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Abstract

Kohn-Sham density functional theory (KS-DFT) has been the most popular computational quan-

tum mechanical modeling method since the last century. At the center of KS-DFT, designing

better exchange-correlation (XC) functionals gains the most attention. In this work, we explored

two different exchange-correlation functional approximations: the Fermi-Amaldi (FA) mixed func-

tional and the simplified nonlocal XC density approximation (SNXCDA). The FA functional was

first propose by Fermi to eliminate the non-physical self-interaction among electrons. We pro-

posed linear combinations of Fermi-Amaldi functional with SVWN5 functional and BLYP func-

tional accordingly. The unknown coefficients in the combinations were determined through the

linear regression technique. The final result shows that Fermi-Amaldi energy has little impact on

exchange-correlation energy, and should not be considered as a good correction for improving the

performance of other exchange-correlation functionals. The design of SNXCDA was inspired by

the success of simplified nonlocal density approximation in kinetic energy functional. The un-

known kernel of SNXCDA was determined by enforcing the correct linear response at the limit of

uniform electron gas (UEG). However, the simulation results show that SNXCDA violates the sum

rule severely. Thus SNXCDA should not be considered as a good approximation.
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Lay Summary

Quantum chemistry calculation is a powerful tool to study materials. By simulating on computers,

researchers can study any materials they want, even for the non-existing ones. Kohn-Sham density

functional theory is the most popular quantum chemistry modelling scheme today. However, one

remaining unresolved issue that still exists in the Kohn-Sham framework is the so-called exchange-

correlation functional. If we know the exact form of exchange-correlation functional, we can calcu-

late the properties of material exactly. In this thesis, we explored two different exchange-correlation

functionals, which helps us to have a better understanding on designing a new approximation.
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Chapter 1

Theory

The theory chapter of this thesis mostly follows references [1–4]. The related and important con-

cepts will be gone through in this chapter. For convenience, we will adopt Hartree atomic units [5]

throughout this thesis. The values of some important quantities are list in Table 1.1.

1.1 The Schrödinger Equation
The Schrödinger equation for many-body systems, as a starting point for contemporary quantum

chemistry, reads

i
∂

∂ t
Ψ(x, t) =

[
−∑

i

1
2mi

∇
2
i +V (x, t)

]
Ψ(x, t) , (1.1)

where Ψ(x, t) is the time-dependent many-body wave functions, x is a vector containing all the co-

ordinates of spacial {ri} and spin {si} degrees of freedom of the particles, x= (r1s1,r2s2, ...,rNsN),

mi are the particle masses, and V is the potential. By assuming potential is independent of time, we

Table 1.1: Common physical quantities in Hartree atomic units

Quantity Hartree Atomic Units Value in SI Units

Mass Electron Mass (me = 1) 9.1094×10−31 Kg
Charge Elementary Charge (e = 1) 1.6022×10−19 C
Angular Momentum Reduced Plank Constant (ℏ= 1) 1.0546×10−34 Js
Length Bohr Radius (a0 = 1) 5.2918×10−11 m
Energy Hartree (Eh) 4.3597×10−18 J
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can simplify the above equation to the time-independent Schrödinger equation, given by[
−∑

i

1
2mi

∇
2
i +V (x)

]
Ψ(x) = EΨ(x) , (1.2)

where E is the total energy of the system. Chemists are usually concerned with atomic and molecu-

lar systems, for which we can further decompose the Hamiltonian into specific portions and rewrite

Eq. (1.2) into[
−∑

i

1
2

∇
2
i −∑

A

1
2MA

∇
2
A −∑

i
∑
A

ZA

riA
+∑

i< j

1
ri j

+ ∑
A<B

ZAZB

rAB

]
Ψ(r,R) = EΨ(r,R) , (1.3)

where MA is the mass of each nuclei, ZA is the atomic number of nucleus A, and r is the distance

between particles. The vector r and R represent the coordinators of electrons and nuclei, respec-

tively. The five terms in the square bracket of the left side of Eq. (1.3) are electronic kinetic

energy operator, nuclear kinetic energy operator, electron-nuclear Coulomb attraction operator,

electron-electron Coulomb repulsion operator, and nucleus-nucleus Coulomb repulsion operator,

respectively.

Taking advantage of the fact that nuclei are much heavier than electrons and thus move much

slower than electrons, the Born-Oppenheimer approximation [6] considers the electrons in a molecule

to be moving in the field of fixed nuclei and allows us to establish the Schrödinger equation for

electrons only, [
−1

2 ∑
i

∇
2
i −∑

i
∑
A

ZA

riA
+∑

i< j

1
ri j

]
Φ(r;R) = EeΦ(r;R) , (1.4)

where the semicolon is used to denote that the solution of Eq. (1.4), Φ, also called the electronic

wave function, depends parametrically on the nuclear coordinates. The total electronic energy Ee

has three components,

Ee = T +Eee +Een

=−1
2 ∑

i

∫
drΦ

∗
∇

2
i Φ+∑

i< j

∫
drΦ

∗ 1
ri j

Φ−∑
i

∑
A

∫
drΦ

∗ ZA

riA
Φ ,

(1.5)

where T is the kinetic energy, Eee is the electron-electron interaction energy, and Een is the electron-

nuclear interaction energy.
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1.2 The Hartree-Fock Approximation
Before we step into the Hartree-Fock (HF) method [1, 7] , it is necessary to discuss more about

the wave function. In quantum chemistry, it is convenient to define an orbital as a wave function

for a single electron. Following this definition, a spatial orbital ψi(r) is a function of position r
that describes the motion of an electron. However, to completely describe an electron, we need to

specify its spin, which is not included in the Schrödinger equation. The spin function of electron

can either be α(s) or β (s), which represent spin up and spin down, respectively. Spin functions are

orthonormal, ∫
ds|α(s)|2 =

∫
ds|β (s)|2 = 1 , (1.6a)∫

dsα(s)β (s) = 0 . (1.6b)

Together with spin functions, we define the spin orbital to be

χi(x) = ψi(r)γ(s) , γ = α,β . (1.7)

The HF method approximates the N-electron wave function using a single Slater determinant

formed by a set of spin orbitals {χi},

Φ(x1,x2, ...,xN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
. . .

...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣
. (1.8)

The property of determinant guarantees that Eq. (1.8) naturally fulfills the antisymmetric property

of the N-electron wave function or the Pauli exclusion principle [8],

Φ(x1, ...,xi, ...,x j, ...xN) =−Φ(x1, ...,x j, ...,xi, ...xN) . (1.9)

By assuming that the total wave function is a single Slater determinant, the HF equation can be

derived and its general spin orbital form reads[
ĥ(x1)+∑

b
Ĵb(x1)− K̂b(x1)

]
χa(x1) = εaχa(x1) , (1.10)

3



where εa is the orbital energy of spin orbital χa(x1), ĥ(x1) is the sum of kinetic and electron-nuclear

attraction potential energy,

ĥ(x1) =−1
2

∇
2
1 −∑

A

ZA

r1A
, (1.11)

Ĵb(x1) is the coulomb operator,

Ĵb(x1) =
∫

dx2
|χb(x2)|2

r12
, (1.12)

and K̂b(x1) is the exchange operator, defined by its action on a spin orbital χa(x1),

K̂b(x1)χa(x1) =

[∫
dx2

χ∗
b (x2)χa(x2)

r12

]
χb(x1) . (1.13)

Unlike the Coulomb operator, the exchange operator is a nonlocal operator. The effect of applying

exchange operator on any spin orbital χa(x1) depends on the value of χa(x1) through all space.

Grouping all three operators, we define the Fock operator F̂(x1),

F̂(x1) = ĥ(x1)+
N

∑
b

[
Ĵb(x1)− K̂b(x1)

]
. (1.14)

The total energy expression in HF method takes the form,

E = ∑
i

hi +
1
2 ∑

i
∑

j
(Ji j −Ki j) , (1.15)

where hi, Ji j, and Ki j corresponding to their operators are the one electron integral, Coulomb inte-

gral, and exchange integral,

hi =
∫

dx1χi(x1)

(
−1

2
∇

2
1 −∑

A

ZA

r1A

)
χi(x1) , (1.16a)

Ji j =
∫

dx1dx2χ
∗
i (x1)χ

∗
j (x2)

1
r12

χi(x1)χ j(x2) , (1.16b)

Ki j =
∫

dx1dx2χ
∗
i (x1)χ

∗
j (x2)

1
r12

χi(x2)χ j(x1) . (1.16c)
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1.2.1 Restricted Hartree-Fock Method

To describe the closed-shell systems and open-shell systems, we use different HF frameworks:

the restricted HF and the unrestricted HF. In closed-shell systems, all electrons are paired, thus

the restricted spin orbitals are constrained to possess the same spacial function for spin-up and

spin-down functions,

χi(x) =

ψi(r)α(s) ,

ψi(r)β (s) .
(1.17)

Taking advantage of Eqs. (1.6) and (1.17), we can further simplify the general HF equation Eq.

(1.10) by integrating over the spin functions. The restricted Fock operator has the form,

F̂(r1) = ĥ(r1)+
N/2

∑
b

[
2Ĵb(r1)− K̂b(r1)

]
, (1.18)

where the Coulomb and exchange operators are defined by

Ĵb(r1) =
∫

dr2
ψ∗

b (r2)ψb(r2)

r12
, (1.19)

K̂b(r1)ψi(r1) =

[∫
dr2

ψ∗
b (r2)ψi(r2)

r12

]
ψb(r1) . (1.20)

We can also rewrite the ground-state energy, Eq. (1.15), into

E = 2
N/2

∑
i

∫
dr1ψi(r1)

(
−1

2
∇

2
1 −∑

A

ZA

r1A

)
ψi(r1)

+2
N/2

∑
i, j

∫
dr1dr2ψ

∗
i (r1)ψ

∗
j (r2)

1
r12

ψi(r1)ψ j(r2)

−
N/2

∑
i, j

∫
dr1dr2ψ

∗
i (r1)ψ

∗
j (r2)

1
r12

ψi(r2)ψ j(r1) .

