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Abstract

In the course of tumour progression, normal and malignant cells of various kinds

of cell types engage in complex patterns of cell-cell interactions creating the tumor

microenvironment. The dynamics in the tumour microenvironment are tumour-

driven and fosters cellular heterogeneity to modulate cancer behavior. With an

accurate classification of the cell type composition and a deep investigation of

the cell-cell interactions, we can characterize the heterogeneity in the tumor mi-

croenvironment and potentially elucidate mechanisms of immune invasion, tumour

growth, and metastases.

Analyses of single cells in suspension using mass cytometry is a current ap-

proach used to characterize previously unknown phenotypes, yet the data gen-

erated by this approach are disaggregated and do not retain the spatial structure

of tumours. Emerging high-throughput spatial expression profiling technologies,

such as imaging mass cytometry allow for spatially aware profiling of single cell

expression in high-parameter space. Various cell type classification methods have

been proposed for disaggregated data, however there is a need for spatially aware

clustering methods.

We present SpatialSort, a scalable joint approach for spatially aware clustering

of cell types and estimation of cell-cell interactions in the tumour microenviron-

ment. This computational approach leverages a Markov random field model to

allow spatially proximal cells linked in a neighbour graph to influence the cluster

assignment of their neighbouring cells. Markov chain Monte Carlo sampling is

employed to approximate the posterior distribution and perform probabilistic cell

type identification. Cell to cell interactions will be encoded as interpretable model

parameters representing the affinity between different cell types.
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Through spatially aware clustering, we hope to characterize patient-specific

phenotypic heterogeneity better than our current methods. As heterogeneity pro-

motes therapeutic resistance, an improved understanding of cellular composition

and cell-cell interaction profiles can potentially provide better prognosis for cancer

patients.
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Lay Summary

In the course of tumour progression, normal and malignant cells cross-interact

within an evolving entity termed as the tumour microenvironment. The dynam-

ics of these interactions fosters heterogeneity which affects tumour behavior and

complicates treatment. With an accurate classification of the cell type composi-

tion and an investigation of the cell-cell interactions, it is possible to improve our

characterization of the tumour microenvironment.

Various methods have been developed to cluster cell types using data from

current technologies despite the shortcoming of not being able to retain spatial

information. New technologies have been able to capture spatial structure however

robust spatially aware clustering methods are yet to be developed.

We present SpatialSort, a scalable joint approach for spatially aware cluster-

ing of cell types and estimation of cell-cell interactions. Through the addition of

spatial information, we hope to characterize tumour microenvironment heterogene-

ity better than current methods and potentially provide better prognosis for cancer

patients.
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Chapter 1

Introduction

A human body consists of trillions of cells of hundreds of cell types that cycle

through phases of growth, division, and death. When problems occur in the pro-

cess, uncontrollable cell growth can occur that form tumours which can transform

to a potentially malignant disease, which we refer to as cancer. The complexity

arises because of cancer being a genetically and phenotypically diverse disease. A

major area of research is the tumour microenvironment - an environment of hetero-

geneous cellular composition and activity.

In this chapter, we aim to introduce the concept of cellular heterogeneity in

the tumor microenvironment by addressing cellular composition and cell-cell in-

teractions as two main determinants of the tumour microenvironment. We will also

introduce the recent technologies and methods, such as mass cytometry and imag-

ing mass cytometry, in which both have been employed to conduct research on the

analysis of the tumour microenvironment. Lastly, we will describe the research

question, the hypothesis, and the main contributions on the topic of inferring the

cellular composition and the cell-cell interactions which are made in this thesis.
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1.1 Cellular Heterogeneity in the Tumour
Microenvironment

1.1.1 Composition of the Tumour Microenvironment

Cancerous tumours are complex organs composed of cells of different types along

with secreted proteins, blood vessels, and an extracellular matrix [21]. In the tu-

mour ecosystem, it is not solely a blob of malignant cells but a heterogeneous

mixture of cells such as immune cells, stromal cells and various other cell types

that jointly contribute to the cellular composition [32]. The composition of cells

can be viewed as a snapshot representation of the state of a tumour. Exploring the

composition can allow us to understand the behavior of the tumour as well as make

predictions on the outcomes of cancer [51].

The prognosis of cancer is however usually complicated by the genetic and

phenotypic cellular diversity during tumour progression [3, 43]. Cellular diversity

is observed in an complex evolving entity referred to as the Tumour Microenvi-

ronment (TME) [41]. The TME is an ecosystem that hosts a collection of resident

host cells and infiltrating cells that are recruited to site [25]. The exact composition

varies depending on the tumour type.

The TME is often viewed as an active promoter of tumour progression. As the

tumour progresses, tumour cells often initiate changes to the cellular and physical

properties of the microenvironment as well as the surrounding host tissues, thus

enhancing cellular and phenotypic diversity [38].

The clinical behavior of some cancers, such as follicular lymphoma, has been

shown to be more greatly impacted by the TME than the inherent properties of the

malignant subclones [19]. The presence of specific cell types in the TME has been

employed as a prognostic parameter to assess progression and survival.

The development of the tumour is also accompanied with a growth in the het-

erogeneity of phenotypes in cell types which are difficult to classify [5]. The het-

erogeneity of phenotypes can be succinctly described as a condition of various

cells of the same type having different marker signatures. This usually leads to

poor prognosis and clinical implications that are of high complexity [6]. Inves-

tigating the cellular composition of a tumour biopsy then becomes essential for
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providing a snapshot of the cell types comprising the tumour, yet the analysis is

incomplete without describing the activity of the cell types [2].

1.1.2 Cell-Cell Interactions

In the course of tumour progression, normal cells and malignant (transformed) cells

engage in dynamic patterns of cell-cell interactions in the tumour. The complex

communication processes between different cell types together creates the Tumour

Microenvironment (TME) [50]. In the TME, interactions occur predominantly when

cells are spatially proximal to each other, with exceptions of secreted stimulus from

distant sites [49]. Close distances between cells allows for the ligand-receptor

binding and cell surface contact for cellular activity and signal transduction.

Various factors including cell type, cell count, spatial location, protein signals,

and other factors determine type of interactions that cells partake in and thus the

role of the cells [53]. For instance, the role of immune cells in the TME is known to

be able to either suppress or promote tumour formation [52]. An common example

of such would be a cytotoxic T cells invading malignant cells, which is character-

ized as an anti-tumour cell-cell interaction [36]. Due to the highly variable cellular

composition and interactions, the TME is often characterized based on the collec-

tive behavior of the cells in the environment, such as being an anti-tumour immune

microenvironment or an immune suppressive microenvironment.

The tumour type is a major factor dictating the roles of the cell types in the

TME. An example of such is the subtypes in B cell lymphoma. B cell lymphomas

are classified into subtypes based on range of malignant cell content, in which

there is a spectrum from Hodgkin lymphoma being 1 percent malignant to Burkitt

lymphoma being more than 90 percent [42]. In the case of Burkitt lymphoma, the

TME is sparse with only a small percentage of macrophages with the rest being

malignant cells. On the contrary, Hodgkin has a dense TME with little malignant

cells present [15]. It can be observed that different levels of interactions are present

in each of these subtypes, and a measure can be created to characterize the affinity

of the interactions.

It is important to understand that patterns of interactions within the TME are

known to be mainly tumour-driven and fosters cellular heterogeneity to modulate

3



cancer behavior [33]. The consequence of the malignant phenotypes is that it can

lead to patient specific TME compositions, serving as an effective barrier to treat-

ment [17]. Taking a clinical perspective, investigating the cell-cell interactions that

characterizes heterogeneity in the TME can potentially elucidate mechanisms of

tumour cell invasion, tumour growth, and metastases.
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1.2 Current Methods

1.2.1 Disaggregate Single Cell-omics

The exploration of the TME has been an ongoing area of research in which various

methods have been developed. In the field of proteomics, the analysis of single

cells in suspension using Cytometry by Time-of-Flight (CYTOF), also referred to

as single-cell mass cytometry, is a current approach used to characterize previously

unknown phenotypes and advance the understanding of tumour heterogeneity.

Single-cell mass cytometry is an instrument based on mass spectrometry that

is designed for real time detection and quantification of markers on single cells [7].

The detection depends on a panel of metal isotope conjugated antibodies that stain

single cells to identify target protein markers. Using this approach, we can obtain

single-cell proteomic profiles from biological samples that are heterogeneous in

nature, such as cancer biopsies [27].

Given the expression data from CYTOF, clustering is often a necessary task to

identify cell types. An example of a current popular clustering method is Pheno-

graph [28]. This method performs partitioning of high-dimensional single-cell ex-

pression data into subpopulations by employing the Louvian community detection

method. It has been successfully applied to many experiments that require the

clustering of heterogeneous cell populations.

However, a limitation to CYTOF is that tumour biopsies are dissociated into

single cell suspensions rendering the generated data being disaggregated. The ma-

jor drawback is then the loss of information about the original spatial structure of

tumours which is a direct measurement of which cells are interacting with which.

It should be noted that CYTOF is a destructive process where the original nuclei

locations cannot be recovered after expression data are collected.

