, Alam K. An adaptive constraint handling approach

embedded MOEA/D. 2012 IEEE Congr Evol Comput CEC 2012 2012:1–8.

https://doi.org/10.1109/CEC.2012.6252868.

84

[77] Asafuddoula M, Ray T, Sarker R. A decomposition-based evolutionary algorithm for

many objective optimization. IEEE Trans Evol Comput 2015;19:445–60.

https://doi.org/10.1109/TEVC.2014.2339823.

[78] Hobbie JG, Gandomi AH, Rahimi I. A Comparison of Constraint Handling Techniques

on NSGA-II. Arch Comput Methods Eng 2021;1. https://doi.org/10.1007/s11831-020-

09525-y.

[79] Thiele L, Zitzler E. Multiobjective Evolutionary Algorithms: A Comparative Case

Study and the Strength Pareto Approach. IEEE Trans Evol Comput 1999;3:257–71.

[80] Coello Coello CA, Reyes Sierra M. A Study of the Parallelization of a Coevolutionary

Multi-objective Evolutionary Algorithm. In: Monroy R, Arroyo-Figueroa G, Sucar LE,

Sossa H, editors. MICAI 2004 Adv. Artif. Intell., Berlin, Heidelberg: Springer Berlin

Heidelberg; 2004, p. 688–97.

[81] Huang G Bin, Saratchandran P, Sundararajan N. A generalized growing and pruning

RBF (GGAP-RBF) neural network for function approximation. IEEE Trans Neural

Networks 2005;16:57–67. https://doi.org/10.1109/TNN.2004.836241.

[82] Yokota T, Taguchi T, Gen M. A Solution Method for Optimal Weight Design Problem

of 10 Bar Truss Using Genetic Algorithms Department of Industrial and Systems

Engineering 1998;35:367–72.

[83] Cagnina LC, Esquivel SC, Coello CAC. Solving constrained optimization problems

with a hybrid particle swarm optimization algorithm. Eng Optim 2011;43:843–66.

https://doi.org/10.1080/0305215X.2010.522707.

[84] Camp C V, Farshchin M. Design of space trusses using modified teaching – learning

based optimization. Eng Struct 2014;62–63:87–97.

https://doi.org/10.1016/j.engstruct.2014.01.020.

[85] Jelovica J, Klanac A. Multi-objective optimization of ship structures: Using guided

search vs. conventional concurrent optimization. Anal Des Mar Struct Incl CD-ROM

2009:447–56. https://doi.org/10.1201/9780203874981-61.

[86] Ship structural design: A rationally based, computer aided, optimization approach: O.

F. Hughes John Wiley, Chichester, November 1983, 600 pp., $86.45/£61.75, ISBN 0471

032417. Appl Ocean Res 1984;6:177. https://doi.org/https://doi.org/10.1016/0141-

85

1187(84)90014-2.

[87] British Steel. Bulb flats n.d. https://britishsteel.co.uk/media/40438/bulb-flats-

brochure.pdf (accessed March 6, 2021). n.d.

[88] Hughes OF, Ghosh B, Chen Y. Improved prediction of simultaneous local and overall

buckling of stiffened panels. Thin-Walled Struct 2004;42:827–56.

https://doi.org/https://doi.org/10.1016/j.tws.2004.01.003.

[89] Naar H, Varsta P, Kujala P. A theory of coupled beams for strength assessment of

passenger ships. Mar Struct 2004;17:590–611.

https://doi.org/10.1016/j.marstruc.2005.03.004.

[90] Hughes OF, Mistree F, Zanic V. Practical Method for the Rational Design of Ship

Structures. J Sh Res 1980;24:101–13.

[91] Zanic V, Andric J, Prebeg P. Design synthesis of complex ship structures 2013;5302.

https://doi.org/10.1080/17445302.2013.783455.

86

Appendices

Appendix A: Validation of the surrogate model

Figure A.1 shows the performance of NSGA-II with repair for the tanker optimization. The

red curve represents the algorithm using the surrogate model throughout the whole

optimization process. To validate the surrogate model in optimization, we switched the

algorithm from the surrogate model back to the original structural code at the 800th generation,

whose performance metrics are shown as the black curve in the figure. Both cases start from

the same initial population. The median value is presented in each case out of 30 runs. Control

parameters are the same.