(1.21)

1.2.2 Basis Set and Roothaan Equations

In last section, I discussed the HF equation for closed-shell systems,

F̂(r1)ψ(r1) = εiψi(ri) . (1.22)

5



Now we discuss how to solve it in practical calculations. By introducing a set of known basis

functions, we can convert Eq. (1.22) into a set of algebraic equations and thus solve it numerically

by standard matrix techniques. In principle, a molecular spacial orbital can be expanded exactly by

a complete set of basis set,

ψi(r1) = ∑
µ

Cµiφµ(r1) , µ = 1,2, ...,∞ . (1.23)

For practical purpose, one could only afford a finite set of K basis functions during calculations. It is

worth mentioning that, in general, the larger the chosen basis set, the more accurate the calculation

results and the longer the time required for the calculation. Substituting the finite expansion,

ψi(r1) =
K

∑
µ=1

Cµiφµ(r1) , (1.24)

into Eq. (1.22) yields the famous Roothaan equations [9],

FC = SCεεε , (1.25)

where the element of the Fock matrix F is

Fµν =
∫

dr1φ
∗
µ(r1)F̂(r1)φν(r1) , (1.26)

the element of the overlap matrix S is

Sµν =
∫

dr1φ
∗
µ(r1)φν(r1) , (1.27)

C is the coefficient matrix containing all the expansion coefficients {Cµi}, and εεε is a diagonal

matrix of the orbital energies {εi}.

Another important quantity is called the charge density. We define the charge density ρ(r) as

ρ(r) = N
∫

ds1dx2...dxNΦ(r1s1,x2, ...,xN)Φ
∗(r1s1,x2, ...,xN) . (1.28)

Substituting the single Slater determinant, Eq. (1.8), into Eq. (1.28), gives a much simpler form,

ρ(r) =
N/2

∑
a

2|ψa(r)|2 . (1.29)

6



The expression shows that total charge density is a sum of charge densities for each of the electrons

under the HF approximation. We can further rewrite Eq. (1.29) by inserting the molecular orbital

expansion, Eq. (1.24),

ρ(r) = ∑
µν

Pµνφµ(r)φ ∗
ν (r) , (1.30)

where Pµν is the element of the density matrix,

Pµν =
N/2

∑
a

2CµaC∗
νa . (1.31)

1.2.3 Fock Matrix and Self-consistent Field

Building the final expression of Fock matrix is the last step before we solve the HF equation using

self-consistent-field (SCF) method. The following discussion is constrained to restricted HF.

By combining Eqs. (1.16), (1.18), (1.24), (1.26), and (1.31), we are able to show the Fock

matrix element can be written as,

Fµν = Hcore
µν +∑

λσ

Pλσ

[
(µν |σλ )− 1

2
(µλ |σν)

]
, (1.32)

where Hcore
µν is element of the core-Hamiltonian matrix,

Hcore
µν =

∫
dr1φ

∗
µ(r1)

[
−1

2
∇

2
1 −∑

A

ZA

r1A

]
φ
∗
ν (r1) , (1.33)

which does not depend on the expansion coefficients, and (µν |σλ ) is the two-electron integrals,

(µν |σλ ) =
∫

dr1dr2
φ ∗

µ(r1)φν(r1)φ
∗
λ
(r2)φσ (r2)

r12
. (1.34)

Notice that the summation in Eq. (1.32) goes over all K basis functions, which means we have

approximately K4 two-electron integrals to evaluate for the entire Fock matrix. Thus, the time

complexity of solving HF equation is O(K4).

Eqs. (1.32) and (1.31) show that the Fock matrix F depends on the coefficient matrix explicitly,

F = F(C). As a result, the Roothaan equations are

F(C)C = SCεεε , (1.35)

7



and can only be solved iteratively. The standard procedure is called self-consistent-field method,

which goes as follows:

Step 1. For a given molecule, choose a basis set and guess a trial wave function out of these

basis function. In other word, make a initial guess for the coefficient matrix C.

Step 2. With the coefficient matrix, build the density matrix P and Fock matrix F.

Step 3. Solve the HF equation by diagonalizing F, which will give us a new coefficient Matrix

Cnew and thus the new density matrix Pnew.

Step 4. Determine whether the procedure has converged by comparing the new density matrix

Pnew with the previous one P. If the difference is within certain criterion, we end the procedure.

Otherwise, return to step 2 with P = Pnew.

1.2.4 Unrestricted Hartree-Fock Method

In the previous section, we discussed restricted HF method for closed-shell systems. However,

not all molecules are closed-shell systems, this is why we need the theory of unrestricted HF [10]

in dealing with open-shell problems. Analogous to Eq. (1.17), unrestricted spin orbitals take the

form:

χi(x) =

ψα
i (r)α(s) ,

ψ
β

i (r)β (s) .
(1.36)

In general, the spacial wave functions have different expansions based on the same set of basis

functions,

ψ
α
j =

K

∑
µ=1

Cα
µ jφµ , (1.37a)

ψ
β

j =
K

∑
µ=1

Cβ

µ jφµ . (1.37b)

With the help of above expansions, the Roothaan equations for restricted HF scheme can be gener-

alized to the unrestricted version, also called the Pople-Nesbet equations [10],

FαCα = SαCα
εεε

α , (1.38a)

Fβ Cβ = Sβ Cβ
εεε

β . (1.38b)

We should note that even though the spin-up Fock matrix and spin-down Fock matrix are different,

they depend on both Cα and Cβ . Thus, Eqs. (1.38a) and (1.38b) have to be solved simultaneously.
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Before I show the formula of unrestricted Fock matrices, it is necessary to define the corre-

sponding density matrices. Similar to Eq. (1.29), we could define both the spin-up charge density

and spin-down charge density, respectively,

ρ
α(r) =

Nα

∑
a
|ψα

a (r)|2 , (1.39a)

ρ
β (r) =

Nβ

∑
a
|ψβ

a (r)|2 , (1.39b)

where Nα and Nβ are the number of spin-up electrons and spin-down electrons, respectively. Ob-

viously, the total charge density is the sum of these charge densities,

ρ
T (r) = ρ

α(r)+ρ
β (r) . (1.40)

By substituting the basis-set expansions Eqs. (1.37a) and (1.37b) into the expression for corre-

sponding charge densities, we define the elements of density matrices to be

Pα
µν =

Nα

∑
a

Cα
µa(C

α
νa)

∗ , (1.41a)

Pβ

µν =
Nβ

∑
a

Cβ

µa(C
β

νa)
∗ , (1.41b)

PT
µν = Pα

µν +Pβ

µν . (1.41c)

Taking advantage of the density matrices, we can write the explicit expression of unrestricted Fock

matrix elements in their most compact forms,

Fα
µν = Hcore

µν +∑
λσ

[
PT

λσ
(µν |σλ )−Pα

λσ
(µλ |σν)

]
, (1.42a)

Fβ

µν = Hcore
µν +∑

λσ

[
PT

λσ
(µν |σλ )−Pβ

λσ
(µλ |σν)

]
, (1.42b)

where the first term in the summation stands for the Coulomb potential, and the second term stands

for the HF exchange potential.
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1.3 Density Functional Theory
In above sections, I discussed the HF scheme, which successfully converts a 3N-variable Schrödinger

equation into a 3-variable HF equation by replacing the total wave function with a single Slater de-

terminant. However, the approximation introduces deviations from the exact theory, for instance,

without including all exchange and any correlation effects. Density Functional Theory (DFT) seeks

to remedy the drawbacks within HF scheme while keeping the computational cost affordable. In

this section, I will briefly go through the basics of DFT and discuss more details on the exchange-

correlation functional.

1.3.1 The Hohenberg-Kohn Theorems

As the name of DFT suggests, electron density is treated as the essential variable for an N-electron

system rather than the wave function. The first Hohenberg-Kohn (HK) Theorem [11] proves that

the ground-state electron density determines the external (electron-nuclear interaction) potential

up to a constant and thus some important properties of the system including the ground-state wave

function Φ and the ground-state energy E. In other words, the ground-state wave function can be

written as a functional of ground-state electron density ρ0, so can the ground-state energy,

E[Φ] = E[Φ[ρ0]] = E[ρ0] . (1.43)

Similar to Eq. (1.5), the total energy can still be partitioned into pieces according to their physical

meanings,

E[ρ0] = T [ρ0]+Eee[ρ0]+Ene[ρ0] . (1.44)

Among these three pieces, Ene[ρ0] is the only term with explicit form as a density functional,

Ene[ρ0] =
∫

drρ0(r)∑
i

∑
A

ZA

riA
. (1.45)

Although the first HK theorem guarantees the existence of the functional, it does not give out the

explicit functional forms of T and Eee. The sum of these two unknown pieces is named as the HK

functional FHK[ρ0],

FHK[ρ0] = Eee[ρ0]+T [ρ0] . (1.46)

The second HK theorem [11] states that the density that minimizes the energy functional, Eq.

(1.43), is the ground-state electron density. This theorem essentially offers the variational principle
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for calculating the ground-state electron density and energy.

1.3.2 The Kohn-Sham Scheme

There two major implementations in DFT: one sticks to the original idea focusing on developing

pure density functional form for the total energy, which is called orbital-free DFT (OF-DFT) [4];

another is the famous Kohn-Sham scheme [12] that brings the orbitals back into the calculation. In

this section, we focus on the KS scheme.

