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Abstract

Active learning solves machine learning problems where acquiring labels for
the data is costly. A representative subset helps active learning by selecting
the most useful subset of a complete data set and querying the labels of the
examples present in it. Various sampling strategies exist for the construc-
tion of this type of representative subset. However, the state-of-the-art ap-
proaches for subset sampling aim to construct a representative subset where
the cost of optimization on the subset is comparable to that of the com-
plete data set. They do not attempt to capture the underlying distribution
of the data, which we believe is the most important part of representative
sampling. This thesis proposes an adaptation of the sigma point sampling
(SPS) technique from unscented transformation (UT) for subset sampling.
Unscented transformation (UT) has shown to be very effective in non-linear
transformation modeling in object tracking and robotics.

We show in this thesis that when combined with the Gaussian mixture
model, sigma points can estimate the true statistics of an unknown distri-
bution of data with very few samples. The sigma point sampling approach
being parameterized, gives better control over the sampling process than the
non-parameterized sampling techniques. We use the representative subset
for active learning on an existing data set. As a practical application of
this novel sampling technique, we use it for Active Transfer Learning (ATL)
on autoclave processing data to optimize the manufacturing of high-quality
aerospace composite parts. The sampling technique is tested on both clas-
sification and regression problems in a pool-based active learning scenario.

After comparing our approach to the state-of-the-art sampling tech-
niques, We show that sigma point sampling either outperforms or matches
their performance. We also test the sensitivity of the parameters in the
sigma point sampling. The success of this sampling technique is very signif-
icant for future developments of representative sampling on big data sets.
The application of our representative subset is not limited to active learning
and transfer learning. There is further potential to extend this approach to
parallelizing computation on big data sets among multiple clusters.
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Lay Summary

Traditional machine learning models are data-hungry. Training supervised
models require a massive amount of labeled data. However, in some indus-
tries acquiring labels might be costly even though unlabeled data is cheaply
available. Active learning solves this problem by querying the labels of
the most informative unlabeled training examples and training a supervised
model with a small amount of data. In this thesis, we study the construc-
tion of representative subsets which can be used to train an active learning
model. A representative subset is a summarized version of the complete
data set. We propose a novel approach for representative subset construc-
tion that preserves the local data distribution in a data set. Our approach
generates sigma points, and they are calculated based on the local statistics
of the data set, which is acquired through Gaussian mixtures. We train the
active learner on the sigma points instead of the data points.
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Chapter 1

Introduction

Machine Learning (ML) in computer science is the study of computer pro-
grams that automatically learn from examples and use their learnt experi-
ence to improve their performance in specific tasks. In the last decade, we
have seen an explosion of machine learning applications in different problems
of computer science and other disciplines of research. Machine learning has
been successful in risk analysis in financial sectors [9, 15, 19], disease diag-
nosis in health-care [32, 55], quality control in manufacturing [39, 69], and
many more. There are three distinct categories of machine learning meth-
ods, namely supervised learning, unsupervised learning and reinforcement
learning.

• Supervised learning: In this learning category, d-dimensional data
x ∈ Rd and its corresponding labels y is fed to the learner as pair
(xi, yi)

N
i=1. The pairs are used to train the learner and predict the

labels for new data. If the labels y are real numbers the learning task
is called regression and if the labels y are ordinal the task is called
classification.

• Unsupervised learning: In this learning category, only d-dimensional
data x ∈ Rd is fed to the learner without the labels. The unlabeled
data is used to find the groups in the data. Clustering is one applica-
tion of unsupervised learning.

• Reinforcement learning: In this machine learning category, an in-
telligent agent receives a sequence of acceptable states and its corre-
sponding rewards (st, rt) for each time step t. The learner predicts
a policy π(a, s) = P (at|st) that moves the state to st+1 by an action
at and a reward rt+1 associated with the transition (st, at, st+1). The
goal of the learner is to predict a policy that maximizes the cumulative
reward over time [22]. Reinforcement learning does not require labeled
data.

The machine learning systems are set to optimize one or more specific
objective(s) by learning from data ingested into it. Hence, these systems
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1.1. Passive vs Active Machine Learning

are called data-driven systems [42, 59]. In recent years, as opposed to hand-
crafted rule-based expert systems, machine learning models have shown to
be more effective and more efficient in most cases [37, 49]. However, one
caveat is the amount of data machine learning models require to achieve
such performance.

In the current times, data collection is effortless in most industries, and
data storage is very cheap. However, data labelling is still costly and time-
consuming. For example, labelling medical images for diagnosis requires
medical professionals to hand label images. Labeling industrial sensor data
for fault detection requires passing the data through costly software [58].
This restricts the availability of the labelled data for machine learning appli-
cations. Apart from the cost associated with labeling the data, training both
supervised and unsupervised models on massive data sets is time-consuming
and computationally expensive. It means that neither supervised nor unsu-
pervised learning algorithms are scalable when applied on a huge number of
examples, even though a considerably large data set is necessary for better
learning. To solve this problem, in this thesis, we propose a novel data sum-
marization technique called the SPS, which can help in training the machine
learners with very few examples and still achieve significant performance.

1.1 Passive vs Active Machine Learning

1.1.1 Passive Learning

Computation learning theory deals with the general principles that dictate
the final hypothesis space proposed by the machine learning models. It theo-
rizes the characteristics of machine learners to measure the quality of learnt
experience from examples. These characteristics include the convergence
of the learner to the correct hypothesis, the sample complexity (number of
examples) and computation complexity required to learn a concept class
(the distribution function associated with a particular class). If we consider
a traditional supervised learning task, labeled samples (xi, yi)

N
i=1 with iid

xi ∼ D and yi = c∗(xi) are given, where D is the unknown distribution of
the data and C∗ is the unknown concept class which maps all the yis to the
xis. We can frame this task as a computation learning theoretic problem
where the goal of the learner is to approximate the unknown distribution
D and output a hypothesis h : X → y for a collection of unseen data X
that approximates the concept class c∗. The error of hypothesis is the mis-
match between the output hypothesis and the concept class when they are
applied on the input data xi. For a predicted hypothesis h ∈ H, where

2



1.1. Passive vs Active Machine Learning

H is all the possible hypotheses, the error of hypothesis is the probability
P (h(xi) 6= c∗(xi)|i ∈ N). The objective of the learner is to minimize the
error of hypothesis h for all examples i.e. minx L = P (h(x) 6= c∗(x)|i ∈ N).
Since the learner approximates the concept class and error of hypothesis for
the unseen data, the learner is called approximately correct if Li ≤ ε on
an example for some ε > 0. One assumption here is that the train and test
examples are chosen from the same independent and identical distribution
(iid). Considering this assumption that the examples are randomly chosen
from iid, there might be some cases where the hypothesis will fail to satisfy
the condition of being approximately correct in other words in some cases
the hypothesis will fail to be consistent with the examples. For a parameter
0 < δ < 1, if the hypothesis is approximately correct (the hypothesis error
L < ε) at least 1− δ fraction of times (or approximately incorrect at most δ
fraction of times), the hypothesis is called probably approximately cor-
rect. In Probably Approximately Correct (PAC) learning [62] approach,
the machine learner requires a lot of training examples to output a consis-
tent hypothesis. In fact, the total number of training examples required
for a hypothesis to be consistent with an error ε and probability (1 − δ) is
expressed in equation 1.1 [21]:

m ≥ 1

ε

(
ln|H|+ ln

1

δ

)
(1.1)

The number of examples required (m) to guarantee consistent hypothesis
is called the sample complexity. Haussler et al. [21] explains several prob-
lems with PAC learning. For example, a PAC learning model to converge
to a correct hypothesis requires the examples to be noise-free. The addition
of noisy data hinders the capability of the learner to discriminate between
correct hypotheses and incorrect hypotheses. The author also mentions that
calculating the sample complexity for even a relatively simple learning algo-
rithm is very difficult because the total number of hypotheses |H| is difficult
to estimate. In such cases, we are forced to insert the upper bound of hy-
pothesis space in equation (1.1) which inflates the sampling complexity of
the learner. We can underline two significant drawbacks of PAC learning
concerning sampling complexity then,

• For most learners, the calculated sampling complexity overestimates
the error of hypothesis [21].

• In real data sets, noisy data and randomly choosing noisy examples
for training hinder learning.

3



1.1. Passive vs Active Machine Learning

This type of learning is called passive learning because the machine
learner is ignorant of the informativeness [51] of the examples. Settles et
al. [50] point out that we can find redundancies within each class in mas-
sive data sets, and due to the presence of noisy data, all examples are not
representative of a particular class. It is important to sample only the most
representative and informative examples from each class.

1.1.2 Active Learning

AL [8, 10, 20, 46, 50, 57] proposes a machine learning technique where the
learner intelligently enquires the usefulness of the examples for learning. In
active learning, the learner asks intelligent questions to sample the most
useful examples from the complete data set. By removing noisy examples
from the training process and including only the informative examples the
machine learner can learn as good as in passive learning but with less train-
ing data. AL is advantageous in scenarios where labeling the data is costly,
either due to financial restrictions or lack of access to the experts or re-
sources.

