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Abstract

Medium range precipitation forecasts are a crucial input of hydrology models that

provide streamflow information for water resource management and flood risk as-

sessments. Generating accurate and timely precipitation forecasts has been a long-

standing challenge in British Columbia (BC), Canada, because of its complex ter-

rain and a paucity-of-data problem.

In this dissertation, a novel precipitation forecast post-processing routine for

BC is developed to convert raw ensembles into bias-corrected, probabilistically

calibrated, and downscaled spatiotemporal sequences out to 7 days.

The post-processing routine features a hybrid of conventional statistical meth-

ods and state-of-the-art Convolutional Neural Networks (CNNs). In the bias-correction

and calibration stage, raw ensembles are converted to an Analog Ensemble (AnEn)

first and then reconstructed to physically realistic spatiotemporal sequences using

the Minimum Divergence Schaake Shuffle (MDSS). These sequences are further

bias-corrected by a CNN that considers climatology and terrain information. In

the downscaling stage, a CNN pre-trained with high-quality, high-resolution pre-

cipitation analysis in the continental US is applied and transferred to BC without

acquiring extra training data. It downscales post-processed precipitation sequences

into 4-km grid spacing, which resolves small-scale terrain features. Additionally,

for operating the post-processing methods on a near-real-time basis, a CNN-based

precipitation observation quality control procedure is developed. It removes suspi-

cious observations and returns clean observations that can be used to measure and

verify post-processed precipitation forecasts.

This post-processing routine is developed for the Global Ensemble Forecast

System (GEFS) 3-hourly precipitation forecasts, and it is tested by the GEFS re-
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forecasts from 2017 to 2019. Station-observation-based verification indicates that

the post-processed precipitation ensembles are skillful in the BC South Coast,

Southern Interior, and Northeast—watersheds with diverse climatological condi-

tions. Compared to conventional statistical post-processing, the methods in this

dissertation achieved roughly a 10% increase of Continuous Ranked Probability

Skill Score (CRPSS) in all lead times. The Brier Skill Scores (BSS) of heavy pre-

cipitation events are increased up to 60% for both 3-hourly lead times and 7-day

accumulated totals. In summary, this dissertation pioneers the combination of con-

ventional statistical post-processing and neural networks, and is one of only a few

studies pertaining to precipitation ensemble post-processing in BC.
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Lay Summary

Precipitation forecasts are important, because they are used to estimate the risk of

flood events. In this dissertation, artificial intelligence methods are developed to

make precipitation forecasts in British Columbia (BC) more accurate and with finer

spatial details. This dissertation also developed a new method to automatically

remove poor quality observational data, so the forecast system can be adjusted

with timely and good observations. These new methods are tested for BC coastal

and inland environments using historical data. Testing results confirm that the

new methods are effective overall. They perform better than traditional methods

and specifically improve heavy-rain forecasts that are important for hydropower

generation and flood forecasting.
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Preface

A version of Chapter 3 has been submitted:

• Sha, Y., D. J. Gagne II, G. West, and R. Stull, 2021: A hybrid analog-

ensemble, convolutional-neural-network method for post-processing precip-

itation forecasts. In press.

The paper proposed a new ensemble precipitation forecast post-processing method

by hybridizing the Analog Ensemble (AnEn), Minimum Divergence Schaake Shuf-

fle (MDSS), and Convolutional Neural Network (CNNs) methods. Yingkai Sha es-

tablished the research idea and methodology, evaluated the results, and composed

the manuscript. Dr. David John Gagne II provided computation and suggestions

on methodology. Dr. Gregory West provided research data, suggestions on result

evaluation, and proofread the manuscript. Professor Roland Stull provided funding

support and proofread the manuscript.

Chapter 4 consists of two papers that have been published in Journal of Applied

Meteorology and Climatology:

• Sha, Y., D. J. Gagne II, G. West, and R. Stull, 2020: Deep-learning-based

gridded downscaling of surface meteorological variables in complex terrain.

Part I: Daily maximum and minimum 2-m temperature. J. Appl. Meteor.

Climatol. doi:10.1175/JAMC-D-20-0057.1.

• Sha, Y., D. J. Gagne II, G. West, and R. Stull, 2020: Deep-learning-based

gridded downscaling of surface meteorological variables in complex terrain.

Part II: Daily precipitation. J. Appl. Meteor. Climatol. doi:10.1175/JAMC-

D-20-0058.1.
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The two papers (Part I and Part II) pioneered statistical downscaling using convo-

lutional neural networks. Part I contains the general methodology of Chapter 4.

Part II contains problem statement, methodology, and some results (up to Section

4.4) of Chapter 4.

Yingkai Sha established the research idea and methodology, analyzed the re-

sults, and composed the manuscript. Dr. David John Gagne II provided computa-

tion and suggestions on methodology. Dr. Gregory West provided research data,

suggestions on result evaluation, and proofread the manuscript. Professor Roland

Stull provided funding support and proofread the manuscript.

Chapter 5 is published as:

• Sha, Y., D. J. Gagne II, G. West, and R. Stull, 2021: Deep-learning-based

precipitation observation quality control. J. Atmos. Oceanic Technol.

doi:10.1175/JTECH-D-20-0081.1.

The paper presented a new automated precipitation observation quality control

algorithm that can be incorporated into manual quality control procedures. Yingkai

Sha established the research idea and methodology, analyzed the results, and com-

posed the manuscript. Dr. David John Gagne II provided computation and sug-

gestions on methodology. Dr. Gregory West provided research data, suggestions

on methodology and result evaluation, and proofread the manuscript. Professor

Roland Stull provided funding support and proofread the manuscript.
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Chapter 1

Introduction and theoretical
background

1.1 Ensemble weather forecasting
Numerical modeling is fundamental for understanding and predicting the state of

the atmosphere [24, 86, 101]. For numerical weather prediction, its key challenge

is that the evolution of the atmosphere is chaotic. When the governing equations of

the atmosphere are integrated forward in time, they exhibit sensitive dependence

from slightly different estimated initial conditions, and yield diverged outcomes

[18, 32, 109]. Thus, deterministic predictions of the future atmospheric state are

impossible unless the present state is precisely known [109] and if the models are

perfect.

The predictability of the atmosphere also exhibits regime structure and state-

dependent variations—some forecast initializations bring better predictions than

others [132]. This further leads to the stochastic-dynamic forecast as a probabilistic

approach to address the impact of chaos [36, 136]. If the probabilistic distribution

of the initial condition characterizes its uncertainty, and if the model integration

system can represent the atmospheric dynamics, then the subsequent forecast dis-

tributions can theoretically quantify the uncertainty of future atmospheric states.

Ensemble forecasting [103] is a discrete approximation of the stochastic-dynamic

forecast. It begins with a set of individual initial conditions, each represents a pos-
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sible initial state in the phase space (i.e., a set of prognostic variables); the initial

conditions are integrated by the governing equations independently, and the sam-

plings of the outcomes represent the forecast uncertainty.

In early experiments, ensemble forecasting was a direct implementation of

Monte-Carlo integration, which considers initialization uncertainties only. In the

1980s, the concept of stochastic parameterization was proposed to model the uncer-

tainties of dynamical and physical processes [110]. Later, more diverse approaches

were developed, including perturbed-parameter scheme [74], perturbed-tendency

scheme [13], and super-ensemble [92]. Their success led to a paradigm shift from

deterministic to ensemble weather forecasting [87].

1.2 Post-processing ensemble precipitation forecasts
State-of-the-art ensemble weather forecasts are routinely generated at major me-

teorological centers. Among the many forecast products, ensemble precipitation

forecasts are a key component that show value in real-world applications [5, 25].

Hydrological modeling systems rely on precipitation ensembles as inputs to esti-

mate the likelihood of occurrence of high inflow events, which are fundamental for

flood risk assessments, volumetric water management, hydroelectric generation,

and other operations [25, 28, 90].

Precipitation forecasts benefit from ensemble forecasting via uncertainty quan-

tification [e.g. 11]. However, raw precipitation ensembles are still biased and unre-

liable because of suboptimal initial conditions, simplifications made to the model

physics, and insufficient spatial resolution [e.g. 19, 108].

Notably, ensemble precipitation forecasts may overestimate the coverage of

light precipitation and underestimate dry spells and extreme events; this is rec-

ognized as the “drizzle problem” [166]. The drizzle problem can be amplified at

long forecast lead times, which makes the precipitation ensemble converge to an

incorrect stationary state. By incorporating such raw precipitation ensembles into

hydrologic modeling, the peak intensity and frequency of streamflow cannot be es-

timated accurately [e.g. 191]. For this reason, the statistical post-processing of pre-

cipitation forecasts—bias-correction, probabilistic calibration, and downscaling—

is a key step that improves their quality and utility.
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The focus of this dissertation is gridded ensemble post-processing, that is, ac-

cepting gridded ensemble forecasts as inputs, and producing post-processed high-

resolution spatiotemporal sequences as outputs. Gridded ensemble post-processing

produces a wealth of spatial information to support the end-users. It is especially

useful to provide post-processed forecasts for specific point locations, where his-

torical observations may not be immediately available to re-train post-processing

methods.

1.2.1 Univariate post-processing

Univariate ensemble post-processing produces univariate distributions of the tar-

get variable through statistical methods. Given ensemble precipitation forecasts as

three-dimensional fields (two-dimensional space and one-dimensional time), their

univariate post-processing is applied on locations and forecast lead times indepen-

dently, producing bias-corrected and calibrated marginal distributions of precipita-

tion [182].

The univariate post-processing of precipitation forecast has two main difficul-

ties. First, the distribution of short-duration precipitation exhibits discontinuities

because of zero-to-nonzero value separations and is positively skewed due to high

precipitation amounts that occur infrequently. Second, the uncertainty of the pre-

cipitation forecast is nonhomogeneous; it increases with the magnitude of fore-

casted precipitation amounts, [151, 182].

A wide range of statistical methods has been applied to univariate precipitation

forecast post-processing, including both parametric and nonparametric methods.

Parametric methods hypothesize forecasted precipitation as distributions with a

finite number of parameters, and solve these parameters by minimizing skill scores

using reforecast and historical observation data.

Nonhomogeneous regression is a commonly used parametric post-processing

method [48]. When bias correcting precipitation forecasts, these methods typically

select Gamma, log-normal, or generalized extreme-value predictive distributions,

with a censoring threshold that represents the probability of dry spells [e.g. 44, 45,

150, 151]. Nonhomogeneous regressions produce actual precipitation values. By

contrast, if calibration outputs are fixed to event probabilities, e.g., probability of
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precipitation, then logistic regression can be used for parametric post-processing

[e.g. 60].

Bayesian model averaging is another parametric post-processing method. The

technical highlight of this method is that its parametric distribution form is a weighted

sum of distribution components. When calibrating precipitation ensembles, these

components can be selected as tailed distributions, for example, the Gamma dis-

tribution [e.g. 162]. Bayesian model averaging is more commonly combined with

other regression techniques. This is because Bayesian model averaging optimizes

forecast uncertainties without correcting the systematic model bias (i.e., the dis-

placement of distribution mean). For precipitation ensembles, this further leads to

the difficulty of modeling zero-to-nonzero discontinuities [162, 182]. Raw ensem-

ble members need to be debiased before being used as input to the Bayesian model

averaging step. This debiasing should be consistent in the training and inference

(operational) stage.

Nonparametric post-processing methods have also been applied in ensemble

post-processing, including rank-histogram-based calibration [60], quantile regres-

sion [10], best-member dressing [39], and Analog Ensembles (AnEns) [61]. These

methods are descriptive and distribution free. Thus, when applied to precipitation

ensembles with a large reforecast training set, they are more efficient in captur-

ing the zero-to-nonzero discontinuity and skewness of the precipitation intensity

spectra.

This dissertation applies the AnEn method for univariate post-processing. AnEns

are a type of nonparametric kernel density estimation, and more specifically, the k-

Nearest-Neighbour (k-NN) algorithm [91, 192]. In the training stage, they search

k nearest model states determined by a distance measure; in the inference stage,

they form either probabilities (k-NN classification) or realizations (k-NN regres-

sion) from the training targets. Figure 1.1.a illustrates the fundamentals of AnEn

methods.

When applied to ensemble forecasts, AnEn methods are implemented through

a two-step procedure. For each current forecast lead time and location, AnEn meth-

ods identify similar historical date/times in a reforecast dataset; and then form an

ensemble composed of the observed or analyzed precipitation amounts at the iden-

tified date/times (Figure 1.1.b)
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Figure 1.1: (a) Illustration of AnEn methods as k-NN models. (b) The two-
step implementation of AnEn methods in the post-processing of ensem-
ble precipitation forecast. Gray circles represent training data. Horizon-
tal bars represent univariate calibration outputs. The reforecast, precipi-
tation analysis, and new forecast in (b) correspond to the training input,
training target, and prediction input in (a), respectively.

AnEn methods are a good option for post-processing precipitation forecasts

for hydrological applications. They leverage a large reforecast archive without re-

quiring a priori distributions and can calibrate the forecasted state into ensemble

members with a flexible size. AnEn methods have successfully been applied in the

univariate post-processing of ensemble precipitation forecasts [e.g. 59, 63]. They

have also been used to generate bias-corrected ensemble members from determin-

istic forecasts [e.g. 3, 120].

1.2.2 Multivariate ensemble post-processing

The multivariate ensemble post-processing has a two-step strategy [148]. In the

first step, univariate post-processing methods are applied to locations and forecast

lead times independently, producing calibrated marginal distributions. In the sec-

ond step, the multivariate dependencies of the marginal distributions are restored

thought copula approaches, including Schaake shuffle [20], ensemble copula cou-

pling [149], and Gaussian copula models [e.g. 135].

This dissertation applies the Schaake shuffle for the multivariate post-processing
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of ensemble precipitation forecasts; it takes AnEn members as inputs, restores

their spatiotemporal dependencies, and produces precipitation sequences that are

physically realistic [20]. Sperati et al. [163] pioneered the combination of AnEn

and Schaake shuffle algorithms. In this application, given M AnEn members, the

Schaake shuffle obtains M “dependence templates” from its training data as sam-

plings of a physically realistic multivariate distribution, and re-indexes the M AnEn

members based on the rank structure of the dependence templates. The Schaake

shuffle preserves the univariate calibration performance of AnEn members because

all the M AnEn members are preserved within M sequences after re-indexing (i.e.,

their calibrated values are re-indexed, but not modified).

An example is provided to illustrate the technical steps of the Schaake shuffle.

Suppose four univariate AnEn members were produced on a fixed location (grid

point) and in 3 hourly forecast lead times from +9 to +24 hours (Figure 1.2.b).

First, the AnEn members are ranked. Then, the Schaake shuffle obtains four an-

alyzed precipitation sequences from historical analysis data as “dependence tem-

plates” (Figure 1.2.a). These templates are also ranked, and their rank structures

(i.e., for each forecast lead time, which template is ranked in which order) are ap-

plied as the search-sort position of the ranked AnEn members (Figure 1.2.c and

d). For example, the highest AnEn member value in the +9 hour lead time will

be connected to the second-highest value in the +12 hour lead time (Figure 1.2.d;

blue line and circles) because the same order is found from dependence templates

(Figure 1.2.c; blue line and circles).

Figure 1.2 is focused on the dimension of forecast lead times, whereas higher-

dimensional implementations of this re-indexing process are applied in this disser-

tation, including both spatial (latitude and longitude) and temporal (forecast lead

time) dimensions. The performance of the Schaake shuffle is determined by its

dependence templates, and the selection of such templates can be flexible. Clark

et al. [20] selected dependence templates from independent random draws of his-

torical data; other Schaake shuffle variants have more specific selections rules,

which have shown improvements in post-processing ensemble precipitation fore-

casts. The similarity-based Schaake shuffle selects dependence templates that ex-

hibit the lowest mean squared error with the post-processed forecast [147]. Mini-

mum Divergence Schaake Shuffle (MDSS) selects dependence templates that have
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Figure 1.2: An illustrative example of Schaake shuffle for +9 to +24 hour
forecast lead times and a fixed location. (a) Precipitation sequences
obtained from historical analysis. (b) AnEn members calibrated on
forecast lead time independently. (c) The rank structure of (a), used
as dependence templates. (d) Physically realistic sequences produced
by Schaake shuffle.

the lowest distribution divergence with the post-processed forecast [152]. The

MDSS is applied in this dissertation, its collaboration with AnEns and verifica-

tion performance are described in Chapter 3.

1.2.3 Statistical downscaling

Multivariate post-processing converts ensemble precipitation forecasts into spa-

tiotemporal sequences that support application scenarios. These sequences can be

further downscaled to finer resolutions to better support regional applications in

complex terrain.

Downscaling can be achieved through dynamical and statistical approaches

[102, 134, 153]. Dynamical downscaling produces high-resolution meteorologi-

cal variables through regional weather and climate models, where low-resolution

upper-air fields are used as initial and boundary conditions [190].

Statistical Downscaling (SD) is the focus of this dissertation; it takes low-

resolution forecasts as are inputs and derives high-resolution meteorological vari-
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ables using statistical methods [29, 47, 179, 180]. SD is computationally efficient

and flexible across spatiotemporal scales. It is the main means of preparing pre-

cipitation inputs for hydrological models [29, 42, 73, 176]. More broadly, SD

has been successfully applied to various applications including short-range wind-

speed forecasts [55], seasonal ensemble predictions [37], and regional diagnoses

from coarser climate-forecast fields [117].

Conventional SD methods for gridded precipitation including Bias-Correction

Spatial Disaggregation (BCSD) [184, 185], bias-correction constructed analogs

[117], and climate imprint [80, 176]. BCSD is implemented in this dissertation as

a baseline method. More recently, Convolutional Neural Networks (CNNs) have

been applied for SD. This dissertation incorporates CNN-based SD within its post-

processing pipeline. A brief review of this approach will be provided in Section

1.3.2.

1.3 Convolutional Neural Networks
This dissertation applies CNNs to the post-processing of ensemble precipitation

forecasts. CNNs are deep-learning models specialized for processing data that has

a grid-like topology [49]. Different from many other statistical models, which

are spatially agnostic, CNNs can be trained on gridded data directly. CNNs have

achieved success in various gridded learning tasks where the ability to exploit spa-

tial patterns is a key requirement [e.g. 68, 93, 161].

1.3.1 The basics of CNNs

Convolutional layer

CNNs are formed mainly with convolutional layers. Each convolutional layer con-

sists of convolution kernels and nonlinear activations. Convolution kernels are

arrays of trainable weights that perform cross-correlation1 calculations on gridded

inputs to extract learnable features as follows:

1The cross-correlation calculation is more efficient than convolution numerically; it is equivalent
to convolution because convolution is commutative.
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Figure 1.3: Illustrative examples of (a) convolution, (b) transpose convolu-
tion, both with 3-by-3 kernel size, 1 stride, and no padding. Z and Z′

are feature map values, w represents kernel weights.
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where ⊗ is the cross-correlation operator; www is the convolution kernel; bbb is the

trainable bias vector; ZZZl and ZZZl+1 are the current layer input and output (or the

l + 1 layer input) feature maps. f , s0, and p are hyperparameters of convolution

kernels that represent the kernel size, stride, and padding, respectively.

During the cross-correlation operation, feature map grid points are subsetted

as “groups” based on the kernel size ( f ), and they are processed by convolution

kernels through element-wise multiplication and sum(equation 1.1). The stride

(s0) determines the number of overlapped grid points among these groups. Padding

(p) means temporally expanding grid points at feature map edges, which controls

the total number of groups and solves the rounding effects on edge grid points (if

p = 0, the edge feature map grid points will be discarded directly). An illustrative

example of the above process is provided in Figure 1.3.a. The highlight of the

cross-correlation operator is that the same kernel is shared by all the feature map

groups. This weight sharing is essential to the learning ability of CNNs. Compared

to conventional statistical models, which process gridded data as scalar features,

with each grid point interacts with a unique parameter, sharing weights by grid

point subsets reduces the total number of weights, which substantially reduces the

complexity of weight optimization and leads to better performance.

The level of CNN weight sharing is determined by its kernel size; larger kernels

share more weights and are easier to train, whereas smaller kernels are more flex-

ible to learn complicated patterns. In practice, stacked convolutional layers with

3-by-3 kernels are commonly used. This is a relatively small kernel size compared

to the typical input of 102-by-102 grid points; however, stacking convolutional lay-

ers with increased number of channels will enhance their overall receptive fields.

For example, when a CNN operates on large inputs, its first-layer kernels would

extract information from groups of 3-by-3 input grid points and convert them into

feature maps. Then, its second-layer kernels would operate on the first layer output,
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where each feature map grid point contains extracted information from the input.

Thus, the second layer 3-by-3 kernels implicitly extract information from 9-by-9

input grid points—their receptive fields are enhanced. By arranging convolutional

layer stacks, the overall receptive fields of the CNN would converge to the entire

input frame, where large-scale patterns can be identified.

Similar to other neural networks, the CNN weights are trained with the back-

ward propagation of errors (backpropagation). Given the training error of a neural

network based on its loss function, backpropagation calculates the gradient of the

training error with respect to each neural network weight, from the last layer to the

first layer, and uses this gradient to adjust neural network weights. The level of

adjustment is controlled by the learning rate [49].

Downsampling and upsampling

Besides the use of convolutional layers, CNNs may contain other operations, such

as downsampling and upsampling. Downsampling reduces the feature map size by

compressing its spatial information, whereas upsampling expands the feature map

size by rendering more details.

This dissertation performs downsampling with either max-pooling or 2-by-2

convolution kernels with 2 strides. Max-pooling subsets feature maps into groups

of 2-by-2 grid point sizes, with the maximum value of each group is preserved,

thus the feature size is halved. The 2-by-2 convolution kernel with 2 strides is a

trainable downsampling option that also halves the feature map size; it has been

explained in section 1.3.1.

The upsampling can be performed through either gridded interpolation or trans-

pose convolution, both will double the feature map size. Transpose convolution is

trainable and is the reverse operation of convolution in equation 1.1. An illustrative

example of the transpose convolution is provided in Figure 1.3.b. This dissertation

uses transpose convolution with 3-by-3 convolution kernels and 2 strides.

Flexible kernel sizes can be used in the convolutional layer based downsam-

pling and upsampling stages. The choices of this dissertation, 2-by-2 and 3-by-3,

are determined practically based on the training performance.
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Figure 1.4: An example of UNET. Arrows represent the direction of the for-
ward pass. Blue boxes are 3-by-3 convolution kernels with nonlinear
activation functions. Yellow and red boxes are the down- and upsam-
pling layers respectively. Transparent boxes with dashed lines represent
layer concatenations. The number of channels (i.e., learnable features)
is shown for each encoder and decoder block.

1.3.2 The UNET architecture

A specific type of CNN, the UNET, is used in this dissertation. UNET is a type

of CNN proposed for grid-point-wise predictions, e.g., gridded bias correction and

downscaling. UNET and its variants have symmetrical encoder-decoder architec-

tures and are loosely defined under the concept of “fully convolutional networks”

[145], which means gridded features are used throughout the network, i.e., they are

not converted to scalar features. The technical highlight of these models is their

skip-connections from encoding to decoding layers, which benefits the reconstruc-

tion of high-resolution, gridded outputs.

Figure 1.4 provides a basic example of the UNET. Given inputs of two-dimensional

spatial fields and one-dimensional channels (i.e., predictors), the UNET first ex-

tracts their information with a cascade of encoder blocks, each consist of convo-

lutional layers and a downsampling layer. The downsampling halves the spatial

resolution of feature maps, whereas the convolutional layer doubles the number of

output channels (i.e., learnable features). Deeper encoder blocks perform higher-

level abstractions from the input because they contain information from a wider

variety of spatial scales that have been processed by stacks of convolutional lay-
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ers. UNET models may vary on their exact downsampling, upsampling, and skip

connection designs. However, their encoders and decoders are expected to have

comparable representation learning abilities, which maintains the symmetrical ar-

chitectures overall.

When the UNET inputs are processed by all the encoder blocks, they are up-

sampled by decoder blocks. Each decoder block consists of skip-connection, con-

volutional layers and an upsampling layer. The skip-connection concatenates fea-

tures produced by the encoder and decoder blocks, which prevents information

loss during the encoding process, which helps decoder blocks produce better high-

resolution outputs.

The UNET has the same number of encoder and decoder blocks, which means

its input and output have the same resolution and grid point sizes. Besides the

example of Figure 1.4, this dissertation applies more complicated UNET variants,

including UNET 3+ and Attention-UNET; their architectures and implementation

details are introduced in Chapter 3 and Chapter 4, respectively.

1.3.3 Applications of CNNs in weather forecasting

CNNs have been successfully applied in weather forecasting. This section provides

a brief overview of these applications.

For the detection of weather patterns, Liu et al. [106] applied CNNs to detect

tropical cyclones, atmospheric rivers, and weather fronts from global circulation

model outputs and reanalysis data. Similarly, Lagerquist et al. [96] and Lagerquist

et al. [95] examined different CNN configurations and predictors for detecting

weather fronts from reanalysis data. On the mesoscale, Gagne II et al. [43] and

[97] applied CNNs to detect hailstorm and tornado probabilities from forecast and

remote sensing inputs, respectively.

For numerical weather prediction, CNNs were found effective in emulating

complex physical parameterizations, with the purpose of reducing computation

load and enhancing generalization abilities (e.g., Han et al. [66] for microphysics

parameterization; Lagerquist et al. [98] for radiative transfer parametrization). CNNs

have also been used for (non-physics-based) weather forecasting, Weyn et al. [177,

178] modified CNN internal calculations on spherical coordinates and applied them
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to generate ensemble forecasts.

For the post-processing of ensemble forecasts, Chapman et al. [16] experi-

mented with UNET models for improving atmospheric river forecasts. Grönquist

et al. [53] also applied UNET variants to post-process 500- and 850-hPa prognostic

variables. CNNs are increasingly applied in SD problems. Vandal et al. [171] and

Vandal et al. [172] were the first that adopted super-resolution CNNs on the grid-

ded SD of precipitation. Other more recent SD works either improved the UNET

architectures [174, 195] or implemented this idea with more specific purposes (e.g.,

Jiang et al. [84] for Tibetan Plateau; Kumar et al. [94] for monsoon precipitation).

1.4 British Columbia
The region of interest of this research is British Columbia (BC). BC is located

on the western side of Canada and contains a variety of watersheds and mountain

ranges (Figure 1.5). This dissertation focuses on three hydrologic regions within

this area: the South Coast, the Southern Interior, and the Northeast (Figure 1.5.a).