Recall that Slater determinant enters the HF theory as an approximation due to the failure of

capturing all interactions among electrons. In a stroke of genius, Kohn and Sham introduced an

noninteracting reference system whose total wave function can be described by a single Slater

determinant built from a set of orbitals {ψi}. In this system, electrons move under an effective po-

tential Veff, which is chosen to yield the same ground-state density of the real system. Consequently,

a major portion of the kinetic energy can be calculated similarly as in HF,

TS =−1
2

N

∑
i

∫
drψ

∗
i (r)∇

2
ψi(r) , (1.47)

where the noninteracting kinetic energy TS is not equal to the exact kinetic energy T of the fully

interacting real system. Kohn and Sham suggested to group the difference between T and TS

into the exchange-correlation (XC) energy. Another portion in the XC energy comes from the

nonclassical electron-electron interaction Vncl . Accordingly, the Fock energy is splitted into three

pieces,

F [ρ] = TS[ρ]+ J[ρ]+EXC[ρ] , (1.48)

where J is the classical Coulomb repulsion,

J =
1
2

∫
dr1dr2

ρ(r1)ρ(r2)

r12
. (1.49)

Comparing with Eq. (1.46), EXC is defined as,

EXC[ρ] = (T [ρ]−TS[ρ])+(Eee[ρ]− J[ρ]) . (1.50)

Similarly to the HF equation, the KS equation is also of a one-particle form,[
−1

2
∇

2 +
∫

dr2
ρ(r2)

r12
+VXC(r1)−∑

A

ZA

r1A

]
ψi(r1) = εiψi(r1) , (1.51)
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where the XC potential VXC is defined as the functional derivative of XC energy EXC,

VXC =
δEXC

δρ
. (1.52)

It is important to appreciate that once the exact form of the XC potential or energy is given,

Eq. (1.51) can lead to the exact ground-state density and consequently any other ground-state

properties, according to the HK theorems. Thus, tremendous effort has been invested to find better

and better approximations for both VXC and EXC in the last few decades.

1.3.3 Kinetic Energy Functional

The earliest attempts on kinetic energy functional were given by Thomas [13] and von Weizsäcker

[14]. The previous one considered the noninteracting uniform electron gas for simplicity and pro-

posed the Thomas-Fermi (TF) kinetic energy functional:

TTF[ρ] =CTF

∫
drρ

5
3 (r) , (1.53)

where CTF is the TF constant, 3
10(3π2)

2
3 . While the latter one considered the asymptotic behavior

of the density and derived the von Weizsäcker (vW) functional:

TvW[ρ] =
1
8

∫
dr

|∇ρ(r)|2

ρ(r)
. (1.54)

These two models are exact for UEG and the asymptotic region, respectively. People usually

combine them together through a coefficient λ in the TFλvW model:

TTFλvW[ρ] = TTF[ρ]+λTvW[ρ] . (1.55)

The vW model essentially introduces the density gradient dependency into the kinetic energy func-

tional. In principle, any higher order gradients can be taken into consideration resulting in the

conventional gradient expansion (CGE),

TCGE[ρ] =
∫

dr{τ0 + τ2 + τ4 + ...} , (1.56)
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where

τ0 =CTFρ
5
3 , (1.57a)

τ2 =
1
72

|∇ρ|2

ρ
, (1.57b)

τ4 =
1

1800CTF
ρ

1
3

[(
∇2ρ

ρ

)2

− 9
8

∇2ρ

ρ

∣∣∣∣∇ρ

ρ

∣∣∣∣2 + 1
3

∣∣∣∣∇ρ

ρ

∣∣∣∣4
]
. (1.57c)

However, CGE suffers from the divergence problem: for sixth and higher orders, the integral in

Eq. (1.56) is unbounded for any finite-sized systems with exponentially decaying densities [4].

Moreover, CGE has the incorrect algebraically decaying behavior rather the correct exponentially

decaying one [15–17], and the linear response of CGE is also wrong even for UEG [4]. Inspired

by the success of Generalized Gradient Approximation (GGA) in exchange-correlation functional,

people developed the GGA kinetic energy functional, which still exhibits the wrong linear response

behavior [4].

Thus, another type of kinetic functional is designed based on the correct linear response func-

tion, which is defined as

χ(r− r′) =
δρ(r)
δv(r′)

, (1.58)

where v can represent any potentials. In momentum space, Eq. (1.58) has a much simpler form,

δ ρ̃(q) = χ̃(q)δ ṽ(q) , (1.59)

where χ̃(q) is the linear response function in momentum space. Evaluating the linear response

function in real space based on Eq. (1.58) is not trivial; however, one can easily derive its form in

momentum space through Fourier transform,

F̂
(

δv(r)
δρ(r′)

)
=

1
χ̃(q)

. (1.60)

For example, by choosing v to be the classical Coulomb potential vJ , one can show that its linear

response function to be

χ̃J(q) =
q2

4π
. (1.61)

And by choosing v to be the effective KS potential vKS
eff , one can derive the following relationship
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between the total linear response and non-interaction kinetic energy,

1
χ̃tot(q)

=−F̂
(

δ 2TS[ρ]

δρ(r)δρ(r′)

)
. (1.62)

For UEG, the analytic expression of χ̃tot(q) is known as the Lindhard function,

χ̃Lind(q) =− kF

π2

(
1
2
+

1−η2

4η
ln
∣∣∣∣1+η

1−η

∣∣∣∣) , (1.63)

where kF is the Fermi wave-vector (FWV), kF = (3π2ρ)1/3, and η is a dimensionless momentum,

η = q/(2kF). The nonlocal kinetic energy functional is usually written as a linear combination of

vW functional and a nonlocal functional, which contains a kernel function w,

Tnl = TvW +CTF

∫
drdr′ρ5/3−θ (r)w(ζ (r,r′),

∣∣r− r′
∣∣)ρθ (r′) , (1.64)

where ζ (r,r′) is a scaling factor, whose natural choice is a two-body Fermi wave-vector (TBFWV)

[18],

ζ (r,r′) =
(

kϕ

F (r)+ kϕ

F (r
′)

2

) 1
ϕ

, (1.65)

and the expression of w is determined by imposing the correct linear response function Eq. (1.63).

1.3.4 Properties of Exchange-Correlation Functional

Before we step into the properties of XC functional, it is necessary to introduce some key concepts

in DFT.

First, we extend the definition of electron density Eq. (1.28) to a quantity called two-particle

density,

ρ(r1,r2) = N(N −1)
∫

ds1ds2dx3...dxNΦ(r1s1r2s2, ...,xN)Φ
∗(r1s1r2s2, ...,xN) , (1.66)

whose relationship with electron density ρ(r1) is straightforward,

ρ(r1) =
1

N −1

∫
dr2ρ(r1,r2) . (1.67)
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With the help of two-particle density, we could define the XC hole function by the equation,

hXC(r1,r2) =
ρ(r1,r2)

ρ(r1)
−ρ(r2) . (1.68)

Through Eq. (1.67), it can be easily shown that the following sum rule is satisfied,∫
dr2hXC(r1,r2) =−1 . (1.69)

In the language of adiabatic connection [19, 20], the XC functional can be formulated explicitly

through the XC hole,

EXC =
1
2

∫
dr1dr2

ρ(r1)hXC(r1,r2)

r12
. (1.70)

We can decompose the XC energy into exchange and correlation portions, which can also be written

in the form of their corresponding holes,

EXC = EX +EC , (1.71a)

EX =
1
2

∫
dr1dr2

ρ(r1)hX(r1,r2)

r12
, (1.71b)

EC =
1
2

∫
dr1dr2

ρ(r1)hC(r1,r2)

r12
. (1.71c)

In HF theory, the form of exchange energy has already been derived, thus the HF exchange hole

follows,

hX =− 1
ρ(r1)

∑
i j

ψ
∗
i (r1)ψ

∗
j (r2)ψi(r2)ψ j(r1) . (1.72)

It is easy to show that the exchange hole also integrates to −1,∫
dr2hX(r1,r2) =−1 . (1.73)

As a result, the correlation hole must sum to 0,∫
dr2hC(r1,r2) = 0 . (1.74)

To illustrate another important property of XC energy, we consider a one-electron system.

Obviously, electron cannot interact with itself, thus any electron-electron interaction should be

zero in one-electron system. In other words, we must force the sum of J and EXC to be zero for
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one-electron systems,

J+EXC = 0 . (1.75)

This leads to the self-interaction correction (SIC) property, which states that for a one-electron

system, the XC energy must equal to the minus of the classical Coulomb energy. Designing a

functional that obeys the SIC property is not trivial. Perdew et al. [21] proposed a general SIC pro-

cedure which modifies any given EXC to be orbital dependent. As a cost, the SIC-KS equations no

longer have a universal Hamiltonian and more effort must be taken to solve the resulting equation.

Fermi et al. [22] suggested a functional form that could remove the self-interaction naturally,

EFA
XC =− 1

N
J =− 1

2N

∫
dr1dr2

ρ(r1)ρ(r2)

r12
, (1.76)

which is known as the Fermi-Amaldi (FA) model. The FA model is one of the main topics of this

study, whose properties will be further explored in the next chapter.

The last property that I want to briefly mention is the asymptotic behavior of VXC. To start with,

we consider the asymptotic behavior of the Coulomb potential VJ , the functional derivative of J,

VJ(r1) =
δJ
δρ

=
∫

dr2
ρ(r2)

r12
→ N

r1
, r → ∞ . (1.77)

In order to cancel the unphysical self-interaction mentioned above, VXC must possess the same

asymptotic behavior, decaying in −1/r manner. Qian et al. [23] further pointed out that the −1/r

tail of the XC potential is from the exchange potential, while the correlation tail decays much faster

as 1/r4.

There are many other properties and relationships in DFT which are not discussed here. For

more references, please read Refs. [2, 24].