The setup of active learning is based upon the ability of a machine learner
to query the labels of examples it decides to include in the training set. The
assumption is that the unlabeled examples are either cost free or very easy
to acquire. The labeling system of the selected samples take the form of an
annotator (either human or computer) also known as an Oracle, providing
labels for the unlabeled data.

Different settings of active learning can be formed to allow the learner to
ask intelligent questions. The two most common settings are stream-based
selective sampling and pool-based active learning. In stream-based selective
sampling one unlabeled example is sampled at each iteration and the ma-
chine learner decides either to query its label or to reject it. The decision
is made based on query strategies like setting a threshold on the informa-
tiveness measure. In pool-based active learning, all the unlabeled instances
are collected at the beginning of the task. The pool is assumed to be static
that is new unlabeled data are not introduced to the pool after the active
learning begins. Although this is not a necessary restriction. In pool-based
sampling, the learner ranks all the unlabeled instances according to some
informativeness measure and samples the ones with the best scores. In this
thesis, all the experiments are formed in a pool-based active learning setup.
The crux of active learning is the query strategy or sampling method that
helps to train a machine learner with very few examples. Various sampling
techniques have been proposed for active learning. We discuss them in de-

4



1.2. Scalability in Unsupervised Learning

tail in Chapter 2. In this thesis, we use use a novel representative sampling
technique called Sigma point sampling for extracting the informative exam-
ples from the unlabeled pool. we later use the extracted subset for training
the active learner.

1.2 Scalability in Unsupervised Learning

Unsupervised learning such as clustering, Gaussian Mixture Model (GMM)
are notoriously unscalable for high dimensional massive data sets. The clus-
tering algorithms are mostly O(N2) on the size of the data set. GMM has a
time complexity of O(NKD3) [40], where N is the size of the data set, K is
the number of components and D is the dimension of the data. The cubic
complexity on the dimension comes from the co-variance matrix inversion
in GMM. Due to this polynomial dependency on either the dimension of
the data or size of the data set, these algorithms are very inefficient. One
of the proposed methods to solve this problem is extracting a meaningful
subset of the complete data set that summarizes it [3, 5–7, 16, 17, 35]. The
representative subset is called a coreset if it approximates the loss on the
complete data set. Coresets have been proven to be very effective in scaling
unsupervised learning algorithms [7].

In this thesis we solve this problem as follows:

• We propose a novel technique for representative subset construction
that captures the underlying distribution of the data set from a latent
space and can be scaled on massive high-dimensional data sets.

• The proposed sampling technique is very easy to implement and the
sampled subset is a very good representative of the complete data set
which can be used for further machine learning.

1.3 Thesis Proposal

In this thesis, we dive deeper into the existing research and propose a poten-
tially better approach for representative subsetting. We also discuss how the
representative subset constructed using our approach improves active learn-
ing. The objective of active learning is to train a machine learning model
using a subset of the most informative labeled data points from a data set
that comprises of a very high number of examples. It addresses the issue
that a budget constraint might limit acquiring labels for the data. Also, even
if collecting unlabeled data is easy, the unlabeled data set might consist of

5



1.3. Thesis Proposal

examples that are either redundant or noisy. Active learning model should
be able to avoid those examples by using an effective query algorithm.

(a) Unlabeled data (b) Grouped unlabeled data

(c) Selected samples

Figure 1.1: Sub-figure (a) shows unlabeled data. (b) shows a rough estimate
of the groups present in the data achieved through a very efficient algorithm
e.g. initialization step of k-means++. (c) shows the selected samples from
each group

The goal of representative subset is to represent a complete data set
using a smaller set (in some cases a subset) of points that summarizes the
complete data set. A näıve approach to constructing a representative sub-
set is randomly selecting the members. Noisy training data in the randomly
sampled subset is a bottleneck for achieving optimum performance for a
machine learner. For random selection, the minimum coreset size required
to achieve satisfactory result can be calculated as equation (1.1). Figure 1.1
shows a better approach to this problem. In this sub-sampling technique the
complete data set is partitioned into clusters and some of the examples are
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1.3. Thesis Proposal

sampled from each cluster based on pre-defined sampling strategy. Pourka-
mali et al. [41] use a similar approach to prove that the subset summarizes
the complete data set well and can be used for active learning. Bachem et al.
[6] on the other hand propose another approach of representative sampling
called coreset constriction that summarizes massive unlabeled data sets for
scaling unsupervised learning which sometimes can be computationally ex-
pensive (Section 1.2).

Even though the existing representative sampling techniques are useful
for effective representative subset generation, none of them aim to capture
the underlying distribution of the data set in the representative subset. [41]
uses K-means to distribute the representative subset candidates through-
out the data set proportionally. [5],[6] constructs the coreset (representative
subset) in such a way that it approximates the cost of optimization of the
complete unlabeled data set in the subset. These representative subset con-
struction techniques query the best candidates and add them to a subset.
They do not take into consideration that adding data directly from the un-
labeled pool might make the representative subset susceptible to noise.

This thesis proposes a very effective sub-sampling technique that approx-
imates the underlying data distribution of the complete data set. Sigma
points selection is a very popular tool used in Unscented Kalman Filters
(UKF) [63]. It has shown to be very effective in capturing the statistics
of the distribution that goes through non-linear transformations in estima-
tion theory in different applications, such as object tracking and navigation
[61, 65]. [33, 60, 66] use sigma points in UKF for the estimation of the
unknown state-space in deep learning. UKF, which is a derivative-free ap-
proach, is very easy to compute and it is more effective than other Kalman
filters.

In this thesis, we combined sigma point sampling with GMM to estimate
the priors of the data set and divide the data into soft clusters. We use the
soft-clusters to estimate the density and distribution of the data and use the
distribution parameters to compute the sigma points. In our research, the
collection of sigma points act as the representative subset of the data set.
Finally, we use the coreset in a pool-based active learning scenario. The
benefits of using sigma point sampling over other representative sampling
approaches are as follows:

• Firstly, in our approach, the representative subset approximates the
distribution of the complete data set with very few data points. We
empirically show that approximating the distribution is a better ap-
proach than the existing techniques and leads to better accuracy.

7
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• Secondly, we use the sigma points instead of the actual data to train
our active learner, which reduces the risk of including the inherent
noise from the data points themselves.

• Thirdly, the sigma point sampling approach is parameterized which
adds more control to the user while constructing the representative
subset.

In the upcoming chapters, this thesis discusses in detail the following
hypotheses:

• Sigma point sampling is a novel framework for representative subset
construction that estimates the underlying distribution of the complete
data set.

• Sigma point representative subset outperforms the other representa-
tive sampling approaches by measuring and comparing their perfor-
mance in active learning.

• Sigma point representative subset can be used along with a dimen-
sionality reduction tool to implement it on massive high dimensional
data sets.

• Sigma point sampling can be used in both classification and regression,
and it overcomes some of the challenges of the existing active learning
frameworks.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 describes the background of
sigma point sampling and active learning. The first section of Chapter 3
discusses the application of sigma point sampling in classification of hand-
written digits. The second section of Chapter 3 shows an application in
regression. Chapter 4 delves into the details of using sigma point sampling
with transfer learning. Chapter 5 discusses the experiments to show the
validity of the hypotheses. Finally, Chapter 6 summarizes the findings of
my research and concludes the thesis.

8



Chapter 2

Background

In this chapter, we first discuss the different sampling techniques in active
learning. Then we discuss the working of unscented transformation. We
compare the sigma point sampling technique with the sampling strategies
discussed in this chapter. Chapter 5 discusses the comparison of different
sampling techniques with our sigma point sampling graphically. Because
our representative sampling strategy is not coreset based sampling, we com-
pared it with other representative sampling strategies as well as uncertainty
sampling and query-by-committee which are good choices of sampling in
active learning.

2.1 Problem Statement in Pool-based Active
Learning

Settles et al. [51] summarize the pool-based active learning setup, where
collecting unlabeled data is easy, but labeling them is costly. Pool-based
active learning starts with collecting all the unlabeled input data to create
the unlabeled pool U = {xi}ui=1 and a labeled pool L = {xi, yi}li=1 where
(u + l) is the total number of input instances, and yi is the label for xi.
The learner outputs a hypothesis h0 : X→ y by training on the latest L at
the first iteration. In the next step, the learner asks the label for the most
informative instance x∗ ∈ U and adds the (x∗, y∗) pair to L. The learner
trains on the new labeled space L + (x∗, y∗) and outputs a new hypothesis
h1 : X → y in the second iteration. This iterative process continues until
the learner exhausts the labeling budget B.

2.2 Uncertainty Sampling

[11, 30, 31] use uncertainty sampling to choose points closest to the decision
boundary of a binary classifier carrying the lowest confidence from the unla-
beled pool. In this pool-based query strategy the learner ranks the examples
based on the class confidence and the examples with confidence closest to
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0.5 are queried. Equation (2.1) shows the sampling strategy.

x∗ = argmax
x

(
1− Pθ(ŷ|x)

)
(2.1)

where, ŷ = argmax
y

Pθ(y|x) and x∗ is the query strategy.

