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Abstract

Alternative fuels such as hydrogen (Hz), natural gas (NG), and biodiesel
can be substitutes for diesel fuel in compression ignition engines. Dual-fuel
combustion technology is an effective way to utilize gaseous fuels ignited by
pilot liquid fuels in existing diesel engines with minor modifications. The
effects of different fuels on engine emission especially under real-world oper-
ating conditions are important information for engine manufacturers as well
as vehicle operators. For this reason, this study aims to evaluate the in-use
emissions for CI engines operating on the alternative fuels.

The first study focused on the unburned Hy emission from a heavy-duty
truck equipped with a 15 L diesel engine retrofitted to run in dual-fuel
mode with port-injected Hs. A Portable Emission Measurement System
(PEMS) was developed integrating a semi-conductor Hy sensor, which gives
the Hy concentration in the exhaust stream. On-road emission tests were
implemented on the truck with the PEMS to measure the in-use Hy emission
under real-world operating conditions. Hg slip maps were generated using
the concentration data. The work presented the methodology to use a low-
cost sensor for in-use vehicle’s exhaust Hy measurement.

In the second study, in-use emission measurements were taken for a
diesel/NG dual-fuel marine vessel. The emissions under diesel mode and
dual-fuel (NG + pilot fuel) mode were considered with diesel (baseline),
Soybean Methyl Ester (SME), and Canola Methyl Ester (CME). It was
found that under diesel mode steady states, NOx emissions were increased
by 21 + 6% on average by both biodiesels. Particle number (PN), particu-
larly in the submicron range, were substantially increased by the biodiesels,
likely an artefact of nucleation mode or volatile compounds. Under load
increase conditions, transient CO and PM concentrations were substantially
higher than the steady state results. Both biodiesels resulted in reduced
PM emissions compared to diesel. Under dual-fuel mode, when used as the
pilot fuel, SME and CME reduced NOx emissions by 14 + 7% and 19 + 7%,
respectively. The results proved that biodiesels are a potential alternative
fuel for heavy-duty marine engines, though some questions remain to be
answered.
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Lay Summary

Heavy-duty diesel vehicles are a major source of GHG emission. Alterna-
tive fuels such as biodiesel, natural gas (NG), and hydrogen (Hs) are an
attractive pathway to reduce diesel engine emissions. Dual-fuel engines can
utilize gaseous fuels in diesel engines with liquid pilot fuel for ignition. This
study focuses on the in-use emissions of diesel engines operating on different
alternative fuels: First, a measurement system was developed to measure
the unburned Hp from a Hy/diesel dual-fuel truck. It presented a low-
cost method to measure the exhaust Hy for in-use vehicles; Second, in-use
emissions from a NG/diesel dual-fuel marine vessel operating on diesel and
biodiesels were characterized. It was shown that NOx emissions increased
when using biodiesels under steady-state diesel operating mode. Transient
PM emissions were reduced during load increases when using biodiesels as
compared to diesel. In addition, when used as pilot fuels in dual-fuel mode,
the biodiesels reduced NOx emissions in steady state.
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Chapter 1

Introduction

Compression ignition (CI) engines are widely used in various applications
in industry. Due to their higher compression ratios and lean burn feature,
they are the more efficient type of internal combustion engine compared to
spark ignition (SI) engines [1] and are especially favored for heavy-duty ap-
plications, such as fleet trucks, construction equipment, and marine vessels.
However, CI engines running on petroleum diesel fuel have a bad reputation
of producing large amounts of engine-out emissions of nitrogen oxide (NOx)
and particulate matter (PM), which lead to air pollution and risk human
health [2]. Public attention and stringent emission regulations [3, 4, 5] have
been put on diesel engine’s emissions. Meanwhile, Greenhouse gases (GHG)
such as carbon dioxide (CO2) produced from burning fossil fuels are gaining
more and more concern since the global climate crisis has become an urgent
issue to deal with. In addition, the dependence on petroleum fuel leads to
geopolitical tensions.

To address these challenges, different pathways have been put forward,
aiming at improving diesel engine’s fuel efficiencies as well as reducing its
emission of various pollutants. The methods include technologies focused
on improving in-cylinder combustion processes and after-treatment systems
which purify engine-out exhausts. Apart from these, substituting diesel with
alternative fuels is considered to be a potential solution, which provides
diversity in fuel options and can potentially reduce emissions of GHG, PM,
and NOx. Different types of alternative fuels have been considered for CI
engines.