1.3.5 Exchange-Correlation Energy Functional

As we mentioned previously, developing better and better XC density functional is at the center

of Kohn-Sham density functional theory. In the past few decades, hundreds of XC functionals

have emerged, which can be divided into five categories from primitive to more sophisticated:

local density approximation (LDA), general gradient approximation (GGA), meta-general gradient

approximation (meta-GGA), hybrid functionals, and fully nonlocal functionals.

As the simplest functional form, LDA assumes that the XC energy functional only depends on
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the value of the electron density locally. Its general form reads

ELDA
XC [ρ(r)] =

∫
drρ(r)εXC[ρ(r)] , (1.78)

where εXC is the exchange-correlation energy density made of two parts,

εXC = εX + εC . (1.79)

The exchange part was derived by Dirac [25] from the UEG,

εX =−CXρ(r)1/3 , CX =
3
4

(
3
π

)1/3

≈ 0.7386 . (1.80)

The most popular choice for εC[ρ] is the VWN functional [2, 26, 27],

εC(rs) = A
{

ln
x2

X(x)
+

2b
Q

tan−1 Q
2x+b

− bx0

X(x0)

[
ln
(x− x0)

2

X(x)
+

2(b+2x0)

Q
tan−1 Q

2x+b

]}
,

(1.81)

where X(x) = x2 +bx+c, Q = (4c−b2)1/2, x = r1/2
s , and the values of parameters x0, b, and c can

be found in Ref. [26]. To improve upon LDA, general gradient approximations were developed,

which allows the XC functional to depend not only on the electron density itself but also on the

density gradient ∇ρ ,

EGGA
XC [ρ] =

∫
dr f (ρ,∇ρ) . (1.82)

One of the most famous GGA exchange is the Becke88 (B88) functional [28] and the GGA cor-

relation is the Lee-Yang-Parr (LYP) functional [29], together named as BLYP XC functional. The

explicit form of these GGAs are very complicated and will not be discussed in details here. Al-

though GGA introduces the gradient information into the functional, it is still considered to be local

because it only depends on density and density gradient locally.

meta-GGA further involves the dependency on the kinetic energy density of the system explic-

itly,

Emeta-GGA
XC [ρ] =

∫
dr f (ρ,∇ρ,τ) , (1.83)

where τ is defined by

τ = ∑
i
|∇ψi|2 . (1.84)
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The next level is the hybrid functional, which takes the HF exchange energy into consideration. In

HF theory, the explicit form the exchange energy has been studied thoroughly and it is well-known

that HF exchange energy automatically fulfills the SIC property. Thus, Becke [30] suggested a

hybrid XC functional mixing the HF exchange with the BLYP functional, leading to the famous

B3LYP functional,

EB3LYP
XC = (1−a0)ELDA

X +EVWN
C +a0EHF

X +ax(EB88
X −ELDA

X )+ac(ELYP
C −EVWN

C ) , (1.85)

where a0 = 0.2, ax = 0.72, and ac = 0.81. Although the hybrid functional possesses the same

computational cost as HF theory, it improves the computational accuracy significantly.

The most advanced level is the fully nonlocal XC functional. For example, there are Averaged

Density Approximation (ADA) [31, 32], Weighted Density Approximation (WDA) [33, 34], etc.

Recall that in terms of adiabatic connection, the XC hole hXC is the key to understand the XC

functional, which can be further written as,

hXC(r,r′) = ρ(r′)
[
gXC(r,r′,ρ)−1

]
, (1.86)

where gXC is the coupling-constant integration-averaged pair-correlation function. In the LDA

model, the prefactor ρ(r′) is replaced by ρ(r) and the exact gXC is approximated by the UEG

version,

hLDA
XC = ρ(r)

[
gUEG

XC (r)−1
]
. (1.87)

The ADA model closely follows the LDA form and replaces the ρ(r′) by an averaged density

ρ̄ADA,

hADA
XC = ρ̄

ADA(r)
[
gUEG

XC (ρ̄ADA, |r− r′|)−1
]
. (1.88)

The averaged density is determined through an integral recursion,

ρ̄
ADA =

∫
dr′w(ρ̄ADA, |r− r′|)ρ(r′) , (1.89)

where w is the averaging weight function, determined by enforcing the correct linear response of

the XC potential at the UEG limit. While ADA inherits the general form from LDA, WDA obeys

the form of the exact XC hole,

hWDA
XC = ρ(r′)

[
gUEG

XC (ρ̄WDA, |r− r′|)−1
]
, (1.90)
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where the effective density ρ̄WDA is determined by enforcing the sum rule. Although the nonlocal

functionals push the accuracy of DFT to a much higher level, both ADA and WDA are compu-

tationally much more expensive. Compared with WDA, ADA is superior due to its correct linear

response, but also more time consuming computationally. The main obstacle of implementing

ADA lies on Eq. (1.89) in which the integration needs to be done over the whole space for every

point r. Even the fast Fourier transform (FFT) does not remedy this problem due to the recursive

relationship.
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Chapter 2

Fermi-Amaldi Energy Mixed XC
Functional

2.1 Fermi-Amaldi Approximation
Almost all advanced XC functionals are developed from LDA, while the FA model gains little

attention. At the first glance, the FA model is quite promising, since it fulfills many essential

properties of the exact exchange functional.

First, FA model satisfies the sum rule, which can be seen by comparing Eqs. (1.70) and (1.76),

hFA
XC =−ρ(r2)

N
, (2.1)

and integrating hFA
XC over r2 yielding −1. We should note hFA

XC is a local hole, which only depends

on r2 whereas the exact hole depends on both r1 and r2. With this simplification, the FA model

obeys the sum rule for any systems universally. However, most of the well-known XC functionals

strictly satisfy the sum rule only in the case of UEG.

Second, as we analysed in section 1.3.4, the FA model was invented due to its ability to cancel

the unphysical self-interaction. For a one-electron system, the FA term reduces to the negative

classical Coulomb repulsion energy J, and thus cancels J perfectly.

Third, the FA term has the correct asymptotic behavior because it only differs from J by a

constant factor N, which does not affect its decay behavior.

Last but not least, the FA term has the same scaling property as the exact exchange functional.
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To see this, we define the scaled electron density ρλ to be

ρλ = λ
3
ρ(λr) . (2.2)

It is straightforward to show the scaling relationship of classical Coulomb energy J,

J[ρλ ] =
1
2

∫
dr1dr2

ρλ (r1)ρλ (r2)

r12

=
λ

2

∫
λ

3dr1λ
3dr2

ρ(λr1)ρ(λr2)

λ r12

= λJ[ρ] .

(2.3)

Obviously, the FA energy has the same scaling property as J. As for the exchange energy, the

scaling factor can be derived from Eqs. (1.68) and (1.70),

EX[ρλ ] =
1
2

∫
dr1dr2

ρλ (r1)hXC,λ (r1,r2)

r12

=
λ

2

∫
dλ

3r1dλ
3r2

ρ(λr1)hXC(λr1,λr2)

λ r12

= λEX[ρ] ,

(2.4)

where the scaling property of hXC can be derived from Eq. (1.68),

hXC,λ (r1,r2) = λ
3hXC(λr1,λr2) . (2.5)

However, the correlation energy has a more complicated scaling property [2, 35],

EC[ρλ ]< λEC[ρ] (λ < 1) ,

EC[ρλ ]> λEC[ρ] (λ > 1) .
(2.6)

Thus, the FA term is usually regarded as an approximation for the exchange energy because of the

same scaling property, sum rule, and asymptotic behavior.

Notice that, unlike the HF exchange, the implementation of the FA model will not increase the

time complexity of solving the KS equations, since the FA energy can be evaluated simultaneously

with the classical Coulomb repulsion energy J.

Although the FA model has many advantages, it also possesses some disadvantages. In addition

to the oversimplification of the XC hole, it is not a size-consistent model. For two systems, A and
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B, in the limit of infinite separation, we should expect

Vee[ρA +ρB] =Vee[ρA]+Vee[ρB] . (2.7)

But in the FA approximation,

Vee[ρA +ρB] = (1− 1
NA +NB

)J[ρA +ρB]

>

(
1− 1

NA

)
J[ρA]+

(
1− 1

NB

)
J[ρB]

=Vee[ρA]+Vee[ρB] .

(2.8)

Ayers et al. [36] studied the performance of using the FA term only for the XC functional

and found it not to be a supreme choice for the XC functional. However, many extensions and

corrections to the FA model were developed. For example, Ayers et al. [36] proposed to multiply

the FA energy by a coefficient Q,

EFA,Q
X =

Q
N

J . (2.9)

The value of Q was determined to generate the correct energy with given accurate density for atoms

from Hydrogen to Argon. The result showed that Q increases as the number of electron increases.

The nonuniversal value of Q further prevents it from being a generic choice for highly accurate

calculations. Cedillo et al. [37] explored the performance of mixing the FA functional with the

LDA exchange functional. In their proposal, the FA term was treated as the leading contribution

and the LDA exchange energy was multiplied by an electron-number dependent coefficient,

EXC ≈
(

1− 1
N1/3

)
ELDA

X +EFA
X . (2.10)

The result showed that the performance of Eq. (2.10) was worse than the HF method. The purpose

of this study is to explore the possibility of improving the performance of existing XC functionals

by mixing with a fraction of the FA term. We already knew that the performance of the FA term as

the leading term in an XC functional approximation is not promising. But we are still curious about

the question: Can the FA term enhance any existing XC functional accuracy like the HF exchange

term does? We propose the following formula:

EXC ≈ a0Eother
X +a1Eother

C +a2EFA
X , (2.11)
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where the “other” XC functionals are chosen to be LDA or GGA, and the parameters ai are deter-

mined by fitting technique.

