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Abstract

The single-particle tracking technique, where individual molecules are flu-
orescently labelled and recorded over time, is an important tool that allows
us to study the spatiotemporal dynamics of subcellular biological systems
at very fine temporal and spatial resolution. Mathematical models of par-
ticle motion are typically based on Brownian diffusion, reflecting the noisy
environment that biomolecules inhabit. To detect changes in particle mobil-
ity within a trajectory, hidden Markov models (HMMs) featuring multiple
diffusive states are commonly used.

In this thesis, we start by modifying a two-state hidden Markov model to
take into account experimental errors and further improve the estimation of
diffusion coefficients. In addition, we present a constrained hidden Markov
model to analyze a specific set of experiments, where two fluorescence colours
microscopy data is provided: molecules labelled at low density in one colour,
and the second colour is molecules labelled at high density.

Hidden Markov models are typically specified with an a priori defined
number of particle states, and it has not been clear how such assumptions
have affected their outcomes. Here, we propose a method for simultaneously
inferring the number of diffusive states alongside the dynamic parameters
governing particle motion. We use the general framework of Bayesian non-
parametric models and use an infinite HMM (iHMM) to fit the data. These
concepts were previously applied in molecular biophysics. We directly ex-
tended iHMM models to the SPT framework and tested an additional con-
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straint to accelerate convergence and reduce computational time. We tested
our infinite hidden Markov model using simulated data and applied it to
a previously analyzed large SPT dataset for B cell receptor motion on the
plasma membrane of B cells of the immune system. We also incorporated
experimental errors into this model, developing an algorithm that further im-
proves the accuracy of parameter estimation, which we demonstrated using
simulated data.
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Lay Summary

Understanding the spatial organization and underlying dynamics of pro-
teins on the cell membrane is of great interest to biology since the cell
membrane forms the physical boundary between the cell and its environ-
ment, mediating communication between the intracellular and extracellular
environment. Focusing on experiments that track single proteins on the
membrane, we developed methods to quantify the proteins’ mobility by es-
timating their diffusivity. Diffusivity is a characteristic of random motion
and tells us the average displacement of the motion over a time interval. It
is common to use methods to classify protein mobility into different diffusive
states capturing their heterogeneity. We further developed these methods
to consider experimental errors in their classification. We also developed a
framework that ascertains the number of diffusive states and estimates their
diffusivity. Overall, these novel methods substantially advance our ability
to analyze single-particle tracking data.
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This thesis consists of my original research, conducted in the Department
of Mathematics at the University of British Columbia, Vancouver, Canada,
under the supervision of Dr. Daniel Coombs. The following chapters contain
previously published or in preparation work for which I was the principal
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CHAPTER 1

Introduction

Unravelling the complex network of molecules, their interactions and their
connections with cell function has been a challenge of great interest in cell
biology. A detailed understanding of the dynamics and organization of
molecules on the cell surface is essential to understand the initiation of cell
signalling and the processes of cell to cell communication [11, 123].

To study the dynamic processes of cells, we want to measure the mo-
bility of molecules within the cells. Two common techniques to execute
this measurement are fluorescence recovery after photobleaching (FRAP)
and single-particle tracking (SPT). The principle of FRAP is by switch-
ing off fluorescent molecules, themselves labelling the molecules of interest,
within a selected region of the sample [71]. Through high density labelling
of molecules of interest with fluorophores, imaging of the sample over time is
initiated. At this point, the image is a uniform bright field. Next, a region
of the sample containing labelled molecules receives high intensity illumi-
nation. Upon receiving this high intensity light beam, the fluorescence of
the labelled molecules rapidly decreases and they are removed from view.
This phenomenon is known as photobleaching. Now the image on the micro-
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scope consists of a uniform bright field with a dark spot. As times goes by,
fluorescently labelled molecules diffuse throughout the sample reaching the
dark spot, and replacing the bleached labels in the bleached region. After
sufficient time, the image may become uniformly bright again. Using the
intensity profile of the bleached region over time, one can calculate the diffu-
sivity of the labelled molecules [71]. Due to the high density labelling, FRAP
spatial resolution is limited (due to diffraction), and it provides an ensemble
time average of the mobility of the molecules, rather than information on
the motion of individual molecules. An alternative technique that combines
high temporal and spatial resolution is single particle tracking. SPT has
been extensively used to study important cell-surface molecules especially
cell surface receptors [71, 106, 112, 117]. In this dissertation, I focus on
developing new algorithms to analyse SPT data.

1.1 Single Particle Tracking

Single-Particle Tracking (SPT) is a powerful experimental tool that can
provide information on each individual labelled molecules with nanometer-
scale spatial precision on a milisecond timescale, depending on the labelling
strategy, allowing the observation of their motion throughout the sample
[110, 117].

As opposed to FRAP, which recovers the average motion of the particles
during an experiment, SPT has a high spatial resolution revealing, on the
scale of nanometers, the motion of individual particles [117]. This makes
SPT an ideal tool to study heterogeneity of motion. SPT has been exten-
sively used in studies of the lateral mobility of cellular membrane proteins
[1, 23, 64, 144], intracellular protein motion [119, 143], colloidal physics
[22], and microrheology [73, 138, 139]. The first SPT-like experiment was
performed using gold nanoparticles with a diameter of 40 nm [26, 40, 71].
Initially called nanovid microscopy, this technique involved the attachment
of gold nanoparticles to the biomolecules of interest, and the imaging relied
on the phenomena known as Rayleigh scattering. Rayleigh scattering is the
elastic scattering of light by objects much smaller than the wavelength of
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the incident light. The Rayleigh scattering of the light by the gold nano
particles has a high intensity, allowing for a very precise spatial localization
of the biomolecules to the scale of nanometers [26, 40].

The stability of gold particles also allows for prolonged recording of the
biomolecule dynamics. However, concerns were raised that their large size
might influence the biomolecule’s ability to interact with its surroundings
and its motion as well. Therefore, there was a need for smaller probes.
One could imagine decreasing the size of the gold nanoparticle. However,
the intensity of the Rayleigh scattering decreases rapidly as the gold label is
made smaller (as the sixth power of its size). In summary, gold nanoparticles
are not ideal labels for tracking small biomolecules.

A solution to the size of the labelling objects is the use of fluorescence
microscopy to detect individual molecules over time. The first implementa-
tion of fluorescence microscopy for tracking single particles was performed in
1993 [8]. After that, there was a surge of interest in fluorescence microscopy
for SPT, and the development of new methods for data analysis that enabled
new discoveries in biology [71].

1.1.1 Fluorescence Microscopy

Fluorescence microscopy refers to any imaging technique that uses fluores-
cent dyes to label the molecules of interest. Two commonly used fluorescence
microscopic imaging techniques for single-particle tracking of cell membrane
proteins are confocal microscopy and total internal reflection fluorescence
microscopy [2, 37, 74, 76, 96].

Both of these techniques are based on imaging particles labelled with
fluorescent dyes (fluorophores) [52]. Fluorescence is the emission of light in
the visible spectrum by a substance that has previously absorbed radiation.
Upon absorption of light, the molecules move into an excited state. To
arrive in this state, the molecule is excited from the ground state S0 to the
excited state S1 through the absorption of a photon of energy hνexc, where
h is the Planck constant and νexc is the frequency of the absorbed photon.
After a short time, it emits a photon of lower energy hνemi, and relaxes to a
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lower energy state. Since νexc ≥ νemi, the wavelength of the emitting light is
longer than the wavelength of the absorbed light. For example, if blue light
is absorbed by the molecule, then a longer wavelength light such as green
light would be emitted by the molecule. Figure 1.1 shows a sketch of the
fluorescence process.

higher-energy 
photon 

absorption
lower-energy 

photon
emission

other types 
of energy 

dissipation

S0

S1

Figure 1.1: Energy transitions during fluorescence. S0 indicates the
ground state and S1 indicates the excited state.

Most fluorescence microscopes are epifluorescence microscopes, where
the incident and emitted photons pass through the same objective lens. This
is achieved by the use of a dichroic mirror that reflects any light with a wave-
length smaller than a threshold, and lets any light with a longer wavelength
to pass through [71, 96, 105]. Thus, a laser emits light with wavelength λinc

that reflects on a dichroic mirror, and illuminates the sample, exciting it.
Upon excitation, the fluorescent labels emit light with a wavelength λemit,
which is larger than λinc. The emitted light passes through the dichroic
mirror and reaches the detector[96]. A simplified scheme of epifluorescence
microscopy is shown in figure 1.2.

As described above, an important advantage of fluorescence microscopy
for the study of molecules on or in living cells is the ability to use small
probes. However, there are some challenges and constraints of this technique.
One of them is the large fluctuations in intensity (blinking), where the flu-
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Figure 1.2: A simplified scheme of basic epifluorescence microscopy.

orescence label alternates between dark and bright states. Another one is
the stability of the probes. Many types of fluorescent labels are not photo-
stable and will cease to function after a period of activity. This phenomena
is known as photobleaching, and the total number of photons that can be
emitted varies between 105 − 106 depending on the fluorescence molecule
being used. Thus, the trajectory length of SPT labelled with fluorophores is
on the order of seconds as opposed to minutes for gold particles [71]. FRAP
utilizes photobleaching for measuring the diffusivity of the particles. This
technique provides an ensemble measurement of diffusivity, given that there
is no individual trajectory recorded, as explained above.

There are other alternatives labels that allow for the recording of longer
trajectories similar to gold particles, such as quantum dots, beads, and re-
cently developed fluorocube [88]. However, beads are as large as nanogold,
resulting in similar concerns about their size influencing the molecule’s abil-
ity to interact with their surroundings. Quantum dots are smaller than
beads with diameters ranging from 2 nm to 10 nm. Therefore, they might
influence the biomolecules’ motion much less than nanogold particles or
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beads. However, quantum dots blink, complicating the tracking process.
See below for more detailed explanation. In the past year, a work published
in Nature Methods introduced a novel probe called fluorocubes. They are
small probes, ∼ 6nm, that emit up to ∼ 43−fold more photons than single
organic fluorescent labels and have longer half-life [88].

In epifluorescence microscopy, the light propagates into the entire sample.
The whole sample is illuminated by the focused light from the objective and
also the out of focus light. This increases the amount of light reaching the
cells and also may drive photobleaching. Given that light is toxic to cells,
this increase contributes to the degradation of the cells. This is known as
phototoxicity [105, 132]. Furthermore, fluorescence emission outside of the
focal plane reaches the detector, reducing the signal to noise ratio in the
image and its optical resolution. Other imaging techniques were created to
tackle some of these limitations. We explain two of them below.

Confocal Microscopy

An example of a fluorescence microscopy technique used in single-particle
experiments is confocal microscopy. It is called confocal because a pinhole
is placed at the optically conjugate plane of the focal plane. This pinhole
allows only light produced by fluorophores very close to the focal plane to
pass to the detector. This adaptation improves the optical resolution of the
image, since out-of-focus light is largely eliminated [76, 96].

However, the signal-to-noise ratio is decreased, due to the decrease in
intensity imposed by the use of the pinhole, since fewer photons arrive at
the detector[76, 96]. Moreover, since the whole sample is excited by the
light beam, photobleaching and phototoxicity limits the duration of image
collection [76, 96].

Total Internal Reflection Fluorescence Microscopy

A microscopy technique that limits these issues is called total internal
reflection fluorescence microscopy (TIRF). The idea is to excite the sample
using only an evanescent wave arising from the light beam, instead of the
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beam itself. This decreases the intensity of the incident light on the sam-
ple, yielding a decrease in photobleaching and phototoxicity [2, 37, 74], and
therefore, allowing for longer observations of living cells.

From Snell’s law, we know that when a light beam passes from one
medium to another it also changes its direction. Snell’s law, also known as
the law of refraction, is given by:

n1 sin(θ1) = n2 sin(θ2), (1.1)

where n1 and n2 are the refraction indices of the media and θ is the angle
of the incident light beam measured relative to the normal at the boundary
between the two media. Thus, if the incident ray meets a medium with
a lower refraction index, the refraction angle θ2 is larger than the incident
angle θ1 (figure 1.3).

𝑛1

𝑛2

𝜃1

𝜃2

𝑛1 > 𝑛2

Figure 1.3: A sketch of the refraction law. The incident ray is re-
fracted at the boundary with a medium of lower refractive index.
From Snell’s law (1.1), the refraction angle θ2 is larger than the
incident angle θ1.

From equation (1.1), if n1 > n2, then we have sin(θ1) < sin(θ2), and as
we increase θ1, the refracted angle grows and eventually reaches a critical
angle. This critical angle is the maximum angle where refraction still occurs.
Reorganizing equation (1.1), we have:
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θcrit = arcsin

(
n2

n1
sin (θ2)

)
.

At the maximum incidence angle we have sin(θ2) = 1. The critical angle
is thus given by:

θcrit = arcsin

(
n2

n1

)
.

For any incident ray with an angle larger than θcrit, the ray is totally re-
flected, and not refracted. Total Internal Reflection Microscopy uses this
phenomenon to illuminate the sample. Figure 1.4 illustrates TIRF mi-
croscopy and epifluorescence microscopy and highlight their main differences.
In epifluorescence microscopy, the incident ray is perpendicular to the sam-
ple, therefore illuminating and exciting all molecules on the sample. In
contrast, TIRF incident light rays have angles larger than the critical angle,
triggering the total internal reflection of the rays. Once the incident ray
reaches the interface of the cover slip and the sample, it bounces back into
the cover slip. However, a standing wave is created on the interface, allow-
ing some of the incident light to penetrate a narrow portion of the sample
near the coverslip. Through this wave, the continuity of the fields at the
boundary is maintained. This wave is known as an evanescent wave and it is
the source of the excitation of the fluorophores in the sample [2, 37, 74]. The
intensity of the evanescent wave decreases exponentially with the distance
from the interface, yielding a low penetration into the sample. Therefore,
fluorophores closer to the interface are excited much more strongly than
those further from the interface.

The penetration depth of the evanescence wave is given by:

d =
λ

4π

(
n2
1 sin(θcrit)− n2

2

)−1/2
,

where λ is the wavelength of the incident ray [74]. Typical values of d
using TIRF microscopy equipment is in the range of 100−200 nm [37, 74, 74].

TIRF imaging exhibits decreased background noise, since fluorophores
deeper within the sample are not excited. Moreover, the intensity of the light
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reaching the fluorophores molecules is also decreased [37, 74], decreasing
photobleaching (and phototoxicity).

Sample n1

Coverslip

n1

n2

(a)

Sample n1

Coverslip

n1

n2

𝜃𝑖 > 𝜃𝑐

(b)

Figure 1.4: Schematics of (a) Epifluorescence microscopy versus (b)
TIRF microscopy

All the experimental data used in this work were acquired through TIRF
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microscopy.

1.1.2 Detection and Tracking in Single Particle Tracking Ex-
periments

The output of a single-particle experiment is a video where each frame is
an image of the labelled molecules captured by optical microscopy. Figure
1.5 shows one frame of an SPT video. The output is analysed by image pro-
cessing techniques to obtain trajectories of the labelled molecules. Different
approaches to this problem have been developed over the last 20 years. The
majority of approaches divide the problem into (i) detection and localization
of labelled molecules in each frame of the video and (ii) linking the detected
position sets from one frame to another [18, 22, 41, 51, 57, 110].

Figure 1.5: Screenshot of single-particle trajectories video.

Briefly, the identification of each molecule’s location in each frame is the
first step into obtaining all labelled molecule trajectories. Next, the positions
of the molecules are linked to generate the final trajectories. A scheme of this
framework is presented in Figure 1.6. First, we run a detection algorithm
to detect particles in each frame. Next, a tracking algorithm links particles
in different frames together, resulting in trajectories. Then, the processed
data is obtained: a table with a frame index representing the time, and the
x and y position of the particle at each time point.

During the linking step, we need to deal with molecules that transiently
are not detected in one or more frames; and with molecules that show up or
vanish permanently at some point. Both of these cause trajectories to split,
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complicating the tracking procedure. Labelling probes that blink are more
likely to generate these behaviours. These challenges are addressed by the
tracking algorithm, which estimates the optimal trajectories from the set of
localizations given by the detection algorithm. More details can be found
below.

One track

Detection
Algorithm

Tracking
Algorithm

Frame x y

1 0.001 -0.002

2 1.23 0.712

3 0.536 1.354

4 0.426 2.456

Figure 1.6: After acquiring the video of the labelled molecules, iden-
tification of the position of each molecule is performed in each
frame of the video. Next, a tracking algorithm connects the
positions of these molecules from frame to frame resulting in
trajectories. The final output is a table, with information on
the position for each frame and each object.

When light passes through a small aperture such as the pinhole of a
camera, the shape of the light wave changes. This phenomena is known as
diffraction. The different shapes of the aperture result in different patterns.
For circular apertures, like the pinhole of a camera, the diffraction pattern
is composed of concentric rings, alternating between bright and dark. The
intensity of the rings decays as the distance from the center of the pattern
decreases. Therefore, the central disk contains most of the intensity. This
pattern was discovered by George Airy, and because of that is known as
Airy pattern, and the central ring is called the Airy disk. The intensity of
the Airy disk can be well-approximated by a 2-D Gaussian centred in the
centre of the disk (x0, y0) [71, 110, 132]. Then,
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I(x, y) = I(x0, y0) exp
(
−(x− x0)

2

2w2

)
exp

(
−(y − y0)

2

2w2

)
, (1.2)

where w is the standard deviation of the spatial intensity distribution.
This intensity profile is known as the point spread function (PSF). The
detection algorithm typically consists of fitting the point spread function
using equation (1.2). However, the Airy disk is an idealized description of the
PSF that assumes a perfect optical system, where the light waves emerging
from each point of the object and passing through the lens are convergent
spherical waves. In actual optical instruments, the light waves surface have
a more complicated form than spherical waves causing aberrations on the
PSF [80, 89, 141], given that light rays from same points on the object do
not meet on the same points in the image, leading to a blurring effect. The
curved lens also causes PSF aberrations [80, 89, 141]. Furthermore, out-of-
focus positions also affects the pattern of the PSF [80, 89, 141]. While it is
out of the scope of this thesis to investigate these issues, they are a major
problem for accurate localizations of single particles.

This standard deviation of the diffraction pattern for a point particle
defines the resolution of the imaging system. The resolution is the minimal
distance between two points where these two points can still be distinguish-
able, and depends on the wavelength of the light beam, and the numerical
aperture of the system. For visible light, the maximum resolution is around
200 nm and is also called the diffraction limit. When fitting the Airy disk
to the 2D Gaussian in equation (1.2), the localization precision of a single
molecule can be improved to a few nanometers, a precision higher than the
resolution of the microscopy system [71, 132].

The next step is to link the positions from frame to frame to build the
trajectories of each labelled molecule. There are many possible trajectories
when connecting dots from frame to frame. For example, let us say we have
a 10-frame video, where in each frame there are 5 dots. Then, we need
to choose among 510 = 9765625 trajectories. As we increase the number
of particles, the number of possible trajectories gets larger, making it an
intractable problem. However, if we further assume that all the 5 dots
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are clearly spaced within a frame, then we could link the dots based on
their distance between frames using a nearest neighbour kind of algorithm.
Hence, the closest dot in the next frame is linked to a dot in the current
frame. Figure 1.7 illustrates the connecting the dots process.

Figure 1.7: Linking the positions detected in each frame resulting on
the labelled molecules trajectories.

If there are only a small number of labelled molecules in an experiment,
this framework is usually feasible, given that the probability of two molecules
crossing each other’s paths is small. However, even at low density labelling
there will still be molecules crossing paths. Moreover, particles can get closer
than the diffraction limit (merging), and then move apart (splitting). Then,
one of the two trajectories might be split, because one particle cannot be
localized on a frame. Besides that, it is common for labelled molecules to
transiently disappear and then reappear in different frames, making it harder
to link the dots throughout the frames. To address these issues, additional
conditions for linking the labelled molecules need to be added. There are
many different algorithms to perform the linking between dots, and they are
known as tracking algorithms [18, 71, 110, 111].
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Each one of these algorithms utilizes different conditions for linking.
Some of them join the detection and the tracking algorithms together to
add more restrictions, and, as well as information on both the linking of the
positions and on the detection of these positions. Others join the tracking
step with the interpretation of the movements. In other words, they assume
that the labelled molecules exhibit a specific type of motion or motions, and
use this information to decide on the connection of the positions. These
motions can be diffusion, directed motion, anomalous diffusion and so on.
To this date there is no method that guarantees best performance accross
different datasets, but there are best performing algorithm for each different
dataset. The best performing algorithm depends on properties of the exper-
iment, such as the label being used, and details of the experimental system
in general [18].

In this work, we used a single software to do both detection and tracking
process. The software used is called Icy and has a detection algorithm and a
tracking algorithm built-in together [27]. Their detection algorithm is built
from previous work [90], where the author developed a multiresolution algo-
rithm based on undecimated wavelet transformation, and for their tracking
algorithm [16, 17] they integrated the notion of target perceivability.

In Icy, a Multiple Hypothesis Tracking framework is used for tracking[16].
Instead of connecting the dots frame by frame, it uses information from
future frames to decide the connection at frame k. From a set of possible
associations between frame k and frame k + d, the algorithm finds a subset
that maximizes the likelihood of the associations ending at k + d. These
associations are then clustered if they share at least one similar measurement.
For each cluster, the associations with highest likelihood are kept. The final
association is built by merging the associations for each cluster.

In this analysis, the likelihood is calculated using a Bayesian framework.
First, we assume that the measurement of an object and its motion are not
affected by other objects. The model also assumes the possibility of false
detections. Moreover, it introduces the concept of perceivable state by the
definition of a two state hidden Markov model (HMM). A track is perceivable
if it can be measured. Therefore, a track is not perceivable if it has bleached,
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physically disappeared or left the surveillance volume [16, 17]. Through this
definition of these states, the algorithm allows for imperfections in the data,
yielding a more robust algorithm. In practice, the Icy algorithm has been
implemented to take advantage of parallel computing, allowing for faster
performance[16]. The settings that I used for particle detection and tracking
by the Icy software were: detection of bright spots over dark background
with scale 2 and a threshold 70. There are three options for the scale, they
specify the size of the spot one want to detect. Scale 2 is used for detection
of spots of 4 to 7 pixels of diameter. The threshold is a parameter related to
the wavelet method applied for the detection algorithm. If the threshold is
set to 100, the set of detection found using the original algorithm is obtained.
If this value is less than 100, then less detections are obtained, if this value
is larger than 100, more detections are obtained. Diffusive and directed
movements were considered in the tracking algorithm. We found that Icy is
a fast and practical framework that delivers accurate trajectories.

Other tracking algorithms are also available such as u-Track [57] and
Biggles [51]. Additional algorithms are described in reference [18], where
the authors compared the performance of 14 different detection and tracking
algorithms.

Limitations of SPT

Although it is a very powerful tool, and perhaps, overall, the best method
for probing the motion of individual molecules at millisecond to second time
scales, there are some limitations to the single particle tracking technique.

As mentioned before, there are inherent limitations that arise from the
probe being used to label the molecules, and the experimental settings.

1. Photobleaching of the probe leads to shorter trajectories, because the
labelled molecules become invisible after a certain amount of time.
This time depends on the probe and on the experimental set up. For
organic probes, the higher the intensity of the incident light on the
sample, the faster the photobleaching of the probe. This is due to the
maximum number of photons that each fluorophore can absorb before
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it goes dark. This number is usually around 105 − 106 photons [71].
However, the lower the intensity of the incident light, the lower the
signal-to-noise ratio, making it harder to detect the molecule. Quan-
tum dots, beads, and nanogold are options for probes that generate
long trajectories without compromising the signal-to-noise ratio.

2. Another limitation is the spatial resolution of the system. This de-
pends on the wavelength of the incident light and the numerical aper-
ture of the camera lens. For visible light, the maximum resolution
is around 200 nm [71, 132]. To add context, isolated objects can be
localized to ∼ 15-30 nm using fluorescent protein probes [1].

3. The finite spatial resolution is one of the reasons to apply low density
labelling rather than labelling many molecules at once. The ability
to distinguish labelled molecules in each frame is essential for good
tracking algorithm performance. High density labelling increases the
probability of labelled molecules being in close proximity (within the
resolution limit), making it impossible to distinguish them. Moreover,
it also increases the number of molecules crossing each other’s path,
resulting in merging and splitting, which makes it difficult to acquire
the correct trajectories from the tracking algorithm [18, 71].

4. Another limitation is the time required to capture an image of the
sample. This is quantified as the frame rate, the number of frames
captured per second, and it depends on the speed of the detector as
well as the time required to capture enough photons. Faster image
acquisition implies fewer photons arriving at the camera and a smaller
signal-to-noise ratio. Slower image acquisition impacts the study of
fast dynamical processes. The temporal resolution of the data used in
this thesis is 33 frames per second.

5. When molecules are moving too fast compared to the exposure time,
the PSF of each molecule becomes indistinguishable, limiting the ac-
curacy of the detection and tracking algorithm.
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The decision on which probe to use has to be carefully taken, since they
affect most of the aforementioned limitations. Gold nanoparticles or latex
beads are very photostable, allowing longer trajectories (around 10 minutes)
to be obtained, and yielding high spatial and temporal resolution. However,
their size may greatly impact the motion of the biological objects being stud-
ied. Organic fluorescent molecules are much smaller probes and thus better
suited for labelling molecules on a cell membrane. However, they photo-
bleach quite rapidly and therefore generate trajectories that are typically
seconds instead of minutes [71]. Quantum dots offer a compromise between
size and trajectory length. Quantum dots are semiconductor nanocrystals
whose wavelength emission is tuned by their size. Their size ranges from 5
to 8 nm, so they are at most twice the size of fluorescent molecule probes.
They do not bleach and so allow for long trajectories to be captured. One
optical drawback is the blinking. Quantum dots alternate between dark and
bright levels of intensity, complicating the association steps and introducing
tracking errors [1, 114]. Moreover, the size of quantum dots is still prob-
lematic. In previous work [1], we showed that cell surface proteins labelled
using quantum dots had their mobility hindered. To demonstrate this, we
performed single-particle tracking experiments on molecules labelled using
quantum dots and organic fluorophores. Next, we quantified their mobility
by estimating parameters using different models - diffusion process, multi-
state diffusion process, and confined diffusion process. We concluded that
quantum dot probes still reduced the mobility of labelled cell surface pro-
teins [1]. Therefore, the nature of the probe to be used must take into
consideration multiple factors that may vary depending on the biological
system. Figure 1.8 provides an illustration of a Cy3-labelled probe and a
quantum dot probe taken from reference [1] with permission. The data from
this work is used throughout this thesis.

1.2 Modelling of single particle trajectories

After the detection and tracking steps, we have the trajectories of the
particles ready for analysis. We seek quantitative measures of the particle’s
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Figure 1.8: Sketch of (i) Cy3-labelled probe and (ii) quantum dot
probe taken from reference [1] with permission under the Cre-
ative Commons License. To view a copy of the license visit:
http://creativecommons.org/licenses/by/4.0/.

motion. There are many models one can fit to this kind of data, and the
underlying system plays an important role in choosing the model.

1.2.1 Brownian Motion (Diffusion)

The simplest model describing the random motion of microscopic objects
is Brownian motion (BM). BM is also known as diffusive motion and was
first described in 1827 by Robert Brown who observed pollen immersed in
water through a microscope. He observed that the particles of the pollen
were following a random wiggling motion. In 1905, Einstein theorized that
this random motion was due to collisions with water molecules that are
themselves moving randomly due to thermal fluctuations. In the context of
trajectories of proteins on the cell membrane, Brownian motion seems to be
a well-suited model to describe the mobility of these labelled microscopic ob-
jects, i.e. nanoparticles subjected to thermal fluctuations from the molecules
in the cell membrane and the surrounding semi-fluid environment.

Einstein derived an equation for the density of particles undergoing this
random movement, ρ(x, t). Instead of working with individual trajectories,
he worked with the concentration of particles and how it changes over time
and space [30].Let ρ(x, t + τ) be the density of these particles after some
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increment τ at time t. We can relate the density at time t + τ with the
density at time t and on some spatial location y such that y = x+∆, where
∆ is the increment on space for each particle that happens during the time
increment τ . Assuming every movement of each particle is independent of
the others, ∆ has a different value for each particle. The density at time
t+ τ is equal to the integral of ρ(x, t) weighted by the probability of having
an increment ∆ over all possible values of increment ∆, therefore:

ρ(x, t+ τ) =

∫ +∞

−∞
ρ(x+∆, t)ϕ(∆)d∆, (1.3)

where ϕ(∆) is the probability density of an increment ∆, thus
∫ +∞
−∞ ϕ(∆)d∆ =

1.
Expanding the left side of the equation over τ using Taylor series, and

expanding the right side over ∆, since both are very small we obtain:

ρ(x, t) + τ
∂ρ(x, t)

∂t
=

∫+∞
−∞

(
ρ(x,t)+∆

∂ρ(x,t)
∂x

+∆2

2!
∂2ρ(x,t)

∂x2
+...

)
ϕ(∆)d∆,

ρ(x, t) + τ
∂ρ(x, t)

∂t
= ρ(x, t) +

∂2ρ(x, t)

∂x2

∫ ∞

−∞

∆2

2!
d∆, (1.4)

τ
∂ρ(x, t)

∂t
=

∂2ρ(x, t)

∂x2

∫ ∞

−∞

∆2

2!
ϕ(∆)d∆, (1.5)

where the integral of the first term of the Taylor series around ∆ is equal to
1, and the second term vanishes due to integration on a symmetrical domain
over a odd function. Defining the diffusivity constant D, as

1

τ

∫ ∞

−∞

∆2

2!
ϕ(∆)d∆, (1.6)

we obtain the diffusion equation:

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
. (1.7)

The definition of D shows the relationship between time and space in-
crements. Moreover, we observe that D is proportional to the mean of the
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square of these increments. One can see how this is an important property
of diffusion since we can measure the diffusivity of a system of particles just
by using their displacements over time-defined increments.

To develop the theory of Brownian motion a little more, let’s assume
that at t = 0, all the particles are concentrated at x = 0, and they are
moving on a one-dimensional system. Therefore ρ(x, 0) = δ(x). Let’s also
assume as x → ±∞, ρ(x, t) → 0. . Then, the solution of equation (1.7)
(found via Fourier transform in x) that follows these boundary conditions is
a Gaussian function:

ρ(x, t) =
1√
4πDt

e−
x2

4Dt . (1.8)

Notice that this model has only one solution. One can check that equa-
tion (1.8) is the solution by either plugging it into equation (1.7), or applying
the Fourier transform to the initial condition, plugging it into equation (1.7),
and solving the differential equation for the transformed function. After ap-
plying the inverse transform one recovers the Gaussian function as in (1.8).

Equivalently, the single particle probability distribution function obeys
the same partial differential equation as in (1.7), and thus has the same
fundamental solution (1.8).

Furthermore, the Brownian process is ergodic, meaning that the mean
over time, i.e. ⟨X⟩t, approaches the ensemble mean, i.e. ⟨X⟩X , when t → ∞.
In other words, a sufficiently long sample of a Brownian process can represent
the statistical properties of the process, or we can use many short samples
of the process.

Using the ergodicity of Brownian motion and the definition of D, we
can calculate D from the trajectories obtained in the experiments. First, we
calculate ⟨x2⟩x using (1.8) and obtain ⟨x2⟩x = 2Dτ , where ⟨x2⟩x is the mean
of the squared displacements (increments), and τ is the sampling time. Next,
we can rewrite the average of the squared displacements over time instead of
over samples. In our experimental trajectories, time is discrete, so we have a
summation instead of an integral in the calculation of the mean. Therefore,
we have:
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⟨x2⟩t =
1

N − τ

N−τ∑
t=1

(x(t+ τ)− x(t))2 . (1.9)

This equation defines the mean square displacement (MSD) of the tra-
jectory. Next, one can calculate the mean squared displacement curve for
a set of trajectories. Varying τ gives different values inside the summation:
x(t − τ) − x(t), and therefore a distinct value for ⟨x2⟩t(τ). Therefore, the
empirical MSD is a function of τ defining the MSD curve. For example, Fig-
ure 1.9 shows MSD curves for different types of processes. The curve that
is linear with time is from a Brownian motion. Given that ⟨x2⟩x (τ) = 2Dτ

is also a function of τ , and from the ergodicity of a Brownian motion, we
know that ⟨x2⟩t = 2Dτ . Therefore, the curve for the MSD trajectory should
be linear with τ , and the linear coefficient of the curve is equal to 2D for
one-dimensional processes. More generally, the coefficient of the MSD curve
is proportional to 2Dn, where n is the dimension of the system. We can
fit the empirical mean-squared displacement to a linear curve, and calculate
the diffusivity from the slope. This was the basis of the approach adopted
in several early works on SPT [64, 72, 99, 107, 109, 112].