Scheffer et al. [48] propose a multi-class variant of least-confident sam-
pling called margin sampling, which selects points with minimum probability
difference between the most and second most probable classes(ŷ1 and ŷ2 re-
spectively) to train the classifier. Equation (2.2) shows the mathematical
format of margin sampling.

x∗ = argmin
x

(
Pθ(ŷ1|x)− Pθ(ŷ2|x)

)
(2.2)

Entropy sampling [52, 53] is a generalization of uncertainty sampling
strategies. In this sampling approach, entropy is calculated for each example
in the unlabeled pool in each iteration for all possible labels, and the example
with the highest entropy is added to the labeled pool. Equation (2.3) shows
the entropy sampling.

x∗ = argmax
x

−
∑
i

Pθ(yi|x) logPθ(yi|x) (2.3)

2.3 Query-By-Committee

Seung et al. [54] propose QBC which works by creating a committee of
models C = {θ(1), θ(2), ·, θ(k)} and chooses samples from U on which the
committee members disagree the most. Different strategies can be used to
quantify the degree of disagreement, e.g., Dagan et al. [12] propose vote
entropy sampling to train a Hidden Markov Model classifier for parts-of-
speech tagging. Mccallumzy et al. [36] use Kullback Leibler (KL) divergence
to measure member disagreements for text classification. For a samples x,
all possible labels yi = {y1, y2, ·, yN} and a total of k committee members
the query strategy can be expressed as equation (2.4).

V E = argmax
x

−
∑
i

V (yi)

k
log

V (yi)

k
(2.4)

where, V (yi) is the total votes for label yi.
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2.4 Representative Sampling

In representative sampling, a subset of the complete data set is used for ac-
tive learning. The subset approximates the complete data set based on some
criteria. Usually, the general goal of representative sampling is to include
as much versatile examples as possible from the complete data set without
being redundant. Several representative sampling exists in the literature
and the next subsections discuss two of them.

2.4.1 Coreset

A coreset is a computational geometric approach [1] that was introduced
as an approximation technique to extract a small most useful (core) point-
set C, from a collection of points D such that the result from an expensive
algorithm applied on C can be translated to D. Most of the applications
of coreset sampling in machine learning are either for scaling clustering al-
gorithms on large data sets or parallelizing the computation of clustering
algorithms [3–5, 7, 16, 18, 34]. In that sense, coreset is a representative
subset or a summary of a data set that can be further used for inference.
However, the interpretation of a coreset and the techniques used for coreset
sampling vary from one task to another. Bachem et al.[6] formulate the
creation of a coreset in machine learning as an optimization problem. They
assumed that the input data x ∈ X where X ∈ Rn and their corresponding
weights are given. For all possible solutions θ ∈ Θ, the cost of optimization
on the complete data set is,

cost(X, θ) =
∑
x∈X

w(x)l(x, θ) (2.5)

where, l(x, θ) is a additive loss function used in any machine learning ob-
jective such as logistic regression, support vector machine, linear regression,
k-means clustering etc.

A weighted subset C of the original data set is called a ε-coreset of X if
the following holds:

|cost(X, θ)− cost(C, θ)| ≤ εcost(X, θ) (2.6)

Since, achieving the optimal solution is difficult, any solution θ ∈ Θ
is queried whose cost of optimization cost(C, θ) falls within the (1 ± ε) ×
cost(X, θ) range is used as a coreset. The simplest approach for coreset
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construction is assigning equal weights to all the examples in the data set.
For a data set of size M the weights of all examples are wM (x) = 1

M . The
cost of optimization on complete data set for a query θ ∈ Θ is,

cost(X, θ) =
∑
x∈X

1

M
l(x, θ) = Ex[l(x, θ)] (2.7)

where, x ∈ X is chosen uniformly at random. If a weighted subset C, of
size m is chosen uniformly at random from X and the weights of the points
in the subset is equal to wC(x) = 1

m , then the cost function cost(C,Θ) is an
unbiased estimator of cost(X,Θ) for any θinΘ if the following holds,

EC [cost(C,Θ)] =
∑
x∈C

1

m
Ex[l(x, θ)] = cost(X,Θ) (2.8)

It can be shown that the variance of cost(C,Θ) is finite, which means
that when m→∞ it converges to cost(X,Θ). But this convergence makes
m impractically large and not any better than the size of training data set
(m) in PAC learning (1.1). In order to make the sampling process better
the authors propose Importance sampling which assigns more weights to
the more important examples. This assignment of non-uniform weights to
examples causes a subset C to estimate the cost of complete data set with less
examples. This algorithm of coreset construction takes into consideration
only the multiplicative error (ε × cost(X, θ)) as shown in equation (2.6).
Bachem et al. [7] improves this approach of coreset construction to include
both multiplicative and additive error.

2.4.2 K-means Based Coreset

Another method to form a representative subset is to add different variations
of samples from the data distribution without being redundant. Pourkamali
et al. [41] shows an example of this method. The authors propose a k-means
based sub-sampling technique on the latent space of an image data set for
active learning. The authors show that features extracted with VAE can be
used for active learning. Their geometric approach is easier to implement
in the latent space and scalable on large data sets. The authors map the
real data with dimension D into a lower dimensional space d for all n points
in the data set Z =

{
z1, z2, · · ·, zn

}
∀zi ∈ Rd. Then they partition the

latent variables into K clusters. Given that the sampling budget for active
learning is set to B, m = B

K points are sampled uniformly at random from
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each cluster. This process of coreset construction, minimizes the maximum
Euclidean distance between the coreset zj ∈ C and the rest of the examples
zi ∈ Z\C. The authors achieve better test accuracy with the latent variables
compared to the observed variables in active learning.

2.5 Unscented Transform

Unscented Transformation (UT) [24] is a popular method for estimating the
parameters of a system that goes through a non-linear transformation, such
as in integrated navigation and robotics. Sigma points in UT capture the
Gaussian approximation of the current state and help estimate the distribu-
tion parameters of the new state after non-linear transformation. Contrary
to traditional probabilistic sampling algorithms such as the Monte Carlo
sampling method [14], UT estimates an unknown distribution with only
(2×N + 1) sigma points for an N -dimensional data set (Figure 2.1). Wan
et al. [65] use the unscented kalman fiter UKF, a use case of UT, to estimate
the prior distribution (mean and covariance) of the current state, and after
non-linear transformation, approximate the posterior mean and covariance
accurately for both Gaussian and non-Gaussian input.

Merwe et al. [63] generalize derivativeless and deterministic sampling-
based Gaussian approximation filters under Sigma Point Kalman Filters
(SPKF). The proposed sigma point calculation in SPKF is a modification of
scaled unscented transform [23] to remove the scaling errors over increasing
dimensions. Consider a random variable x of dimension N with mean µx and
covariance Σx, which propagates through a non-linear function y = f(x). A
sigma point matrix X is formed with dimension (2N + 1 ×N) to estimate
the statistics of y. Equation (2.9) shows the calculation of sigma points.

X0 = µ

Xi = µ+
(√

(N + λ)Σ
)
i

i = 1, · · ·, N

Xi = µ−
(√

(N + λ)Σ
)
i−N i = (N + 1), · · ·, 2N

W(m)
0 =

λ

(N + λ)

W(c)
0 =

λ

(N + λ)
+ (1− α2 + β)

W(m)
i =W(c)

0 =
1

2(N + λ)
i = 1, · · ·, 2N

(2.9)
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One of the sigma points is the mean µ itself, and the rest of the 2N
sigma points spread out around the mean symmetrically using the square
root of scaled covariance term

√
(N + λ)Σ, where λ = α2(N + κ)−N . The

calculation of sigma points is parameterized with α, β, and κ. α is the
primary scaling parameter, and κ is the secondary scaling parameter that
controls the spread of the sigma points. In our experiments we vary α for
scaling the sigma points. β is responsible for capturing prior distribution
information. For Gaussian prior β = 2 is recommended by [63].

A higher value of α weights the mean µ more than the other sigma points
and spreads the points further from µ than in the case of smaller α.

Figure 2.1: Efficient prediction of unknown distribution of a non-linear func-
tion y = f(x) using Unscented Transform. For 2-dimensional data it uses
(2× 2 + 1) = 5 sigma points in x [63].

This chapter outlines the concepts of active learning and the sampling
strategies used in active learning. We delved into the details of representative
sampling and its usage in active learning. We also briefly discussed the
background of sigma point sampling. In the next chapter, we will discuss
usage of sigma point sampling in active learning and build a pipeline to
implement it on high dimensional massive data sets.
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Chapter 3

Sigma Point Sampling, a
Strategy for Improved Active
Learning

In this chapter, we explain the integration of the novel representative sam-
pling approach in active learning. Pourkamali et al. [41] show that geometric
approach for sampling works better on the latent space than the observed
variable space. To that end, in my experiments (Chapter 5), we use sigma
point sampling on the latent space. To generate the latent space, on the
MNIST data set [29] we use Variational Autoencoder (VAE) which we ex-
plain briefly in the first section of this chapter and on the other data set
(Section 4.1.2) we use multi layer perceptron as an encoder.