2.2 Unrestricted Fermi-Amaldi Model
The first step for answering the above question is to build the corresponding KS equations. From a

practical point of view, we directly construct the unrestricted Fock matrix, which can reduce to the

restricted version naturally for a closed-shell system. Similar to HF theory, KS equation also has

its unrestricted counterpart,[
−1

2
∇

2 + vext(r1)+
∫

dr2
ρ(r2)

r12
+ vα

XC(r1)

]
ψ

α
i (r1) = ε

α
i ψ

α
i (r1) , (2.12a)[

−1
2

∇
2 + vext(r1)+

∫
dr2

ρ(r2)

r12
+ vβ

XC(r1)

]
ψ

β

i (r1) = ε
β

i ψ
β

i (r1) , (2.12b)

where the exact XC potentials are replaced by a linear combination of “other” XC potential and

our FA potential,

vγ

XC = a0vother,γ
X +a1vother,γ

C +a2vFA,γ
X , γ ∈ {α,β}. (2.13)

Considering the fact that the FA potential, as a part of the approximated exchange potential, should

only interact between electrons with parallel spin, we propose vFA,γ
X to be

vFA,γ
X (r1) =− 1

Nγ

∫
dr2

ργ(r2)

r12
. (2.14)

The corresponding FA exchange energy can be calculated through

EFA
X =

1
2

∫
dr1ρ

α(r1)v
FA,α
X (r1)+

1
2

∫
dr1ρ

β (r1)v
FA,β
X (r1)

=− 1
2Nα

∫
dr1dr2

ρα(r1)ρ
α(r2)

r12
− 1

2Nβ

∫
dr1dr2

ρβ (r1)ρ
β (r2)

r12
.

(2.15)

23



For restricted closed-shell systems, we obviously have Nα = Nβ = N/2 and ρα = ρβ = ρ/2. By

substituting these relationships into Eq. (2.15), the FA energy can be reduced to

EFA
X =− 1

N

∫
dr1dr2

ρ(r1)
2

ρ(r2)
2

r12
− 1

N

∫
dr1dr2

ρ(r1)
2

ρ(r2)
2

r12

=− 1
2N

∫
dr1dr2

ρ(r1)ρ(r2)

r12

=− 1
N

J .

(2.16)

Eq. (2.16) proves the correctness of our spin-polarized FA potential vFA,γ
X . After we have justified

the definition of vFA,γ
X , we can easily give out its matrix form,

V FA,γ
X,µν

=− 1
Nγ ∑

λσ

Pγ

λσ
(µν |σλ ) , (2.17)

which was implemented by modifying the NWChem 7.0.2 [38] source code by myself.

2.3 Fitting Procedure: Linear Regression
Empirical parameter fitting is widely adopted in modern XC functional design. Limited by com-

putational power, the most popular fitting technique is linear regression (LR), which is based on a

non-self-consistent framework. To determine the parameters in our model, we mainly rely on LR.

Usually, there is no easy way to find the best set of parameters for non-linear problems, unless

through a careful search of the parameter space. If the cost of evaluating a single point in parameter

space is huge, we must find an alternative way to identify a pseudo-best choice. This is exactly the

situation in our case. To benchmark the performance of a huge training set on a single point in

parameter space is not cheap, because the DFT SCF calculations need to be done for all atoms

and molecules in the training set. To avoid huge amount of calculations, the LR techniques come

to help. The major advantage of LR is that we only need to evaluate the energy of each system

once, taking constant time to do the fitting procedure. However, two disadvantages follow: the

fitting result is non-self-consistent and only pseudo-best parameters can be found. Luckily, the

final results show LR to be accurate.

Now, I will explain how LR fitting procedure works and why it is not self-consistent. When we

do any type of fitting process, it is necessary to define the loss function that measures the difference

between fitted values and the exact values. In this study, exact values are experimental data and
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fitted values are from DFT calculations. We choose the loss function to be the root mean square

error (RMSE),

L({ai}) =

√√√√ 1
D

D

∑
j

[
xexp

j − xcalc
j ({ai})

]2
, (2.18)

where {ai} represents the set of parameters to be fitted, index j goes over all systems in the training

set, and D represents the number of systems. In principle, the explicit expression of the calculated

value xcalc
j in terms of {ai} is unknown to us. We should note that Eq. (2.11) does not suggest

the total XC energy to be a linear expansion of different pieces; instead a nonlinear dependence

will come into each component of the total energy when we solve the KS equations. Thus, a more

meaningful form of Eq. (2.11) should be

EXC = Eother
XC (a0,a1,a2)+Eother

C (a0,a1,a2)+EFA
X (a0,a1,a2) . (2.19)

Without knowing the explicit form of loss function, we cannot directly use LR. In other words,

we must assume that each energy piece is independent on the empirical parameters in order to

apply LR. This is the reason why LR procedure is not self-consistent and the resulting pseudo-

best parameters do not yield the exactly same loss function value as predicted by self-consistent

calculations. Once we assume xcalc
j depends on fitting parameters linearly, LR comes into play

naturally.

2.4 Computational Methods
All calculations were performed on Cedar Compute Canada cluster. Data analysis and fitting pro-

cedure were carried out using Python 3.7. MP2 calculations were carried out for geometry opti-

mization. The 6-311+G(2d,p) basis set was chosen for all systems. The general workflow can be

described as follows:

Step 1. Choose the “other” XC functional, and do SCF calculations based on the chosen func-

tional for all systems. The baseline loss function value can be evaluated as L0.

Step 2. Substitute the energy into the loss function based on Eqs. (2.18) and (2.11), then carry

out the LR process and get the pseudo-best parameters.

Step 3. Do SCF calculations with the resulting parameters for all systems and calculate the loss

function value L1, which will be compared to baseline value L0.
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Table 2.1: Root Mean Square Error (kcal/mol)

SVWN5 Reopt-SVWN5 SVWN5-FA BLYP Reopt-BLYP BLYP-FA

Atomization Energies 40.9 19.7 17.4 6.1 5.8 5.8
Proton Affinities 6.8 5.7 6.0 2.3 1.5 1.5
Ionization Potentials 6.9 10.3 9.0 7.1 7.0 7.0
Overall 25.9 14.5 12.7 6.5 6.4 6.4

2.5 Results and Discussion
We tested the performance of the FA term mixing with either LDA or GGA. We choose Dirac ex-

change and VWN5 correlation for LDA, Becke88 exchange and LYP correlation for GGA. For con-

venience, we name the mixture models SVWN5-FA and BLYP-FA accordingly. The loss function

is evaluated upon 53 atomization energies, 8 proton affinities, and 77 ionization energies [30, 39–

41]. For comparison, we also evaluated the loss function for a meta-GGA functional (M06-L-D3)

[42] and a hybrid functional (B3LYP). The resulting optimum values from LR areSVWN5-FA: a0 = 1.06, a1 = 0.45, a2 = 0.0042 ,

BLYP-FA: a0 = 1.03, a1 = 0.94, a2 =−0.00013 ,
(2.20)

and the overall RMSE are 12.7 kcal/mol and 6.4 kcal/mol for SVWN5-FA and BLYP-FA, respec-

tively. For comparison, the RMSEs for SVWN5 and BLYP are 25.9 kcal/mol and 6.5 kcal/mol,

respectively. The results shows that the fitted model can only improve the performance of SVWN5

significantly. However, since the coefficients of the FA term are very small in both cases, we can-

not attribute the improvement of the mixture model to the inclusion of the FA energy. To examine

the effect of the FA energy, we found that the re-optimized SVWN5 and BLYP, with (a0,a1) to

be (1.09,0.26) and (1.03,0.95), respectively, could also decrease the RMSEs to 14.5 kcal/mol and

6.4 kcal/mol, respectively. Obviously, we can also decrease the RMSEs by re-optimizing the coef-

ficients of original exchange and correlation energy. The SVWN5-FA model is only 1.8 kcal/mol

better than the re-optimized SVWN5 functional, and even worse, BLYP-FA does not show any im-

provement upon the re-optimized BLYP functional. We can observe that the re-optimization does

not change the coefficients of BLYP much, thus, its RMSE also remains roughly the same. Table

2.1 summarizes the RMSEs for the tested models, where “Reopt” denotes re-optimized results. For

SVWN5 functional, both the re-optimized model and FA mixed model double the accuracy of at-

omization energy, and increase the accuracy of proton affinity, but slightly worsen the performance
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for ionization energy. This can be explained as a trade-off during the LR fitting process. As for

BLYP, all three cases yield similar results.

In Tables 2.2, 2.3, and 2.4, we list all experimental atomization energies, proton affinities,

and ionization energies, with the deviation from experiments for six XC functionals. It is worth

noting that the SWVN5-FA functional systematically decreases the absolute values of all three

properties. Among all six functionals, B3LYP obviously achieves the highest accuracy with 4.6

kcal/mol overall RMSE, and M06-L-D3 has the second best RMSE as expected, 5.6 kcal/mol.