Biodiesel, as a most common liquid substitute for diesel, can be directly
used (or in blends with diesel) in CI engines. Biodiesel can be produced
from a wide variety of feedstocks such as vegetable oils, animal fats,or waste
cooking oils through a process called transesterification [6]. Two of the
common feedstocks especially in North America are soybean oil and canola
oil [7]. The biodiesels produced from them are called Soybean Methyl Ester
(SME) and Canola Methyl Ester (CME), respectively. Biodiesel made from
plants are considered to be carbon-neutral as the plants absorb COs as they
grow 8], although their life-cycle carbon intensities depend on a variety of



factors including feedstock options and land use [9]. Meanwhile, the risk of
diverting farmland or crops for biofuel production is still in debate as it may
be a detriment to the food supply [10]. Despite the controversies, numerous
studies have been conducted on various diesel engines operating on different
types of biodiesels [11]. However, a vast majority of the literature were based
on laboratory tests in which the engines were coupled to a dynamometer and
operated following a standard test cycle. As a lesson we had learned from
the infamous “dieselgate” scandal [12], the emission results from laboratory
tests can be significantly different from the actual tailpipe emissions in real-
world conditions, which bring the most direct effects to our environment.
It is thus necessary to evaluate the effects of biodiesels on engine emission
under real-world operating conditions for industrially relevant engines.

Natural gas (NG), as a widely available fossil fuel in the world, is one of
the most commonly used gaseous alternative fuels for CI engines. Mainly
consisting of methane (CHy4), NG is considered to produce much less COq
compared to diesel due to its lower carbon-to-hydrogen ratio [13]. NG has
a major benefit of reducing PM emissions as its gaseous state leading to
better mixing with air and the general non-existence of polycyclic aromatic
hydrocarbons (PAH) in its composition [14]. As NG has high octane number
and low cetane number, they are difficult to be burned alone in conventional
CI engines. To solve this issue, dual-fuel combustion strategy is used. In
dual-fuel combustion engines, the gaseous fuel, such as NG, is injected into
the intake port or directly into cylinder and ignited by directly injected
liquid fuel, such as diesel, near the end of compression stroke [15]. The
performances of dual-fuel gas engines have been studied extensively both
in laboratory tests or under real-world conditions in the literature [16]. In
addition to the criteria pollutants, a new problem associated with dual-fuel
gas engine is the methane emissions, since methane has a significant global
warming potential (GWP) [17]. In a previous study [18], high CH4 emissions
were observed at low-load conditions on a dual-fuel gas engine under real-
world working conditions and vessel operation strategy has been improved
to effectively reduce the CH,4 emissions.

Another gaseous fuel considered for CI engines is the hydrogen (Hs).
Compared to NG, Hs is a less common fuel for CI engines especially in pas-
senger vehicles mainly due to its limitations in storage and distribution [19].
But in heavy machinery or power generation applications where space is less
of a concern, Hy is still an attractive option. Due to its zero carbon-content
nature, Hs has the potential to reduce tail-pipe emissions, particularly COq
emissions. Current use of Hy in CI engines is mainly by partial substitution
for diesel. The Hy substitution ratio in diesel/Hy dual-fuel engines is limited

2



by engine knocking and pre-ignition [20]. The ratio is normally controlled
by the injection system according to engine loads. A previous study [21]
investigated the in-use emissions of COg2, NOx, and PM of a diesel/Hs truck
and found reductions in CO2 and increases in NOx. Meanwhile, there were
suggestions that unburned Hy (Hg slip) was emitted in potentially significant
amounts in some cases, though precise measurement results of Ho emission
was not possible. Although not a pollutant, Hs slip indicates incomplete
combustion of the fuel and thus reduced fuel economy and deteriorated fuel
efficiency. In addition, the presence of Hs in the exhaust can also affect the
performances of the after-treatment system. Due to these reasons, quanti-
fying the amounts of Hs slip under various engine operating conditions is
important for the engine calibrators to optimize their Hy injection strategies.