They represent different geographical-climatological conditions, and thus, provide

an opportunity to verify precipitation post-processing methods in regions with dis-

parate precipitation characteristics.

The South Coast of BC is in a maritime climate. Precipitation has a strong

seasonal pattern. In May-September, persistent high-pressure ridging yields dry

periods. Starting in October, precipitation increases rapidly and peaks around

November-January. South Coast precipitation is primarily in liquid form at lower

elevations, with some solid precipitation amounts from December to February

(Figure 1.5.b). Pacific frontal systems and the mountainous coastal orography are

the main drivers of heavy precipitation events in this area [155]. Numerical models

cannot precisely handle the moist dynamics in this coastal terrain and may produce

biased precipitation forecasts [75, 144]. Statistical post-processing is needed to

reduce the conditional bias of the forecasts.

The Southern Interior has a continental humid climate. Precipitation in this

area has seasonal variations with a winter maximum and summer minimum (Fig-

ure 1.5.c). Late fall, winter, and spring precipitation in this area is primarily in solid

forms, which makes weather forecast and observational data collection difficult. In
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Figure 1.5: (a) The elevation (shaded), watersheds (hashed) in BC. (b) The
ERA5 2000-2015 monthly precipitation climatology averaged in the
South Coast watersheds, with separated solid precipitation (dotted) and
rain amounts. (c) As in (b) but for the Souther Interior watersheds. (d)
As in (b) but for the Northeast.

summer, although it’s drier, synoptic-scale moisture transport can be locally mod-

ified by orography-related dynamics (e.g., gravity waves [12], flow blocking [22])

and microphysical processes (e.g., seeder-feeder mechanism [8]), yielding convec-

tive precipitation. These localized events are hard to model, which also brings

challenges to the forecast post-processing.

Northeast BC generally features a continental subarctic climate. Precipitation

in this area follows the unique seasonal pattern of summer maximum and spring

minimum (Figure 1.5.d). Solid precipitation plays a major role in this area. Local-

ized convective events and a paucity of weather stations make precipitation fore-

casts in Northeast BC the poorest among the regions. Few studies have discussed
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ensemble post-processing in Northeast BC. Thus, this research brings some in-

sights into how post-processing methods perform in this area.

Precipitation forecast post-processing in BC is important for the public good.

The main electric utility in BC, BC Hydro, generates most of its electricity from

hydropower, mostly within the watersheds of the Peace (Northeast BC) and Up-

per Columbia (Southern Interior) river basins [7, 159]. The precipitation post-

processing system operated at BC Hydro is based on the delta method. The multi-

plicative bias of today’s forecast is estimated from the previous day’s forecast bias.

This approach produces timely post-processing results, but it has limited abilities

to correct non-consistent precipitation bias, and it cannot solve the “drizzle prob-

lem” of precipitation forecasts. Thus, more systematic post-processing methods are

needed to produce skillful and localized precipitation forecasts. The improvements

of precipitation forecast post-processed will benefit the simulation of streamflow,

and thus, better support the planning and management of hydroelectric facilities.

1.5 Dissertation layout
This dissertation aims to develop a precipitation forecast post-processing pipeline

that serves the need of end users in BC. In particular, the work incorporates state-

of-the-art statistical and deep learning models to bias correct, calibrate, and down-

scale the Global Ensemble Forecast System (GEFS) total precipitation forecasts—

a state-of-the-art forecast system with well-maintained reforecast data archive.

Chapter 2 provides a general introduction of the data sources used by this disser-

tation. Chapter 3 describes a novel bias-correction method that combines a UNET

model with the AnEn and Schaake shuffle algorithms. Chapter 4 continues the

precipitation post-processing with CNN-based gridded SD.

When Chapter 3 and Chapter 4 methods are implemented near-real-time, high-

quality station observations would be beneficial for continuously monitoring the

performance of these new post-processing methods. With this motivation, Chapter

5 implements an automated precipitation-observation quality control (QC) system.

Chapter 3, Chapter 4, and Chapter 5 include problem statements, technical details

of data pre-processing and methods, results, and individual conclusions. Chapter 6

summarizes the conclusions of the entire dissertation.
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Chapter 2

Data

This chapter provides a general introduction to the gridded datasets and station

observations used by this dissertation.

2.1 Gridded datasets
A wide range of gridded datasets are considered for the development of forecast

post-processing methods. Table 2.1 summarizes their spatiotemporal information.

These datasets are used either as training inputs or training and validation targets.

Station observations, as opposed to the gridded datasets, are used for verification

only.

2.1.1 GEFS

This dissertation aims to post-process the Global Ensemble Forecast System (GEFS)

total precipitation forecasts. The GEFS column integrated precipitable water is

applied as an additional predictor. The GEFS is an operational weather forecast

model maintained by the National Centers for Environmental Prediction [198]. The

GEFS products cover a wide range of spatiotemporal resolutions, this dissertation

selects the 0.25◦ configuration of GEFS, which is initialized four times per day,

and from which are issued 3-hourly precipitation forecasts up to a 10 day forecast

horizon. The focus of this dissertation is forecast lead times from +9 to +168 hours

(7 days).
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Table 2.1: Gridded datasets used in this dissertation.

Name Variable
Resolution

(Available area)
Frequency

(Available time)

GEFS reforecast[127]∗
Precipitation

Precipitable water
0.25◦

Global
3 hourly

2000-2019

ERA5[72]† Precipitation
0.25◦

Global
Hourly

1971-present
PRISM[138]‡

(near real time)
Precipitation

4 km
US

Daily
2015-present

PRISM[138]
(climatology)

Precipitation
4 km
US

-

PRISM[131]
(climatology)

Precipitation
4 km
BC

-

RDPA[14]§ Precipitation
10 km
Canada

6 hourly
2016-present

ETOPO1[4] Elevation
1 arc minute

Global
-

∗ Global Ensemble Forecast System (GEFS).
† European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5).
‡ Parameter–Elevation Regressions on Independent Slopes Model (PRISM)
§ Regional Deterministic Precipitation Analyses (RDPA)

Reforecast data is a valuable source for the development of post-processing

methods [e.g. 57, 61]. The 12th-generation GEFS reforecast (hereafter, the GEFS

reforecast) is used to train post-processing methods and is used as the input of post-

processing experiments. This reforecast product initializes daily at 0000 UTC. It

has the same spatiotemporal resolution and model configuration as its operational

counterpart, including the finite-volume cubed-sphere dynamical core and the Geo-

physical Fluid Dynamics Laboratory model physics [54]. This dissertation uses the

GEFS reforecast as a statistical equivalent of the operational GEFS.

The GEFS reforecast archive covers the historical period of 2000-2019 and
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consists of five ensemble members [54]. Chapter 3 uses the GEFS reforecast for

training post-processing models and conducting post-processing experiments.

2.1.2 ERA5

The ERA5 is a set of reanalysis products produced by the European Centre for

Medium-Range Weather Forecasts (ECMWF), providing hourly global analyses

of atmosphere, land surface, and ocean variables on 0.25◦ resolution. The ERA5

is based on the ECMWF Integrated Forecasting System, with 4D-Var data assimi-

lation and variational bias correction [72].

The ERA5 total precipitation is used in this dissertation for two purposes. First,

as a bias-corrected, high-quality reanalysis, the ERA5 is used as the training target

of the post-processing methods in Chapter 3, including the AnEns, Schaake shuffle,

and CNN model. Second, the ERA5 is used to estimate the monthly precipitation

climatology, including the long-term climatological mean and Cumulative Distri-

bution Functions (CDFs). The monthly precipitation climatology is computed for

each month from 2000 to 2014 with its surrounding two months, e.g., the precipi-

tation climatology of January is computed from December to February. The ERA5

climatology mean is used as a predictor, whereas the CDFs are used for computing

verification skill scores.

2.1.3 PRISM

Parameter–Elevation Regressions on Independent Slopes Model (PRISM) is an ob-

jective analysis model that incorporates station observations, geographic properties

(e.g., effective terrain height, facet, and coastal proximity), and upper-air condi-

tions to generate high-resolution gridded estimates of surface meteorological vari-

ables [27].

Two PRISM datasets are considered in Chapter 4. First, the near-real-time 4-

km PRISM daily precipitation [138] is applied. This dataset is available in the

continental US only; it is subsetted to the West Coast and used as the training tar-

get of the CNN-based SD model. Second, the 4-km PRISM precipitation monthly

climatology (1980-2010 period) is used as a downscaling input. The US domain

PRISM climatology is provided by the PRISM Climate Group [138]. The BC do-
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main PRISM climatology is coarsened from the 800-m product of Pacific Climate

Impacts Consortium [131] PRISM product.

2.1.4 RDPA

The Canadian Meteorological Centre (CMC), Environment and Climate Change

Canada (ECCC) produces the Canadian Precipitation Analysis (CaPA), compoed

of the 6-hourly, 10-km Regional Deterministic Precipitation Analyses (RDPA)

[14]. The RDPA, used in this dissertation, takes the output of the 10-km Re-

gional Deterministic Prediction System, an operational numerical weather predic-

tion model, as its background field and has been calibrated with radar products

from the Canadian Weather Radar Network, and gauge observations from multiple

observational networks through optimum interpolation [40, 112]. In Chapter 5, the

RDPA is used as an input that provides the analyzed precipitation patterns around

stations and is compared to the station observations to determine their quality.

2.1.5 ETOPO1

This dissertation uses gridded elevation as inputs for all its methods, and this infor-

mation is obtained from the ETOPO1. ETOPO1 is a 1-arc-minute (roughly 2 km)

resolution global relief model maintained by the National Geophysical Data Cen-

ter (NGDC), National Oceanic and Atmospheric Administration (NOAA) [4]. The

ETOPO1 elevation is re-gridded to 0.25◦ and 4 km in Chapter 3 and 4, respectively;

it is also re-gridded to {10,15,22,30,38} km in Chapter 5.

2.2 Station observations
Station observations considered by this dissertation are taken from 80 gauge sta-

tions in BC. The station network is maintained by the BC Hydro and loosely covers

three hydrologic regions (Figure 2.1; 26 stations in the South Coast; 30 stations in

the Southern Interior; 24 stations in the Northeast). Appendix A contains the meta-

data of these stations, including their identifier code, latitude, longitude, and station

elevation.

BC Hydro stations use standpipe- and weighing-bucket-type precipitation gauges;

they provide real-time gauge observations as heights with accuracies ranging from
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Figure 2.1: The elevation (shaded), watersheds (hashed), and locations of BC
Hydro precipitation gauge stations (colored circles).

2.0 to 0.05 mm, reporting precisions ranging from 0.1 to 1.0 mm and reporting

intervals varying from every 15 min to 2 h [Table 2.2; Personal communication,

BC Hydro 2021]. A given station can have different precision and observation

frequencies at different times in its period of record. Manual (human) quality con-

trol (QC) is performed on the raw gauge observations with the following steps:

(1) Precipitation trends are compared against nearby stations known to have sim-

ilar precipitation patterns. (2) Precipitation amounts are compared with the Re-

gional Deterministic Precipitation Analysis (described in the previous subsection)

and with collocated snow pillows. (3) When in doubt, BC Hydro Meteorologists

are consulted [Personal Communication, BC Hydro 2021]. These human QC’d

observations are recognized as reliable values in this dissertation.

In Chapter 3 and 4, the manual QC’d station observations are used as verifica-

tion targets, that said, they do not participate in the development of post-processing

methods but are used to measure the performance of post-processing methods.

In Chapter 5, both the raw and QC’d observations are used to develop an auto-

mated QC algorithm. In this application, categorical quality flags will be created

by comparing the raw and QC’d values and are used as training and verification

targets.
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Table 2.2: The product name, gauge types, and parameters of the BC Hydro
precipitation gauges.

Name Gauge type Precision Full scale Accuracy No.

OTT Pluvio 2 Weighing gauge 0.1 mm1 750 mm 0.05 mm 15/80
OTT PLS Standpipe gauge 1.0 mm 4 m 2 mm 33/80
Honeywell
Sensotech TJE

Standpipe gauge 0.1 mm1 2 m 2 mm 30/80

Belfort
Model 6071

Weighing gauge 0.1 mm 750 mm 3.75 mm 2/80

1 Precision is effective at the BC Hydro side.
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Chapter 3

Precipitation forecast
bias-correction with a hybrid
analog-ensemble,
convolutional-neural-network
method

3.1 Problem statement
The overarching goal of this chapter is to post-process the GEFS precipitation en-

sembles, producing physically realistic spatiotemporal precipitation sequences that

are more skillful than the raw GEFS ensembles in complex terrain and better cali-

brated to heavy precipitation events.

The AnEn method plays an important role in this chapter. As explained in

Chapter 1, Section 1.2.1, the AnEn method is a good option for post-processing

precipitation forecasts for hydrological applications, because it leverages a large

reforecast archive without requiring a priori distributions and can calibrate the fore-

casted state into realizations with a flexible size.

This chapter extends the AnEn method into an AnEn-CNN hybrid, which in-
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corporates a Schaake shuffle algorithm to reconstruct the spatiotemporal consisten-

cies of the AnEn members and a CNN model to reduce the impact of small-scale

noise. The latter is especially beneficial in complex terrain areas like BC, where the

forecasted orographic precipitation patterns may exhibit larger random variations

and errors that can mislead the analog date search.

The proposed AnEn-CNN hybrid scheme is tested primarily in BC, Canada,

using the GEFS precipitation forecasts out to a 7-day lead time. Three research

questions are addressed: (1) What is the skill of the AnEn-CNN hybrid relative to

a conventional AnEn method? (2) Can the AnEn-CNN hybrid post-process heavy

precipitation events in different hydrologic regions? (3) Does the AnEn-CNN hy-

brid scheme have practical significance in BC? By answering these, this chapter

aims to develop more skillful precipitation forecasts that support hydrological ap-

plications in BC, and more broadly, introduce CNNs to the ensemble forecast post-

processing community, hopefully inspiring creative works in the future.

3.2 Data

3.2.1 Training and validation data

Precipitation ensembles produced by the 0.25◦ GEFS 0000 UTC initializations are

the forecast to be post-processed. Its selected forecast lead times ranged from +9

to +168 hours. The GEFS total-column precipitable water is used as an additional

predictor. The GEFS reforecast provides the above forecasts for training and post-

processing experiments (see Chapter 2).

The ERA5 precipitation is used as the training and validation target. It also

provides the monthly precipitation climatology mean and CDFs; the climatology

mean is used as a CNN input, and the CDFs are used for computing skill scores.

Many ensemble post-processing studies apply gridded precipitation analyses

as training targets [e.g. 53, 59, 63, 151]. The value of reanalyses in forecast post-

processing has been addressed by comparison studies [e.g. 114, 163] and reviews

[e.g. 67]. Following the existing works above, this chapter considers the ERA5 as

post-processing training and validation targets for two reasons. First, the ERA5

precipitation has good quality. Several studies (Hersbach et al. [72] for global av-
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erages; Crossett et al. [23] for the Northeastern US; Xu et al. [189] for the US

Northern Great Plains; and Odon et al. [129] for BC [based on the ERA-Interim,

an older version of the ERA5]) show that the ERA5 is capable of representing

observed precipitation. Second, in Appendix B, the ERA5 precipitation and sta-

tion observations are statistically compared in BC. Results confirm that the ERA5

precipitation is adequate for training post-processing methods, and is more usable

than station observations because of its consistencies in space and time.

For data pre-processing, the GEFS reforecast members are averaged to the en-

semble mean. The ERA5 precipitation is aggregated to 3-hour periods and paired

with the GEFS reforecast. Additionally, the gridded elevation is obtained from the

ETOPO1 (see Chapter 2) and is re-gridded to 0.25◦ through bilinear interpolation.

3.2.2 Verification data

The post-processed GEFS precipitation forecasts are verified against BC Hydro

station observations (see Chapter 2). BC Hydro station observations are used as

the verification target of this chapter because they represent the best data available

for precipitation “ground truth” in BC watersheds, the focus of forecast verifica-

tion. Additionally, BC Hydro observations are independent of the ERA5—post-

processing methods are trained by the ERA5; verifying them on the same data

introduces risks of confirmation bias.

For data pre-processing, BC Hydro station observations are aggregated to 3-

hour periods and cleaned with a nonnegative check.

3.3 Methodology

3.3.1 The AnEn-CNN hybrid

Three post-processing methods are incorporated into the AnEn-CNN hybrid. First,

the AnEn algorithm converts the GEFS ensemble mean into calibrated, bias-corrected,

but not physically realistic AnEn members. Second, MDSS reconstructs AnEn

members into sequences with physically realistic spatiotemporal dependencies. Fi-

nally, a CNN model is applied, reducing the small-scale spatial noise at each fore-

cast lead time by taking gridded elevation and precipitation climatology as addi-
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tional predictors. After training, the same CNN is applied to all forecast lead times

and locations but does not change the locations of precipitation centers. Thus, as

a multivariate post-processing model, the CNN can refine forecasts without nega-

tively impacting the spatiotemporal structures modeled by the Schaake shuffle.

The above three post-processing methods are trained and validated in succes-

sion with the ERA5 precipitation. The order of implementation, as illustrated

in Figure 3.1, cannot be reversed. This is because the purpose of CNN is refine

the forecasted sequences, it requires the MDSS to produce these sequences from

univariate-calibrated AnEn members. If the CNN is applied to refine AnEn mem-

bers directly, its outputs are not guaranteed to be physically realistic.

For the AnEn and MDSS, their training and validation periods are 2000-2014

and 2015-2016, respectively. The training period of the CNN is 2015-2016; its

validation data is split from the training set randomly. The CNN takes the output

of previous methods as inputs, and thus, its training period cannot overlap with

AnEn and MDSS.

The verification period of the final post-processing outputs is 2017-2019. The

above training and verification time periods are short compared to the timescale of

climate oscillations, such as El Niño-Southern Oscillation. Similar to other post-

processing studies [e.g. 59], this chapter assumes that the climate is approximately

stationary.

AnEn with augmented SLs

The AnEn-CNN hybrid scheme begins with a two-step AnEn algorithm. A con-

ventionally used benchmark, as described in [63, hereafter, H15], is adopted and

introduced herein.

First, the training data of the AnEn algorithm is augmented with “supplemental

locations” (SLs). SLs are searched within a large spatial extent (Figure 3.2.a, the

map extent). For each post-processed grid point within BC (Figure 3.2.a, shaded

area), its SLs are determined based on the similarity of (1) analyzed monthly pre-

cipitation climatology, (2) elevation, (3) facet (i.e., the direction a slope faces), and

(4) distance. Where (1) is measured based on the Kolmogorov-Smirnov distance

of monthly CDFs. The SL search minimizes the linear combination of (1) to (4),
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Figure 3.2: (a) The ERA5 precipitation climatology mean in January
(shaded) with example SLs for a South Coast grid point (“C”), a South-
ern Interior grid point (“R”), and a Northeast grid point (“N”). (b) is the
same as in (a), but for the month of July.

and is subject to the constraint that each grid point and its SLs do not neighbor

each other H15. 19 SLs (i.e., the same number as H15) were identified for each

post-processed grid point in the BC domain, and based on the ERA5 monthly pre-

cipitation and the ETOPO1 elevation; three example grid points and their SLs in

January and July are illustrated in Figure 3.2.a and b, respectively. Technical details

of the SL methodology are summarized in Appendix C.

Based on the grid point itself and its identified SLs, the analog search aims to

minimize a distance measure that combines the difference of ensemble mean total

precipitation (APCP) and total-column precipitable water (PWAT) between new

forecast and reforecast:

min
t

0.76 |APCP(tc,x,y)−APCP(t,xi,yi)|+0.24 |PWAT(tc,x,y)−PWAT(t,xi,yi)|

s.t. t 6= tc
(xi,yi) ∈ {SL(x,y) ,(x,y)}

(3.1)

Where tc and t are the forecasted time of the new forecast and reforecast, re-

spectively. (x,y) and (xi,yi) are grid points of the new forecast and the grid points

of analog search, which includes the new forecast grid points and their SLs (Fig-

ure 3.2).
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Linear coefficients of APCP and PWAT in equation (3.1) are optimized based

on the validation set performance of Continuous Ranked Probability Score (CRPS)

for all forecast lead times (validated by the ERA5, not shown). This hyperparame-

ter search was conducted with steps of 0.02, and initial guesses of 0.70 and 0.30 for

APCP and PWAT, respectively. Incorporating PWAT also solves duplicated APCP

reforecasts in an analog search. Because in BC and the western continental US,

PWAT is likely nonzero even if APCP is forecasted as 0 mm [63].

Next, the analog search is performed on grid points and forecast lead times

independently, with a ±30-day window around the date of the reforecasts (i.e.,

t ∈ [tc− 30, tc + 30]). Similar to H15, the reuse of SLs is constrained. For each

(x,y), each of its SL(x,y) can be used once per time window. This constraint

applies on each (x,y) individually. Different (x,y) may share the same SL; their

reuse is not constrained.

Finally, once the analog search is completed, the ERA5 precipitation is used

to form 25 AnEn members. The ensemble size was chosen to balance calibration

performance and computation load [c.f. 33].

Minimum Divergence Schaake Shuffle (MDSS)

AnEn methods calibrate marginal distributions of precipitation independently for

each location and forecast lead time. However, they are not regularized by spa-

tiotemporal dependencies of the target variable, and thus, cannot produce physi-

cally realistic calibrated outputs [e.g. 152, 163].

The Schaake shuffle [20] and its variants [147, 149, 152] are non-parametric

methods that can restore spatiotemporal consistency to calibrated AnEn members.

In this application, given M AnEn members, the Schaake shuffle obtains M phys-

ically realistic “dependence templates” from its training data (the ERA5), and re-

indexes the M AnEn members based on the rank structure of the dependence tem-

plates.

A state-of-the-art Schaake shuffle variant, the Minimum Divergence Schaake

Shuffle (MDSS; Scheuerer et al. [152]) is applied and converts 25 AnEn members

into 25 sequences. MDSS selects its dependence templates from historical ana-

lyzed conditions and by minimizing the total divergence (the sum of distribution
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divergence over all locations and forecast lead times) between templates and AnEn

members. The implementation of the MDSS is similar to Scheuerer et al. [152], but

with coarser CDF quantiles of {0.25,0.5,0.7,0.9,0.95} to reduce the computation

cost. Dependence templates are provided by ERA5 precipitation. “Template candi-

dates” are selected within a 61-calendar-day window centered on the initialization

time of the new forecast. These candidates are discarded heuristically based on

the total divergence loss until 25 candidates remain. The heuristic method discards

10% of the candidates initially, and then the discard rate is changed depending on

the amount of total divergence reduction. Appendix E provides further technical

details of the MDSS methodology.

CNN-based AnEn adjustments

AnEn methods are types of the k-Nearest-Neighbour (k-NN) algorithm [e.g. 192]

and inherit its limitations; notably, k-NN can overfit to the random variations of its

inputs, downgrading their testing set performance [91]. When applied to precipita-

tion forecasts, AnEn algorithms are specifically impacted by this limitation because

their reforecast inputs typically contain noise caused by, for example, complex ter-

rain, convective precipitation, and errant forecasts that are increasingly common at

longer lead times 1. Aside from the use of ensemble mean and a large k (both are

helpful according to Hamill and Whitaker [59]), prior research has not tackled this

overfitting problem.

The existence of small-scale noise within AnEn members was recognized by

H15 who employed a Savitzky-Golay smoothing filter to produce visually inter-

pretable results. Inspired by the use of low-pass convolution filters, this chapter

adopts a CNN as an improved solution; it learns to adjust the output of the AnEn

by extracting meteorologically meaningful features and reducing the small-scale

noise.

The base architecture of the proposed CNN is UNET 3+ [78]. UNET 3+ is

an encoder-decoder CNN with full-scale skip connections and deep supervision,

loosely defined under the concept of “fully convolutional networks” [e.g. 145, 199].

An encoder-decoder architecture is applied here because it handles denoising prob-

1Another notable limitation of k-NN is its performance downgrade when using multiple and high-
dimensional inputs [91]. AnEn methods avoid this by incorporating the limited area hypothesis [30]
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Figure 3.3: (a) The architecture of the CNN that contains convolutional lay-
ers (“conv”), transpose convolutional layers (“trans conv”), Gaussian
Error Linear Unit (GELU) activations, Batch Normalization (BN), and
tensor concatenation. Numbers of 80, 160, 320, and 640, represent the
number of convolution kernels per layer. (b) The training and valida-
tion procedures of the CNN. “k” is a training parameter that controls
the level of noise in each training sample. Note that mean absolute error
in (b) is computed separately on the output layer and deep supervision
layers.
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lems well; its encoder compresses noisy inputs into learnable representations, and

its decoder reconstructs full-resolution targets based on the encoded representa-

tions.

Hyperparameters of the base architecture were investigated through a grid search

and determined by validation loss (validated by the ERA5, not shown). The result-

ing architecture contains four encoding levels; each consists of two convolutional

layers. Decoding blocks are formed with full-scale skip connections that extract

information from different encoding/decoding levels (Figure 3.3.a). Appendix F

provides further technical details of the UNET 3+ architecture and its hyperparam-

eters.

In the inference stage, the proposed CNN takes three inputs: (1) post-processed

gridded forecasts at each forecast lead time, (2) the ERA5 monthly precipitation

climatology, and (3) elevation. It produces a normalized gridded precipitation fore-

cast as output (Figure 3.3.b). Inputs (1) and (2) are normalized by logarithm trans-

formations (y = log(x+1)), and (3) is normalized by minimum-maximum scaling.

The CNN output is further processed by nonnegative correction and denormaliza-

tion before use.

In the training and validation stage, however, there are several differences from

the inference stage:

1. ERA5 precipitation at the forecasted time is the training target. AnEn mem-

bers with forecast lead times of +9 to +36 hours are linearly combined with

the ERA5 target, and applied as the training input (Figure 3.3.b). It is as-

sumed that AnEn members at short forecast lead times loosely represent the

precipitation intensity spectrum of the ERA5, and thus, can be mixed into

the ERA5 as the source of precipitation noise. Using a linear combination of

AnEn members and the ERA5 target as input can guide the CNN to preserve

precipitation centers while denoising. The CNN will be penalized if its input

precipitation centers, which already contain the ERA5 precipitation, are sig-

nificantly relocated. The weights of this linear combination are the random

draws of the uniform distribution of [0.7,0.9] (“k” in Figure 3.3.b). This

randomness can regularize the CNN to produce more robust results under

different noise levels.
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2. The input AnEn members are not shuffled by the MDSS (Figure 3.3.b).