1.2.2 Spatially Resolved Single Cell-omics

Single-cell mass cytometry has allowed us to answer the questions of composi-

tion but leaves open the question of how cells are organized in the tissue [44]. In

order to understand the functional behavior of the heterogeneous mixture of cells

as a whole, there is a need to know which types of cells are likely to be near and
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interacting with each other in the TME [12].

New high-throughput spatial expression profiling technologies are allowing

us to do spatial proteomics [31]. An example of such is Imaging Mass Cytom-

etry (IMC) [23], which is an expansion of mass cytometry to incorporate image

acquisition of the spatial structure. In order to collect the spatial context, IMC in-

troduced a novel laser ablation device on the mass cytometer to allow for direct

measurements of metal isotopes at each spot location on the tissue sections. This

enables imaging for about 40 markers and retains spatial structure allowing for the

analysis of cellular heterogeneity in a spatially aware sense.

Alternative imaging modalities that allow for spatial localization include multi-

plexed ion beam imaging (MIBI) [4] and co-detection by indexing (CODEX) [24].

Different methods are categorized by their antibody conjugation techniques [46].

MIBI uses metal conjugated antibodies which are ionized by high-energy beams to

generate secondary ions detected by an imaging mass spectrometer over a five-log

dynamic range. CODEX uses DNA barcodes, fluorescent dNTP analogs, and an in

situ polymerization-based indexing procedure.
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Figure 1.1: Disaggregate data visualized with a t-SNE graph (left) ; Spatial
data visualized with a spatial neighbour graph (right). The graph on the
left is a visualization of dimensionally reduced expression data color
labeled by cell types. Cell type labelling is done by Phenograph. t-SNE
axes are abstract coordinates that do not carry meaning. The graph on
the right is a spatial omics approach where cells are plotted by spatial
location. Non-random patterns of cells can be observed. Cells of the
same types are clustered together to different extents depending on cell
types.

Despite the effective capturing of spatial information, the analysis of spatially

resolved data are still using tools designed for high parameter mass cytometry data

which ignores the spatial information [14]. The cell clusters from IMC are still de-

termined based solely on disaggregate data and do not incorporate spatial context.

For instance, current analyses using IMC have been projecting clusters back to the

IMC image to identify anatomical relationships [26]. The incorporation of spatial

information as a parameter in clustering could potentially improve the accuracy in

the assignment of cell type labels in clustering algorithms [9].
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1.3 Objectives

1.3.1 Research Question

We formulate the research question as: Given the emerging high throughput spatial

technologies, would spatially aware clustering reveal a more accurate assignment

of cell type labels and effectively capture cell-cell interactions? In addition, which

spatial models are the most appropriate for cell type clustering?

1.3.2 Hypothesis

We hypothesize that methods which cluster cells based on disaggregate single cell

expression data can potentially cluster erroneously by not accounting for informa-

tion on spatial structure. By addressing spatial information as well as the uncer-

tainty of the cell type assignments in a new clustering method, we hypothesize there

can be a better assignment of cell types and can uncover the interaction effects.

1.3.3 Thesis Contribution

In this thesis, we address our research question by developing a statistical frame-

work, SpatialSort, which is a scalable joint approach for spatially aware clustering

of cell types and estimation of cell-cell interactions. We fit our model to simulated

data, semi-real data, and real-world data to demonstrate its utility in resolving cel-

lular heterogeneity by providing cell type cluster assignments, cell-cell interaction

matrices, and neighbour graph visualizations for patients of different subtypes of

cancer.
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Chapter 2

Spatially Aware Clustering

This chapter will be describing our novel approach to address the research question

in Chapter 1. We will provide an overview of SpatialSort and address the methods

in great detail. We will introduce the hidden Markov random field model that rep-

resents the underlying spatial structure of the cellular composition of a patient. We

will also describe the inference procedure using algorithms from the Markov Chain

Monte Carlo (MCMC) family, including Gibbs Sampling and Double Metropolis

Hastings (DMH), as well as the Swendsen-Wang algorithm that allow for the prob-

abilistic assignment of cell types and the estimation of cell-cell interactions for

each patient subtype. Lastly, we will describe our method to make point estimates

of cluster assignments.
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2.1 Method Overview
Given the high-throughput spatial profiling of single cell expression profiles, we

present a statistical method, SpatialSort, that probabilistically clusters cells to cell

type clusters and estimates the cell-cell interactions between the cell type clusters.

In Figure 2.1, we show a visual representation of the overview of SpatialSort.

This method requires five user inputs:

• A cell by marker expression matrix for the cells of all patients labeled by

patient ID.

• A cell coordinate location matrix with the spatial coordinates of the nucleus

or center of the imaged cell membrane for each cell in the same row order as

the expression matrix.

• A cell neighbour relation matrix representing pairs of cells that are consid-

ered interacting in the spatial structure of a patient’s cellular composition.

• A list of patient subtype assignments for each patient.

• A prior matrix quaternary coded to express prior belief of the marker expres-

sion levels for user expected cell types. This is an optional, yet important

input for high performance.

Using the inputted information, SpatialSort employs a Bayesian approach to

perform joint inference of cell type labels and cell-cell interaction for each patient

subtype. This requires both the expression data and a neighbour graph representing

cell connectivity which is built for each patient using the location and neighbour

relation matrices provided.

The functions of SpatialSort are able to provide four major user outputs:

• A list of cell type cluster assignments for the cells of all patients.

• A cell-cell interaction matrix for each patient subtype describing the affinity

of a cell type cluster to another cell type cluster, along with a list of interac-

tion term point estimate values.
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• A cell connectivity graph for each patient coloured by the cell type clusters

along with its expression heat map.

• An expression heat map for each cluster.
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Figure 2.1: Overview of Spatially Aware Clustering. Conceptually, the four input matrices: expression, location, re-
lation and patient subtype assignments are pre-processed to build patient-specific data objects that are shown in
boxes colored by patient subtype. For each patient, a neighbour graph modeled by a Markov Random Field (MRF)
is built to jointly infer cell types and cell-cell interaction likelihoods between cell type clusters which are inter-
pretable parameters of the MRF.
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2.2 Model Description
We propose a hierarchical Bayesian model to model expression data with spatial

information, for instance IMC data.

Figure 2.2 shows the probabilistic graphical model, which is a graphical repre-

sentation of the conditional dependencies present in this probabilistic model. Let Y

denote a cell by marker expression matrix for N cells and M markers of P patients.

Also, let C represent the known patient subtypes of P patients. Suppose θ to be

the combination of mean and precision parameters of M marker expressions for

K clusters. The latent cell types for N cells of P patients, X , is modelled with a

Markov Random Field (MRF). Lastly, β represents the interaction term where it is

supposedly unique for C patient subtypes.

Figure 2.2: Probabilistic Graphical Model of SpatialSort. Shaded circles are
observed variables, while non-shaded circles are latent variables to infer.
Plates represent the repetition of variables with respect to the notation at
the corner. Prior distributions and variable descriptions are in Table 2.1.
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2.3 Prior Probability Distributions
In a Bayesian model, prior probability distributions, colloquially noted as priors,

are carefully chosen to express some prior belief towards the uncertain values of

variables before observing the data. We describe the priors for the variables in the

following:

θk,m ∼ NormalGamma(µ0,λ0,α0,β0)

xp,n|βCp=c ∼ HotPotts(βCp=c)

βc ∼ Beta(α0,β0)

Cp ∼Categorical(πp)

yp,n,m|xp,n,θk,m ∼ Gaussian(µx,m,σ
2
x,m)

In the expression data, each of the patients p has a marker expression vector of

marker panel length m for each cell n, which we denote as yp,n,m. It is conditioned

on two parameters, which are the latent mean and precision parameter θk,m for each

marker m in cluster k and the latent cell type cluster label xp,n for each cell n of

patient p, and is distributed according to a Gaussian(µx,m,σ
2
x,m) distribution where

x is a realization of a cell type cluster label.

Table 2.1: Description of Variables and Prior Distributions for SpatialSort. A
graphical representation is shown in Figure 2.2

Variable Represents State

yp,n,m Marker m expression of cell n of patient p Observed

xp,n Cell type label of cell n of patient p Latent

θk,m
Combined mean and variance of marker m

expression of cluster k
Latent

βc Cell-cell interaction parameter of class c Latent

Cp Patient subtype of patient p Observed
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2.3.1 Mean and Precision: Normal-Gamma Distribution

θk,m can be written as (µk,m,τk,m) in which it is distributed according to a Normal-

Gamma distribution. This distribution is conjugate to the Gaussian distribution

with an unknown mean µ and variance σ2. It is also the conjugate prior for the

Gaussian distribution that eases the computation in the posterior inference.

The distribution is defined as the follows:

τ ∼ Gamma(α,β )

Y |τ ∼ Gaussian(µ,
√

1/(λ · τ))

in which α is the shape parameter and β is the rate parameter for the Gamma dis-

tribution, and the precision parameter τ has a Gamma distribution. The parameters

for the Gamma distribution are selected using the variance of the expression data

and parameter searching. Details are defined below.

λ0 = 0.1

µτ = 1/(λ0 · s2
Y )

σ
2
τ =

1 if uncertainty is low

100 if uncertainty is high

α0 = µτ ·β0

β0 = µτ/σ
2
τ

where s2
Y is the sample variance of Y .