Another approach to the mathematical theory of diffusion is obtained
from the Langevin equation [10]. From Newton’s second law, we know that
the resulting force acting on an object is equal to mdv

dt , where m is the mass
of the object and v is its velocity. For a particle in a fluid, the deterministic
equation governing its motion is:

m
dv

dt
= −∂V

∂x
− ηv, (1.10)

where the first term on the right hand side is due to external potential
forces where V is the energy potential due to external force F , and the
second term is the drag term due to the viscous force on the particle, which
is proportional to the velocity for tiny particles. Let’s assume V is linear
with x, then ∂V

∂x = −F .
For very small particles, for instance molecules on the cell membrane,
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Figure 1.9: The mean-square displacement ⟨r2⟩ as a function of time
∆t for a diffusion process in a flow (red line), pure diffusion (
blue dashed line), a confined diffusion process (pink line), and
a subdiffusive process called fractional Brownian motion whose
MSD ∝ tα with α < 1 (green line). In this graph, we set
α = 3/4.

the inertial effects are negligible. The Reynolds number is the ratio of the
inertial forces to the viscous force acting on the object and is given by:

R =
aρv

η
,

where a is the dimension of the molecule, η and ρ are the viscosity and
the density of the medium the molecule is moving around respectively. In
the regime of low Reynolds number, the viscous force predominates over the
inertial forces. This is the regime of molecules on the cell membrane, given
their small size. In this regime, inertia plays no role. For example, if we are
pushing a molecule to move it on the cell membrane, this molecule will stop
rapidly once we stop pushing [98]. Give that inertia is negligible, we have
mdv

dt ≃ 0 thus 0 = −∂V
∂x − ηv. Moreover, for particles that are not too big,

the forces due to thermal fluctuations arising from the fluid molecules are
not negligible, generating random forces that act on the particle. Thus, we
have:
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dx

dt
=

F

η
+ ξ, (1.11)

where ξ is a random variable representing the random forces generated
by the thermal fluctuations of the fluid molecules. Equation (1.11) is known
as the Langevin equation, and provides another approach to the diffusion
equation. As time passes, the random forces applied on the particles average
to zero over time, i.e. ⟨ξ⟩t = 0. We also expect that the forces experienced
over times longer than the time interval between collisions are uncorrelated,
⟨ξ(t)ξ(t′)⟩t = Aδ(t − t′), where A is a constant. Integrating (1.11) with
initial condition x(0) = 0, and supposing the potential is linear with time,
we obtain: X(t) = 1

ηFt+
∫ t
0 ξ(t

′)dt′, where F is the external force (assumed

to be constant). Averaging X(t) and
(
X(t)− 1

ηFt
)2

over the random forces,
we have:

⟨X(t)⟩ =
〈
1

η
Ft

〉
+

〈∫ t

0
ξ(t′)dt′

〉
=
1

η
Ft, (1.12)〈(

X(t)− 1

η
Ft

)2
〉

=

〈(∫ t

0
ξ(t′)dt′)

)2
〉

=

〈∫ t

0
ξ(t′)dt′

∫ t

0
ξ(t′′)dt′′

〉
=

∫ t

0

∫ t

0
⟨ξ(t′)ξ(t′′)⟩dt′dt′′

=

∫ t

0

∫ t

0
A2δ(t′ − t′′)dt′dt′′

=A2t. (1.13)

Since we know that the MSD is equal to 2Dt, we find A =
√
2D. Moreover,

X(t) is a Gaussian process and its probability density follows a Gaussian
distribution. For the case where there is no external potential, so F = 0, we
recover equation (1.7), whose solution is the Gaussian function as in (1.8).
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As diffusion is a stochastic process, we can also approach it through
the probability density function p(x, t) of position x and time t. Using the
fact that the diffusion process is Markovian (memoryless process), mean-
ing that the next state of the process only depends on the current state,
and the Langevin equation, we can perform a similar calculation to that
presented above (1.7), to obtain the Fokker-Planck equation. The Fokker-
Planck equation describes the evolution of the probability density through
time and space:

∂p(x, t)

∂t
= −∂µ(x)p(x, t)

∂x
+

∂2D(x)p(x, t)

∂x2
, (1.14)

where µ(x) is the drift. As written here, D and µ might be func-
tions of space as well. The previous equations are seen to represent sim-
plified forms of the Fokker-Planck equation. Equation (1.14) is more gen-
eral and describes the case where diffusivity and drift vary over time and
space. Another way to obtain the Fokker-Planck equation is using the con-
tinuity equation ∂p(x, t)/∂t = −∂J(x, t)/∂x, that represents the conserva-
tion of probability, where J(x, t) is the probability current and is given by
J(x, t) = µ(x)p(x, t)− ∂D(x)p(x, t)/∂x.

1.2.2 Confined motion

When we have a diffusive particle constrained to remain inside a domain,
its MSD curve grows more slowly than the linear function, therefore indi-
cating subdiffusive motion. As one can see in Figure 1.9, the MSD for a
diffusion process constrained to remain within a domain is sublinear in time.
Alternatively, the particle might be interacting with another particle or sys-
tem and this interaction mimics a barrier that constrains the domain of the
diffusive tracer. One example of such a system is the Ornstein-Uhlenbeck
process. In this process, the motion of the particle is under the influence
of random forces and an external force from a quadratic potential [10, 39].
This quadratic potential can be thought as a spring connecting the particle
to the centre of the potential. Thus, the external force pulls the particle in
direction to the centre of the potential, and the strength of the pull increases
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with the distance of the particle to the centre. Suppose that the thermal
fluctuations responsible for the random forces on the particle are large, then
they can bring the particle to a position x very far from the centre. How-
ever, as they move the particle on the space, the particle might get to a
point where the restorative force is large enough, so that it is pulled back to
the centre of the potential. Therefore, the particle is confined to this region.
The Fokker-Planck equation for this process is given by:

∂ρ(x, t)

∂t
= −A

∂ (xρ(x, t))

∂x
+

∂2D(x)ρ(x, t)

∂x2
. (1.15)

We observe that the potential yields a linear drift term, that tends to restore
the particle to the origin.

1.2.3 Anomalous Diffusion

There are other types of diffusive motion that display similar behaviour
to the non-linear MSD curves shown in Figure 1.9. These other types are
known generally as anomalous diffusion since one of the main properties of
plain diffusion is that its MSD curve is linear with time. They are described
as subdiffusive when their MSD curve grows sublinearly with time, or su-
perdiffusive when the MSD grows faster than linearly with time. Anomalous
diffusion can be thought as a generalization of diffusion when Einstein’s as-
sumptions are not valid. For example, if either the variance of the increment
of each particle, i.e. ∆, or the waiting time for the particle to move τ is
not finite, a type of anomalous diffusion is generated [71, 78]. A commonly
studied case supposes that MSD ∼ C(a)ta, where a ̸= 1 and C(a). There
are many types of anomalous diffusion, each one with a different a and C(a)

[77, 78]. As an example of anomalous diffusion, we have Levy flights, a su-
perdiffusive process, whose step-length distribution follows a Levy distribu-
tion. The mean square displacement of a Levy flight is given by MSD ∼ t2/α

for α < 2, where α is a parameter of the Levy distribution. There has been a
variety of evidence suggesting that many organisms (and cells) use a random
search strategy that can be accurately modelled as a Levy flight [53, 55, 66].
A longstanding hypothesis is that Levy flight is the optimal random search
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strategy. Intuitively, given that the variance of a Levy distribution is infi-
nite, one can think that a particle undergoing a Levy flight would explore
an area faster than a Brownian motion for example [56, 77, 78, 103, 104].
An example of subdiffusive motion is the fractional Brownian motion, whose
mean square displacement is given by MSD ∼ tα, where 0 ≤ α ≤ 1 a param-
eter of the motion. Fractional Brownian motion is used to model diffusive
particles in a viscoelastic environment. In living organisms, viscoelasticity
can be generated by crowding of molecules, or interactions among molecules
[32, 63, 71, 77, 78].

1.2.4 Multi-diffusive states

A natural question is whether a microscopic particle obeying a random
motion process might, in fact, transition between different processes as it
explores its environment. For example, a cell surface receptor might en-
counter relatively large binding partners - leading to a transient reduction
in its diffusivity. We therefore can seek to connect these models in a way
that allows for transitions between different modes of mobility. One can do
that using Markovian processes.

A discrete-time Markov chain (DTMC) is a stochastic process following
the Markov property, i.e. the probability that a random variable X is equal
to x at time t given all the past values of X is:

p (Xt = x | Xt−1 = xt−1, . . . , X1 = x1) = p (Xt = x | Xt−1 = xt−1) ,

where t is time and Xt is the random variable value at time t. Therefore, a
Markov chain is a memoryless process, where the value of the random vari-
able at time t depends only on the value of the random variable immediately
before, at t− 1 [39].

It is possible to construct a Markov model, such that every time point
is associated with a state σt, and σt = 1, 2, . . . ,K, where K is the total
number of states. Moreover, each state out of K possible states follows
another process with a parameter Fk, for k = 1, . . . ,K, specifying that
process. The probability of transition between states is defined through the
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K ×K transition matrix

T =


p11 . . . p1K
... pkk

...
pK1 . . . pKK

 .

For single-particle trajectories, the final data is the displacement of each
particle for each frame as shown in Table 1.1.

Time Interval ∆x ∆y

t1 − t0 x1 − x0 y1 − y0
...

...
...

tN − tN−1 xN − xN−1 yN − yN−1

Table 1.1: Experimental data of single-particle tracks experiments.

The Markov state chain underlying this data is hidden since one does
not know in which state a particle is at each time point. As a simplify-
ing assumption, we assume that the particle only changes states between
successive frames. In other words, the particle exists in only one state per
observed displacement. This is a reasonable approximation if the time step
is sufficiently short compared to the transition rates. Therefore, we want
to estimate the state parameters Fk for each k = 1, . . . , K, the transition
matrix T , and the state sequence si for i = 1, . . . , N+1, where si = 1, . . . ,K

for the experimental dataset.
An example of “hidden Markov model” (HMM) applied to SPT analysis

is given in the work by Das et al. [24]. In this work, the Markov chain al-
lows for two states: one slow diffusive state and one fast diffusive state. The
tracked proteins are membrane-associated proteins that could bind intracel-
lular molecules, yielding a bound state with a slower diffusivity. When free,
the molecule could attain faster diffusivity, being unbound and able to move
on the membrane without restrictions. Das et al. developed an algorithm
to estimate the diffusivity of both states, the transition probabilities, and
the hidden sequence of states for each trajectory.
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1.3 Parameter Estimation

The connection between the model and experimental data happens through
the parameter estimation. This is where we acquire quantitative information
from data. The estimation of parameters usually involves the optimization
of a function. This function can be the likelihood of the model and its
parameters given the data, or an approximation of this likelihood.

1.3.1 Maximum Likelihood Estimation

One method for estimating parameters is the maximization of the like-
lihood given an appropriate model. The most probable parameters that
explain a particular dataset given the underlying model are the ones that
maximize the likelihood.

The likelihood of a vector of displacements ∆x is given by: L (∆x | Θ) =

p (∆x | Θ), where p (∆x | Θ) is the probability of observing the vector of
displacements ∆x given the parameter set Θ.

For a K-state Markov model, the conditional probability is given by:

p (∆x | Θ) =
∑
∀h

p (∆x | h,Θ) p (h | Θ) , (1.16)

where Θ is the set with the parameters describing each state’s underlying
process, h = (h1, . . . , hN ), for hi = 1, . . . ,K, is the hidden sequence of states,
p (h | Θ) is the probability of having a sequence of states h given Θ, and
p (∆x | h,Θ) is the probability of observing ∆x given the hidden sequence
h and the parameters set Θ. Since we are calculating the probability of
observing ∆x given the parameters of the model, we need to consider all
possible sequences of states and sum over all of them. In other words, to
compute the likelihood we need to sum over all possible sequence of states.
For a K−state model and a data of size N , we have KN combinations of
states for the hidden sequence of states. Therefore, direct calculation is
computationally expensive.

An algorithm that calculates this likelihood efficiently is the forward
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algorithm [4]. The forward probability is defined as the probability of ob-
serving the partial sequence of data (∆x1, . . . ,∆xj) up to time point j, and
being in state i at time point j, with model parameters Θ. This probability
is given by:

αj(i) =p (∆x1, . . . ,∆xj | hj = i,Θ)

=

[
K∑
k=1

αj−1(k)pki

]
p(∆xj | hj = i,Θ).

Then, the probability of observing ∆x for a given parameter set is equal
to:

p(∆x | Θ) =

K∑
i=1

αN (i).

The work in [24] uses this algorithm to maximize the likelihood and then
estimate the parameters of the model. In this study, they have a two state
model, therefore K = 2 in the above equations. Moreover, each state is
described by a diffusion process. Then, the probability of the observed data
given the parameters model is a Gaussian distribution: p (∆x | h,Θ) ∼
exp

(
−∆x2

2σ2

)
, where σ is the standard deviation of the diffusion process.

From the Brownian motion section we know that the variance of a diffusion
process is linear with time and equal to σ2 = 2dDt [10, 30, 39], where d is the
dimension of the process, and t is the sampling time. For the experimental
data in table 1.1, n = 2, where t is the constant time interval for each
displacement, so t = t1 − t0,= t2 − t1 = · · · = tN − tN−1.

Besides estimating the parameters, it can also be important to estimate
their uncertainty. One can achieve that using Markov Chain Monte Carlo
(MCMC) algorithm to explore the likelihood and the vicinity of its peak,
acquiring the posterior distribution of the parameters for each state. Statis-
tics describing width of the posterior distribution around its peak can then
be reported.
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1.3.2 Model Selection

Maximum likelihood estimation methods provide a framework for estimat-
ing parameters given a model. Importantly, there is an underlying assump-
tion that this model is the true model of the data. For the case of hidden
Markov models, this model is defined by the number of states K, and the
likelihood of the data is calculated based on a K−state Markov model, and
its parameters set thus changes with K as well.

Therefore, one needs to a priori ascertain the true number of states of a
particular dataset, so that the parameters can be estimated. This decision
could be based on some prior knowledge on the system being studied or
through some heuristic properties of the data. However, this is usually not
possible.

In living systems such as a cell membrane, a molecule can bind to other
molecules in different ways, can move in a crowded environment, can move
around in a free diffusive motion, can be attracted or repelled by different
particles, and all of these situations affect its mobility [58, 67, 94]. There-
fore, a molecule on a cell membrane possibly undergoes different modes of
motion. This number of diffusive states not only indicates heterogeneity on
the molecule motion, but also sheds light on the organization and structure
of the biological system being studied. Besides being a biological unknown
of great interest, the number of diffusive states is essential for the estimation
procedure.

A clear need for a method that decides the best number of diffusive
states based on data exists. Recently, work has been done to tackle this
matter. One method was recently introduced by Linden and Elf [67], where
a variational Bayesian approximation was used to estimate the parameters
given the number of states of the Markov model and a variation of a cross-
validation algorithm was implemented to select the best model among them,
i.e. estimate the number of states. Another solution was described by Koo
et al. [61], where ensembles of short particle trajectories were analyzed
through an expectation-maximization approach to fit a Gaussian mixture
model. The number of Gaussian mixtures is the equivalent to the number
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of diffusive states. In this work, they calculated the likelihood of the data
for a different number of Gaussian mixtures, and then used a Bayesian
Information Criteria to decide the optimal number of Gaussian mixtures.

A common feature of both methods is the post-estimation procedures to
select the best model: the estimation algorithm is applied for each possible
model, and only afterwards is the best model selected via some criterion.

In two chapters of this dissertation, a different strategy to estimate the
optimal number of states is developed. We aim to create a framework such
that both the number of states and model parameters set are estimated
simultaneously. This is done via a nonparametric Bayesian framework.

Bayesian nonparametric models are Bayesian models defined on an infinite-
dimensional domain. They have the same structure as Bayesian models,
and can be implemented by sampling the posterior distribution based on
the prior and the likelihood. However, their parameter space is in princi-
ple infinite-dimensional. For the inference of Markov models, a Bayesian
nonparametric approach allows for the number of states K to be estimated
alongside the other parameters, effectively, inflating the parameter space to
infinity, since K changes the size of the parameter set, and as K → ∞ the
parameter set cardinality becomes infinite as well [130].

1.4 Thesis Goals

There are many algorithms in the literature developed with the sole purpose
of analyzing single-particle trajectories. Some of these algorithms consider
only a single state diffusion process taking into account experimental errors
[6, 79, 91, 99, 135], while others consider multiple state diffusive processes,
different modes of motion [24, 122, 136], such as confined diffusion and free
diffusion [28, 121], and so on.

In this thesis, we will present new algorithms to answer the following
problems in SPT analysis:

• How does the lack of precision in experimental position measurements
affect the parameter estimation for a multi-state diffusion process?
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• How can one estimate the number of modes of motion, and their pa-
rameters simultaneously?

To answer the first question, we will present an algorithm that is a combi-
nation of the two-state hidden Markov model (as in [24]), and the covariance
estimator that considers the experimental errors on the diffusion estimation
developed by Berglund [6]. Next, we approach the second question by de-
veloping a nonparametric framework that estimates the number of diffusion
processes and the model parameters simultaneously. Then, we apply this
model to experimental data to check whether the number of modes is a
fixed quantity throughout different runs of the same experiment. Finally,
we implement this framework to take into consideration experimental errors
similar to the two-state improved algorithm.

1.5 Thesis organization

This dissertation is organized by algorithms. In each chapter, an algorithm
is described. They are ordered by complexity, and we can think of them as
building blocks.

In Chapter 2, we describe the two-state hidden Markov model taking
into account the measurement errors. This algorithm is an interpolation of
two algorithms: the two-state hidden Markov model developed by Das et
al. in [24], and a one-state diffusion estimator that takes into account the
experimental errors developed by Berglund in [6].

In Chapter 3, the infinite hidden Markov model for single-particle trajec-
tories is described. This model is a Bayesian nonparametric model. There-
fore we also give a brief explanation of nonparametric Bayesian, Dirichlet
processes and other tools that make this nonparametric framework possible.

In Chapter 4, we connect Chapter 2 and Chapter 3 and create a new
algorithm, the infinite hidden Markov model for single-particle trajectories
taking into account the experimental errors in position measurements.

In all three chapters, we validate the algorithm with simulated data and
apply the algorithm to the same experimental data taken from [1].
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Finally, in Chapter 5 we report on a hands-on experience of single-
particle trajectories analysis. There, we developed a model specific to the
experimental data being analyzed.

Figure 1.10 illustrates the relationships between the single-particle tra-
jectories algorithms developed in this thesis and the concepts responsible for
bringing the idea for their creation.
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Figure 1.10: Relations among algorithms developed in this work and
their predecessors. Algorithms were motivated by two previ-
ous works: the 2-state HMM [24] and the 1-state model with
errors [6]. The two-state HMM is referred as SPT-2 through-
out this thesis. In Chapter 2, we describe the integration of
these algorithms into the 2-state HMM corrected for the ex-
perimental errors (SPT-2E). In Chapter 3, we generalize the
2-state HMM to a framework that allows for the estimation
of the optimal number of states to best explain the data, to-
gether with their parameters. This is the infinite-state HMM,
referred as SPT-∞. Later, we include the experimental errors
in this framework, and thus develop the infinite-state HMM
with errors (SPT-∞E). Lastly, in Chapter 5, we describe a
pipeline created for a specific experimental setting, where we
further develop the 2-state HMM into a Constrained 2-state
HMM better suited to particular experimental settings.
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CHAPTER 2

Two-State Hidden Markov Model considering Experimental
Errors

Single-particle tracking has enabled us to achieve a better understanding
of the mobility of molecules on the cell membrane, as well as their organiza-
tion. SPT experiments generate individual trajectories of molecules with a
high spatial resolution, and provide a much more detailed picture than other
techniques like FRAP. These properties give us the possibility of studying
the heterogeneity of the cell membrane (via heterogeneity of trajectories) as
well as the ability to develop a more detailed mobility analysis that uses
information from each particle’s trajectory.

One reason for the mobility of microscopic particles on the cell mem-
brane is due to thermal motion. Thermal motion is the random movement
of a particle associated with its thermal energy. Brownian motion is the
mathematical model used to describe the thermal motion of small particles
in a fluid at a thermal equilibrium state in the absence of other effects (such
as mobility constraints). Because of that, the most common model used to
fit single-particle tracks of molecules on the cell membrane is the Brownian
process, also known as diffusion.
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The mean-square displacement, a measure of fluctuations of the particle’s
positions, of normal diffusion is a linear function of time, e.g. ⟨r2⟩ ∼ t,
whereas in anomalous diffusion the MSD is a power function of the time,
e.g. ∼ tα. For α > 1, we have superdiffusion, whereas for α < 1, we
have a subdiffusion. The majority of diffusion coefficient estimators rely on
the mean-square displacement. An illustrative representation of that is on
Figure 2.1..

Figure 2.1: The mean-square displacement ⟨r2⟩ as a function of time
∆t for simultaneous diffusion and flow, pure diffusion, diffusion
in the presence of obstacles, and confined motion.

However, a theoretical diffusion process might disagree with the data,
because of experimental errors. From extensive previous work [6, 83, 99],
we know that there are two common errors when generating single-particle
trajectories: the static error, and the dynamic error. These two errors cause
the displacements to be correlated, causing the MSD to cease to be linear
in time. Therefore, when errors are not taken into account the estimated
values of the diffusion coefficient may not be accurate. To address this
issue, Berglund et al. developed a method to estimate diffusion coefficients
of single-particle trajectories taking into account the static and dynamical
error [6].

Deviations from linearity in the time versus MSD curve are very common,
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and usually attributed to various phenomena, such as obstacles in the mem-
brane, presence of flow, membrane compartmentalization, molecule binding
and so on. Furthermore, since single-particle trajectories of proteins are
commonly observed to be heterogeneous it is reasonable to assume the ex-
istence of transitions among different processes. This can be thought of as
a molecule exploring the cell membrane, and, due to the heterogeneity of
the membrane, this molecule may arrive in different environments, such as
crowded ones, or may bind to other molecules, causing changes in its mobil-
ity. Because of that, a model that considers the possibility of a switch among
processes (states) is more appropriate. As described in Chapter 1, Das et
al. developed a two-state hidden Markov model to analyze single-particle
trajectories [24]. However, experimental errors were not taken into account
in this model. Here, we describe a new model composed of a two-state hid-
den Markov model that takes experimental errors into account. This model
is based on the model of Das et al. [24], and Berglund’s description of the
measurement process [6].

In this chapter, we explain the measurement process for a particle with
a switching diffusion coefficient, and the calculations needed to acquire the
distribution of displacements. Next, we discuss how to estimate the param-
eters of the model. After that, we validate the algorithm using simulated
data. The results are shown for different simulated data, and we find the
range of parameters for which the algorithm works well. Finally, we show
how to find the diffusive state of the labelled molecule at each time point of
the data.

2.1 Measurement Process

As discussed above, the inclusion of experimental errors in the estimation
of diffusion parameters should yield improved estimators. One of the main
challenges is that measurement errors introduce correlations among the dis-
placements of the particles, and that should be taken into account in the
modelling.

First of all, we assume that the particle motion follows a Two-State Hid-
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den Markov Model. As explained before, this model assumes that particles
can switch between two states called 1 and 2, with probabilities p12 to tran-
sit from 1 to 2, and p21 to go from 2 to 1. Each of the two states represents
different diffusion processes: say fast, and slow. For observed displacements
∆1 · · ·∆N , we imagine a corresponding sequence s1, · · · , sN , where si = 1

or 2 describing the state that a particle inhabits at each time point. If the
positional measurements are subject to experimental errors this changes the
diffusion process of each state.

In Figure2.2 we illustrate how the trajectories of a Brownian diffusion
change when different errors are added to the process.
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x
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Figure 2.2: Trajectory of a simulation of one particle undergoing a
two state Markov model with each state undergoing (a) a pure
Brownian motion (blue curve), (b) a pure Brownian motion with
static error (orange curve), (c) a pure Brownian motion with
dynamical error (orange line with dots),(d) a pure Brownian
motion with both static and dynamical error (yellow line). The
pure Brownian displacements are the same in these simulations,
the difference is the addition of experimental errors.
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Let Y (t) be the position of a particle undergoing a Brownian process.
For simplicity here, imagine the particle moves in one dimension. When
measuring the position of the particle, because of errors inherent in the
experiments and observations, we do not acquire Y (t) exactly. Instead, our
measurements can be modelled as follow:

Xk =

∫ kτ

(k−1)τ
s
[
t′ − (k − 1) τ

]
Y (t′)dt′ + ϵk, (2.1)

where τ is the time it takes to capture an image and k is the image index.
There are two types of noise considered here: the dynamical error, s(t), and
the static error, ϵk [6].

The dynamical error exists because the particle is moving while the image
is captured, yielding a blur effect in the image. Therefore, the measured
position is a weighted average of the true particle position, multiplied by the
function s(t). We call s(t) the shutter function. This function represents
the illuminating profile of the experiment, i.e. the relative amount of light
received by the camera at each time point during the measurement time, τ .
The integral of s(t) over the whole interval of the measurement is equal to
one, i.e.,

∫ τ
0 s(t′)dt′ = 1. The static error is taken to be a Gaussian noise,

given by ϵk, with ⟨ϵiϵj⟩ = δijσ
2, representing the localization error in each

frame.
Using the Brownian process property, and writing the starting time as

t0, we have:

⟨Y
(
t′
)
Y
(
t′′
)
⟩ = Y 2 (t0) + 2D

(
min

(
t′, t′′

))
min

(
t′ − t0, t

′′ − t0
)
, (2.2)

we can calculate the average of the measured displacement distribution
∆k = Xk+1 −Xk, and its covariance matrix. The covariance matrix is tridi-
agonal, reflecting that errors in one displacement also affect the previous and
following displacements. Different than for a simple diffusion process, how-
ever, the matrix elements are affected by the underlying diffusivity at that
point of the trajectory. We will now calculate the elements of the covariance
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matrix.

2.1.1 Average

The average displacement is equal to:

⟨∆k⟩ = ⟨Xk+1⟩ − ⟨Xk⟩,

= X0 −X0,

= 0. (2.3)

2.1.2 Covariance

The covariance matrix is given by: Σij = ⟨∆j∆i⟩ − ⟨∆i⟩⟨∆j⟩, therefore:
because ⟨∆k⟩ = 0, Σij = ⟨∆j∆i⟩.

For i = j, we have:

⟨∆i∆i⟩ = ⟨(Xi+1 −Xi)
2⟩,

⟨∆i∆i⟩ = ⟨X2
i+1⟩+ ⟨X2

i ⟩ − 2⟨Xi+1Xi.⟩ (2.4)

Expanding each term in Equation 2.4, we get:

1. First term: ⟨X2
i+1⟩.

⟨X2
i+1⟩ =

〈∫ (i+1)τ

iτ
s
(
t′ − iτ

)
Y
(
t′
)
dt′
∫ (i+1)τ

iτ
s
(
t′′ − iτ

)
Y
(
t′′
)
dt′′

+ 2ϵ

∫ (i+1)τ

iτ
s
(
t′ − iτ

)
Y
(
t′
)
dt′ + ϵjϵj

〉

Since ⟨ϵi⟩ = 0 for all i and ⟨ϵiϵj⟩ = δijσ
2, we obtain:

⟨X2
i+1⟩ =

⟨∫ (i+1)τ
iτ s(t′−iτ)Y (t′)dt′

∫ (i+1)τ
iτ s(t′′−iτ)Y (t′′)dt′′

⟩
+ σ2
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Let

Ii+1 =

〈∫ (i+1)τ

iτ
s
(
t′ − iτ

)
Y
(
t′
)
dt′
∫ (i+1)τ

iτ
s
(
t′′ − iτ

)
Y
(
t′′
)
dt′′

〉
.

Next, apply the change of variables w = t′ − iτ and v = t′′ − iτ , to
find:

Ii+1 =

〈∫ τ

0

∫ τ

0
s(w)s(v)Y (w + iτ)Y (v + iτ) dwdv

〉
,

Ii+1 =

∫ τ

0

∫ τ

0
s(w)s(v) ⟨Y (w + iτ)Y (v + iτ)⟩ dwdv.

Since the average here ⟨, ⟩, is over realizations, we can permute the
expected value to the inside of the integral, and due to the linearity
of the expected value operator, we obtain the expression above. Next,
we use the Brownian property, Equation 2.2, and the fact that we can
partition a Brownian process into independent Brownian processes, to
obtain:

Ii+1 =

∫ τ

0

∫ τ

0
s(w)s(v)Y 2 ((i− 1) τ) dwdv

+ 2

∫ τ

0

∫ τ

0
min (w + iτ − (i− 1) τ, v + iτ − (i− 1) τ)

s(w)s(v)D ((i− 1) τ → (i+ 1) τ) dwdv

= Y 2 ((i− 1) τ)

+ 2

∫ τ

0

∫ τ

0
s(w)s(v) [D (iτ → (i+ 1) τ)min (w, v)

+D ((i− 1) τ → iτ) τ ] dwdv

= Y 2 ((i− 1) τ) + 2D ((i− 1) τ → iτ) τ

+ 2D (iτ → (i+ 1) τ)∫ τ

0

∫ τ

0
s(w)s(v)min (w, v) dwdv.
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Here, we define:

D =



D(0 → τ), 0 ≤ t ≤ τ,

D(τ → 2τ), τ ≤ t ≤ 2τ,
...

D((N − 1)τ → Nτ), (N − 1)τ ≤ t ≤ Nτ,

,

where N is the number of displacements, and D (· → ·) gives the diffu-
sion coefficient for each displacement in the data.

Therefore,

⟨X2
i+1⟩ = Ii+1 + σ2. (2.5)

2. Second term: ⟨X2
i ⟩.

Following the same procedure as before, we end up with:

⟨X2
i ⟩ = Ii + σ2, (2.6)

where

Ii =
⟨∫ τ

0

∫ τ

0

s(w)s(v)Y (w + (i− 1) τ)Y (v + (i− 1) τ) dwdv

⟩
= Y 2 ((i− 1) τ)2

+ 2

∫ τ

0

∫ τ

0

min (w + (i− 1) τ − (i− 1) τ, v + (i− 1) τ − (i− 1) τ)

s(w)s(v)D ((i− 1) τ → iτ) dwdv

= Y 2 ((i− 1) τ)

+ 2D ((i− 1) τ → iτ)

∫ τ

0

∫ τ

0
s(w)s(v)min (w, v) dwdv.

3. Third Term: 2 ⟨XiXi+1⟩.
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⟨XiXi+1⟩ =

⟨∫ iτ

(i−1)τ

∫ (i+1)τ

iτ

s
(
t′ − (i− 1) τ

)
s
(
t′′ − iτ

)
Y
(
t′
)
Y
(
t′′
)
dt′′dt′

⟩
+ ⟨ϵiϵi+1⟩ ,

since ⟨ϵiϵi+1⟩ = 0, we have:

⟨XiXi+1⟩ =

⟨∫ iτ

(i−1)τ

∫ (i+1)τ

iτ

s
(
t′ − (i− 1) τ

)
s
(
t′′ − iτ

)
Y
(
t′
)
Y
(
t′′
)
dt′′dt′

⟩
.

Applying the change of variables w = t′ − (i− 1) τ and v = t′′ − iτ :

⟨XiXi+1⟩ =

∫ τ

0

∫ τ

0
s (w) s (v) ⟨Y (w + (i− 1) τ)Y (v + iτ)⟩ dvdw

= Y 2 ((i− 1) τ)

+ 2

∫ τ

0

∫ τ

0
s (w) s (v)D ((i− 1) τ → iτ)min (w, v + τ) dwdv

= Y 2 ((i− 1) τ) + 2D ((i− 1) τ → iτ)

∫ τ

0

∫ τ

0

s(w)s(v)wdwdv

= Y 2 ((i− 1) τ) + 2D ((i− 1) τ → iτ)

∫ τ

0
s(w)wdw. (2.7)

Finally, using Equation 2.4: ⟨∆i∆i⟩ =
〈
X2

i+1

〉
+
〈
X2

i

〉
− 2 ⟨XiXi+1⟩ we

obtain:

⟨∆i∆i⟩ = 2D ((i− 1) τ → iτ) τ + 2σ2

+ 2D (iτ → (i+ 1) τ)

∫ τ

0

∫ τ

0
s(w)s(v)min (w, v) dwdv

+ 2D ((i− 1) τ → iτ)

∫ τ

0

∫ τ

0
s(w)s(v)min (w, v) dwdv

− 4D ((i− 1) τ → iτ)

∫ τ

0
s(w)wdw.

Simplifying this expression, we finally obtain:
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⟨∆i∆i⟩ = 2D ((i− 1) τ → iτ)[∫ τ

0

∫ τ

0
s(w)s(v)min (w, v) dwdv − 2

∫ τ

0
s(w)wdw

]
+ 2D (iτ → (i+ 1) τ)

∫ τ

0

∫ τ

0
s(w)s(v)min (w, v) dwdv]

+ 2D ((i− 1) τ → iτ) τ + 2σ2. (2.8)

Now, we do a similar calculation for j = i+ 1, then:

⟨∆i∆i+1⟩ = ⟨(Xi+1 −Xi) (Xi+2 −Xi+1)⟩

=
〈
Xi+1Xi+2 −X2

i+1 −XiXi+2 +XiXi+1

〉
.

Calculating term by term again, we have:

1. First term: ⟨Xi+1Xi+2⟩.

⟨Xi+1Xi+2⟩ =

⟨∫ (i+1)τ

iτ

∫ (i+2)τ

(i+1)τ

s
(
t′ − iτ

)
s
(
t′′ − (i+ 1) τ

)
Y
(
t′
)
Y
(
t′′
)
dt′′dt′

⟩
,

=

∫ τ

0

∫ τ

0
s(w)s(v) ⟨Y (w + iτ)Y (v + (i+ 1) τ)⟩ dwdv

= Y 2 ((i− 1) τ) + 2

∫ τ

0

∫ τ

0
s(w)s(v)

D ((i− 1) τ → (i+ 1) τ)min (w + τ, v + 2τ) dwdv

= Y 2 ((i− 1) τ) + 2D ((i− 1) τ → iτ) τ

+ 2D (iτ → (i+ 1) τ)

∫ τ

0
s(w)wdw

2. Second Term:
〈
X2

i+1

〉
= Ii+1 + σ2 as in Equation 2.5.

3. Third Term: ⟨XiXi+2⟩.

⟨XiXi+2⟩ = Y ((i− 1))2 + 2D ((i− 1) τ → iτ)
∫ τ
0 s(w)wdw. (2.9)
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4. Fourth Term: ⟨XiXi+1⟩.

⟨XiXi+1⟩ = Y ((i− 1))2 + 2D ((i− 1) τ → iτ)
∫ τ
0 s(w)wdw.(2.10)

Putting all these terms together (First-Second-Third+Fourth), the third
and fourth terms cancel out. We obtain:

⟨∆i∆i+1⟩ = −σ2 + (2D (iτ → (i+ 1) τ))[∫ τ

0
s(w)wdw −

∫ τ

0

∫ τ

0
s(w)s(v)min(v, w)dvdw

]
(2.11)

Now, set j = i+2. Thus, we have: ⟨∆i∆i+2⟩=⟨Xi+1Xi+3−Xi+1Xi+2−XiXi+3+XiXi+2⟩.

Following the same procedure as before, we know that XiXi+2−XiXi+3=0 and
Xi+1Xi+3 −Xi+1Xi+2=0. Therefore ⟨∆i∆i+2⟩=0. Moreover, we have:

⟨∆i∆i+m⟩ = ⟨Xi+1Xi+m+1 −Xi+1Xi+m −XiXi+m+1 +XiXi+m⟩ .

Then, we conclude that: ⟨∆i∆i+m⟩ = 0 for all integer m > 1.
Therefore, the covariance matrix for a sequence of displacements X0,X1,··· ,XN

is a symmetric tridiagonal matrix, where the non-zero elements are given by:
⟨∆i∆i−1⟩, ⟨∆i∆i⟩, ⟨∆i∆i+1⟩.