Precipitation patterns represented by those sequences are different from the

ERA5 targets even at short forecast lead times. Taking shuffled sequences as

inputs could mislead CNNs to relocate precipitation centers (not a desirable

trait).

3. Training inputs are subsetted from the full domain with 32-by-32 and 48-

by-48 sizes. After subsetting, AnEn members that contain enough nonzero

and extreme values are chosen to use as training input, whereas drier regions

are discarded. Similar to (2), this choice also guides the CNN to process

localized precipitation centers without relocating precipitation centers.

The CNN training and validation period is 2015-2016. The validation set is

split from 2015-2016 randomly. Note that the ERA5 is deterministic, whereas its

paired 25 AnEn members are an ensemble. The above training procedure has an

implicit 25-fold data augmentation that ensures the size of the training set to be

sufficient. The training procedure is fully supervised with mean absolute error

(MAE) loss and deep supervision [175]. Adaptive moment estimation [89] and

stochastic gradient descent [111] are used for optimizing model weights.

3.3.2 Post-processing experiments and baseline methods

The first control method of this chapter combines the AnEn (with SLs; H15; see

Section 3.4.3.4.1.3.3.1) and MDSS algorithms, but without CNN-based adjust-

ments (Figure 3.1). Hereafter, it is named “SL-H15”. The Savitzky-Golay filter

smoothing of H15 is not implemented, because this step was proposed to smooth

calibrated probability maps (not sequences), and for visual purposes only.

The other control is “noSL-H15”, namely, similar to SL-H15 but without SL-

based data augmentation. This control is proposed to evaluate the actual benefits

of SLs in BC—no existing research has applied SLs in this area.

The two H15 controls above will be contrasted with “SL-CNN” and “noSL-

CNN” respectively, and the resulting skill score differences measure the benefits of

CNN-based adjustments.

All methods above rely on MDSS to model spatiotemporal dependencies. For
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the AnEn-CNN hybrid, the CNN component is applied after MDSS and does not

impact the selection of dependence templates (Figure 3.1).

In addition to the two H15 controls (SL-H15, noSL-H15) and the AnEn-CNN

hybrids (SL-CNN, noSL-CNN), a quantile-mapping-based post-processing base-

line method is applied using forecasted and analyzed monthly CDFs derived from

the 2000-2014 GEFS reforecast and ERA5, respectively (similar to Hamill et al.

[64] but with climatology-based monthly CDFs). This method quantile maps the

five GEFS reforecast members with 3-by-3 stencil grid points to produce a total of

45 calibrated members. They are more skillful than the uncalibrated reforecast but

are not competitively skillful because correlations between the forecasted and ana-

lyzed precipitation are relatively weak, especially in terms of their extreme values

(more discussion see Hamill and Whitaker [59]). As a more conventional statisti-

cal post-processing method, the quantile-mapped GEFS is used as the baseline for

individual lead time performance [c.f. 59] (Figure 3.1).

3.3.3 Verification methods

This chapter verifies results against BC Hydro observations from 2017-2019. The

two verification skill scores involved are Continuous Ranked Probability Skill Score

(CRPSS; Grimit et al. [51]) and Brier Skill Score (BSS; Murphy [123]); they are

derived from strictly proper scoring rules, the CRPS and Brier Score (BS), respec-

tively. Appendix D summarizes the technical details of CRPS and BS. Climatology

values used to calculate skill scores are taken from the 2000-2014 ERA5 monthly

precipitation climatology at station-location grid points

CRPSs and BSs are computed for individual initialization days, forecast lead

times, and station grid points. The resulting three-dimensional arrays are averaged

temporally and then averaged station-wise. Finally, climatology-based reference

strategies are applied to produce CRPSSs and BSSs. For BSSs, the above steps

are explained in Hamill and Juras [58]. Three-component decomposition of BSs

and reliability diagrams are also computed to attribute the BSS difference; their

computation steps follow Murphy [123] and Hsu and Murphy [76].

This chapter does not cross-validate results, but rather splits data into training,

validation, and verification periods. This is mainly because BC Hydro observations
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have limited temporal availability, and are not a temporally consistent verification

target. Bootstrapping is applied for all 3-hourly skill score results to minimize

the impact of observation uncertainties. Two-sided Wilcoxon signed-rank tests are

applied to determine if skill scores are statistically significantly different.

3.4 Results

3.4.1 An example case

A case-based assessment is presented to demonstrate the output of the different

post-processing methods. The forecast is initialized on 1 February 2019 with a

+15-hour horizon. Based on the ERA5 precipitation at the forecast valid time, two

primary precipitation regions are found: one along the South and Central Coast,

and the other over the Interior mountains (Figure 3.4.b).

The AnEn algorithm is applied first; its members loosely capture the location

and intensity of precipitation centers, but the spatial distribution of precipitation

intensities are physically unrealistic and contain small-scale noise (Figure 3.4.a).

MDSS is then applied to reconstruct AnEn members into more realistic spatiotem-

poral sequences. This realistic precipitation pattern is evident in Figure 3.4.c (the

SL-H15 control).

The AnEn and MDSS algorithms perform as expected, but there is still too

much small-scale spatial noise despite being reshuffled by the MDSS. The 8.5

mm ·day−1 contour line in Figure 3.4.c illustrates one impact of this problem—

boundaries of different precipitation intensities are not estimated properly. Further,

this is not a visual problem only—in this example case, it also introduces a broad

range of wet and dry precipitation bias among stations in the South Coast (Fig-

ure 3.4.e). Thus, there is potential for even better results if the remaining small-

scale noise is reduced.

CNN-based adjustments (Figure 3.4.d; SL-CNN) are applied to the example

sequence, with additional inputs of monthly precipitation climatology and eleva-

tion. Comparing SL-CNN to SL-H15, three performance highlights are evident:

1. The two precipitation centers modeled by the MDSS are preserved (c.f. color

shades in Figure 3.4.c and d). The CNN also preserves the domain-wise
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Figure 3.4: Examples of post-processing experiments on 0000 UTC 1 Febru-
ary 2019 with +15 hour forecast lead time. (a) An example AnEn mem-
ber produced with SL-based data augmentation. (b) ERA5 precipitation
on 1500 UTC 1 February 2019, the forecast valid time. (c) MDSS-
reconstructed forecast (SL-H15); it takes AnEn members like (a) as in-
puts. (d) A CNN-post-processed forecast (SL-CNN); it takes SL-H15
(c), gridded precipitation climatology, and elevation as inputs. (e) Box
plots of precipitation bias for the South Coast stations. (f) same as in (e)
but for the Southern Interior stations. Station locations in (e) and (f) are
presented in (b) with markers. Numbers in (e) and (f) show the mean
absolute errors of the SL-H15, SL-CNN, and ERA5. Note that the 3-
hourly precipitation is converted to the precipitation rate of mm ·day−1.
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precipitation intensity spectrum (c.f. histograms in Figure 3.4.c and d).

2. CNN-based adjustments refine the boundaries of different precipitation in-

tensities. For example, light precipitation in central interior BC (which the

ERA5 correctly analyzes as a rain-shadowed region) is reduced (c.f. con-

tour lines in Figure 3.4.c and d). Precipitation patterns around the Coast

Mountains are extended eastward; the isolated peak values in the central BC

coast are slightly shifted towards the South Coast (c.f. color shades in Fig-

ure 3.4.b, c and d). These changes better align the forecasted precipitation

with the precipitation climatology and orography (c.f. color shade in Fig-

ure 3.2.c and Figure 3.4.c) which the CNN uses as inputs; and importantly,

with the ERA5 target (Figure 3.4.b).

3. CNN-based adjustments improve the station-observation-based determinis-

tic comparisons. For South Coast stations, the range of precipitation bias is

narrowed, and some highly underestimated station values are dramatically

improved (Figure 3.4.e). For Southern Interior stations, the median of pre-

cipitation bias is reduced to zero, which also improves the mean absolute

error (MAE; Figure 3.4.f).

3.4.2 CRPSS performance

CRPSS is averaged over all stations and shown for 3-hourly individual forecast

lead times. Two sets of results were produced for cool (October to March) and

warm (April to September) seasons.

Cool-season CRPSSs (Figure 3.5.a-b) linearly decrease through the forecast

period. Warm-season CRPSSs are similar in magnitude, but decrease less over

the period. Also, they are impacted by a large diurnal cycle: higher skill from

0900-1200 UTC (0100-0400 PST; pre-dawn hours), and lower skill from 0000-

0300 UTC (1600-1900 PST; late afternoon) (Figure 3.5.c-d). This diurnal cycle is

in part explained by diurnal (radiative) heating and resulting orographic convection

[21]. Thermally driven orographic convective precipitation is harder to forecast and

is typically triggered on summer afternoons, and thus, introduces periodic signals

into the CRPSS curves.
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All of the AnEn-based post-processing methods perform better than the quantile-

mapped GEFS baseline (gray solid lines, Figure 3.5.a-d), indicating that AnEn

methods are better at producing more accurate and probabilistically calibrated fore-

casts. Also, all methods have positive CRPSSs, indicating that they are more skill-

ful than the climatology reference.

The performance gains resulting from adding a CNN are measured by compar-

ing SL-CNN and noSL-CNN with SL-H15 and noSL-H15 (Figure 3.5.e-h). De-

spite the impact of the diurnal cycle, CNN-based adjustments roughly account for

CRPSS gains of 0.03. This performance gain is statistically significant and does not

diminish with increasing forecast lead time. This translates to ∼6% improvement

at the earliest lead times, and ∼11% at the longest lead times (c.f. Figure 3.5.c, d

and g, h).

The effectiveness of SL-based data augmentation is measured by comparing

SL-H15 and SL-CNN with noSL-H15 and noSL-CNN, respectively (Figure 3.5.i-

l). SL-based data augmentation leads to a CRPSS increase at most lead times,

but primarily within the first 3-4 forecast days. When SL-CNN is contrasted with

noSL-CNN, the CRPSS increase is smaller but more persistent as forecast lead

times increase. To explain this finding, the authors hypothesize that the SL-based

data augmentation and CNN-based adjustments may contribute overlapping im-

provements to the AnEn forecasts. SLs are identified based on terrain roughness

and precipitation climatology, which are also applied as CNN inputs. Investigat-

ing process-based explanations of this overlap and incorporating SLs into CNN

training would be a worthwhile future research topic.

3.4.3 Heavy precipitation performance by lead time and hydrologic
region

In this section, BSS and reliability diagrams are calculated based on a 3-hourly

90th percentile precipitation event threshold derived from the ERA5 monthly cli-

matology, calculated for each station and 3-month centered calendar period. This

threshold represents heavy precipitation events and forecasts. Percentile-based,

rather than value-based, thresholds are preferred because of the dramatic differ-

ences in climatological precipitation across the complex terrain of BC. Using fixed

threshold values may undesirably down-weight or exclude drier stations and time
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periods.

South Coast

The monthly 90th percentile thresholds of the South Coast stations vary from 20 to

40 mm ·day−1 in winter and 5 to 15 mm ·day−1 in summer (Figure 3.6.n).

All post-processing methods show higher BSSs in winter and lower in sum-

mer. The seasonal difference is slightly larger for shorter forecast lead times (Fig-

ure 3.6.a-e). This is likely because of the synoptic-scale systems (e.g., Pacific

frontal-cyclone systems) in winter. Synoptic-scale precipitation at short forecast

lead times has relatively high predictability in the GEFS [151], and thus, is easier

to post-process than summertime convective heavy precipitation events.

All of the AnEn-based methods outperform the quantile-mapped GEFS base-

line. The difference is around 0.05-0.1 in winter-spring and slightly lower in sum-

mer (some are statistically insignificant but mostly still positive) (Figure 3.6.f-i).

Also, AnEn-based methods show mostly positive BSSs at all forecast lead times,

indicating more skill over the climatology reference through day 6.

The AnEn-CNN hybrid performance is measured by contrasting SL-CNN and

noSL-CNN with SL-H15 and noSL-H15 (Figure 3.6.j, k). The difference is mostly

positive and statistically significant; it ranges from 0 to 0.03 in winter and from 0 to

0.05 in summer. The amount of BSS increase for forecast hours 9-24 has relatively

large oscillations, slightly higher in spring-summer, and lower in fall-winter. For

forecast days 3-5, the improvement increment is stable at around 0.03 in winter and

slightly lower in summer. Overall, the AnEn-CNN hybrid method is more skillful

than the two H15 controls, bringing a roughly 20% relative BSS increase (∼0.03

BSS increase relative to BSSs of ∼0.15).

Comparing BSSs for SL-H15 with noSL-H15, SL-based data augmentation

shows improvements at short forecast lead times and in summer months. For long

forecast lead times and winter months, noSL-H15 slightly outperforms SL-H15, in-

dicating that supplemental locations may make some forecasts worse at the South

Coast (Figure 3.6.l). Comparing SL-CNN and noSL-CNN, there are smaller but

more consistent improvements using SLs (Figure 3.6.m). This finding is somewhat

similar to the CRPSS verification results (Figure 3.5.j and l), and implies some
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Figure 3.6: Brier Skill Scores (BSS; higher is better) for post-processed 3-
hourly precipitation forecasts for binary heavy precipitation event oc-
currence (larger than the ERA5-based 90th percentile) for stations in the
South Coast region. (a) The BSS of noSL-CNN averaged over each
centered 3-month period and grouped by forecast lead time in days.
(b-e) As in (a) but for SL-CNN, noSL-H15, SL-H15, and the quantile-
mapped GEFS baseline (denoted as “qm’d GEFS”), respectively. (f)
BSS difference between noSL-CNN and the quantile-mapped GEFS
baseline. (g-i) As in (f) but for SL-CNN, noSL-H15, and SL-H15, re-
spectively. (j) BSS difference between noSL-CNN and noSL-H15. (k)
BSS difference between SL-CNN and SL-H15. (l) BSS difference be-
tween SL-H15 and noSL-H15. (m) BSS difference between SL-CNN
and noSL-CNN. (n) Box plot of the ERA5-based monthly climatolog-
ical 90th percentiles for the South Coast stations for reference. BSSs
in (a-e) are bootstrapped with 100 replicates, with their error bars repre-
senting the 95% Confidence Intervals (CI). Wilcoxon signed-rank test is
applied to BSS differences in (f-m), statistically significant differences
with p-value < 0.01 are visualized with solid lines; dotted lines other-
wise. 41



redundancy or overlap. That is, the CNN may have corrected some error charac-

teristics that the SL-based data augmentation would have otherwise.

Reliability diagrams in Figure 3.7 provide further details regarding heavy pre-

cipitation performance at the South Coast. The quantile-mapped GEFS baseline

exhibits high resolution, but is not reliable; its calibration curve stays close to the

“no skill” reference line. It has high resolution because it frequently issues high

probabilities for climatologically rare events. However, it has poor reliability be-

cause its overconfident probabilities are often wrong. That is, the conditional prob-

ability of observed heavy precipitation events does not increase with the probability

of the forecasted events. The H15 controls and AnEn-CNN hybrids are much more

skillful than the quantile-mapped GEFS, exhibiting much better reliability while

maintaining similar resolution.

The AnEn-CNN hybrids exhibit higher resolution than the two H15 controls,

which explains their superior BS and BSS performance. For day-1, all AnEn-based

methods show good, comparable reliability, but at longer forecast lead times, the

AnEn-CNN hybrids are more reliable than the H15 controls.

The BSS improvements from SL-based data augmentation are not large for the

South Coast. SL-H15 has a better BS than noSL-H15 for day-1 and day-3 fore-

casts but is slightly worse than noSL-H15 for day-5 forecasts. Based on the BS

decomposition, SL-H15 is less reliable than noSL-H15 for longer lead times; it

performs better than noSL-H15 at short lead times because it has higher resolu-

tion. When the CNN is applied, the reliability deficit of SL-H15 is in part solved,

and its resolution performance is further improved. As a result, SL-CNN is the

best method for calibrating 3-hourly heavy precipitation events at the South Coast,

whereas noSL-CNN is second best, outperforming the two H15 controls. The reli-

ability of noSL-CNN is comparable to that of SL-CNN, but its resolution is slightly

lower.

Southern interior

The monthly 90th percentile thresholds for the Southern Interior stations vary from

5 to 20 mm ·day−1 in winter and 2 to 30 mm ·day−1 in summer (Figure 3.8.n).

The seasonal pattern of BSSs in the Southern Interior is similar to that of the
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Figure 3.8: As in Figure 3.6, but for the Southern Interior stations.

South Coast. Winter-spring precipitation is more synoptically driven and verifies

with higher BSSs; whereas local-scale convection in summer suppresses the per-

formance of all methods, causing lower (and here, negative) BSSs at all forecast

lead times (Figure 3.8.a-e). The authors have examined these negative BSS values

at individual stations and found that they are commonly due to a mix of contin-

uous dry days interspersed with isolated extreme values (i.e., isolated convective

precipitation). When forecasts incorrectly estimate the timing of isolated 3-hourly

extreme values with temporal or spatial shifts, it can result in a so-called “double

penalty”, and the resulting BS can be worse than the overall dry climatology back-

ground. While object-oriented verification can be more lenient in these cases, such

methods are not appropriate for some use cases. For example, spatial errors that
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place precipitation just outside a watershed make a critical difference to watershed

inflows.

AnEn-based methods mostly outperform the quantile-mapped GEFS baseline,

and the AnEn-CNN hybrids mostly by a large margin. BSS improvements are more

clear and statistically significant in winter-spring and at shorter forecast lead times.

One exception is day-2 BSSs in August-October, where noSL-H15 has the worst

BSS (Figure 3.8.f-i).

The AnEn-CNN hybrids perform better than the two H15 controls at all fore-

cast lead times. This performance difference is generally larger and statistically

significant in winter-spring, BSS improvements vary from 0-40% (Figure 3.8.j and

k). Reliability diagrams show that SL-CNN and noSL-CNN produce both more

reliable and higher resolution forecasts than the two H15 controls.

Comparing SL-H15 with noSL-H15, the contribution of SL-based data aug-

mentation is evident up to day-4 (Figure 3.8.l). Reliability diagrams suggest that

SL-H15 is more reliable than noSL-H15 and can achieve higher resolution. At

long forecast lead times, resolution improvement is the main driver of its superior

performance. Both BSSs and reliability diagrams suggest that SL-based data aug-

mentation benefits 3-hourly heavy precipitation forecasts in the Southern Interior.

The BSS difference between SL-CNN and noSL-CNN is smaller but still posi-

tive (Figure 3.8.m). SL-CNN exhibits better reliability than noSL-CNN at all lead

times, and slightly higher resolution for day-3 and day-5 forecasts (Figure 3.9).

Overall, SL-CNN is the best performing method for post-processing 3-hourly heavy

precipitation in the Southern Interior.

Northeast

In the Northeast, BSSs for precipitation 90th percentiles (Figure 3.10.a-m), and the

90th percentile values themselves (Figure 3.10.n), have summer maxima and spring

minima. All methods produce more skillful forecasts in May-October, with poorer

BSSs in November-March (Figure 3.10.a-e). This poor performance is likely at-

tributable to (1) difficulties in post-processing solid precipitation given either the

significant observational errors or the limitation ERA5 precipitation, and (2) GEFS

error characteristics in the winter over Northeast BC. Given that the same post-
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Figure 3.10: As in Figure 3.6, but for the Northeast stations.

processing methods performed well in winter for the Southern Interior where pre-

cipitation is also commonly solid, reason (2) may play a larger role. Further, val-

idation set performance (relative to the ERA5, not station observations) exhibits

very similar poor skill scores (negative BSSs during the cool season). This is more

evidence that poor GEFS predictability, not poor observation quality or the ERA5,

accounts for most of the performance deficiencies in the post-processed forecasts.

In May-October, all AnEn-based methods outperform the quantile-mapped

GEFS baseline, with day-0 and day-1 forecasts, and summer and fall seasons,

showing the largest performance gains (Figure 3.10.f-i). SL-based data augmenta-

tion improves BSSs either with or without CNN-based adjustments (Figure 3.10.l

and m). Reliability diagrams suggest that the use of SLs produces more reliable
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and higher resolution forecasts and a larger resolution improvement for day-3 and

day-5 (Figure 3.11).

Excepting the challenging cool season, the AnEn-CNN hybrid performs bet-

ter than the two H15 controls, with a BSS increase of roughly 0.03 for the warm

season (May-October; Figure 3.10.j and k). Given the relatively low BSS in this

area, the AnEn-CNN hybrid provides a roughly 30-60% benefit for short forecast

lead times (0.03 improvement for BSSs of 0.05-0.09). Given the relatively consis-

tent (∼0.03) gains across all lead times and decreasing BSSs with lead time, the

AnEn-CNN hybrid yields relatively larger gains at longer forecast lead times. This

performance increase is confirmed by the reliability diagrams, with improvements

in both reliability and resolution (Figure 3.11).

3.4.4 Accumulated heavy precipitation

Skillful 7-day heavy precipitation total forecasts can support applications like flood

risk assessments and volumetric water management (e.g., in hydroelectric opera-

tions). It is a good indicator of the usefulness of post-processing methods in a real-

world application (i.e., research question 3), where end-users might be planning

for a challenging sequence of storms (sometimes called a “storm cycle”). Tempo-

rally aggregated precipitation is sensitive to the spatiotemporal co-variability of the

post-processed sequences, which the MDSS should assemble realistically. Thus,

this part of the verification also shows how well the AnEn-CNN hybrid scheme can

produce physically realistic sequences.

Post-processing outputs of the AnEn-CNN hybrid and the two H15 controls

are considered in this verification (quantile-mapped GEFS is not). All of them

are as reliable as they were for individual lead times (but resolutions are slightly

decreased), indicating that the sequences contain appropriate spatiotemporal vari-

ability and are practical to be used as 7-day guidance. BSSs are much higher for 7-

day accumulations than for 3-hourly forecast windows, which is an expected result

because timing error penalties are largely eliminated [e.g. 82]. All methods per-

form well at the South Coast, with BSSs ranging from 0.46 to 0.50 (Figure 3.12.a).

Relatively poor BSSs are found in the Southern Interior and Northeast, around 0.2

and 0.1, respectively (Figure 3.12.b and c). As noted in the verification of 3-hourly
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Figure 3.12: Verification of post-processed 3-hourly precipitation forecasts
for binary events of 7-day accumulated precipitation larger than the
ERA5-based monthly climatological 90th percentiles. (a-c) Brier Skill
Score (BSS) averaged over all initializations and stations in the three
hydrologic regions. (d-f) Reliability diagrams, frequency of occur-
rence plots, and decompositions of Brier scores [(“Brier”) as reliabil-
ity (“REL”), resolution (“RES”)] for all initializations and stations in
the three hydrologic regions. Red dashed no-skill reference lines, and
perfect reliability diagonal reference lines are included. Calibration
curves are bootstrapped with 100 replicates, with their error bars rep-
resenting the 95% Confidence Intervals (CI). All scores are displayed
on a scale of 10−2. Note that o is not strictly equal to 0.1 because it is
derived from the 2000-2014 ERA5 precipitation, not from the verified
observations in 2017-2019.
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Figure 3.13: Example histograms of 7-day accumulated precipitation for
Southern Interior stations for 25 sequences from 1-7 February 2019;
for (a) noSL-H15, (b) SL-H15, (c) SL-CNN, (d) noSL-H15 and SL-
H15 overlaid, and (e) SL-H15 and SL-CNN overlaid. (f) Histogram
of station observations produced by the 7-day sliding window summa-
tion from 29 January to 10 February (± 3 days centered on the 1-7
February time period). 90th percentile values of histograms are shown
in (a-c) and (f).

heavy precipitation events, this regional performance difference is likely because

of the high predictability of synoptically forced precipitation in the winter at the

South Coast.

SL-CNN and noSL-CNN outperform the two H15 controls; both show moder-

ate resolution improvements, while noSL-CNN also largely improves the reliability

compared to noSL-H15 in the Southern Interior and Northeast. Overall, SL-CNN

shows the best BSSs in all hydrologic regions for 7-day accumulated heavy precip-

itation events; noSL-CNN and SL-H15 are second best with comparable BSSs.

Results for both 7-day accumulated precipitation and 3-hourly precipitation

at individual lead times indicate that noSL-H15 performs poorly in the Southern

Interior and Northeast. To investigate this, the authors examined calibrated fore-

cast distributions for several heavy precipitation periods; one example is shown

in Figure 3.13. The noSL-H15 members are positively skewed, with a lower 90th
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percentile value than that of the SL-H15. Based on station observations, this points

to a systematic underestimation. (Figure 3.13.a, b, d, and f). This underestima-

tion is found at nearly all inland verification stations, as well as Lower Mainland

stations within the South Coast, but is worst in the Southern Interior. Moreover,

the performance difference between noSL-H15 versus SL-H15 and noSL-CNN is

even larger for 7-day accumulated precipitation than for the 3-hourly forecasts in

the Southern Interior and Northeast BC. This is because the underestimations of

noSL-H15 accumulate when individual forecast lead time values are summed over

7 days.

Hamill et al. [63] and Hamill et al. [64] explain the benefit of SL-based data

augmentation for preventing the underestimation of extremes—non-parametric meth-

ods like AnEns leverage a large training set for calibration. When data augmen-

tation is added, more precipitation extremes are incorporated into the training set,

which prevents it from overfitting to those less extreme reforecasts, avoiding the

underestimation of extremes. SLs are identified in part using terrain features, so

they are likely more effective in interior mountains, where the frontal systems are

less organized and precipitation is more tied to the terrain. SLs are less effective at

the South Coast, where well-organized Pacific frontal systems have relatively more

influence on precipitation, at least initially during a precipitation event, and terrain

relatively less.

Next, why does SL-CNN consistently perform better than SL-H15 for both

3-hourly and 7-day heavy precipitation, when CNN-based adjustments were orig-

inally proposed to reduce the small-scale noise problem of AnEns (e.g., examples

in Figure 3.4)? First, histograms from SL-CNN are typically smoother than those

from SL-H15 (Figure 3.13.b, c, and e). Smoother histograms are less impacted

by the discretization from a fixed ensemble size, and thus, better approximate the

calibrated probability density functions. Second, the AnEn-CNN hybrid produces

a slightly wider, flatter histogram with longer tails on both ends (Figure 3.13.e).