The mean parameter µ is determined by the prior matrix given as a user in-

put. We also assume that the expression data is properly normalized in the pre-

processing of the data. The input prior matrix has dimensions K clusters by M

marker and discrete with quaternary codes. µk,m is translated to the 25th, 50th, and

75th percentiles for each marker expression if the prior matrix has codes 0, 1, 2

respectively. -1 is a special case which means a value of 0. Having a code of 2

for a particular marker of a cluster indicates prior knowledge of a high expression
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value. 1 and 0 follows the same idea and represents a user’s belief of middle and

low to no expression respectively. The code -1 is only used when coupled with a

extremely uncertain precision which occurs in the case when we do not have prior

knowledge on the expression of markers.

2.3.2 Cell Type: Hidden Markov Random Field Model

In order to classify the cell type of each cell, we designed a Hidden Markov Ran-

dom Field (HMRF) where spatially proximal cells of a patient are linked in an undi-

rected graph. A HMRF is a generalization of the Hidden Markov Model (HMM),

defined as having a Markov Random Field (MRF) as the underlying stochastic pro-

cess. MRFs are known as undirected graphical models G which have V nodes

representing variables and E edges that connect pairs of nodes [10]. The variable

of interest in inference is the hidden state of the nodes.

Figure 2.3: Hidden Markov Random Field. The variables yi are observed
variables, while the variables xi are latent variables to infer.

HMRFs are commonly used in performing Bayesian image processing and anal-

ysis where it serves as a smoothing prior for object segmentation. Recent work in

the spatial transcriptomic field have used the Potts model to identify transcriptional

heterogeneity [54].

In the discrete MRF models, we chose to modify the Potts model to be the

prior of X , which we coin the term ”HotPotts”. The Potts model was designed to
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explore the interactions between different internal elements of a system. The Potts

model is a lattice graph in which each node is assigned a spin in a number of finite

labels [48]. The combinations of spins and edges decide the interactions of nodes,

which represents different states. The function of the energy, also known as the

Hamiltonian, is defined as the follows:

h(w) =−J · ∑
i, j∈E(G)

δσi,σ j

where J is the interaction strength and δ is equal to one when σi = σ j and zero

otherwise.

This is closely related to our model in which each patient has a spatial structure

with cells are represented by nodes and are linked by edges represent cells that are

interacting. Yet, the definition of interacting cells here is dependent on the user’s

interpretation, which in this framework is user inputted. A method to draw edges

between nodes can be to consider two cells as interacting if the cell area of both

cells is overlapping in the processing of image segmentation.

Through performing inference on the MRF, the goal will be to uncover the latent

cell types assignments of a single patient p where Xp = (Xp,n=1,X1,2, . . . ,X1,Np).

The MRF is parameterized by a latent interaction term βCp where Cp = c that is

a known patient subtype parameter. The β parameter is chosen to have a Beta

distribution. When the shape parameters α , β are both equal to 1, it is identical to

the Uniform distribution as an uninformed prior due to uncertainty. It can also be

set to 0.1, to have distinct values of 0 or 1 to indicate how likely do clusters like to

neighbour each other.

During initial exploratory analysis, three variants of MRF parameterization

were considered: a one-parameter model where a βc is scalar (referred to as the

1p model), a linear model where the dimension of a βc is K (referred to as the

2k model), and a quadratic model where the dimension of βc is
(K

2

)
+K− 1. The

quadratic model suffers from an exponential run time in the inference and was not

considered afterwards.

We chose to experiment using the 1p and 2k models that we hypothesize to

model cell-cell interactions effectively. Let us define the 2k model in which β is a

matrix with K rows indicating the number of cell type clusters, and 2 columns. Let
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the first column to contain the affinity values where there is an interaction between

the cells labeled k (referred to as same-same interactions). Also let the second

column to contain the affinity values where there is an interaction of cell labeled

k with other cell types −k (referred to as diff-diff interactions). The affinities of

label k have a distribution of Beta(1,1) and the property of the two types to sum up

to one.

Figure 2.4: The 2k β model as an interaction parameter in the MRF.

Using the 2k model, we can write the sufficient statistic for patient p as Tp and

define it as:

T p = (T p
k1,k2

){k1,k2}∈[2K]

where

T p
{k1,k2}(Xp) = ∑

(u,v)∈E(Gp)

I({Xp,u,Xp,v}= {k1,k2})

in which the indicator function I evaluates to 1 when the statement is true, and 0

otherwise. Then, the MRF model for patient p has a density as:

P(Xp | βCp=c = b) ∝ exp

(
∑
i, j
[b◦T p(Xp)]i, j

)
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where the ◦ the Hadamard product between b and the sufficient statistic.

Effectively, a HMRF allows for the cluster assignment of each cell to be influ-

enced by their neighboring cells, which is a natural way to model cellular organi-

zation in the tumour microenvironment.
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2.4 Bayesian Inference
In this statistical framework, Bayesian inference was adopted as the inference

method. Posterior inference was performed using Markov Chain Monte Carlo

(MCMC) techniques.

For the updates on X , collapsed Gibbs sampling was used to integrate out the

mean and precision parameters of the expression and the Swendsen-Wang (SW)

algorithm was also employed to sample from the HotPotts distribution. The Double

Metropolis Hastings (DMH) algorithm was used to update betas where sampling

beta faces the problem of doubly intractable normalizing constants.

In this section, I will be addressing the proposed joint approach for spatially

aware clustering to infer cell types assignments and estimate cell-cell interactions.

2.4.1 Updating X: MRF Inference

Estimating the parameters of a Gaussian distribution by the use of conjugate priors

is a convenient and common approach in Bayesian inference. A prior is defined as a

conjugate prior if the prior and the posterior are in the same probability distribution

family. This property can be exploited to allow results to be derived in closed form

and removes the need to deal with computationally intractable multi-dimensional

integrals.

In the updates of the labels X of cells, we exploit the properties of conjugacy.

Recall that the observed expression data Y is distributed according to a Gaus-

sian distribution with parameters (µx,m,σ
2
x,m). We model the parameters to have

a Normal-Gamma distribution which is the conjugate prior of the Gaussian distri-

bution [35]. Let us formulate the computation of the posterior as,

P(xp,i,θ |yp,xp,−i,β ,Cp) ∝ P(yp|θ ,xp)P(xp|β )P(θ)P(β )

= Πk∈K

(
Π j∈Ip,k P(yp, j|θk,xp, j)

)
P(θk)P(xp|β )P(β )

where Ip,k refers the indices of the cells of patient p where the cell label is of cluster

k.

We calculate likelihood as a product of probabilities per cluster k. We can fur-

ther expand this equation to incorporate conjugacy to form a collapsed likelihood.
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The derivation is described as the follows:

P(xp,i|yp,xp,−i,β ,Cp) ∝

∫
(Πk∈KΠ j∈Ip,k P(yp, j|θk)P(θk))dθkP(xp|β )P(β )

= Πk∈K

∫
P(yp,Ip,k |θk)P(θk)dθkP(xp,i|xp,−i,β )P(β )

= Πk∈KZkP(xp,i|xp,−i,β )P(β )

in which P(xp) ∝ P(xp,i|xp,−i).

Using the above conjugacy, we can derive a closed form solution for the like-

lihood, which is the marginal likelihood of the Normal-Gamma distribution, as

described below:

Zk(µnk ,λnk ,αnk ,βnk) =
Γ(αnk)

β
αnk
nk

( 2π

λnk

)1/2

where

µnk =
λ0µ0 +nkȳ

λ0 +nk

λnk = λ0 +nk

αnk = α0 +nk/2

βnk = β0 +
1
2

nk

∑
i=1

(yi− ȳ)2 +
nλ0(ȳ−µ0)

2

2(λ0 +nk)

in which nk refers to the number of cells in cluster k and ȳ refers to the mean of the

expression y.

With the described likelihood derivation, we are left with the prior term from

the MRF. Let the MRF prior be the product of the energy function for each neigh-

bour v of the node of interest u. We can write it as,

∑
v∈neighbour(u)

1
2
·ω ·βxp,u,[xp,u 6=xp,v] ·βxp,v,[xp,u 6=xp,v]

where ω is a strength parameter that scales up the influence of the prior which is

with default set to the number of markers M in the expression data.

Recall that β is a two-column matrix where each cluster label has an affinity
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value where there is an interaction of the same type of cells (referred to as same-

same interactions), and also an affinity value where there is an interaction between

cells of different types (referred to as diff-diff interactions). The two affinities also

have the property of summing up to one. Applying the betas here in this function,

we will have two cases. First is the case of the same-same interaction, the energy

function is simply the beta term of the same-same interactions of cluster xp,u scaled

by ω . Second is the case of the diff-diff interaction, the energy function then is the

average between the beta terms of the diff-diff interactions of cluster xp,u and xp,v

scaled by ω . In our notation, the type of interactions present is specified by the

Iverson bracket, which it takes the value of 1 if the statement in the bracket is true

and else 0.

With the likelihood and the prior for each a cell at all possible configurations

in an array Q, we formulate a probability function to calculate the probability of

finding the node with a particular label k:

exp(
Qp,u,k

log∑
K
k=1 exp(Qp,u,k)

)

A new label for the node is sampled from this distribution and the labels are updated

accordingly. Below is a summary of the algorithm to update cell labels in the MRF.