3.1 Variational Autoencoder (VAE)

We use VAE to create latent space of image data set because of its ability to
learn non-linear representations of the data. Kingma et al. [25] introduced
VAE as a directed probabilistic graphical model that replaces the determin-
istic nature of Auto-encoders with stochastic data generation, which is more
robust as a generative model. They solve the intractability problem of the
marginal likelihood of data p(x) while calculating the posterior distribution
pθ(z|x) by approximating it with a neural network architecture (inference
model) with Probability Density Function (PDF) qφ(z|x). Reconstructed
data is generated from z with PDF pθ(x|z) from another neural net archi-
tecture (generator model). We can treat z as a hidden state representa-
tion of the original data, making the whole architecture autoencoder-like
with qφ(z|x) being stochastic encoder and pθ(x|z) being stochastic decoder.
Kingma et al. [26] describes VAE with figure 3.1. Evidence Lower Bound
(ELBO) on the marginal likelihood of data is the objective function of VAE
and is given by (3.1).
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3.1. Variational Autoencoder (VAE)

Figure 3.1: The data set distribution D lies in a high dimensional x-space
while the latent space is relatively simpler and low dimensional (figure shows
a spherical latent space to emphasize the simplicity of latent space and the
complexity of the observed variable space). The generator model estimates
the joint distribution pθ(x, z), which for a isotropic Gaussian distribution
can be factorized into pθ(x, z) = pθ(z)pθ(x|z). pθ(z) is the prior distribu-
tion which we assume to be pθ(z) ∼ N(z; 0, I) and pθ(x|z) is the stochastic
decoder. The stochastic encoder qφ(z|x) approximates the true posterior
distribution pθ(z|x). [26] 16
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L(θ, φ; x(i)) =

−DKL

(
qφ(z|x(i))||pθ(z)

)
+ Eqφ(z|x(i))[log pθ(x

(i)|z)]
(3.1)

The first term on the right-hand side of equation (3.1) is a regularizer
term that checks whether the approximate posterior distribution of latent
variable z is the same as its prior distribution, i.e., pθ(z). The common
practice is to draw prior from isotropic Gaussian, pθ(z) ∼ N(z; 0, I) and the
output of the encoder qφ(z|x(i)) is µ(i) and σ(i). The second expression in
equation (3.1) is the reconstruction term and expressed as the log-likelihood
of pθ(x

(i)|z) over the posterior distribution of latent variable qφ(z|x(i)). By
optimizing L(θ, φ; x(i)) with respect to θ and φ both the generator and the
inference model are optimized.

Because of the effectiveness to learn any complex function of neural net-
works, it makes the probabilistic encoder-decoder architecture an excellent
tool to learn non-linear representations of the hidden variables.

3.2 Sigma Point Sampling on Latent Space

We use the sigma point sampling to construct a representative subset and
train a learner in a pool-based active learning scenario. Sigma points can
capture the mean and covariance of a completely unknown distribution with
decent accuracy with much fewer samples than Monte Carlo-type sampling
techniques used in particle filters [27]. We show that sigma point sampling
along with GMM can summarize a large data set with unknown manifolds
effectively. Figure 3.2 shows our coreset construction approach using sigma
points.

The objective of the representative subset is to find a collection of points
that capture the underlying distribution of the complete data. To tackle the
high dimensionality of our data, we use a VAE. VAE can stochastically fit
to any random distribution and approximate the hidden variables in a low
dimensional latent space better than traditional dimensionality reduction
algorithms [13]. Even after the feature space is formed using VAE, the
latent manifolds have complex properties that are difficult to capture with
a single isotropic Gaussian assumption of VAE. To resolve that, we apply
the GMM [47] on the latent space to approximate the latent manifolds with
a mixture of known distributions and create soft clusters. GMM represents
data as a weighted sum of Gaussian distributions. Equation (3.2) shows the
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3.2. Sigma Point Sampling on Latent Space

Figure 3.2: Representative querying using sigma point sampling. Sigma
points X are highlighted in red. xj ∈ U are unlabeled data in the encoded
latent space. A Sigma point takes label from their nearest neighbor.The
(Xj , yj) pair is added to the labeled pool for training active learner.

representation of data x as a mixture of Gaussian.

p(x|w, µ,Σ) =

K∑
k=1

wk

(2π)n/2|Σk|
1
2

exp

{
− 1

2
(x− µk)TΣ−1k (x− µk)

}
(3.2)

where K is the total number of Gaussian components used to represent
an n-dimensional data set x and

∑K
k=1wk = 1. Given the mean vectors

and covariance matrices of the soft clusters, (µk,Σk), k = {1, 2, · · ·,K}
parameters for soft cluster k, we use equation (2.9) to calculate the sigma
points for that cluster. We sample 2n+ 1 sigma points from each cluster for
the n-dimensional latent space acquired from the VAE. Given that we use
K Gaussian mixtures to represent the latent space, we get

∑K
k=1(2n+ 1) =

K(2n + 1) sigma points in total. Equation (3.3) shows the calculation of
sigma points from k = {1, 2, · · ·,K} clusters of the mixture of Gaussians.
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X k0 = µk, k = {1, 2, · · ·,K}

X ki = µk +
(√

(n+ λ)Σk

)
i
, i = 1, · · ·, n and k = {1, 2, · · ·,K}

X ki = µk −
(√

(n+ λ)Σk

)
i−n, i = (n+ 1), · · ·, 2n and k = {1, 2, · · ·,K}

(3.3)

After we acquire the sigma points, we find their nearest neighbors to
estimate their labels from the real data set. Because we run this operation
on the latent space, the time complexity is O(n×K(2n+ 1)×M) ≈ O(M).
The final coreset comprises of (Xj , yj) pairs where j = 1, 2, · · ·,K × (2n+ 1).
We use support vector machine (SVM) with grid search cross validation to
train on the coreset.

Algorithm 1: Active learning with sigma point sampling

1: Inputs: Input data x ∈ X(M×N), Query budget B
2: VAE on x to create a latent space z, with dimension (M × n), where
n� N

3: Unlabeled pool U = {zi}Mi=1, where zi ∈ Rn

4: Apply GMM on U with K components to create soft clusters
5: Obtain (µk,Σk), k ∈ 1, · · ·,K for each cluster
6: Sample sigma points X ki from each cluster using the (µk,Σk), where
i = {1, · · ·, (2n+ 1)}, k = {1, · · ·,K}

7: For each X ki find nearest neighbor zBj=1 ∈ U and query labels yBj
8: if B ≤ K × (2n+ 1) then

9: L = {Xl, yl}
K×(2n+1)
l=1

10: Train learner on L
11: output hypothesis h : z→ y
12: else
13: α = α - 0.1
14: Repeat step 6 to 11 with updated α
15: end if

Algorithm 1 shows our proposed approach. We start with a high dimen-
sional data set x ∈ RN and a query budget B. We use an encoder (in our
case, convolution Variational Autoencoder) to create a latent space z ∈ Rn,
which we treat as the unlabeled pool. We apply GMM on the unlabeled pool
to retrieve the soft clusters, which we later use to sample sigma points X ki .
We find the nearest neighbors of the sigma points in the latent space and
attach their labels to form the (Xi, yi) pairs. We use the pairs as labeled
data set in our active learning. Finding the nearest neighbors and using
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the labels is the query step in our representative sampling algorithm. Since
we only query one nearest for each sigma point and we have K × (2n + 1)
sigma points in total, we can check for the query budget with the condition
B ≤ K × (2n + 1). If it fails, we reduce α and rerun the steps from sigma
point generation to retrain the model.

We choose to train the active learner on sigma points instead of the
data for the following reasons. Firstly, a representative subset constructed
with sigma points is a good summarization because it captures the true
distribution of the data. Secondly, the sigma points are less affected by
noise in the data because we can control the spread of sigma points by
tuning α. Usually, making α too large causes generation of sigma points
that represent noisy data. Thirdly, to query the labels for the sigma points,
we use the labels of their nearest neighbour in the latent space. Because
in this experiment, the query budget (B) for active learning is set on the
latent data space xj ∈ U , we can query label yj for at most B examples
(considering a unit cost for each query). We can adjust α to sample points
with a fixed budget of B to satisfy B ≤ K × (2n + 1). We also find in our
experiments that sigma points in latent space perform better than latent
space data.

This chapter detailed the procedure to implement the proposed sigma
point sampling to generate representative subset of a data set and use the
subset for active learning. We saw the application of the pipeline on the
data available to us.

To summarize,

• The proposed pipeline is applied on the latent space of the data in order
to save computation by using the lower dimensional latent space.

• The latent space also captures rich features about the data extracted
with an encoder which makes machine learning more effective.

• The active learning setup in the pipeline also saves computation and
reduces labeling costs by applying machine learning only on a repre-
sentative subset of the data.

The next chapter explains the integration of sigma point sampling with
transfer learning and active learning. It also details the application of the
novel pipeline on a new data set.
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Chapter 4

Applications of Sigma Point
Sampling in Industry 4.0

In this chapter, we show two applications of the sigma point sampling on
industrial data sets for aerospace composite parts manufacturing. With the
advent of advanced computing platforms and intelligent systems, manufac-
turing has become automated. An integral part of this automated manufac-
turing is data driven predictive models at different stages of the process e.g.
supply, data monitoring and product quality. In this study, we focus only
on designing a predictive model to maintain the quality of manufacturing on
aerospace material data. In aerospace industry, the manufacturing processes
take very long to be able to generate sufficient amount of product quality
data, which means that such data sets are usually sparse.