Therefore, despite the SL-H15 90th percentile being closer to that of the BC Hydro

station observations, the overall histogram shape of SL-CNN is in better agreement

with that of the observations. This improves BSSs and reliability over both short

and long accumulation periods.

Lastly, can the AnEn-CNN hybrid scheme produce practically useful and phys-
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ically realistic sequences? Note that the CNN is applied for multivariate post-

processing, in which the same model is trained and used for all locations and fore-

cast lead times. The case studies (Figure 3.4 and Figure 3.13) and verification

results have shown that the CNN successfully denoises precipitation fields while

preserving the location of precipitation centers. Thus, as long as the copula rela-

tionships are estimated properly—no matter through MDSS or other methods—

the CNN would not impact the established multi-dimensional dependencies. As a

result, for the key indicator of 7-day accumulated heavy precipitation, the AnEn-

CNN hybrid is as reliable as it is at individual forecast lead times and maintains its

superior performance relative to the H15 controls.

3.5 Discussion and conclusions
A novel post-processing method, the AnEn-CNN hybrid, was proposed by incor-

porating a Convolutional Neural Network (CNN) to refine precipitation forecast

sequences produced by an Analog Ensemble (AnEn) and Minimum Divergence

Schaake shuffle (MDSS). The AnEn-CNN hybrid was tested with GEFS refore-

casts of 3-hourly precipitation and verified with station observations from three

disparate hydrologic regions: the South Coast, Southern Interior, and Northeast; in

British Columbia (BC), Canada from 2017 to 2019.

This chapter focused on a limitation of the AnEn method. These methods are

able to memorize and predict from large training sets, but the way they reassemble

forecasts is vulnerable to the random variations, in space and time, of the train-

ing set. The MDSS, which Scheuerer et al. [152] introduced in combination with

AnEns, partially addressed the issue of spatiotemporal consistencies, creating re-

alistic forecast sequences. CNNs are further applied to address the issue of the

remaining small-scale noise. They are good at recovering pattern-based informa-

tion from noisy fields, and thus, this chapter adds them to the AnEn post-processing

pipeline.

Both the AnEn-CNN hybrid and the Hamill et al. [63, H15] benchmark meth-

ods outperformed a quantile-mapped GEFS baseline. The AnEn-CNN hybrid also

outperformed the H15 benchmark in Continuous Ranked Probability Skill Scores

(CRPSSs) by roughly 10%. For 3-hourly heavy precipitation events in all three

53



hydrologic regions, all AnEn-based methods produced generally skillful forecasts.

The AnEn-CNN hybrids (SL-CNN and noSL-CNN) showed BSS improvements

ranging from 0-60% over the H15 benchmark; the improvements were largely sta-

tistically significant. While the AnEn-CNN hybrid was reliable, its resolutions ex-

hibited region-specific differences; highest for the South Coast and lowest for the

Northeast. However, even in the latter region, the AnEn-CNN hybrid was largely

improved compared to the H15 controls (SL-H15 and noSL-H15). For 7-day ac-

cumulated forecasts, the AnEn-CNN hybrid maintained the same good reliability

and resolution seen across 3-hourly lead times.

Case studies revealed that the AnEn-CNN hybrid reduced the random error

of AnEn output and smoothed the precipitation intensity spectra, better aligning

them with observations. Lastly, Supplemental Locations (SLs), a data augmen-

tation technique suggested by Hamill et al. [63], improved the AnEn forecasts in

BC overall, especially in the South Interior and Northeast. SL-CNN, the combi-

nation of CNN-based adjustments and SLs, was the best performing method in all

hydrologic regions.

No previous research has experimented with a hybrid of the AnEn algorithm

and a CNN. The success of the AnEn-CNN hybrid fills the gap between conven-

tional statistical post-processing and neural networks. More broadly, it also con-

tributes to the growing evidence that deep learning models are useful tools for

enhancing and localizing numerical weather prediction results. Once operational-

ized, this work will be used in hydrometeorological forecasting for reservoir and

flood risk management in BC at fine spatial and temporal resolutions.
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Chapter 4

Precipitation gridded
downscaling in complex terrain

4.1 Problem statement
This chapter continues the precipitation ensemble post-processing research by tak-

ing bias-corrected, and probabilistically calibrated precipitation sequences in Chap-

ter 3 as inputs and producing downscaled sequences with finer spatial details.

Statistical downscaling (SD) is a post-processing technique that derives lo-

calized meteorological information from low-resolution numerical model fields,

and supports environmental impact studies that require higher resolution inputs

[29, 47, 179, 180]. The SD of ensemble precipitation forecasts is important be-

cause many real-world applications require high-resolution precipitation fields as

inputs. For example, hydrological models take precipitation sequences as inputs,

and are sensitive to the spatiotemporal variations of precipitation [e.g. 124, 128].

Providing reliable and high-resolution precipitation fields is a prerequisite for the

accurate modeling of watershed properties such as streamflow. This especially

benefits the distributed hydrological models that can utilize gridded precipitation

inputs [e.g. 170].

Notable SD methods for gridded precipitation include the Bias-Correction Spa-

tial Disaggregation (BCSD) [184, 185], bias-correction constructed analogs [117],

and climate imprint [80, 176]. These methods are computationally efficient and can
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characterize downscaling relationships through statistical modeling procedures.

On the downside, the performance of these methods in BC is somewhat limited,

because it is difficult for conventional statistical models to extract information from

the gridded elevation field, which exhibits a great influence on the short-period pre-

cipitation in complex terrain areas. In southern BC, where the intensity and spatial

distribution of fine-scale precipitation patterns are embedded in the coastal and in-

land mountain ranges, incorporating terrain information as a downscaling predictor

is crucial.

Another factor that may limit the performance of conventional gridded SD is

the paucity of data. Some SD methods, including parametric regression models and

nonparametric models like bias-correction constructed analogs, are region-specific;

they require gridded truth in the target area for model training. High-resolution,

high-quality, and near-real-time gridded truth is rare in many areas, including parts

of BC. Thus, these region-specific methods may not be viable.

To overcome the limitation of conventional SD methods and achieve better

downscaling performance, this chapter applies CNNs with UNET architectures to

downscale daily precipitation sequences in BC, from 0.25◦ to 4-km grid spacings,

with an 8-fold resolution enhancement. The downscaling CNN will be trained in

the western continental US, where near-real-time 4-km PRISM is available (see

Chapter 2). Its precipitation downscaling relationships are also similar to BC be-

cause the distribution of precipitation in both regions is impacted by the coastal

mountain ranges and the Rockies. The generalization ability (i.e., the ability to

train in one domain and apply to another domain) of the downscaling CNN is the

focus of its training. Once its downscaling ability to an unseen domain is evaluated

and ensured, the downscaling CNN will be applied to the post-processed precipi-

tation sequences in Chapter 3.

Based on the problem statement, the following research questions are addressed:

(1) How can UNET architectures be designed and trained to downscale daily pre-

cipitation? (2) Do UNET architectures have consistent downscaling performance

across different times, unseen spatial domains, and numerical inputs? (3) Does the

CNN-based downscaling have practical significance in BC? By answering these,

this chapter aims to improve the skill of low-resolution ensemble precipitation fore-

casts by downscaling them to higher resolutions with correctly rendered fine-scale
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Figure 4.1: (a) The spatial coverage of western continental US. 4-km PRISM
is available in this domain and is applied to train and evaluate the down-
scaling CNN. The Blue solid line is the boundary between the training
and transferring domains. (b) The spatial coverage of the BC domain.
The hatched regions are watersheds, where colored markers indicate lo-
cations of the BC Hydro stations within the South Coast (blue), South-
ern Interior (red), and Northeast (yellow). Color shading in (a) and (b)
represents elevation at 4-km grid spacing.

details.

4.2 Data and data pre-processing

4.2.1 Training data

The 4-km near-real-time PRISM is used as training targets (Chapter 2). PRISM

precipitation is widely used [e.g. 65, 118] and verifies well [e.g. 71, 140]. This

chapter selects the PRISM in western continental US for training. This is defined

by the bounding box of 125-100◦W and 24-49◦N (Figure 4.1.a). This area exhibits

heterogeneous orography and a mix of weather regimes, including islands, basins,

coastal and inland mountains—similar to the condition of BC, the focus of this

dissertation. Downscaling CNNs will be trained to capture the high-resolution

orographic precipitation information by using this training set, and then transferred

to BC.

The 4-km PRISM is also coarsened to the low-resolution of 0.25◦ through grid

cell aggregation (i.e., averaging all the fine-resolution grid cells that have centers

located within a coarse grid cell) and then interpolated to the 4-km grid spacing.
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This interpolated low-resolution data serves as the training input. Training CNNs

with a coarsened high-resolution input avoids the overfitting of dry-wet bias pat-

terns from low-resolution forecasts. This benefits the generalization ability of the

downscaling CNN. When it is trained in the western continental US and then ap-

plied to BC (Figure 4.1.b), its performance is expected to be consistent.

The 4-km PRISM precipitation monthly climatology and 4-km ETOPO1 eleva-

tion are used as additional predictors. The PRISM climatology in the continental

US and BC are obtained from different data providers (Chapter 2), but they are

estimated from the same PRISM algorithm.

Within the western continental US, all datasets above are subsetted into two

parts: datasets within the latitude range of 24-41◦N are used for generating train-

ing samples (hereafter denoted as the “training domain”), whereas the 41-45◦N

datasets are used for result evaluation (hereafter denoted as the “transferring do-

main”) (Figure 4.1.a). Transferring domain data does not participate in the model

training, and is withheld for evaluation purposes only.

For data pre-processing, the 4-km PRISM from 1 January 2015 to 31 Decem-

ber 2018 is selected, with 1 January 2015 to 31 December 2016 used for train-

ing and validation, and 1 January 2017 to 31 December 2018 used for testing.

All the gridded precipitation data, including 4-km near-real-time PRISM, 4-km

PRISM climatology, and interpolated low-resolution PRISM are log-transformed

(i.e., y = log(x+1). Log-transformation reduces the positive skewness of precip-

itation, which benefits the training of downscaling CNN. The elevation is normal-

ized through minimum-maximum scaling.

4.2.2 Verification data

The verification of downscaling methods contains two stages. First, downscaling

methods are evaluated by taking the coarsened, 0.25◦ PRISM as inputs and the

4-km PRISM as verification targets.

Second, the main part of the inference takes the post-processed GEFS precip-

itation in Chapter 3 as inputs. In particular, the precipitation sequences produced

by the AnEn-CNN hybrid with supplemental locations (i.e., SL-CNN) are used.

For pre-processing, these 3-hourly sequences are aggregated to daily frequencies,
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interpolated to the 4-km grid spacing, and log-transformed.

The verification of the downscaled SL-CNN sequences is based on the BC Hy-

dro station observations (Chapter 2; Figure 4.1.b). BC Hydro station observations

are the verification target for both Chapter 3 and this chapter; this chapter focuses

on the verification of daily accumulated precipitation amounts.

4.3 Methods

4.3.1 Generalizable downscaling with CNNs

Downscaling is a resolution enhancement process that estimates plausible high-

resolution fields conditioned on the given low-resolution inputs and background

information of terrain elevation and high-resolution climatology. This chapter ex-

pects the downscaling process to be generalizable, which means it corrects the error

due to unresolved scales and terrain-related processes. The error attributed to the

imperfect physics parameterizations and initial/boundary conditions is not tack-

led, because correcting it leads to the overfitting of certain dry-wet bias patterns

in certain regions, and such relationships cannot be generalized to other regions.

In other words, this dissertation leaves Chapter 3 for bias-correction; the general-

izable downscaling of this chapter offers the flexibility to integrate with the novel

AnEn-CNN hybrid scheme in Chapter 3.

Super-resolution and semantic-segmentation-originated CNNs are ideal for gen-

eralizable downscaling because they can process terrain and climatology inputs

effectively. The gridded downscaling problem is intractable without utilizing this

background information because a specific low-resolution pattern can be associated

with multiple high-resolution patterns. Super-resolution and semantic-segmentation-

originated CNNs can be adapted to the terrain and climatology inputs for estimat-

ing the downscaling relationships, and reconstruct high-resolution outputs better.

For precipitation downscaling in BC in particular, orography would make relatively

high contributions to the spatial heterogeneity of precipitation, because the mete-

orological processes that modify precipitation amounts are locally embedded with

small-scale terrain features. These terrain features, such as plain, slope, peak, and

valley, are recognized as the semantic contents of terrain [e.g. 31, 165], which can
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Figure 4.2: The architecture of the Attention-UNET that contains convolu-
tional layers (“conv”), transpose convolutional layers (“trans conv”),
Gaussian Error Linear Unit (GELU) activations, Batch Normalization
(BN), and attention layers. Numbers of convolution kernels are dis-
played beside each layers.

be captured by downscaling CNNs. When overly smoothed low-resolution pre-

cipitation fields are paired to the complex terrain semantics in the high-resolution

elevation, downscaling CNNs are expected to reconstruct high-resolution precipi-

tation patterns based on the terrain semantics.

4.3.2 CNN Architectures

Roughly 70% of the 4-km PRISM land grid points are zero-valued on any given

day, which means that precipitation is a sparse variable. Precipitation downscaling,

which has precipitation as input and output, is affected by the level of data sparsity.

Although CNNs are effective for learning stable and shifting-invariant repre-

sentations from densely populated inputs, they cannot handle data sparsity well

(see Xu et al. 188 for stability-sparsity tradeoffs). Training naive CNNs directly

with sparse inputs typically yields undesirable performance [e.g. 169] because the

search space of CNN (trainable weights) optimization, as created by sparse fea-

tures is highly nonsmooth and contains diverse local optima that negatively impact
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the gradient descent algorithm [38].

For handling the data sparsity challenge, a UNET model with self-attention

learning is applied, known as the Attention-UNET [130]. The technical highlight

of this design is the self-attention gate, which adaptively seeks important latent

feature dimensions and captures contextual information from sparse inputs to re-

duce the training loss [130]. This chapter applies additive self-attention gate with

its inner working explained by equation 4.1:

ZZZl+1 = Sigmoid
(

www>1 qqql
)
×ZZZl

qqql = ReLU
(

www>2 ZZZl +www>3 ZZZa +bbb
) (4.1)

Where ZZZl and ZZZa are the two inputs of the attention gate, with ZZZl the main

input and ZZZa the query of the attention gate that guides the extraction of important

features. www1, www2, and www3 are trainable weights that perform linear transformations

which compress the sparse input dimensions into dense latent dimensions. bbb is the

bias vector. Rectified Linear Unit (ReLU) and Sigmoid activation functions assign

nonlinearity to the attention gate. Figure 4.2 illustrates the computational graph of

the attention layer.

The self-attention gate is incorporated into the UNET architecture and forms

the Attention-UNET (figure 4.2); its encoder blocks extract features from low-

resolution precipitation as well as high-resolution elevation and climatology in-

puts; its decoder blocks reconstruct fine-grained high-resolution precipitation fields

by using encoded features as an attention query (ZZZa). The inner working of en-

coder and decoders are based on the stride- and transpose convolutions, respec-

tively (Chapter 1, Section 1.3). Gaussian Error Linear Unit (GELU) is applied

as the activation function. Numbers of hidden layer channels are specified as
{64,128,192,256} (Figure 4.2); this choice is based on a grid search with steps

of 16. Compared to the original UNET [145], this modification reduces roughly

50% of the deep layer (i.e., the last downsampling block) trainable weights and

increases 20% of the shallow layer (i.e., the first downsampling block) trainable

weights. Deep layer channels are reduced more because they receive weaker back-

propagated training loss gradients, and are more sensitive to sparse inputs. The

increase of shallow layer channels partially compensates for the reduction of deep
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Figure 4.3: (a) The inference tiling of Attention-UNET in BC. (b) The basic
element of overlapped tiles

layer channels, so the learning ability of the Attention-UNET is not largely de-

graded. Appendix F provides further details of the Attention-UNET.

The Attention-UNET is trained using the 4-km near-real-time PRISM in the

training domain. To reduce the impact of data sparsity, training and validation

samples are subsetted into 96-by-96 grid point sizes. Samples with more than 50%

zero-valued low-resolution precipitation grid points are excluded from training.

Mean absolute error is used as the loss function. The training is performed in two

stages with early stopping. The first stage uses the adaptive moment estimation

[89] as the optimizer, and the second stage uses stochastic gradient descent [111].

After training, the Attention-UNET performs downscaling by taking interpo-

lated low-resolution precipitation (e.g., Chapter 3 precipitation sequences), PRISM

precipitation monthly climatology, and elevation as inputs. The full-size BC do-

main is segmented into overlapped tiles with the Attention-UNET making predic-

tions on each tile separately. The size of each tile is 96-by-96 grid points, with

16 grid points at the edge overlapping other neighboring tiles (Figure 4.3). All the

tiles are blended together and form the full-domain prediction. The full domain

output of the Attention-UNET is further processed by nonnegative correction and

denormalization before verification and use.
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4.3.3 Baseline method

Bias-Correction Spatial Disaggregation (BCSD) is used as the precipitation down-

scaling baseline that compares to the Attention-UNET. The original version of

BCSD contains two parts. The first part is a bias-correction step with quantile

mapping. The second part is spatial disaggregation based on multiplicative ratios.

That is, the high-resolution PRISM climatology is divided by the coarsened PRISM

climatology; the grid-point-wise ratios are then applied to the low-resolution bias-

corrected field to get a high-resolution field [185].

BCSD is commonly performed on monthly fields. This chapter directly ap-

plies monthly BCSD factors to daily fields without temporal aggregation and re-

sampling to daily, because the focus of this research is daily precipitation. Perform-

ing BCSD on daily fields preserves daily variations of the original low-resolution

inputs and avoids temporal downscaling artifacts. Similar daily versions of BCSD

have been practiced in Gutmann et al. [56], Vandal et al. [171], and Thrasher et al.

[167], and is hereafter referred to as the “BCSD baseline”.

When the BCSD is performed on the transferring domain by taking the coars-

ened 0.25◦ PRISM as input, it is a direct spatial disaggregation. This is because the

empirical distributions of precipitation are derived from the training period 0.25◦

PRISM, and it shares the same properties with the testing period 0.25◦ PRISM.

Thus, the quantile-mapping-based bias correction is unnecessary (also explained

in Vandal et al. 171). When the BCSD is applied in the BC by taking the Chapter 3

post-processed precipitation sequences as inputs, the quantile mapping step is also

unnecessary because it is found in Chapter 3 that the AnEn-CNN hybrid performs

better than the quantile-mapping-based bias correction in all hydrologic regions

and seasons.

4.3.4 Verification methods

Evaluate the generalization ability

The evaluation and verification of this chapter contain two parts. First, the training

and transferring domain PRISM is used to evaluate the generalization performance.

In this evaluation, the two downscaling methods, BCSD and CNN, take 0.25◦
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PRISM as input and produce results for evaluation. Hereafter, denoted as “BCSD-

PRISM” and “DCNN-PRISM”, respectively. Without downscaling involved, the

interpolated precipitation sequences are also participated in the evaluation and are

denoted as “Interp-PRISM”. In this evaluation step, the downscaling input, 0.25◦

PRISM, is not an ensemble, so deterministic evaluations are applied. The two

sets of results are evaluated based on the 4-km near-real-time PRISM, with perfor-

mance measured by the mean absolute error, Equitable Threat Score (ETS), and

frequency bias. The two classification metrics are defined as follows:

ETS =
TP−R

TP+FP+FN−R
, R =

(TP+FP)(TP+FN)

N
(4.2)

Freq. Bias =
TP+FP
TP+FN

(4.3)

Where true positive (TP, or hits), false positive (FP, or false alarms) and false-

negative (FN, or misses) are the elements of confusion matrix [181]. The metrics

are calculated based on grid points; N represents the total number of grid points.

ETS is a commonly used metric for precipitation modeling [e.g. 173]. In this

evaluation, it measures the intersections of downscaled and true precipitation pat-

terns relative to their unions, where “precipitation pattern” means grid points with

non-zero precipitation. High ETS means the shape and location of downscaled and

PRISM precipitation patterns are similar, and ETS of 1.0 means a perfect match.

ETS cannot measure the relative size of precipitation patterns (i.e., the over

and underestimations), because it equally penalizes FP and FN, and thus cannot

distinguish the source of misclassification. Frequency bias is the metric that fills

this gap. A frequency bias lower than one means the true precipitation pattern is

larger, i.e., contains more grid points than the downscaled version, vice versa.

The purpose of this evaluation is proving the concept of generalizable down-

scaling. No research prior to Sha et al. [157] has experimented with this idea. Thus,

by comparing the performance of Attention-UNET in the training and transferring

domain, its generalization ability of the CNN-based downscaling can be measured.
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Observation-based verifications

The second part of the results is based on the 0.25◦ SL-CNN in Chapter 3. These

sequences are downscaled by either the BCSD baseline or the Attention-UNET.

Hereafter, these results are denoted as “BCSD-SL” and “DCNN-SL”, respectively.

Without downscaling involved, the SL-CNN is also interpolated to 4-km directly

and is denoted as “Interp-SL”. By contrasting the skill score difference between

DCNN-SL and BCSD-SL, the actual benefits of CNN-based downscaling can be

identified. Also, by comparing the two SD methods with “Interp-SL”, the value of

SD, in general, can be verified.

The metrics and verification targets of this part are similar to Chapter 3. The

two downscaling outputs and Interp-SL are verified against BC Hydro observa-

tions from 2017-2019. The two verification skill scores are Continuous Ranked

Probability Skill Score (CRPSS; Grimit et al. 51) and the three-component decom-

position of Brier Scores (BS; Murphy 123). Climatology values used to calculate

skill scores are taken from the 2000-2014 ERA5 precipitation monthly climatology

at station-location grid points.

The computational procedures of CRPSs and BSs are similar to Chapter 3,

with a small difference that all forecasts are verified on daily lead times. This may

lead to some minor skill score differences compared to the 3-hourly verifications

in Chapter 3. Also, by having three years verification period from 2017 to 2019,

cross-validation is not performed. Bootstrapping is applied for all daily skill score

results to minimize the impact of observation uncertainties. Two-sided Wilcoxon

signed-rank tests are applied to determine if skill scores are statistically signifi-

cantly different.

4.4 PRISM-based result evaluation
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Table 4.1: Evaluations of precipitation larger than 0.1 mm ·day−1 events, with Equitable Threat Score (ETS) and fre-
quency bias. Bold font highlights the best performing metrics.

DJF MAM JJA SON

Training domain ETS
Interp-PRISM 0.792 0.802 0.731 0.790
BCSD-PRISM 0.793 0.801 0.730 0.792
DCNN-PRISM 0.830 0.827 0.786 0.836

Transferring domain ETS
Interp-PRISM 0.865 0.890 0.867 0.878
BCSD-PRISM 0.872 0.889 0.867 0.883
DCNN-PRISM 0.934 0.932 0.913 0.934

Training domain Freq. Bias
Interp-PRISM 0.795 0.774 0.777 0.781
BCSD-PRISM 0.800 0.772 0.781 0.789
DCNN-PRISM 0.837 0.812 0.801 0.817

Transferring domain Freq. Bias
Interp-PRISM 0.898 0.912 0.904 0.895
BCSD-PRISM 0.898 0.910 0.900 0.897
DCNN-PRISM 0.952 0.940 0.917 0.933
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Table 4.2: Evaluations of mean absolute error. Bold font highlights the best
performing metrics.

DJF MAM JJA SON

Training domain
Interp-PRISM 0.846 0.913 1.542 0.978
BCSD-PRISM 0.629 0.770 1.242 0.865
DCNN-PRISM 0.517 0.634 1.114 0.732

Transferring domain
Interp-PRISM 0.979 1.082 0.954 0.803
BCSD-PRISM 0.753 0.691 0.840 0.707
DCNN-PRISM 0.699 0.580 0.766 0.615

Downscaling errors of the BCSD baseline and the Attention-UNET are mea-

sured with ETS, frequency bias, and mean absolute error. All the metrics are cal-

culated in the training and transferring domains separately and by seasons. The

two classification metrics are computed from events of precipitation larger than

0.1 mm ·day−1. This threshold is commonly used to separate rain/no-rain events.

The mean absolute error evaluations do not account for “dry cases”; it is com-

puted from 4-km PRISM larger than 0.1 mm ·day−1 grid points only. Given that

ETS and frequency bias evaluate rain/no-rain separations effectively, computing

the mean absolute error from “rain cases” reduces the double penalty problem of

precipitation evaluation, and thus, can compare downscaling methods more fairly.

For ETS and frequency bias evaluations, the interpolated 0.25◦ PRISM per-

formed poorly (Table 4.1). This is an expected outcome because interpolation is

based on the coarse precipitation grid points and distance only, the impact of orog-

raphy is not considered. The BCSD baseline showed almost no improvements from

Interp-PRISM, this is because BCSD does not re-estimate rain/no-rain separations

from its interpolated low-resolution inputs. Its disaggregation factors are computed

from the high-resolution monthly climatology, which is always non-zero. In con-

trast, the Attention-UNET performed better on estimating rain/no-rain events. Its

ETS is 5% to 10% higher than the BCSD baseline in all seasons, and the perfor-

mance gains are statistically significant. All downscaling methods underestimated

grid points of rain events, among which, the Attention-UNET performs the best,

with frequency bias stays close to 1.0 (Table 4.1). For both the ETS and frequency
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bias, their transferring domain scores are generally better. This is likely because

the two domains have different total numbers of grid points to be verified. Regard-

less, the Attention-UNET overperformed the BCSD baseline in both domains and

all seasons.

For mean absolute error, the Attention-UNET performs better than the BCSD

baseline, which in term performs better than the interpolated 0.25◦ PRISM (Ta-

ble 4.2). Here the BCSD baseline reduced roughly 20% mean absolute errors from

the direct interpolation, showing that this method can improve precipitation inten-

sities in downscaling. The Attention-UNET performed better than the BCSD, its

mean absolute error reduction is roughly 5% to 10% for both training and transfer-

ring domains, lower than the improvement amount of BCSD over a direct interpo-

lation, but still statistically significant (Table 4.2).

Combining evaluations above, when evaluating on the 0.25◦ and 4-km near-

real-time PRISM in a separated testing period, the Attention-UNET overperformed

the BCSD baseline in all seasons and domains. The transferring domain data is

not used in the CNN training. Thus, given the consistently good performance of

Attention-UNET across domains, its generalization abilities to unseen regions and

inputs are confirmed. This property has practical significance: post-processing

methods proposed in Chapter 3 may need to be adjusted when implemented op-

erationally. Maintaining the good generalization ability of the downscaling CNN

ensures that when bias-correction and calibration methods are fine-tuned, the re-

sulting precipitation sequences can still be downscaled properly.