Algorithm 1 Updating Labels: MRF Inference

for p = 1 to P do
for u = 1 to Np do

for k = 1 to K do
xp,u← k

Hp,u,k← ∑v∈neighbour(u)
1
2 ·ω ·βxp,u,[xp,u 6=xp,v] ·βxp,v,[xp,u 6=xp,v]

Lp,u,k← Log Marginal Likelihood

Qp,u,k← Hp,u,k +Lp,u,k

end
Sample a new label xp,u with the probability function exp( Qp,u,k

log∑
K
k=1 exp(Qp,u,k)

)

Update the labels for xp,u

end
end
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2.4.2 Updating X: Swendsen-Wang Algorithm

Another optional step to improve the updates of the cell type labels would be to

apply a generalization of the Swendsen-Wang (SW) algorithm. The SW algorithm

was initially proposed as a method of simulation for large systems near criticality

[45]. The algorithm is valid for discrete Ising and Potts models and slows down

when applied to Bayesian inference.

Figure 2.5: An overview of the generalized Swendsen-Wang algorithm. A
is a connected graph that is binary labeled. In B, we draw edges with
probability for each connected component that has the same label. We
result in four components. C is the result of updating labels for each
component.
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A generalization of the SW [8] was introduced for arbitrary posterior probabili-

ties which we implement in this model as an addition to the inference on the MRF.

The SW algorithm allows for splitting, merging, and regrouping components of a

graph at each step, which is more efficient than per node updates.

The generalized SW is often thought of as a Metropolis Hastings (MH) step,

where it takes a reversible move between two graph partition states. We describe

the implementation of our version of the SW algorithm for moving from a state to

its proceeding state in three procedural steps.

First, in our graph an edge is drawn with a local discriminative probability for

each edge that have nodes with the same label.

Uni f orm(0,exp(ω ·βxuI(xu = xv)))> 1

where I is an indicator function that gives the value 1 if the statement in parenthesis

is true, otherwise gives 0.

Second, we identify all the connected components and the graph cuts in the

graph. The connected components are considered an island in the graph where the

updates are performed as a whole. The cuts between the connected components

serve as a similar concept to nodes and its neighbours which are used in calculating

the prior of the MRF.

Third, for each connected component, we update the labels for all the nodes

at once in a similar fashion to the Algorithm 1. We describe the algorithm in the

following:
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Algorithm 2 Updating Labels: Swendsen-Wang

for p = 1 to P do
for every edge (u,v) in E(Gp) do

Draw an edge with if Uni f orm(0,exp(ω ·βxuI(xu = xv)))> 1

end
Identify all connected components C in Gp

Identify cuts C′ for all connected components C in Gp

for i = 1 to |C| do
for k = 1 to K do

xp,n∈N(Ci)← k

Hp,i,k← ∑(u,v)∈E(C′i)
1
2 ·ω ·βxp,uI(xp,u 6= xp,v)

Lp,i,k← Log Marginal Likelihood

Qp,i,k← Hp,i,k +Lp,i,k

end
Sample a new label xp,i with the probability function exp( Qp,i,k

log∑
K
k=1 exp(Qp,i,k)

)

Update the labels for xp,n∈N(Ci) where N(Ci) is the cells in connected com-

ponent i
end

end
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2.4.3 Updating Beta: Double Metropolis Hastings

The estimation of the cell-cell interactions —the β term— is a major challenge in

the model due to the need to draw samples from a doubly intractable distribution.

Methods from the Markov Chain Monte Carlo (MCMC) family draw samples from

a distribution of:

P(X = x|β ) = f (x,β )/
∫

f (x′,β )dx′

in which the partition function is intractable. Suppose we sample the β parameter,

we would need to evaluate the full conditional probability:

P(β | X) =
P(X | β )P(β )

P(X)

P(X) =
∫

P(X | β )P(β )dβ

where p(β ) is the prior.

The condition in inference where the partition function includes the parameter

of interest is referred to as doubly intractable distributions. This is a common

problem in the inference of spatial models. The MH algorithm cannot be employed

to simulate from this distribution because the Metropolis-Hastings acceptance ratio

involves the unknown ratio of
Cβ0
C

β ′
. We provide the derivation in the following:

α(β0,β
′) =

P(X | β ′)P(β ′)
P(X | β0)P(β0)

=
Cβ0 f (X ,β ′)P(β ′)
Cβ ′ f (X ,β0)P(β0)

where

Cβ =
∫

f (x′,β )dx′.

In order to address this problem, we use a method called the Double Metropolis

Hastings (DMH) algorithm [30]. The DMH algorithm enables inference on doubly

intractable models by introducing an auxiliary variable that approximately has a

density function with an intractable normalizing constant as shown above. In order
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to circumvent the evaluation of the partition function, Double Metropolis Hast-

ings (DMH) introduces an auxiliary variable Y on the same space as X , also with

an identical distribution family as X . However, as we cannot draw from the dis-

tribution exactly, Y is drawn approximately through an application of Metropolis

Hastings (MH).

The DMH algorithm removes the need for exact sampling and allows sampling

from distributions with intractable partition functions. In summary, a new βp is

proposed from a simplex distribution Sk starting from βt , where it is defined as:

Sk = {(βc,0, . . . ,βc,k) ∈ Rk : βc,1 > 0, . . . ,βc,k > 0,
K−1

∑
i=0

βc,i = 1}

where K is the total number of cell type cluster labels.

In general, given the current β value, say β0, the algorithm proceeds in two

steps: 1) Sample β ′ from the prior P(β ), 2) Generate y ∼ P(m)(·|x,β ′), and, 3)

Accept β ′ with probability
f (y|β0) f (x|β ′)
f (x|β0) f (y|β ′)

,

where m denotes the number of MH iterations used to generate y. Assuming the

MH procedure for drawing y mixes sufficiently well to draw exactly from its dis-

tribution, the partition functions Cβ ′ ,Cβ0 in both the numerator and denominator

cancel, yielding a tractable solution as in the acceptance probability above.

The core part of DMH is that it has two types of MH updates: for which one is

to draw a realization of the auxiliary variable y and one for acceptance of β . To be

precise on the implementation strategies, we perform all operations in log space to

prevent underflow. The algorithm for the sampler is described below:
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Algorithm 3 Double Metropolis Hastings
Sample a new βp ∼ Simplex starting from βt

T ← 0

Ty← 0

for p = 1 to P do
T ← T +Tp.

Generate an auxiliary variable yp ∼ Pβp(yp|x), in this case HotPotts(βp)

Ty← Ty +Ty,p.
end
log f (y|βt)← βt ·Ty

log f (x|βp)← βp ·T
log f (x|βt)← βt ·T
log f (y|βp)← βp ·Ty

α ←min(1, log f (y|βt)+ log f (x|βp)− log f (x|βt)− log f (y|βp)+ f (βp)− f (βt))

u∼Uni f orm(0,1)

if u < α then
βt+1← βp

end
else

βt+1← βt

end

2.4.4 Gibbs Sampling and Cluster Estimation

With the procedure for updating X and β described in the previous subsections, we

now want to perform a joint inference to sample from the multivariate distribution.

We use another MCMC algorithm, Gibbs sampling, as it is an effective sampler

when it is possible to simulate from the conditional distributions. In this algorithm,

each variable is updated sequentially for a total of T iterations until convergence.

We define the algorithm below using the algorithms previously mentioned:
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Algorithm 4 Gibbs Sampling for Joint Inference

for k = t to T do
Update interaction terms β with Algorithm 3

Optionally update cell labels X with Algorithm 2

Update cell labels X with Algorithm 1
end

After finishing all the iterations of the samplers, the output is a trace of all of

Markov Chain Monte Carlo samples of both the cell labels X for all patients’ cells

and the interaction term β for patient subtype Cp = c.

Given the traces for each variable of interest, the next step is to obtain point

estimates for each variable.

For X, we use a method that optimizes a criteria called Maximization of Pos-

terior Expected Adjusted Rand (MPEAR) [22] that returns point estimates given a

matrix of MCMC samples that has a burn-in portion removed. This method starts by

constructing a distance matrix using hamming distance and applying hierarchical

clustering. Using the resulting clustering, we maximize MPEAR to get a consensus

labeling of cell labels X .

For β , we use a much simpler approach by taking the mean of the same-same

affinity values of all clusters in β across T iterations excluding the burnin phase.

Using the values, an interaction matrix I is made by having each cell being:

Ik1,k2 =
1
2

(
βk1,[k16=k2]+βk2,[k16=k2]

)
In this case, each cell of the interaction matrix will imply the affinity between cell

types and provides a measure of how likely are cell types to be spatial proximal

and interact in the TME of a patient with a certain patient subtype.

A common problem observed in the results from clustering is label switching.

Label switching means that cell labels can switch between cell cluster configura-

tions in each iteration and influence the estimation of the interaction term, β .

We propose two methods to alleviate this problem. The first being a 2-stage

procedure in which we run the full joint inference and then run only inference on β .

The first round of inference can result in a good estimate of cell labels X , however
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the consistent label switching can lead to a poor estimate β . The second solution

being to include a prior matrix and/or running a semi-supervised experiment. Prior

matrices give clusters a prior belief of what the expression value should be like.