Even though simulated data can be generated by using novel softwares,
they are costly and time consuming to generate. Another problem in this
manufacturing process is that every raw material acts differently in the
manufacturing processes and models trained on one data set usually perform
poorly on another data set that revolves around using a different material.
This brings a possibility to design a new predictive system that is agnostic
to the varying data distribution caused by different materials in the same
manufacturing process. The naive approach of training a new model on
every data set is not optimal to the dynamic and fast evolving needs of
smart manufacturing (Industry 4.0) [28].

Manufacturing composite parts requires high levels of precision and de-
pendency on the manufacturing tools. Constant monitoring of each step
of the manufacturing process is very crucial for producing cured parts that
show expected material properties. In this experiment, we show that transfer
learning with sigma point sampling can help to automate the manufactur-
ing process of cured parts. Figure 4.1 shows the curing process that we are
trying to automate.

In aerospace manufacturing, raw materials are put inside an autoclave
and through a curing cycle the composite parts are produced. A manufac-
turer usually decides the presets of the curing process, it is called Manu-
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Figure 4.1: Autoclave curing process in aerospace manufacturing. [43]

facturer’s Recommended Curing Cycle (MRCC). Thermal lag and exotherm
are the thermal history specifications during the curing process that are the
primary quality metrics to evaluate the mechanical, chemical and physical
properties of the composite parts. Thermal lag is the deviation between
the part temperature and the autoclave temperature during the cure cycle.
Exotherm denotes the maximum temperature achieved by the part material
during the cure cycle. In this study, we setup thresholds for these two met-
rics. Parts that exceed these thresholds are considered failed products. In
the experiment, we use a binary classifier to detect whether a curing pro-
cess configuration will lead to failed product or acceptable composite parts.
Then we transfer the knowledge of this classifier from one resin material to
another to show that our transfer learning process with sigma points sam-
pling can detect successful or failed configuration on the new raw material
with high accuracy using very few samples.

4.1 Transfer Learning on Composites
Manufacturing Data

TL [67] focuses on training on a data set and transferring the knowledge to
a similar data set with a different distribution. TL has proven to be very ef-
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fective in manufacturing where acquiring new data distribution is common.
Xu et al. [70] use deep transfer learning to design a fault detection system in
manufacturing process by training a model on simulated data and transfer-
ring the knowledge on physical system data. Sun et al. [56] transfer learnt
features and weights from historical failure data to new objects. The goal of
this chapter is to present a novel variant of inductive transfer learning [73]
that combines sigma point sampling to increase the effectiveness of trans-
ferred knowledge from one data set to another in aerospace manufacturing.
The results show that we achieve significant accuracy on the target data set
with very few training examples by using sigma point sampling.

Transfer learning (TL) is usually defined with domains and tasks. These
terms are defined below.

Definition 1 A domain D consists of a feature space X and a marginal
probability distribution P (X), where X = {x1, x2, · · ·, xn} ∈ X . Therefore,
D = {X , P (X)}.

Definition 2 A task T consists of a label space Y and an objective function
f : X → Y. Therefore, given a specific domain D = {X , P (X)} the task is
defined as T = {Y, f}. f is learnt from sample data.

Usually the source domain DS for a particular task TS is observed with
instance-label pairs DS = {(x, y)|xi ∈ XS , yi ∈ YS , i = 1, 2, · · ·, nS}. The
objective function fS is learnt from the instance-label pairs.

Definition 3 Given observations corresponding to a source domain and
source task (DS , TS) and some observations corresponding to target domain
and task (DT , TT ), where DS 6= DT or TS 6= TT , the goal of transfer learning
is to improve the performance of target predictive function fT on DT using
the knowledge from DS and TS.

In this definition of transfer learning we use only a single source for learning
and a single target task for transferring the knowledge. A common scenario
for transfer learning is where source domain consists of abundant labeled
instances but labeled target domain instances are limited. Since both source
and target domains have labels, the transfer learning is called inductive
transfer learning.

In our data set on manufacturing parameters, the source domain and
target domain are different (DS 6= DT or TS 6= TT )), which makes this
learning heterogeneous transfer learning. In smart composites manufactur-
ing, changing domains can arise from changing the raw materials in the
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manufacturing process which changes the target task (TT ). We use transfer
learning to reduce the effort and computational cost for training new models
on new target data sets. TL has proven to be very effective in getting high
accuracy on different but similar domains by transferring knowledge from
the source domain [56, 70, 71].

4.1.1 Transfer Learning with Sigma Point Sampling

We propose a modified approach to transfer learning so that we can apply
the transferred model trained on the source domain to a small subset of
the target domain. Figure 4.2 shows our proposed transfer learning pipeline
with sigma point sampling. At the initial step we consider that the observed
instances from the target domain are unlabeled. We use feature-based trans-
fer learning [38] on the first step of target domain. We learn latent features
(ZS) of the source data (Xsource) with a fully-connected encoder (g) and
apply the same encoder on the unlabeled target domain to generate similar
latent space (ZT ).

Figure 4.2: Transfer Learning with Sigma Point Sampling.

We apply sigma point sampling on the latent space (ZT ) instead of the
observed feature space for the following reasons. Firstly, [41] show that
active learning with representative sampling performs better in the latent
space because an encoder captures rich features from the observed variable
space. In chapter 3 we apply sigma point sampling on latent space. In
order to keep our experiments comparable we follow the same pipeline in
this chapter. Secondly, the latent space representations in our experiments
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4.1. Transfer Learning on Composites Manufacturing Data

have reduced dimension which helps implementing the sigma point sampling
algorithm with reduced computation.

In the second step we use parameter-based transfer learning [38] where
we transfer the source classifier model (hS) to the target domain without
freezing. Since the target task (TT ) is different from source task (TS) we fine
tune the classifier (hT ) here. We trained the final output layer for target
domain from scratch without transferring weights from source.

We implement our TL with sigma point sampling pipeline in two stages.
First, we use an encoder g : X → Z to generate a target latent space that
is similar to the source latent space. Then we use sigma point sampling
on the latent space of the target domain to generate sigma points to train
the classifier (hT ). In the final step, we use a classifier h : Z → Y. We
fine-tune the weights from classifier (hS) to fit the classification task of the
target data set. The sampling strategy is similar to the process described
in Section 3.2. The results of our novel technique show that active learning
with representative sampling can be successfully integrated with transfer
learning. We achieve very high accuracy and F1 score for detecting the
defective curing process for different raw composite materials. Section 5.2
describe the experimental setup on the composites manufacturing and the
results of the experiments.

4.1.2 Composite Material data set

In this experiment, we use a data set consisting of curing process configu-
rations for aerospace composite material manufacturing. Figure 4.3 shows
the two-hold autoclave curing process that include the observed variables
for the curing configurations. First step is a heating process followed by an
isothermal hold. This step is repeated twice until the autoclave achieves a
temperature of 180◦. The next step is cool-down process. The temperature
of the autoclave is brought down from 180◦ to 20◦ at a rate of 3.5◦/minute.
As shown in Figure 4.1, apart from the current temperature and the heating
rate inside the autoclave, gas pressure also affects the quality of the com-
posite material produced in the process. This is mostly because the physical
properties of the tool material along with the gas pressure and gas velocity
inside the autoclave determine the thermal history around the part material.
Hence, we also keep track of the Heat Transfer Co-efficient (HTC) above and
below the part material.

For our application in this experiment, we choose two aerospace-grade
composite material data sets namely, AS4/8552 as the source data set and
AS4/8551 with a different resin system as the target data set. The observed
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variables for both the data sets are described in the Table 4.1.

Figure 4.3: Two-step autoclave cure cycle.[45]

Table 4.1: Observed variables used in predictive modeling of composite ma-
terials data set.

Variable Min value Max value

Tool thickness (mm) 2.5 20
Part thickness (mm) 2.5 20
Heating rate-ramp 1 (◦C/min) 1 5
Isothermal hold 1 temp (◦C) 100 130
Isothermal hold 1 duration (seconds) 30 90
Heating rate-ramp 2 (◦C/min) 1 5
Isothermal hold 2 temp (◦C) 175 185
Isothermal hold 2 duration (seconds) 30 90
Top-side HTC (W/m2K) 10 200
Bottom-side HTC (W/m2K) 5 150
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The data for the source and target data set were generated using RAVEN
composites processing simulation software [45]. The output from RAVEN
of the observed variables mentioned in Table 4.1 are two quality metrics for
the composite parts namely, thermal lag and exotherm. The definitions
of these two terms has been described in Chapter 4. Even though these
metrics are quantitative, we frame the problem of fault detection as a binary
classification problem. As per the MRCC we choose Exotherm ≤ 5◦C
and Thermal lag ≤ 20◦C as successful cases and any value above these
thresholds are considered as failed cases. In all our experiments, we keep
the tool material fixed to Aluminium.