4.5 Verifying downscaled precipitation sequences

4.5.1 An example case

The SD methods are explained with their example outputs first. Given the GEFS

0.25◦ ensemble precipitation forecasts initialized on 1 February 2019 with +24

to +48-hour forecast lead times (a similar 3 hour lead time example is provided

in Chapter 3), the AnEn-CNN hybrid with SLs is applied first, producing post-

processed 3-hourly precipitation sequences (SL-CNN). These sequences are then

aggregated to daily values (i.e., day-1 forecast), with one of the members visualized
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Figure 4.4: A downscaling example on 0000 UTC 1 February 2019 with +24-
48 hour forecast lead times. (a) 0.25◦ forecast post-processed by the
AnEn-CNN hybrid in Chapter 3 and with supplemental locations (SLs).
The unit is mm ·day−1. (b) 4-km version of (a) produced by bilinear
interpolation. (c) Downscaled version of (a) produced by the Bias-
corrected Spatial Disaggregation (BCSD). (d) Downscaled version of
(a) produced by the Attention-UNET. (e) Box plots of precipitation bias
for the South Coast stations. (f) same as in (e) but for the Southern
Interior stations. Station locations in (e) and (f) are presented in (b)
with markers. Numbers in (e) and (f) show the mean absolute errors of
Interp-SL, BCSD-SL, and DCNN-SL.

69



in Figure 4.4.a. In this example, bilinear interpolation is applied, converting 0.25◦

precipitation members into 4-km grid spacing (Figure 4.4.b; Interp-SL). Interp-SL

is further served as the input of the two downscaling methods, the BCSD baseline

and the Attention-UNET, which produces BCSD-SL (Figure 4.4.c), and DCNN-SL

(Figure 4.4.d), respectively.

Based on the 0.25◦ post-processed precipitation sequence, two primary precip-

itation regions are found: one along the South and Central Coast, and its forecasted

highest precipitation rate is roughly 80 mm ·day−1. The other precipitation center

is over the Interior mountains, with precipitation rates around 30 mm ·day−1.

The two SD methods preserved the location and intensity of the two precip-

itation centers and assigned more fine-grained details than a plain interpolation.

Impacts of orography are embedded within the downscaled fields. For example,

rain shadow zones can be found in the valleys of the Columbia Mountains and the

eastern side of Vancouver Island (Figure 4.4.c and d).

The downscaled outputs of this example are further evaluated by comparing

their station grid point values to the BC Hydro station observations (markers in Fig-

ure 4.4.b). Based on the boxplot of precipitation bias and the overall mean absolute

error, Attention-UNET produced the best downscaling outputs in this example. For

the South Coast stations, all methods underestimated daily precipitation amounts,

with the Attention-UNET output exhibiting the least underestimation. For South-

ern Interior stations, the medians of bias are close to 0 for all methods. This is in

part because some evaluated stations are not located within the precipitation area.

Regardless, the Attention-UNET performs the best with roughly 10% mean abso-

lute error reductions from the other two methods. Further, the Attention-UNET is

found robust among evaluated stations, the interquartile range of its bias is small

with no outliers. By contrast, the BCSD baseline is less robust. In the South Coast

example, its downscaling bias contains multiple outliers. In the Southern Interior

part of the example, the interquartile range of its bias is the largest of all methods.

4.5.2 CRPSS performance

The two downscaling methods and the direct interpolation are applied to all the

post-processed 0.25◦ precipitation sequences. Their downscaling outputs are veri-

70



Figure 4.5: Verification of downscaled daily precipitation forecasts with
station-wise-mean Continuous Ranked Probability Skill Scores
(CRPSS; higher is better) by forecast lead time. (a) CRPSS averaged
for initializations in October-May for the BCSD baseline (BCSD-SL)
and Attention-UNET (DCNN-SL) as curves, and for interpolated 0.25◦

forecast (Interp-SL) as hatched bars. (c) CRPSS difference between
DCNN-SL and Interp-SL. (e) CRPSS difference between BCSD-SL
and Interp-SL. Panels (b), (d), and (f) are as in (a), (c), and (e), respec-
tively, except with initializations in April-September. Curves and bars
in (a) and (b) are bootstrapped with 100 replicates, with their error bars
representing the 95% Confidence Intervals (CI). Wilcoxon signed-rank
test is applied to CRPSS differences in (c-f) and statistically significant
differences with p-value < 0.01 are shaded.
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fied against BC Hydro observations with CRPSSs (Figure 4.5).

CRPSSs are averaged over all stations and daily forecast lead times. Two sets

of results are produced for cool (October to March) and warm (April to September)

seasons. For short forecast lead times up to day-3, the cool- and warm-season

CRPSSs are comparable, whereas for longer lead times, warm-season CRPSSs are

better. Note that in Chapter 3, strong diurnal cycles are found in the 3-hourly

warm-season CRPSS, and here when precipitation rates are aggregated to daily,

the diurnal cycle is suppressed, leading to more skillful verification scores overall.

The BCSD baseline performed better than the interpolated 0.25◦ forecast with

a small and constant CRPSS increase. This performance gain is statistically signif-

icant in the cool season.

The Attention-UNET performed the best, for short forecast lead times, its

CRPSS increase is roughly 7% relative to the Interp-SL and 5% relative to the

BCSD-SL. For longer forecast lead times, its CRPSS increase gradually approaches

lower but steady values. Excepting the day-6 forecast in the warm-season, the per-

formance gains of the Attention-UNET, relative to the interpolated 0.25◦ forecasts

are statistically significant. This CRPSS increase is also consistent with the mean

absolute error evaluations in Figure 4.4, indicating that Attention-UNET with gen-

eralizable downscaling can improve the forecast skills of the post-processed 0.25◦

GEFS, and this improvement is especially large for short forecast lead times.

4.5.3 Heavy precipitation performance by lead time and hydrologic
region

This section further examines the heavy precipitation performance with the three-

component decomposition of BS and in the form of reliability diagrams. The

verifications are based on daily 90th percentile precipitation event thresholds de-

rived from the ERA5 monthly climatology (Figure 4.6). Compared to value-based

thresholds, percentile-based thresholds are better for handling the spatial hetero-

geneity of precipitation climatology in BC.

For the South Coast and Southern Interior, the 90th percentile thresholds are

higher in summer and lower in winter, with the South Coast thresholds showing

stronger seasonal variations. For the Northeast, its 90th percentile thresholds have

summer maxima and spring minima. Note that the same threshold values are ap-
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Figure 4.6: Box plot of the ERA5-based monthly climatological 90th per-
centiles as mm ·day−1 for (a) the South Coast stations, (b) the Southern
interior stations, and (c) the Northeast stations.

plied in Chapter 3, Section 3.4.3.

South Coast

All methods showed good heavy precipitation calibration performance in the South

Coast (Figure 4.7); their BSSs ranged from 0.49 to 0.52 on day-1 and stabilized

around 0.3 on day-3 and day-5 . The frequency of occurrence and calibration

curves of the two downscaling methods in day-1 and day-3 are similar to the in-

terpolated 0.25◦ forecasts, indicating that both downscaling methods can at least

preserve the skill of post-processed heavy precipitation events. For day-5 forecasts,

calibration curves of the Attention-UNET and the interpolated 0.25◦ forecasts are

still comparable, however, the BCSD calibration curve exhibits more fluctuations

around the diagonal lines, which points to a less skillful performance.

For the BS three-components, the BCSD baseline is better than the interpolated

0.25◦ forecasts for day-1 but slightly worse on day-3 and 5. The BCSD baseline

improved the reliability of heavy precipitation forecasts for all lead times, but it

reduces the resolution on day-3 and day-5. The resolution decrease suppressed the
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Figure 4.7: Verification of downscaled daily precipitation forecasts for binary
events of daily accumulated precipitation larger than the ERA5-based
monthly climatological 90th percentiles. (a-c) Brier Skill Scores (BSS;
higher means better). (d-f) reliability diagrams, frequency of occur-
rence plots, and Brier score (“Brier”; lower is better) decompositions
[reliability (“REL”; lower is better), resolution (“RES”; higher is bet-
ter), and climatological uncertainty (o)]. All scores are averaged over
daily forecasts for day-1, day-3, and day-5, respectively, and displayed
with a scale of 10−2. Red dashed no-skill reference lines, and perfect
reliability diagonal reference lines are included. Calibration curves are
bootstrapped with 100 replicates, with their error bars representing the
95% Confidence Intervals (CI). Note that o is not strictly equal to 0.1
because it is derived from the 2000-2014 ERA5 precipitation, not from
the verified observations in 2017-2019.
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Figure 4.8: As in Figure 4.7, but for the Southern Interior stations.

reliability gain, resulting in a performance downgrade.

Attention-UNET performs the best in all lead times with the highest BSSs, for

day-1 and day-3, it improved both reliability and resolution, with the reliability

improvement accounts for a larger contribution. On day-5, Attention-UNET im-

proved reliability but decreased the resolution. This resolution decrease is some-

what minor compared to the BCSD baseline, and thus, the Attention-UNET still

preserved the overall best BS.
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Southern Interior

For the Southern Interior, the BSSs of all methods are around 0.2. The two down-

scaling methods showed higher BSSs than the interpolated 0.25◦ forecast; their cal-

ibration curves are also close to the diagonal line, indicating skillful calibrations of

heavy precipitation events (Figure 4.8). The BCSD baseline performs better than

the interpolated 0.25◦ forecast in all forecast lead times with improvements in both

reliability and resolution.

Attention-UNET performs even better than the BCSD baseline. It improves

both reliability and resolution compared to the interpolated 0.25◦ forecast. Its reli-

ability improvement is similar to that of the BCSD and the resolution improvement

is even larger. Based on the frequency of occurrence, the Attention-UNET assigned

more heavy precipitation cases correctly, which benefits the resolution increase and

explained its superior performance. Additionally, the bootstrapped errorbars of the

Attention-UNET is the narrowest in all verified lead times. This means its down-

scaling performance is robust among stations and initialization days. This finding

is consistent with the boxplot of precipitation bias in Figure 4.4.

Northeast

All methods performed poorly in the Northeast, with BSSs ranging from 0.18 to

0.2 in day-1 and below 0.2 in day-3 and day-5 (Figure 4.9). The two downscaling

methods showed performance gains on the day-1 forecast; their reliability and res-

olution are both improved, and the reliability improvement is larger. On day-3 and

day-5, the BCSD baseline is generally worse than the interpolated 0.25◦ forecast,

its reliability is worse on day-3 and slightly improved on day-5. The BCSD also

largely downgrades its resolution; its resolution decrease in day-5 is close to 40%.

The Attention-UNET performed slightly better than the BCSD baseline but still

downgrades the calibrated resolution and brings no clear performance gains. Its BS

on day-3 is worse than the interpolated 0.25◦ forecast. On day-5, the Attention-

UNET is the best, however, given the generally poor calibration performance of all

methods (i.e., the lowest BSSs in all regions and forecast lead times), such minor

improvements cannot make heavy precipitation forecasts practically more useful

in this area.
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Figure 4.9: As in Figure 4.7, but for the Northeast stations.

Several reasons may explain the limited performance of downscaling meth-

ods in the Northeast. Precipitation post-processing in this area is challenging in

general because of the subarctic climate and lack of observations. The transfer

learning strategy of this chapter may receive a relatively large impact since its

training domain is selected in the continental western US, which does not contain

sufficient samples for capturing the downscaling relationships in the Northeast. In

addition, bias-correction and calibration methods in Chapter 3 exhibited poor BS

in the Northeast winter, likely because of the complicated GEFS error characteris-

tics. Downscaling methods in this chapter cannot correct specific precipitation bias

patterns in this area; they estimate the high-resolution details of the forecast only.
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Thus, if the post-processed GEFS forecast contains erroneous heavy precipitation

patterns, downscaling methods would still render these patterns on finer scales,

resulting in a decreased calibration performance. The BCSD baseline performed

poorly whereas the Attention-UNET performed slightly better. This is likely a

shred of evidence that the downscaling relationships in the Northeast have strong

nonlinearities. Spatial disaggregation factors used by the BCSD may not approxi-

mate such complicated relationships well compared to a downscaling CNN.

4.5.4 Accumulated heavy precipitation

In this section, downscaled daily precipitation sequences are converted to 7-day

accumulated values and their heavy precipitation forecast skills are verified (Fig-

ure 4.10). The heavy precipitation is defined as events of 7-day accumulated pre-

cipitation larger than the ERA5-based monthly climatological 90th percentiles.

This verification has two purposes. First, it is a good indicator of the practical

usefulness of the CNN-based downscaling methods, because 7-day heavy precip-

itation total forecasts are important for real-world applications like flood risk as-

sessments and volumetric water management. Second, 7-day aggregated precipita-

tion is sensitive to the spatiotemporal co-variability of the downscaled sequences,

which has been reconstructed realistically by the AnEn-CNN hybrid. Thus, this

part of the verification further shows how well the downscaling methods can pro-

duce physically realistic high-resolution sequences.

The BCSD baseline, Attention-UNET, and interpolated 0.25◦ forecasts are in-

volved in this verification. All of them are as reliable as they were for individual

lead times, indicating that the downscaled high-resolution sequences contain ap-

propriate spatiotemporal variabilities. Comparing the three hydrologic regions, the

BSSs in the South Coast are the best, with values ranging from 0.47 to 0.51. The

Southern Interior and Northeast BSSs are relatively low, with values ranging from

0.18 to 0.22 and 0.12 to 0.15, respectively. This regional performance difference

is consistent with Chapter 3, and is explained by the high predictability of synopti-

cally forced precipitation in the winter at the South Coast.

The two downscaling methods performed better than the direct interpolation

in all regions, with the Southern Interior exhibit the largest BSS increase. The
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Figure 4.10: Verification of downscaled daily precipitation forecasts for bi-
nary events of 7-day accumulated precipitation larger than the ERA5-
based monthly climatological 90th percentiles. (a-c) Brier Skill Score
(BSS) averaged over all initializations and stations in the three hy-
drologic regions. (d-f) Reliability diagrams, frequency of occurrence
plots, and decompositions of Brier scores [(“Brier”) as reliability
(“REL”), resolution (“RES”)] for all initializations and stations in the
three hydrologic regions. Red dashed no-skill reference lines, and
perfect reliability diagonal reference lines are included. Calibration
curves are bootstrapped with 100 replicates, with their error bars rep-
resenting the 95% Confidence Intervals (CI). All scores are displayed
with a scale of 10−2. Note that o is not strictly equal to 0.1 because it is
derived from the 2000-2014 ERA5 precipitation, not from the verified
observations in 2017-2019.
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Attention-UNET performed better than the BCSD baseline, its BSS increase over

interpolated 0.25◦ forecasts is roughly 10% in the South Coast and 15% increases

in the Southern Interior.

For BS components, all methods are reliable, with the BCSD baseline showing

the best reliability score in the South Coast and Southern Interior. The interpo-

lated 0.25◦ forecast has the best reliability in the Northeast. The Attention-UNET

performed the best in terms of resolutions; it achieved roughly 20% resolution im-

provements over the interpolated 0.25◦ forecast and even larger improvements in

the Northeast. The overall best BSSs of the Attention-UNET is explained by its

large resolution increase.

For both daily and 7-day heavy precipitation verifications, the BSSs in the

South Coast are generally better. However, in terms of relative performance gains,

the two downscaling methods added more skills in the Southern Interior. This is

likely because orography is relatively more important in approximating the precipi-

tation downscaling relationships in this area. Typically, when moisture flow passes

the Southern interior, it is locally modified by the Columbia-Kootenay and other

local mountains, resulting in orography-related precipitation. By contrast, in the

South Coast, well-organized Pacific frontal systems may have relatively more influ-

ence on precipitation. Orography has an impact on the landing of frontal systems,

however, the main driving force of precipitation, at least initially, is the interplay of

cool and warm air masses, especially the warm air aloft in occluded systems. That

said, the contribution of orography to the frontal precipitation in the South Coast

is relatively low (it is still important in some coastal precipitation events). Thus,

downscaling methods that value high-resolution orography as a key predictor may

have limited abilities on estimating skillful fine-scale frontal precipitation patterns.

Additionally, when intense frontal systems are forecasted, numerical models

like GEFS typically overestimate low precipitation amounts and underestimate

dry areas in long forecast lead times, resulting in a broad area of drizzle. Post-

processing methods cannot recover this drizzle problem completely. If the over-

estimated drizzle in the South Coast are located along the windward slopes, they

could be further amplified by the downscaling relationships, resulting in incorrect

heavy precipitation events.

Next, the two downscaling methods, especially the Attention-UNET, showed
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different effects on the calibrated daily and 7-day resolutions. They likely down-

grade the resolution of calibrated daily forecasts in longer lead times (day-5 results

in Figure 4.8 and Figure 4.9), but when verified on 7-day accumulated totals, they

improved the resolution. A possible reason for such differences is the definition

of heavy precipitation. For 7-day accumulated precipitation, a heavy precipitation

event could be caused by some multi-day continuous light precipitation patterns.

When examined on daily forecast lead times, such cases do not bring heavy precip-

itation, however, for 7-day totals, they may exceed the 90th percentile climatology,

and be identified as 7-day accumulated heavy precipitation events. Downscaling

methods are more skillful in estimating fine-scale, light precipitation patterns (c.f.

the improvements of CRPSSs, which is calculated based on the entire precipitation

intensity spectra), thus, by incorporating more continuous light precipitation cases,

the 7-day verified would show better skill scores.

Lastly, both downscaling methods produced physically realistic precipitation

fields. For the key indicator of 7-day accumulated heavy precipitation, their outputs

are as reliable as they were at daily forecast lead times prior to the downscaling.

The BCSD methods have been widely applied to produce high-resolution precipi-

tation sequences, and their ability in generating physically realistic fields have been

investigated [e.g. 176]. By verifying the BCSD baseline and the Attention-UNET

together, this chapter further confirms that CNN-based SD models can also gener-

ate physically realistic precipitation sequences.

4.6 Discussion and conclusions
A convolutional neural network (CNN), the Attention-UNET, is applied to down-

scale gridded precipitation fields from 0.25◦ to the high-resolution of 4-km. The

Attention-UNET takes high-resolution elevation and precipitation monthly clima-

tology as inputs. Its performance is evaluated first by downscaling coarsened

PRISM data in the transferring domain in the US, and compared to the high-

resolution PRISM target. Based on metrics of mean absolute error, ETS, and fre-

quency bias, the Attention-UNET performed better than the BCSD baseline. This

evaluation confirms that the Attention-UNET can perform downscaling well when

generalized to the unseen transferring domain.

81



Next, the Attention-UNET is applied to downscale the post-processed 0.25◦

GEFS precipitation sequences in Chapter 3. By examining the example case, the

Attention-UNET estimated high-resolution precipitation patterns properly; the im-

pact of orography, including windward slope enhancement and rain shadows, was

correctly rendered. The downscaling outputs of the Attention-UNET are further

verified against the BC Hydro observations. Based on Continuous Ranked Proba-

bility Skill Scores (CRPSSs), the Attention-UNET performed the best. For short

forecast lead times, its CRPSSs increase is roughly 7% relative to the interpolated

0.25◦ forecast and 5% relative to the BCSD baseline. For longer forecast lead

times, the CRPSS increase of the Attention-UNET gradually approaches lower but

steady values; most of them are statistically significant.

The Attention-UNET is also verified in the three hydrologic regions in BC sep-

arately with the focus of heavy precipitation events characterized by the monthly

90th percentile thresholds. For daily verification results, the Attention-UNET per-

formed better than the BCSD baseline in all regions with higher Brier Skill Scores

(BSSs), comparable reliability, and better resolution. It performs the best in the

South Coast and added the most forecast skill in the Southern Interior. Its perfor-

mance in the Northeast and at long forecast lead times are suboptimal. However,

given the difficulty of precipitation post-processing in the area, and the generally

poor forecast skills before downscaling, such limitation is acceptable. For heavy

precipitation verifications of 7-day accumulated precipitation totals, the Attention-

UNET continues to perform better than the BCSD baseline in all hydrologic re-

gions. Its 7-day precipitation totals are as reliable as they were in daily forecast

lead times and are even better in terms of calibrated resolutions.

The research highlight of this chapter is the CNN-based downscaling with gen-

eralization abilities. The Attention-UNET was trained by high-resolution near-

real-time precipitation data in the continental US, to learn downscaling relation-

ships. When it is generalized to BC with GEFS forecasts, it showed good down-

scaling performance and was verified to be better than the BCSD baseline. Besides

Sha et al. [157] and Sha et al. [158], no existing research has implemented SD

models with this setup. This chapter brings new insights into the downscaling of

low-resolution fields. By learning generalizable patterns across multiple domains

and inputs, a CNN can perform downscaling under different post-processing rou-
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tines without requiring extra training data. This would greatly help areas where

high-resolution gridded truth is not available.
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Chapter 5

Automated precipitation
observation quality control

5.1 Problem statement
Precipitation-observation quality control (QC) is a longstanding challenge because

of its high spatial and temporal variability with skewed intensity spectra: the major-

ity of precipitation observations are zero or close to zero; while rare extreme events

can bring abnormally high precipitation values that behave similarly to spurious

outliers. On the instrumental side, gauge-based precipitation measurements are bi-

ased by both systematic instrumental errors (e.g., splashing/blowing of rain/snow

in/out of the gauge, losses due to the aerodynamic effects above the gauge orifice,

water adhering to the gauge surface and evaporation, etc.) [1, 50, 142, 193], and

technical or maintenance issues (e.g., mechanical malfunctions, data transmission

error, Groisman and Legates 52).

Precipitation observation QC is complicated in BC by its complex terrain,

which negatively impacts the continuity, reliability, and spatial representativeness

of ground-based observations [6]. Good quality observations are needed in numer-

ical weather prediction for post-processing, verifying, and analyzing the forecast.

Moreover, hydrology models are sensitive to the station precipitation inputs [e.g.

124, 128]. Small changes in precipitation can cause large changes in watershed

response. Thus, excluding bad gauge values to preserve the quality of precipitation
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observations is particularly important for the BC watersheds.

In Chapter 3 and 4, manually QC’d observations were applied. However, this

requires a high amount of human power, and frequently causes delays in near-real-

time operations as human quality control is not often performed 24/7.

Sophisticated QC procedures have been carried out in various meteorological

and hydrological research projects. These QC procedures are typically a mix of

automated examination of internal consistencies (i.e., checks of value range, rate of

change, and homogeneity with predefined thresholds) [2, 35, 119, 154] and human-

based QC with graphical workstations (i.e., displaying precipitation values together

with orography and other background fields to determine their quality) [e.g. 2, 85,

154, 186]. Although human-involved QC has reported success in many projects,

this approach is resource-intensive and can cause delays when processing a high

volume of data [122]. Human QC may also bring subjectivity into the quality

labels, resulting in a downgrade of data quality.

Many automated observation QC methods have been proposed to reduce the

workload of human-based QC, including: (1) time-series-based anomaly detection

[e.g. 122, 133, 194]; (2) cross-validating neighboring stations with geostatistical

methods [e.g 34, 79, 187, 200]; and (3) bad-value classification with decision trees

[e.g. 113, 139] and neural networks [99, 100, 156, 197].

This chapter provides a novel automated QC approach for precipitation obser-

vations with Deep artificial Neural Networks (DNNs). The automated QC is de-

fined as a binary classification problem—that is, classifying each observation with

a “good” or “bad” QC flag. The type of DNN applied in this study is a Convolu-

tional Neural Network (CNN). The CNNs take station precipitation observations,

pre-processed gridded precipitation and elevation values centred around each sta-

tion location as inputs, using human-labeled quality flags as training targets.

Based on the ability of CNNs to learn from gridded data, this chapter aims to

provide an automated QC method that requires less data dependencies. As it will

be introduced later, the gauge data are obtained from the BC Hydro observation

network, however, the generalization of this methodology and data dependency

replacements are also discussed. This is in contrast to many existing QC methods

that require a greater number of observational data sources and/or ones with greater

spatial coverage (e.g., closely located neighboring stations [116], radar coverage
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[113, 139]).

Based on the above concepts, this chapter applies the following hypotheses:

CNNs are capable of (1) learning representations of precipitation patterns from

gridded precipitation input, (2) learning representations of complex terrain condi-

tions from gridded elevation input, and (3) utilizing these representations to clas-

sify QC flags. Further, with the above research hypotheses, the following research

questions are addressed: (1) How well can CNNs classify QC flags? (2) What is

the role of elevation input in this QC problem? (3) Given the imperfection of grid-

ded precipitation analysis, can it be pre-processed as an effective CNN input? (4)

Can the classification behavior of CNNs in this QC problem be explained?

5.2 Data

5.2.1 Station observations

The 80 BC Hydro station observations from 0000 PST 1 Jan 2016 to 0000 PST

1 Jan 2018 are selected by this chapter. The stations are located in three hydro-

logic regions: the South coast, Southern Interior, and Northeast (Figure 5.1, also

see Chapter 2). The raw instrumental values are the QC input, whereas the hu-

man QC’d values are converted to binary quality labels and used for training and

evaluation. data preprocessing details are provided in Section 5.3.5.

5.2.2 Gridded data

This chapter considers two gridded predictors: the ETOPO1 elevation and the

RDPA accumulated 6-h precipitation. Following introductions of datasets in Chap-

ter 2, the RDPA precipitation exhibits generally good and homogeneous skill through-

out Canada [105]. It outperforms its model background field [105], and several

observation-only products [41, 183].

The RDPA data is applied in particular because it has high spatial and temporal

resolutions, is available in near-real time and is an optimized combination of pre-

cipitation estimation from numerical model, radar and ECCC station observations.

Additionally, the RDPA covers the entire land territory of Canada, including areas

north of 60◦N. The gridded precipitation information in the north is a key input for
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Figure 5.1: (a) Locations of BC Hydro precipitation gauge stations as clas-
sified into three geographical regions with elevation (color shaded) and
watersheds (hatched) as background. (b, c, d) Numbers of non-zero,
resampled observations from each BC Hydro station in each region af-
ter preprocessing. (e) The total number of preprocessed observations in
regions from (b), (c), and (d).

QC’ing stations in the Northeast. Figure 5.2.a provides an example of the RDPA

during a precipitation event.