Cov =



⟨∆11⟩ ⟨∆12⟩ 0 · · · 0

⟨∆21⟩ ⟨∆22⟩ ⟨∆23⟩ · · · 0

0 ⟨∆32⟩ ⟨∆33⟩
. . . 0

...
... . . . . . . ...

0 0 · · · ⟨∆N(N−1)⟩ ⟨∆NN ⟩


Finally, the full form of the displacement distribution for this measure-

ment process is given by:
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P (∆1 · · ·∆N ) ∝ 1

∥Cov∥
exp

−1

2

[
∆1 · · ·∆N

]
Cov−1


∆1

...
∆N


 (2.12)

2.1.3 Solving the Integral Terms

Now, we solve the integral terms in the covariance matrix. Here, we are
considering experimental settings where one leaves the shutter open during
the whole procedure. This yields a uniform illuminating profile, and opti-
mizes collection of light in low signal-to-noise ratio experiments. The shutter
function is thus s(t) = 1

τ .

1. R1 =
∫ τ
0

∫ τ
0 s(v)s(w)min(v, w)dvdw:

∫ τ

0

∫ τ

0
s(v)s(w)min(v, w)dvdw =

∫ τ

0

∫ v

0
s(v)s(w)wdwdv +∫ τ

0

∫ w

0
s(v)s(w)vdvdw

= 2

(∫ τ

0
s(v)

∫ v

0
s(w)wdwdv

)

Integrating by parts, with dq = s(v)dv and p =
∫ v
0 s(w)wdw, yields:

R1 = 2

(∫ v

0
s(v′)dv′

∫ v

0
ws(w)dw

∣∣∣∣τ
0

−
∫ τ

0

(∫ v

0
s(v′)dv′

)
vs(v)dv

)
= 2

(∫ τ

0
ws(w)dw −

∫ τ

0
S(v)vs(v)dv

)
,

where S(x) =
∫ x
0 s(x′)dx′.
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Applying integration by parts again in each term above:∫ τ

0
ws(w)dw = wS(w)

∣∣∣∣τ
0

−
∫ τ

0
S(w)dw∫ τ

0
ws(w)dw = τ −

∫ τ

0
S(w)dw, (2.13)

and,∫ τ

0
S(v)vs(v)dv = (S(v)v)S(v)

∣∣∣∣τ
0

−
∫ τ

0
[S(v)S(v) + S(v)s(v)v] dv∫ τ

0
S(v)vs(v)dv =

τ

2
−
∫ τ
0 S(v)2dv

2
.

Therefore,
R1 = τ − 2

∫ τ

0
S(w)dw +

∫ τ

0
S(v)2dv.

For s(t) = 1
τ , S(x) = x

τ . Then,

R1 =
τ

3
.

2. R2 =
∫ τ
0 ws(w)dw = τ −

∫ τ
0 S(w)dw as in Equation 2.13. Then,

R2 =
τ

2
.

We can now write out the full covariance matrix, as follows: Cov =
⟨∆i∆j⟩ = 2D ((i− 1) τ → iτ) τ

3 + 2D (iτ → (i+ 1) τ) τ
3 + 2σ2, for j = i,

⟨∆i∆j⟩ = 2D (iτ → (i+ 1) τ) τ
6 − σ2, for j = i− 1 or j = i+ 1,

0, otherwise.

The measurement process is fully defined by Cov.
Now, we need to design an algorithm to estimate the parameters of the

model from experimental data. Although it may be possible to simulta-
neously estimate the parameters of motion ({D1, D2, p12, p21}) along with
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the parameters governing measurement error
(
σ2 or ϵ, R

)
, we will simplify

here and assume that both dynamical and static errors are known. Then,
the vector of parameters to be estimated is: Θ = {D1, D2, p12, p21}. Next,
following the same methodology used in Das et al. [24], we use Maximum
Likelihood Estimation method to estimate the parameters, with the Markov
Chain Monte Carlo algorithm to maximize the likelihood.

The Maximum Likelihood Estimation Method aims to estimate the most
probable parameters that explain the observed data. Under the assumption
of the underlying model, here a Markov process with 2 states, where each
state yields data that follows a measurement process (diffusion process with
errors in the measurement), the likelihood is defined by reference to the
observed data. The parameters that maximize this likelihood are sought.

In this work, we applied a MCMC algorithm to explore the parame-
ter space, and sample the vicinity of the likelihood peak. We used the
Metropolis-Hastings (MH) algorithm, where for each parameter, the algo-
rithm draws a new parameter value from a Gaussian distribution centered
at the previous value of the parameter with standard deviation σ. Parame-
ter values that increase the likelihood are accepted, and those that decrease
the likelihood are accepted with a probability proportional to the change in
the likelihood.

The framework for the exploration of the parameter space is divided
into three phases. The first phase is a burn-in phase, where the algorithm
explores the parameter space broadly. During the burn-in, we iterate 10000
times. If the acceptance ratio is larger than 45%, then the standard deviation
of the proposal distribution step is doubled and we iterate 2500 more times.
Otherwise the burn-in ends. We allow the standard deviation to double six
times, and after that the burn-in is assumed to be completed whether the
acceptance ratio of 45% has been reached or not.

The second phase is to decrease the 45% acceptance ratio to 33%. An
acceptance ratio of 33% for a four-dimensional parameter space indicates
that the search has reached a region of high probability, and that the poste-
rior for each parameter is being sampled effectively, including the tail. First,
the standard deviation of the proposal distribution is decreased to 20% of
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its previous value. Then, the algorithm goes into a loop, with exit only
when the acceptance ratio is accepted in three consecutive steps. The accep-
tance ratio has to be in between 32.6% and 33.4% to be accepted. In each
iteration of this loop, the MH algorithm runs 1200 times. Every time an ac-
ceptance ratio is denied, the standard deviation for the proposal distribution
is rescaled. If the acceptance ratio is smaller than the target value (33%),
the standard deviation of the proposal distribution is decreased, if it is larger,
the standard deviation is increased. The reason is that if the algorithm is
accepting more steps than it should, the search is too local, and therefore,
the size of the jump in the parameter space needs to increase to allow for a
larger region to be explored. If the algorithm is not accepting enough steps,
it means the search region is too large, and it should concentrate more in a
local region.

Finally, the last phase is the exploration phase, where the algorithm
explore the vicinity of the likelihood’s peak by iterating 120000 times.

This algorithm is less efficient than gradient-based maximization schemes,
and depending on the dataset can take days to finish. However, the advan-
tage of using MCMC is that it naturally estimates the uncertainty in the
estimated parameters of the model, allowing for a credible interval, and is
less liable to become stuck in a local maximum [24].

The likelihood of the parameter set Θ for the displacements ∆1, · · · ,∆N

is proportional to the probability of displacements ∆1 · · ·∆N given the pa-
rameter set. In summary,

L (Θ|∆1 · · ·∆N ) ∼ P (∆1 · · ·∆N |Θ) .

This probability is a summation of multivariate Gaussian distributions
as in Equation(2.12), in which each distribution represents one possible re-
alization of the model. The many different realizations are due to the many
possible sequences of states yielding a different covariance matrix. Since
we have 2 states, we have 2N possible state sequences. This number is
usually so large, that it is computationally infeasible to directly calculate
P (∆1 · · ·∆N |Θ). Therefore, we use a modified version of a dynamical pro-

49



gramming algorithm known as the forward algorithm to calculate the like-
lihood [4, 24, 97]. Since the covariance matrix is tridiagonal, the forward
algorithm has to be adapted from the simpler version described in Das et al.
[24]. In the next section, we describe the adapted forward algorithm.

2.2 Adapted Forward Algorithm

As explained in Chapter One, the forward algorithm uses the forward
probability, αj(i), to calculate the likelihood step by step. For the pure dif-
fusion process, the covariance matrix of the distribution of the displacement
is diagonal, and one can calculate the likelihood from the likelihood of each
displacement [24]. However, here we have a tridiagonal matrix, and instead
of calculating the likelihood at each displacement, we must calculate the
likelihood of two displacements.

The forward probability αj(i) is the probability of observing the partial
sequence of displacements, O = ∆1 · ∆2 · · ·∆j , where displacement ∆j is
in state i, given the parameters Θ. Then, the likelihood for a sequence of
displacements
∆0,∆1, · · · ,∆N is given by:

P (O|Θ) =
2∑

k=1

αN (k), (2.14)

where

αj(i) = P [∆1 ·∆2 · · ·∆j , sj = i|Θ]

=

2∑
m=1

2∑
k=1

αj−2(k)pksjpsjsj+1P [∆j∆j+1|sj = i, sj+1 = m,Θ] . (2.15)

The transition probabilities are pksj and psjsj+1 , and they represent the
past transition, and the next transition (or in which state the particle came
from, and which state is going to). We need to sum over all the possible
combinations of previous and next states. Because we have two states here,
there are four possible transitions to consider.
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Finally, P [∆j∆j+1|sj−1 = k, sj = i, sj+1 = m,Θ] is the conditional prob-
ability of having the displacements ∆j ,∆j+1, given the previous state, the
current state, the next state and the parameters. This probability comes
from a two-dimensional multivariate Gaussian whose covariance matrix is
equal to:

Covi,i+1(si−1, si, si+1) =

[
∆i,i ∆i,i+1

∆i+1,i ∆i+1,i+1,

]
and

P [∆j∆j+1|sj = i, sj+1 = m,Θ] =

1

det (Covj,j+1)
exp

(
−1

2
[∆j∆j+1]Cov−1

j,j+1

[
∆j

∆j+1

])
. (2.16)

Note that Covi,i+1 = Covi,i+1(si−1, si, si+1), highlighting the dependence
of the covariance on the previous, current and next states. Therefore, we
need to sum the conditional probability over all possible sets up of states
for the previous and next steps, as described in Equation 2.15. We sought
to validate our new algorithm using simulated data.

Equation (2.15) only accesses the probability of pairs of displacements
starting with odd displacements. This method is an approximation of the
full likelihood of a N×N covariance matrix by N

2 disjoint blocks of size 2×2.
Then, we are assuming that the parameters maximizing the full likelihood
should be the equal to the ones that maximize the disjoint blocks likelihood.
This should be a good approximation if the observed data is large enough.
Other possible solutions are the switching Kalman filter and the junction
tree algorithm [85, 87].

2.3 Results

We first simulated trajectories with experimental errors, and then esti-
mated their parameter set using the noise-corrected two-state hidden Markov
model. We also estimate the parameters using the SPT-2 [24], and then
compare the performance of both algorithms. In this thesis, we refer to the
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two-state HMM algorithm as SPT-2, and the two-state HMM corrected for
experimental errors algorithm as SPT-2E.

We generated simulated data similar to that used in Das et al. [24], which
itself was similar to SPT data obtained from experiments where the receptor
LFA-I was labelled using fluorescent beads and imaged at 1000 Hz [12]. To
start with, we generated eight such data sets. Each data set is composed
of 4 particle tracks, each with 5000 frames, with a frame integration time
of 1ms, and parameters Θ = {1 µm2/s, 0.1 µm2/s, 0.3, 0.1}, with one of
the following values for the standard deviation of the static error σ = 0 µm,

0.0001 µm, 0.001 µm, or 0.01 µm, and with or without dynamical error. We
assume that, the dynamical error corresponds to an uniform illuminating
profile, so R2 = 1/2, and R1 = 1/3. Later in this section, we also show
results from alternative simulated data sets.

As explained previously, the MCMC algorithm uses a burn-in phase to
make sure that it is exploring a high probability region of the parameter
space. For a 4-dimensional parameter space, an acceptance ratio around 33%
is a good indication that this region has been found [24, 43, 70, 100]. All of
these aspects are taken into account in the implementation of the algorithm.
In Figure 2.3, we show the log-likelihood for one of the datasets during
the burn-in phase, and the diffusion coefficient and transition probabilities
estimates.

In the log-likelihood plot for the burn-in phase, one can observe the
increase of likelihood in the first 1000 iterations. After this point, we observe
small fluctuations of the likelihood, but no large further changes. This is an
indication of convergence of the algorithm. When the algorithm reaches the
region with high likelihood, it will stay there, and explore that region. The
same behaviour is observed in the diffusion coefficients and the transition
probabilities as expected.

After the burn-in phase, we want to thoroughly explore the high prob-
ability region. In this way, we can achieve a more accurate distribution
of the parameters. The reported confidence interval for each parameter is
calculated from this distribution. To achieve this, we performed 120,000
MCMC iterations after burn-in was achieved. Figure 2.4 shows the plots
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𝑚
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/𝑠

Figure 2.3: Algorithm convergence, showing the burn-in and steady
phases. Graphs show values of the log likelihood for each itera-
tion (MCMC steps), fast diffusivity values (blue curve) and slow
diffusivity (orange curve) values for each iteration, and transi-
tion probabilities from fast to slow p12 (blue curve), and from
slow to fast p21 (orange curve), for the first 10,000 MCMC steps.

of the log-likelihood, diffusion coefficients and transition probabilities value
at each iteration. We observe small fluctuations around a similar value for
each parameter, without any large change.

In Figure 2.5, we present the estimated distributions of the diffusion
coefficients for each state. Results are shown for four different values of σ,
the static error. Figure 2.5(a) shows results in the absence of experimental
errors, and the others have the following values for the standard deviation
of the error, σ = 0 µm, 0.0001 µm, 0.001 µm, and 0.01 µm. We only con-
sidered static errors in these simulations. In Figure2.6, we have both types
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Figure 2.4: MCMC paths for the 120,000 iterations after the burn-in
phase. Graphs show values of the log likelihood for each itera-
tion (MCMC steps), fast diffusivity values (blue curve) and slow
diffusivity (orange curve) values for each iteration, and transi-
tion probabilities from fast to slow p12 (blue curve), and from
slow to fast p21 (orange curve).

of experimental errors in the simulations, with the same values for the static
error. From the graphs, we observe that the algorithm recovers the diffusion
coefficients with roughly 1% to 5% error, even when σ = 0.01 µm.

To compare the performance of the two algorithms, and whether it is
an improvement to include the errors in the estimation, we also ran the
two-state hidden Markov model without taking into account the errors on
these noisy datasets. Table 2.1 shows the mean of the estimated diffusion
coefficient of each state, and the mean of the estimated transitions probabil-
ities for each dataset, using both algorithms. For the case with only static
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(d) σ = 0.01 µm

Figure 2.5: Estimated distributions of diffusion coefficient for each
state of a simulated 2-state particle tracks with 5000 steps sam-
pled at 1 ms intervals, parameters Θ = {1 µm2/s, 0.1 µm2/s,
0.5, 0.5}, and with only static errors whose standard devia-
tions are the following:(a) σ = 0 µm, (b) σ = 0.0001 µm, (c)
σ = 0.001 µm, and (d) σ = 0.01 µm.
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Figure 2.6: Estimated distributions of diffusion coefficient for each
state of a simulated 2-state particle tracks with 5000 steps sam-
pled at 1ms intervals, parameters Θ = {1 µm2/s, 0.1 µm2/s,
0.5, 0.5}, and with both static and dynamical errors whose stan-
dard deviations are the following: (a) σ = 0µm, R = 1/6,(b)
σ = 0.0001 µm, R = 1

6 , (c) σ = 0.001 µm, R = 1
6 , and d)

σ = 0.01 µm, R = 1
6 .

error, the SPT-2 estimates the correct parameters for all cases, except for
the largest value of σ = 0.01 µm, where the estimated value of the slowest
diffusion coefficient is two times the true value, whereas the algorithm con-
sidering the errors recovers the parameters for all cases. For the simulated
data with both experimental errors, the SPT-2 was not able to estimate the
parameters correctly for any case. One can see that the estimated fast diffu-
sion coefficients are equal to roughly half of their true value, while the slower
diffusion coefficient estimates are smaller than their true value, except for
when σ = 0.01 µm. In this case, the slowest diffusion coefficient, D2, is 1.5
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times larger than its true value. Note that the static error generates anti-
correlation in the data, whereas the dynamical error introduces a positive
correlation in the displacements. Broadly speaking, they balance each other.
Moreover, for the case with only static error, the failure of the two-state with-
out errors happened only for the case where the standard deviation of the
static error, σ = 0.01 µm was comparable to the standard deviation of a tra-
jectory following the slow diffusive process, say σ2 =

√
2D2τ = 0.0141 mum.

The estimate of the slowest diffusion was approximately two times the true
value, suggesting that the variance of the estimated slowest Brownian pro-
cess is approximately equal to the true variance plus the variance of the
static error, σ2 ∼ σtrue2 + 0.01 µm = 0.0141 µm. When both errors are
included, the estimated value for the slowest diffusivity, which was doubled
when the static error was included, was also affected by the dynamical error
and was decreased by approximately one half, as one can see on Table 2.1,
and the estimated value for Dslow is 1.5Dtrue2 instead of 2Dtrue2 for the
dataset with σ = 0.01 µm.

Next, we simulated trajectories with different values for the diffusion
coefficients and transition probabilities. We wanted to make sure the algo-
rithm works for a wide different range of values, and to compare the per-
formance of the algorithms. Table 2.2 shows the results of the estimation
using both algorithms in these datasets. There, the simulated parameters
were Θ = {1 µm2/s, 0.2 µm2/s, 0.1, 0.05}, and all other parameters had
the same values as in the previous simulated datasets. We can conclude
that the SPT-2 applied on datasets including both static and dynamical
experimental errors fails to recover any of the parameters. When only the
static error is included, the uncorrected two-state model overestimates the
diffusion coefficients, although this effect is only noticeable when the static
error is large.

We also plotted the distribution of each parameter, to give an idea of the
variance of the estimation, and to see how far the true value of each parame-
ter is from these distributions. Figure 2.7 shows the plots for the estimated
distribution of diffusion coefficients using the SPT-2E algorithm (a) on a
dataset with standard deviation σ = 0.001µm for the static error and no
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Parameters
used in the
simulation

No
dynamical

noise
1 0.1 0.3 0.1

SPT-2

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 1.0136 0.0992 0.2978 0.1017
0.0001 0.9468 0.0983 0.2929 0.0974
0.001 0.9798 0.1003 0.2985 0.0990
0.01 1.0906 0.1976 0.3206 0.1055

SPT-2E

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 1.0113 0.0992 0.2964 0.1016
0.0001 0.9471 0.0983 0.2903 0.0972
0.001 0.9782 0.0995 0.2967 0.0985
0.01 0.9914 0.0983 0.3231 0.1060

Parameters
used in the
simulation

Dynamical
Error
R = 1

6

1 0.1 0.3 0.1

SPT-2

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.5718 0.0697 0.2314 0.0919
0.0001 0.5483 0.0678 0.2226 0.0944
0.001 0.5617 0.0698 0.2272 0.1017
0.01 0.6969 0.1685 0.2466 0.0918

SPT-2E

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 1.0087 0.1012 0.3049 0.0967
0.0001 0.9582 0.0988 0.2930 0.0994
0.001 0.9862 0.1001 0.3068 0.1072
0.01 1.0066 0.0941 0.3163 0.1018

Table 2.1: Estimation of parameters using both SPT-2 and
SPT-2E algorithms for simulated datasets with σ =
0, 10−4, 10−3, 10−2 µm as the standard deviation of the static
noise, R = 1

6 for the dynamical error coefficient, and the follow-
ing parameters set Θ = {1 µm2/s, 0.1 µm2/s, 0.3, 0.1}.
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Parameters
used in the
simulation

No
dynamical

noise
1 0.2 0.1 0.05

SPT-2

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.9936 0.1985 0.0923 0.0467
0.001 1.0244 0.2013 0.0906 0.0487
0.01 1.0121 0.2035 0.1021 0.0522
0.1 1.3361 0.5039 0.1189 0.0599

SPT-2E

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.9906 0.2002 0.0932 0.0464
0.001 1.0207 0.2022 0.0907 0.0480
0.01 1.0054 0.2020 0.1038 0.0519
0.1 0.9916 0.1796 0.1217 0.0620

Parameters
used in the
simulation

Dynamical
Error
R = 1

6

1 0.2 0.1 0.05

SPT-2

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.6333 0.1355 0.0947 0.0491
0.001 0.6671 0.1336 0.0881 0.0477
0.01 0.6580 0.1385 0.0995 0.0483
0.1 0.9515 0.4527 0.0902 0.0539

SPT-2E

σ(µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.9605 0.1983 0.1038 0.0526
0.001 1.0176 0.1964 0.0957 0.0496
0.01 1.0011 0.1992 0.1086 0.0509
0.1 0.9333 0.1879 0.0923 0.0520

Table 2.2: Estimation of parameters using both SPT-2 and SPT-
2E algorithms for simulated datasets with σ = 0, 10−4, 10−3,
10−2 µm as the standard deviation of the static noise, R = 1

6 for
the dynamical error coefficient, and the following parameters set
Θ = {1 µm2/s, 0.1 µm2/s, 0.3, 0.1}.
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dynamical error, (b)on a dataset with standard deviation σ = 0.0001µm, (c)
on a dataset with standard deviation σ = 0.001µm for the static error and
dynamical error with uniform illuminating profile R = 1/6, (d) on a dataset
with standard deviation σ = 0.0001µm for the static error and dynamical
error with uniform illuminating profile R = 1/6. Figure 2.8 shows similar
plots but using SPT-2 algorithm instead. The simulated datasets consist of
5000 frames sampled at 1 ms intervals.
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Figure 2.7: Estimated distributions of diffusion coefficients for
each state of simulated 2-state particle tracks with 5000
steps sampled at 1ms intervals, and parameters Θ =
{1µm2/s, 0.5µm2/s, 0.1, 0.05} using SPT-2E algorithm.
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Figure 2.8: Estimated distributions of diffusion coefficients for
each state of simulated 2-state particle tracks with 5000
steps sampled at 1ms intervals, and parameters Θ =
{1µm2/s, 0.5µm2/s, 0.1, 0.05} using the SPT-2 algorithm.

To study how the trajectory length affects our estimation, we simulated
data with similar number of frames and same sampling time as the exper-
imental data generated using organic fluorophores to label B cell surface
receptors. We simulated 100 particles, each over 200 frames, with integra-
tion time equal to 0.0303 s, corresponding to 33 frames per second imaging.
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Table 2.3 shows a comparison of the parameter estimation using our algo-
rithm to fit two different types of trajectories: short (∼ 200 frames) and long
(∼ 5000 frames). Additionally, a 2-fold difference between the diffusion co-
efficients is the minimum difference for a good performance of the SPT-2
algorithm. Here, we also conclude the same for our SPT-2E algorithm, as we
can see on Table 2.3. For the shorter trajectories, the algorithm does not re-
liably recover the correct parameters when σ = 0.1 µm. Here, there are two
factors for the worse performance of the algorithm. First, the standard devi-
ation of the slowest diffusion in this data is:

√
2× 0.5× 0.0303 = 0.17 µm,

or roughly of the same order as the standard deviation of the noise. More-
over, the standard deviation of the fastest diffusion is 0.24 µm, which is
approximately equal to the sum of the noise deviation and the slowest dif-
fusion deviation. Therefore, it is not surprising that the algorithm cannot
properly distinguish the noise from the slow state and the fast state.

Furthermore, we want to know how different would the estimations be
if the input value of the static error in the algorithm did not correspond to
the actual value on the simulation. Here, we use the same simulated data
as in Table 2.2, but we set the assumed value of σ to be 5 times larger than
its true value. Table 2.4 shows the estimated parameters. The estimated
parameters are close to their true values, however, the estimates are not as
good as when the σInput is the correct value for the standard deviation of
the localization error. For small σ (0.001 µm), the recovered parameters
are within 10% of the true value. Thus, it is important to have a accurate
estimation of the static error, otherwise the estimates of the parameters of
the model might not be accurate for large static errors (σ =0.01 µm).

2.4 Experimental Data Analysis

In this section, we analyze the datasets from previous work [1] using our
SPT-2E algorithm. We compare two fluorescent labels commonly used for
SPT of proteins. The first label is a small organic fluorophore (Cy3), and
the second labelling method uses quantum dots (Qdots) as the fluorescent
label. The advantage of quantum dots is that they do not photobleach,
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Parameters
used in the
simulation

No
dynamical

noise
1 0.5 0.1 0.05

4 particles,
5000 frames,
τ = 0.001s.

σ (µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.9646 0.5030 0.0857 0.0511
0.001 0.9695 0.4893 0.0973 0.0553
0.01 1.0191 0.4891 0.1060 0.0558

100
particles,
200 frames,
τ = 0.0303s.

σ (µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 0.9822 0.4963 0.0920 0.0531
0.01 0.9772 0.4938 0.0941 0.0559
0.1 0.9266 0.4404 0.1014 0.0912

Parameters
used in the
simulation

Dynamical
Error
R = 1

6

1 0.5 0.1 0.05

4 particles,
5000 frames,
τ = 0.001s.

σ (µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 1.0055 0.4820 0.0958 0.0527
0.001 1.0011 0.4814 0.0936 0.0525
0.01 0.9836 0.4868 0.0810 0.0466

100
particles,
200 frames,
τ = 0.0303s.

σ (µm)
D1

(µm2/s)

D2

(µm2/s)
p12 p21

0 1.0290 0.4710 0.1360 0.0690
0.01 0.9690 0.4510 0.1440 0.0930
0.1 0.8770 0.000 0.2570 0.849

Table 2.3: Estimation of parameters using the SPT-2E model for sim-
ulated datasets with σ = 0µm, 10−3µm, 10−2µm as the stan-
dard deviation of the static noise, R = 1

6 for the dynami-
cal error coefficient, and the following parameters set Θ =
{1µm2/s, 0.5µm2/s, 0.1, 0.05}.

allowing for longer trajectories. However, the size of quantum dots is of the
same order as the tracked molecules. In [1], we sought to investigate if the
two labelling methods yield similar results when using the same cells and
receptors. One of the algorithms used to analyze the data was SPT-2. Here,
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No dynamical noise σ σInput 1 0.2 0.1 0.05

SPT-2E
µm µm D1

µm2/s

D2

µm2/s
p12 p21

0.001 0.005 1.0222 0.2078 0.0895 0.0461
0.01 0.05 0.9287 0.1390 0.1033 0.0518

Dynamical Error
R = 1

6

σ σInput 1 0.2 0.1 0.05

SPT-2E
µm µm D1

µm2/s

D2

µm2/s
p12 p21

0.001 0.005 0.9951 0.1929 0.0935 0.0495
0.01 0.05 0.8509 0.1154 0.1034 0.0490

Table 2.4: Estimation of parameters using the SPT-2E model for
simulated datasets with σ = 0 µm, 10−3 µm, 10−2 µm as the
standard deviation of the static noise, R = 1

6 for the dynamical
error coefficient, and the following parameters set Θ = {1 µ2/s,
{0.2 µ2/s, 0.1, 0.05}. In these table, the input standard deviation
σinput is 5 times larger than the true value of σ. The estimates
are not as close to the true values as when we use the correct
value of σ, however, they are still in close proximity to the true
parameters, demonstrating that the algorithm is quite robust to
this mis-specification.

we further analyze our data, taking into account the errors, and compare
with our previous results.

For our data, the illumination profile is uniform, because the shutter is
open during the whole experiment. Therefore the dynamical coefficients R1

and R2 are 1
3 and 1

2 respectively. The localization accuracies were measured
to be 0.036 µm for Cy3 and 0.029 µm for Qdot, by studying the appar-
ent mobility of motionless stuck particles. The standard deviation of the
displacements of stuck particles labelled by either Cy3 or Qdot is the local-
ization accuracy [1].

Figures 2.9(a) and 2.10(a) are the equivalents of figures 3D and 3E in [1],
which we reproduce (with permission) as Figure 2.9(c) and 2.10(c). There
are a few differences between the results from the two algorithms. First, the
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value of the slow diffusion coefficient is smaller when errors are corrected
for. This is expected, because we saw that errors increase the apparent
diffusivity of the slow state when they are not corrected for. Moreover, the
slow diffusivity when errors are included is essentially zero, indicating that
the molecules are probably not moving during the slow state. However,
as we discussed before, the slow diffusion coefficient will approach zero if
the standard deviation of the static error is larger than the characteristic
diffusion distance of the slowest state. Therefore, we can conclude that the
slow diffusivity for Qdot labelled receptors is smaller than 0.0139 µm2/s,
while for Cy3 labelled receptors it is smaller than 0.0214 µm2/s. Both of
these values are lower than values reported in [1] using the SPT-2 algorithm.

Furthermore, the diffusivity of the fast state for both labelling molecules
is higher than the values estimated using the previous two-state algorithm.
As shown in Table 2.1, the estimated values of the fast state diffusivity are
smaller than the actual values when the SPT-2 is used to analyze data with
errors. Thus, these higher values for the fast diffusivity are in agreement
with our simulated data analysis above. The fast diffusivity is higher for
Qdot-labelled proteins.

Figure 2.9(b) and 2.10(b) also provide the results for the experiment
where latrunculin-A (LatA) was added to the sample. This substance dis-
rupts the actin cytoskeleton of the cell. We found that the fast diffusion co-
efficient was similar for Qdot and Cy3-labeleld molecules, and greater than
that observed for the control cells (for Cy3-labelled molecules). The actin
cytoskeleton creates diffusion barriers limiting the area that an individual
receptor can explore. Thus, when disrupted by LatA, there are less barriers
limiting the motion of the receptors, which could explain the increase of
diffusivity on the receptors.

In summary, for control experiments both labelling methods show a
similar small mobility of the slow state, while the fast state of the Qdot ex-
periment has a higher value compared to Cy3-labelled molecules. One might
think that the movement of the Qdot-labelled molecule is not impaired by
the labelling procedure as suggested by [1]. However, as we can see from
the rate of transitions from slow (2) to fast (1) state and vice-versa, the rate
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of transition to the slow state is approximately 2-fold higher for the Qdot
labelling condition, compared to Cy3-labelled molecules in the control exper-
iment. For the experiment with LatA, this difference is only approximately
1.3-fold higher when the receptors were labelled with Qdots. We conclude,
as before, that Qdot-labelled molecules exhibit much lower mobility, on av-
erage, compared to molecules labelled with Cy3. One likely reason for this
slower mobility in Qdot-labelled molecules is the close apposition of the cell
membrane to the coverslip, resulting in Qdots causing frictional drag.

When fitting experimental data to this model, we forced the data to fit
a two-state model, even if the data would be better explained by a 3 state
model, for example. One of the consequences is that the diffusion coefficients
for a 3-state model would be averaged resulting in two coefficients. The
displacements whose underlying diffusion coefficient is the third state would
be divided among the other two states by the algorithm, resulting in the
algorithm estimating a larger diffusion coefficient for the slow state, and a
smaller diffusion coefficient for the fast state compared with the values of the
3-state model. The three state model is used here as an example of possible
implications of forcing the data to a 2-state model. This could be one
possible interpretation of the above results. Because Cy3-labelled molecules
are smaller, they may enter many different regions of the cellular membrane,
including very crowded regions, whereas Qdot-labelled molecules may not
enter some regions due to their sizes, and might have a higher chance of
being stuck in a very crowded area as well. We will investigate multi-state
model in Chapters 3 and 4.

In addition, fewer diffusion barriers could explain the reason for the
increase of the slow diffusivity for both Cy3 and Qdot-labelled molecules.
The fast diffusivity decreased for Qdot-labelled molecules, and increased for
Cy3-labelled molecules. The re-organization of the cellular membrane might
creates a varied of regions with different levels of crowding, size, and mobility.
These should differently affect the labelled molecules, given the difference in
size of the labels.
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(b) LatA.

(c)Taken from Abraham et al. [1] with
permissions.

Figure 2.9: Diffusivity estimates for SPT-2E Cy3-labelled trajectories
for a control and LatA experiment condition, and Qdot-labelled
trajectories on a Control and LatA experiment condition.(a)
Diffusion coefficient of slow state (y-axis) vs Diffusion coeffi-
cient of fast state (x-axis), red for Qdot-labelled proteins and
green for Cy3-labelled proteins. (b) Same as (a) but for experi-
ments where LatA is added on the cell. Diffusivities are larger
for LatA experiments as expected, since the actin cytoskeleton
is disrupted.(c) Graph showing the diffusion coefficients using
SPT-2 taken from Abraham et al. [1] with permission under the
Creative Commons License. To view a copy of the license visit:
http://creativecommons.org/licenses/by/4.0/.
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2.5 State Segmentation: Adapted Forward-Backward
Algorithm

To further understand the heterogeneity of the trajectories, we can per-
form a state segmentation. The state segmentation is the estimation of
which state is most probable at each time point of the data. This analysis
can potentially reveal spatially heterogeneous phenomena. The Forward-
Backward algorithm is a dynamical programming algorithm that finds the
most likely sequence of hidden states s1, s2, . . . , sN for the sequence of
displacements ∆1, . . . , ∆N .

First, let βj be the backward variable. Similar to the forward variable
αj , βj is the probability of observing the future sequence of displacement
∆j+1, . . . , ∆N , given that ∆j is in state sj . Therefore,

βj(i) = P [∆j+1 ·∆j+2 · · ·∆N , sj = i|Θ] . (2.17)

Because we have a tridiagonal covariance matrix, we needed to make
some changes in the calculation of βj . In this adapted forward-backward
algorithm, we calculated β at every two steps, yielding a probability distri-
bution of pairs of displacements. In this way, we include the off-diagonal
terms and sum over all possible previous and current states. This step is
very similar to the calculation of α in the adapted forward method. Then,
we have:

βj(i) =
2∑

sj+1=1

2∑
k=1

βj+2(k)psjsj+1psj+1kP (∆j+1∆j+2|sj+1 = m, sj+2 = k,Θ) ,

(2.18)
where P (∆j+1|sj+1 = k,Θ) is given by Equation 2.16.

Finally, the probability of being in state i at time step j for an observed
track ∆, conditional on Θ is proportional to

P (sj = i|∆,Θ) = αj(i)βj(i). (2.19)
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Using EquationEquation 2.19 we can infer the most probable sequence
of states for a track ∆.

We tested the modified forward-backward algorithm using the simulated
data and inferred parameters’ values described in Table 2.2. We compare
the estimated state for each displacement with the true state for each dis-
placement to calculate the percentage correctness of the sequencing, i.e.

Correctness = Number of correct estimated states
Total number of displacements .

Table 2.5 shows this quantity calculated using simulated data. We
achieve a good accuracy for the sequencing of states, with over 80% of states
classified correctly even for the trajectories with highest errors. However,
perhaps surprisingly, the two methods perform about equally well. This
result is explained as follows.