4.2 Regression with Sigma Point Sampling on
Composites Manufacturing Data

In this section of the thesis, we describe how easily our sigma point sampling
can be adopted for linear regression instead of classification described in the
previous sections. To demonstrate the usability, we use the source data set
from the transfer learning study (AS4/8552). The data set consists of 1000
examples and we used 80% data for training and active learning and 20%
data for testing. The explanatory variables are described in table 4.1. As
shown in figure 4.1 the dependent variables are thermal lag and exotherm.
To measure the performance of the linear regression model we used three
different metrics namely, R2, MAE and MSE. Whereas MAE and MSE help
to understand the scatter of the residuals points around the linear regression
line, R2 helps to understand the quality of fit of the model. We achieved an
upper bound R2 value of 0.85 which shows a good fit of the multi-output
linear regression model. Because the linear regression model outputs two
dependent variables we used variance weighted R2 value which takes into
account all output variances individually. To further prove that the linear
model fit is good, we applied threshold on both the real and predicted values
of thermal lag and exotherm (dependent variables) in the test data set.
The process of thresholding is described in Section 4.1 (Exotherm ≤ 5◦C
and Thermal lag ≤ 20◦C for success). Thresholding generates binary
values for outputs where 0s are successful cases and 1s are failed cases.
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Chapter 5

Experiments

In this chapter, we perform experiments on two data sets to empirically prove
that SPS is a valid representative sampling strategy for active learning. We
show that the sigma points themselves can be used for further machine
learning and the subset created with sigma points are representative of the
complete data set. We also perform a sensitivity analysis on the effect of
the value of α on the active learning accuracy. The sensitivity analysis
experiment shows the justification for choosing α.

5.1 Sigma Point Sampling on MNIST data set

In this section, we first describe the setup of our experiment. We discuss the
data sets used in our experiments and the neural network architecture used
in variational autoencoder for dimensionality reduction. Later we discuss
the experimental results on multi-class classification tasks.

5.1.1 Experimental Setup

We compare my proposed sampling method with others using the MNIST
[29] data set on three, four, five, and ten digits (labels). Increasing the num-
ber of labels in our experiment increases the size of the data set, changes
the distribution of the data, and changes the manifolds of the latent space.
We choose four different classification tasks on the same data set by increas-
ing the number of labels in the experiment to demonstrate the robustness
and scalability of our model. We compare sigma point sampling approach
with coreset based representative sampling techniques [3, 41], least confident
uncertainty sampling [30, 31], entropy sampling [48], and margin sampling,
query by committee [12, 36, 54]. We report the accuracy comparisons on the
test set and show that our method works either better or equally well when
compared with the existing approaches. We use Support Vector Machine
(SVM) [64] with grid search cross validation as the active learning classifier.
Since we are using SVM for multiclass classification we use One Versus Rest
(OVR) settings. We use five fold cross validation with linear and Radial
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5.1. Sigma Point Sampling on MNIST data set

Basis Function (RBF) kernel in SVM to remove the constraint of a fixed
hypothesis on the active learner.

Table 5.1 shows the labels of MNIST used in our study and the size of the
train and test set for each classification task. The MNIST data set consists

Table 5.1: Labels used for classification problems with their corresponding
data set sizes used for training and testing.

Number of labels Labels Training set Test set

3 0,3,9 18003 2999
4 0,3,7,9 24745 4134
5 0,2,3,7,9 30226 5059
10 0-9 60000 10000

of handwritten digits of dimension (28 × 28) [29]. We use VAE for dimen-
sionality reduction and feature learning. We use the Keras framework to
implement the VAE. The convolution VAE used in our experiment has four
convolution layers (except the final layer) in the encoder and the decoder
with 32, 64, 64 and 64 channels with Rectified Linear Unit (ReLU) acti-
vation. Maxpooling function is used in the encoder along with 25 percent
dropout. Similarly, in the decoder upsampling function is used along with
25 percent dropout. The last layer of the encoder is a dense layer with 128
output channels with ReLU activation. The bottleneck layer has two consec-
utive dense layer without any activation1to estimate the parameters (mean
and variance) of the latent space with a isotropic Gaussian assumption and
sample the latent variable z from them. The final layer of the decoder is
a convolution layer with a single output channel with sigmoid activation.
This is to bound the output pixel values of the reconstructed images by
VAE within zero and one. We run 100 epochs for three, four, five, and ten
classes with early stopping (10 epoch patience). We use Adam optimizer to
optimize our loss function. We use Binary Cross-entropy to calculate the
reconstruction loss between real and reconstructed images. For three, four,
five, and ten class classification we choose a latent space of dimension 3,5,5,
and 7 respectively.

1https://www.tensorflow.org/tutorials/generative/cvae
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Figure 5.1: Accuracy comparison of sigma point sampling vs. other repre-
sentative sampling methods

We represent the latent space with a mixture of Gaussian distribu-
tions with K components. For three, four, and five-class classification, we
use 80 components in GMM, and for ten-class classification, we use 100
components. We collect the (µk, Σk) parameters from each soft cluster,
k = {1, 2, ···,K}. We treat these parameter pairs as input to the sigma point
sampling algorithm. We know from equation (3.3) that for an n-dimensional
latent space, the sigma point sampling algorithm generates (2n + 1) sigma
points from each soft cluster. We collect K(2n + 1) sigma points from all
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clusters. We run KNeighborsClassifier (with argument n neighbors=1) from
the scikit-learn package in python to find the nearest neighbor of each sigma
point and predict their labels. We generate (Xi, yi) pairs for all K(2n + 1)
sigma points and construct the final representative subset C = (Xi, yi), for
i = {1, 2, · · ·,K(2n+ 1)}.
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Figure 5.2: Accuracy comparison of sigma point sampling vs. maximum
uncertainty sampling, margin sampling and entropy sampling

We train the active learner on this representative subset. To train the
SVM we iteratively add 20, 40, 40, and 50 pairs of (Xi, yi) from C to L for
three, four, five, and ten-class classification, respectively. For representative
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sampling we run each trial 500 times and report the average test accu-
racy with standard deviation for each classification task. For uncertainty
sampling methods and QBC we run each of the experiments once because
running them 500 times is time-consuming and we did not observe too much
variation in each run. To form the committee for QBC we use three different
classifiers namely, support vector machine with linear kernel, random forest
classifier and K-nearest neighbour classifier.
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Figure 5.3: Accuracy comparison of sigma point sampling vs. consensus
entropy sampling, maximum disagreement sampling and vote entropy sam-
pling of Query by committee.
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The codes and results for our experiments can be found here. 2

5.1.2 Experimental Results

In this section we show that sigma points can be treated as members of a
representative subset, and we can use them for training learners in a pool-
based active learning setup. We first compare the test accuracy of sigma
point sampling with uniform sampling, k-means based random coreset sam-
pling [41], and sensitivity coreset sampling [6] (Figure 5.1). Secondly, we
compare our approach with maximum uncertainty sampling, entropy sam-
pling, margin sampling (Figure 5.2). Then we compare the test accuracy of
our approach with consensus entropy sampling [36], maximum disagreement
sampling, and vote entropy sampling [12] of QBC (Figure 5.3).

5.1.3 Comparison of different sampling techniques

From Figure 5.1, we report that the test accuracy for the sigma point sam-
pling outperforms all other representative sampling methods in all four clas-
sification tasks. We can observe from Figure 5.2 that margin sampling per-
forms the best in most cases but sigma point sampling is really effective
when we have very less training points. The test accuracy for 20 training
examples in three-class classification, 40 training examples in four-class clas-
sification and five-class classification, and 50 training examples in ten-class
classification are highest for sigma point sampling. We observe similar phe-
nomena in Figure 5.3 as well. Compared to sampling techniques used in
QBC, sigma point sampling either performs better or equally well on very
small amount of training data.

We can summarize the drawbacks of other sampling techniques and ad-
vantages of sigma point sampling in three folds. Firstly, all sampling tech-
niques other than representative sampling techniques query one example
at a time from the unlabeled pool and calculate informativeness for every
example in the unlabeled pool. Hence, they are computationally very expen-
sive. Secondly, the committee based querying strategies are very inconsistent
across our experiments. For example, in three, four, and five-class classi-
fication maximum disagreement sampling performs best (after sigma point
sampling) but in ten-class classification vote entropy sampling outperforms
the other committee based querying. Vote entropy sampling performs poorly
in the other experiments which shows the inconsistency whereas sigma point
sampling consistently either outperforms or works equally well as compared

2https://github.com/anonymous-moniker/repo1
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to all other sampling techniques. Thirdly, [68] describes the necessary qual-
ities of an ideal active learning setup which include removing redundancy of
data in the labeled pool, including all variations of data distribution in the
labeled pool. Even though random coreset sampling [41] attempts to include
different data distributions in the labeled pool it fails to reduce redundancy
and some of the examples in the labeled pool might be outliers. Sensitivity
sampling however focuses on sampling examples that best optimizes the cost
function.

Sigma Point Sampling on the other hand, captures all variations of data
distribution through GMM and we include at least one member from each
Gaussian component. Because we use sigma points for training our model
we reduce redundancy of data distribution as a higher value α spreads the
sigma points within the data distribution. When compared to the other
representative sampling strategies, sigma point sampling outperforms them.