That said, there are caveats to using the RDPA. Coverage of weather-station

and radar data ingested into the analysis in BC is mostly in southern BC. Further,

several studies have concluded that the RDPA underestimates solid precipitation

[e.g. 15, 41]. This is because many precipitation observations and radar data in

the cool season are discarded in the RDPA due to a high probability of snow mea-

surement bias (Canadian Centre for Climate Services 14; personal communication,

ECCC 2019); section 5.4.2 will also elaborate the technical challenges of snow ob-

servations. The result is that, outside of the population centers of southern BC, and

especially in winter, RDPA values are largely from the RDPS background field.

Despite this, it still contains useful information about the likely spatial distribu-

tion and magnitude of precipitation. It is best, however, not to use the RDPA to

match with BC Hydro station observations on a point-by-point basis, but rather for
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Figure 5.2: (a) An example precipitation event. Precipitation values shown
are hourly precipitation rates for the 6-h ending 1200 UTC 3 January
2016. Color shading is the Regional Deterministic Precipitation Analy-
sis (RDPA), while circled and triangular markers are manually labeled
good and bad quality BCH observations. (b) Same as in (a), but with a
specific bad observation (color-filled triangle), and spatial coverage of
re-gridded RDPA/ETOPO1 64-by-64 sized inputs (dashed boxes).

information about precipitation patterns around the target station.

5.3 Method

5.3.1 The use of gridded data

The RDPA is used as an information source for the spatial distribution of pre-

cipitation around a station. It is hypothesized that differentiating between no/low

precipitation and high precipitation zones is more important than the specific pre-

cipitation rate value at a single grid point. When a non-zero observation value is

within an RDPA high precipitation area, as opposed to a precipitation-free area,

it should have a higher chance to be labeled as “good”, and vice versa. One ex-

ample of the above statement is provided in Figure 5.2.a. In a precipitation event

affecting the South Coast of BC, two Southern Interior stations reported non-zero

values. These two stations are located in a precipitation-free area, and far from the
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main precipitation area. The human QC team classified these two observations as

unreliable, and corrected them to zero.

To compare observed values to their surrounding precipitation-orography pat-

terns, multiple subsets of grid points from RDPA and ETOPO1 around the location

of each station are obtained as inputs (Figure 5.2.b). The effectiveness of the RDPA

and ETOPO1 subsets depends on their spatial coverage. Ideally, these subsets

should be large enough to cover the precipitation pattern around the target station,

and small enough to avoid more remote, irrelevant precipitation systems. Precip-

itation features of potential importance vary widely due to orographic and synop-

tic forcings. Here, a range of scales is considered, with the RDPA and ETOPO1

both re-gridded to roughly 38-, 30-, 22-, 15- and 10-km grid spacings on regular

latitude-longitude grids. Given the spatial extend of GDPA and locations of the

Northeast stations, 38 km is the largest grid spacing that can be effectively regrid-

ded. The other smaller grid spacing ranges were adjusted based on this spatial limit.

64-by-64-grid-point subsets of the re-gridded RDPA and ETOPO1 data centered on

the location of each station were selected (dashed boxes in Figure 5.2.b); their cen-

termost 2-by-2 grid points were replaced with the raw observation value. QC is per-

formed on each grid spacing separately to consider precipitation information across

different spatial scales. Spatial resolutions finer than 10-km were not considered

since the RDPA is mainly populated by the model first-guess field around station

locations (see Section 5.2.2), which cannot resolve features at smaller scales. Fur-

ther, as will be shown, finer grid spacings perform worse. Details of re-gridding,

cropping and gridded data-observation matching are summarized in section 5.3.5.

5.3.2 CNN-based classifier

A ResNet-like CNN is applied to build QC classifiers [68]; its architecture com-

bines skip connections and densely stacked hidden layers as identity blocks (Fig-

ure 5.3), which can solve the vanishing gradient problem in CNN training. Over-

all 18 stacked hidden layers were configured, each has a convolutional layer with

valid padding, Batch Normalization (BN) [81], Parametric Rectified Linear Unit

(PReLU) [69] activation function and spatial dropout [168] (Figure 5.3).

The CNN takes 64-by-64-grid-point inputs with two channels and produces
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Figure 5.3: (a) The design of the CNN classifier and (b) identity blocks. For
the convolutional layers that contain identity blocks, Batch Normaliza-
tion (BN) and Parametric Rectified Linear Unit (PReLU) are calculated
before entering an identity block. Spatial dropout is performed at the
end of an identity block.

classification probabilities through a sigmoid kernel. It is trained with cross-entropy

loss and the adaptive moment estimation optimizer [89]. Learning rate decay and

early stopping are applied during the training.

5.3.3 Classifier ensembles

By training CNN classifiers separately for different grid spacing samples, they can

predict QC flags independently. For combining these QC flags into a single proba-

bilistic value, a commonly used approach is the ensemble learning [e.g. 83]. Here

a fully connected artificial neural network with a single hidden layer, ten hidden

nodes, and hyperbolic tangent activation functions, is used to produce the classifi-

cation ensemble results. As above, the inference process can be formed effectively

as a workflow (Figure 5.4).

5.3.4 Baseline models

For evaluating the actual performance gain of the CNN-based classifiers (hereafter

“main classifiers”), three sets of classification baselines are proposed.
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Figure 5.4: The workflow of the QC system, where red and yellow objects
indicate the data pipeline. Blue objects are the classifiers and multi-
scale classifier ensemble. Green circles are probabilistic outputs/QC
flags.

1. The Multilayer Perceptrons (MLPs; one for each grid spacing) are used as

a non-CNN baseline. Each MLP classifier has 128 hidden layer nodes with

tanh activation function and takes raw values and their nearest 64 re-gridded

RDPA grid points as input.

2. Decision trees (one for each grid spacing) are used as another non-CNN

baseline. Each decision tree classifier takes the same input as MLP base-

lines, and is trained independently in two stages. In stage one, the trees are

trained with Gini impurity and are allowed to grow to full-size. In stage two,

the cost-complexity pruning algorithm is applied to remove the overfitted

subtrees [9, 141]. The pruning factor is identified through a grid search, and

is based on the validation set performance.

3. CNNs without elevation input (one for each grid spacing) are used as the

CNN baseline. These CNN classifiers have the same architecture as the main

91



classifiers in Figure 5.3, but are configured without re-gridded elevation in-

puts.

The MLP and decision tree baselines are external; they were proposed by ex-

isting research, and were recognized as effective means for QC’ing gauge observa-

tions [113, 139, 156], weather radar reflectivity [99], and radar precipitation [100].

For avoiding the shift-of-region and -sample bias, external baselines are not directly

ported from their original research, but rather, customized based on the data and

learning task of this chapter. For MLPs, their network architecture, activations, and

training procedures are implemented as Lakshmanan et al. [100], but they are as-

signed more hidden nodes for handling grid-point-wise inputs. For decision trees,

the knowledge-based tree split in Qi et al. [139] is replaced with likelihood-based

split, so they can be adapted to the BCH quality labels.

No previous research has experimented with CNN-based precipitation QC.

Thus, the CNN baseline of this chapter is internal. By comparing the CNN base-

line with two external baselines, the advantages of CNNs on incorporating gridded

precipitation patterns around a station can be evaluated. Further, by comparing the

main classifiers with the CNN baseline, the importance of incorporating gridded

elevation can be identified.

5.3.5 Data pre-processing

Gauge observations

The raw and human QC’d BC Hydro station observations from 0000 PST 1 Jan

2016 to 0000 PST 1 Jan 2018 were selected and converted to precipitation rates

(mm s−1) by calculating the height and time difference from the previous observa-

tion. Missing values and negative precipitation rates are discarded.

The selected precipitation rates are resampled to every 30 min by linear inter-

polation. Each resampled value represents the average precipitation rate for the

preceding 30 min. The goal of resampling is to prevent the QC system from over-

fitting specific combinations of stations and their observation intervals. If a pre-

cipitation rate with a different interval (e.g., hourly or 6-hourly) is desired by an

end-user, the QC’d 30-min rate(s) and quality flag(s) can be merged to the desired
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interval in a subsequent operational step.

Quality labels are assigned based on the resampled raw precipitation rates

(hereafter “raw values”) by their additive difference from the resampled, human

QC’d precipitation rates (hereafter “QC’d values”). If the difference between raw

values and QC’d values was larger than 1/7200 mm h−1 (0.5 mm s−1), that in-

dicates the human QC process classified the raw value as bad (and thus changed

it), and the value is labeled as “bad”. Otherwise, a “good” quality flag will be

assigned. 1/7200 mm h−1 is specified as the threshold value because the smallest

possible difference that the lowest temporal resolution gauge data can report is 1

mm per 2 h, which converts to 1/7200 mm h−1 when resampled to every 30 min.

After pre-processing, 2,429,047 raw and QC’d value pairs are preserved; 1,972,840

(81.2%) samples have a raw value of zero and 456,207 (18.8%) are non-zero. It is

found that 1,968,095 (99.8%) of the zero raw values have corresponding zero QC’d

values, which means raw values of zero are almost surely good quality with no QC

process needed. For non-zero raw values, 129,269 (28.3%) of them have bad qual-

ity flags. It is found that most of the human labeled bad-quality flags are because of

erroneous observations, and thus, non-zero raw values need to be QC’d. Ignoring

zero raw values also has the benefit of reducing the redundancy and skewness of

samples.

Although the selected 80 BC Hydro stations are arranged within the same ob-

servation network, their type of instruments, observation frequency, and the num-

ber of non-zero raw values all vary. So their number of preserved samples after pre-

processing varies. By watershed regions in the domain, the ratios of South Coast,

Southern Interior, and Northeast BC station sample sizes are roughly 1:1.5:0.65,

respectively (Figure 5.1).

RDPA and ETOPO1

The RDPA and ETOPO1 datasets are regridded to roughly 38-, 30-, 22-, 15- and

10-km grid spacings. RDPA is also converted from 6-h accumulated precipitation

(in mm) to precipitation rate (in mm s−1) to match the units of observations.
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Data matching, standardization and separation

Pre-processed observations and re-gridded RDPA/ETOPO1 datasets are paired spa-

tially by searching the nearest re-gridded grid point for each station (hereafter “sta-

tion grid point”). The re-gridded RDPA and ETOPO1 are cropped into 64-by-64

subsets centered on the station grid point. The 2-by-2 re-gridded RDPA values

at the center of the cropping (i.e., the 32-nd and 33-rd grid points, where the 32-

nd grid point is the station grid point) are replaced by the raw observation value.

The resulting 64-by-64 RDPA/raw-value croppings, along with the paired ETOPO1

croppings, form the CNN inputs (see Figure 5.2.b).

For temporal matching, each pre-processed RDPA frame represents the mean

precipitation rate for the previous 6 h, whereas each resampled raw value represents

the mean precipitation rate for the previous 30 min; the raw values and QC flags

are matched with the RDPA time window that they fall within. Perfect temporal

matching between RDPA and observations is not needed because the QC process,

as explained in Section 5.3.1, does not rely heavily on point-to-point comparisons,

and it is impossible because near-real-time observations have clearly higher fre-

quencies.

All datasets are standardized through minimum-maximum normalization. The

precipitation input croppings are normalized independently to avoid the strong fluc-

tuations of scales across dry and rainy seasons.

The 2016 data is used for training; and data in 2017 within 15-day continuous

periods starting at a random day of February, April, June, October for validation;

and the rest of the 2017 data for testing. Training and validation data are split

into balanced batches with each batch containing 100 bad raw value samples and

100 good raw value samples (i.e., a balanced batch size of 200). Testing data are

grouped separately for evaluations. It contains 6,700 bad and 24,060 good raw

value samples, respectively. Note that missing RDPA data and the rounding of a

fixed batch size will discard a small part of the pre-processed data.

5.3.6 Verification methods

QC verifications consider the “good” quality for a given observation as the true

null hypothesis, or the “negative class,” because the majority of observations are of
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Table 5.1: List of QC evaluation metrics.

Name and acronym Definition Explanation

True Positives (TP) -
Number of correctly classified
bad observations

True Negatives (TN) -
Number of correctly classified
good observations

False Positives (FP) -
Number of misclassified good
observations (type I error)

False Negatives (FN) -
Number of misclassified bad
observations (type II error)

Condition positive (P) TP+FN Number of bad observations

Condition negative (N) TN+FP Number of good observations

True Positive Rate (TPR) TP/(TP+FN)
Correctly classified bad
observations relative to the
real bad observations

True Negative Rate (TNR) TN/(TN+FP)
Correctly classified good
observations relative to the
real good observations

False Positive Rate (FPR) FP/(TN+FP)
Misclassified good
observations relative to the
real good observations

False Negative Rate (FNR) FN/(TP+FN)
Misclassified bad
observations relative to the
real bad observations
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good quality; vice versa for “bad” quality and the “positive class”.

QC metrics are derived from confusion matrix elements [e.g. 181] to verify

classification results (Table 5.1). The Receiver Operating Characteristic (ROC)

curve and Area Under Curve (AUC) are also used for measuring the general clas-

sification performance.

If the QC classification is imperfect, minimizing type II errors (False Nega-

tives, FN) is more preferred than type I errors (False Positives, FP) because type

II errors introduce bad quality observations into the QC’d dataset, and can cause

larger impacts in operations downstream of the QC process.

The evaluation is based on a balanced subset of 13,400 samples randomly

drawn from the testing set. A unified 0.5 threshold is used for converting clas-

sification probabilities into binary labels; i.e., assigning positive class for output

probabilities greater than or equal to 0.5. The choice of a 0.5 threshold provides

a fair comparison between the main classifiers and baselines on a balanced testing

set. The adjustment of thresholds for skewed data distributions are addressed in

Section 5.4.3.

5.4 Results

5.4.1 General classification performance

The main classifiers outperform the CNN baseline, which in turn outperforms the

decision tree and MLP baselines. The performance gain from decision tree/MLP to

CNN baselines across all grid spacings, as indicated by lower False Positive Rate

(FPR) and False Negative Rate (FNR) (cf. Figure 5.5.a, b and c), demonstrates

the ability of CNN-based classifiers to extract effective representations from grid-

ded precipitation inputs. The MLP baseline has the poorest performance, overper-

formed by decision trees that showed lower FNR and higher AUC (cf. Figure 5.5.a

and b). A probable explanation is that MLPs are more affected by the training set

overfitting, whereas the decision trees are pruned to down-weight input features

with a high variance. Besides the good performance of complicated CNNs, we

think decision-tree-based QC is also a valuable approach for its simplicity and is a

useful benchmark for classification-based QC comparison.
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Figure 5.5: Evaluation metrics (along bottom x-axis) for (a) MLP baseline,
(b) decision tree baseline, (c) CNN baseline, and (d) main classifiers.
Text on the top right of (a, b, c) shows the AUC of the best single clas-
sifier member, and (d) for main classifier ensemble also.

The performance gain of the main classifiers over the CNN baseline, due to the

addition of gridded elevation inputs in the former, shows the ability of CNNs to

utilize the provided elevation input (Figure 5.5.b and c). Performance gains for the

main classifiers over the CNN baselines are found across all input grid spacings,

with 38-km grid spacing classifiers seeing the largest gain on True Positive Rate

(TPR) (from 0.807 to 0.873), and 15-km grid spacing classifiers showing the largest

gain on True Negative Rate (TNR) (from 0.709 to 0.788).

For CNN baselines, 15-, 10-km (hereafter “fine grid spacings”) and 38-, 30-,

22-km (hereafter “coarse grid spacings”) classifiers show clear differences; coarse

grid spacings produce better (lower) FPR errors whereas fine grid spacings produce

better (lower) FNR errors (Figure 5.5.b). This phenomenon is less prevalent in

the main classifiers, indicating that by incorporating elevation inputs, which can

represent scale-sensitive precipitation-orography relationships, the impact of grid

spacing is reduced.
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Figure 5.6: (a) ROCs of best-performing grid spacing from each classifier
configuration, and the main classifier ensemble. Shaded uncertainties
are three times the standard deviations (std) of true positives during the
bootstrapping. (b, c, d, and e) Histograms of AUCs from bootstrapping
for each classifier member and classifier configuration. The standard
deviations of AUCs are listed in the legend at the bottom right with
numbers representing classifiers in (b, c, d, and e), respectively.

The main classifier ensemble has the most balanced classification metrics with

the lowest FNR; this is preferred in this QC problem because it introduces fewer

bad values into the QC’d outputs.

Bootstrapping is applied with 200 iterations to further evaluate the QC classi-

fication performance. For each iteration, a new testing set is formed with 13,400

samples. ROC and AUC are calculated during the bootstrapping along with his-

tograms (Figure 5.6). Bootstrapping is performed by randomly sampling, and se-

lecting the testing set, with replacement. Metrics are calculated on each sampling

iteration independently. By measuring the variation of bootstrapped metrics, one

can identify which classifier is most robust against testing set perturbations (a de-

sired trait).
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The results from bootstrapped AUCs are consistent with those from Figure 5.5.

The CNN baselines outperform the decision tree and MLP baselines, where the

lowest bootstrapped AUC of the former are larger (better) than the highest boot-

strapped AUC of the latter (cf. Figure 5.6.b, c and d). The worst performing main

classifier also has its mean bootstrapped AUCs higher than the highest performing

CNN baseline classifier (cf. Figure 5.6.d and e). Lastly, the bootstrapped AUCs of

the main classifier ensemble are higher than the AUCs of any other single classifier

member, confirming the performance gain of ensemble learning.

For both the main and baseline classifiers, better (higher) AUCs are found for

coarse grid spacing members. 30-km grid spacing works the best for the main clas-

sifier, and 38- and 22-km grid spacings work best for the MLP and CNN baselines.

10-km grid spacing leads to the worst bootstrapped AUCs for all three classifier

types (Figure 5.6.b, c, and d).

Based on the standard deviation in Figure 5.6, the MLP and decision tree base-

lines are the least robust, followed by the CNN baseline classifiers. Main classifiers

have the lowest standard deviation, and so are the most robust classifiers.

5.4.2 Classification performance by region and season

The sample pool of this chapter has unequal numbers of stations within the three

geographical regions (see Chapter 1, Section 1.4), so it is important to examine the

performance of main classifiers on a regional basis (Figure 5.7).

The main classifiers behave differently across regions, with FNR larger than

FPR for South Coast stations, and the opposite for Southern Interior and Northeast

BC stations. The main classifier ensemble produces a relatively high AUC for the

South Coast and Southern Interior stations, indicating generally good classification

performance in these two regions. For Northeast BC stations, the main classifier

ensemble AUC is lower than the other two regions, but given that most of the

misclassification cases are type I errors, the QC performance in this region is still

acceptable—a relatively greater number of good values would be thrown out, but

the remaining data would still be of high quality.

The best-performing main classifier member varies among different regions.

The 22-km grid spacing classifier is the best member for the South Coast; its AUC
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Figure 5.7: Regional evaluation metrics for the main classifiers for (a) South
Coast stations, (b) Southern Interior stations, and (c) Northeast BC sta-
tions. Text on the top right of each row shows the AUCs of the main
classifier ensemble and best single classifier member, and the number
of positive and negative samples that support this evaluation.

(0.861) is even higher than the classifier ensemble (0.860). The 30-km classifier is

the best member for Southern Interior and Northeast BC stations, its AUCs (0.828

and 0.793) are slightly lower than the classifier ensemble (0.840 and 0.802).

Note that Northeast BC is the minority region of the sample pool (Figure 5.1.e).

Thus the low classification performances in this region could be attributed to their

lower representativeness within the training data rather than the classifier itself.

The main classifier ensemble is also evaluated by season, with JJA/SON testing

set classification results showing slightly better AUCs than those of DJF/MAM

(Table 5.2). The DJF classification result shows relatively high type I error, similar

to the evaluation of Northeast BC stations—too many good quality observations

are misclassified as bad (high FPR), but the remaining data is of high quality (low

FNR).

The main classifier ensemble is further evaluated on solid-precipitation-only

observations in DJF. Given that BCH stations provide air temperature, but not hu-

midity observations, solid precipitation is determined by a threshold of observed
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Table 5.2: Evaluation metrics for the main classifier ensemble for different
seasons in the testing set, and specifically for solid, winter precipitation.
The threshold of the classifier is 0.5.

Season1 TP
TPR

FP
FPR

TN
TNR

FN
FNR

AUC TP+FN TN+FP

DJF
1512
0.869

286
0.176

1339
0.824

228
0.131

0.846 1740 1625

DJF,
solid precip.2

1075
0.913

326
0.319

695
0.681

102
0.087

0.797 1177 1021

MAM
1313
0.848

249
0.152

1389
0.848

235
0.152

0.848 1548 1638

JJA
1493
0.853

252
0.145

1484
0.855

257
0.147

0.854 1750 1736

SON
1421
0.855

253
0.149

1448
0.851

241
0.145

0.853 1662 1701

1 Part of the February, April, June, and October days are not covered by the testing set (see
Section 5.3.5).

2 Solid precipitation is assumed to occur at air temperatures below -1.0 ◦C.

air temperature below -1.0 ◦C (Table 5.2; both are resampled to every 30 min). This

threshold is only used to select solid precipitation periods for evaluation purposes

(i.e., not part of the QC method). Its value is relatively low compared with other

studies [e.g. 88, 107, 121] to ensure that virtually all of the selected observations

are in the solid phase. The solid precipitation evaluation indicates an even higher

type I error with low AUC (0.796), high FPR (0.319) and low FNR (0.087).

Two reasons that could explain the high type I error for the DJF testing set

(and especially for solid precipitation) are: (1) the RDPA data may underestimate

the amount of solid precipitation (for details see Section 5.2.2), and (2) precipita-

tion gauge inaccuracies are likely larger for solid precipitation. For example, wet

snow can stick to the inside of the gauge orifice or form a cap over the top of the

gauge, delaying the observed timing of solid precipitation events [50]. Both (1)

and (2) could cause more frequent mismatches between the observed solid precip-

itation and the precipitation pattern indicated by the RDPA, encouraging the CNN

classifiers to produce bad quality flags.

Summarizing the general, region-specific, and season-specific evaluations, the
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Figure 5.8: Two examples of the main classifier ensemble thresholding with
ROC curves (left panel), and evaluation metrics before and after thresh-
olding (right panel).

main classifier ensemble performs the best. Its AUCs for the Northeast BC sta-

tions, and DJF (especially for solid precipitation), are worse than other subsets

of the data, but the cause of misclassification is type I error, which still ensures

the quality of remaining data. Given that winter precipitation observation contains

high uncertainty [142], and is rejected very often in other automated QC research

[e.g. 113], the relatively high type I error here is likely an unavoidable limitation.

5.4.3 Performance and adjustments on skewed data

This section explores how to adjust the probabilistic threshold on unbalanced data.

The illustration of classifier thresholding is based on synthesized “good station”

and “bad station” cases. Good stations are positively skewed, with condition posi-

tive (P) smaller than condition negative (N; P� N); whereas the bad stations are

negatively skewed, with N�P. The first and last 25 stations in the rankings of N/P

ratio are selected for the above data synthesis. On average, good stations contain

95% good quality raw values, whereas for bad stations this ratio is 39% (Figure 5.8,

right panel).

When a new station joins the observation network, no prior can be provided

regarding its proportion of good and bad observations, one may choose 0.5 as the
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threshold. However if this new station does not produce a comparable number of

good and bad observations, the threshold of 0.5 can lead to suboptimal QC perfor-

mance. If manual labels became available after the new station was established,

then a thresholding step could be conducted. Figure 5.8 provides examples of this

ROC-based thresholding that maximizes the difference of True Positive (TP) and

False Positive (FP), with a grid search from 0.001 to 0.999. For the good station

case, the optimized threshold is lower than 0.5, which identifies more bad obser-

vations by eliminating slightly more good observations, vice versa for the “bad

station” case.

The QC performance is slightly worse for the bad stations, with a lower AUC

(0.805, compared with 0.875 for the good stations (Figure 5.8). However, given

that for all 80 stations involved in this chapter, the overall percentage of good QC

flags is 71.7% (see section 5.3.5), new stations are more likely to be similar to

the “good station” case, where the QC classifiers and relatively low thresholds are

expected to perform well.

Note that thresholding is not part of the (probabilistic) classification, but a sep-

arated “decision making” step. Thus, the training and evaluation of classifiers can

still be based on balanced datasets. Meanwhile, by using information from the

manual labels, the thresholding strategy can be tailored, for example, per season

and per station.

5.4.4 Comparison with human QC

This section compares the main CNN-based classifier QC to human QC by visual

inspections of their agreements and disagreements. The human QC of BC Hydro

station observations is based on the 15-km RDPA precipitation maps and knowl-

edge of orography—the same type of inputs as this method. The example station

selected here is a valley station located in the Southern Interior region. In this ex-

ample, disagreements between CNN-based QC and human QC typically happen

for low precipitation raw observation values that are outside of large scale RDPA

precipitation areas (FP), or high precipitation raw observation values that are within

an RDPA low precipitation area (FN).

For the FP example (Figure 5.9.a, the purple mark), human QC marked it as
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Figure 5.9: Comparison of CNN-based QC and human QC for a Southern In-
terior station from February 15 to April 1, 2016. (a) Time series of bad
value probabilities estimated by the CNN classifier ensemble (gray) and
human QC flags (black). (b) Raw (gray solid) and human QC’d (black
dashed) precipitation rates. Red and purple markings in (a) and (b) de-
note the same False Negative (FN) and False Positive (FP) examples in
each plot, respectively. (c, d, e, f) RDPA precipitation field correspond-
ing to each example. 38- and 15-km grid spacing precipitation fields are
shown for the two cases. Arrows point to the precipitation field grid box
that has been replaced by raw station values.

good quality because its precipitation rate is lower than 0.2 mm/hour, roughly the

same level as its corresponding 15-km RDPA grid point values (Figure 5.9.d). The

CNN main classifier ensemble likely marked it as bad quality since in the coarser

normalized precipitation fields (Figure 5.9.c), this non-zero precipitation value is

far from a precipitation area.

For the FN example (Figure 5.9.a, the red mark), human QC corrected the raw

value from 0.8 mm/hour to zero because its surrounding 15-km RDPA grid points

showed lower, near-zero precipitation rates. On the contrary, CNN likely marked

it as good quality because this non-zero precipitation is within precipitation areas,

close to and downstream of similarly high precipitation rates in the Southwest BC
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Figure 5.10: Saliency maps for the five main classifiers for three stations (or-
ange dots) that represent the three regions in this study. Black contours
are the standardized and filtered first EOF mode of the gradient of class
score. The explained variance of the EOF mode is shown on the top
left. Color shading is the composite of normalized RDPA precipitation
fields from the positive EOF coefficient series.