The semi-supervised approach anchors cells with known specific cluster numbers

and allows for other unlabeled cells to group to the right cluster.

2.4.5 MCMC Convergence

A common problem in MCMC algorithms is the method to determine the number of

iterations T required to reach convergence. In addition, it is difficult to determine

whether MCMC algorithms have mixed well at where we claim it to converged as

we do not know if all possible modes have been visited by the sampler. There

exists diagnostics and heuristics that give confidence that a sampler has converged

[11, 13, 18]. A notable method is to assess the trace plots.

As a preliminary way to investigate convergence, we created a function to plot

values from each iteration in a histogram as well as plot the trace of the values. We

check if the trace samples to the peak of the histogram.

Figure 2.6: Example of investigating convergence of beta.

For real-valued parameters, we see the samplers mix sufficiently well around

its modes. For discrete parameters test functions are required. In our case of latent
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cluster labels, a test function is to map labels to colours, and plot colours over time.

A well-mixing sampler would exhibit changes in colour as shown below.

Figure 2.7: Example of investigating convergence of cell label clusters.

An additional trace plot summarizing the mixing of models is to map the model

parameters to its likelihood value. As we have an intractable partition function, we

plot the unnormalized likelihood against iterations. A plateau of values should

signify potential convergence.

Figure 2.8: Example of likelihood trace plot.
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Chapter 3

Experiments

In this chapter, we discuss the results from experiments fitting our model to three

different datasets: synthetic, semi-real, and real-world. First, we show a proof of

concept by fitting the synthetic dataset that is forward simulated from our model

and also simulated through the package MixSim. Next, we demonstrate the util-

ity of our model by performing inference on a semi-real dataset. This semi-real

dataset is composed of disaggregated mass cytometry data with simulated spatial

coordinates and topology. Lastly, we apply our model to the METABRIC imaging

mass cytometry data of breast cancer for biological analysis. The experiments of

each dataset have varying parameters to objectively demonstrate the performance

of the method. Details of the implementation of each experiment as well as the

biological analysis of each output figure is explained in this chapter.
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3.1 Workflow

Figure 3.1: The workflow for spatially aware clustering analysis using Spa-
tialSort. Elements shaded in light blue are inputs and other steps per-
formed prior to running SpatialSort. Elements shaded in dark blue are
steps in SpatialSort. Elements without shade are user outputs.
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All experiments performed in this chapter will be using the designed workflow

shown in Figure 3.1 to obtain outputs.

The main numerical output from SpatialSort are cluster labels and an interac-

tion matrix. Cluster labels are labels for cells to indicate being a certain cell type.

The downstream analysis from SpatialSort will be the identification of cell types

by looking at overall cellular expression. The interaction matrix is outputted along

to observe interactions between clusters.

In our analysis, there will be a repetition of analysis using cluster-specific ex-

pression matrices, patient-specific neighbour graphs, and subtype-specific interac-

tion matrices, in which these three graphs are the main visualization outputs of

SpatialSort.

Also, an important factor that affects the point estimates of the cluster labels

and interaction affinities is the number of clusters that the user inputs to SpatialSort.

The choice of this input parameter may be based on the user’s prior knowledge or

can selected by attempting different number of clusters and visualizing the heat

maps and graphs to determine an appropriate cluster count. It is also important

to acknowledge that the number of iterations will affect whether the output has

reached convergence. There are diagnostic functions in the SpatialSort documen-

tation that can assist in interpreting a good parameter.
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3.2 Synthetic Experiments

3.2.1 Forward Simulating Synthetic Spatial Data

Our experiments start with generating synthetic datasets that are forward simulated

from our proposed model. This step evaluates the ability of the inference engine to

recover the known true parameters. The simulation of the data starts with the sam-

pling of the interaction matrix for the 2k beta model, patient classes, the mean and

variance of the expression matrix. The hyperparameters chosen for this specific

experiment are detailed in Algorithm 5. For each patient, we simulate a topology

by subsetting a part of a real breast cancer imaging mass cytometry topology us-

ing breadth first search starting at a random location. The labels of the cells in

the topology are then forward simulated from the HotPotts model using the sam-

pled beta matrix. Expression values for each label are sampled from a Gaussian

distribution with parameters from the previously sampled means and variances.

Figure 3.2: Topology simulation by subsetting a part of a real topology from
spatial profiling technologies.
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Algorithm 5 Synthetic Data Simulation
Sample β ∼ Beta(1,1) for K clusters

Sample C ∼Categorical(1/K) for P patients

Sample µ ∼ Gaussian(0,1) for M markers of K clusters

Sample σ2 ∼ Gamma(1,1) for M markers of K clusters

for p=1 to P do
Simulate a topology by Breadth First Search through a real topology structure

for patient p

Sample xp ∼ HotPotts(βCp)

Sample yp ∼ Gaussian(µxp ,σ
2
xp
)

end

Using Algorithm 5, we simulated expression data matrices with dimensions

500 cells by 20 protein markers. Each matrix includes a dataset of 10 patients of a

single patient class. The beta model used to simulated data follows the 2k model.

The number of Gibbs sampling iterations performed for sampling cell labels was

set at 5000. The initial number of clusters was set randomly at 12 to perform label

sampling, yet it is important to note that the resulting number of clusters will not

always match 12 as it depends on the sampled beta value. To ensure that the results

are not of a single instance, a total of 9 seeds were used to generate replicates of

the data.

A variant of the algorithm was also used to generate another synthetic dataset

with the same parameters described in the previous paragraph. The only change

made was to the first line of Algorithm 5 where an extra step was added. The

extra step is to swap the same-same interaction affinity and the diff-diff interaction

affinity if the latter is greater than the former. This step ensures that cells that are

of the same type prefer to be with each other than of another type.

Despite the fact that this variant contradicts with the biological behavior of

some types of cell, this is an assumption with the Potts model and not our modified

HotPotts model. We use this to check on the behavior of our model in contrast with

the Potts model.

For all synthetic and semi-real experiments performed in this chapter, we gen-

erate datasets from both two conditions of interest: having random beta affinity
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values sampled from Beta(1,1) or having beta affinity values with a stronger affin-

ity for same-same interactions. Let us name the former dataset as ”uniform” and

the latter as ”biased” for ease of describing the datasets in this section. All of the

datasets have replicates from using different seeds.

Figure 3.3: Visualization of different labeled topologies using different betas.
Left is a labeled configuration from the biased dataset with a higher
likelihood of cells of the same type to be near each other. Right is a
labeled configuration from the uniform dataset with cells of the same
type having a affinity randomly sampled from Beta(1,1).

3.2.2 Forward Simulation Dataset Clustering Performance

We fitted the model to each dataset by running SpatialSort without using the Swendsen-

Wang algorithm. The number of iterations were set to 800 and the number of clus-

ters was set to the true number of clusters that was sampled in the dataset. 3 random

seeds were picked to run replicates.

Five different models or methods were employed. As for notation: 0p is the

Potts model, 1p is our one parameter beta model, 2k is our 2k beta model, GMM

is the Gaussian mixture model, and Phenograph is the current popular method to

perform clustering.

To evaluate the accuracy of the output cluster labels, we use v-measure [40], an

external entropy-based cluster evaluation measure to assess our result. V-measure

is the harmonic mean between homogeneity and completeness of each cluster. Ho-

mogeneity is a measure of whether all of its clusters contain only data points of a
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single truth label. Completeness is a measure to evaluate if points with the same

truth label are assigned to the same cluster.

The evaluation of significance between the scores of different models employ

the Friedman test. When the p-value is less than 0.001, we applied the post-hoc Ne-

menyi test to all pairs of scores to determine if specific models showed significance

[20].

Figure 3.4: Performance of model fitting on forward simulation dataset with
betas having stronger same-same interactions.

In Figure 3.4, we show the result from fitting to the biased dataset where betas

are biased to have stronger same-same interactions than diff-diff interactions. A

table of mean and standard deviations are shown in Table A.1. It can be seen

that the 0p, 1p, 2k models have very similar performances, except the 1p had a

larger variance in its scores across replicates. For these models, there is a high

homogeneity score in each cluster that led the overall v-measure score to be above

0.9. On the other hand, GMM and Phenograph yielded a lower range around 0.8.

38



Figure 3.5: Performance of model fitting on forward simulation dataset with
betas sampled from Beta(1,1).

In Figure 3.5, we show the result of the other condition in which we fit to the

uniform dataset where betas are directly sampled from a Beta(1,1) distribution. A

table of mean and standard deviations are shown in Table A.4.

Differing from Figure 3.4, the 2k model here stands out by having a very high

performance with a score of 0.95 in all measurement categories. The Potts and

the 1p models have similar performances that are lower than 2k. The 2k model has

significantly better results from 0k, GMM, and Phenograph with p-values of 0.009,

0.001, 0.009 respectively. Phenograph performed lower than the other 3 models,

yet it seemed to have similar performances regardless of beta, as opposed to GMM

which dropped a v-measure score between 0.6 and 0.7.
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Figure 3.6: Single cluster-specific expression heat map for the forward simu-
lation dataset with strong same-same interactions.

Figure 3.7: Single cluster-specific expression heat map for the forward simu-
lation dataset with betas sampled from Beta(1,1).