Table 2.2: Atomization Energies (kcal/mol)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

SiH3 213.1 19.1 −12.9 −3.4 −3.7 3.3 0.6

SiH4 304.4 22.1 −22.1 −7.7 −8.2 2.2 −1.9

PH2 143.9 19.8 −8.9 3.5 2.1 −0.7 4.7

PH3 225.0 27.9 −12.4 0.5 −1.3 −1.8 2.7

SH2 171.1 23.5 −1.1 −1.8 −2.7 −1.3 −0.5

ClH 101.2 13.6 2.5 −2.0 −2.2 0.2 −1.4

Na2 19.8 −0.1 −29.1 −2.6 −3.2 −0.1 −3.4

Si2 74.3 14.5 −20.9 −3.3 0.1 2.1 −7.4

P2 116.0 23.4 −27.7 2.0 −0.5 −6.1 −4.5

S2 98.4 31.9 −6.2 5.2 4.9 7.3 0.1

Cl2 58.1 21.0 −14.8 −2.8 −2.4 1.2 −5.7

NaCl 99.4 4.0 −26.7 −8.0 −6.6 10.6 −6.9

SiO 190.2 29.2 1.7 1.1 1.2 −4.8 −6.9

SC 171.3 26.8 1.9 −2.9 −3.6 −2.1 −9.0

SO 120.1 40.7 16.1 8.6 8.6 2.0 −0.2

ClO 60.9 37.4 12.9 8.5 6.3 1.9 −0.2

ClF 60.9 28.3 5.1 1.9 2.1 −3.9 −5.2

Si2H6 502.9 43.8 −49.2 −16.2 −16.7 5.1 −6.1

CH3Cl 370.6 51.4 3.5 −5.7 −5.3 −1.0 −3.3

CH3SH 442.8 62.4 2.0 −6.1 −6.3 −3.0 −2.8

HOCl 156.1 42.4 7.9 1.3 0.9 −5.9 −5.0

SO2 246.6 72.0 24.4 4.0 4.2 −4.5 −12.7

Continue on the next page
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Table 2.2: Atomization Energies (kcal/mol) (continued)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

LiH 56.5 2.1 −12.2 −0.6 −1.0 0.6 −0.2

BeH 45.1 12.1 8.4 8.8 10.0 10.5 9.8

CH 80.0 7.5 −5.9 0.8 −3.6 −2.1 0.7

CH2 177.2 23.8 9.1 1.1 2.1 3.3 3.1

CH3 287.4 32.2 3.7 0.0 0.3 −0.9 2.6

CH4 391.0 42.6 3.2 −3.0 −3.0 −3.4 0.6

NH 77.2 12.4 −3.1 6.6 5.8 −0.4 5.2

NH2 168.4 25.6 −2.7 7.4 6.1 −1.9 5.8

NH3 274.2 39.7 1.3 4.3 2.9 −7.1 3.2

OH 100.5 17.0 4.4 2.8 −2.4 −2.5 1.3

H2O 217.3 33.6 11.1 0.2 0.0 −8.1 −1.7

HF 134.5 20.4 11.0 −0.5 −0.1 −5.4 −2.3

SiH2 146.9 10.8 −15.3 −3.4 −4.3 −0.7 −1.6

Li2 26.7 −3.6 −16.9 −6.7 −7.6 −3.0 −6.5

LiF 141.3 13.4 2.2 −2.4 −0.6 −3.7 −5.8

C2H2 387.0 54.1 19.5 −0.7 −0.4 −2.0 −3.4

C2H4 530.1 68.8 17.5 −3.0 −2.5 −2.7 −1.2

H3CCH3 663.5 82.9 14.4 −7.2 −6.8 −3.6 −1.0

CN 176.3 38.0 13.9 9.7 8.6 2.8 −1.9

HCN 303.1 45.0 10.1 4.9 3.7 −4.7 −2.9

CO 257.6 36.6 17.2 −0.2 −0.3 −4.4 −7.1

HCO 270.3 52.6 26.3 7.1 7.2 0.4 0.0

H2CO 358.1 57.1 20.7 1.5 1.7 −3.5 −3.4

CH3OH 479.4 73.1 19.4 −2.2 −2.2 −7.9 −2.6

N2 224.8 36.3 1.3 9.7 6.9 −7.9 −1.7

H2NNH2 401.4 78.1 9.5 10.2 7.5 −10.0 5.8

NO 150.2 42.9 16.0 10.4 6.7 −5.5 −0.6

O2 115.4 54.9 35.2 16.9 15.9 4.1 4.0

HOOH 250.3 65.8 25.4 7.6 6.2 −9.6 −2.3

Continue on the next page
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Table 2.2: Atomization Energies (kcal/mol) (continued)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

F2 37.5 36.9 19.1 8.7 8.1 −2.9 −3.4

CO2 384.3 78.2 43.3 5.4 6.4 3.5 −7.4

RMSE 40.9 17.4 6.1 5.7 4.7 4.5

Table 2.3: Proton Affinities (kcal/mol)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

SiH4 154.0 −8.6 −8.5 −0.2 1.1 −2.9 −1.2

PH3 187.1 −10.5 −9.2 −3.0 −0.9 −0.1 −1.3

SH2 168.8 −5.9 −5.1 −0.7 0.9 3.1 −0.5

HCl 133.6 −5.2 −4.6 −1.2 0.0 1.4 −1.7

NH3 202.5 −5.2 −3.6 −2.5 −0.7 0.5 −0.8

H2O 165.1 −5.2 −3.9 −4.0 −2.7 −0.8 −2.6

C2H2 152.3 −7.5 −7.1 0.6 2.0 3.1 1.3

H2 100.8 −3.6 −3.1 −2.7 −2.0 −3.5 −2.6

RMSE 6.8 6.0 2.3 1.5 2.3 1.7

Table 2.4: Ionization Potentials (kcal/mol)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

Na 118.5 5.4 2.2 5.1 6.8 −14.0 6.6

Mg 176.3 1.7 −10.3 −0.5 0.7 −2.4 1.7

Al 138.0 1.0 −3.5 −2.7 0.0 −2.8 0.8

Si 187.9 1.9 −1.2 −4.8 −1.5 −2.4 −0.8

P 241.9 1.5 0.0 −7.4 −3.4 −0.1 −2.8

S 238.9 3.5 −10.1 0.1 2.5 −6.5 3.3

Cl 299.1 5.0 −5.5 −1.7 1.5 −3.7 2.0

Continue on the next page
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Table 2.4: Ionization Potentials (kcal/mol) (continued)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

SiH4 253.7 9.7 −1.1 5.3 9.0 12.7 11.7

PH 234.1 3.0 0.5 −4.3 1.2 0.0 0.1

PH2 226.5 3.4 −0.4 −2.2 1.3 −0.4 1.9

PH3 227.6 1.9 −7.7 −4.0 −1.4 −1.9 −1.1

SH 239.1 3.5 −7.6 −2.3 −1.0 −4.2 1.1

SH2 241.4 1.5 −7.3 −5.8 −2.7 −5.0 −2.1

P2 242.8 1.2 −6.0 −9.4 −5.3 −6.6 −5.3

S2 215.8 3.4 −0.8 −1.1 3.0 2.2 5.7

Cl2 265.2 −3.9 −10.8 −9.0 −5.0 −5.5 −1.4

ClF 291.9 −0.9 −8.1 −4.8 −0.1 −2.8 1.6

Li 124.3 1.9 0.2 3.1 5.1 −6.3 5.4

Be 214.9 −6.8 −19.6 −7.9 −6.4 −8.9 −4.8

B 191.4 7.7 5.0 7.4 11.3 6.8 10.1

C 259.7 9.9 9.5 3.3 7.9 2.8 6.5

N 335.3 11.0 13.1 −0.8 5.0 5.3 2.9

O 313.9 8.8 −4.9 12.2 15.6 3.8 11.9

F 401.7 13.2 4.3 7.2 11.8 0.7 7.8

CH4 291.0 −6.6 −13.4 −8.9 −4.7 −5.7 −3.2

NH3 234.8 6.0 −2.5 −1.6 1.5 −3.2 0.0

OH 300.0 7.9 −2.4 3.3 2.2 −2.0 4.4

H2O 291.0 7.0 −0.4 −2.1 1.9 −4.6 −0.6

HF 369.9 10.6 4.4 0.1 10.9 −3.4 1.3

HCl 294.0 3.7 −4.6 −4.4 0.7 −2.1 −0.4

C2H2 262.9 4.7 −2.2 −6.1 0.7 −7.8 −3.5

C2H4 242.4 5.6 −1.5 −6.1 −3.1 −6.2 −4.3

CO 323.1 3.4 −7.9 −0.1 2.8 −5.5 5.0

N2 359.3 2.3 −2.9 −4.4 0.5 −3.1 7.1

O2 278.3 10.7 9.5 7.4 15.1 11.2 15.7

H 313.6 −13.4 −9.9 −1.4 3.6 2.3 1.5

Continue on the next page
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Table 2.4: Ionization Potentials (kcal/mol) (continued)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

He 567.0 −7.0 −20.8 4.7 9.8 0.9 7.8

Ne 497.2 16.4 11.9 4.1 10.0 0.8 5.2

Ar 363.4 6.3 −1.3 −2.6 1.4 1.3 1.8

BF3 358.8 −12.5 −16.5 −21.1 −15.8 −16.6 −7.7

BCl3 267.5 −15.7 −21.8 −22.4 −18.8 −14.4 −9.6

B2F4 278.3 −12.8 −19.4 −19.2 −15.3 −18.9 −10.4

CO2 317.6 5.7 −0.1 −5.3 1.7 −2.7 0.1

CF2 263.3 −2.7 −11.9 −4.3 −1.2 −6.8 0.0

CH2 239.7 5.6 5.6 −3.0 1.4 0.0 0.2

CH3 227.0 6.0 3.7 −0.3 3.6 1.5 2.4

C2H5 187.2 −3.0 −6.5 −1.4 2.3 0.5 2.5

C3H4 223.0 −4.2 −10.9 −10.3 −6.9 −8.9 −5.9

CH2CCH2 223.5 8.6 1.7 −0.5 2.7 −0.3 2.9

CH3CHCH3 170.0 −5.5 −9.2 −5.4 −1.4 −1.5 0.0

C6H6 213.2 2.1 −4.0 −8.3 −5.3 7.5 −4.1

HCO 187.7 6.3 2.5 5.3 9.2 3.6 9.2

H2COH 174.2 0.7 −3.5 −0.5 3.0 −0.2 3.1

CH3O 247.3 −13.6 −16.6 −9.2 −5.5 −7.2 −3.7

CH3OH 250.2 −8.5 −15.8 −8.2 −4.5 −5.5 −2.1

CH2S 216.2 0.1 −8.2 −5.6 −2.6 −5.3 −1.8

CH2SH 173.8 0.5 −4.5 −2.3 1.1 −0.6 3.0

CH3SH 217.7 −1.8 −9.6 −7.4 −4.2 −5.1 −2.4

CH3Cl 258.7 2.7 −4.2 −3.1 0.2 1.3 −1.7

C2H5OH 241.4 −12.9 −19.9 −11.9 −8.2 −9.0 −4.3

CH3CHO 235.9 −2.3 −8.7 −8.0 −4.4 −6.3 −3.1

CH3OF 261.5 −7.8 −14.3 −8.5 −4.5 −6.6 −2.3

C2H4S 208.7 0.4 −7.2 −7.3 −4.2 −4.5 −2.9

NCCN 308.3 15.9 9.9 −13.9 −8.8 16.1 −8.3

C4H5N 189.3 4.2 −2.4 −6.1 27.7 −3.9 −2.8

Continue on the next page
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Table 2.4: Ionization Potentials (kcal/mol) (continued)