Errors % SPT-2E % SPT-2
0 89.67 90.46

0.001 90.25 91.59
0.01 89.92 91.15
0.1 82.06 81.00

Table 2.5: Correctness of sequencing of states for simulated data with
both dynamical and static errors, using the SPT-2E model, and
the SPT-2 model. Fits are to simulated data with continuous
intensity profile function (R1 = 1

3 and R2 = 1
2). Different values

were assumed for the standard deviation of static noise, σ = 0
µm, 0.001 µm, 0.01 µm, 0.1 µm.

The diffusion coefficient estimates are the main difference between the
two HMM models. The SPT-2 sequencing algorithm assumes that the dis-
placements are independents, whereas the SPT-2E algorithm takes into ac-
count the correlations caused by experimental errors in positions. In the end,
the different assumptions of the algorithms are balanced out by the different
diffusivity estimates in such a way that both sequencing algorithms arrive
at similar state classifications. Note that the Viterbi algorithm, which calcu-
lates the probability of the most likely partial sequence of states and uses it
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to segment the data, generally performs better than the forward-backward
algorithm.

Given that the accuracy on the results are similar for both sequencing
methods, we expect the sequencing of the experimental data to be similar
as the one on [1]. Table 2.6 shows the percentage of slow states in the
state sequences using the SPT-2E for the experimental data from [1]. We
obtain similar results to those presented in [1], with a slight increase in the
values for the percentage on slow state for all experiments. However, the
basic conclusions are the same: the percentage of Qdot-labelled molecules
in the slow state are higher than Cy3-labelled, suggesting lower mobility
of Qdot-labelled molecules. Moreover, upon addition of LatA, Cy3-labelled
molecules became more mobile, and had a smaller fraction of slow states
compared to the control. In contrast, the difference betweem Qdot-labelled
experiments with LatA, and the corresponding Qdot control experiments
is only 3%. This suggests that Qdot-labelling underestimates the effects of
LatA on the molecular motion.

Experiment Cy3 Qdot
Control 82.37 93.44
LatA 66.31 90.44

Table 2.6: Percentage of slow states obtained using the SPT-2E algo-
rithm for the experimental data from [1]. Two different experi-
mental conditions were performed using Cy3-labelled molecules
and Qdot-labelled molecules: a control, and adding LatA to the
sample.

Summary

We wanted to understand how the lack of precision in experimental position
measurements affects the parameter estimation for a multi-state diffusion
process. To address this question, we developed an algorithm based on the
model of Das et al. [24], and Berglund’s description of the measurement
process.
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Using simulated data, we first validated our SPT-2E algorithm, and
checked its robustness. After that, we applied our SPT-2E algorithm to
experimental data from [1]. Finally, we compared the results from our SPT-
2E algorithm with the results from Abraham et al. [1].

We found that the SPT-2E algorithm estimates the parameters set Θ

with good accuracy. For simulated data including only static errors, both
the SPT-2 and SPT-2E algorithms recover the parameters, except when
σ is large in which case SPT-2 overestimates the diffusion coefficients. For
simulated data including errors, SPT-2 fails to recover any of the parameters
accurately, whereas SPT-2E successfully recovers all parameters. Overall,
we find that the SPT-2E algorithm is a significant advance over the SPT-2
algorithm for experimental data with appreciable localization errors - for
example as when tracking cell surface receptors labelled with fluorescent
proteins.
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Figure 2.10: Results of SPT-2E for Cy3-labelled trajectories for a con-
trol and LatA experiment condition, and Qdot-labelled trajec-
tories on a Control and LatA experiment condition. (a) Ki-
netic rates from slow to fast k21, and fast to slow k12. Kinetic
rates are approximated by k12

∼p12
τ , where τ is the time du-

ration of a frame. Green is for Cy3-labelled trajectories, and
red for Qdot-labelled trajectories. (b) Same as (a) but for
experiments where LatA is added to the cell. Qdot-labelled
transition rate to slow states is around 6.5 times larger than
to fast states, and 4 times larger than Cy3 transition rate to
slow states. (c) Graph showing the kinetic rates using SPT-2
taken from Abraham et al. [1] with permission under the Cre-
ative Commons License. To view a copy of the license visit:
http://creativecommons.org/licenses/by/4.0/.
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CHAPTER 3

Infinite State Hidden Markov Model

Advances in fluorescence microscopy imaging have allowed us to develop an
increasingly well-resolved picture of the spatial distribution and spatiotem-
poral mobility of important cellular proteins. Our rapidly developing knowl-
edge has supported the development of quantitative theories of intercellular
communication, cell surface receptor signaling and downstream responses.

Single particle tracking (SPT) is a technique that is of particular im-
portance in defining the modes of protein mobility on the cell surface and
within the cell [117]. Typically, cellular proteins are specifically labelled
with a fluorescent tag. By labelling only a small fraction of molecules, in-
dividual fluorescent tags can be localized in a series of images and image
analysis software can be used to link tag positions and thus obtain particle
trajectories [18]. Once we have the trajectories, we can analyze their prop-
erties. Assuming that the particles are only subject to thermal noise, it is
natural to analyze the tracks as representatives of simple Brownian motion
and estimate the diffusion coefficient [31, 99, 112], while taking into account
limitations in particle localization accuracy [6, 79, 101, 135].

Particle trajectories extracted from cellular proteins have often exhibit
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deviations from simple diffusive behaviour, which has been attributed to
transient binding to cellular structures, transient confinement in subcellular
domains, directed motion under the influence of molecular motors, anoma-
lous diffusion, etc [19, 28, 75, 113, 120, 126]. In order to analyze transient
behaviour within individual tracks, dynamic multi-state models have been
developed and analyzed over the last ten years [9, 13, 24, 69, 82, 136, 142].
These methods explicitly assume that particles can switch among a specific
number of diffusive states. For example, Das et al. used a two-state Hidden
Markov Model (HMM) to fit particle tracking data for the surface recep-
tor LFA-1 on the surface of T cells [13, 24]. In this model, particles were
allowed to transition between two diffusive states, each characterized by a
particular diffusion constant. The diffusion constants and transition rates
between the states were fit to the data. At the time, previous experimental
evidence pointed to a large reduction in LFA-1 mobility upon binding with
cytoskeletal components, suggesting that the model could be a reasonable
approximation of the dynamics of LFA-1 as it transitioned between bound
and unbound states. More refined HMM approaches have subsequently been
developed, reflecting finite localization errors and including particle capture
within potential wells [7, 93, 121, 122].

However, in the more general setting, how can one a priori ascertain
the best number of states to explain the data and provide insights into the
biology of the tracked particles? Besides being a biological question of great
interest, the number of possible states changes the statistical model and
hence, the number of parameters to estimate. Therefore, estimating the
number of states is an important problem in multi-state SPT analysis.

One solution to this problem was recently introduced by Linden and
Elf [67], where a variational Bayesian approximation was used to select
the best model and a predictive approach was implemented using cross-
validation. An alternative approach was previously described by Koo et al.
[61], where ensembles of short particle trajectories were analyzed through
an expectation-maximization approach to a Gaussian mixture model, yield-
ing the number of states, their diffusivities, and the stationary probabilities
that particles inhabit each state. Here, we will attack the problem using
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a Bayesian nonparametric approach that allows the parameter space to be
infinite-dimensional. The so-called Infinite Hidden Markov Model (iHMM)
is a nonparametric model [35] that has recently been applied to FRET data
by Sgouralis and coworkers [115, 116] to estimate the number of confor-
mations of a molecule and simultaneously infer kinetic parameters for each
conformational state. We use these concepts to develop a novel tool to ana-
lyze single particle tracking data under the assumption that the trajectories
follow a Markov chain, where each element of the chain is a diffusion process.
We seek to infer the number of diffusive states, the transition rates among
states and the diffusion coefficient defining each state from the available
data.

In this chapter, we will begin by specifying the HMM model that we wish
to apply to SPT data, and then follow the thorough exposition of Sgouralis
et al. [115] to generalize to the infinite-dimensional (iHMM) setting. We
validate the model using simulated data and provide a technical improve-
ment to the algorithm that assists with convergence for the problem at hand.
Finally, we apply our method to real data from experiments using TIRF mi-
croscopy to visualize motion of surface receptors on the membrane of live B
cells[1] and discuss biological implications and possible future directions for
study.

3.1 The Dirichlet Process

The Dirichlet process, together with a Markov model, are the main com-
ponents of the infinite hidden Markov model. This Dirichlet process is an
infinite-dimensional generalization of a Dirichlet distribution. The construc-
tion paves the way to define a Markov chain over an infinite state space,
creating a framework for multimodel inference [5, 125, 130, 131]. Here, we
start with an overview of the Dirichlet distribution and then generalize it to
the infinite dimensional domain.
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3.1.1 Dirichlet Distributions

The Dirichlet distribution can be thought of a distribution over distributions,
meaning that one samples a probability mass function [35, 38, 124, 130]. An
example of a probability mass function is a die. A die with 6 faces defines
a probability of mass function of size 6, π = (π1, π2, . . . , π6), and each πi,
gives the probability of rolling face i of the die. Now, imagine we have a
bag with 1000 dice, and each die is manufactured in a different way, so that
the probability of rolling a face is different among the dice. Therefore, each
die has a different probability mass function. Every time one draws a die
from this bag, one draws a random probability mass function πj , where
0 < j ≤ 1000. The Dirichlet distribution models the randomness of this
experiment - drawing a die from a bag of dice - drawing a probability mass
function.

Suppose Z ∼ Gamma(α, β) is distributed as a Gamma distribution with
shape α > 0 and rate β > 0. This distribution is defined by

p(Z | α, β) = βαZα−1 exp(−βx)

Γ(α)
. (3.1)

The Dirichlet distribution can be defined from a collection of such Gamma
random variables [35]. Let Zi, for 0 < i ≤ k, be independent random
variables following a Gamma distribution Γ(αi, 1) with shape equal to αi

and rate equal to 1. Define πi = Zi∑k
j=1 Zj

, for 0 < i ≤ k. The Dirichlet
distribution is defined as the distribution of (π1, . . . , πk) with parameters
(α1, · · · , αk), i.e.,

(π1, · · · , πm) ∼ Dir (α1, · · · , αk) .

πi is always larger than 0 and smaller than 1. Moreover,
∑

i πi = 1.
Therefore, the domain of the Dirichlet distribution lies over the (k − 1)-
dimensional probability simplex. The density is given by:
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p(π1, · · · , πk | α1, · · · , αk) =
Γ(α1 + · · ·+ αk)

Γ(α1) ˙· · ·Γ(αk)

k−1∏
1

παi
i

(
1−

k−1∑
1

πi

)αk

,

(3.2)

where πk = 1 −
∑k−1

1 πj . (3.2) can be calculated by substitution of
equation (3.1) into:

p(π | α) =

k∏
1

p(πi | αi) =

∏k
1 p(Zi | αi)

p(
∑k

1 Zi | αi)
.

Given that π itself is a distribution, the Dirichlet distribution is called
the distribution of distributions [38, 124].

To better understand how the parameter α changes the shape of the dis-
tribution, we plot the Dirichlet distribution for k = 2, and 3, and different
values of α. Thus, we have a probability mass function on a 1-dimensional
probability simplex, and on a 2-dimensional probability simplex, respec-
tively.

Note that for k = 2, the Dirichlet distribution become a Beta distribu-
tion,

p(π;α) =
Γ(α1 + α2)π

α1−1
1 (1− π1)

α2−1

Γ(α1)Γ(α2)
.

Figure 3.1 shows the distribution for the case K = 2, i.e. the Beta distri-
bution. When both values of α are the same, we have a symmetric curve.
For the case where α1 = α2 = 1, we have a uniform distribution. For
α1 = α2 < 1, we have higher values on the boundaries. For α1 = α2 > 1,
the peak is on 0.5. When α has different values, the curve has higher values
on small π1 for α1 < 1, and for α1 > 1 the higher values are on large π1.

For k = 3, we are dealing with a 2-dimensional probability simplex. The
graphs plotted in Figure 3.2 show how the density changes for different α.
For α = [1, 1, 1], we have an uniform distribution over the domain. When
α = [6, 6, 6], the density peak is on the middle of the space. For α =

[0.1, 0.1, 0.1], the highest values are on the boundary of the domain. When
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Figure 3.1: Dirichlet Distribution for k = 2, where the probability
mass function is on a 1-dimensional probability simplex. Colors
represent different values for α.

the elements of α are different, the density is not symmetric any more, and
the peak moves in the direction of the largest αi.

We can separate the α values using two features: the absolute value
of each element, and the relative value among the elements. First, their
absolute value indicates how much belief we have on the prior, so for higher
values of α, the sampled distribution is closer to the prior [124]. By “prior”,
we mean the relative ratio among the elements of α. For the example of a die
with 6 faces, α has 6 elements. From our prior knowledge we expect that the
probability of drawing any face to be the same, and equal to 1

6 . Then, our
prior is (16 , . . . ,

1
6). Therefore, the elements of α are equal, and their ratios

are the same as the prior ratios, since we do not want to add any bias to
any face of the dice. Figure 3.2 can be a representation of a die with 3 faces.
For α = (1, 1, 1), all the faces have the same chance to be drawn, however
our belief in this prior is neutral. We are not sure whether this die is not
biased. Therefore, we have a uniform distribution for the Dirichlet process.
If we are more confident that our dice is not biased, we increase the values
α to 6, and there we have higher probability around (13 ,

1
3 ,

1
3) distribution.
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If we decrease α values, we know that the prior is biased, and the higher
values are on the edges. If the die is biased, and we know which faces have
higher chances, we can set α with higher values for these faces.

Figure 3.2: Illustrating the K = 3 Dirichlet distribution for different
values of the input vector α.
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3.1.2 Sampling from a Dirichlet Distribution

There are different ways that one can generate samples of a Dirichlet dis-
tribution [38]. Here, we explain one of them known as the stick-breaking
construction. The stick-breaking process constitutes of the following steps:

1. First, draw a1 ∼ Beta
(
α1,
∑k

i=2 αi

)
. Set β1 = a1.

2. For 1 < j ≤ k − 1, draw aj ∼ Beta
(
αj ,
∑k

i=1,i ̸=j αi

)
.

Then, set βj = aj
∏j−1

i=1 (1− ai).

3. βk is equal to the length of the remaining stick.

The idea behind this process is as follows: Imagine that one has a
stick of unit length, which is then broken at a point a1 drawn from a
Beta distribution, i.e. Beta

(
α1,
∑k

i=2 αk

)
. Then using the rest of the

stick of length (1 − a1), select a new break-point β2 = a2(1 − a1), where
a2 ∼ Beta

(
α2,
∑k

i ̸=2,i=1 αk

)
. Continuing this sequence of tasks, one ends

up with variables ai that have the two required probabilistic properties: they
are each less than one, while their summation is equal to one, the length
of the original stick. Moreover, they are distributed accordingly a Dirichlet
distribution with parameter α, Dir(α), as we shown in the subsection 3.1.3.

Another approach for sampling a Dirichlet distribution is using a Gamma
distribution, following the same idea as explained in the definition of Dirich-
let distribution given above. First, Zi’s are drawn from a Gamma distribu-
tion for each component of the Dirichlet distribution. Next, we renormalize
Zi’s by dividing it by the sum over all Zi. Thus, βi = Zi∑

i Zi
≤ 1, and∑

i βi = 1.

3.1.3 Properties of Dirichlet distributions

Neutrality

One important property of Dirichlet distribution is neutrality. A ran-
dom vector defined such that its elements add up to a fixed value is said
to be neutral, when every element is independent from the vector made

78



by the other elements as proportions of their total. To be more precise,
let A = (A1, . . . Aj , . . . Am), and

∑m
1 Ai = 1. Upon removing Aj , the

vector of remaining elements is RA = (A1, . . . , Aj−1, Aj+1, . . . , Am). We
say that Aj is neutral if the joint probability P

(
Aj ,

RA
1−Aj

)
is equal to

P
(
Aj ,

RA
1−Aj

)
= P (Aj)P

(
RA
1−Aj

)
.

For a random vector following a Dirichlet distribution, each one of the
elements is neutral. Therefore the vector is said to be completely neutral.
The demonstration of this property is given in the Appendix and follows the
technical report by Frigik et al.[38]. This demonstration consists of using
the change of variable formula to rewrite the joint density P

(
Aj ,

RA
1−Aj

)
as

a multiplication of two independent densities for every element of A. The
final expression is given by:

p

(
Aj ,

RA

1−Aj

)
| α) =

Γ(
k∑

i=1
i ̸=j

αi)

m∏
i=1
i ̸=j

Γ(αi)

 m∏
i=1
i ̸=j

Y αi−1
i





Γ(
∑k

i αi)

Γ(αj)Γ(
k∑

i=1
i ̸=j

αi)

Y
αj−1
j (1− Yj)

m∑
i=1,i ̸=j

αi−1

 ,

(3.3)

where Yi =
A1

1−Aj
for i = 1, . . . , j − 2, j+1, . . . ,m, Yj−1 = 1−

m∑
i=1

i ̸=j−1,j

Ai, and

Yj = Aj . The first term is a Dirichlet distribution and represents the joint
density of Y−j , or (Y1, . . . , Yi, . . . , Ym) for 0 < i ≤ m, and i ̸= j, conditioned
to Yj . The second term is a Beta distribution and expresses the density of
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Yj . Therefore, equation (3.3) implies that:

(Y−j | Yj) ∼ Dir(α−j), (3.4)(
A−j

1−Aj
| Aj

)
∼ Dir(α−j), (3.5)

(A−j | Aj) ∼ (1−Aj)Dir(αj) (3.6)

From the equations (3.3), and (3.6) one can rigorously prove that the
stick-break construction generates samples of a Dirichlet distribution [38].
Here, we give a brief summary of the proof.

The first step of the stick-breaking construction consists of drawing A1 ∼

Beta
(
α1,

m∑
i=2

αi

)
, and set π1 = A1. Next, we need to sample A2, . . . , Am

given A1. From equation (3.6), we know that A−1 is distributed as (1 −
A1)Dir(α−j). 1−A1 is the length of the remaining stick that we will break
in pieces according to a vector of proportions distributed as a Dirichlet
distribution. If we do this recursively, for A2, . . . , Am−2, we obtain that

(Am−1, Am | (A1, · · · , Am−2)) ∼
m−2∏
i=1

(1 − Ai)Dir(αm−1, αm). Since we have

that
∑

Ai = 1, then we only need to split the remainder of the stick into two

pieces by drawing Am−1 ∼
m−2∏
i=1

(1 − Ai)Beta(αm−1, αm). Then, if in every

iteration we draw a break-point of the stick from a Beta distribution, and
rescale the stick by its remainder, we have a random vector whose elements
are Dirichlet distributed, and defined over a probability simplex [38].

Dirichlet Distribution as a Conjugate Prior Another relevant prop-
erty of the Dirichlet distribution is that they are conjugate to the Multino-
mial distribution (or Categorical distribution) [38, 124]. The Multinomial
distribution describes the probability that an event i occurs xi times, given
that the probability of an event i to happen is given by qi. The probability
mass function is:

p((x1, x2, · · · , xk) |, (q1, q2, · · · , qk)) =
n!

x1!x2! · · ·xk!

k∏
i=1

qxi
i (3.7)
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Bayes rule gives the relation between the posterior distribution with the
likelihood of the data, and the prior distribution of the parameter. The
Bayes’ theorem is stated as: p(q | Data) = p(Data|q)p(q)

p(Data) , where p(q) is the
prior distribution of the unknown (parameter), p(Data) is the marginal like-
lihood (evidence) and p(q | Data) is the posterior distribution. Since the
evidence does not depend on the parameters, we have p(q | Data) ∝ p(Data |
q)p(q). A distribution is said to be a conjugate prior for the likelihood dis-
tribution, when the posterior distribution has the same shape as the prior
distribution.

Applying equation (3.7) and the Dirichlet distribution as likelihood and
prior respectively on Bayes rule, we obtain:

p(q | x) ∝ n!

x1!x2! · · ·xk!

k∏
i=1

qxi
i

Γ(α1 + α2 + · · ·+ αk)
k∏

i=1
Γ(αi)

k∏
i=1

qαi−1
i (3.8)

p(q | x) ∝ z

k∏
i=1

qxi+αi−1
i (3.9)

p(q | x) ∝ Dir(α+ x), (3.10)

where x is the observed data.
Since the posterior also follows a Dirichlet distribution when the like-

lihood is a Multinomial distribution, then the Dirichlet distribution is a
conjugate prior for the Multinomial distribution. This facilitates Bayesian
inference, since we have a closed formula for the posterior.

Aggregation

Another important property of the Dirichlet distribution is the aggrega-
tion property. It follows from the additive property of the Gamma dis-
tribution [35]. The additive property says that if Z1 ∼ Gamma(α1, 1),
Z2 ∼ Gamma(α2, 1), and Z1 and Z2 are independents, then Z1 + Z2 ∼
Gamma(α1 + α2, 1) [35].

Let Y be distributed by a Dirichlet distribution with parameters α,
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(Y1, Y2, . . . , YN ) ∼ Dir (α1, α2, . . . , αN ) .

The aggregation property allow us to put parts of the vector Y together,
and the final vector is still distributed as a Dirichlet distribution with the
following parameters,

 a1∑
i=1

Yi,

a2∑
i=a1+1

Yi, · · · ,
N∑

i=an−1+1

Yi

 ∼

Dir

 a1∑
i=1

αi,

a2∑
i=a1+1

αi, · · · ,
N∑

i=an−1+1

αi

 ,

(3.11)

where a1, . . . , an−1 are integers and 1 ≤ ai < N , and 0 ≤ n ≤ N [35].
Thus, we can transform a distribution sampled from a Dirichlet distri-

bution by adding its components in groups. This transformed distribution
still follows a Dirichlet distribution, and their parameters are also added
together [35].

The Dirichlet process, DP(α,β), is a stochastic process whose range is
a set of probability distributions [130]. It is known as a generalization of
the Dirichlet distribution to the infinite dimensional domain. The analogy
to the dice bag still applies, however one realization of a Dirichlet process is
a drawn from a bag of dice with an infinite number of faces.

The bag of dice is the range of the Dirichlet Process, where each die is
a distribution probability itself. Then, one way to know each die’s number
of faces is to draw a die from the bag, and then throw the die many times.
Every time we throw, we can either get a face that has already being drawn
or get a new face. The probability distribution of the die is over the faces that
already came, and the possible other faces that did not appear. Therefore,
the Dirichlet Process allows the dimension of the space grows as we throw
the dice and acquires new faces, i.e. the dimension grows with the data.
The probability distributions of a DP are defined over a finite-dimensional
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simplex, and the size of the simplex grows with the data. For the dice
example, the simplex size is the faces that were sampled on the experiments
and the complement of the set of these faces to integers. One can think of
these sets as partitions of the integers.

Let β be a probability distribution over Θ. Θ is the state space of the
probability distribution. It can be a vector space, the set of real numbers,
the integers, and so on. This space defines what we are sampling. In other
words, it is the set defining the random variable of β. For the dice ex-
ample, Θ is the integers. Then, one can say that P is a DP(α, β) with
concentration parameter α and base distribution β if (P (A1), . . . , P (An)) ∼
Dir (αβ(A1), . . . , αβ(An)) for every finite partition of Θ [35, 124, 130]. The
stick-breaking construction representation of a Dirichlet process is thus given
as follows [124]:

ak|α, β ∼ Beta(1, α), (3.12)

ϕk|α, β ∼ β, (3.13)

πk = ak

k−1∏
1

(1− ai) , (3.14)

P (A) =
∞∑
i=1

πiδϕi
(A) (3.15)

where A is a set of the infinite sample space, δϕi
(A) is the Dirac function,

so δϕi
(A) = 1 if ϕi ∈ A, otherwise δϕi

= 0, and ϕk is the random variable
sampled from β [124, 125]. For the dice example, ϕk is the face drawn
after throwing the dice sampled from the bag of dice. In the literature,
π = (π1, π2, · · · ) is said to follow a Griffiths-Engen-McCloskey distribution,
i.e. GEM(γ) when ak is distributed according to a Beta(1, γ) with parameter
γ. γ is known as the concentration parameter [47].

Equation (3.15) assigns a probability to a set of the infinite sample space
by the use of an indicator, i.e. the Dirac function, and a probability weight
πk, where

∑∞
i πk = 1. In the analogy of dice with an infinite number

83



of faces, πk is the probability that a face ϕk is drawn. If we define A as
the set of even numbers, then P (A) is the probability of drawing an even
number, and P (Ac) is the probability of odd numbers, the complement
of A. The vector (P (A), P (Ac)) is Dirichlet distributed with parameters
(αβ(A), αβ(Ac)), where α and β are parameters of the Dirichlet Process.
Equation (3.15) and the latter property of the vector (P (A), P (Ac)) are
equivalents. A more detailed proof is given by Ferguson [35]. This prop-
erty affirms that for any finite measurable partition of the infinite sample
space, i.e. {Ai}ki=1, the vector P (A1, · · · , Ak) has a Dirichlet distribution
with parameters (αβ(A1), · · · , αβ(Ak)). One can make an analogy of this
theorem with the aggregation property of the Dirichlet distribution, when
aggregating the infinite “atoms” δyi in finite partitions of the infinite space.

The parameters β and α play an important role in the behaviour of the
process. The base distribution β has a similar role to the mean µ parameter
of a Gaussian distribution. Numbers sampled from a Gaussian distribution
are close to its mean with high probability, and far from the mean with
low probability. In other words, the sampled values tend to fall around the
mean. Similarly, a distribution sampled from a Dirichlet process is sampled
around the base distribution β. Moreover, α tells us how confident we are
on the base distribution. For larger values of α, we have more confidence
in the base distribution, and the sampled distribution is closer to β, and
therefore, the variance is smaller. For smaller values of α, we have less
confidence in the base distribution, and the samples tend to fall further
away from the base distribution, increasing its variance [124, 125]. We can
again make the analogy with the Gaussian parameters. In this case, α

has a similar property to the standard deviation parameter of a Gaussian.
It determines the spread of the process, or how much variance one can
expect from different realizations. As an illustrative example, let the base
distribution of a Dirichlet process be a Gaussian. The Dirichlet process
draws a discrete set of probabilities, yielding a probability distribution that
is close to a Gaussian distribution, and this proximity is scaled by α. Figure
3.3 shows an example of three realizations of a Dirichlet process with base
distribution H equal to a Gaussian distribution of mean µ = 0 and σ = 1.
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There are three different values for α: αi = 0.1 for all i, αi = 1 for all i, and
αi = 10 for all i. For all three cases, the sampled distribution is discrete and
close to the base distribution, a Gaussian distribution with mean equal to
zero and standard deviation equal to one. As discussed before, αi represents
the confidence in the prior. In other words, it represents how close to the
base distribution the sampled distribution is. As one can see in Figure 3.3,
the cumulative curves from the last graph are more similar than for the first
graph.

(a) αi = 0.1 for all i. (b) αi = 1 for all i. (c) αi = 10 for all i.

Figure 3.3: Three samples of a Dirichlet process, whose base distri-
bution is a Gaussian distribution with mean equal to zero and
standard deviation equal to 1. The values of the Gaussian ran-
dom variables are on the x-axis, and the cumulative probability
function on the y-axis. For each realization, a different value of
α is used: (a) αi = 0.1 for all i, (b) αi = 1 for all i, and (c)
αi = 10 for all i. For all of them, the sampled distribution is
discrete. As αi grows, the cumulative distribution of the sam-
pled distribution gets closer to the cumulative function of the
base distribution.

3.2 Infinite Hidden Markov Model

To better understand the infinite hidden Markov model, let’s first review
the finite hidden Markov model. A single-particle track that can be de-
scribed by a finite hidden Markov model with K states is allowed to switch
among these states over time. Moreover, we assume that this switch can only
happen at the observation times, i.e. during the time the particle is imaged
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(a frame). The probability vector πσk describes the probability of leaving
state σk to any other state. Further define πσk = (πσk,1, πσk,2, . . . , πσk,K).
Each state σk, for k ∈ 1, 2, . . . , K yields spatial steps, corresponding to
observed steps of the track, drawn from a Gaussian distribution with mean
0 and precision νσk

, where k = 1, . . . ,K. This Gaussian distribution repre-
sents the emission model, F , and describes the measure that each Markov
state imprints on the observed data.

Experimental measurements give us the trajectory of each particle and
thus the sequence of displacements, δxn, for each particle, where n is the
frame index, and n = 1, . . . , N . Furthermore, these displacements are de-
scribed by the observations distribution defined for each diffusive state σk.
Thus, the sequence of hidden states, s = {s1, . . . , sn, . . . sN}, and the ob-
served data are distributed according to:

sn | sn−1,πsn−1 ∼ Cat
(
πsn−1

)
,

δxn | sn, (ϕk)
∞
k=1 ∼ Fϕsn

.

The K-state HMM can be thought of as a dynamical Gaussian mixture
[125], where each element of the sequence of hidden states, sk, is a Gaussian
mixture itself, and the value of sk defines the row of the transition matrix
πsk = (πsk,1, . . . , πsk,K). Each element of πsk gives the weight of each
possible state for the next state sk+1. Thus, each Gaussian mixture is linked
through the set of states. This set represents the possible states and needs
to be the same for all the displacements.

The infinite Hidden Markov model is similar to the K-state HMM when
K is taken to infinity. Thus, the model relies on an unbounded set of
states. The Dirichlet process is a nonparametric framework that allows
for an unbounded set of states. For each value of the sequence of hidden
states, we have a Dirichlet process describing the transition probabilities.
However, since the states throughout all displacements are coupled, these
Dirichlet processes need to be connected. To introduce this link between the
Dirichlet processes, a Hierarchical Dirichlet process is used, where the atoms
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associated with the state-conditional Dirichlet process are shared [125].
The Hierarchical Dirichlet process defines a random probability distribu-

tion πsk for each state and a global probability distribution β that is shared
among the states. This base distribution is a Dirichlet process itself with
concentration parameter γ. Using the stick-breaking construction formalism
as defined in Section 3.1, one can represent the hierarchical Dirichlet process
as well. In this representation, the parameters are distributed as follows:

β̃ ∼ GEM (γ) ,

π̃σk
∼ DP (α, β̃),

ϕσk
∼ H,

where GEM(γ) is the Griffiths-Engen-McCloskey process, i.e. stick-breaking
construction, with concentration parameter γ, and DP(α, β̃) is the Dirichlet
process with concentration parameter α and base distribution β̃, and H is
the prior distribution for ϕσk

[5, 38, 124, 125, 131].

3.3 Beam Sampler

The infinite number of states in the Markov process yields infinitely many
possible sequences of states. Thus, one cannot use the forward-backward
algorithm to sample state trajectories [100, 115, 131], since there are in-
finitely many calculations to perform. The Beam sampler is an algorithm
that makes sampling the state trajectory of an infinite hidden Makov pro-
cess possible. This method was developed by Gael et al.[131] to be used on
the infinite hidden Markov process. This section is an explanation of the
sampler, based mostly on their work.

The main feature of the Beam sampler is that it introduces an auxiliary
variable u such that the probability of a state trajectory conditioned on u

is positive only for a finite number of trajectories. With a finite number
of state trajectories, we can then sample a whole sequence of states using
dynamic programming.
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Let s be a state trajectory, πk the transition probabilities leaving state k,
and t be the time index representing a time point on the data. An auxiliary
variable ut is introduced for each t, where ut is distributed accordingly an
uniform distribution over the range [0, πst−1,st ], i.e. ut ∼ Uniform(0, πst−1,st)

depending on st, st−1, and πst−1,st . The trajectories s = (s1, . . . , sn) whose
conditional probability on u is non-zero are the ones where ut ≤ πst−1,st .

Thus, we sample the state trajectory s using a dynamic programming
algorithm called the forward filtering-backward algorithm. The first step of
the algorithm calculates p(sT |y1:T , u1:T ), the probability of having the state
sT given the data points y and the auxiliary variable for each time point
on the data. Next, sT is sampled from p(sT |y1:T , u1:T ). Next, through a
backward pass, st is sampled conditioned on st+1 for all 0 ≤ t ≤ T − 1 in
the data.

p(sT |y1:T , u1:T ) is calculated iteratively using a forward iteration. First,
note that the probability of st conditioned to the data and auxiliary variables
up to t is proportional to the joint probability of st, yt, ut conditioned on the
data and auxiliary variables up to t− 1,

p(st|y1:t, u1:t) ∝ p(st, ut, yt|y1:t−1, u1:t−1). (3.16)

Therefore, we have that:

p(st,ut,yt|y1:t−1,u1:t−1)=
∑
st−1

p(yt|st)p(ut|st, st−1,πst−1)p(st|st−1) (3.17)

p(st−1|y1:t−1, u1:t−1)

From the definition of the auxiliary variables, we obtain the conditional
probability density of ut given the states and transition probability.

p(ut|st, st−1,π) =
I
(
0 < ut < πst−1,st

)
πst−1,st

, (3.18)

where I(C) is the indicator function and is equal to 1 if condition C is true
and equal to zero otherwise. Therefore equation (3.18) becomes
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p(st,ut,yt|y1:t−1,u1:t−1)=p(yt|st)
∑

st−1

p(ut|st,st−1,π)I(0<ut<πst−1,st), (3.19)

since pst−1,st = πst−1,st . The summation
∑
st−1

on equation (3.19) is over

an infinite number of terms, since there an infinite number of possible
states for st−1. However, this sum is truncated based on two conditions
p (ut|st, st−1,π) > zero, and ut < πst−1,st , yielding a finite number of terms.
This happens because the auxiliary variable divide the set of possible transi-
tion probabilities leaving state st−1 into two sets: the one with πst−1,k < ut

and the one with πst−1,k > ut. Since
∑
k

πst−1,k = 1, the first set has an

infinite number of elements, whereas the second one has a finite size.
Using (3.19) we calculate p(sT |y1:T , u1:T ), and then sample sT . Finally,

we sample the whole state trajectory s from p (st|st+1, y1:t, u1:t) using the
following iterative backward pass conditioned on st+1.

p (st|st+1, y1:t, u1:t) ∝ p (st+1|y1:t, u1:t) p (st+1|st, ut+1) . (3.20)

After sampling the whole sequence of states, the algorithm goes on to
sample the base distribution, the transition probability matrix and the pa-
rameters of the emission model. The following sections explains these next
steps.