We can visualize single cluster-specific expression heat maps through the vi-

sualization functions in SpatialSort. In Figure 3.6 and Figure 3.7 we show a facet

wrapped result of fitting three models 0p, 1p, 2k to the two different datasets. As

there are as many heat maps as cluster, we display only a single instance here.

We can see that all graphs show a consistent pattern of expressions across rows.

Very minor differences are present in the expression heat maps across different

models. This observation agrees with Figures 3.4 and 3.5 in which the homogene-

ity score is high for all models.

The important use case of this heat map in theory is the ability to use the ex-

pression patterns across columns to determine a cluster identity.
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Figure 3.8: Interaction matrix for forward simulation dataset with strong
same-same interactions and betas sampled from Beta(1,1).

Figure 3.9: The ground truth interaction matrix for forward simulation
dataset.

Another major visualization to analyze clusters spatially is through the beta

interaction matrices shown in Figure 3.8.

In the left matrix, we can see a strong diagonal which refers to a strong same-

same interaction for all the clusters. This matches with how the beta was simulated

for that specific dataset.

The right matrix shows an interaction matrix with strong affinities distributed

randomly between different clusters. This also follows with how the betas was

sampled through a Beta(1,1) uniform distribution.
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Table 3.1: Comparision of point estimate interaction terms and ground truth

0 1 2 3 4 5 6 7 8 9

Biased 0.79 0.84 0.76 0.88 0.85 0.79 0.73 0.67 - -

Biased

Truth
0.98 0.96 0.90 0.82 0.78 0.68 0.63 0.62 - -

Uniform 0.33 0.14 0.05 0.39 0.70 0.73 0.72 0.67 0.22 0.06

Uniform

Truth
0.02 0.04 0.10 0.18 0.32 0.37 0.38 0.49 0.55 0.47

We can assess how closely they recover from the betas by comparing the point

estimates and the truth in Figure 3.9. Table 3.1 shows a comparison of our in-

ferred same-same interaction terms with the ground truth values. We can see that

within the beta interaction terms, the patterns follow how beta should behave but

the accuracy is not high.

Overall, it seems difficult to recover the actual betas with the Double Metropo-

lis Hastings algorithm. However, the betas is still valuable in cell label cluster

assignment and can be shown from Figure 3.8 that it may still contain important

information regarding the interactions between clusters.
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3.2.3 Gaussian Mixture Synthetic Spatial Data

The next step to evaluate the model involves the generation of mixtures of Gaus-

sians to systematically evaluate our clustering algorithm. The MixSim package

[34] provides a method of simulating Gaussian mixtures with a defined level of

overlap. Input parameters include sample count, channel count, component count,

and average overlap.

Figure 3.10: A 2D representation of overlap between 2 separate clusters mod-
eled by Gaussian distributions. Top left is the case of no overlap. Top
right is with small overlap. Bottom is with a large overlap.

As the overlap increases between the Gaussian distributions, the interaction

between the components, in our case, the clusters, will increase as well thus allow-

ing for assessment of clustering algorithms. As our model is based of Gaussian

expression matrices, fitting to this dataset will further evaluate the ability of our

algorithm. We detail the simulation of the algorithm below in Algorithm 6.
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Algorithm 6 MixSim Synthetic Data Simulation
Simulate an expression matrix from MixSim by defining average overlap, compo-

nent count, channels, and cell count

Sample β ∼ Beta(1,1) for K clusters

Sample C ∼Categorical(1/K) for P patients

for p=1 to P do
Simulate a topology by Breadth First Search through a real topology structure

for patient p

Sample xp ∼ HotPotts(βCp)

end
for k=1 to K do

Assign the expression of the cells labeled k in the non-spatial data to the cells

labeled k in the simulated topology
end

Applying this algorithm, we simulated expression data matrices with dimen-

sions 250 cells by 20 protein markers. The MixSim settings were set to an average

overlap of 0.05. A medium level of overlap at 0.05 was chosen by referencing

Mixsim [34] which described that the value of average overlap should vary from

extreme (0.4) to very low (0.001) for practical use cases. All the rest of the settings

were the same as how forward simulation was described in subsection 3.2.1.
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3.2.4 MixSim Dataset Clustering Performance

We fitted the model to each dataset by running SpatialSort with the same parame-

ters, models, and evaluation method as described in subsection 3.2.2.

Figure 3.11: Performance of model fitting on MixSim dataset with betas hav-
ing stronger same-same interactions.

In Figure 3.11, we demonstrate the performance of fitting five different models

to the biased MixSim dataset where betas are biased to have stronger same-same

interactions. A table of mean and standard deviations are shown in Table A.2.

Similar to Figure 3.4, the 0p, 1p, 2k models have similar scores for all mea-

sures. We also observe a high v-measure score above 0.9. However, GMM and

Phenograph both dropped in clustering performance to around 0.5 when fitted to a

mixture of Gaussian distributions. This suggests that SpatialSort is able to make

better cluster assignments probabilistically when the dataset consists of overlap-

ping Gaussian distributions.
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Figure 3.12: Performance of model fitting on MixSim dataset with betas sam-
pled from Beta(1,1)

In Figure 3.12, we show the performance of fitting to the uniform dataset where

betas are directly sampled from a Beta(1,1) distribution. A table of mean and

standard deviations are shown in Table A.5.

A strong distinction from Figure 3.11 can be seen as the 2k model here stands

outs in all measures compared the other models with a score around 0.85. Using the

Nemenyi test, the 2k model is significant from the 0p, 1p, and Phenograph models

with p-values of 0.001, 0.004, 0.001. Despite the differences in performance of 2k

to GMM in the boxplot, the Nemenyi test gave a p-value of 0.255, which is not

significant from 2k.

The relative performance of the 2k model is in agreement with the experiment

shown in Figure 3.5 where the 2k model seems to be the preferred method when

interaction terms can take on any value between 0 and 1.

On the contrary, the other models performed poorly and have similar perfor-

mances having a v-measure score around 0.5. This demonstrates the 2k model’s

utility in having a relatively superior ability to classify data points to the correct

components.
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Figure 3.13: Single cluster-specific expression heat map for the MixSim
dataset with strong same-same interactions.

Figure 3.14: Single cluster-specific expression heat map for the MixSim
dataset with betas sampled from Beta(1,1).

We visualize the single cluster-specific expression heat maps by outputting Fig-

ure 3.13 and Figure 3.14.

As the performance levels for 0p, 1p, 2k are the similar on the biased dataset

as shown in Figure 3.11, we see that all models output very consistent clusters.

However, there is quite some differences between the 0p, 1p, and 2k for the

uniform dataset. As the performance for the 2k is superior to that of 0p and 1p,

we can see a much smoother and more homogeneous cluster for 2k. 0p has a very

mixed cluster and also has high variance in columns of expression. 1p is similar to

2k, but 2k is much more smoother in the pattern of expressions.
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Figure 3.15: Interaction matrix for MixSim dataset with strong same-same
interactions and betas sampled from Beta(1,1).

Similar to Figure 3.8, we can observe that the left matrix has a strong diag-

onal and the right matrix has random strong affinities between different clusters

in Figure 3.15. Tables for comparisons between the ground truth and the inferred

interaction terms like Table 3.1 will available in the supplementary Github files for

viewing, but is not posted here for table size reasons. The key observation is the

same: although it remains difficult to recover betas accurately, betas still serve an

important function in assigning cells to clusters and a relative measure to affinity

between clusters.
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3.3 Semi-Real Experiments: Mass Cytometry Dataset

3.3.1 Simulating Semi-Real Spatial Data

The next set of experiments proceeds with generating semi-real datasets. Semi-

real datasets are composed of two main elements: (1) expression data from non-

spatial expression profiling and (2) simulated topology with sampled labels that are

generated by the method as described in subsection 3.2.1.

The source of expression data used here is by Levine et al.. It is a 13 dimen-

sional Cytometry by Time-of-Flight dataset of a single patient. The 13 surface

markers are: CD45, CD45RA, CD19, CD11b, CD4, CD8, CD34, CD20, CD33,

CD123, CD38, CD90, and CD3.

We used a subset (49%) of the dataset that consists of 81,747 cells of 24 as-

signed cell type labels from manual gating. The other half of the dataset was not

labeled and was not used. We show summarize the dataset in the following z-scored

mean marker expression heat map.

Figure 3.16: Heat map showing the z-scored mean marker expression for
CYTOF expression data used for constructing the semi-real dataset.
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The data available was arcsin transformed and stated to be the properly nor-

malized by the original publication, therefore no further modification was done to

the expression data prior to inference.

The simulation of the data is detailed in Algorithm 7, in which it is similar to

Algorithm 6, except for swapping out the mixture of Gaussians from MixSim with

mass cytometry data.

Algorithm 7 Semi-Real Data Simulation
Sample β ∼ Beta(1,1) for K clusters

Sample C ∼Categorical(1/K) for P patients

for p=1 to P do
Simulate a topology by Breadth First Search through a real topology structure

for patient p

Sample xp ∼ HotPotts(βCp)

end
for k=1 to K do

Assign mass cytometry expression of the cells labeled k in the non-spatial data

to the cells labeled k in the simulated topology
end

Through the use of Algorithm 7, we generated expression data matrices with

dimensions 500 cells by 13 protein markers. The rest of the settings were the same

as how forward simulation was described in subsection 3.2.1.