5.1.4 Sensitivity Analysis

In Section 3.2, we argue that the representative subset can be constructed
with a maximum of B queried labels (considering unit cost for each query)
from real data space to accommodate the query budget B for active learning.
Algorithm 1 shows that, we tune the value of α to accommodate the query
budget. In this section, we discuss the effect of the primary scaling param-
eter α of sigma point sampling on the test accuracy of the active learner.
We show that the test accuracy is optimum for a certain range of α, for a
specific classification task. Figure 5.4 shows the variation of the spread of
sigma points across two Gaussian distributions for a two-dimensional toy
data with increasing α. The black dots represent the sigma points. It is
evident from the figure that as the value of α increases the sigma points
spread more.

In our experiments, we vary α between 0.1 and 0.9, as recommended in
the original paper [63]. Higher value of α produces sigma points with higher
scaled covariance and the sigma points spread further, which is validated in
equation 3.3. Figures, 5.5, 5.6 and 5.7 show the spread of sigma point on
the 2 dimensional latent space of MNIST data set (with digits 0,3,9) and
how the sigma points represent the latent space for varying values of α. 5.5
shows the overlap of the sigma points (shown using black dot markers) on
latent space data (shown with coloured square markers). We can see that
the density of the data points in the latent space is not homogeneous. We
use 80 Gaussian components to estimate the density of this latent space
and the Gaussian components in the sparse regions have higher covariance
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than those in the dense regions. Figure 5.6 shows the spread of sigma points
inside each Gaussian component. We can use the primary scaling parameter
α (which uses scaled covariance) to further control the scaling of the sigma
points inside the Gaussian components.
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Figure 5.4: Effect of α on the spread of sigma points. As the value of α
increases the sigma points spread more across a Gaussian distribution. The
spread of the sigma points affects their representative quality.
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Figure 5.5: Spread of the sigma points in the 2 dimensional latent space of
MNIST data set (with digits 0,3, and 9) for different α values.

Finally, the figure 5.7 shows the collection of 80×(2×2+1) = 400 points
(where K = 80 and N = 2) as a representative subset of the latent space
data set with 18003 data points. Varying α generates different representative
subsets.
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Figure 5.6: Spread of the sigma points inside each Gaussian mixture com-
ponent and throughout the 2 dimensional latent space of MNIST data set
(with digits 0,3, and 9) for different α values. In the regions where the latent
space data is sparse the Gaussian components have higher covariance.

37



5.1. Sigma Point Sampling on MNIST data set

−4 −2 0 2 4 6

z1

−4

−2

0

2

4

z 2

Sigma points

(a) α = 0.1

−4 −2 0 2 4 6

z1

−4

−2

0

2

4

z 2

Sigma points

(b) α = 0.3

−4 −2 0 2 4 6

z1

−4

−2

0

2

4

z 2

Sigma points

(c) α = 0.5

−4 −2 0 2 4 6

z1

−4

−2

0

2

4

z 2

Sigma points

(d) α = 0.7

Figure 5.7: Representation of the 2 dimensional latent space of MNIST data
set (with digits 0,3, and 9) with the sigma points for different α values. In
the regions where the latent space data is sparse, the higher covariance of
the Gaussian components causes the sigma points to be more spread out
than the dense regions. By changing the value of α, which is a scaled co-
variance parameter for sigma points, we can control the spread of the sigma
points inside the Gaussian components even further to get a satisfactory
representation.

Figure 5.8 shows the variation of test accuracy with varying α for three,

38



5.1. Sigma Point Sampling on MNIST data set

four, five, and ten-class classification. In these experiments, we keep the
number of Gaussian components (K) at 80, 80, 80 and 100, respectively, for
three, four, five, and ten-class classification.

Our experiment shows that, for a certain value of K, the best test accu-
racy depends on α. As expected, for a small data set, a small α gives the
best test accuracy, and for a bigger data set, a high value of α spreads the
sigma points enough to represent the data set best. Figure 5.8 shows that
for three, four, five, and ten-class classification, the best test accuracy are
achieved at α equal to 0.1, 0.3, 0.5, and 0.7, respectively.
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(b) Four-class classification
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(c) Five-class classification
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Figure 5.8: Effect of α on multi-class classification accuracy
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5.1. Sigma Point Sampling on MNIST data set

This is expected because for three-class classification the unlabeled data
set size is small which means a small value of α should be sufficient to
generate the sigma points that are representative of the complete data set.
For four and five-class classification the value of K is the same as that of
the three-class but the unlabeled data set size increases with the number of
classes (Table 5.1). So it is expected that higher values of α are needed as
the number of classes in the experiment increases. Our experiment shows
that, for a certain value of K, the best test accuracy depends on α. As
expected, for a small data set, a small α gives the best test accuracy, and
for a bigger data set, a high value of α spreads the sigma points enough
to represent the data set best. Figure 5.8 shows that for three, four, five,
and ten-class classification, the best test accuracy are achieved at α equal to
0.1, 0.3, 0.5, and 0.7, respectively. This is expected because for three-class
classification the unlabeled data set size is small which means a small value
of α should be sufficient to generate the sigma points that are representative
of the complete data set. For four and five-class classification the value of K
is the same as that of the three-class but the unlabeled data set size increases
with the number of classes (Table 5.1). So it is expected that higher values
of α are needed as the number of classes in the experiment increases.

It is visible in Figure 5.1b and Figure 5.1c that α = 0.1 under-represents
the data sets and hence produces the worst accuracy in both cases. It is also
visible that sigma points with α = 0.7 performs very good when the training
labeled data set size is over 400 examples in four and five-class classification.
This is because, for a higher number of sampled points we need versatile
examples in the labeled set (L) representative of the complete data set.
Higher values of α generate more versatile sigma points because when they
spread more across a Gaussian, the distance between them increases. It is
safe to assume that in a latent space, with Euclidean assumption, sigma
points that have higher intra-cluster distance are more versatile. For ten-
class classification, α = 0.7 performs better after 150 training samples and
performs better than the other α values, which is why we declare it the best
α value this task. This is expected given that the unlabeled pool in this
task has 60000 examples. It is also visible that α = 0.9 spreads the sigma
points far from the most representative data in all cases.
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5.2 Transfer Learning with Sigma Point Sampling
on Composite Manufacturing data set

In this section, we discuss the experimental setup and results on the com-
posite manufacturing process data set.

For the experiment on transfer learning with composite materials data
set, we assumed the source data set (AS4/8552) has 1000 examples and
we used 80% data to train the predictive modeling and 20% data was set
aside for validation. In our experiment, the target data set (AS4/8551) has
1000 examples. For the target data set (AS4/8551), we set aside 200 points
for testing and evaluation of our transfer learning model and apply sigma
point sampling (and random sampling for comparison) on the remaining
800 examples. We vary the training set for target data from 20 examples to
200 examples. This setup is realistic for both transfer learning and active
learning.

To develop the transfer learning portion of the experiment, we design
the neural network (NN) architecture on the Keras platform of Python.
Usually, the initial layers of a NNs act as feature extractors that is useful to
learn the low-level features of data. On the other hand, the last few layers of
the NNs are more specific to the tasks [72]. Hence, in our experiment the NN
architecture has two stages namely an encoder and a classifier. The classifier
from source data is less suitable for transfer hence we unfreeze the weights
and retrain it on the target data. However, we use the same encoder from
the source data set to extract features from the target data. The encoder
has one input layer with ten channels and three hidden layers. The first
two hidden layers have ten output channels, whereas the final layer of the
encoder has five output channels. The reason for less number of channels in
the last layer is to use the encoder as a dimensionality reduction tool as well
as a feature extractor. The classifier has two hidden layers with five and
ten output channels respectively while the last output layer of the classifier
has one layer (for binary classification) with sigmoid activation. All hidden
layers have Scaled Exponential Linear Unit (SELU) activation because it
performed relatively better than other activation functions. We kept the
learning rate fixed at 0.01 throughout the training with Adam optimizer.
To prevent overfitting on the training data we used early stopping on 100
epochs.

In the next section, we show that the knowledge learnt from the source
data set can be used in the target data set for fault detection with very few
training examples.

41



5.2. Transfer Learning with Sigma Point Sampling on Composite Manufacturing data set

5.2.1 Experimental results

In this section, we share results of the transfer learning study with sigma
point sampling. To demonstrate the effectiveness of our sigma point sam-
pling in an ATL scenario we compare it with various other sampling tech-
niques namely entropy sampling, margin sampling, uncertainty sampling,
random sampling and Gaussian processes [44]. Before jumping into ATL,
we show in figure 5.9 that even for simple active learning (without transfer
learning) on the target data set (AS4/8552) sigma point sampling (SPS)
performs better than all other sampling strategies. In this figure, we start
with 20 training points and we compare the test accuracy and test F1-score
(on the test data set with 200 examples) for up to 200 training samples. For
all the experiments, we keep a test set of 200 examples from the target data
set.
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(a) Accuracy comparison of SPS vs.
random
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(b) F1-score comparison of SPS vs. ran-
dom

Figure 5.9: Comparison of performance metrics with increasing number of
training examples in AS4/8552 for SPS vs. random sampling

For this experiment, we use the pre-trained encoder from the source
data set to generate the latent space and apply the sampling techniques
on the latent space to choose training examples. We train the classifier
with initialized weights on the training examples. For a particular number
of training points (say 20 training examples), we run 100 trials (sampling
and training the classifier). Figure 5.9 shows standard deviation (SD) band
for SPS and random sampling because each trial we get slightly different
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samples. For all other sampling techniques we do not have SD band because
all the 100 trials in those sampling strategies led to almost the same accuracy
(and F1 score).