Another possible approach for the estimation of number of states is using
the weak limit of nonparametrics, where the number of states is fixed to be a
large number. In this case, the Dirichlet process becomes a Dirichlet distribu-
tion with a large number of components in its base distribution, and this base
distribution is still a random variable following a stick-breaking construction.
This approach would be more computationally efficient than the nonpara-
metrics Bayesian framework, where we allow for an infinite-dimensional state
space instead fixing it to a large number.
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3.4 Emission Model

The emission model is the model describing the relation of the data to
the Markovian states. For this work we model single particle tracking dis-
placement with a pure Brownian motion. Therefore, a Gaussian distribution
is used to describe the data. The likelihood of the displacements y given
the parameters of the model is a summation of Gaussian distributions with
mean zero and precision ν.

p (y|ν) =
( ν

2π

)N/2
exp

(
−ν

N∑
i=1

y2i
2

)
, (3.21)

where N is the number of displacements on the data, i.e. size of y. The
posterior of the emission model is equal to the likelihood given by equation
(3.21) and the prior of the parameters. In order to have a closed form for
the posterior, we can set the prior to be a conjugate of the likelihood. The
conjugate prior for a Gaussian distribution with known mean and precision
τ as the model parameter is a Gamma distribution.

From Bayes’ theorem we know that the posterior is proportional to the
likelihood times the prior. If the prior p(ν) of the precision parameters is
a Gamma distribution with shape parameter a and scale parameter b, the
posterior is given by:

p (ν|y) ∝p (y|ν) p (ν)

=
( ν

2π

)N/2
exp

(
−ν

N∑
i=1

y2i
2

)
baνa−1e−bν

Γ(a)
(3.22)

∝ νa+
N
2
−1 exp

−ν

b+

N∑
i=1

y2i

2


 (3.23)

Therefore, in each iteration the algorithm samples the parameter ν from
a Gamma distribution with shape parameter equal to a + N

2 − 1 and scale
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parameter equal to b+

N∑
i=1

y2i

2 .

3.5 iHMMSPT algorithm (SPT-∞)

The algorithm samples the posterior distribution of the parameter set
given the observations. For the infinite hidden Markov model for single-
particle trajectories (iHMMSPT) algorithm, the observations are single-particle
tracks displacements, and the parameters are the number of states, the tran-
sition probabilities, and the emission parameters for each state. In this
thesis, we refer to iHMMSPT as SPT-∞.

The following steps summarize the algorithm:

A Generate auxiliary variable for each time point of the dataset, i.e.
u(l+1) = (u1, . . . , uN ) using ut ∼ U

(
0, πst−1→st

)
.

B Use u(l+1) to expand the state space S.

C Generate the new sequence of states s(l+1) using the forward-filtering
backward algorithm.

D Compress the state space S, excluding the states that are not visited
in s(l+1).

E Generate ν̃(l+1) using the posterior distribution.

F If in burn-in phase ((l + 1) ≤ burn-in), compress S by merging states
using Bd (explained below). Update s(l+1).

G Generate β̃(l+1) using the new state sequence.

H Generate the transition probability matrix ˜̃π(l+1) using β̃(l+1) and
s(l+1).

Step B of the above algorithm is related to the beam sampler. The
auxiliary variable u and the condition that ut ≤ πst−1,st for all t truncates
the number of possible hidden sequences of states to a finite number. A
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consequence of that is the truncation of the state space as well. As the state
space grows in size, the transition probability vector became more sparse,
increasing the number of states where the transition probability to it is larger
than ut resulting in a zero probability for a trajectory with that state on t

existing. Therefore, it is possible to define a number of meaningful states
that add information to the algorithm [131, 137].

For a more detailed explanation, let S be the state space, where its size
is equal to K. The auxiliary variable allows for an expansion in S only
when needed. Define the auxiliary variable to be ut, for each time point
t = 1 · · ·N of a track. The ut are drawn from a uniform distribution defined
as: ut ∼ U

(
0, πst−1→st

)
. Then, the probability of a transition from state σk

in S to any state outside S is equal to

Pexit σk
=
(
1− ΣK

m=1πσk→σm

)
.

If the condition max
1≤k≤K

Pexit σk
> max

1≤i≤N
ui holds, then we do not have

all the necessary states in the state space S to explain the data, since the
maximum probability of leaving the state space is larger than the maximum
probability of transitioning between states inside the set S. Thus, in this
case we must add a new state in S, whose size will increase to K + 1 states.
States will be added to S until the condition fails.

After the state space has been defined, the sequence of states s = {si|i =
1, . . . , N} is sampled by using forward-filtering backward sampling on Step
C.

Next, with the sequence of states for the trajectory, we can check whether
there are any state of the state space S that has not been visited. Any state
that has not been visited is deleted from the state space S. This step is
called compression of space state. In summary, we expand the state space
to avoid underfitting, and we compress S to avoid overfitting. Finally, we
sample the parameters β̃, π̃st , and the emission parameters νσk

from the
associated posterior distribution as in equation (3.23).

In summary, given a sequence of states s(l), a sample of β̃(l), a transition
probabilities matrix ˜̃pi(l), and emission parameters ν̃(l), where l is the itera-
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tion index, and using a Markov-Chain Monte Carlo algorithm, the SPT-∞
generates a new set of samples from P

(
u, s, β̃, ˜̃π, ν̃|∆x

)
following the steps

from above.
Finally, after obtaining the number of states of the Markov model and

a distribution of parameters of the Markov model, one might be interested
in estimating the state that the particle occupies at each time point. To
do this, we use the forward-backward algorithm to calculate the likelihood
of being in state σk given the number of states, their parameters, and the
observations. We then select the state that gives the maximum likelihood
in that specific time point [100].

3.5.1 Improving convergence by accelerating state space com-
pression

In the iHMM algorithm described above, the compression of state space
is a step that discards unnecessary states. After sampling the sequence of
states, any state that has not been visited is discarded. Since they have
not been visited, they did not produce any of the observations. However,
we propose that it is helpful to be more strict with the SPT data. For our
model, each diffusive state follows a Gaussian process with mean zero. This
generates substantial overlap among the distributions of each state. Thus,
the creation of a new state with diffusion coefficient close to a previously
existing diffusion coefficient becomes common and this slows convergence.
This is illustrated in Figure 3.4. In this figure, we first plot the Gaussian
distribution for each state for a model with Kreal = 4 states. We then
iterate the SPT-∞ algorithm using the usual compression method and plot
the estimated Gaussian distribution for each state after 2000, 2500, 3000
and 3500 iterations (Fig. 3.4b). We can see that even after 3500 iterations,
we do not achieve the correct number of states. However, if we increase
the number of iterations from 3500 to 100000, the algorithm does converge
(Fig. 3.5).

Seeking to accelerate convergence, we decided to add another condition,
only at the burn-in phase, to additionally compress the state space. As
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(a) Simulated data with K = 4
states.

(b) Estimated K = 7 states for
simulated data with only Kreal = 4
states.

Figure 3.4: Graphs of the Gaussian distribution for each state: (a) for
simulated data with Kreal = 4 states with diffusion coefficients
as indicated, and (b) of estimated states using iHMMPST over
3500 iterations. The estimated number of states is K = 7, and
we can see a lot of overlap among the Gaussians distributions
of each state.
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Figure 3.5: Convergence of algorithm without any additional condi-
tions in the compression of states step. We ran the algorithm
for 4 different sets of simulated data (2, 3, 4 and 5 states). We
can see that the algorithm converges to the correct number of
states for all cases, after around 4× 104 iterations.

a remark, convergence here is assessed informally, and it is not referring
to the usual formal notion of MCMC convergence such as the Geweke’s
test [46, 128] for single MCMC chains and the Gelman-Rubin convergence
diagnostic for multiple MCMC chains [42, 128]. We use the Bhattacharya
distance (Bd), a quantity that measures the similarity between two probabil-
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ity distributions, to decide if two states should be merged into one. For two
Gaussian probability distributions with means equal to zero and precisions
ν1, ν2, the Bhattacharya distance is equal to

Bd =

√
2
√
ν1ν2

ν1 + ν2
. (3.24)

For equal precision, ν1 = ν2, we have Bd = 1, and as ν1 and ν2 grow apart,
Bd → 0.

We plot Bd as a function of the precision of two Gaussian distributions
in Figure 3.6. We observe that Bd is higher than ∼ 0.5 for the majority of
the domain.

Figure 3.6: Bhattacharya distance for two Gaussian distributions
with same mean, and precisions ν1 and ν2.

In the iHMM algorithm, we merge two different states into one if their
pairwise Bd exceeds a given threshold. For simulated data, the threshold we
use is 1−10−6. Since simulated data is a perfect representation of the model,
we choose a very large threshold to make sure no valuable information is lost.

Another point to take into consideration is that Dirichlet processes are
not consistent, which leads to a different number of states for datasets with
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same number of states [81]. Therefore, an additional step that merges similar
states could tackle this issue.

We perform a comparison between the algorithm with and without the
Bhattacharya distance condition. In Figure 3.7, we plot the number of
states against the iteration number. The algorithm without Bhattacharya
takes more than 104 iterations to achieve the correct (simulated) number of
states, whereas the algorithm with the additional condition takes approxi-
mately 102 iterations to arrive at the correct number of states. Thus, we
have at least a 2 order of magnitude decrease in time to convergence if the
additional condition is used. Moreover, the distribution of diffusion coeffi-
cient estimates of each state for each algorithm is very similar, as one can
see in Figure 3.8.
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Figure 3.7: Semilog plot of the number of states for each iteration
of two algorithms: SPT-∞ without Bhattacharya distance as
a condition to merge states (red curve), and SPT-∞ with the
Bhattacharya condition (blue curve), both applied to synthetic
data with two states. The additional condition reduces the
required number of iterations for convergence by a factor of
around 500.

To determine the threshold for experimental data, we use a heuristic
based on the localization accuracy of the data, as follows. Let ε be the
measured localization accuracy of the experiment. We want to estimate a
lower bound for the Bd threshold so that the differences between estimated
diffusions exceed the accuracy of our experiment. Let ν1, and ν2 be the
precisions of two states. If the difference between the variance of these
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Figure 3.8: Diffusion coefficient distribution estimates for each algo-
rithm: (a) SPT-∞ without the Bhattacharya condition; (b)
SPT-∞ with the Bhattacharya condition. Black dots indicate
the true (simulated) value of the diffusion coefficient for each
state. In both cases, the estimation is in good agreement with
the true value.

states is within the experimental accuracy, then variance of the second state
has to be 1

ν2
= 2D2τ ∼ 2D1τ + 2ε2, with ν1 = 1

2D1τ
. The pairwise Bd for

states with difference in the diffusion coefficients within the accuracy of the
experiment, Bdacc, is given by:

Bdaccν1 =
√
2

√√√√√√√
√
ν1

(
1
ν1

+ 2ε2
)−1

ν1 +
(

1
ν1

+ 2ε2
)−1 . (3.25)

Using equation 3.25, we define a dynamical threshold for the experimental
data. For each pair of states, (m,n), we calculate Bdaccνm and Bdaccνn .
Thus, the threshold for this pair of states, (m,n), is given by max(Bdaccνm ,

Bdaccνn ).
The guarantees of convergence for the MCMC algorithm should be nul-

lified with the addition of the merging states step, and as a consequence
coverage properties of the credible interval for each parameter should also
be affected. In addition, the detailed balance is not satisfied any more, given
that states are only merged and are not separated.

97



3.6 Results

3.6.1 Algorithm testing with simulated data

We first simulate trajectories of particles whose motion is defined by steps
drawn from a set of possible diffusive states. Particles transition between
states with fixed rates, forming a Markov process. We then analyze the
simulated trajectories with the SPT-∞ algorithm, to obtain estimates of the
number of states, the diffusion coefficient of each state and the transition
matrix of the Markov Model. Table 3.1 summarizes results for five example
datasets, each with a different number of states. Each simulated particle is
simulated in two dimensions, over 5 × 104 frames, with a simulated frame-
rate of 1000 frames per second.

The algorithm is divided into two phases: a burn-in phase where we
iterate the algorithm 750 (15%) times using the Bhattacharya condition to
compress the state space, followed by 4250 (85%) further iterations using
the usual compression step (Methods). After burn-in, the iterations of the
process provide estimated distributions for number of states, diffusion coef-
ficients and state transition matrix. In Table 3.1, we show the mode of the
estimated number of states, the mean of the distribution for each diffusion
coefficient and the mean of the stationary probability for each inferred state.

In Figure 3.9, we show the convergence of the number of states for each
example. For each dataset, we ran the SPT-∞ 10 times. The initial number
of states was set to 10 for all runs. This allows us to assess the ability
of the algorithm to reliably converge to the correct parameters, including
the number of states. We observed that the algorithm converges rapidly,
and in the majority of cases converges to the correct number of states. For
datasets with more than 2 states, the algorithm did not converge to the
correct number of states for all 10 runs. This is reasonable, given that more
states yields more parameters in the model, adding complexity to the model,
and slowing the convergence. This indicates that there is a trade-off between
fast convergence and guaranteed accuracy.

The diffusion coefficients are also key parameters of the model. In Figure
3.10, we show how the sampled diffusion coefficients changed through the
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iterations. We observe the initial exploration of the algorithm on different
choices of parameters until it converges to a ground truth of five different
values. Moreover, in Figure 3.11 we show the final distributions obtained
for the diffusion coefficients for each simulated dataset for a single run. We
observed that the estimated diffusion coefficients are in good agreement with
those used for simulation. Moreover, as we expect, the variance of the final
distribution is inversely correlated with the stationary probability of each
state. State four of the five-state simulated dataset is a good example of
this (see also Table 3.1).

Simulated Estimated
# of states D SP K D SP

5

0.0466 0.2422

5

0.0549 0.2523
1.0353 0.1784 1.1359 0.1546
2.2200 0.2187 2.3033 0.2748
4.8702 0.1383 6.5256 0.1365
10.680 0.2225 11.162 0.1818

4

0.0113 0.2118

4

0.0177 0.2299
1.0456 0.2286 1.3332 0.1655
2.2146 0.3247 1.9003 0.3617
4.8789 0.2349 4.8467 0.2428

3
0.0457 0.5174

3
0.0494 0.5302

1.0503 0.1341 1.3529 0.1650
2.2113 0.3485 2.2475 0.3048

2 0.0098 0.4552 2 0.0124 0.4736
1.0489 0.5448 1.0896 0.5264

Table 3.1: Results from testing the SPT-∞ algorithm with simulated
data. We simulated four different datasets with 2-5 diffusive
states. Here, we report the mode of the estimated number of
states after burn-in (K), the mean estimated diffusion coefficient
for each distribution (D), and the mean stationary probability
(SP). The stationary probability is calculated from the estimated
transition rate matrix. All quantities have appropriate arbitrary
units.

We observe from Table 3.1 that the algorithm estimates the correct (sim-
ulated) number of states K for every dataset. We also obtain generally good
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estimates of the diffusion coefficients. The signs of errors in estimation of
diffusion coefficients are in line with our expectations. For example, for
K = 4, we have two states with true diffusion coefficients equal to 1.05

and 2.21 in appropriate units. The estimated diffusion coefficients are 1.33

and 1.90 in appropriate units, respectively. These discrepancies occurred
because some displacements that are actually from the slower states have
been treated as displacements from the faster state. We can confirm this
by looking at the stationary probabilities. The faster state stationary prob-
ability was overestimated, while the stationary probability of the slow state
was underestimated. However, in general, we find that the algorithm per-
forms well with simulated data of this type, even though the number of
parameters to be estimated is quite large. For example, when K = 4, we
have 20 parameters to estimate: four diffusion coefficients and 16 transition
probabilities.

Figure 3.9: Number of states estimates at each iteration for each sim-
ulated dataset using the additional compression criterion. Ten
different runs of the algorithm are shown for each set of simu-
lated data (with colours indicated). Convergence was generally
achieved after about 1000 iterations. 8 out of 10 runs converged
to the correct number of states for the four- and five-states
dataset, 9 out of 10 runs converged correctly for the three-states
dataset, and all 10 runs converged correctly for the two-state
dataset.

Finally, we performed state segmentation on each simulated trajectory
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Figure 3.10: Diffusion coefficient estimates at each iteration of the al-
gorithm, using simulated four-state data. There is a transition
from five to four estimated states just before iteration 1000.
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Figure 3.11: Estimated diffusion coefficient distributions for simu-
lated data with different numbers of states. Black circles rep-
resent true diffusion coefficients.

by finding the most probable state at each frame, given the estimated param-
eters for that trajectory. We then compared the estimated state sequence
with the true simulated state sequence and calculated the percentage of dis-
placements that are correctly classified (Table 3.2). We observed that the
accuracy of the state segmentation decreases as the number of states grows.
This is expected because the quality of the diffusion and transition parame-
ter estimates generally decreases as the number of states increases, and this
affects the quality of state segmentation.

We also analyzed the performance of the algorithm with the presence of
noise in the data. We simulated particles as before: steps were drawn from
possible diffusive states, but we then added Gaussian noise to represent local-
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Number of States Correct State Segmentation
5 61%
4 62%
3 84%
2 97%

Table 3.2: Accuracy of state segmentation from simulated trajecto-
ries.

ization uncertainty. Here, we simulated 100 particles in 2 dimensions, each
with 30000 frames, and a simulated frame-rate of 33 frames per second. For
simplicity, we performed simulations of three-state models with 5 different
levels of noise: 0, 0.001, 0.005, 0.01 and 0.05 unit of length. Summary results
are shown in Table 3.3. The algorithm was able to find the correct number
of states for the first 3 levels of noise, and to recover the diffusion coefficient
and stationary probability of each state. However, when the noise level gets
large enough, the algorithm fails to find the correct number of states and/or
the diffusion coefficient and stationary probability of each state. Approaches
to correct for localization errors in mobility modelling have been described
by others [6, 58, 68, 101, 121, 135]. In Chapter 4, we further generalize the
SPT-2E model by developing a novel framework to estimate the number of
states and their parameters simultaneously.

In this work, we only tested the algorithm on simulated pre-localized
traces from a multi-state measurement process. These trajectories were used
to analyse the performance of the SPT-∞ algorithm. There are potential
limitations related to this approach. In practice, the experimental trajecto-
ries are subject to different noise and errors due to the pixelated point-spread
function, detector noise, etc, and the measurement process is a model that
potentially captures these errors. Therefore, the measurement process and
the algorithm are not fully tested by simulated traces. Moreover, the ex-
perimental trajectories are also subject to detection and tracking algorithm
errors, and by simulating pre-localized traces, the algorithm has not been
tested against these additional imprecisions. To further test the algorithm,
one could simulate the raw data originated from a microscopy, allowing for

102



Simulated K D1 SP1 D2 SP2 D3 SP3

3 0.05 0.2788 0.2 0.2360 0.5 0.4853
s.t.d. noise Estimated

0 3 0.0484 0.2626 0.1789 0.2366 0.4919 0.5008
0.001 3 0.051 0.2893 0.2068 0.2385 0.5020 0.4721
0.005 3 0.0493 0.2870 0.2064 0.2256 0.5041 0.4873
0.01 3 0.0559 0.3008 0.204 0.2071 0.5034 0.4922
0.05 2 0.1451 0.396878 0.5431 0.6032 −−− −−−

Table 3.3: Results from testing the SPT-∞ algorithm with noisy sim-
ulated data. We simulated five different datasets with three diffu-
sive states, and five different level of added noise. The standard
deviation of each added noise was:0, 0.001, 0.005,0.01, and 0.05
Here, we report the mode of the estimated number of states af-
ter burn-in (K), the mean estimated diffusion coefficient for each
distribution (D), and the mean stationary probability (SP). The
stationary probability is calculated from the estimated transition
rate matrix. We ran our algorithm five times on each dataset.
The results among the different runs were all similar, obtained
the same optimal number of states and similar values of D and
SP.

the incorporation of more realistic noise such as pixelated point-spread func-
tion, detector noise, etc. Through this approach, both the measurement
process and SPT-∞ could be better evaluated.

3.6.2 Application to B cell receptor tracking data

We now apply the SPT-∞ algorithm to experimental data. In previous
work, we performed a detailed comparison of results from SPT using two
different methods for labeling cell-surface proteins. Briefly, B cell receptors
(BCR) on the surface of B lymphocytes were labeled using quantum dots
(Qdots) linked to monovalent antigen-binding fragments of antibodies (Fab),
or with Fab fragments that were directly conjugated to the small organic
fluorophore Cy3. Images were taken at 33 frames per second using a total
internal reflection fluorescence (TIRF) instrument. Tracks were extracted
from image stacks using Icy software [18, 27]. The spatial precision of par-
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ticle localization was estimated to be 23nm and 30nm for Qdot and Cy3
labelling, respectively. Full methods are reported in our original paper [1].

Using these data, we previously conclusively showed that the mobility
of proteins labeled using Qdots was impaired, most probably due to steric
hindrance. As part of our analysis, we used a two-state HMM to segment
the particle tracks among two diffusive states: a fast and a slow state [24].
Using the SPT-∞ algorithm, we can now answer the question as to whether
the data is better described by a different number of states. This approach
has the potential to give us insights into the heterogeneity of potential in-
teractions between the tracked receptor and different systems at the cellular
membrane, such as the cortical actin cytoskeleton, lipid rafts, transiently
binding proteins, etc. We can also compare the two labelling strategies and
obtain a refined picture of changes in the diffusive behaviour.

We examined six datasets, each from a separate experiment. Three
experimental datasets used directly-conjugated Cy3-labelling of IgG and
three used Qdot-labelling of IgG [1]. For the Cy3 experiments, the datasets
contained 1054, 1015 and 1040 tracks, respectively, with median number of
frames per track of 51, 53 and 47 (standard deviation of 79, 80, 75). For
the Qdot experiments, the datasets contained 1117, 1087 and 502 tracks,
respectively, with median numbers of frames per track of 55, 62, 78(standard
deviation 92, 95 and 102). Before applying our SPT-∞ algorithm, we first
applied an immobilility threshold to remove immobile tracks, as previously
described [1]. We allow the algorithm to complete 10000 iterations in total,
with a burn-in phase of 1500 iterations. For each trial, we ran the algorithm
with the additional Bhattacharya condition chosen based on localization
accuracy (Methods).

Results are shown in Tables 3.4 and 3.5, and in Figure 3.12. The diffu-
sion coefficients and stationary probabilities reported are the mean of the
distributions of each state of all iterations. We also report the estimated full
transition matrices for each labelling method in the Appendix.

Interestingly, we find that the optimal number of states was four for all
Cy3 experiments, and five for all Qdot experiments, except for the third
trial of the Qdot-labelling experiment, where the optimal number of states
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was four. We also found that the parameter estimates for each state were
qualitatively similar from experiments ran on different days. Examining
the states in detail, we see that the first state is very slow for all experi-
ments, reflecting particles that are transiently in an immobile state (recall
that entirely immobile particles are removed from the data before analysis).
Meanwhile, the largest diffusion coefficients (fourth state) are very large,
estimated to be on the order of 0.1−1µm2s−1. The stationary probabilities
for these show that they account for 5-6% of all states for Cy3-labelled re-
ceptors, but only 2-3% for Qdot-labelled receptors. Since Qdots are brighter
and less prone to blinking than Cy3 molecules, this suggests that some or
all of these larger steps are in fact due to tracking errors. We also found
that the extra state for the Qdot molecules have diffusion coefficient of
approximately 0.006µm2s−1, which was much lower than that for the Cy3-
labelling. The stationary probability for this state shows that it account for
20% of the Qdot-labelled receptors, indicating that Qdot labelling generally
impairs protein mobility. In contrast, the most-occupied state for the Cy3-
labelled molecules is the third state (D ∼ 10−1µm2s−1), whereas for the
Qdot-labelled molecules, the most-occupied state is the slower third state
(D ∼ 10−2µm2s−1). We also calculated the effective diffusion coefficient
defined as Deff = P1D1 + P2D2 + · · · + PnDn. We obtain similar results to
our previous work [1] for all datasets (not shown). Overall, our results are
consistent with the hypothesis that the Qdot-labelled receptors can easily be-
come trapped in small regions of the cell membrane, while the Cy3-labelled
molecules can escape these regions and explore the cell membrane.

In Figure 3.13, we plot trajectories from two experiments, segmented
(colour-coded) by diffusive state across the trajectory. Most Qdot trajecto-
ries reflect limited receptor mobility and are highly localized in very small
regions, and mostly in the third state (red). On the other hand, the Cy3-
labelled receptors are mostly in their (faster) fourth state (cyan) and are
able to explore more of the cell surface. We can also observe transitions
between states over time. We found that most particles underwent at least
one transition during their trajectory. The proportion of particles that did
not transition among states at least once was small (1.3%−4.6%). However,

105



Qdot-labelled particles are slightly less likely to never undergo a transition
when compared to Cy3-labelled molecules (Figure 3.14).

These results about the impaired mobility of Qdot-labelled receptors are
in line with previous work [1]. However, we previously imposed a two-state
model, while here we find that five states are optimal to describe the data.
Even after possibly discarding the fastest inferred state as likely due to
tracking errors, we find that receptor mobility is more heterogeneous than
previously thought. In general, using a model with only two states is likely
to cause the loss of potentially important information.
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Figure 3.12: SPT-∞ results from six sets of experimental trajectories
obtained by labelling IgG receptors on the surface of live B
cells (A20 cell lines) either using a Cy3-labelled probe or a
Qdot probe.(a) Estimated diffusion coefficients of Cy3-labelled
receptors. (b) Estimated diffusion coefficients of Qdot-labelled
receptors.
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Figure 3.13: Segmented trajectories of (a) Cy3-labelled B cell recep-
tors, and (b) Qdot-labelled B cell receptors, with a zoomed
image of a smaller region. Colours represent the different diffu-
sive states obtained from each experiment. Diffusion constant
estimates are presented in Tables 3.4 and 3.5. The trajectories
of Qdot-labelled molecules are spatially restricted compared
to those of Cy3-labelled molecules. Moreover, Cy3 trajecto-
ries are estimated to frequently occupy the more-mobile states
(D ∼ 10−1µm2s−1), whereas the Qdot trajectories are mostly
found in slower states (D . 10−2µm2s−1).
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Figure 3.14: Proportion of tracks from each experimental dataset that
never underwent a transition.

Label Cy3 1 Cy3 2 Cy3 3
Θ D

(
µm2/s

)
SP D

(
µm2/s

)
SP D

(
µm2/s

)
SP

1 < 10−5 0.1253 < 10−5 0.1267 < 10−5 0.1272
2 0.0295 0.3044 0.0329 0.3365 0.0339 0.3358
3 0.1138 0.4980 0.1333 0.4821 0.1493 0.4713
4 0.6831 0.0723 0.7319 0.0547 0.7935 0.0657

Table 3.4: SPT-∞E results from three sets of experimental trajecto-
ries, obtained by labelling IgG receptors on the surface of live B
cells (A20 cell lines) using a Cy3-labelled probe. For each exper-
iment, we estimate that four states is optimal. Mean estimated
diffusion coefficients (D) and stationary probabilities (SP) are
also reported for each state.

3.6.3 Effects of actin cytoskeleton disruption on BCR mobil-
ity

As a second case study, we re-examined a second set of data where the
actin cytoskeleton of the B cell was disrupted by latrunculin A (LatA). Two
datasets are generated by either Cy3-labelling of IgM BCRs on cells or Qdot-
labelling on IgM BCRs that were treated with DMSO. These are the control
experiments. The other datasets are generated by treating the sample with
LatA [1]. For the Cy3 experiments, the datasets contained 1960 and 1661
tracks, respectively, with median number of frames per track of 45 (standard
deviation 67). For the Qdot experiments, the datasets contained 3996 and
3889 tracks, respectively, with median number of frames per track of 54
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Label Qdot 1 Qdot 2 Qdot 3
Θ D

(
µm2/s

)
Prob D

(
µm2/s

)
Prob D

(
µm2/s

)
Prob

1 < 10−5 0.1281 < 10−5 0.1402 < 10−5 0.1255
2 0.0087 0.2166 0.0066 0.2267 0.0116 0.3635
3 0.0360 0.3938 0.0260 0.3871 0.0495 0.4551
4 0.1038 0.2334 0.0951 0.2187 0.3054 0.0559
5 0.6769 0.0280 0.8202 0.0273

Table 3.5: SPT-∞E results from three sets of experimental trajecto-
ries, obtained by labelling IgG receptors on the surface of live B
cells (A20 cell lines) using a Qdot probe. Experiments 1 and 2
were found to support five states, while experiment 3 supported
four states. Mean estimated diffusion coefficients (D) and sta-
tionary probabilities (SP) are also reported for each state.

(standard deviation 82).
Results are shown in Table 3.6. For all datasets, we obtained 5 states as

the optimal number of states, except for LatA-treated cells in which IgM was
labelled with Cy3 Fab-anti-IgM, which had 4 states as the optimal number.
We found very slow (D ∼ 10−7µm2s−1) and very fast (D ≥ 1.1µm2s−1)
diffusive states. Again, the slow state shows transient confinement, while
the fast state probably reflects a certain fraction of tracking errors. Also as
before, the fastest state was more heavily weighted in the Cy3 experiments,
probably reflecting the fact they are less sterically hindered compared to
Qdot experiments. Our results also show that labelled IgM is generally
more mobile than labelled IgG, in agreement with previous analysis [1, 25].

For the Cy3 label experiments, we find interesting differences between
control and LatA. In agreement with previous analysis, receptors on LatA-
treated cells are generally much more mobile than on control cells, impli-
cating the actin cytoskeleton as an important regulator of receptor mobility.
However, we did not find any major differences between control and LatA
conditions when using Qdot labels. This tells us that the steric hindrance
of Qdots is sufficient to obscure the difference between control and LatA
experiments on receptor mobility, given that the large Qdots decrease the
diffusivity of surface receptors, which prevents an increase in mobility when
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the actin cytoskeleton is distrupted. Comparing results between control and
LatA treatment, LatA cells have only 4 states as opposed to 5 for control
cells. The second slowest state is not present after LatA treatment, per-
haps indicating the loss of small-scale constraints on IgM motion. Moreover,
we find that the most-occupied state for the control cells is the third state
(D ∼ 5 × 10−2µm2s−1 in both cases), whereas for LatA, it is the fourth
state (D ∼ 1.8×10−1µm2s−1 in both cases), indicating an increase in recep-
tor mobility via transitionS to more mobile states. Compared to two-state
analysis, we obtained a refined picture of the heterogeneity of the system.

Exp Cy3 DMSO Cy3 LatA
States D

(
µm2/s

)
Prob D

(
µm2/s

)
Prob

1 < 10−5 0.1118 < 10−5 0.1130
2 0.0152 0.1985
3 0.0617 0.3675 0.0357 0.2743
4 0.1706 0.2635 0.1704 0.4792
5 1.0899 0.0587 1.0051 0.1335

Exp Qdot DMSO Qdot LatA
States D

(
µm2/s

)
Prob D

(
µm2/s

)
Prob

1 < 10−5 0.1469 < 10−5 0.1454
2 0.0101 0.3224 0.0090 0.2783
3 0.0376 0.3849 0.0361 0.3673
4 0.2230 0.1015 0.1619 0.1565
5 1.6021 0.0444 1.3978 0.0525

Table 3.6: Results of SPT-∞ for experimental data on B cells, where
IgM were labelled using either directly conjugated Fab anti-IgM
(Cy3) or biotinylated anti-IgM plus avidin-conjugated Qdots. For
these experiments, the cells were first treated with either DMSO
control or LatA. We find that Cy3-LatA trajectories show faster
state-wise diffusion coefficients compared to control. We find no
meaningful difference between the Qdot DMSO and Qdot LatA
experiments.
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3.7 Discussion

In this chapter, we have described and implemented a novel iHMM al-
gorithm for multiple state discrimination for SPT data analysis. We have
also demonstrated its use on a collection of high-quality data that were
previously analyzed using a two-state HMM. We believe that the iHMM ap-
proach is a rational choice for this longstanding state counting problem and
is superior to alternative approaches such as the use of information criteria
to distinguish among multiple models. The iHMM is a form of multimodel
inference, across a set of possible models. If we were to perform a model
comparison via an information criterion, we would first need to fit to some
number of specific models, each of which would effectively be conditioned
on its own correctness. It is not possible to compare the likelihoods of such
individual models directly, and the uncertainty (variance in the parameter
estimates) is also underestimated because our lack of knowledge about which
model is correct is not included. The iHMM naturally incorporates the un-
certainty due to model selection, while information criteria approaches are
rather different and do not capture the uncertainty beyond a correction for
the number of additional parameters in the more-complex model [3, 44]. Of
course, information criteria have an important role to play when computa-
tional efficiency becomes important, as well as allowing model comparison
when the possible models do not fit neatly together.

We were also able to improve the speed of convergence of the algorithm
via a simple approach of merging nearby states using a criterion based on the
Bhattacharya distance between distributions. This approach substantially
improved the speed of the algorithm, although at the expense of causing
some loss of accuracy in that not all runs converged to the correct number
of states when using simulated data. We feel that the increase in speed,
which allows many runs to be performed quite economically in comparison
to a single use of the full algorithm, substantially outweighs the loss of
confidence in any particular run.

We used our algorithm to re-examine SPT data obtained for BCRs mov-
ing on the surface of live B cells, using two different labelling strategies
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and with pharmacological perturbation of the actin cytoskeleton. We found
that BCRs can transition among four to five distinct diffusive states, with
a wide range of diffusion coefficients. The slowest detected states appear to
reflect transient immobility, while the fastest state probably reflects occa-
sional tracking errors. Our results on the difference between Qdot-labelled
molecules and Cy3-labelled molecules are in general agreement with our
previous work [1], where we conclude that Qdot-labelling impairs molecule
mobility. Moreover, our analysis confirms previous results of the actin cy-
toskeleton being an important regulator of receptor mobility. On LatA-
treated cells, we observed higher mobility of the receptors, suggesting that
disruption of actin cytoskeleton allows faster BCR motion.

In recent work, Rey-Suarez et al. [102] found that BCRs exist in 8 dis-
tinctive diffusive states. They used an expectation maximization approach
based on a Gaussian mixture model, and allowing no transitions between
states. In their work, the trajectories were split into segments each contain-
ing 15 frames. Each segment was assumed to arise from a single diffusive
state. Similar to our findings here, they report a large number of diffusive
states, confirming the heterogeneity and complexity of the cell membrane.
However, since no transitions are allowed within each 15-frame segment,
some segments could arise from a combination of diffusive states, yielding
an overestimate of the optimal number of states. Nonetheless, the work of
Rey-Suarez supports the use of multi-state models and shows their potential
to support biological discovery.