For inference, we constructed a prior expression matrix by searching for the

markers in the public human protein databases [47] as well as inferring through

Figure 3.16.
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3.3.2 Semi-Real Dataset Clustering Results

We applied the same parameters, models, and evaluation methods described in

subsection 3.2.2 to perfrom inference on the dataset by running SpatialSort.

Figure 3.17: Performance of model fitting on the semi-real dataset with betas
having stronger same-same interactions.

In Figure 3.17, we show the result from fitting to the biased dataset where betas

are biased to have stronger same-same interactions than diff-diff interactions. The

inference is done without a prior expression matrix. A table of mean and standard

deviations are shown in Table A.3 and also A.6 for the uniform dataset.

Contrary to the synthetic biased dataset experiments, we can observe the 2k

model having similar performance to 0p and Phenograph, with a high v-measure

at about 0.95. GMM can be seen to be performing around 0.8 and 1p having

relatively poor performance at around 0.55. The Potts model performs well when

the interaction term is biased serving as a good smoothing prior. The 2k model

is competitive to Phenograph and yields similarly high performance for the biased

dataset.
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Figure 3.18: Performance of model fitting on the semi-real dataset with a
prior expression matrix, and with betas having stronger same-same in-
teractions.

Figure 3.18 shows a result similar to Figure 3.17 in which it differs by intro-

ducing an additional prior expression matrix in the inference.

Observing both figures, we do not observe a strong difference between the two.

This can potentially indicate that the prior expression matrix does not improve

on the datasets with betas having stronger same-same interactions. However, an

alternative explanation will be that the performance has already reached a peak at

about 0.9 and the prior expression matrix can not raise the performance further.
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Figure 3.19: Performance of model fitting on semi-real dataset with betas
sampled from Beta(1,1)

In the uniform dataset, we can see a contrast from Figure 3.17, where it is

difficult to spot a model with a superior level of performance. Using the Nemenyi

test, we find the 2k model is significant to 1p and GMM (0.03, 0.01) but not to

0p and Phenograph (0.05, 0.90). From the boxplot, we can see that the median

performance of Phenograph to be slightly higher than that of 2k.
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Figure 3.20: Performance of model fitting on semi-real dataset with a prior
expression matrix, and with betas sampled from Beta(1,1)

We show the result of adding an prior expression matrix in inference here in

Figure 3.20. Contrasting from the difference in performance between the two fig-

ures of the biased dataset, Figures 3.20 has some noticeable improvements from

Figure 3.20.

The 2k model has an increase in mean v-measure performance from 0.816 to

0.937, while the 0p and 1p both have around a gain of 0.08 in performance.

The 2k model is also found to be significant to 0p, 1p and GMM (0.007, 0.002,

0.001) but not to Phenograph (0.13). The values in parentheses are computed using

the Nemenyi test. From the boxplot, we can see that the median performance of

Phenograph to be higher than that of 2k. We can observe that including a prior

expression matrix brings the performance up by a good margin and is assists cell

type assignment in inference.
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Figure 3.21: Single cluster-specific expression heat map for the semi-real bi-
ased dataset fitted by 0p (upper left), 1p (upper right), 2k (lower left),
and Phenograph (lower right).

We visualize the single cluster-specific expression heat maps for the biased

dataset in Figure 3.21. The cluster shown here is the Naive CD8+ T cell cell type.

Inference here is performed without a prior expression matrix.

Echoing the analysis in Figure 3.17, we can see a much more homogeneous and

smooth heat map with fitting the 0p, 2k, and Phenograph model. In constrast, we

can observe an erroneous introduction of CD45RA- cells into this cluster, which

constitutes the loss of the white band in the CD45RA column. This reflects the

lower performance of the 1p model.
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Figure 3.22: Single cluster-specific expression heat map for the semi-real
uniform dataset fitted by 0p (upper left), 1p (upper right), 2k (lower
left), and Phenograph (lower right).

Similarly, we can visualize the heat maps for the uniform dataset in Figure 3.22.

The cluster shown here is also the Naive CD8+ T cell cell type.

It can be seen that all heat maps show consistent patterns of expressions. Dif-

ferences in smoothness of the patterns of expression are present in the expression

heat maps. We can observe that 0p and 1p are less consistent in the CD45RA

marker. In contrast, 2k and Phenograph have have a more consistent pattern of

CD45RA+. Despite the minor differences, the cluster is homogeneous across the

different heat maps in general. This observation agrees with Figure 3.19 where the

performance is relatively similar across all models.
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Figure 3.23: Interaction matrix for semi-real dataset with strong same-same
interactions and betas sampled from Beta(1,1).

We can observe that the left matrix has a strong diagonal and the right ma-

trix has random strong affinities between different clusters in Figure 3.23 similar

to the experiments done using the synthetic datasets. For the strong same-same

interaction, we were not able to obtain close enough results as the point estimates

fell to 0.5 which is the mean of the uniform distribution. Overall, this could pos-

sibly mean that the beta term is acting as a smoothing prior but not much of an

interpretable parameter.
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3.3.3 Semi-Real Dataset Anchored with Disaggregate CyTOF Data
Clustering Results

In Section 3.3.2, we explored the performances of fitting our model to biased and

uniform datasets with and without the presence of a prior expression matrix. We

have seen increases in performance when the prior matrix is introduced in the uni-

form dataset but not in the biased dataset.

To further increase the performance of our clustering, we experimented adding

in labeled disaggregate CyTOF data in the model to assist in anchoring the unla-

belled cells to the correct cluster.

Although this approach can be seen as purely a method to improve the accu-

racy of clustering, this is also an additional feature of SpatialSort to perform la-

beling transferring between disaggregate and spatial omic datasets. For the case of

CyTOF and IMC, labeled CyTOF datasets are much more ubiquitous in data banks

than IMC datasets. When combining public or previously obtained data with spa-

tial data for new experiments, tasks such as relabeling data, cluster interpretation,

manual changes in labels are often necessary. Using SpatialSort, we eliminate the

need of re-performing clustering and other tasks described above. We include the

labeled disaggregate data in the inference, which we here on refer to as anchors, to

lead new data to be probabilistically assigned to labels as to how the disaggregate

data is labeled.

In the following experiments, we perform inference again on the biased and

uniformed datasets anchored with CyTOF data under conditions of with and with-

out the prior expression matrix. It is important to note that the measurement of per-

formance does not include cells that are already labeled. V-measure is performed

on all cells that do not have labels.
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Figure 3.24: Performance of model fitting on the semi-real dataset anchored
by CyTOF data, without a prior expression matrix, and with betas hav-
ing stronger same-same interactions.

Figure 3.25: Performance of model fitting on the semi-real dataset anchored
by CyTOF data, with a prior expression matrix, and with betas having
stronger same-same interactions.
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In Figures 3.24 and 3.25, we show the performance of the biased dataset an-

chored with CyTOF data without and with the prior expression matrix.

Contrasting the inference without prior expression matrix in the presence and

absence of anchors, we can observe an increase of mean v-measure performance

for the 2k model from 0.889 to 0.957. In the case of having a prior expression ma-

trix, the performance increased from 0.884 to 0.950. 0p has also seen an improve-

ment in v-measure when having anchors by an average of 0.06. The performances

of 0p and 2k are similar and both are more effective than Phenograph in clustering

cells. However, it is to note that 1p did not see improvement in performance.

Although we could not see improvement in performance by adding in a prior

expression matrix for the 2k model, we can see that the inclusion of anchors in-

creases the performance by a margin.

Figure 3.26: Performance of model fitting on semi-real dataset anchored by
CyTOF data, without a prior expression matrix, and with betas sam-
pled from Beta(1,1)
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Figure 3.27: Performance of model fitting on semi-real dataset anchored by
CyTOF data, with a prior expression matrix, and with betas sampled
from Beta(1,1)

Similarly, we show the performance of the uniform dataset anchored with

CyTOF data without and with the prior expression matrix here in Figures 3.26

and 3.27.

To evaluate the performances, we again contrasted the results of inference with-

out prior expression matrix in the presence and absence of anchors. Here, we can

observe an increase of mean v-measure performance from 0.816 to 0.914 for the 2k

model. The performance went from 0.937 to 0.951 when having a prior expression

matrix. The 0p and 1p also increased in performance when introducing labeled

data into the model. The interpretation of the effect of anchors is the same between

both datasets.
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Figure 3.28: Summary of performance of model fitting on semi-real dataset
with betas having stronger same-same interactions.

Figure 3.29: Summary of performance of model fitting on semi-real dataset
with betas sampled from Beta(1,1).

In Figures 3.28 and 3.29, we summarize our findings under the four different
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measurement conditions. The boxplots are plotting only the v-measures.

For the biased dataset, we can see that having the prior expression matrix in the

inference does not improve performance, yet the introduction of anchors led to an

increase in performance. Conversely, the prior expression matrix and the anchors

have equal importance in increasing total performance.

In both cases, we can conclude that introducing a prior expression matrix in the

inference will lead to a better clustering performance than Phenograph.
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3.4 Real-World Application: METABRIC IMC Dataset
For the last set of experiments, we use SpatialSort to cluster cells and evaluate the

cluster interactions in a real-world Imaging Mass Cytometry dataset.