(Figure 5.9.f).

Since human labels are not perfect in every single case, it is hard to conclude

which QC method is correct for these two examples. However, based on Fig-

ure 5.7.a, the CNN-based QC is making reasonable decisions for the majority of

data points, focusing on proximity, magnitudes, and precipitation patterns.

5.5 Interpretation analysis
Based on the analysis of classification performance in section 5.4, two important

findings remain unexplained: (1) the grid spacing of the original RDPA data is

about 10 km, but the classifier that takes 10 km grid spacing input features showed

the worst performance (Figure 5.6.b-d). Aggregated coarse input benefits discrim-

ination for all classifier configurations including the two baselines and the main

classifiers. (2) The main classifier ensemble is, in general, the best discriminator,
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but it is outperformed by the main classifier member with 22-km grid spacing input

for South Coast stations.

For the first finding above, one hypothesis is that the RDPS forecast, which

provides the background field of the RDPA, has lower skills for small-scale precip-

itation details. For the second finding, the hypothesis is that the 22-km classifier

can extract a unique scale of precipitation pattern that is specific to the QC of South

Coast stations. The two hypotheses are investigated via interpretation analyses of

pre-trained CNNs.

The saliency map is applied in this section. When applied to CNNs, a saliency

map visualizes the computed gradient of the class score with respect to a given

input sample and a given hidden neuron [161]. By visualizing the class score gra-

dients, the predictive importance of each hidden neuron for each input sample can

be diagnosed. In this chapter, saliency maps give insights as to which part of the

gridded precipitation and elevation fields exhibit stronger influence in the decision-

making of CNNs. By investigating this information, process-based evaluation can

be applied, which is expected to explain the two findings identified above.

For each main classifier, saliency maps are computed from (1) the last hidden

layer neurons with positive weights; (2) the top 200 True Negative (TN; correctly

classified negative class) training samples; and (3) the precipitation input channel.

In total, this results in 80,000 saliency maps per classifier (400 neurons times 200

samples times 1 channel).

Many existing studies directly choose the saliency map computed from neurons

with the highest weight or simply show some successful examples [e.g. 164, 196].

However, the hidden neuron with the highest weights is not guaranteed to be the

hidden neuron with the strongest discriminative abilities. Empirical Orthogonal

Function (EOF) analysis is applied to reduce the dimensionality of all 80,000

saliency maps by extracting the most representative spatial patterns and their corre-

sponding coefficient series. EOF (also known as the “principal component analy-

sis”) is an exploratory data analysis algorithm that reduces the dimensionality (and

thus, the complexity) of data by extracting components of the data that explain the

highest amount of variation [181].

EOF analysis is performed on saliency maps subsets as grouped by classifier

and region. Each of the three regions (Figure 5.1) is represented by the station that
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appeared most frequently among all the selected neurons. This selection typically

leads to 200-5,000 saliency maps for each saliency map subset. The first mode

of the EOF is preserved, and its corresponding precipitation input precipitation

field is calculated from the composite of the positive EOF coefficient series. After

EOF-based dimensionality reduction, 15 compressed saliency fields (black con-

tours, Figure 5.10) and their corresponding composite of input feature fields (color

shading, Figure 5.10) are formed; together they illustrate the most representative

pattern of the gradient class score for a given main classifier and region. For visu-

alization purposes, saliency maps are filtered by Gaussian smoothers to remove the

“checkerboard artifacts”.

Input feature map grid points with positive saliency map values (gradient of

class scores) indicate the discriminatory ability of a given neuron for the positive

class, and vice versa. Here, since all the saliency maps are computed for TN sam-

ples, precipitation field with negative saliency map values are considered. Also,

since the saliency maps are compressed as EOF modes, their values here represent

an abstract of all the selected neurons. In general, negative saliency map values are

found around the location of the station. Since the raw station precipitation values

are ensured to be non-zero, this means the positive precipitation values around the

station would benefit the labelling of this raw value as the negative class (a good

observation). Negative saliency map values are also found far removed from the

station locations. These negative values contribute to the CNN’s discrimination for

good observations, and thus (based on the “opinions” of the CNNs) indicate the

locations of the remote precipitation areas that are associated with precipitation at

the station location and within the 6-h RDPA time window.

The saliency maps in Figure 5.10 are applied to explain the two unexplained

findings above. For (1), it is found that the 10-km classifier has the smallest, most

concentrated area of negative saliency map values close to the location of stations

(dashed contours, Figure 5.10, right column). This means the 10-km classifier

tends to focus on very localized precipitation patterns around the station, without

considering larger-scale precipitation patterns. As was mentioned in section 5.2.2,

the gridded precipitation input (from the RDPA) is mainly populated by model

forecast background fields around BC Hydro stations. These forecasted small-

scale precipitation patterns are not guaranteed to be correct, and thus may have

107



low predictive skill for QC, which would have negative impacts on classification.

This likely explains why its performance is the worst among all main classifiers,

lending support to the first hypothesis above.

For (2), the superior performance of the 22-km grid spacing classifier for South

Coast stations, it is found that large negative saliency map values extending south-

westward from the Vancouver Island station, which aligns well with the typical

path and scale of an approaching mid-latitude front [e.g. 125, 143]. Thus, this clas-

sifier is highly beneficial for discriminating non-zero raw values as the negative

class (good observations). The 22-km grid spacing classifier does not do equally

well in the other two regions. For example, in Northeast BC similar southwesterly

patterns exist (Figure 5.10.c, third row), but since precipitation is fundamentally

different (often approaching from the east), the success of this negative saliency

pattern is not reproduced.

Other map properties lend additional insights concerning the success of coarser

grid spacing classifiers. For example, these classifiers typically make larger and

sometimes multi-directional negative saliency map values that connect the ma-

jor precipitation areas and the station locations. The 38- and 30-km grid spacing

classifiers have negative saliency map values that extend both southwestward to

northeastward, which explains their good performance in the Southern Interior and

Northeast BC (Figure 5.7.b-c). The saliency map values of the 22- and 15-km clas-

sifiers incorporate a larger number of grid points than coarser classifiers, which

partially compensates for the smaller input domain of the finer grid spacing classi-

fiers. The magnitudes of normalized precipitation increase with finer grid spacing,

indicating that the contributing RDPA grids either have precipitation features that

are more concentrated, well-defined and/or more consistently positioned (such that

features are not averaged out). All of these could be properties of orographic pre-

cipitation resolved by finer-scale grids. The coarser grids feature weaker precipi-

tation gradients, which could result from less concentrated or defined precipitation

features, and/or less consistent positioning of those features (such that details are

averaged out).
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5.6 Discussion and conclusions
This chapter applied ResNet-like CNNs with multiscale classifier ensembles for the

automated QC of BC Hydro stations—a sparse precipitation observation network

in complex terrain. The CNNs are trained with human QC’d labels through super-

vised learning and can classify raw observation values by taking re-gridded (coars-

ened) precipitation analyses (RDPA) and elevation (ETOPO1) as inputs. This ap-

proach is similar to the neighboring station approach in that the grid points used

here can be viewed as the “surrogate stations”. Individual RDPA grid point val-

ues are not as reliable as good quality station observations, however, collectively

the 64-by-64 sized inputs provide useful information for cross-validating the target

station observations. Based on classification metrics, the CNN-based QC separates

“good” and “bad” observations well, with an overall Area Under Curve (AUC) of

0.927 and type I/type II error lower than 15%. The CNN-based QC algorithm was

trained on a balanced dataset and performs well for positively skewed (more good

than bad observations) stations. This guarantees its reliability for most BC Hydro

stations. For the uncommon “bad stations”, where QC flags are negatively skewed,

some solutions are available. For example, prior stand-alone checks, such as range

checks can reduce the number of positive samples. Additionally, one could create

a small human-QC’d validation dataset for the negatively skewed station, and tune

QC classifiers on that dataset [e.g. 126, 137]. The data skewness solutions further

lead to the “precision-recall tradeoff”. The main classifier ensemble is a balanced

classifier—for a balanced testing set, it classifies good and bad observations equally

well. In an operational setting with big data pools, higher TNR (lower type II error)

could be more important. That is, users may prefer to lose (misclassify) some good

observations to correctly eliminate more bad observations (minimize FNR), due to

the larger downstream impacts of bad observations. This is an important point: a

user can choose to improve the system’s FNR by simply lowering the threshold of

bad observation probability (i.e., below 0.5).

The CNN-based QC exhibits minor limitations when handling (1) solid precip-

itation in DJF; and (2) very problematic stations (stations where bad observations

largely outnumber the good). Solid precipitation QC tends to eliminate somewhat

more good observations, but the preserved values are still of good quality. The is-
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sue with problematic stations could be overcome by fine-tuning the model for these

types of stations using a smaller human-labeled dataset. Aside from these limita-

tions, the CNN-based QC is effective and could be generalized to other observation

networks for a variety of use cases.

This is the first study that implements CNN classifiers for precipitation ob-

servation quality control and explains why CNNs can make good QC decisions.

It is found that coarser grid spacing (i.e., 38-, 30-, 22-km) inputs yielded better

CNN performance, and the CNNs can detect abnormal non-zero raw observational

values by taking into account the station locations relative to other neighboring

and upstream precipitation patterns. This saliency information learned from CNNs

could also help inform human QC operations.
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Chapter 6

Discussion and Conclusions

This dissertation has studied multiple aspects of ensemble precipitation post-processing:

bias correction, probabilistic calibration, Statistical Downscaling (SD), and auto-

mated observation Quality Control (QC). In spite of the large advancements in

numerical weather models and observational systems, ensemble precipitation fore-

casts still exhibit location, intensity, and distribution bias, because of imperfect

model physics and resolution. For these reasons, statistical post-processing meth-

ods are commonly applied to improve the quality and usability of precipitation

forecasts. These methods can be problem-specific, and they vary with complexity

and data requirements.

For medium-range precipitation forecasts used as general guidance, especially

for point locations, univariate post-processing is widely applied to model the target

distributions conditioned on the forecasts. The distribution of short-period (e.g.

3 hour) precipitation is hard to parametrize because of its long distribution tail

and zero-to-nonzero discontinuities. When a large historical reforecast archive is

available, nonparametric methods like the Analog Ensembles (AnEns) can be ad-

vantageous as a descriptive and distribution-free modeling approach.

Some application scenarios rely on the multivariate dependencies of the fore-

casted field. In particular, skillful and physically realistic precipitation sequences

are a crucial input of hydrologic models, which estimate river streamflow and sup-

port operational duties like flood risk assessments and volumetric water manage-

ment. When univariate statistical post-processing methods are proceeding inde-
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pendently for each location and forecast lead time, they typically cannot preserve

the spatiotemporal structures in their outputs. In this case, a multivariate step that

restores such spatiotemporal relationships is necessary. For ensemble precipitation

forecasts, their multivariate post-processing is commonly nonparametric, by using

the empirical copulas of physically realistic dependence templates.

In Chapter 3, both the univariate and multivariate post-processing methods are

examined, and are adapted to improve the GEFS precipitation forecasts. This leads

to the AnEn-CNN hybrid, a novel post-processing method. The AnEn-CNN hy-

brid performs univariate post-processing by creating an AnEn from a reforecast

archive of 15 years. It produces bias-corrected and calibrated ensemble members,

but they do not have a physically realistic spatiotemporal structure. The Minimum

Divergence Schaake Shuffle (MDSS) handles this problem as a subsequent multi-

variate post-processing step. MDSS selects dependence templates from the ERA5

precipitation and employs distribution-oriented criteria. The combination of AnEn

and MDSS produces physically realistic precipitation sequences, and their forecast

skill can be further improved by incorporating a Convolutional Neural Network

(CNN) to reduce the random variations generated from the AnEn method. This

unique approach is rooted in a wealth of existing works. Nonparametric meth-

ods such as AnEns may overfit the random variations of their inputs and produce

outputs with a high amount of noise. CNNs have been widely applied to recover

spatial information from signals containing noise contamination. Chapter 3 is the

first that combines the two concepts in ensemble post-processing.

A challenge in Chapter 3 is the complex terrain of British Columbia (BC).

Coastal mountain ranges and the Canadian Rockies in the interior have high im-

pacts on the distribution and intensity of precipitation, which typically leads to

terrain-embedded forecast bias. The AnEn in Chapter 3 tackles this challenge by

using the Supplemental Locations (SLs), a data augmentation technique suggested

by Hamill et al. [63]. The use of SLs improved the AnEn forecasts in BC overall,

especially in the South Interior. The CNN model in Chapter 3 also accounts for

the terrain features in BC by adapting elevation and precipitation climatology as

additional predictors.

Based on verification against the BC Hydro station observations, the AnEn-

CNN hybrid performed well. It is better than the H15 benchmark with a 10% in-
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crease in Continuous Ranked Probability Skill Scores (CRPSSs). It also calibrates

heavy precipitation events better for both 3 hour lead times and 7-day totals, with

the highest Brier Skill Scores (BSSs) increase of 60%. Future research could eval-

uate variations of the AnEn-CNN hybrid. This dissertation was an initial attempt

at using convolutional neural networks for multivariate post-processing. It does

not apply the CNN to process the entire forecast sequence at once, but rather sepa-

rately at each forecast lead time. This choice was justified as the same CNN model

is applied to all forecast lead times indifferently, and no negative impacts were

found when 7-day accumulated heavy precipitation events were verified. However,

future research could explore using spatiotemporal neural networks such as recur-

rent convolutional neural networks [e.g. 160]; with adequate computation cost and

training efforts, they can process grid points and multiple forecast lead times as a

whole. Further, other post-processing methods, aside from AnEn methods, may

also introduce undesired noise to their outputs (e.g., ensemble member dressing

[39, 146]). Given the success of this AnEn-CNN hybrid, other CNN hybrids could

be developed to address lingering artifacts left by previous steps in other forecast

pipelines.

SD techniques improve the spatial resolution and extend the usability of low

resolution forecasts. Gridded SD is particularly important for providing fine-grained

spatial details and resolving small-scale weather features in complex terrain. In

Chapter 4, CNN-based precipitation SD models are proposed. Compared to con-

ventional methods like the Bias-Corrected Spatial Disaggregation (BCSD), the

CNN model is more successful overall. For short forecast lead times, the Attention-

UNET showed a CRPSS increase of roughly 5% relative to the BCSD baseline. For

longer forecast lead times, its CRPSS improvements are lower but still positive.

Downscaling heavy precipitation patterns is challenging because they could

be related to mesoscale convective events such as thunderstorms. Low resolution

forecasts have limited skills on such events, and thus, cannot provide good priors

for the downscaling model. In Chapter 4, the Attention-UNET showed reasonably

good abilities on downscaling heavy precipitation events and performed better than

the BCSD baseline. For daily forecast lead times, the Attention-UNET increased

the BSSs of heavy precipitation events in the South Coast and South Interior. The

former showed the best BSSs overall and the latter exhibited the largest perfor-
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mance gains. For 7-day accumulated totals, the Attention-UNET maintained its

good performance in the South Coast and Southern Interior and further improved

forecast skill in the Northeast.

The technical highlight of Chapter 4 is generalizable downscaling. A down-

scaling CNN was trained in the western continental US, where high-resolution and

high-quality gridded truth is available, and then applied to BC without requiring

additional training data. This technique can be deployed in a wide range of areas

that have paucity-of-data problems to develop their own downscaling system. This

idea, after being proposed by Sha et al. [157] and Sha et al. [158], has received

attention and has been practiced in other regional downscaling studies [e.g. 174].

Future research could explore CNN-based downscaling in high-latitude regions

such as the Northeast BC and with a focus on heavy precipitation. Chapter 4 found

that all downscaling methods performed somewhat poorly in the Northeast. The

Attention-UNET showed some performance gain for the day-1 forecasts, however,

it did not improve the forecast skills of heavy precipitation events at long forecast

lead times.

More broadly, future research could investigate generalizable downscaling with

other neural network variants. Chen et al. [17] and Hu et al. [77] proposed more

advanced neural network architectures for capturing pattern-based information,

which have performed better than the Attention-UNET in certain computer vision

learning tasks.

The QC of precipitation observations is a crucial step that converts the raw in-

strumental records into observational values that can be used as ground truth. This

step is tightly connected to operational forecast post-processing. An accurate and

efficient QC system can produce observations with minimum delays. The QC’d

observations can be used to verify post-processed forecast, identify its problems,

and even to fine-tune the post-processing model on a timely basis.

The final results chapter in this dissertation looks at a new way of QC’ing

station observations by adopting an efficient CNN classifier that takes gridded ele-

vation and precipitation analysis as inputs. By verifying the flags of human QC, the

proposed CNN QC classifier is successful with an overall Area Under Curve (AUC)

of 0.927 and type I/type II error lower than 15%. It exhibited somewhat more mis-

classifications when QC’ing solid precipitation and in the Northeast, however, the
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source of these misclassifications are the type I errors—some good quality obser-

vations are discarded incorrectly, but the preserved values are still of good quality.

A research highlight of Chapter 5 is the interpretation analysis of CNN. The

CNN-based QC classifier is proposed to compare raw observations with precipita-

tion patterns around the station. This idea is confirmed by the saliency maps as an

interpretation analysis tool. The interpretation analysis also found that the CNN-

based QC classifier would utilize precipitation patterns upstream of the station lo-

cation. This further strengthens the argument that CNNs can utilize precipitation

pattern information for observation QC.

Future research could consider a wide range of gridded precipitation analyses

as QC predictors. Chapter 5 applied the RDPA data, which is optimal for BC,

but as a regional analysis, it does not cover many other regions where automated

QC is needed. Based on the results of Chapter 5, many successfully QC’d non-

zero station observations are located either within or at the edge of a synoptic-

scale precipitation pattern. This finding is identified for 38- to 15 km grid spacing

inputs and both coastal and interior watersheds—it’s not specific to a certain grid

spacing or geographical location. That said, if a gridded input other than the RDPA

can roughly represent the spatial coverage of precipitation events, then it can be

potentially applied to improve the QC performance. Exploiting different gridded

inputs as QC reference fields is a possible future research direction.

Further, the automated QC of Chapter 5 can collaborate with human QC pro-

cedures. Process-based interpretation analyses like the saliency maps can give in-

sights into the decision-making of the CNN-based QC model. These insights can,

in turn, bring inspiration to human QC procedures. For example, the CNN utilizes

the distribution of precipitation patterns upstream of the station; this suggests that

human QC should also focus more on cross-validations using stations/data sources

upstream of a target station, rather than simply looking at all nearby values. Based

on the intercomparison of Chapter 5 main classifier members, re-gridding precipi-

tation data to coarser grid spacings may be another way to improve manual and/or

automated QC workflows. Human QC staff could also work collaboratively with

the CNN-based QC. One possible configuration would be for the CNNs to perform

the first round of QC to categorize high-confidence good and bad observations. The

human QC staff would then perform a second round to categorize the observations
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that have less certain quality probabilities close to 0.5. The above combination re-

duces human workload and gives them more time to focus on the more important

and difficult QC cases. Also, when the second round of human QC is completed,

the resulting QC labels can be used to further tune and improve the classification

performance and thresholding of the CNN.

This dissertation presented the first comprehensive study of ensemble precip-

itation post-processing in BC, with gridded bias correction, probabilistic calibra-

tion, and downscaling. An automated observation QC scheme is also developed

to support the post-processing methods in an operational routine. Various creative

concepts were proposed by this dissertation, and they were achieved successfully

by using machine learning methods. For bias correction and probabilistic calibra-

tion, AnEns, MDSS, and CNNs are hybridized, effectively converting raw ensem-

ble precipitation forecasts into skillful and physically realistic spatiotemporal se-

quences. For gridded precipitation downscaling, the lack of high-resolution precip-

itation analysis in BC prohibits the implementation of many traditional downscal-

ing methods. This dissertation solved this problem by using generalizable down-

scaling, obtaining training data from the western continental US, and transferring

the well-trained downscaling model to BC. For automated observation QC, this

dissertation is the first that focused on value-to-pattern comparisons. By using

CNNs to exploit precipitation patterns around and upstream of the station, rich

spatial information provided by precipitation analysis grid points can be incorpo-

rated into automated QC. Much further work can be planned to extend the work

of this dissertation from BC to a wider range of areas. Many challenges that this

dissertation confronted are common to complex terrain regions with limited ob-

servational sources. This dissertation provides a good example of how to develop

ensemble post-processing systems with machine learning methods. More broadly,

it also contributes to the growing evidence that machine learning models are useful

tools for enhancing and localizing numerical weather prediction results.

116



Bibliography

[1] J. C. Adam and D. P. Lettenmaier. Adjustment of global gridded
precipitation for systematic bias: global gridded precipitation. J. Geophys.
Res. Atmos., 108(D9):n/a–n/a, May 2003. ISSN 01480227.
doi:10.1029/2002JD002499. URL
http://doi.wiley.com/10.1029/2002JD002499. → page 84

[2] R. F. Adler, G. J. Huffman, A. Chang, R. Ferraro, P.-P. Xie, J. Janowiak,
B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind,
P. Arkin, and E. Nelkin. The version-2 Global Precipitation Climatology
Project (GPCP) monthly precipitation analysis (1979-present). J.
Hydrometeor., 4(6):1147–1167, Dec. 2003. ISSN 1525-755X.
doi:10.1175/1525-7541(2003)004〈1147:TVGPCP〉2.0.CO;2. → page 85

[3] S. Alessandrini, S. Sperati, and L. D. Monache. Improving the analog
ensemble wind speed forecasts for rare events. Mon. Weather Rev., 147(7):
2677–2692, July 2019. ISSN 1520-0493, 0027-0644.
doi:10.1175/MWR-D-19-0006.1. URL https:
//journals.ametsoc.org/view/journals/mwre/147/7/mwr-d-19-0006.1.xml.
Publisher: American Meteorological Society Section: Monthly Weather
Review. → page 5

[4] C. Amante and B. Eakins. ETOPO1 arc-minute global relief model:
procedures, data sources and analysis, 2009. → pages 18, 20

[5] M. S. Antolik. An overview of the national weather service’s centralized
statistical quantitative precipitation forecasts. J. Hydrol., 239(1):306–337,
Dec. 2000. ISSN 0022-1694. doi:10.1016/S0022-1694(00)00361-9. URL
https://www.sciencedirect.com/science/article/pii/S0022169400003619.
→ page 2

[6] R. M. Banta, C. M. Shun, D. C. Law, W. Brown, R. F. Reinking, R. M.
Hardesty, C. J. Senff, W. A. Brewer, M. J. Post, and L. S. Darby.

117

http://dx.doi.org/10.1029/2002JD002499
http://doi.wiley.com/10.1029/2002JD002499
http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-19-0006.1
https://journals.ametsoc.org/view/journals/mwre/147/7/mwr-d-19-0006.1.xml
https://journals.ametsoc.org/view/journals/mwre/147/7/mwr-d-19-0006.1.xml
http://dx.doi.org/10.1016/S0022-1694(00)00361-9
https://www.sciencedirect.com/science/article/pii/S0022169400003619


Observational techniques: sampling the mountain atmosphere. In F. K.
Chow, S. F. De Wekker, and B. J. Snyder, editors, Mountain Weather
Research and Forecasting: Recent Progress and Current Challenges,
Springer Atmospheric Sciences, pages 409–530. Springer Netherlands,
Dordrecht, 2013. ISBN 978-94-007-4098-3.
doi:10.1007/978-94-007-4098-3 8. URL
https://doi.org/10.1007/978-94-007-4098-3 8. → page 84

[7] BC Hydro. Generation System, an efficient, low cost electricity system for
B.C. [Accessed 2021-6-20]. 2020. URL
https://www.bchydro.com/energy-in-bc/operations/generation.html. →
page 16

[8] T. Bergeron. On the low-level redistribution of atmospheric water caused
by orography. pages 96–100, Tokyo, 1965. URL
https://ci.nii.ac.jp/naid/10012388696/. → page 15

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and regression trees. Routledge, 1 edition, Oct. 2017. ISBN
978-1-315-13947-0. doi:10.1201/9781315139470. URL
https://www.taylorfrancis.com/books/9781351460491. → page 91

[10] J. B. Bremnes. Probabilistic forecasts of precipitation in terms of quantiles
using NWP model output. Mon. Weather Rev., 132(1):338–347, Jan. 2004.
ISSN 1520-0493, 0027-0644.
doi:10.1175/1520-0493(2004)132〈0338:PFOPIT〉2.0.CO;2. URL
https://journals.ametsoc.org/view/journals/mwre/132/1/
1520-0493 2004 132 0338 pfopit 2.0.co 2.xml. Publisher: American
Meteorological Society Section: Monthly Weather Review. → page 4
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Appendix A

BC Hydro precipitation gauge
stations

Station code Latitude Longitude Elevation [m]

HFG 56.50834 -122.241 657

MSK 56.78139 -123.106 1196

PKA 57.06167 -122.865 1755

PMD 56.0125 -122.184 720

SKI 57.26376 -124.132 1387

TNS 56.83 -122.24 1011

WCC 51.6963 -116.629 2122

WRU 57.39618 -125.7 1565

AKI 57.19 -124.89 760

AKN 56.43056 -125.742 970

ALU 49.28722 -122.484 125

ASH 49.43333 -125.142 340

BAR 50.06056 -118.35 1620

BIR 49.17778 -117.716 410

BLN 50.79889 -122.746 1920

BMN 49.86806 -119.989 1460

BRI 50.85 -123.45 1350
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BUL 49.49 -115.36 800

BVR 51.50972 -117.46 780

CHK 50.08 -123.03 640

CHW 56.64306 -122.786 1480

CLO 49.70833 -123.522 10

CLW 49.77972 -123.42 125

CMX 49.64306 -125.094 135

COQ 49.35556 -122.778 160

COX 49.63972 -125.08 140

CQM 49.48917 -122.793 290

DAI 49.975 -123.135 390

DBC 50.63 -117.04 590

DCN 50.25 -116.94 580

DLU 50.85972 -123.184 1829

DON 51.47972 -117.17 770

DOW 50.82 -123.2 750

EAC 50.64167 -116.931 2030

ECL 49.87278 -125.764 270

ERF 49.51 -115.07 1000

ERC 49.60306 -125.295 280

FDL 51.2375 -117.7 1800

FER 49.51 -115.07 1000

FIN 57.12667 -125.249 710

FLK 51.05528 -116.139 2090

FST 49.61 -115.63 770

GLD 49.70583 -126.106 10

GOC 49.44722 -122.475 794

GOL 51.66833 -118.597 600

GRN 50.79417 -122.925 1780

GRP 51.26972 -117.509 1210

GRT 51.88 -117.89 770

HEB 49.81528 -125.986 215

HFF 56.25 -121.62 480
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HRN 56.73667 -123.717 1450

HUR 50.73 -122.93 990

ILL 51.01 -118.08 500

JHT 50.04333 -125.309 15

KEY 57.62722 -125.081 1554

MCQ 56.98333 -123.397 1200

MIS 50.75333 -122.236 1850

MOB 56.09 -121.34 600

MOL 52.21944 -118.225 1935

MOR 49.44722 -114.975 1860

MTR 51.03611 -118.144 1830

NTY 51.14833 -122.793 1969

PAK 54.99 -123.03 675

PAR 55.08 -122.9 700

PNK 57 -122.367 1204

PRS 55.08 -122.9 700

PUL 57.53333 -126.733 1311

PYN 55.35 -122.638 1400

QBY 49.65417 -116.93 545

SGL 50.35 -118.53 675

SHH 50.72778 -122.242 320

SLK 50.43472 -117.7 1800

STA 49.5575 -122.326 330

STV 49.625 -122.411 930

UCE 49.97694 -125.585 249

WAH 49.23194 -121.619 641

WOL 49.70389 -125.698 1490

WON 56.73333 -121.8 910

YGS 55.78556 -124.701 766

KWA 57.62722 -125.081 1554
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Appendix B

Comparisons between the ERA5
and BC Hydro station
observations

In Chapter 3, the post-processing methods were trained with the ERA5 total pre-

cipitation and verified against BC Hydro station observations. This appendix com-

pares the distribution properties of the ERA5 and BC Hydro station observations

to demonstrate the suitability of the ERA5 to serve as a training target.