Figure A.1. Performance metrics for NSGA-II with and without the full surrogate model in tanker

problem.

Both performance measures noticeably deteriorate when the algorithm switches to the original

structural model. ANN bears an error compared to the original structural model used for

training, whose error becomes even larger with deeper exploration of the design space. At this

stage, both the number of infeasible solutions and non-dominated infeasible solutions increases

significantly, see Figure A.2. This leads to a performance reduction for both HV and IGD.

Again, the repair operator aids in this situation: both the number of repaired solutions and the

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
y

p
er

v
o

lu
m

e
In

d
ic

at
o

r
(H

V
)

Generations

 NSGA-II with Repair

 NSGA-II with Switch

Tanker

0 100 200 300 400 500 600 700 800 900 1000
0.01

0.1

1

In
v

er
te

d
 G

en
er

at
io

n
al

 D
is

ta
n

ce
 (

IG
D

)

Generations

 NSGA-II with Repair

 NSGA-II with Switch
Tanker

87

number of successfully repaired solutions are increased significantly in a few generations after

the switch. After that, the performance improves and reaches a similar level as the algorithm

with original structural model.

Figure A.2. Performance of the repair operator in NSGA-II including the switch from the surrogate to the

original structural model.

0 200 400 600 800 1000
0

20

40

60

80

100
 Infeasible Solutions (NSGA-II)

 Repaired Solutions (NSGA-II Repair)

 Successfully Repaired Solutions (NSGA-II Repair)
N

u
m

b
er

 o
f

S
o

lu
ti

o
n

s

Generation

Repair in NSGA-II with evaluation method switch

88

Appendix B: Variable bounds and stiffener dimensions

For the tanker problem, the variable bounds and their corresponding stiffener scantlings are

shown here. In Table B.1, we can see the lower and upper bounds of plate thinness and stiffener

ID per strake. The dimensions of the bulb profiles are given in Table B.2.

Table B.1. Variable bounds for the tanker optimization problem.

Strake #
Plate thickness (mm)

Strake #
Stiffener size ID

xmin xmax xmin xmax

1 5 20 1 12 27

2 5 20 2 17 32

3 5 20 3 12 27

4 5 20 4 12 27

5 7 22 5 22 37

6 7 22 6 26 41

7 5 20 7 1 16

8 7 22 8 20 35

9 7 20 9 20 16

10 5 20 10 1 16

11 5 20 11 13 44

12 5 20 12 29 44

13 6 21 13 15 30

14 11 26 14 29 44

15 5 20 15 1 32

16 5 20 16 1 32

17 5 20 17 1 32

18 5 20 18 1 32

19 5 20 19 4 35

20 5 20 20 4 35

21 5 20 21 4 35

22 5 20 22 4 35

23 5 20 23 1 32

24 5 20 24 1 32

25 5 20 25 1 32

26 5 20 26 1 32

27 5 20 27 1 32

28 5 20 28 1 32

29 5 20 29 6 37

30 5 20 30 6 37

31 5 20 31 6 37

32 5 20 32 6 37

33 5 20 33 1 32

34 5 20 34 1 32

35 5 20 35 1 32

36 5 20 36 1 32

37 5 20 37 1 32

89

38 5 20 38 1 16

39 5 20 39 1 16

40 5 20 40 1 16

41 5 20 41 1 16

42 5 20 42 1 16

43 5 20 43 3 18

44 5 20 44 3 18

45 5 20 45 3 18

46 5 20 46 3 18

47 5 20 47 3 18

Table B.2. Allowable stiffener dimensions.

Identification number (ID) Thickness (mm) Height (mm)

1 5 100

2 6 100

3 7 100

4 8 100

5 5 120

6 6 120

7 7 120

8 8 120

9 7 140

10 8 140

11 10 140

12 7 160

13 8 160

14 9 160

15 8 180

16 9 180

17 10 180

18 9 200

19 10 200

20 12 200

21 10 220

22 12 220

23 10 240

24 11 240

25 12 240

90

26 10 260

27 11 260

28 12 260

29 11 280

30 12 280

31 11 300

32 12 300

33 13 300

34 12 320

35 13 320

36 12 340

37 14 340

38 13 370

39 15 370

40 14 400

41 16 400

42 14 430

43 15 430

44 17 430