Molecule Expt. ∆SVWN5 ∆SVWN5-FA ∆BLYP ∆BLYP-FA ∆M06-L-D3 ∆B3LYP

B2H4 223.7 0.7 −7.2 −7.6 −4.8 −7.8 −4.3

NH 311.1 10.0 10.6 0.8 11.3 3.7 4.2

NH2 256.9 5.4 −6.4 3.0 5.8 −1.1 4.1

N2H2 221.1 −3.6 −11.1 −5.2 −1.7 −2.7 −0.5

N2H3 175.5 3.0 −1.2 1.8 5.6 2.5 6.5

HOF 293.1 −4.0 −10.9 −4.5 −0.3 −4.2 0.3

SiH2 211.0 −0.8 −11.0 −5.5 −3.2 −4.7 −2.4

SiH3 187.6 2.6 −1.1 −2.4 0.8 −1.5 1.0

Si2H2 189.1 3.8 −4.4 −5.0 −1.2 −2.9 −2.0

Si2H4 186.6 1.0 −7.2 −7.4 −5.1 −6.5 −4.8

Si2H5 175.3 2.6 −0.9 −3.0 0.2 −1.6 1.3

Si2H6 224.6 −2.4 −9.6 −11.2 −8.0 −7.4 −5.4

RMSE 6.9 9.0 7.1 7.1 6.3 5.0

2.6 Conclusions and Outlook
In this study, we explored the possibility of introducing the Fermi-Amaldi energy into the exchange

energy. The results suggest that the Fermi-Amaldi energy may not be a good choice for increasing

the accuracy of other XC functionals, especially for GGAs and higher level functionals. Although

the FA energy enhances the performance of SVWN5, it still cannot achieve the same level of

accuracy of GGA. Still, this study inspires us to find other mixing schemes, which do not increase

the computational cost and achieve a higher accuracy.

In future studies, we hope to mix different XC functionals from the same level. From Tables

2.2, 2.3, and 2.4, we find that different XC functionals may produce errors with opposite signs for

certain molecules. By mixing them, we might be able to balance the over-estimated ones with the

under-estimated ones.
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Chapter 3

Simplified Nonlocal Exchange-
Correlation Density Functional

3.1 Simplified Nonlocal Exchange-Correlation Density Functional
As we discussed in section 1.3.5, the non-local XC functionals usually possess high computational

complexity, which inspired us to develop a much simpler nonlocal functional form. Borrowing the

idea from nonlocal kinetic energy functional Eq. (1.64), we propose the simplified nonlocal XC

density approximation (SNXCDA),

ESNXCDA
XC = ELDA

XC +Enl
XC = ELDA

XC +
∫

drdr′ρθ (r)w(ζF(r,r′), |r− r′|)ρk(r′) , (3.1)

where θ and k are positive parameters, ζF is still chosen to be the TBFWV. In order to recover LDA

at the limit of UEG, we require the kernel to fulfill the normalization condition,

∫
drdr′w(ζF(r,r′), |r− r′|)

∣∣∣∣
ρ=ρ0

= 0 . (3.2)

The explicit form of kernel function w is determined by enforcing the correct linear response of the

XC functional at the UEG limit,

F̂

(
δvXC(r)
δρ(r′)

∣∣∣∣
ρ=ρ0

)
=

1
χ̃UEG

XC (q)
=

1
χ̃LDA

XC (q)
+

1
χ̃nl

XC(q)
. (3.3)
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For convenience, we use F(q) to denote 1/χ̃(q). It is worth noting that Eq. (3.1) avoids the

recursion relation in Eq. (1.89), thus we can use FFT to evaluate its value in nearly linear time.

The numerical data of χ̃UEG
XC (q) were produced using quantum Monte Carlo simulation by Moroni

et al. [43]. Multiple analytic expressions of χ̃UEG
XC (q) have been reported by fitting the numerical

data [43, 44], while we choose the one presented by Moroni et al. [43],

FUEG
XC (q) = χ̃

UEG
XC (q)−1 = vJ(q)G(q) , (3.4)

where vJ is the linear response of classic Coulomb energy, vJ = 4π/q2, and G is the local-field

factor depending on the magnitude of q,

G(q) =

[(A−C)−8 +

(
q2

Bk2
F

)8
]−1/8

+C

( q
kF

)2

, (3.5)

with

A(rs) =
1
4
− kF

4π

dµUEG
C

dρ0
, (3.6a)

B(rs) =
1+2.15r1/2

s +0.435r3/2
s

3+1.57r1/2
s +0.409r3/2

s

, (3.6b)

C(rs) =− π

2kF

d(rsε
UEG
C )

drs
, (3.6c)

ρ0 =
3

4πr3
s
. (3.6d)

εUEG
C is chosen to be Eq. (1.81), and µUEG

C is the correlation contribution to chemical potential of

UEG,

µ
UEG
C =

δEUEG
C

δρ
= ε

UEG
C +ρ

dεUEG
C

dρ
. (3.7)

To enforce the correct linear response, we need to derive the explicit form of the right side of Eq.

(3.3). For the LDA contribution ELDA
XC , we choose Dirac exchange Eq. (1.78) and VWN correlation
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Eq. (1.81), and one can show that,

FLDA
XC (q) = F̂

(
δvLDA

XC (r)
δρ(r′)

∣∣∣∣
ρ=ρ0

)
= F̂

(
δ 2ELDA

XC [ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ=ρ0

)

=

[
−
(

16π

81

)1/3

r2
s −

8π

27
r4

s
dεVWN

C
drs

+
4π

27
r5

s
d2εVWN

C
dr2

s

]∣∣∣∣∣
ρ=ρ0

.

(3.8)

It is not hard to see that the linear response of LDA does not depend on the momentum q, only

relying on the scaled Wigner-Seitz radius rs. For the nonlocal piece, the potential vnl
XC can be

written as

vnl
XC =

δEnl
XC[ρ]

δρ

= θρ
θ−1(r)

∫
dr′ρk(r′)w(r,r′)+ρ

θ (r)
∫

dr′ρk(r′)
∂w(r,r′)

∂ρ(r)

+ kρ
k−1(r)

∫
dr′ρθ (r′)w(r,r′)+ρ

k(r)
∫

dr′ρθ (r′)
∂w(r,r′)

∂ρ(r)
.

(3.9)

The derivation of the second derivative is tedious, and the details are shown in Appendix A. Here,

we directly show the final form of Eq. (3.3), which is a second-order differential equation,

q2 d2w̃
dq2 +[1+ϕ −6(θ + k)]q

dw̃
dq

+36θkw̃ = 18
(

3
4πr3

s

)2−θ−k (
FUEG

XC −FLDA
XC

)
, (3.10)

where q is the momentum, w̃ is the momentum-space kernel function. The simple form of Eq.

(3.10) allows a power series solution for the inhomogeneous part and an analytic solution for the

homogeneous part.

Figure 3.1: Momentum Kernel Function w̃(q) With Different rs

1 2 3 4
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Figure 3.1 demonstrates that the solution of Eq. (3.10) depends on rs. This further implies

that systems with large density oscillations cannot be described by a universal kernel properly.

However, we can minimize the rs dependence by choosing the value of θ and k carefully. A natural

choice is shown to be θ = k = 2/3. The adiabatic connection formula clearly shows that the XC

functional does not favor ρ(r) or ρ(r′), thus θ and k should have the same value. As for ϕ , we

choose the same value 2.7 with the simplified nonlocal kinetic energy functional [45]. Table 3.1

presents the ratio of the momentum kernel function w̃ in the asymptotic region for three different

values of rs.

Table 3.1: Ratio of w̃ in Asymptotic Region (q → ∞)

θ = k w̃rs=2(q) : w̃rs=5(q) : w̃rs=10(q)

2/3 1 : 1.03 : 1.1
1/2 1 : 0.16 : 0.04
1 1 : 6.4 : 27.6

So far, we have shown how to determine the analytic form of the kernel function in momentum

space, while the density dependence of the kernel w(ζ (ρ), |r−r′|) prevents a direct use of FFT. In

order to avoid this problem, one can use Taylor expansion to simplify the density dependency [4].

For example, the second-order expansion reads

w(ζ (r,r′), |r− r′|) = w(k∗F, |r− r′|)+ ∂w
∂ρ(r)

∣∣∣∣
ρ∗

σ(r)+
∂w

∂ρ(r′)

∣∣∣∣
ρ∗

σ(r′)

+
∂ 2w

∂ρ(r)2

∣∣∣∣
ρ∗

σ(r)2

2
+

∂ 2w
∂ρ(r′)2

∣∣∣∣
ρ∗

σ(r′)2

2

+
∂ 2w

∂ρ(r)∂ρ(r′)

∣∣∣∣
ρ∗

σ(r)σ(r′) ,

(3.11)

where k∗F = (3π2ρ∗)1/3 and σ(r) = ρ(r)− ρ∗ are both defined on a reference uniform density

ρ∗, of which the natural choice is the average density ρave. However, one shall expect that the

Taylor expansion scheme only works properly for system with a nearly flat density distribution.