Our approach to this problem has some potential weaknesses that we
intend to address in future work. We have applied a restricted model of par-
ticle motion as a multi-state diffusion process. An alternative line of attack
could allow for transient confinement of the particle within a potential well,
or other forms of nondiffusive motion, as has previously been implemented
by others in HMM and other settings[7, 60, 121]. Modified HMM models
reflecting these kinds of additional complexity should be relatively simple
to implement within the iHMM framework. Second, we did not account for
localization errors in our current implementation. This is known to reduce
the accuracy of estimation of diffusion coefficients in related settings [6], and
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was incorporated into the recent study of Rey-Suarez et al. [102].
In summary, we have presented a generalizable approach that extends

the potential applicability of HMMs for SPT data. More broadly, we have
shown a novel application of the iHMM method, further proving that it is an
excellent tool for quantification of experimental biophysics data [115]. All
experimental datasets and software are freely available
(https://github.com/rcardim/iHMMSPT).
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CHAPTER 4

Infinite Hidden Markov Model with correction for
measurement errors

As discussed in Chapter 2, the inclusion of experimental errors allows for
a more accurate estimation of states and their parameters. There are two
types of errors in the tracking of microscopic particles: the static error and
the dynamical error. The static error is due to the background noise and
is modelled as a usual Gaussian noise (white noise). The dynamical error
is due to the blur effect, caused by the mobility of the particles while the
snapshots of their configuration are taken.

In this Chapter, we further develop the infinite state hidden Markov
model of the previous chapter to include these experimental errors. The
Bayesian nonparametric framework is left unchanged. However, the emission
distribution that models the relationship between the observed data and
the parameters of the model is changed to properly take into account the
experimental errors.

This chapter starts with a brief explanation of the measurement process,
and how we build this process into the Bayesian nonparametric framework.
After developing the new algorithm, and validating it with simulated data,
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we discuss a way to improve the accuracy of the model. Finally, we discuss
the results of the algorithm applied to experimental data and compare these
to results obtained from these same datasets using our previous models.

4.1 Including experimental errors in the inference

In Chapter 2, we obtained the following distribution for N displacements
within a two state Markov model, where each states follows the measurement
process.

P (∆1 · · ·∆N ) ∝ 1

∥CovN×N∥
exp

−1

2

[
∆1 · · ·∆N

]
Cov−1

N×N


∆1

...
∆N


, (4.1)

where CovN×N =
⟨∆i∆j⟩ = 2D ((i− 1) τ → iτ) τ

3 + 2D (iτ → (i+ 1) τ) τ
3 + 2σ2, for j = i,

⟨∆i∆j⟩ = 2D (iτ → (i+ 1) τ) τ
6 − σ2, for j = i− 1 or j = i+ 1,

0, otherwise.
(4.2)

is the covariance matrix of the process, and the diffusion coefficients vary
with the hidden state at each displacement:

D (iτ → (i+ 1) τ) =

D1, for si = 1

D2, for si = 2,

for i = 1, . . . , N .
The dynamical error (blur) and the static error are included in the co-

variance elements. The static error appears explicitly in the matrix elements
through its standard deviation σ. The dynamical error is responsible for the
constants multiplying the diffusivities. These terms were previously calcu-
lated in Chapter 2, subsection 2.1.3, through the calculation of the variables
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R1 and R2 for an uniform illuminating profile, i.e. the shutter function is
equal to 1/τ .

From this equation, we observe that the distributions and covariance
matrix do not depend on the number of states but only on the diffusivities.
Thus, we can generalize this model to a K states model, and update the
diffusion coefficients to:

D (iτ → (i+ 1) τ) =



D1, for si = 1

D2, for si = 2,

· · · , · · · ,

Dk, for si = k,

· · · , · · · ,

DK , for si = K,

,

for i = 1, . . . , N .
This new process provides a generalization of the number of states K,

allowing it to be any integer. The combination of this process with the in-
finite Hidden Markov model framework yields an algorithm that estimates
the number of states, their diffusion coefficients, and their transition proba-
bilities while taking into account the experimental errors. Thus, we need to
adapt the SPT-∞ algorithm developed in Chapter 3 so that it considers the
new measurement process, instead of a simple diffusion process. Two parts
of the algorithm are affected by this change: the emission model, and the
sampling of the state sequence. We explain these changes to the algorithm
in the next sections.

4.1.1 Sampling state chain

In the SPT-∞, the sampling of the state trajectory is performed through
the beam sampler. As explained in Chapter 3, this sampler works iteratively
as in Equation (3.18) through the Markov property of p(st | s1, . . . , st−1) =

p(st | st−1). For this measurement process, the likelihood of the data given
the parameters and the sequence of states is a multivariate Gaussian as
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in Equation (4.1). Therefore, all the displacements are correlated and the
Markov assumption is violated. Because of that, we make an extra assump-
tion on the measurement process, so that it satisfies the Markov property and
keeps the correlation among the displacements. We assume that transitions
between states can only occur after two frames. In other words, we paired
the displacements, and assume that displacements in each pair occupy the
same Markovian state. Moreover, we only consider the correlation within
each pair of displacements. This assumption might not hold if the transition
probability between states is high. Thus, the likelihood is essentially given
by multiplication of multivariate two-dimensional Gaussians:

P (∆1 · · ·∆N | Cov2i−1,2i) ∝∏≤N
2

i=1
1

∥Cov2i−1,2i∥ exp
− 1

2

[
∆i∆i+1

]
Cov−1

2i−1,2i

∆2i−1

∆2i


, (4.3)

where

Cov2i−1,2i =

[
⟨∆i,i⟩ ⟨∆i,i+1⟩
⟨∆i+1,i⟩ ⟨∆i+1,i+1⟩

]
,

with

⟨∆i,i⟩ =4Dsi

τ

3
+ 2σ2, (4.4)

⟨∆i∆i+1⟩ =Dsi

τ

3
− σ2. (4.5)

In summary, we are hypothesizing that the parameters that maximize the
full likelihood for N displacements (N×N tridiagonal covariance matrix) can
be approximated by the parameters that maximize the likelihood built by
N/2 disjoint blocks (2×2) of the full covariance matrix. This approximation
should hold for large N , giving that it basically discards information from
the data on the correlations between the last displacement in a pair with
the first displacement in the next pair.
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4.1.2 Emission Model and Conjugate Prior

From this emission model, we can calculate the posterior distribution if
we use a prior distribution that is the conjugate to the likelihood. It is
known that the Wishart distribution is the conjugate prior distribution to
the multivariate Gaussian distribution with a known mean [36]. The Wishart
distribution is a generalization of the Gamma distribution to multiple dimen-
sions [140]. The probability density function of a symmetric matrix M of
size p× p distributed according to a Wishart distribution is given by:

W (Ψ, ν) =
1

2νp/2
∥Ψ∥ν/2Γp

(ν
2

)
|M |(ν−p−1)/2e(−

1
2

tr(Ψ−1M)), (4.6)

where Ψ and ν are the parameters of the Wishart distribution. V is a
symmetric positive definite p × p matrix, ν is the degrees of freedom, and
Γp is the multivariate Gamma function.

Since in our algorithm we sample the covariance matrix, we must use
the inverse Wishart distribution as a conjugate prior.

The likelihood of a pair of displacements is given by

P (∆2i−1,∆2i | Cov2i−1,2i) =

1
∥Cov2i−1,2i∥ exp

(
−1

2

[
∆2i−1∆2i

]
Cov−1

2i−1,2i

[
∆2i−1

∆2i

])
.

The inverse Wishart prior of the covariance matrix is given by:

P (Cov | Ψ, ν) =
| Ψ |ν/2

2νΓ2

(
ν
2

) | Cov |(ν+3)/2 e−
1
2
tr(ΨCov−1),

where Ψ and ν are hyperparameters for the inverse Wishart distribution.
Ψ is a matrix of the same size as the random variable. We use the identity
matrix of size 2 × 2 for Ψ. ν is the degree of freedom parameter, and for
our algorithm, we fix ν = 3. The fewer the degrees of freedom ν, the larger
is the variability of the samples. Then, the least informative prior is ν = p.
We also set our Ψ = I, where I is the identity matrix. Then, the posterior
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is given by:

P (Cov | ∆2i−1,∆2i) =

| Ψpos |νpos/2

2νposΓ2

(νpos
2

) | Cov |(νpos+3)/2 e−
1
2
tr(ΨposCov−1),

(4.7)

where the posterior parameters νpos and Ψpos are defined by:

Ψpos =

Ψ+

≤N/2∑
1

[
∆2i−1

∆2i

] [
∆2i−1∆2i

] ,

νpos =ν +N/2.

4.1.3 Modified Algorithm

The steps of the infinite hidden Markov model with correction for posi-
tional correlations due to experimental errors are as follows. This algorithm
should be compared with the SPT-∞ algorithm, see Chapter 3, page 85.
Throughout this thesis, we refer to the infinite hidden Markov model with
correction for positional correlations due to experimental errors as SPT-∞E.

A Generate an auxiliary variable for each time point of the dataset, i.e.
u(l+1) = (u1, . . . , uN ) using ut ∼ U

(
0, πst−1→st

)
.

B Use u(l+1) to expand the state space S.

C Generate a new sequence of states s(l+1) for each pair of displacements
using a modified version of the forward-filtering backward algorithm,
whose likelihood is defined by equation (4.3).

D Compress the state space S, excluding the states that are not visited
in s(l+1).

E Generate C̃ov
(l+1)

using the posterior distribution given by (4.7).
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F Generate β̃(l+1) using the new state sequence.

G Generate the transition probability matrix ˜̃π(l+1) using β̃(l+1) and
s(l+1).

A brief note on the notation: l is the iteration index of the algorithm,
variables that are defined over the experimental time-space are bold, and
variables that are vectors, matrices or tensors over the state space have a
tilde or double tilde.

4.2 Validation

The first step for validation of this algorithm is to check whether the algo-
rithm converges to the correct number of states for the simplest case: when
the experimental error is only due to static errors. We simulate displace-
ments of particles undergoing the measurement process with only a static
error of standard deviation 0.001 in an appropriate arbitrary unit, for differ-
ent numbers of diffusive states. Table 4.1 shows some of the parameters for
each dataset. The difference among the diffusion coefficients for each state
goes from 10-fold to 4-fold. For each dataset, we simulated 1 particle with
20000 displacements.

Number of States K σ D1 D2 D3 D4

2 states 0.01 0.01 0.1 —— ——
3 states 0.01 0.01 0.1 0.5 ——
4 states 0.01 0.01 0.1 0.5 2

Table 4.1: Parameters used for the simulation of trajectories under
multi-state Brownian diffusion with only static error. D1, D2,
D3, and D4 are the diffusivities of each state. σ is the standard
deviation of the static error. All quantities have appropriate
arbitrary units.

The transition matrix for simulated dataset of trajectories is on Table
4.2.
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K True T

2
0.8 0.2
0.2 0.8

K True T

3
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

K True T

4

0.8 0.1 0.05 0.05
0.1 0.8 0.05 0.05
0.05 0.05 0.8 0.1
0.05 0.05 0.1 0.8

Table 4.2: Transition matrices used for the simulation of trajectories
under multi-state Brownian diffusion.

First, the algorithm completes 10000 iterations as the burn-in phase.
Next, 5000 iterations are performed to generate a distribution for each pa-
rameter of each state. Figure 4.1 shows the number of states for each dataset
for 10 chains. For the case of K = 2, all chains achieve the correct number
of states. For K = 3 and K = 4 states, 9

10 of the chains converge to the
correct value.
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Figure 4.1: Number of states estimates for simulated dataset with
only static error (σ = 0.001 with appropriate unit) using the
SPT-∞E algorithm. Ten different runs are shown for each set
of simulated data (with colours indicated). Convergence was
generally achieved after about 10000 iterations. 9 out of 10
runs converged to the correct number of states for the four- and
three-state dataset, and 10 out of 10 runs converged correctly
for the two-state dataset.

We also validated the algorithm for simulated data with both static and
dynamical errors. Figure 4.2 shows the results for one validation set. Again,
we simulated 1 particle over 20000 frames, with parameters as in Table
4.1 but with an additional dynamical error. We assumed that the shutter
function is uniform, and therefore, R1 = 1

3 , and R2 = 1
2 in Equations (2.1)

and (2.8). During the 10000 iterations, the algorithm did not converge to
the correct number of states for any of the 4 states dataset’s chains. The
algorithm arrives at the correct number of states 2 times out of 10 times
for the 3 states dataset and all 10 times for the 2-state dataset. Thus, the
performance of the algorithm is not ideal. We see the need for a higher
number of iterations and/or more data so that convergence to the correct
number of states is achieved. However, increasing the number of iterations
or amount of data yields an increase in computational time and memory
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allocation. Here, we propose an additional step to the algorithm to tackle
this issue.

Figure 4.2: Number of states estimates for each simulated dataset
with both static error (σ = 0.001) and dynamic error (uniform il-
luminating profile) using the SPT-∞E algorithm. Ten different
runs are shown for each set of simulated data (with colours indi-
cated). Convergence was generally achieved after about 10000
iterations. For the 4 states dataset, no chain achieved the cor-
rect number of states, 2 out of 10 runs converged to the correct
number of states for the three-states dataset, and 10 out of 10
runs converged correctly for the two-states dataset.

The estimated values of the covariance matrix for each state provide fur-
ther explanation of the algorithm performance. Below is the true covariance
matrix for each state of the dynamic dataset, and the estimated covariance
matrices for each state of one of the 10 chains, for 3- and 4-state models.

3-state True Value:

Cov1 =

[
0.4060 0.1000

0.1000 0.4060

]
× 10−3, Cov2 =

[
0.0040 0.0010

0.0010 0.0040

]
,
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Cov3 =

[
0.0202 0.0050

0.0050 0.0202

]
3-state Estimated Value:

Cov1 =

[
0.9916 0.1755

0.1755 0.9915

]
× 10−3, Cov2 =

[
0.0238 0.0079

0.0079 0.0238

]
,

Cov3 =

[
0.0073 0.0018

0.0018 0.0073

]
, Cov4 =

[
0.0222 0.0057

0.0057 0.0222

]
,

4-state True Value:

Cov1 =

[
0.4060 0.1000

0.1000 0.4060

]
× 10−3, Cov2 =

[
0.0040 0.0010

0.0010 0.0040

]
,

Cov3 =

[
0.0202 0.0050

0.0050 0.0202

]
, Cov4 =

[
0.0808 0.0202

0.0202 0.0808

]
4-state Estimated Value:

Cov1 =

[
0.0014 0.0002

0.0002 0.0014

]
, Cov2 =

[
0.0131 0.0031

0.0031 0.0131

]
,

Cov3 =

[
0.0459 0.0117

0.0117 0.0459

]
, Cov4 =

[
0.0481 0.0105

0.0105 0.0481

]
,

Cov5 =

[
0.0845 0.0232

0.0232 0.0845

]
As one can see, some of the estimated covariance matrices for the dif-

ferent states of the dataset with both static and dynamic error are close to
their true values. For example, each estimated value for the 3-state case
has a similar value to one of the true covariance matrices for state 3. More
importantly, the extra state (state 4) has an estimated covariance matrix
similar to state 2, suggesting that these two states are not different and that
they will eventually merge as we increase the number of iterations. Thus, in-
stead of running more iterations until they merge, we add a post-processing
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step to the algorithm. This post-processing step analyzes the distribution of
the covariance matrix for each state generated by the burn-in phase. If any
two states have a similar covariance matrix, the states are merged. After
merging the appropriate states, we re-initiated the algorithm with new val-
ues for the number of states, covariance matrices, transition matrices, and
so on. Next, the algorithm iterates for some number m of steps. The final
result is then the m size sample of the distribution of the parameter, for
each state. This step is similar to the condition for merging states from the
SPT-∞ algorithm developed in Chapter 3. There, the condition is based
on the Bhattacharya distance between the Gaussian distributions of each
state, and it is applied during the whole burn-in phase of the MCMC al-
gorithm. For the SPT-∞E algorithm, the merging step happens only once
immediately after the burn-in phase as explained below.

The 4-state case has one estimated covariance matrix that is not similar
to any of the true values. The size of the dataset is the main reason for
that. Once we simulate more data points, and run the algorithm with more
displacements, the estimated covariance matrices are close to the correct
value in all examined cases.

In the next section, the merging process is described in more detail, the
validation of the algorithm is provided, and the validation is repeated using
a larger dataset.

4.3 Merging states to accelerate convergence

Within this method to improve convergence, the decision to merge states
is based on the proximity of the elements of the state covariance matrices.
Let us use as an example the estimated covariance matrices for the 3-state
data shown above. The estimated covariance for state 2 is

Cov2 =
(
0.0238 0.0079
0.0079 0.0238

)
.
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This matrix is close to the estimated covariance for state 4,

Cov4 =
(
0.0222 0.0057
0.0057 0.0222

)
.

The absolute difference between these matrices is equal to:

[
0.0016 0.0023

0.0023 0.0016

]
(4.8)

The main diagonal of (4.8) represents around 7% of the value of the
estimated covariance matrix. We obtain a small difference, however how
one could define the closeness among different covariance matrices? Here,
we first define a metric for the distance between two matrices.

Let A, and B be 2× 2 matrices, and define

d(A,B) =

∑
i,j | Ai,j −Bi,j |∑
i,j (Ai,j +Bi,j)

(4.9)

We will merge states when their distance is smaller than a threshold, i.e.
if d(A,B) ≤ h, then A is merged into B. We can calculate a useful value
for this threshold by considering the ratio between the diffusion coefficient
of each covariance matrix. Let DA, and DB, be the diffusion coefficients of
states generating covariance matrices A and B. We have:

A =

[
4DAτ

3 + 2σ2 2DAτ
6 − σ2

2DAτ
6 − σ2 4DAτ

3 + 2σ2

]
(4.10)

and

B =

[
4DBτ

3 + 2σ2 2DBτ
6 − σ2

2DBτ
6 − σ2 4DBτ

3 + 2σ2

]
(4.11)
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Then, d(A,B) is given by

d(A,B) =
8τ |DA−DB |

3 + 4τ |DA−DB |
6

8τ(DA+DB)
3 + 4τ(DA+DB)

6 + 4σ2
(4.12)

Let DA = rDB, where r ≥ 1 without losing generality to obtain

d(A,B) =
DB

20τ(r−1)
6

DB
20τ(r+1)

6 + 4σ2

d(A,B) ≤
DB

20τ(r−1)
6

DB
20τ(r+1)

6

d(A,B) ≤ (r − 1)

(r + 1)
(4.13)

For a chain with a number of states K, we define the threshold h as
h = a−1

a+1 where a is the infimum of the ratios among the diffusion coefficients,
a = inf{ri | ri = Di

Dj
, i, j = 1, . . . ,K, i ̸= j}. Therefore, for every pair of

states whose covariance matrices’ distance is smaller than h, the states are
merged. Then, the new algorithm is:

A Generate auxiliary variable for each time point of the dataset, i.e.
u(l+1) = (u1, . . . , uN ) using ut ∼ U

(
0, πst−1→st

)
.

B Use u(l+1) to expand the state space S.

C Generate new sequence of states s(l+1) for each pair of displacements
using a modified version of the forward-filtering backward algorithm,
whose likelihood is by equation (4.3).

D Compress the state space S, excluding the states that are not visited
in s(l+1).

E Generate ˜Cov
(l+1) using the posterior distribution given by (4.7).

F Generate β̃(l+1) using the new state sequence.
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G Generate the transition probability matrix ˜̃π(l+1) using β̃(l+1) and
s(l+1).

H if l = burn-in, calculate the average covariance matrix for every state,
and merge them when their average covariance matrices distance is
smaller than a threshold d(Covi, Covj) < h. After merging, we restart
the algorithm with the new merged states.

To validate this approach for merging states that are not substantially
different from each other, we ran the algorithm with this additional com-
pression step on the simulated data described by Table 4.1. Figure 4.3
shows results from 10 chains for each dataset with different states and with
only static error, and Figure 4.4 reports the results for the second simulated
dataset with both static and dynamical errors.

Figure 4.3: Estimation of number of states at each iteration for each
simulated dataset with only static error (σ = 0.001) using the
SPT-∞E algorithm with the merging states step. Ten different
runs of the algorithm are shown for each set of simulated data
(with colours indicated). Convergence was achieved after about
10000 iterations. All runs converged to the correct number of
states for all datasets.
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Figure 4.4: Estimation of number of states at each iteration for each
simulated dataset with both static error (σ = 0.001) and dynam-
ical error using the SPT-∞E algorithm with the merging states
step. Ten different runs of the algorithm are shown for each set
of simulated data (with colours indicated). Convergence was
achieved after about 10000 iterations. All runs converged to
the correct number of states for all datasets.

To further validate the algorithm, we analyze the estimated covariance
matrix for each state. Below, we have the true value of each state’s covari-
ance matrix and each estimated covariance matrix for one of the 10 runs.

For the 3-state dataset:
True Value:

Cov1 =

[
0.4060 0.1000

0.1000 0.4060

]
× 10−3, Cov2 =

[
0.0040 0.0010

0.0010 0.0040

]
,

Cov3 =

[
0.0202 0.0050

0.0050 0.0202

]
Estimated:

Cov1 =

[
0.9998 0.1951

0.1951 0.9788

]
× 10−3, Cov2 =

[
0.0073 0.0018

0.0018 0.0073

]
,
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Cov3 =

[
0.0220 0.0063

0.0063 0.0224

]
,

For the 4-state dataset:
True Value:

Cov1 =

[
0.4060 0.1000

0.1000 0.4060

]
× 10−3, Cov2 =

[
0.0040 0.0010

0.0010 0.0040

]
,

Cov3 =

[
0.0202 0.0050

0.0050 0.0202

]
, Cov4 =

[
0.0808 0.0202

0.0202 0.0808

]
Estimated:

Cov1 =

[
0.0013 0.0002

0.0002 0.0014

]
, Cov2 =

[
0.0134 0.0033

0.0033 0.0134

]
,

Cov3 =

[
0.0454 0.0108

0.0108 0.0463

]
, Cov4 =

[
0.0820 0.0226

0.0226 0.0825

]
,

We obtained results that were in good agreement with the true values
for the 2-state and 3-state datasets. However, for the 4-state dataset, even
though the correct number of states was returned for all runs, the covariance
matrices do not agree with the true values for each state. The reason for
that is the size of the dataset. Here we used a dataset of a single particle
trajectory with 20000 frames, but this is not enough to accurately predict
the covariance matrix for 4 states.

To confirm that larger datasets would allow us to obtain accurate covari-
ance matrices for 4 states, we simulated a new dataset, with the same diffu-
sion coefficients and transition matrix as before. However, we simulated 100
particles, each one with 300 frames, yielding a total of 30000 frames. This
dataset is not only larger but similar to datasets acquired from experiments
since we have many particles with a small number of frames. Figure 4.5
shows the state convergence results for this dataset with both static and
dynamical error.
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Figure 4.5: Estimation of number of states at each iteration for each
simulated dataset with both static error (σ = 0.001) and dy-
namical error using the SPT-∞E algorithm with the merging
states step for a dataset with 30000 frames. Ten different runs
of the algorithm are shown for each set of simulated data (with
colours indicated). Convergence was generally achieved after
about 10000 iterations. 9 out of 10 runs converged to the cor-
rect number of states for the four-state dataset, and 10 out of
10 runs converged correctly for both three-state and two-state
datasets.

For both 2-state and 3-state datasets, all runs converged to the correct
number of states. For the 4-state dataset, 9/10 of the runs converged to the
correct number of states. Below, one can find the results for each covariance
matrix of each state in one of the 10 runs. The new results are much more
accurate than before, showing that the size of the dataset was the culprit
for the poor estimation of the 4-state dataset covariance matrices.

For the 2-state dataset, the difference between the true covariance matrix
and the estimated covariance matrix ∥Covtruei − Covesti ∥ for each state i is:

∥Covtrue1 − Covest1 ∥ =

[
3 0.2

0.2 3

]
× 10−4,

131



∥Covtrue2 − Covest2 ∥ =

[
1 0.05

0.05 1

]
× 10−4.

For the 3-state dataset ∥Covtruei − Covesti ∥ for each state i is:

∥Covtrue1 − Covest1 ∥ =

[
4 0.6

0.6 4

]
× 10−4,

∥Covtrue2 − Covest2 ∥ =

[
3 0.6

0.6 3

]
× 10−3,

∥Covtrue3 − Covest3 ∥ =

[
2 0.4

0.4 2

]
× 10−3

For the 4-state dataset∥Covtruei − Covesti ∥ for each state i is:

∥Covtrue1 − Covest1 ∥ =

[
5 0.5

0.5 5

]
× 10−4,

∥Covtrue2 − Covest2 ∥ =

[
2 0.2

0.2 2

]
× 10−3,

∥Covtrue3 − Covest3 ∥ =

[
7 0.7

0.7 7

]
× 10−3,

∥Covtrue4 − Covest4 ∥ =

[
1 2

2 0.6

]
× 10−3

Throughout the rest of this thesis, SPT-∞E refers to the final version of
the algorithm including the merging states step.

Finally, Figure 4.6 provides graphs with the values of the covariance
matrix Cov for each iteration of the SPT-∞E algorithm for the 3-state
dataset. These graphs depicts a more detailed view of the convergence
of the algorithm. As we can see, around the 10000th step, the algorithm
converges, and the values for each element no longer vary much.
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Figure 4.6: Estimates for each element of the Cov matrices for each
iteration of the SPT-∞E algorithm applied to the simulated
dataset with 3 states. This is for one run of the simulated data
with both errors, and with 30000 frames. We can observe the
convergence of the algorithm in this plot. At first, there are
many states, until the number of states converges for 3 states,
and the values for each of the Cov elements converged to 3
values.

Transition Matrix Estimates

The SPT-∞E algorithm also estimates the transition matrix of the Markov
process. We report the final estimates of the transition matrix for one run
of each dataset, in Table 4.3.

We find that the transition matrices are reasonably recovered with good
accuracy. Moreover, Figure 4.7 shows heatmaps of the average absolute
difference between each estimated transition matrix and their respective true
value, for all runs of the algorithm on each k-states dataset. Each heatmap
reports |Test − T |runs, where Test is the estimated transition matrix for a run
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K True T Estimated T

2 0.8 0.2 0.7568 0.2432
0.2 0.8 0.2583 0.7417

K True T Estimated T

3
0.8 0.1 0.1 0.7030 0.2172 0.0797
0.1 0.8 0.1 0.2058 0.7011 0.0930
0.1 0.1 0.8 0.1049 0.1590 0.7360

K True T Estimated T

4

0.8 0.1 0.05 0.05 0.7135 0.1547 0.0999 0.0318
0.1 0.8 0.05 0.05 0.1815 0.6645 0.1118 0.0421
0.05 0.05 0.8 0.1 0.1039 0.1148 0.6013 0.1799
0.05 0.05 0.1 0.8 0.0442 0.0382 0.2335 0.6840

Table 4.3: Estimated transition matrices for one of the 10 runs of
SPT-∞E over the three K-state datasets.

over one of the K-states dataset, and T is the true value of the transition
matrix for that dataset, and we averaged over all runs that converged to the
correct number of states.
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Figure 4.7: Average of absolute difference between true transition ma-
trix and estimated transition matrix, for all runs that converge
to the correct number of states.

4.4 Application to B cell receptor tracking data

Following the same procedure as in Chapter 2 and 3, we also apply the
SPT-∞E to experimental data. Again, we analyzed datasets from our work
in [1]. This work investigates if two fluorescent labelling methods achieve
similar results for the mobility of the labelled proteins. The first label is
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a small organic fluorophore (Cy3), and the second labelling method uses
quantum dots as the fluorescent probe. The advantage of quantum dots is
that they do not photobleach, allowing for longer trajectories. However, the
size of quantum dots is of the same order as the tracked molecules, which
affects their mobility.

We examined six datasets. Three of these datasets are from Cy3-labelling
experiments, while the other three are from Qdot-labelling experiments. The
experiments were performed on three different days: one pair of Qdot and
Cy3 labelling of the same batch of cells on each day. First, we generated only
one chain with 15000 iterations for each dataset. From this, we obtained
the following number of states for each dataset:

Dataset Cy3 1 Cy3 2 Cy3 3 Qdot 1 Qdot 2 Qdot 3
Number of

States
4 4 3 4 4 3

Table 4.4: Estimated number of states from SPT-∞E following
150000 iterations.

We estimated four states for both labelling methods for the first and sec-
ond experiments and three states for the third experiment. The covariance
matrix estimates for each state of each of these estimations are shown on
Tables 4.5 and 4.6. For the first experiment, two estimated covariance ma-
trices are too similar for the Cy3-labelling method, even though we assumed
a 2-fold difference between the diffusivities of each state in the merging pro-
cess. The results contain some similarities and consistency for the three
independent experiments. For example, the first state covariance matrix is
very similar for a given labelling method for all three experiments, and the
same was true for the second state. The discrepancies appear in the third
state. For example, since there is no fourth state in the third experiment,
it seems the third state for this experiment includes all of the trajectories
with large diffusivity.

For the Qdot-labelling method, the first thing one observes is that the
values of the covariance matrix diagonal for the first state are of the order of
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Datasets Cy3 1 (µm) Cy3 2 (µm) Cy3 3 (µm)

σi Covariance Matrix

1 0.0016 -0.0005 0.0013 -0.0004 0.0014 -0.0004
-0.0005 0.0015 -0.0004 0.0013 -0.0004 0.0013

2 0.0083 -0.0007 0.0064 -0.001 0.009 -0.0008
-0.0007 0.0085 -0.001 0.0065 -0.0008 0.0093

3 0.0400 -0.0034 0.0229 -0.0014 0.0462 -0.0037
-0.0034 0.0414 -0.0014 0.0234 -0.0037 0.0512

4 0.0420 -0.0042 0.1072 -0.026
-0.0042 0.0444 -0.026 0.1042

Table 4.5: Covariance matrix estimates for each estimated state of
three experimental realizations of the Cy3-labelling method. The
unit of each element in the matrix is µm. The SPT-∞E algo-
rithm iterated 15000 times, where 10000 iterations were burn-in.
The merging threshold was set to 2-fold. Under this condition,
states with diffusion coefficients that are less than 2-fold apart
are merged.

Datasets Qdot 1 (µm) Qdot 2 (µm) Qdot 3 (µm)
σi Covariance Matrix

1 0.7921 -0.3102 0.6383 -0.3176 0.9530 -0.4232
-0.3102 0.7800 -0.3176 0.6304 -0.4232 0.9259

2 0.0034 -0.0004 0.0024 -0.0006 0.0046 -0.0006
-0.0004 0.0034 -0.0006 0.0025 -0.0006 0.0048

3 0.0107 -0.0001 0.0099 -0.0012 0.0891 -0.0173
-0.0001 0.0103 -0.0012 0.01 -0.0173 0.0832

4 0.0481 -0.0075 0.112 -0.0268
-0.0075 0.0557 -0.0268 0.1224

Table 4.6: Covariance matrix estimations for each estimated state
of three experimental realizations of the Qdot-labelling method.
The unit of each element in the matrix is µm. The SPT-∞E algo-
rithm iterated 15000 times, where 10000 iterations were burn-in.
The merging threshold was set to 2-fold.

10−4µm for all three experiments. This strongly suggests that the mobility
of the Qdot-labelled protein is slower when compared to Cy3-labelling pro-
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teins since the covariance matrix values are essentially proportional to the
diffusivity. Given the size of the Qdot and as observed in past works [1, 34]
Qdot-labelling hinders the mobility of the surface receptors. Therefore this
result in line with expectation.

Furthermore, the results of the Qdot-labelling method are consistent
among the different experiments, except for the fourth state of the first and
second experiments, where the diagonal elements are approximately 0.04µm

for the first experiment and 0.1 µm for the second experiment. These incon-
sistencies are also present in the results for the Cy3-labelling method, which
might implicate some other underlying phenomena.

An unexpected result obtained with both labelling methods and for all
covariance matrix estimates was negative values in the second matrix. As we
discussed in Chapter 2, the dynamical error introduces a positive correlation
between the consecutive displacements, whereas the static error introduces
a negative correlation between the displacements and with a value equal
to the variance of the static error. Since the dynamic error correlation is
proportional to Dτ the absolute value is usually larger than the correlation
provided by the static error when D is large, yielding a final positive cor-
relation among the displacements, and thus a positive value in the second
diagonal. None of the estimated covariance matrices had a positive value,
and this suggests that there may exist another component responsible for
introducing a strong negative correlation among the consecutive displace-
ments that surpasses the positive correlation of the dynamical error for any
diffusivity value. It might be a component of the tracking algorithm or
a component in the experimental setting. Because of that, we decided to
estimate the static error as well. In this way, this unknown component
is somehow incorporated into the static error and allows for the negative
correlation. This is explained in more detail in the next sections.

Other important estimates from the model are the transition matrix,
whose elements are the transition probabilities among states and the occu-
pation frequency of each state. Table 4.7 shows the occupation frequency of
each state. This is equivalent to the stationary probability of each state. For
the Qdot-labelling method, the most occupied state was the slowest state
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(first) for all three experiments. This state has covariance matrix elements
around 10−4 µm, whereas, for the Cy3-labelling method, the first and second
states are the most occupied ones. For the first experiment, the difference
between the frequencies of these two states is less than 0.05, and the second
state had covariance matrix elements around 0.008 µm. For the other two
experiments, this difference was approximately 0.2, where for the second
experiment, the most occupied state was the second state with covariance
matrix elements approximately 0.0064 µm, and for the third experiment,
the first state was the most occupied one with covariance matrix elements
approximately 0.0009 µm. Therefore, the mobility of Qdot-labelled proteins
tends to be slower than Cy3-labelling proteins, suggesting that the Qdot la-
bel impairs the mobility of the receptors. Moreover, in the third experiment,
the tracks were slower than in the other two experiments for both labelling
methods. Besides that, the fourth state in the first two experiments was
rare, with approximately 0.4% of the displacements for both labelling meth-
ods, but with a higher occupation rate for Cy3. This might reflect tracking
errors. Tracking errors are related to linking different particle tracks into
the same trajectory. One common error is to join two positions that are very
far apart in the same trajectory, implicating large displacements, generating
a large diffusivity.