The ERA5 and BC Hydro station observations are both aggregated to daily

precipitation values. They are paired in 2016-2020 and their intensity spectra are

compared in Figure B.1. Histograms of the ERA5 and BC Hydro observations

agree well on values with observed frequencies of 10−1 to 10−3, indicating that in

most cases, the ERA5 represents the observed precipitation amount. The ERA5

underestimated some extreme precipitation amounts (i.e., histogram bins with ob-

served frequencies around 10−4). This is in part explained by the difference of

representations between the 0.25◦ ERA5 grids that represent an areal average ver-

sus station observations at a point.

The 90th and 99th percentiles of the ERA5 and BC Hydro station observations

are statistically evaluated through the Chi-square test of independence (Figure B.1).

The null hypothesis (H0) of this test is that categorical events of precipitation ex-

ceeding a given percentile in the two datasets are associated with each other (i.e.,
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Figure B.1: Histograms of daily precipitation for 2016-2020. (a) BC Hydro
station observations Pstn in the South Coast region. (b-c) As in (a), but
for the Southern Interior and Northeast stations. (d-f) As in (a-c), but
for the ERA5 grid point values at station locations (Pgrid). 90th and
99th percentile values of Pstn and Pgrid are displayed. “*” indicates a
statistically significant percentile value difference with the Chi-square
test of independence p-value < 0.01.

statistically indifferent) [181]. Based on testing results and percentile values of the

two datasets, their 90th percentiles are statistically indifferent (i.e., H0 cannot be

rejected). In other words, the ERA5 represents observed events of precipitation

exceeding its 90th percentiles. This is also the threshold used in this research for

heavy precipitation events.

For precipitation events exceeding their 99th percentiles, the H0 can be rejected;

the two datasets cannot represent each other. This is as expected because of gridded

and point-measurement representation differences. This would not largely impact

the use of ERA5 in training because the AnEn algorithm typically cannot find good

analog days for extreme events of exceeding 99th percentiles anyway. Even if the

ERA5 underestimates such extreme values, it would not be the bottleneck of the

performance of an AnEn.
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Figure B.2: Probability Integral Transforms (PIT) of daily BC Hydro station
observations for 2016-2020, based on the CDFs of their corresponding
ERA5 grid point values. The PIT diagrams are zoomed to the quantile
range of [0.3, 1.0] in three hydrologic regions, with solid grey lines to
draw attention to the 90th percentiles.

Probability Integral Transforms (PITs; Czado et al. 26) of BC Hydro station

observations based on the CDFs of the ERA5 indicate that for all hydrologic re-

gions, the ERA5 shows almost no conditional bias for its 90th percentile values

(Figure B.2, gray solid lines), and thus, further confirms that the ERA5 can train

post-processing methods to calibrate 90th precipitation. Some flat patterns were

found in lower percentile ranges (e.g., 0.3-0.8), this is because many stations con-

tain massive numbers of zero-valued (Figure B.2 did not replace zeros with random

draws of a standard uniform distribution) and low-temporal-resolution observations

(discussed in the next paragraph).

Aside from confirming that the ERA5 is suitable as a training target, there are

also difficulties in training post-processing methods directly with historical obser-

vations. More obvious disadvantages include the difficulty of training a CNN us-

ing a non-gridded dataset, and missing or erroneous values in the observed record

(even after quality control). An additional issue is that when working with 3-hourly

observational data, the 1.0-mm measuring resolution of and coarse sampling peri-

ods of BC Hydro station observations yield outlier-like patterns in their intensity

spectra (e.g., the “spikes” in Figure B.3.a, b, and c). Nonparametric methods like

AnEns cannot extrapolate low precision observations into higher precision, and

thus would suffer artificial performance downgrades in distribution-oriented verifi-

cations. This is especially the case for the very frequent light precipitation events,
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Figure B.3: As in Figure B.1, but for 3-hourly precipitation. Note that the
unit of precipitation rate is mm per 3 hours.

where a difference of± 1.0 mm per 3 hours can be significant. Further, the coarse-

ness of instrument resolution and frequency of missing values varies by station.

Thus, if trained on station observations directly, the performance of AnEn would

also fluctuate across individual stations. This performance fluctuation would nega-

tively impact the spatiotemporal reconstructions, and is generally not preferred in

downstream applications of the forecasts.
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Appendix C

Supplemental location
methodology

Chapter 3 applied Supplemental Locations (SLs) as a data augmentation technique

that enhances the performance of the Analog Ensemble (AnEn) method. This ap-

pendix provides technical details on the identification of SLs

Given a location or grid point of interest, its SLs are other locations or grid

points that have similar meteorological and geographical properties, and thus, can

be used as the given location in the model training. SLs have been proposed in

many works with positive contributions [27, 62, 63, 104, 115]. In this dissertation,

they are identified based on properties related to the location-dependent precipita-

tion model bias and are used for training post-processing models.

Following Hamill et al. [64], this dissertation identifies SLs on each month and

based on a distance measure:

D = 0.1∗d(CDF)+0.4∗d(elev)+0.1∗d(facet)+0.001∗d (C.1)

When searching SLs for a location of interest and from a range of grid point “can-

didates”, equation C.1 considers four distance aspects: d(CDF) measures the dif-

ference of monthly precipitation CDFs; d(elev) represents the difference of terrain

height; d(facet) represents the difference of the orientation of the surrounded ter-

rain; d represents the grid-point-wise distance between the location of interest and
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the SL candidates. Linear coefficients balance the actual values of each term, and

they are identified through trial and error. The coefficients have an impact on the

order of the weakly matched SLs, however, the top-19 SLs are found quite stable

to the change of coefficients.

d(CDF) is based on the monthly precipitation CDFs estimated from the 2000-

2014 ERA5 climatology. The CDFs are calculated for each grid point individually

and considers a 3-month centered calendar period. Given two CDFs, their d(CDF)

is calculated as follows:

di, j (CDF) =
1

qmax−qmin +1

qmax

∑
q=qmin

∣∣CDFq (i, j)−CDFq (SL)
∣∣ (C.2)

Where CDFq (i, j) and CDFq (SL) are the precipitation CDF values at the location

of interest and SL candidates, respectively; both are subject to the quantile q. q

is increased from 0 to 0.95, quantiles above 0.95 are not considered because the

15-year ERA5 data may not contain sufficient samples to represent extreme distri-

bution tails above 0.95.

d(elev) is calculated based on the difference of regridded 0.25◦ ETOPO1 ele-

vation:

d (elev) = 1− 1

exp |Zi, j−Z(SL)|
2500 m

(C.3)

Where Zi, j represents the elevation of the location of interest and Z (SL) represents

the elevation of an SL candidate. The 2500 m is a scaling factor. The exponen-

tial function reduces d(elev) when the absolute elevation difference is sufficiently

large, which prevents the domination of this term in equation C.1.

The calculation of d(facet) is based on terrain facets. Following Gibson et al.

[46], a decision-tree-based algorithm is applied; it classifies each grid point into

an 8-directional compass by considering its surrounded grid point within a radius.

This dissertation chose a fixed radius of 5 grid points and computed faces from

three different elevation sources: (1) The regridded 0.25◦ ETOPO1 elevation is

used to compute the facet of small-scale terrains, hereafter, it is denoted as Fh. (2)

the regridded 0.25◦ ETOPO1 elevation was also processed by a two-dimensional
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Figure C.1: The 8-directional facet based on Gibson et al. [46]. Panel (a)
represents the facet of small-scale terrains, panel (b) and (c) represent
that of the large-scale terrains.

Gaussian filter with a window size of 5
π

. The facet of this smoothed elevation

is computed to represent the orientation of large-scale terrains. Hereafter, it is

denoted as Fi. (3) Similar to (2) but with a window size of 10
π

, the resulting face

represents the orientation of even larger-scale terrain. Hereafter, it is denoted as Fl .

Figure C.1 provides an illustrative example of Fh, Fi, and Fl .

d(facet) is computed based on the facet values:

d (facet) = σ

3 · (Dh +Di +Dl)

D = min{∆F, |∆F +8| , |∆F−8|}
∆F = |F (i, j)−F (SL)|

(C.4)

Where F (i, j) represents the facets of the location of interest and F (SL) represents

that of a SL candidate. σ is the standard deviation of elevation computed from a 3-

by-3 grid point sized window centered on the location of interest; σ is normalized

by the highest windowed standard deviation in BC. The purpose of this term is to

adjust the importance of d (facet); facet difference is considered more important in

complex terrains where σ is high, vice versa.

The last term of equation C.1 is calculated from grid indices directly. Suppose

the location of interest is (i, j) and a SL candidate is (m,n). d (index) is calculated

as:
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d (index) =
√

(i−m)2 +( j−n)2 (C.5)

SLs are identified by using equation C.1 as the loss function (i.e., identifying

grid points that minimize D), and subject to the constraint that each grid point and

its SLs do not neighbor each other.

The optimization is performed based on a grid search. For each post-processed

grid point within BC (Fig. 3.2.a, shaded area), all the other grid points within the

spatial extent of [147.25, 110.5]◦W, [32.75, 69.5]◦N. (Fig. 3.2.a, the map extent)

are selected as candidates of SLs and examined individually. The top-19 grid points

that exhibit the lowest loss are selected as SLs.
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Appendix D

Ensemble verification
methodology

Chapter 3 and Chapter 4 verified post-processed ensemble precipitation forecasts

against deterministic observations by using the Continuous Ranked Probability

Score (CRPS) and the Brier Score (BS). This appendix provides the technical de-

tails of the two verification metrics.

D.1 Continuous Ranked Probability Score
CRPS is a stricly proper scoring rule that measures the difference between a fore-

casted Cumulative Distribution Function (CDF) and a determinstic verification tar-

get [51].

CRPS =
∫

[CDF(fcst)−H(fcst−obs)]2 d(fcst) (D.1)

Where CDF is obtained from a probabilistic forecast. The symbol “fcst” are (con-

tinuous) values within the domain of CDF. For precipitation forecast, fcst∈ [0, inf).

The symbol “obs” is the deterministic verification target. H is the Heaviside step

function; it produces 0 if the input is negative and produces 1 vice versa.

For each verification time, when the forecasted CDF is given as a cumulative

histogram with N bins, equation D.1 can be discretized as follows:
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CRPS =
1
N

N

∑
i=1

[Hist(bini)−H(bini−obs)]2 d(bin) (D.2)

Where Hist is the cumulative histogram that approximates the forecasted CDF.

For each verification time, when the forecasted CDF is given as an ensemble

with N members (i.e., draws from the CDF), equation D.1 can be discretized and

grouped into two terms [51]:

CRPS =
1
N

N

∑
i=1
|ensi−obs|− 1

2N2

N

∑
i=1

N

∑
j=1

∣∣ensi− ens j
∣∣ (D.3)

Where the symbol “ens” represents individual ensemble members, and obs is the

deterministic verification target. The first term of equation D.3 is the mean absolute

error between ensemble members and the verification target. The second term is

related to the pairwise difference among ensemble members.

This dissertation applies equation D.2 to compute the CRPS between clima-

tology CDFs and station observations (i.e., climatology-based reference forecast),

and applies equation D.3 to compute the CRPS between post-processed ensemble

members and station observations. CRPS is used as an univariate verification met-

ric; its values on individual verificational times are averaged within the verification

time period.

D.2 Brier Score
BS is a strictly proper scoring rule that measures the difference between probabilis-

tic predictions and categorical event flags.

For each verification time, BS is defined as the squared error or the “accuracy”

of the forecasted probabilities (prob):

BS = (prob−obs)2 (D.4)

Given M verification times and k categories (e.g., k = 2 for binary flags), BS

can be decomposed into three terms: reliability (REL), resolution (RES), and un-

certainty (UNC) [123].

163



BS = REL−RES+UNC (D.5)

where REL measures the mean difference between forecasted probabilites (prob)

and observed relative frequencies (ok) [123]:

REL =
1
M

K

∑
k=1

nk (prob−ok)
2 (D.6)

where nk is the number of occurrence corresponded to the category.

The uncertainty term in equation D.5 measures the variance of observed cate-

gories [123]:

UNC = o(1−o) (D.7)

where o is the overall probability of the observed events. If the verification time is

sufficiently long, o would represent the climatological probability.

RES in equation D.5 measures the difference between observed relative fre-

quencies and the overall probability of the observed events [123]:

RES =
1
M

K

∑
k=1

nk (ok−o)2 (D.8)

The equation D.5 decomposition relies on the estimation of observed relative

frequencies and number of occurrences. This dissertation computes them by dis-

cretizing the probability domain into a finite number of bins, and using bin-counts

as an approximation.
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Appendix E

Minimum Divergence Schaake
Shuffle

The Minimum Divergence Schaake Shuffle (MDSS; [152]) is applied in Chapter 3

for converting analog ensemble (AnEn) members into spatiotemporal sequences.

This appendix provides more details on the implementation of this method.

E.1 Identify dependence templates
The MDSS is a variant of the Schaake shuffle algorithm, a non-parametric method

that restores spatiotemporal consistencies of univariate calibration outputs. As op-

posed to the conventional Schaake shuffle, which selects historical analysis ran-

domly as dependence templates (i.e., training samples), the MDSS selects depen-

dence templates based on specific search; its search criteria is the distribution di-

vergence between the univariate calibration outputs and “candidates” of historical

analysis.

Given AnEn members on a fixed initialization time, a ±30-day time window

is applied first to select candidates of dependence templates from the historical

analysis. The 2000-2014 ERA5 total precipitation provides the analysis fields,

which leads to roughly 900 candidates after selection.

The total divergence calculation is performed between AnEn members and all

the selected candidates. The total divergence is defined as follows:
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D =
qmax

∑
q=qmin

[CDFq (i, j)−CDFq (SL)]2q

q ∈ {0.25,0.5,0.7,0.9,0.95}
(E.1)

The discretized bins of the CDFs are coarser compared to Scheuerer et al. [152],

but they are sufficiently accurate when applied to 25 AnEn members.

The selected candidates are discarded heuristically based on the total diver-

gence loss. For example, 10% of the total candidates would be discarded randomly,

and the equation E.1 is applied. If the resulting total divergence is lower than that

of all the selected candidates, then this discard is valid because it reduces the to-

tal divergence, so the remaining candidates are more similar to the AnEn member.

The above process is repeated until 25 candidates remain. The discard rate, which

is initially set as 10% is changed step-wise, depends on the amount of total diver-

gence reduction.

E.2 The Schaake shuffle algorithm
When 25 dependence templates are identified for 25 AnEn members, the MDSS

follows the same Schaake shuffle algorithm as proposed by Clark et al. [20]. Chap-

ter 1, Section 1.2.2 introduced this algorithm with an illustrative example. This

section provides a summary of the Schaake shuffle algorithm:

Algorithm 1 An algorithm with caption

Require: Univariate ensemble forecast members with indexing orders of (number
of members, spatiotemporal dimensions)

Require: Dependence templates with indexing orders of (number of templates,
spatiotemporal dimensions)

Ensure: Forecast members and dependence templates have the same dimensions.
for each spatiotemporal dimensions do

Find indices where dependence templates can be inserted to maintain as-
cending (or descending) order.

Sort forecast members with ascending (or descending) order.
Indexing sorted forecast members based on the identified indices of depen-

dence templates.
end for

166



The “spatiotemporal dimensions” in the above algorithm consists of latitude, lon-

gitude, and forecast lead time. When they are processed within a for loop, the same

set of dependence templates should be used.
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Appendix F

Convolutional neural network
architectures and
hyperparameters

This dissertation proposed two Convolutional Neural Networks (CNNs) for the

post-processing of gridded precipitation forecasts: the UNET 3+ in Chapter 3 and

the Attention-UNET in Chapter 4. The architectures and hyperparameters of the

CNNs have been introduced in their corresponding chapters. This appendix ex-

tends this information with more details.

F.1 Base architecures
The base architectures of the two CNNs were selected from the original UNET

and state-of-the-art UNET variants. During the selection, all candidate models

were configured with four down- and upsampling levels and {64,128,256,512}
number of kernels per level. The configured candidate models have a comparable

total number of weights, and they were trained through the same procedures. After

training with early stopping, the candidate model that exhibits the lowest validation

loss is selected as the base architecture. The above selection steps were conducted

separately in Chapter 3 and Chapter 4. The resulting validation loss is provided as

follows:
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Table F.1: Validation set performance of UNET base architectures within
Chapter 3 problem setup. Lower means better.

Model Reference Size Rescaled validation loss

UNet Ronneberger et al. [145] 10.807 MB 1.000
Attention-UNET Oktay et al. [130] 10.894 MB 0.952

UNET++ Zhou et al. [199] 10.809 MB 0.948
UNET 3+ Huang et al. [78] 11.888 MB 0.926

Table F.2: Validation set performance of UNET base architectures within
Chapter 4 problem setup. Lower means better.

Model Reference Size Rescaled validation loss

UNet Ronneberger et al. [145] 10.807 MB 1.000
Attention-UNET Oktay et al. [130] 10.894 MB 0.955

UNET++ Zhou et al. [199] 10.809 MB 0.973
UNET 3+ Huang et al. [78] 11.888 MB 0.968

Based on the validation set performance, the CNN base architectures of Chap-

ter 3 and Chapter 4 were selected as UNET 3+ and Attention-UNET, respectively.

Note that the validation loss is rescaled based on the worst candidate models.

This makes comparisons more convenient. Validation loss in Table F.1 and Table

F.2 was calculated based on the mean absolute error between the CNN output and

normalized precipitation targets (i.e., averaged within each batch and then averaged

in all the validation batches).

In the following sections, the technical details of the UNET 3+ and Attention-

UNET will be explained and compared to their original reference.

F.2 UNET 3+
Chapter 3 modifies the UNET 3+ to reduce the small-scale noise of AnEn mem-

bers. In addition to the base architecture selection in Section F.1, the UNET 3+

base is considered a suitable choice, because of its full-scale skip connections from

multi-scale encoders to each decoder. This is important for precipitation denoising

in BC because not all the small-scale signals are noise, they could be the orographic
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precipitation patterns triggered by the complex terrain of this area. Base architec-

tures like UNET 3+ which incorporates small-scale details into the reconstruction

of full-scale output are more effective in preserving meaningful small-scale precip-

itation patterns during the denoising.

The original UNET 3+ is modified to reduce its size; a relatively lightweight

CNN is easier to train and more scalable in regular post-processing servers (c.f.

Figure F.1 and b). The modification consists of the following steps:

1. The number of downsampling levels are reduced from 5 to 4. The CNN in-

puts in Chapter 3 are 0.25◦ frames in BC with 48-by-112 grid sizes. Four

downsampling levels produce 3-by-9 sized feature maps, which are fine

enough to detect small-scale noise. Thus the fifth downsampling level in

Huang et al. [78] is removed.

2. The number of convolution kernels per downsampling level are modified

from {64,128,256,512,1024} to {80,160,320,640}. The number of con-

volution kernels from the first to the fourth downsampling levels are slightly

increased, this in part compensates for the omission of the fifth downsam-

pling level.

3. The downsampling mechanism of the UNET 3+ is changed from max-pooling

to 2-by-2 convolution kernels with 2-strides. The upsampling mechanism is

changed from linear interpolation to 3-by-3 transpose convolution kernels

with 2-strides. Both increased the effectiveness of UNET 3+ since it can

adaptively learn the optimal downsampling and upsampling patterns.

The ERA5 validation data has been used to measure the effectiveness of the

modifications above. Roughly 10% validation set performance increase has been

found after modifications.

F.3 Attention-UNET
Chapter 4 adapts the Attention-UNET for precipitation downscaling. Different

from the Chapter 3 problem setup, where the full BC domain is predicted in one

time, the downscaling model in Chapter 4 predicts 96-by-96 grid point sized tiles
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Figure F.1: (a) The original UNET 3+ in Huang et al. [78]. (b) The modified
UNET 3+ used in this dissertation.
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in its inference stage because the entire BC domain in 4-km grid spacing is too

large to process. In addition to the base architecture selection in Section F.1, the

Attention-UNET base architecture is considered a suitable choice, because the per-

formance of downscaling CNNs on precipitation tiles is impacted by the data spar-

sity problem—some BC domain subsets may contain scattered precipitation values

only, with a high amount of zero-valued grid points. This may yield undesirable

performance of regular CNNs. Attention-UNET can detect small size objects from

a large input frame [130], and thus, it is considered the most suitable UNET variant

for precipitation downscaling.

Compared to Oktay et al. [130], the original Attention-UNET is modified with

the following steps:

1. The number of convolution kernels per downsampling level is modified from

{64,128,256,512} to {64,128,192,256}. The third and fourth downsam-

pling levels have fewer convolution kernels after modification. This is be-

cause they receive weaker back-propagated training loss gradients, and are

more sensitive to sparse inputs. Reducing deeper convolution kernels makes

the Attention-UNET more robust when processing samples with scattered

precipitation.

2. The downsampling mechanism of the Attention-UNET is changed from max-

pooling to 2-by-2 convolution kernels with 2-strides. The upsampling mech-

anism is changed from linear interpolation to 3-by-3 transpose convolution

kernels with 2-strides. Both increased the effectiveness of UNET 3+ since it

can adaptively learn the optimal downsampling and upsampling patterns.

The PRISM transferring domain data has been used to measure the effective-

ness of the modifications above. Roughly 4% validation set performance increase

has been found after modifications.

F.4 Other hyperparameter choices
The modified UNET 3+ and Attention-UNET have Gaussian Error Linear Unit

as their main activation function. The GELU is a nonlinear activation function

modified from Rectified Linear Unit (ReLU), it weights tensors by their values
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rather than signs, and thus, can assign a stronger nonlinearity than the original

ReLU [70]. The formula of GELU is defined as follows.

GELU(x) = x · 1
2

[
1+ erf

(
x√
2

)]
(F.1)

In practice, equation F.1 is approximated as:

GELU(x) =
x
2
·

{
1+ tanh

[√
2
π

(
x+0.044715x3)]} (F.2)

The CNN-based classifier in Chapter 5 applied dropout for training. Dropout

randomly omits a subset of hidden neurons, the omission is dynamic in each train-

ing pass. Dropout, as a training strategy, averages the predictions of all possible

neurons, weighting each neuron by its posterior probability given the training data,

so the circumstance of one neuron dominate the prediction outcome can be avoided.

This prevents the neuron networks from overfitting and is especially useful when

they are applied in classification problems.

All the CNNs of this dissertation are trained with batch normalization. Batch

normalization standardizes tensors prior to a hidden layer; it prevents the shift of

the distribution caused by the cumulative effect of hidden layers when they are not

fully trained (i.e., their weights are impacted by the random initialization). Batch

normalization was found to accelerate neuron network training and produce better

results.

This dissertation applied stochastic gradient descent as the training optimizer.

CNNs are trained with two stages. In the first stage, the stochastic gradient descent

is applied with adaptive learning rates based on the gradients of training loss in

previous steps. This is also known as the adaptive moment estimation [89]; its

adaptive learning rates can help CNNs to converge faster. In the second stage, the

stochastic gradient descent is applied with a fixed small learning rate and learning

rate decay when validation loss becomes stationary. Early stopping is applied in

both stages.
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F.5 Requirments of computational resource
The CNNs in Chapter 3 and 4 were trained on a single NVIDIA Tesla V100 GPU

(32 GB). The training of Chapter 3 UNET 3+ and Chapter 4 Attention-UNET takes

roughly 6 hours and 4 hours, respectively. The Attention-UNET requires an extra

CPU for data preparation, where 0.25◦ precipitation fields are interpolated to the

4-km grid spacing.

The inference of the Chapter 3 UNET 3+ can be completed efficiently because

the entire BC domain is processed at one time. Four CPUs with 8 GB memory each

are sufficient for completing a single initialization time with 7-day, 3 hourly fore-

casts within 1 hour. The inference of Chapter 4 Attention-UNET requires a higher

amount of computation because of the interpolation step and tile-based inference.

Four CPUs with 8 GB memory each take roughly 2 hours to process a single initial-

ization time and forecast lead time. Using GPUs can speed up the CNN inference.

When switched to NVIDIA Tesla V100, the downscaling inference time above can

be reduced from 2 hours to 40 minutes.

F.6 Access to the source program
The core programs of this dissertation are available at https://github.com/yingkaisha/

rainbow. The deep learning implementation of this dissertation has been summa-

rized as an application interface and is available at https://github.com/yingkaisha/

keras-unet-collection. The forecast verification and the Schaake shuffle algorithms

have been summarized as an application interface and is available at https://github.

com/yingkaisha/fcstpp
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