Based on the these backgrounds, this thesis aims to answer the follow-
ing questions related to heavy-duty dual-fuel engines operating on different
alternative fuels:

1. How to measure the Hy slip for an in-use vehicle in road tests? Is
there an effective and low-budget method which is suitable for measuring
the Hs slip on a vehicle under real-world operating conditions?

2. How do the biodiesels (SME and CME) affect the in-use emissions
of a heavy-duty marine engine under real-world conditions as compared to
diesel?

To answer these questions, the in-use emissions of two types of vehi-
cles using various alternative fuels and fueling strategies have been studied
experimentally. Firstly, relevant backgrounds including the dual-fuel tech-
nology, fuel properties, and emission measurement instruments have been
introduced in Chapter 2 together with a literature review. Chapter 3 de-
scribes the development and implementation of an exhaust Ho measurement
system for a diesel/Hy dual-fuel truck. The in-use emission characteristics
of a diesel/NG dual-fuel marine vessel operating on diesel and biodiesels
are discussed in Chapter 4. Finally, major findings from these two stud-
ies are summarized in Chapter 5 together with recommendations for future
research.



Chapter 2

Background and Literature
Review

This work will consider two types of heavy-duty vehicles powered by CI
engines fueled with different fuels in both diesel mode and dual-fuel mode.
This section will introduce the background information regarding dual-fuel
engines, alternative fuels, and emission measurement methods. The litera-
ture review will focus on two fields: the effects of different alternative fuels on
engine emission; and the emission measurement methods for in-use vehicles.

2.1 Dual-fuel engines

The term ”dual-fuel engines” refers to compression ignition engines that
burn simultaneously two different fuels in various proportions [15]. Typi-
cally, these two fuels include a gaseous fuel, which is the primary energy
source for combustion, and a liquid fuel, which provides the energy for igni-
tion. The latter one is also called the pilot fuel.

With an independent gas injection system, dual-fuel engines can operate
in two modes: (1) With only directly injected liquid fuel (such as diesel),
operate as a conventional diesel engine, which is called the “diesel mode”
operation; (2) With gaseous fuel as the primary energy source, and liquid
fuel as the pilot fuel for ignition, which is called the “gas mode” operations.
These two terms will be used in this thesis to represent the two different
fueling modes of dual-fuel engines.

Based on how the gaseous fuel is introduced into the cylinder, there are
two types of dual-fuel strategies: (1) The gaseous fuel is injected upstream
of intake port and premixed there with the intake air, inducted into the
cylinder, compressed, and then the mixture is ignited by the pilot fuel which
is injected directly into the cylinder near TDC (Figure . This type of
engine is called premixed dual-fuel engine; (2) The gaseous fuel is injected at
a very high pressure directly into the engine cylinder after the injection and
ignition of the liquid fuel. Among the two approaches, the premixed dual-



fuel engine is more commonly used due to its lower fuel pressure, simplicity,
and lower cost.
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Figure 2.1: The conceptual schematic of a premixed dual-fuel engine

In premixed dual-fuel engines, the energy content is typically dominated
by the gaseous fuel, since only a small portion of liquid fuel is injected to
ignite the premixed mixture. The ratio of the amount of gaseous fuel to that
of the liquid fuel is an significant factor influencing engine combustion and
emissions. There are different strategies to control this ratio. The easiest
strategy is to inject the pilot fuel at a fixed rate regardless of variations in
engine load and engine speed. A more advanced strategy is to control the
amount of pilot fuel injection based on engine speed/torque map to achieve
optimum performance of the engine. The development of this map needs
the understanding of engine combustion and emission characteristics. For
example, for a Hy/diesel dual-fuel engine, the Hg/diesel ratio is limited by
efficiency, PM, NOx emissions as well as knock and pre-ignition behaviours
[20], while in a gas engine it is also limited by CH4 emissions.

Due to the low C/H ratio and low PAH content of gaseous fuels and the
lean burn combustion feature, dual-fuel engines are considered to have the
benefits of high power density, high efficiency, and reduced CO2, PM and
NOx emissions especially at high load conditions [22]. In addition, dual-
fuel engines can usually also be used as a conventional diesel engine since
the gas fuel injection is independent of the existing diesel system. These



advantages make dual-fuel engine a feasible solution to improve existing
diesel engines and a promising technology to meet 