Datasets Cy3 1 Cy3 2 Cy3 3 Qdot 1 Qdot 2 Qdot 3
States Occupation Frequency

1 0.4647 0.3520 0.5791 0.4659 0.5008 0.5839
2 0.4928 0.5350 0.3769 0.4070 0.3319 0.4114
3 0.0162 0.1082 0.0439 0.1160 0.1634 0.0044
4 0.0262 0.0047 0.0111 0.0039

Table 4.7: Occupation frequency of each state for each one of the ex-
periments, estimated using SPT-∞E and 15000 iterations, where
the first 10000 iterations were burn-in.

One interesting result consistent among the experiments and labelling
methods is that the occupation rate of the first two states (the slowest states)
comprises more than 85% of the data, indicating that most receptors are in
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a regime of relatively slow mobility.
Table 4.8 shows the transition matrices for each experiment. The values

for state 1 for all experiments are in agreement. The diagonal elements are
very similar within the same labelling methods and across different experi-
ments. We also observe that for both Cy3 and Qdot-labels, the probability
of transition to the fourth state is very rare.

Cy3 1 (K = 4) Cy3 2 (K = 4) Cy3 3 (K = 3)

Transition Probability Matrix
0.7473 0.2044 0.0032 0.0452 0.6792 0.2578 0.0547 0.0084 0.647 0.3003 0.0527
0.2165 0.7791 0.0032 0.0012 0.1883 0.7091 0.1021 0.0005 0.2161 0.7609 0.0230
0.0959 0.0943 0.8095 0.0002 0.095 0.5914 0.3136 10−5 0.1789 0.5763 0.2448
0.3548 0.4743 0.0001 0.1708 0.4027 0.1790 0.1010 0.3173

Qdot 1 (K = 4) Qdot 2 (K = 4) Qdot 3 (K = 3)

Transition Probability Matrix
0.9128 0.0714 0.0039 0.0119 0.9147 0.0593 0.0202 0.0057 0.929 0.0678 0.0031
0.0876 0.8877 0.0174 0.0073 0.0945 0.8769 0.0282 0.0003 0.0972 0.8991 0.0037
0.0197 0.0711 0.9054 0.0038 0.0606 0.0628 0.8766 0 0.3208 0.4367 0.2425
0.243 0.3776 0.1854 0.194 0.3629 0.2281 0.1672 0.2418

Table 4.8: Transition Matrix for each one of the experiments.

From covariance to diffusivity

Using the static error for each labelling method as in Chapter 2, we can
recover the diffusivity of each state from Equation (4.5). The standard de-
viation of the static error is measured experimentally to be σcy3 = 0.036µm

for Cy3-labels, σqdot = 0.029µm for Qdot-labels. Using the covariance es-
timates for each state for the datasets as before, we obtain the following
values for diffusivity shown in Table 4.9.

We obtain negative values for the diffusivity of some states when the
relevant covariance matrix has small values on the diagonal. If the covariance
matrix values are smaller than 2σ2, then the value of diffusivity is negative.
This is not possible! Therefore, instead of fixing the static error, we can
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Diffusivity(µm2/s)

Cy3 1 (K = 4) Cy3 2 (K = 4) Cy3 3 (K = 3)

-0.0245 -0.0320 -0.0295
0.1413 0.0942 0.1586
0.9259 0.5027 1.0794
0.9754 2.5893

Qdot 1 (K = 4) Qdot 2 (K = 4) Qdot 3 (K = 3)

-0.0220 -0.0258 -0.0180
0.0425 0.0178 0.0722
0.2232 0.2034 2.1638
1.1490 2.7306

Table 4.9: Diffusivity estimated using a fixed value for the static
error- 0.036µm for Cy3-labelled molecules and 0.029µm for Qdot-
labelled molecules- and the equations (4.5).

allow it to have a different value for each state. From equation (4.5), we
have:

Cov(i, i) =4D
τ

3
+ 2σ2, for i = 1, 2 (4.14)

Cov(i, i± 1) =D
τ

3
− σ2, for i = 1, 2 (4.15)

Reorganizing, and simplifying to find σ, we obtain:

D =
3 (Cov (i, i) + 2Cov (i, i± 1))

6τ
(4.16)

σ =

√
Cov(i, i)

2
− 4Dτ

6
. (4.17)

We can use equations (4.16) to estimate the diffusion coefficient for each
state in each experiment and its respective static error. Table 4.10 shows
these estimates.

Our estimates of diffusion coefficients and static error magnitudes are
consistent across experiments. The discrepancies in estimates among the
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Label Cy3 1 (K = 4) Cy3 2 (K = 4) Cy3 3 (K = 3)

States D
(
µm2/s

)
σ(µm) D

(
µm2/s

)
σ(µm) D

(
µm2/s

)
σ(µm)

1 0.0091 0.0243 0.0083 0.0220 0.0099 0.0224
2 0.1139 0.0430 0.0726 0.0416 0.1221 0.0451
3 0.5545 0.0990 0.3317 0.0689 0.6403 0.1008
4 0.5594 0.0951 0.9109 0.1876

Label Qdot 1 (K = 4) Qdot 2 (K = 4) Qdot 3 (K = 3)

States D
(
µm2/s

)
σ(µm) D

(
µm2/s

)
σ(µm) D

(
µm2/s

)
σ(µm)

1 0.0028 0.01841 0.0001 0.0178 0.0018 0.0210
2 0.0429 0.0289 0.0198 0.0283 0.0561 0.0342
3 0.1733 0.0430 0.1238 0.0495 0.8993 0.1624
4 0.5462 0.1141 0.9637 0.1911

Table 4.10: Diffusivity and static error estimations for the three ex-
periments, obtained using and Equations (4.16)and (4.17).

three experiments is most evident in the third and fourth states. High diffu-
sivity states were observed for both Cy3 labelling and Qdot labelling, rang-
ing from 0.7 to 1.1 µm2/s for Cy3 and 0.6 to 1.2 µm2/s for Qdot labelling.
These values are very high compared to the usual estimates of diffusion co-
efficients for a surface receptor. Moreover, as we can see in Table 4.7, the
states with these high values are very rare in the trajectories. Tracking er-
rors are very likely to be the culprit for these erroneous states with very
high diffusivity. Qdots are known to alternate between dark and bright lev-
els of intensity. This is called blinking and complicates the association of
positions in the tracking algorithm, which can cause the linking of different
particles (tracking errors) [1, 114]. The high diffusivity values might be due
to tracking errors. The introduction of large displacements in a trajectory,
explained by the association of different particles, increases the diffusivity
value. Moreover, the high diffusivity states are more pronounced with Qdot
labelling compared to Cy3 labelling. In fact, there are two Qdot experiments
where the most mobile state has D of approximately ∼ 1 µm2/s.

Figure 4.8 shows the posterior distribution of each estimated diffusion
coefficient for the six datasets. For the highest diffusivity state of each
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dataset, we also have a very large variance. The reason for that is the low
number of data points from this state, as can be seen from Table 4.7. The
table shows that only ∼ 3% to 4% of data points are in the most mobile
state on average.

(a) Cy3

(b) Qdot

Figure 4.8: Diffusion estimates using SPT-∞E from six sets of exper-
imental trajectories, obtained by labelling IgG receptors on the
surface of live B cells (A20 cell lines) either using a Cy3-labelled
probe or a Qdot probe.(a) Diffusion coefficients for each state of
Cy3-labelled receptors. (b) Diffusion coefficients for each state
of Qdot-labelled receptors.

4.5 Robustness

To further check the performance of the algorithm on experimental datasets,
we ran the full algorithm five times for each dataset. Figure 4.9 shows the
number of states chain for each of the five runs. We observe that for Cy3-
labelling three out of five runs converge to the same number of states for the
first experiment, and on the second and third experiments all runs converge
to the same number of states, four and three respectively. Qdot-experiments
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have four out five converging for three states for the first and third experi-
ments, and three out of three converging to five states. For both labelling
methods, the majority of chains converge to three states for the first and
third experiments chains. The results are consistent across the experiments,
leading to similar conclusions.
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Figure 4.9: Five states chains of SPT-∞E results from six sets of ex-
perimental trajectories obtained by labelling IgG receptors on
the surface of live B cells (A20 cell lines) either using a Cy3-
labelled probe or a Qdot probe. (a) Number of states for each
iteration of SPT-∞E on Cy3-labelled receptors. (b) Number of
states for each iteration of SPT-∞E on Qdot-labelled receptors.

From each of these five chains, we obtain a diffusivity posterior for each
state of the chain. Figure 4.10 shows these distributions. Each box repre-
sents a diffusion distribution for each state. On each plot, we have distri-
butions for each of the five runs and their states. The different runs are
grouped by colour, and the states are indexed on the x-axis with their dif-
fusion values on the y-axis. The distributions with large variances are the
ones with the highest diffusivity, usually states 4 and 5. These are also the
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states with the smallest occupancy frequency as one can see in Figure 4.11.
The smaller the occupancy frequency, the fewer data points are used to esti-
mate the diffusion. The distributions for each state are consistent among the
runs. However, we obtain some negative diffusion coefficients for the first
two days of Cy3 experiments. The calculation of D follows equations (4.16)
and (4.17). Therefore, to have a negative D, the second diagonal of the co-
variance matrix needs to be so negative so that Cov(i, i)+2Cov(i, i±1) < 0,
given Cov(i, i) > 0 for all covariance estimations. This means that the es-
timated covariance matrix for the first two experiments of Cy3 has a very
negative second diagonal, indicating strong anti-correlation among consecu-
tive displacements. As we discussed before, anti-correlation is not expected
if we use the localization accuracy as a fixed static error. On top of that,
estimating negative diffusion further suggests that some other phenomena
should be modelled in order to fully explain these data. It is interesting to
note that no negative diffusion is estimated for Qdot-labelled molecules.

The occupancy frequencies of each state are consistent within runs and
for two of the three of Cy3-labelling datasets and all three Qdot datasets.
Even though the runs do not converge to similar occupation frequencies for
the first experiment with Cy3-labelling, the results are consistent with the
other two experiments. The main conclusion from Figure 4.11 is that the
most occupied state for Qdot-labelled molecules is the first state, i.e. the
slowest one, whereas Cy3-labelled molecules generally exist in the second
state. The slowest state for Qdot-labelled molecules for all experiments was
approximately 10−3µm2/s, whereas Cy3-labelled molecules’ slowest states
was approximately 10−2µm2/s, ten times faster. Again, we propose that the
mobility of Qdot-labelled molecules is impaired due to the size of the Qdot.

Furthermore, we wanted to check if the mixing was good. To do this, we
ran the algorithm for 50000 steps and looked at the diffusivity distribution
using only the last 10000 steps. We obtain similar results as before, and the
high variance for the highest diffusion coefficients (less probable states) is
kept, suggesting that the algorithm is converging, properly.
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(a) Cy3

(b) Qdot

Figure 4.10: State diffusivity distribution for each dataset of exper-
imental trajectories obtained by labelling IgG receptors on
the surface of live B cells (A20 cell lines) either using a Cy3-
labelled probe or a Qdot probe. Colours corresponds to differ-
ent chains (runs) of the algorithm. We index the states on the
x-axis, and diffusion coefficient on the y-axis. Not all runs con-
verge to the same number of states. (a) Cy3-labelled proteins
(b) Qdot-labelled proteins.

4.6 Summary

In this chapter, we developed SPT-∞E, a Bayesian framework to estimate
the number of diffusive states and their parameters, simultaneously, of single-
particle tracking datasets, taking into consideration the experimental errors.
We first validated the algorithm with three sets of simulated data: a 2-state
dataset, a 3-state dataset and a 4-state dataset. In this framework, we
introduced a merging state step after the burn-in phase to accelerate the
convergence speed. This merging state step is based on a distance metric
between the covariance matrix of each state.

After the validation of the algorithm, we applied the SPT-∞E in the
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(a) Cy3

(b) Qdot

Figure 4.11: Boxplots of state occupation frequencies for each dataset
of experimental trajectories, obtained by labelling IgG recep-
tors on the surface of live B cells (A20 cell lines) either using
a Cy3-labelled probe or a Qdot probe. Colours corresponds to
different chains (runs) of the algorithm. We index the states
on the x-axis, and their occupation frequency on the y-axis.
Not all runs converge to the same number of states. (a) Cy3-
labelled proteins (b) Qdot-labelled proteins.

same experimental datasets used in Chapter 2 and Chapter 3. From the
covariance matrix estimation of each state, we encountered that fixing the
standard deviation of the static error leads to negative apparent diffusion
coefficients. The static error standard deviation was fixed to values measured
in previous work [1]. We decided to allow the standard deviation of static
error to vary among states. We solved the linear systems of equations for
the covariance matrix and obtained (4.16) and (4.17).

When performing the validation of SPT-∞E, we used simulated pre-
localized trajectories. In practice, we did not assess the correctness of the
measurement process. A way to assess this is by simulating the raw data
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(a) Cy3

(b) Qdot

Figure 4.12: State diffusivity distribution for each experimental
dataset obtained by labelling IgG receptors on the surface of
live B cells (A20 cell lines) either using a Cy3-labelled probe or
a Qdot probe. Colours corresponds to different chains (runs)
of the algorithm. The algorithm ran for 50000 steps, but only
the last 10000 iterations were used to calculate the diffusivity
distribution. We index the states on the x-axis, and their dif-
fusion coefficient on the y-axis. Not all runs converge to the
same number of states. (a) Cy3-labelled proteins (b) Qdot-
labelled proteins.

originated by a microscopy, and, by doing so, more realistic noise could be
incorporated into the traces, such as pixelated point-spread function, and
detector noises. Next, the detection and tracking algorithm performance
together with SPT-∞E and the measurement process could then be evalu-
ated. This analysis could clarify the measurement process and help us to
understand the apparent dependence of σ with the diffusivity of each state
as suggested by the results from experimental data.
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CHAPTER 5

A pipeline to analyse two colour data: single-particle tracks
of antigen proteins on a lipid bilayer and bulk surface

receptors on cell membrane.

In this chapter, we describe a framework developed to analyze a type
of experiment, where single-molecule tracking of cell-surface receptors is
augmented by a second-colour labelling of a potentially interacting surface
molecule. While the tracked receptors are labelled at low densities as in
previous chapters, the second molecule is labelled at high density with the
second colour. When the cell is imaged, the single-particle tracks appear to
move over the underlying density distribution of the second molecule.

We can imagine many possible systems that could be studied under this
general paradigm. Here, we will look at a system where a cell interacts, via
its cell-surface receptors, with a lipid bilayer that has been augmented with
ligands for the tracked receptors.

The general scheme of the experimental setting is shown on Figure 5.1.
The lipid bilayer is used as a way to emulate a cell membrane enabling the
study of interactions between receptors on the cell membrane with those
present on the lipid bilayer [48, 65, 134]. The thickness of a lipid bilayer is
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smaller than the penetration of the evanescent wave in a TIRF microscopy,
making it possible to image molecules on the cell membrane, even through
the bilayer.

coverslip

lipid bilayer

cell

Figure 5.1: Scheme of experimental setup. The supported lipid bi-
layer emulates the membrane of a second cell. Upon adding
specific cellular membrane molecules to the lipid bilayer and
placing another cell on top of it, we can emulate interactions of
cellular receptors between different cells.

The output of the experiment is an image stack, where each frame has
two channels. One channel corresponds to the molecules on the lipid bilayer,
and the other corresponds to the molecules on the cell. Here, molecules
on the cell are labelled at high density, enabling the location of the cell on
the image and semi-quantitative determination of molecular densities on the
cell. Molecules on the lipid bilayer are labelled at low-density to allow for
tracking.

The framework to analyse this type of experiment is described in the
next sections. Figure 5.2 illustrates the structure of this framework, and the
different pathways needed for the analysis for each image channel.

5.1 Biological Background

T cells play an essential role in adaptive immunity, through regulation of
immune responses and direct killing of infected cells [86]. Because of that,
it is of great interest to develop a deep understanding of the T cell acti-
vation process. In this work, one of the components of the system is a T
cell, whose surface receptors are labelled at high density, identifying the
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placement of the cell. Moreover, labelled peptide-major-histocompatibility
complexes (pMHC) are added to the lipid bilayer. Certain pMHC are known
to bind to T cell receptors (TCR) on a given cell, inducing receptor signalling
and ultimately, cell activation - a critical step of an immune response. Signal
induction is driven by molecular interactions between the T cell receptors
and the pMHCs. These pMHCS are surface-bound antigens that are pre-
sented on antigen-presenting cells (APC) of the immune system. Together,
pMHCs and TCRs play an essential role in the activation of T cell.

One of the major goals of cellular immunology has been to better under-
stand which features of the TCR-pMHC interaction lead to robust cellular
activation. Moreover, T cells identify small numbers of agonist pMHCS in
a sea of self-pMHCs to trigger cell activation for antigen-specific immune
response. In other words, T cell activation is specific and sensitive. The
mechanisms governing TCR ligand discrimination remains unclear. This is
a major unanswered question in immunology [15, 45, 108, 129], which has
become increasingly important as strategies to therapeutically exploit cel-
lular immunity have garnered attention, especially in the context of cancer
immunotherapy [127].

Here, we describe a pipeline developed to analyse the data from a model
of this system. In particular, we quantify the mobility of individual pMHC
ligands on a flat lipid bilayer during interactions with TCRs. We also look
at other aspects of the immediate cellular response to pMHC binding, in
terms of TCR enrichment, by checking for correlations between local TCR
density and the mobility of the (nearby) pMHCs.

5.2 High density data

In this section, we will describe the analysis path for the high-density data
of the experiment. For the bulk TCRs labelled, we have an image stack of
masks of the cell. However, we observe that during the whole experiment,
the cell barely moves, therefore the mask is essentially immobile. The time
duration of each image stack is around 10 s.
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5.2.1 Binary Mask

The first part of the pipeline for the high-density data is to transform our
TCR labelling data into a binary mask. Then, we have a way to identify
whether the pMHC tracks are within the cell contact area or are outside this
region. This is important because the pMHC can interact with the proteins
on the cell membrane only within the cell contact area.

The image of the cell is a grey scale image, and to transform this image
into a binary image, we apply some known algorithms of image processing.

First, we apply the Otsu method to define an intensity threshold of the
image [92]. Then, for every pixel with an intensity larger than this threshold
a value of 1 is applied and the pixel is classified as part of the cell, otherwise
the pixel is on the outside of the cell, and a value of 0 is given to it. Then,
we obtain a black (0) and white image (1).

The grey scale image gives a pixel intensity distribution, π. One can see
an example of this image in Figure 5.3(a). To transform this image into
a binary image, we need to divide this distribution into two classes: one
whose intensity is large enough to be classified as cell mask and the other
with lower intensity. The Otsu method finds this threshold, t, by minimizing
the intra-class variance of the pixel intensity distribution. The intra-class
variance is defined as [92]:

σ(t)2w = w0(t)σ
2
0(t) + w1σ

2
1(t),

where σ0 is the variance of the class with pixel intensity small enough to be
transformed into 0 on the binary mask, and σ1 is the class with large pixel
intensities. The weights w0 and w1 are equal to the sum of all pixel intensities
π within each class. Since the pixel intensity distribution is normalized,
w0 + w1 = 1. By minimizing the intra-class variance, we select a threshold
that clearly distinguishes the classes.

After the transformation from grey scale image to binary, some pixels
inside the mask are 0 even though they are inside the cell (see Figure 5.3(b)).
This could be due to noise, or perhaps, there were no labelled TCRs at this
location. Moreover, we also can see some pixels that are outside the cell
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contact area whose intensity is classified as one. This can also be caused by
noise. We assume that there are no holes in the cell-contact area. In other
words, we are assuming that the cell membrane does not have any discon-
tinuities. Therefore, even dark pixels inside the cell-contact area should be
considered a cell-contact area region.

To achieve that we apply an algorithm to change to 1 all pixels inside
the cell contact area. We use the imfill function of MatLab, a fill holes
algorithm. Figure 5.3(c) shows the output image after the application of
the fill holes algorithm. Here, we assume that the cell is a simply connected
region, therefore if a particle is within the boarder of the cell contact area,
then it is inside the cell contact area.

The next step is to smooth the border of the cell, and to delete every
pixel outside the cell contact area. We use an erode algorithm to do that.
This algorithm superimposes the original binary image on another image
smaller than the original one. When the new image is completely contained
on the original image, the pixel is retained. Otherwise, deleted [50]. For
example, suppose we have a binary image A given by

A =


1 1 1 1 1

1 0 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 0 1

 ,

and B defined as the smaller image B =

1 1 1

1 1 1

1 1 1

. The center pixel of B

is its origin. We superimpose the center of B in every pixel of the image A.
If B is completely contained on A, then we keep the pixel of A, otherwise it

152



is set to zero. After that, the final image C is:

C =


0 0 0 0 0

0 0 0 1 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 0

 .

Finally, we dilate the image so it has a more smooth boundary. The dilation
operation combines the two images. Rather than deleting the pixel when the
new image is not fully contained in the original image, the dilation algorithm
adds the pixel to the original image when the center of the smaller image
is contained in the original image. Using C and B, we obtain the following
image after the dilation operation:

D =


0 0 1 1 1

0 0 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 0 0

 .

Figure 5.3(e) shows the final binary mask image.

5.2.2 Intensity Analysis

To investigate whether the organization of labelled TCR changes around
tracked pMHCs, we need to estimate the density of bulk TCR near a pMHC
that is interacting and possibly bound to a TCR. To decide whether a pMHC
track is in a such state of interaction and bound, we applied an algorithm to
classify every time point of a track as either a slow or fast state. We hypoth-
esize that the slow states we identify are the possible bound (interacting)
state. This is discussed and explained in the next sections.

Once we have the pMHC mobility states, we focus on the slow states and
calculate the TCR density in the vicinity. First, we determine a number n of
pMHCs in the slow state within the cell contact area. We calculate the ratio
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of the average intensity of the third neighbour pixels to the average intensity
of the pMHC pixel and its first and second neighbours (Figure 5.4). If this
ratio is larger than one, it indicates that TCRs are locally depleted close
to the pMHC, and if it is smaller than one, it indicates enrichment of TCR
in the neighbourhood of the pMHC. Since we calculate this ratio for every
image of the stack, we obtain a distribution. We also generate a background
intensity ratio distribution as a baseline control. For the calculation of the
control distribution, we randomly choose pixels of each frame and calculated
the same ratio of intensity. As a result, we obtained a control distribution
that provides a base for comparison with the experimental results.

Finally, for the bulk TCR, we test the null hypothesis of both distribu-
tions having the same mean and the alternative hypothesis that the mean of
the bulk TCR is larger than the control. We used the Kolmogorov-Smirnov
test (KS test) to test whether the control sample and the slow-state intensity
sample have the same distribution. These tests allow us to demonstrate if
TCR aggregation around potentially bound pMHC is occurring.

5.3 Low density data

In this section, we explain the step-by-step of the analysis of the low
density data, the single-particle trajectories.

5.3.1 Detection and Tracking of pMHC trajectories

As in previous chapters, we begin by transforming the raw data into tra-
jectories. First, we run an algorithm to detect the position of each particle.
After, we need to link these particles into trajectories. Particles were lo-
calized and tracked by Icy bioimaging analysis software. Particle detection
was done using undecimated wavelet transform method, whose settings were:
detection of bright spots over dark background with scale 2, allowing the
detection of spots about 4 to 7 pixels of diameter and threshold 70. Particle
tracking was done using the multiple hypothesis tracking method. Diffusion
and directed movements were considered in the tracking as well. The out-
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put files consisted of the frame number and x-y positions of each particle as
explained on the introduction.

Figure 5.5 shows an image with the trajectories generated by the detec-
tion and tracking algorithms. Besides that, it also shows the binary mask
and how we use it sto classify the tracks. On the right image, we have
red trajectories from tracks that are outside the cell contact area during
the whole capture of the image. The green tracks are the ones that cross
the boundary of the cell overlapping region, and blue tracks remain entirely
inside the cell region.

5.3.2 Localization precision of pMHC positions

To measure the localization accuracy of the experiment, immobile particles
were placed on the coverslip. Then, the same imaging detection and tracking
techniques were applied. We estimated the localization precision from the
displacement distribution of the immobilized tracks. The standard deviation
of this distribution is the localization precision of the measurement and was
found to be 53 nm.

5.3.3 Single-State Analysis of pMHC trajectories

To assess the mobility of the pMHC tracks, we first applied a single state
diffusion analysis. We assumed the tracks were under a two dimensional
Brownian diffusion. A maximum likelihood estimator [6] was used to esti-
mate the diffusion coefficient (D). This estimator takes in consideration the
positional errors and blurring during image acquisition. The localization
precision (Chapter 1) gives the positional error which is used in the method.
However, we also applied this method to estimate both diffusion coefficients
and the localization precision. The results for the latter were similar to those
acquired from immobile particles.

5.3.4 Constrained 2-states Analysis of pMHC trajectories

The constrained 2-states model is based on the model described in Das et
al [24] where we have transitions between two states: slow and fast. However,
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since the output data contains particles moving outside and within the cell
contact area, we further improve the model to constrain the particles that are
outside to not transit to slow states. The reason for this is: pMHCs outside
the cell contact area cannot bind to any other proteins, and therefore their
diffusive process should not change its regime.

We have two processes for the constrained Model:

• The particles outside the cell area undergo simple Brownian motion:
state 1.

• The particles inside the cell area follow a Markov process with 2 dif-
fusive states: a fast state 2 and a slow state 3.

Figure 5.6 illustrates the constrained model. Figure 5.6(a) is an illustra-
tion of the model. Each “X” is a track on the frame. The track can either be
in a slow or in a fast state, when within the cell contact area. Otherwise, the
track can only be in the fast state. Figure 5.6(b) is a sketch of the Markov
process that occurs within the cell contact area, the diffusive process on the
outside of the contact region, and their relations.

Following the same procedure as in Das et al [24], the parameter estima-
tion is done by maximizing the likelihood function via a MCMC algorithm.
The likelihood for the constrained model is given by:

L(θ|O) ∝
∑

q1,··· ,q3N

P (O|qi, θ)P (qi|θ), (5.1)

where {qNi=1} is a sequence of N binary state variable and the likelihood
is proportional to the sum of probability of all the 2N possible sequences
of {qi}Ni=1. Since this consists of an extensive computation, we applied the
forward-backward algorithm [24, 100].

5.3.5 Forward Algorithm for the Constrained Model Likeli-
hood

The forward-backward algorithm uses the forward probability, αj(i), to
build the log-likelihood step by step. The forward probability αj(i) is
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the probability of observing the partial sequence of displacements, O =

∆1,∆2, · · ·∆j , where displacement ∆j is in state i, given the parameters
Θ. The likelihood for a sequence of displacements ∆0,∆1, · · · ,∆n of the
constrained 2-states model is given by

L(θ|O) =

3∑
k=1

αN (k).

The forward probability is given by

αj(i) =

[
3∑

k=2

αj−1(k)pksj

]
P [∆j |sj = i,Θ] (1− δi1)

(
1− δs(j−1)1

)
+

[
2∑

k=1

αj−1(k)

]
P [∆j |sj = i,Θ] δi1

+ αj−1(1)P [∆j |sj = 2,Θ] (1− δi1) δs(j−1)1,

where P [∆j |sj = m,Θ] = e−
∆2
j

2Dτ with D equal to the diffusion coefficient
of the slow state for m = 3 and equal to the diffusion coefficient of the
fast state for m = 1, 2. δij is the Kronecker delta, which is 1 when i =

j and zero otherwise. We are using the Kronecker delta to consider all
the possible boundary-crossing events and their respective likelihood: the
particle is outside in the current step, and the particle is outside in the
previous step and inside in the current one.

5.4 Results

Here, we apply our analytical pipeline to unpublished experiments. In
these experiments, supported planar bilayers were constructed containing
low densities of labelled pMHC. T cells bearing either labelled CD45 or
labelled TCR were allowed to settle on the bilayer and cell-bilayer junc-
tions were imaged using two-colour total internal reflection fluorescence mi-
croscopy (TIRF). In this work, we use the pipeline to study the interaction
of TCR with several peptide ligands, in the context of T cell interactions
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with a supported lipid bilayer.

5.4.1 Single-state Analysis

To detect any changes in pMHC mobility induced by the presence of the T
cell and whether these changes are common within different pMHC ligands,
we first apply the single-state analysis taking into account experimental
errors [6] for the pMHC tracks.

We begin by classifying the pMHC tracks into three groups - those en-
tirely outside the cellular mask area, those entirely within the mask, and
those that entered or left the mask during the experiment. We estimate the
effective diffusion constants for the first two groups only, neglecting those
that crossed the mask boundary.

In Figure 5.7, we present detailed results for one set of experiments
performed with cells bearing the AND TCR, interacting with four differ-
ent pMHC ligands: (i) the “wild-type” agonist ligand moth cytochrome c
(MCC); (ii) the low-affinity peptide variant T102S; (iii) another peptide vari-
ant K99A with very low affinity; (iv) and β2m which is present on the same
MHC, but is an irrelevant peptide that TCR do not bind. In the context of
ligands, an agonist is a ligand that binds to a receptors and produce a bio-
logical response leading to cell activation in this particular case the binding
of pMHC to TCRs.

We immediately observed that the cell-independent (outside-mask) dif-
fusivities of all four peptides were similar, but not identical, probably re-
flecting variation due to the construction of supported bilayers. Moreover,
diffusivities outside of the T cell area were mostly larger than those inside.
This suggests that the presence of the T cell induces a decrease in pMHC
mobility. This could be both due to nonspecific interactions with surface
molecules on the T cell as well as binding to TCRs.

Additionally, the presence of the cell substantially alters particle mobility
in a pMHC-dependent manner. The MCC pMHC shows the largest change
in diffusivity. This pMHC is known to bind to the TCR present on the T cells.
By comparison, the β2m pMHC shows a small change in median diffusivity.
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This is known to be a weakly-interacting pMHC, so the change in mobility
possibly reflects nonspecific interactions between the MHC molecule and
CD4 on the T cell membrance, and/or steric hindrance due to the close
apposition of cell and bilayer [1]. We also found that the weak agonist
pMHC T102S consistently exhibited intermediate retardation, while motion
of the K99A molecule was minimally retarded. We can interpret these results
as showing that pMHCs bind to TCR on the T cell surface, reducing their
mobility in a manner that reflects their known potency as TCR agonists.
Table 5.1 summarizes the single-state diffusivity results for AND T. The
median diffusivity for the pMHC inside and outside the cell contact area is
reported.

5.4.2 5cc7 T cells

To examine a different TCR, we also performed experiments using labelled
5cc7 T cells, with three pMHC variants in the bilayer: a super-agonist K5,
wild type MCC and a weak agonist T102S. Results for these systems, from
experiments performed on two different days, are shown in Figure 5.8. In
this case, the mobility of the MCC peptide was still substantially reduced
by the presence of the T cell, but the effect is not as dramatic. This is
consistent with our understanding that the AND TCR has higher affinity
for MCC pMHC than the 5cc7 TCR. Intriguingly, the pMHC T102S does
not exhibit intermediate retardation when in contact with 5cc7 cells. This
distinction between AND and 5cc7 cells is unexpected, and the reason for
the difference on diffusivity is unclear.

Super-agonist K5 exhibits some retardation of diffusivity by the presence
of the T cell. However, this retardation is not as pronounced as the wild-type
MCC. The pMHC K5-5CC7 TCR bond is more stable and shorter-lived than
the pMHC WT-5cc7 TCR bond [108]. Thus, it is expected that the impact
of the presence of the T cell on K5 diffusivity should be larger than WT
MCC pMHC. It is therefore unclear why the K5 diffusivity is not affected
as much.

Table 5.1 summarizes the results for all experiments with AND T cells
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TCR pMHC Dout

(µm2/s)
Din

(µm2/s)
Fold change

to Dout

# of
experi-
ments

AND MCC 0.65 0.03 36 6
T102S 0.69 0.18 4.5 5
K99A 0.89 0.52 1.6 3
β2m 1.05 0.29 3.8 2

5cc7 MCC 0.44 0.10 6.2 2
T102S 0.64 0.35 1.8 2

K5 0.47 0.30 3.3 2

Table 5.1: Diffusion coefficients given here are averages of medians
from the number of experiments indicated. Representative fold
change reported here is the mean of the fold-change of median,
over the number of experiments indicated. All experiments were
performed with a TCR label.

and 5cc7 T cells. We show the median diffusivity for the pMHC inside and
outside the cell contact area, the fold change between these diffusivities and
the number of experiments performed.

The cell-independent diffusivities among 5cc7 T cells are significantly
lower than AND T cells, and this reflects the inter-experimental variability.
We observe that the highest fold change is for WT MCC pMHC tracks for
AND TCRs, where the inside diffusivity is 36 times smaller than the outside
diffusivity. A curious result is the super agonist K5, whose fold change is
only 3.3, similar to the self-peptide β2m. It is worth to notice that both
β2m and K5 were averaged over only 2 experiments. More experiments
might provide a higher fold change for K5 compared to β2m.

5.4.3 Experiments with addition of CD80

Furthermore, we also analyzed experiments where unlabelled CD80 molecules
were added to the lipid bilayer. Supported bilayers bearing ICAM-1, CD80
and labelled pMHC were generated. We tracked labelled pMHC in the pres-
ence of AND T cells. Again, the TCR was labelled in a second colour.
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CD80 is a costimulatory molecule that is present on the surface of APCs.
It binds to CD28 presented on the T cell surface, leading to downstream
signals that play an important role in cytoskeletal alterations and the early
spatial organization of cell signaling [33]. We were interested to see if the
presence of CD80 altered the mobility of pMHC in the supported bilayer.

To do that, we applied the single state diffusion analysis to obtain the
effective diffusivity distribution for each experiment. Figure 5.9 shows the
cumulative probability distribution of diffusivity, across experiment settings:
(i) WT MCC pMHC (solid) versus WT MCC pMHC with CD80 (dashed),(ii)
K99A MCC pMHC (solid) versus K99A MCC pMHC with CD80 (dashed),
and (iii) T102S MCC pMHC (solid) versus T102S MCC pMHC with CD80
(dashed). No significant difference between samples with and without CD80
was observed.