For a fair comparison, we should also consider the upper limit of the ac-
curacy on the target data set. We achieved a test accuracy of 92.59% when
trained on the complete data set. The figure 5.9a shows that with 20 ran-
domly selected training examples 83% test accuracy was achieved whereas
training with 20 sigma points achieved a little over 86% test accuracy. The
test accuracy of the other sampling strategies are very close to that of ran-
dom sampling. We see the same phenomena while comparing the F1 score
(Figure 5.9a). As expected, the test accuracy increases with increasing num-
ber of training examples. With 200 randomly chosen training examples we
achieved a test accuracy of 88% whereas training with 200 sigma points
achieved a 89.5% test accuracy. Other sampling techniques perform inferior
to SPS well. The same can be said for the F1-score on the test data set
(Figure 5.9a). Apart from lacking in accuracy entropy, margin and uncer-
tainty sampling are very unreliable on this data set. We can conclude that
from the sudden drops in the accuracy and f1-score in figures 5.9a and 5.9b.

For the experiments of active transfer learning (ATL), we compare SPS
with random sampling because among all other sampling strategies (except
SPS) it performed the best (Figure 5.9).
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(a) Random sampling (RS)
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(b) Random sampling with TL (TL)
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(c) SPS (AL)
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(d) SPS with TL (ATL)

Figure 5.10: Comparison of accuracy in Random vs TL vs AL vs ATL on
20 points

Figures 5.10,5.11,5.12 show the train and test curves for random sam-
pling with fresh NN (RS), random sampling with TL, sigma point sampling
with fresh NN (AL), sigma point sampling with transfer learning (ATL) for
up to 30 epochs. In order to make the number of passes over data for NN
equal for all trials in every experiment we chose 30 epochs without early
stopping. In my experiment, we found that running more than 30 epochs
on 20 training samples without early stopping results in overfitting in most
cases.
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(a) Random sampling (RS)
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(b) Random sampling with TL (TL)
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(c) SPS (AL)
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Figure 5.11: Comparison of accuracy in Random vs TL vs AL vs ATL on
100 points

Figure 5.10 shows the train and test curves of the classifier NN with
20 training examples and 200 test examples that we set aside at the very
beginning of the transfer learning study from the target data set. In figure
5.10 ATL outperforms RS, TL, AL in train and test accuracy. The confi-
dence intervals (standard deviation fringes) of the train and test curves are
the narrowest in ATL which shows that adding transferred knowledge from
source data set not only increases the test accuracy of the model but also
increases the confidence of performance of the model.
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(a) Random sampling (RS)
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(b) Random sampling with TL (TL)
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(c) SPS (AL)
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Figure 5.12: Comparison of accuracy in Random vs TL vs AL vs ATL on
200 points

Figure 5.11 shows the train and test curves with 100 training examples
and 200 test examples (test set with 200 examples is same for all the experi-
ments across the transfer learning study). ATL outperforms RS, TL and AL
in train and test accuracy on every epoch proving that adding transferred
knowledge improves the model training. The confidence intervals (CI) in fig-
ure 5.11 are narrower when compared to the CI in figure 5.10 which shows
that adding more training samples improves the confidence of the model.

Finally, figure 5.12 shows train and test curves of the classifier with 200
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points. Even though we do not get a significant improvement in the final
train and test accuracy, ATL slightly outperforms RS, TL and AL. ATL
also has the narrowest CI of all the experiments, solidifying the claim that
adding more sigma points for training with transferred weights from source
data set improves test accuracy and model confidence.

5.3 Regression Learning with Sigma Point
Sampling on Composite Manufacturing data
set

In this section, we discuss my findings on the linear regression study on
composite manufacturing data set. For linear regression study, we used the
AS4/8552 data set with 1000 examples. The data set has ten independent
(observed) variables listed in table 4.1 and two dependent variables namely
thermal lag and exotherm from the autoclave. We set aside 200 examples
for testing and evaluating the performance of the linear regression model.
We kept 800 examples for training and active learning. To set the upper
limit performance of the linear model we used all 800 examples for training
and measured the R2 score, MAE and MSE on the test data set. MAE and
MSE are good performance metrics for a linear regression model and they
give a good idea about how far the residuals are from the linear regression
line. Whereas R2 score measures the amount of variance explained by the
linear regression model and hence it measures the quality of fit of the linear
regression model.

Table 5.2: Labels used for classification problems with their corresponding
data set sizes used for training and testing.

Performance metric Value

R2score 0.85
MAE 3.44
MSE 26.56

For linear regression, we use sklearn module in Python, with 5-fold
cross validation. The submodule LinearRegression from sklearn supports
multiple outputs for a linear regression model which is essential for our data
set. To measure the performance metrics (R2, MAE, MSE), we used the
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variance weighted argument for multiple outputs. Table 5.2 shows the upper
limit performance metrics.
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(b) Mean Squared Error MSE
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Figure 5.13: Performance metrics MAE, MSE and R2 Score on test data set
for Regression with SPS

5.3.1 Experimental results

Figures 5.13 show the comparison of random sampling with sigma point
sampling on the performance metrics MAE, MSE and R2 score. Sigma
point sampling performs slightly better than random sampling in all the
metrics. It also has a better confidence interval especially when the training
data set is very small. By using 200 examples for training, we achieved
almost similar performance as the upper limit (Table 5.2).
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Chapter 6

Conclusion and Future Work

In this thesis, we discussed representative subset construction and its use in
active learning. We explored the theory and application of a new represen-
tative sampling approach. To our knowledge, it is the only representative
sampling technique that approximates the distribution of the complete data
set with a much smaller subset of points. Our novel representative subset
construction approach uses sigma points (used in UKF) along with GMM
to estimate the density and distribution of the data set. We use the rep-
resentative subset constructed with sigma points to train the active learner
compared to all other existing approaches that use real data points to do
so.

In the first experiment, we saw how we can use the latent space of a
data set to apply sigma point sampling. The latent space of the data set has
a smaller dimension which significantly reduces the cost of implementing
the soft clusters (GMM) on it compared to the observed variable space.
Our experiments showed that the active learner trained with sigma points
from the latent space outperforms all the representative sampling techniques
used for active learning. We also showed that our approach almost always
performs better than any other query strategy used for pool-based active
learning.

On the second set of experiments, we showed an application of the sigma
point sampling approach on the composite material manufacturing process
in Industry 4.0. In this experiment, we proposed a new approach to active
transfer learning ATL [43]. We showed that SPS helps in integrating ac-
tive learning (AL) with TL, resulting in Sigma Point Sampling based Active
Transfer Learning (SPSATL). We show that SPS helps in training on a new
data set with transferred weights much more efficiently without compromis-
ing the accuracy. We also show that the proposed sampling strategy can be
integrated with both classification and regression learning. To improve upon
the existing ATL approach for optimizing the manufacturing process, we ap-
plied our SPS with TL (ATL) technique on the feature space of the data set.
We found that SPS outperformed all other query strategies on this data set.
We also performed a series of experiments to check the effect of our sampling
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approach on the neural networks used for transfer learning. We found that
SPS with TL (ATL) results in faster convergence of the neural networks.
The final mean accuracy in the train and test phase is slightly higher with
smaller variance in SPS with TL (ATL) when compared to simple random
sampling (RS), random sampling with TL, and simple SPS without trans-
ferring. We replicated this experiment in three different settings by varying
the size of the training set. The three experimental settings used 20, 100
and 200 points respectively for training the neural network. We found that
increasing the training data reduces the variance of accuracy in both train-
ing and testing. We also found that increasing the training set brings the
train and test accuracy over each epoch closer to each other, which indicates
an absence of over-fitting of the model.

Labeling cost associated with data sets can be a hindrance while applying
traditional machine learning methodologies in cases where labeling cost is
high. Traditional PAC ML techniques are data hungry and active learning
solves that problem by smartly querying the useful data. In this thesis, we
saw an application of active learning where labeling the data might be costly
because it needs to through a proprietary software. Our batch-mode active
learning pipeline includes a novel query strategy (sigma point representative
subset) which captures the distribution of the complete data set with very
few data points. Our active learning pipeline works with dimensionality
reduction tools such as VAE and principal component analysis (PCA).

One limitation of this research is that our pipeline requires us to apply
GMM on the latent space first and then use sigma point sampling for repre-
sentative subset construction. We will create an end-to-end active learning
on latent space pipeline with sigma points in the future. Our pipeline as-
sumes that the latent space follows the Euclidean geometry which is not
always correct. Even though ideally we should ask the labels of the sigma
points to an oracle we use k-nearest neighbor for querying the label of the
nearest data point because it is readily available to us. While querying the
labels of the sigma points, the nearest neighbor might change depending on
the geometry of the latent space. In future, we will also take into considera-
tion the Reimann geometry of the latent space [2] while querying the labels
of the sigma points.
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