For systems where ρ(r) deviates greatly from the average density ρave, this scheme might suffer

severely. By substituting Eq. (3.11) into T nl
XC, we are able to use FFT to achieve the maximum
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numerical efficiency, for example,∫
drdr′ρθ (r)w∗(|r− r′|)ρk(r′) =

1
V ∑

q
w̃∗(q)

∫
drdr′ρθ (r)e−iq·(r−r′)

ρ
k(r)

=
1
V ∑

q
w̃∗(q)

∫
drρ

θ (r)e−iq·r
∫

dr′ρk(r)eiq·r′

=
1
V ∑

q
w̃∗(q)ρ̃θ (−q)ρ̃k(q) ,

(3.12)

where V is the volume of the simulation cell, and w∗ can be replaced by the terms in Eq. (3.11).

Through Eq. (3.12), we turn a double integration into a single summation over the momentum

space, which greatly decreases the computational cost.

The SNXCDA was implemented through Quantum Espresso 6.5 [46–48] by myself.

3.2 Sum Rule Verification
As we discussed in the previous section, the kernel function w is determined by enforcing the

correct linear response, which leaves us no flexibility to fulfill the sum rule explicitly. Comparing

with Eq. (1.70), it is not hard to derive the XC hole for Enl
XC,

hnl
XC(r,r

′) = ρ
θ−1(r)w(ζ (r,r′), |r− r′|)ρk(r′)|r− r′| . (3.13)

The sum rule requires the integral of hnl
XC(r,r

′) over r′ to be 0, because the LDA XC hole already

integrates to −1 [2],

S(ρ(r);r) =
∫

dr′hnl
XC(r,r

′) = ρ
θ−1(r)

∫
dr′w(ζ (r,r′), |r− r′|)ρk(r′)|r− r′|= 0 , (3.14)

where S(ρ(r);r) stands for the sum-rule function of the nonlocal XC hole. To verify whether the

above equation holds, we have tested several bulk systems: Al (face-centered cubic), Si (diamond),

Na (body-centered cubic), and Cu (face-centered cubic). The sum rule was tested at the points with

maximum and minimum densities, ρmax and ρmin. The evaluation also adopts the Taylor expansion

mentioned above. The density from LDA calculations was fed into Eq. (3.13). Table 3.2 lists

the evaluated values of function S, which clearly show that our model violates sum rule severely.

The violation becomes worse for systems with large density oscillation. The calculation further

reveals that the Taylor expansion only works properly for Al bulk, which has the flattest density

distribution among the solid systems investigated.
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Table 3.2: Values of S(ρ(r);r)

ρmax ρmin S(ρmax) S(ρmin)

Na (bcc) 7.2 1.2×10−3 5.8×104 6.5×104

Cu (fcc) 1.4 6.4×10−4 50.3 1.9×102

Si (dia) 7.7×10−2 1.4×10−3 10.5 −50.9
Al (fcc) 3.4×10−2 4.6×10−4 −9.2 −19.4

3.3 Conclusion
The purpose of this study is to explore a new nonlocal XC functional. The traditional nonlocal

XC functionals, such as ADA, although yield excellent results, suffer from high computational

cost and cannot be widely used. The success of simplified nonlocal kinetic energy functionals in

orbital-free DFT inspired us to explore similar scheme in the nonlocal XC functional design. The

simple form of SNXCDA makes FFT a suitable tool to reduced the time of evaluating energy from

O(M2) to O(M logM), where M is the size of integration grid. However, by enforcing the correct

linear response, there is no flexibility left to fit the sum rule. Even for bulk systems like Al with a

nearly flat charge density, the sum rule is still broken severely. The defect in SNXCDA is caused

by our assumption that w is a function of the TBFWV as well as |r−r′|, while there is no evidence

that the exact XC hole have an explicit dependence upon TBFWV and |r− r′|. To sum up, the

SNXCDA model is not a proper choice for XC functional due to its violation against the sum rule.
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Chapter 4

Conclusions and Perspective

This thesis explores two XC functional approximations. One is from the angle of empirical pa-

rameter fitting, and the other adopts the method of “constraint satisfaction”. In the first project, we

proposed the unrestricted FA potential expression and studied the performance of the FA energy

mixed functionals. The fitting results suggest that the FA energy can only be introduced as a small

correction and is not a good choice for improving the performance of other XC functionals. Al-

though the FA energy possesses many promising properties, it over-simplifies the XC hole and is

not size-consistent. In the second project, we proposed a simplified nonlocal XC functional, which

is forced to fulfill the correct linear response function at the UEG limit. The functional is imple-

mented in a very efficient manner by taking the advantage of the FFT algorithm. However, the

violation against the sum rule suggests that the model cannot be used to produce accurate results.

Designing better XC functionals is still a popular research topic today. These two projects

present the difficulties in balancing the exactness and the computational cost of the designed ap-

proximation models. In the future, we will continue to explore different schemes of designing XC

functionals and to develop models with affordable computational cost and constraints satisfaction.
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Appendix A

Linear Response of Enl
XC

We have shown that the nonlocal potential vnl
XC has the following expression:

vnl
XC[ρ] = θρ

θ−1(r)
∫

dr′ρk(r′)w(r,r′)+ρ
θ (r)

∫
dr′ρk(r′)

∂w(r,r′)
∂ρ(r)

+ kρ
k−1(r)

∫
dr′ρθ (r′)w(r,r′)+ρ

k(r)
∫

dr′ρθ (r′)
∂w(r,r′)

∂ρ(r)
.

(A.1)

It not hard to see that the first two terms and last two terms in above equation are symmetric about

θ and k; Thus, we only show the the derivation of the first half. The change of potential due to a

small variation of density reads

δvnl
XC = vnl

XC[ρ +δρ]− vnl
XC[ρ]

= θ(θ −1)ρθ−2(r)δρ(r)
∫

dr′ρk(r′)w(r,r′)

+θkρ
θ−1(r)

∫
dr′ρk−1(r′)w(r,r′)δρ(r′)

+θρ
θ−1(r)

∫
dr′ρk(r′)

(
∂w

∂ρ(r′)
δρ(r′)+

∂w
∂ρ(r)

δρ(r)
)

+θρ
θ−1(r)

∫
dr′ρk(r′)

∂w
∂ρ(r)

+ kρ
θ (r)

∫
dr′ρk−1(r′)

∂w
∂ρ(r)

δρ(r′)

+ρ
θ

∫
dr′ρk(r′)

[
∂ 2w

∂ρ(r)2 δρ(r)+
∂ 2w

∂ρ(r)∂ρ(r′)
δρ(r′)

]
+SYM ,

(A.2)
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where SYM stands for the second part that can be derived by switching θ and k of the first part.

Due to the relationship in functional derivative,

δF [ f ] =
∫

dr
δF
δ f

δ f (r) , (A.3)

we immediately have

δvnl
XC

∂ρ(r′)
=

δ 2Enl
XC[ρ]

δρ(r)δρ(r′)

= θ(θ −1)ρθ−2(r)δ (r− r′)
∫

dr′ρk(r′)w(r′,r′′)

+θkρ
θ−1(r)ρk−1(r′)w(r,r′)+θρ

θ−1(r)ρk(r′)
∂w

∂ρ(r′)

+θρ
θ−1(r′)δ (r− r′)

∫
dr′′ρk(r′′)

∂w
∂ρ(r′)

+θρ
θ−1(r′)δ (r− r′)

∫
dr′′ρk(r′′)

∂w
∂ρ(r)

+ kρ
θ (r)ρk−1(r′)

∂w
∂ρ(r)

+ρ
θ (r)ρk(r′)

∂ 2w
∂ρ(r)∂ρ(r′)

+ρ
θ (r′)δ (r− r′)

∫
dr′′ρk(r′′)

∂ 2w
∂ρ(r′)2

+SYM ,

(A.4)

where δ (r− r′) is the Dirac delta function. The next step is to consider the UEG condition and

apply the Fourier transform. Here, we first calculate some auxiliary relations:

∂w
∂ρ(r)

∣∣∣∣
ρ=ρ0

=− q
6ρ0

∂w(ρ0)

∂q
, (A.5a)

∂ 2w
∂ρ(r)2

∣∣∣∣
ρ=ρ0

=
q2

36ρ2
0

∂ 2w(ρ0)

∂q2 +
q

36ρ2
0
(7− v)

∂w(ρ0)

∂q
, (A.5b)

∂ 2w
∂ρ(r)∂ρ(r′)

∣∣∣∣
ρ=ρ0

=
q2

36ρ2
0

∂ 2w(ρ0)

∂q2 +
q

36ρ2
0
(1+ v)

∂w(ρ0)

∂q
, (A.5c)

∫
dr′′

∂w(r′,r′′)
∂ρ(r′)

∣∣∣∣
ρ=ρ0

= 0 , (A.5d)

∫
dr′′

∂ 2w(r′,r′′)
∂ρ(r′)2

∣∣∣∣
ρ=ρ0

= 0 , (A.5e)
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where Eqs. (A.5a), (A.5b), and (A.5c) can be generated by the chain rule, and Eqs. (A.5d) and

(A.5e) come from the normalization condition of kernel w, Eq. (3.2). With the help of above

equations, we can derive the linear repsonse of Enl
XC by applying the Fourier transform on Eq. (A.4)

at the UEG limit,

1
χnl

XC(q)
= F̂

(
δ 2Enl

XC[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ=ρ0

)

= 2θkw̃(q,ρ0)+

(
1+ v
18

− θ + k
3

)
q

∂ w̃(q,ρ0)

∂q
+

1
18

q2 ∂ 2w̃(q,ρ0)

∂q2 .

(A.6)

Together with the linear response of LDA, Eq. (3.8), we achieve Eq. (3.10).
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