5.4.4 Experiments with addition of unlabelled pMHCs

We were also interested in seeing if the addition of unlabelled pMHC into
the bilayer would lead to changes in labelled pMHC mobility. Individual
pMHC might not be able to reliably induce strong TCR signals to drive T
cell cytoskeletal alterations and/or TCR clustering on the cell surface. By
providing additional pMHC we hoped to drive signaling and detect changes
in pMHC mobility. In separate experiments, we generated supported bilayer
systems bearing ICAM-1, labelled MCC pMHC, and variable additional
concentrations of unlabelled MCC pMHC to the bilayer (units of unlabelled
pMHC over µm2). We then performed single particle tracking of the labelled
pMHC tracks in the presence of 5cc7 T cells with labelled TCR providing
the cell contact area mask information. Results of the single state diffusivity
analysis are shown in Figure 5.10 for six experimental settings: (i) WT +
0 unlabelled WT versus WT + 10 unlabelled WT over µm2, (ii) WT + 0
unlabelled WT versus WT + 100 unlabelled WT over µm2, and (iii)WT + 0
unlabelled WT versus WT + 1000 unlabelled WT over µm2. These numbers
indicate the concentration of unlabelled peptides. Perhaps surprisingly no
significant difference in the mobility between experiments with and without
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additional unlabelled WT MCC pMHC was observed.

5.4.5 Application of constrained hidden Markov model to
experimental data

The next step is to investigate possible transitions between different modes
of diffusion for the individually labelled pMHC. As discussed in previous
chapters, it is possible to apply an algorithm that classifies the data in two
different groups of diffusivity: fast, and slow. This method seems appropri-
ate for these experiments because of the nature of events in the system. Here,
pMHCs transit in or out of the cell contact area. Inside the cell contact area,
the pMHC could bind to TCRs. Applying the constrained two-state model
allows us to assess the changes in pMHC mobility that may corresponds to
these binding or unbinding events.

Figure 5.11 presents results for the same set of experiments (AND T
cells and 5cc7 T cells) used for Figures 5.7 and 5.8. As in the previous
section, we found substantial variability in the background (fast) diffusiv-
ity of pMHC in the lipid bilayer, making comparison of absolute numbers
from one experiment to another challenging. However, the slow state diffu-
sivity and transition rates present a qualitatively reasonable picture across
experiments.

WT pMHCs exhibits the slowest slow diffusivity on AND T cells, around
1.5 times smaller than K99A, T102S and β2m peptides. This probably re-
flects the formation of bonds among WT MCC pMHC and AND TCRs. The
other peptide variants and the self-peptide β2m have similar slow diffusivity.
However, besides the diffusivity, the rate of binding and unbinding events
gives information about the bonds as well.

We observe that WT MCC pMHC had one of lowest off rates among the
variants, suggesting that once the bond forms, it is slower to break compared
to other pMHC-TCR bonds studied here. Moreover, WT MCC pMHC has
the largest on rate among all peptides, suggesting that it can rapidly find
and bind to TCR within the contact area. In summary, WT MCC pMHC
exhibits apparent bonds that form more rapidly and are more stable than the
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mutant pMHCs. In Figure 5.11, the points representing K99A and T102S
are below the line y = x and, therefore, they tend to form a bond more than
break it. However, this tendency is not as strong as WT MCC pMHC. For
the self-peptide β2m, the bond is easier to form in comparison with K99A
and T102S, but it is also easier to break.

For 5cc7 TCRs the slow diffusivity is similar for all peptides. The WT
MCC pMHC has the largest on rate and one of the smallest off rate, similarly
to AND TCRs experiments. The super agonist K5 exhibits the highest off
rate and the second largest on rate, meaning the bond is not as stable as
the WT MCC pMHC bonds and T102S bonds. Previous works have found
that K5 and WT MCC pMHC have shorter bonds and have higher 3D in
vitro binding affinities with TCRs compared to T102S [108]. Moreover, it
was previously found that K5 pMHC has the shortest bond distance with
TCRs [21, 54, 108]. The bond distance is defined as the distance between
the center of each molecule. The shorter the distance, the more strength
needed to break the bond, and the higher the energy of the bond. Then,
more energy is needed to form a short bond, and to break it. Here, we
observe that K5 pMHC mobility is not as affected by the presence of the T
cell as the WT MCC pMHC (see Table 5.1). Moreover, the on and off rate
suggest a less stable bond compared to WT. Therefore, our results for K5
are not in complete agreement with past works [21, 54, 108].

5.4.6 Frequency of states

Finally, we calculated the relative times that the pMHC spent in the slow
state and the fast state. Figure 5.12 shows the percentage of states for each
experiment. We observe that WT MCC pMHC mostly occupies the slow
states with 74% occupancy for the AND TCRs and 56% for the 5cc7 TCRs.
K99A and T102S have similar values 55% and 61% occupancy for the slow
states and the self-peptide β2m has less than half occupancy of slow states.
Both K5 and T102S presents the majority of tracks on the fast state.
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5.4.7 Intensity Analysis

TCRs form clusters on the cell surface following stimulation by pMHC [14,
133]. Conversely, CD45 is known to be excluded from the region around
TCR-pMHC bonds [20, 108, 118, 134]. We were interested to learn if TCR
enrichment or CD45 exclusion could be detected in the vicinity of labelled
pMHC interacting with the T cell. Here, we developed a method to assess
whether there is any TCR enrichment or CD45 exclusion in the vicinity of
possible TCR-pMHC bonds. As explained previously, the constrained two-
state Markov model infers which state the pMHC is in at each time point.
Since the slow states represent possible binding events, we decided to explore
the intensity of the region around slow-state pMHC tracks.

We selected slow-state pMHC tracks from the data, and calculated the
average intensity of the surface marker channel over a 25-pixel square cen-
tred on the pixel containg the focal pMHC. This averaged pMHC-proximal
intensity was then normalized by dividing by the average intensity of all
pixels immediately adjoining the 25-pixel square (see Figure 5.4). This nu-
merical ratio was then compared to a control ratio obtained by treating
randomly chosen pixels within the same experiment in an identical manner,
allowing us to assess statistical significance. We calculated the average in-
tensity only at tracks that have at least n consecutive frames in the slow
state. The reason is that we assumed that the time scale from a pMHC-TCR
bond to leading TCR enrichment or CD45 exclusion is larger than the time
interval between frames. Hence, we applied this only to pMHC-TCR inter-
actions that last for at least n frames (assuming that slow states represent
potential interactions). We set n to 50, 100 and 200 for TCR experiments,
and 50 and 400 for CD45 experiments. These number were based on data,
as we increase n, fewer tracks are available. In addition, we expect that the
time scale for CD45 exclusion to be larger than TCR enrichment, and that
is why we are reporting 400 frames. After calculating the intensity distribu-
tion for each track, we performed a KS-test between this distribution and
the control distribution.

This analysis was performed using the AND TCR with WT, T102S, K99
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and β2m pMHC. We found a small (2%-5%) but statistically significant
increase (p < 0.0016) in TCR intensity around WT pMHC in the slow state.
Using the 5cc7 TCR experiments with K5, WT and T102S experiments, we
also found evidence for a small (2%-6%) TCR enrichment, and statistically
significant enrichment of TCR in the vicinity of WT pMHC in the slow state
(p < 10−3). In parallel experiments, the CD45 intensity was found to exhibit
a small (2%-3%) decrease around WT pMHC, and this was also significant
(p < 10−3). Results for other pMHC were not significant. Tables 5.3 and
5.5 summarize these results for TCR mask experiments and CD45 mask
experiments, respectively. In the parameters row, R stands for rejection of
the null hypothesis.

Tables 5.2 and 5.4 reports the results of the two-state constrained model
for all experiments using both TCR masks and CD45 masks.

The results for the CD45 mask experiments are similar to the TCR
masks experiments. We obtained a larger frequency of slow states for WT
MCC pMHCs compared to T102S pMHCs and K99A pMHCs. Although
there is difference in the results among different days of experiments, but
similar pMHCs, probably reflecting the variation due to the construction of
supported lipid bilayers.

For the CD45 masks, experiments with addition of unlabelled peptides
were performed on WT MCC pMHC, and T102S pMHCs. For WT pMHCs,
the transition probabilities ratio increased with the addition of WT pMHC.
No significant difference was observed for T102S.

5.5 Summary

In this chapter, we presented a novel pipeline to analyse two-colour TIRF
microscopy data to study the dynamics of pMHCs in a supported lipid bi-
layer, and their correlation with the formation of pMHC-TCR bonds. The
data comprises single-particle tracking of pMHCs on a supported bilayer
labelled at low-density, and high density labelling of proteins on the cellular
membrane (TCR or CD45) of the cell placed on top of the lipid bilayer.

The pipeline has two pathways: the analysis of the high density channel,
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T
Cell pMHCs Dfast

(µm2/s)
Dslow

(µm2/s)
pfs psf

pfs
psf

AND

β2m 0.7167 0.0417 0.0525 0.0693 0.7580
K99A 0.8117 0.0343 0.0311 0.0455 0.6840
T102S 0.6897 0.0373 0.0332 0.0329 1.009
WT 0.6893 0.0330 0.1062 0.0372 2.855

K99A 0.5520 0.0408 0.0323 0.0509 0.6350
K99A
CD80 0.5711 0.0372 0.0253 0.0394 0.6420

β2m 0.4309 0.0340 0.0202 0.0541 0.3730
K99A 0.4637 0.0408 0.0212 0.0624 0.3400
WT 0.4777 0.0320 0.0436 0.0230 1.8960

5cc7

K5 0.5105 0.0345 0.0206 0.0595 0.3460
T102S 0.4068 0.0475 0.0222 0.0328 0.6770
WT

0 0.4210 0.0310 0.0139 0.0216 0.6440

WT
10 0.4734 0.0236 0.0289 0.0328 0.8810

WT
100 0.4504 0.0267 0.0375 0.0514 0.7300

WT
1000 0.4425 0.0323 0.0287 0.0428 0.6710

Table 5.2: Results of the constrained two-state model on experiments
performed done with TCR mask using AND T Cells and 5CC7
T Cells. The numbers 0, 10, 100, and 1000 indicate the addition
of unlabelled peptides and its concentration over µm2.

and the analysis of the low density channel. The high density channel anal-
ysis is further divided into two pathways- (i) a binary mask of the cell to
classify pMHCs that are inside the cell-contact are or outside the cell-contact
area, and (ii) an intensity analysis that quantifies the average intensity ratio
of pixels of selected pMHCs. The low density analysis is divided into three
pathways: (i) a single state diffusion analysis comparing pMHC tracks en-
tirely outside the cell-contact area with pMHC tracks entirely inside the
cell-contact area, (ii) a two-state constrained model that allows for tracks
to transition between a slow and fast state when inside the cell-contact area
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T
cell pMHC R:

50 mean p-
value

R:
200 mean p-

value

AND

β2m no 1.0187 0.9991 — — —
K99A no 0.9970 1 no 1.0004 0.9880
T102S no 0.9990 0.9999 no 0.9915 1
WT yes 1.0308 10−178 yes 1.0306 10−167

K99A yes 1.0072 0.0012 yes 1.0165 10−31

K99A
CD80 no 1.0028 0.6535 yes 1.0038 0.0340

β2m no 0.9922 1 no 0.9954 0.9999
K99A yes 1.0125 10−7 yes 1.0179 10−27

WT yes 1.0106 10−5 yes 1.0084 0.0016

5cc7

K5 no 1.0056 0.235 no 1.0043 0.431

T102S yes 1.0127 6.8
×10−4 yes 1.0283 10−8

WT
0 yes 1.0215 10−9 yes 1.0120 4

×10−4

WT
10

—
– — — — — —

WT
100 — — — — — —

WT
1000 — — — — — —

Table 5.3: Results of the intensity analysis and the KS-test on exper-
iments performed done with TCR mask using AND T Cells and
5CC7 T Cells. The numbers 0, 10, 100, and 1000 indicate the
addition of unlabelled peptides and its concentration over µm2.

(a slow state that represents a potential pMHC-TCR bond formation), and
(iii) calculation of the frequency of slow states.

The main conclusion for the low-density analysis is the decrease in the
mobility of WT MCC pMHCs due to the presence of the T cell. This is
probably caused by both non-specific interactions among pMHCs with cell
surface molecules and the formation of pMHC-TCR bonds. In addition,
the presence of the cell alters particle mobility in a pMHC-dependent man-
ner, where WT MCC pMHC shows the largest decrease on diffusivity, and
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T
Cell pMHCs Dfast

(µ2/s)
Dslow

(µ2/s)
pfs psf

pfs
psf

AND

WT
0 0.3873 0.0319 0.0193 0.0331 0.5831

WT
100 0.4336 0.0313 0.0517 0.0403 1.2829

T102S
0 0.4368 0.0409 0.0303 0.0454 0.6674

T102S
10 0.4654 0.0391 0.0320 0.0439 0.7289

T102S
100 0.4339 0.0420 0.0300 0.0511 0.5871

T102S
1000 0.3582 0.0399 0.0297 0.0456 0.6513

WT 0.2854 0.0311 0.0783 0.0250 3.132
T102S 0.2673 0.0370 0.0346 0.0259 1.336
WT 0.2788 0.0303 0.0736 0.0303 2.429

K99A 0.4368 0.0452 0.0341 0.0854 0.3990
T102S 0.4071 0.0386 0.0466 0.0592 0.7870
K99A 0.4294 0.0758 0.0134 0.0348 0.385
K99A
200

CD80
0.4309 0.0886 0.0182 0.0344 0.529

T102S 0.4202 0.0697 0.0192 0.0375 0.512
T102S
200

CD80
0.4313 0.051 0.0229 0.0463 0.495

WT 0.3101 0.0521 0.0311 0.037 0.841
5cc7 WT 0.7295 0.0313 0.0953 0.0416 2.291

Table 5.4: Results of the constrained two-state model on experiments
performed done with CD45 mask using AND T Cells and 5CC7
T Cells. The number 200 indicates the addition of unlabelled
CD80 and its concentration over µm2.
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T
cell pMHCs R:

50 mean p-
value

R:
400 mean p-

value

AND

WT
0

yes 0.9938 10−32 yes 0.9892 10−32

WT
100

yes 1.0003 10−17 yes 1.0050 0.0057

T102S
0

yes 1.0049 0.0038 yes 0.9952 10−10

T102S
10

no 1.0089 0.9831 yes 0.9977 10−12

T102S
100

no 1.0077 0.8819 no 1.0118 0.9999

T102S
1000

no 1.0106 0.9867 no 1.0021 0.0594

WT yes 0.9966 1×
10−4 no 1.0090 1

T102S no 0.9998 0.5217 no 1.0527 1
WT no 1.0169 1 no 1.0255 1

K99A no 1.0105 1 no 1.0208 1
T102S no 0.9984 0.6447 no 0.9974 0.7940
K99A no 1.0189 1 no 1.0070 0.4063
K99A
200

CD80

no 1.0137 1 no 1.0055 0.3986

T102S no 1.0167 1 yes 0.9896 1
×10−14

T102S
200

CD80

no 1.0084 0.9964 no 1.0086 0.9249

WT yes 0.9991 6×10−5 yes 0.9858 1×10−17

5cc7 WT yes 0.0855 10−13 yes 0.0850 10−14

Table 5.5: Results of the intensity analysis and the KS-test on experi-
ments performed done with CD45 mask using AND T Cells and
5CC7 T Cells. The number 200 indicates the addition of unla-
belled CD80 and its concentration over µm2.
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K99A, which has the lowest affinity for the AND TCR, the smallest decrease
for AND T cells. For 5cc7 T cells, WT MCC shows the largest decrease,
and T102S the smallest decrease. In addition, the two-state constrained
algorithm reports the transition probabilities between fast and slow states,
which can be used to calculate the kon and koff rates for the pMHC-TCR
bond formation reaction. We observed that WT MCC pMHC exhibit ap-
parent bonds that form more rapidly and are more stable. However, some
results are not in complete agreement with previous reports, particularly
with regard to K5 pMHC on 5cc7 cells [21, 54, 108].

For the high-density analysis, we detected a small (2%-6%) but statisti-
cally significant increase in TCR intensity around WT pMHCs in the slow
state for both AND and 5cc7 cells. For the CD45 mask experiments, we
found a small (2%-3%) but significant decrease of CD45 intensity. These
results suggests TCR enrichment in the vicinity of a bond (clustering), and
exclusion of large molecules from the vicinity of a pMHC-TCR bond, in
agreement with previous works [14, 20, 108, 118, 134]. These small increases
(or decreases) might be due to the TIRF microscopy not having enough res-
olution to capture the spatiotemporal scale of this phenomenon.
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Raw SPT data (one frame)

Low-density data High-density Data

Trajectories
Static 
Mask

Image registration 
mismatch

Constrained 
2-state HMM

Binary
Mask

Intensity 
Analysis

Quantifying receptor 
binding through 

correlations of diffusivity 
states and mask intensity

Figure 5.2: Pipeline scheme showing the steps for each data. Purple
boxes shows the analysis on the low-density data that is from
getting the trajectories to the diffusion analysis using the con-
strained 2-state HMM. Blue boxes shows the pathway to analyse
the high-density data.
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(A) (B)

(C) (D)

(E)

Figure 5.3: Binary Mask method: (A) Original Image. (B) After the
Otsu algorithm has been applied to make a binary image. (C)
After a fill holes algorithms has been applied. (D) After pixel
erosion. (E) The final binary mask after dilation.
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Central square

Third Neighbors

pMHC pixel

Figure 5.4: Sketch of intensity analysis of bulk-labelled molecules.
Central pixel is a pMHC in the slow state. Ratio of average
intensity of cyan+blue area to average intensity of red area is
calculated for consecutive frames in which the pMHC is in the
slow state.

(a) Binary cell mask.

Totaltracks:3313

(b)Superposition of tra-
jectories over cell mask.

Figure 5.5: Processed images in each channel. (a) Binary mask used
to localize the tracks outside (red), crossing boundary (green)
and inside (blue) the cell-contact area. (b) Superposition of
those tracks over the cell-contact area mask.
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Figure 5.6: Sketch of the constrained 2-state model. The labelled
proteins can be either in a fast or slow state when within the
cell-contact area (blue and green x). When they are out of the
cell-contact area, they can only be in the fast state.
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Figure 5.7: pMHC mobility within the supported bilayer is modulated
by interactions with AND T cells. Representative experiments
are shown for four different pMHC: WT MCC, T102S MCC,
K99A MCC and β2m. Diffusion coefficient cumulative distri-
bution functions are plotted for tracks that are entirely outside
cell contact areas (red) and entirely within a cell contact area
(blue).
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Figure 5.8: pMHC mobility within the supported bilayer is modulated
by interactions with 5cc7 T cells. Representative experiments
are shown for four different pMHC: WT MCC, T102S MCC,
K99A MCC and β2m. Diffusion coefficient cumulative distri-
bution functions are plotted for tracks that are entirely outside
cell contact areas (red) and entirely within a cell contact area
(blue).
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Figure 5.9: (pMHC mobility within the supported bilayer is modu-
lated by interactions with AND T cells. Representative exper-
iments are shown for three different pMHC: WT MCC, T102S
MCC and K99A MCC. Two experimental conditions are shown:
no addition of unlabelled CD80, addition of unlabelled CD80 for
each of the three pMHC. Diffusion coefficient cumulative distri-
bution functions are plotted for tracks that are entirely outside
cell contact areas (red) and entirely within a cell contact area
(blue). The dashed lines are for the experiments where we added
CD80 to the bilayer. No significant difference in the mobility
between experiments with and without CD80 was observed.
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Figure 5.10: pMHC mobility within the supported bilayer is modu-
lated by interactions with T cells. Representative experiments
are shown for WT MCC pMHC. Four experimental conditions
are shown: no addition of unlabelled peptide, addition of 10
unlabelled WT MCC pMHC over µm2, addition of 100 unla-
belled WT MCC pMHC over µm2, and addition of 1000 un-
labelled WT MCC pMHC over µm2. These numbers indicate
the concentration of unlabelled peptides. Diffusion coefficient
cumulative distribution functions are plotted for tracks that
are entirely outside cell contact areas (red) and entirely within
a cell contact area (blue). The dashed lines are for the exper-
iments where we added unlabelled WT MCC pMHCs to the
bilayer. No significant difference in the mobility between ex-
periments with and without unlabelled WT MCC pMHC was
observed.
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Figure 5.11: Constrained 2-state HMM results for seven different ex-
periments. Four experiments were done with AND TCRs and
four different peptide-MHCs: K99A, WT, T102S, and β2m.
Tne other 3 used 5cc7 TCRs and 3 different peptide-MHCS:
K5,WT and T102S.(a)-(c) diffusivities of slow and fast state
for each one of the experiments, and (b)-(d) on and off rates,
where kon is the transition rate from fast to slow, and koff is
the transition rate from slow to fast.
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Figure 5.12: Constrained hidden Markov modeling of pMHC motion.
Segmentation of states plots showing the percentage of slow
(orange) and fast (blue) state for each experiments.
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CHAPTER 6

Conclusions

This thesis described the development of new methods to analyze single-
particle trajectories, and their application to experimental data. In Chapters
2-4, we focused on two questions related to single-particle tracking analysis.
The first question regards experimental errors, their inclusion on the mod-
elling, and how they impact on the accuracy of fitting. The second question
is related to model size inference. In Chapter 5, we developed a method
specific to a two colour experimental setting, and described a pipeline that
one can use to analyse similar experimental data.

In Chapter 2, we described the two-state hidden Markov model taking
into account experimental errors. This novel model is a combination of
two previous methods. As we discussed in Chapter 2, the inclusion of ex-
perimental errors in the inference improves the accuracy of the estimates.
Instead of the describing the displacements as a Brownian process, they are
described as a measurement process, where the errors are added to the Brow-
nian process. Under the assumption that the model for the experimental
errors is correct, we showed that the diffusivity estimates for simulated data
using our method are more accurate compared to the comparable estimates
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when using the two-state hidden Markov model without taking into account
experimental errors.

When modelling a biological system, we need to make some assump-
tions to simplify the system. In the process of choosing an assumption, one
needs to weigh in the pros and cons. For example, modelling tracks as a
pure Brownian motion is simple and requires the estimation of only one pa-
rameter. Additionally, it is a reasonable choice of process, because of the
microscopic particle size and environment. However, the lack of heterogene-
ity of the model might not sufficiently explain the behaviour of the tracked
molecule on the cell. The cell membrane is a very crowded environment,
and a natural question to ask is whether the interactions of proteins on the
cell membrane with this crowded environment is strong enough to affect
their mobility. The simplicity of only one parameter for the one state pure
diffusion fails to capture these effects. Instead, it just averages the possible
effect of the crowding without giving any more details. Increasing the num-
ber of states allows us to add some complexity and, therefore, heterogeneity
into our understanding of track mobility. Then, we have some quantitative
measurement of the effects of these possible interactions. This is an example
of the underfitting and overfitting dilemma. For a smaller number of states,
we have a simpler model, but it might not capture all information from the
data. As we increase the number of states, we acquire a more detailed pic-
ture of the mobility. However, we get to a point where the complexity is
so high that it cannot be meaningfully fit to the available data. A helpful
example is to imagine the number of states to be equal to the size of the
data. More importantly, we do need to decide the number of states that
best represents the experimental system. The number of states that best
explains the mobility of a protein on the cellular membrane is of great in-
terest to biology, because could give some insight on the organization of the
cellular membrane.

The usual fitting procedure is to maximize the likelihood of a model
and their parameters given the data. Then, one needs a priori number of
states to calculate the likelihood. While we could calculate the likelihood for
different models with different numbers of states, and then use some post-hoc
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information criteria to decide the best model, here we developed a framework
that fits the number of states and their parameters simultaneously to the
data, effectively allowing the data to decide the best model.

In Chapter 3, we described the algorithm that fits the number of states
as well, the infinite hidden Markov model for single-particle trajectories.
We validate the algorithm using simulated data, and on experimental data.
Comparing the different results, we observed the importance of fitting the
number of states as well, since we consistently obtained a number of states
larger than two.

We wanted to include the experimental errors in the estimation of the
number of states so that the estimates are more accurate, similar to Chap-
ter 2 for the two state model. Therefore, we implemented the SPT-∞E
algorithm in Chapter 4. Using simulated data, we conclude that the esti-
mation process becomes more accurate once experimental errors are taking
into consideration. We then follow to re-study the same set of experimental
data. Our algorithm successfully recovered the parameters and number of
states for simulated datasets when enough data were provided. However,
the SPT-∞E fails to recover the covariance matrices accurately when the
data are not large enough. We fund that this effect is more noticeable when
the data has a larger number of states.

There are many other approaches to analyse single-particle tracking mo-
bility. Some methods classify the motion of the trajectory between two mo-
tions: a fast motion a and slow motion [9, 24], or between confined motion
and pure diffusive motion using a hidden Markov framework [121], while
estimating the confined potential parameters as well. There are machine
learning algorithms that classify the motion for each track or for each dis-
placement in each track, usually choosing between some sort of anomalous
diffusion, pure diffusion and directed motion [49, 62, 84, 95]. More similar
to our approach, there are methods that use information criteria to decide
what is the best model between a one-state diffusive model or a 2-state
model [122], a variational Bayes approach to select the best number of diffu-
sive states and to estimate the diffusion coefficient taking into consideration
experimental errors [67], a perturbation-expectation maximization analysis
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that sorts segments of population trajectories into diffusive states (each seg-
ment comprises 15 frames of a trajectory) [102], and a method that uses
non-parametric Bayesian to fit a Gaussian mixture model to the data [58].
In the latter method, each state is described by a Gaussian distribution, and
the number of such distributions in the mixture is equivalent to the number
of Markov states in the SPT-∞ model.

For most of these methods above, the number of diffusive states is pre-
defined. In comparison to them, our method is an advantage given that it
also estimates the optimal number of states. For methods using an informa-
tion criteria, we would first need to fit to some number of specific models,
each of which would effectively be conditioned on its own correctness. It is
not possible to compare the likelihoods of such individual models directly,
and the uncertainty (variance in the parameter estimates) is also underes-
timated because our lack of knowledge about which model is correct is not
included. The SPT-∞ naturally incorporates the uncertainty due to model
selection, while information criteria approaches are rather different and do
not capture the uncertainty beyond a correction for the number of additional
parameters in the more-complex model [3, 44]. Of course, information crite-
ria have an important role to play when computational efficiency becomes
important, as well as allowing model comparison when the possible models
do not fit neatly together. Finally, the work by Karslake et al. [58] provides
an alternative to our models, given that they also use a non-parametric
Bayesian framework. The main difference is that they consider a Gaussian
mixture model, instead of an infinite hidden Markov model, therefore tran-
sitions between states are not accounted for.

There are several possible future extensions of this work considering ways
to further improve the current approach, or use a different approach to the
number of states. Below, we briefly explain them.

• For the infinite hidden Markov model, we assume that transitions be-
tween states cannot happen during image capture. Thus, for an image
stack with N frames, we have the N −1 time intervals between frames
where transitions between states can occur. Therefore, the time is dis-
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cretized, and we have a discrete time Markov chain. This assumption
is reasonable for the case where image acquisition is much faster than
the rate of transitions between states. However, for a system with
fast kinetics, one might need to further adapt this model to taken into
account the possibility of transitions happening in between the image
acquisition times. For that, we would need to use a continuous time
Markov process. This would allow us to estimate the time a transition
occurs and to which state the particle transits, as opposed to only
sampling the sequence of states. One way to approach that is through
the use of jump processes. Jump processes are stochastic processes
that transition between states at random times. Thus, the time when
a transition occurs would also be a random variable in the model, as
opposed to the SPT-∞ where the transitions occurs only on discrete
fixed time points. Briefly, an extra process would be added to the
framework, where the time when the transitions occurs are sampled
from a specified distribution. Then, the state of each transition would
be sampled, resulting in the sequence of states. Next, the parameters
of the model would be sample conditioned on the data and on the
sequence of states [59].

• Another way to further improve the SPT-∞E is to consider other emis-
sion models rather than only Brownian motion (measurement process
for the experimental errors). For example, one could allow for tran-
sient confinement of the particle within a potential well to resemble
particle interactions [121].

• Following a different approach, one could develop a machine learning
algorithm (a classification algorithm), such that the algorithm would
classify the displacements between possible mode of motions. There
have been some works in this area using neural nets, decision trees,
random forests, and so on [29, 49, 62, 84]. A more challenging work
though is to come up with a machine learning algorithm that, like
the infinite hidden Markov, does not have a pre-defined number of
classification groups. Therefore, there is no specific output size for
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the machine to predict, and one would need to create a machine that
learns the number of classification groups, so that another machine
can be built to classify the data among the groups.

In Chapter 5, we developed an analysis pipeline for two-colour TIRF
microscopy data to investigate the dynamics of peptide-MHC in a supported
lipid bilayer with a T cell placed on top of it. We wanted to elucidate any
correlations between the pMHC mobility and the T cell presence. Thus, we
applied two models to quantify the pMHC mobility and its heterogeneity.
Moreover, we developed a method to quantify the pixel intensity change on
the vicinity of a pMHC in search of correlations between the pMHC mobility
and the protein labelled at high density (TCR or CD45). This pipeline could
be used in similar experimental settings, where one has a low density labelled
molecule in one colour, whose mobility one wants to investigate, and a high
density labelled molecule, which can be used to localize the cell.

Following a step-by-step procedure, we started with two existing mod-
els and combined them into the novel SPT-2E algorithm, with the goal of
improving the fit of a two-state Markov model to experimental data. Next,
we developed the SPT-∞ algorithm to also estimate the number of diffu-
sive states. To incorporate the experimental errors in the estimation pro-
cess, we developed the SPT-∞E algorithm. Finally, we created an analysis
pipeline for two-colour TIRF microscopy, that includes a constrained two-
state Markov model. Overall, this thesis shows the development of novel
methods that substantially advance our ability to analyze single particle
tracks. In addition, it shows how mathematical models can be powerful
tools for the analysis and understanding of biological systems.
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APPENDIX A

Demonstration of the neutrality property of Dirichlet
distributions

This appendix shows a demonstration of the neutrality property of Dirichlet
distributions. This derivation is based on the work by Maya et al. [38].

Neutrality

Suppose that A ∼ Dir(α), where α, and A are vectors of length m. More-
over, A is defined over the (m-1)-dimensional probability simplex, i.e.

∑m
i Ai =

1, and 0 < Ai < 1 for 0 < i < m. We want to show that Aj is independent
of the vector formed by the remaining elements normalized by their total
sum.

Let’s define a second vector Y such that Yi =
Ai

1−Aj
for i = 1, . . . , j −

2, j + 1, . . . ,m, Yj−1 = 1 −
m∑
i=1

i ̸=j−1,j

Yi, and Yj = Aj . Then
m∑
i ̸=j

Yi = 1. Next,

we find the transformation that maps Ai to Yi. Since we have the constraint∑
i ̸=j−1,j Yi = 1, we must have m−1 variables on Y , where Yj−1 is a function

of the rest. Then,
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(A1, . . . , Aj−2, Aj , . . . , Am) = T (Y1, . . . , Yj−2, Yj , . . . , Ym) ,

= ((1−Aj)Y1, . . . , (1−Aj)Yj−2

(1−Aj)Yj , . . . , (1−Aj)Ym) .

Next, we apply the change of variables rule on the vector Y , i.e. p(Y ;α) =

(p(A;α) ◦ T ) (Y )× | det(JT ) |, where

p(A;α) =
Γ(
∑k

i αi)∏k
i=1 Γ(αi)

 m∏
i=1

i ̸=j−1

Aαi−1
i


1−

∑
i ̸=j−1

Ai

αk−1−1

, (A.1)

and JT is the Jacobian matrix of the transformation T , to get an expression
for p(Y ;α). The joint density of the new random variable is:

p(Y ;α) =
Γ(
∑k

i αi)∏m
i=1 Γ(αi)

 m∏
i=1

i ̸=j−1,j

((1− Yj)Yi)
αi−1


(
Y

αj−1
j

)1−
m∑
i=1

i ̸=j−1,j

Yi(1− Yj)− Yj


αj−1−1

(1− Yj)
m−2,

where | det(JT ) |= (1− Yj)
m−2, where we define:
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JT =



(1− Yj) 0 · · · 0 −Y1 0 0 0

0 (1− Yj) · · · 0 −Y2 0 0 0
... 0

. . . ...
...

... 0 0

0
... 0 (1− Yj) −Yj−2 0

...
...

0 0 0 0 1 0 0 0
...

...
... 0 Yj+1 (1− Yj) 0 0

...
...

...
...

... 0
. . . 0

0 0 0 · · · −Ym 0 0 (1− Yj)


.

We notice that:

m∑
i=1

i ̸=j−1,j

Yi(1− Yj)− Yj =

1−
∑

i=1,i ̸=j−1,j

Yi

 (1− Yj) (A.2)

= Yj−1(1− Yj) (A.3)

Applying (A.3) to the expression for p(Y ;α), and simplifying, we obtain:

p(Y ;α) =
Γ(
∑k

i αi)∏m
i=1 Γ(αi)

 m∏
i=1
i ̸=j

Y αi−1
i

Y
αj−1
j (1− Yj)

Z ,

where Z =
m∑

i=1,i ̸=j

(αi − 1) +m− 2 =
m∑

i=1,i ̸=j

αi − 1.

We can rewrite (A.3) as:
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p(Y ;α) =


Γ(
∑k

i αi)

Γ(αj)Γ(
k∑

i=1
i ̸=j

αi)

Y
αj−1
j (1− Yj)

m∑
i=1,i ̸=j

αi−1



Γ(

k∑
i=1
i ̸=j

αi)

m∏
i=1
i ̸=j

Γ(αi)

 m∏
i=1
i ̸=j

Y αi−1
i


 . (A.4)

One can see that the density factors into two independent terms. Rewriting,
we have:

p(Y ;α) =p (Y1, . . . , Yj−1, Yj+1, . . . , Ym | α1, . . . , αj−1, αj+1, . . . , αm)

p

Yj | αj ,
∑
i=1
i ̸=j

m

α1

 ,

=p
(

A1
1−Aj

,...,
Aj−1
1−Aj

,
Aj+1
1−Aj

,..., Am
1−Aj

|α1,...,αj−1,αj+1,...,αm

)
p

Aj | αj ,
∑
i=1
i≠j

m

αi

 .

We conclude that Aj is independent of the vector ( A1
1−Aj

, . . . ,
Aj−1

1−Aj
,
Aj+1

1−Aj
, . . . ,

Am
1−Aj

) given A ∼ Dir(α). Finally, ( A1
1−Aj

, . . . ,
Aj−1

1−Aj
,

Aj+1

1−Aj
, . . . , Am

1−Aj
) follows

a Dirichlet distribution with parameter (α1, . . . , αj−1, αj+1, . . . , αm), and Aj

follows a Beta distribution with parameters αj , and
∑

i=1
i ̸=j

m
αi. [38]
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