3.4.1 Introduction to the METABRIC IMC Dataset

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

project is a joint research initiative in the targeted sequencing of breast cancer

samples funded by Canada and the UK. Data in the form of expression profiles,

CNV profiles, SNP genotypes, etc. have been publically released for reproducible

research [16].

In our experiments, we use the IMC dataset from Ali et al. (2020) consisting of

483 spatially profiled breast tumour samples from 448 patients. 37 protein markers

were profiled for 479,845 cells from the patient cohort.

Spatial coordinates of single cells and the neighbour relations between cells

were provided and were pre-processed by the CellProfiler pipeline [1].

Cell type labels given were inferred by a combination of self-organizing maps,

Phenograph, as well as manual inspection of location and morphology according

to the publication.

PAM50 subtype labels were obtained through British Columbia Cancer Re-

search Centre as they were not publicly accessible. PAM50 subtypes are molecular

intrinsic subtypes with specific clinical properties that are determined by a signa-

ture of 50 genes [37]. Breast cancer samples are classified into one of: Luminal A,

Luminal B, HER2-enriched, Basal-like, and Normal-like [29, 39]. A subset of 386

patients that have identifiable PAM50 subtype class labels were used as our input.

3.4.2 Pre-processing IMC Data

A pre-processing pipeline for this dataset was built to clean, wrangle, and normal-

ize the data. We cleaned the data as there were cells without expression data, spatial

coordinates, or do not share mutual neighbour relations with other cells. Indexing

of the relations were inconsistent and were fixed to 0-indexing.

We removed patient data that are composed of less than 100 cells due to low

cell count compared to the average of over 1000 cells per patient.
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Single cell expression data were quantile normalized to remove batch effects,

arcsinh transformed with a cofactor of 0.8 and z-score transformed to normalize

the data to a Gaussian-like distribution. Expression data that exceeded the 99th

percentile were clipped to avoid outliers.

Following the original publication of the data, the authors suggested that clus-

tering should use markers that have a good signal-to-noise profile. We subset the

37 markers to the following 22 markers: CK8/CK18, CK19, CK5, CD68, CD3,

CD20, ER, PR, CD45, GATA3, CK7, Ki67, SMA, HER2, pan-CK, EGFR, TP53,

β -catenin, vWF/CD31, CAIX, Slug and vimentin.

A prior expression matrix was manually created by searching for the protein

markers in the public human protein literature and databases [47] as well as infer-

ring through visualizing the z-score mean expression profile.

After viewing the overall expression heat map, we chose the following 20 cell

types to have prior expressions: T cells, B cells, Fibroblasts, Fibroblasts Slug+, Fi-

broblasts CD68+, Myofibroblasts, Myofibroblasts Slug+, Macrophages, Macrophages

Slug+, Endothelial, Myoepithelial, Hypoxia, HER2+, HRlow CKlow, CK5+, HR+

CK7-, Ki67+, HR+ CK7- Slug+, HR- CK7+, HR- CK7-. We show the z-score

mean expression heat map in Figure 3.30 after manually merging each cluster to-

gether.

It is also important to note that some cells do not have clear expression mark-

ers present in the data or are naturally diverse in their surface markers, such as

endothelial cells.
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Figure 3.30: Heat map showing the z-scored mean marker expression for the
METABRIC IMC expression data.

3.4.3 METABRIC IMC Dataset Clustering Settings

We ran SpatialSort on a subset portion of the whole 386 patient dataset. Inference

was performed separately for patients of same PAM50 subtypes. 15 patients from

each subtype were selected to be in the dataset. Subsets of the data were used to

show the ability of SpatialSort to classify cells correctly when data is limited, as

well as to speed up the generation of replicates for each separate experiment.

We fitted to each patient subtype expression matrix using the optional Swendsen-

Wang algorithm. The number of iterations was set to 1000 and the number of

clusters was set to 20. Although the publication indicated that there seems to be

a total 55 total clusters and 2 erroneous clusters, we follow the observation of 20

clear cellular populations when constructing the prior expression matrix. 3 random

seeds were picked to run replicates.

Considering the results from fitting models to the forward simulation dataset,

the MixSim dataset, and the semi-real CYTOF dataset, we chose to apply the higher

performed 2k model to perform spatially aware clustering.
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3.4.4 METABRIC IMC Dataset Clustering Results

In this section, we demonstrate two major use cases of the visualization outputs of

SpatialSort. We will also analyze the plots and graphs and provide interpretation

of the results. As we don’t have ground truth data for the cell type labels, we

will compare and contrast our results with the labels from the original publication

objectively.

We first demonstrate the case of analyzing T cell distributions in patients of

Normal-Like breast cancer subtype. From Figures 3.31 to 3.34, we show five dif-

ferent kinds of plots and graphs that can be outputted using functions from Spatial-

Sort.

Figure 3.31: T cell cluster specific expression heat map of a 15 Normal-like
breast cancer patient subset.

In Figure 3.31, we show a T cell specific expression heat map clustered by the

cell type labels from the original publication which is shown on the second column.

The output of the expression graph allows the user to observe what the expression

levels look like in our clusters. Here, we can see that we have a strong CD45

marker which indicates hematopoietic cells except erythrocytes and platelets, and

also a strong CD3 marker which indicates a T cell identity. In between we also have

cells that have a strong CD20 marker which is found on B cells. Here, we plot the
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cell type distribution of this cluster according to the labels from the publication on

the right. Note that this bar graph is not an output of SpatialSort’s visualizations.

We can see that it agrees with the publication except for a few that are labeled as

myofibroblasts, fibroblasts, and B cells, etc.

Figure 3.32: T cell cluster specific row-clustered expression heat map of a 15
Normal-like breast cancer patient subset.

To further examine the cluster, we changed to row cluster in Figure 3.32. In the

bottom parts of the heat map where CD20 is strong, we see a mixed assignment

to both B cells and T cells in the original publication. As CD20 is a marker for B

cells in general, the expectation of CD20 is to be in its own cluster. However, due

to low cell count for this population, it was assigned into this cluster possibly due

to a strong CD45 signal.

Referring back to Figure 3.31, we can know how this cell type cluster is dis-

tributed across patients by the first column. We can look at the patient with the

highest portion of T cells by matching the colours with Figure 3.33. Here we can

see that it is bright green which refers to patient sample MB0128 1 71.
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Figure 3.33: Cell count per patient sample bar graph of a 15 breast cancer
patient subset.

Figure 3.34: Expression heat map of patient MB0128 clustered by patient
number and neighbour graph of patient MB0128 colour coded by clus-
ter label.

We show the expression heat map and neighbour graph of patient sample MB0128 1 71

in Figure 3.34. We can investigate the proportion of different cell types in each pa-

tient. Here we can see that there seems to be a strong CD20 cluster indicating a

B cell population. This allows us to hypothesize that we did not classify the cells

previously incorrectly, and our clustering may be more accurate.
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3.4.5 Semi-Supervised METABRIC IMC Dataset Clustering Results

To explore the performance of SpatialSort even further, we conducted experiments

to explore the behavior of SpatialSort when small amounts of labeled data from

patients are introduced into the inference.

This approach is a weak form of supervised learning, because we provide some

ground truth labels for testing. However, it still remains a form of unsupervised

learning as the majority of the labels are to be inferred. We often refer to this type

of task as semi-supervised learning [55].

Semi-supervised learning requires a small number of known labels, in this case

we experiment by adding in some labelled data that was originally in the publica-

tion to see behavior of SpatialSort.

Note that this approach is a biased form of semi-supervised learning, because

we provide none ground truth labels for testing. We are testing whether small

amounts of data will support the cell type assignment to move towards a more

homogeneous result.

We evaluate the clusters between the previous unsupervised runs to the semi-

supervised runs with either 1, 3, or 5 patients (Figure 3.35) having labels from the

publication inputted into inference. The evaluation for labeling accuracy changes

for this approach since we will have known the cell types for certain patients. We

will only compare the inferred cell types to the cell types from the publication.

We picked out Myofibroblasts to demonstrate as an example since it has the

greatest number of cells in this subset. We can see that as we add in more data

the total number of cells increases and it becomes more homogeneous and similar

to the results from the publication. Note that the publication relies on the whole

dataset from over 400 patients to form accurate clusters. With SpatialSort, it seems

like we could leverage some labeled data from patients to assist in accurate la-

belling of new patient data.
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Figure 3.35: Four clusters of Myofibroblasts using different clustering meth-
ods are shown. Top left shows the cluster from an unsupervised run of
SpatialSort with only prior matrix. Bottom left shows the cluster from
a semi-supervised run with labels of a single patient known. Top right
and bottom right are also results from semi-supervised runs with 3 and
5 patients respectively.

3.4.6 METABRIC IMC Dataset Interaction Matrix

In Figures 3.36 and 3.37, we show the interaction matrices for 2 of the 5 sub-

types: Basal and Her2 under different computational approaches. The left is the

original SpatialSort approach, and the right shows the semi-supervised SpatialSort

approach with 30% of the patients’ labels known.

It can be observed that the interaction matrices between subtypes and with

or without semi-supervised approaches are not significantly different. The affin-

ity values for values on the diagonal of all matrices average to around 0.52. We

could not find significant differences in affinity between cell clusters according to

the plots generated. A hypothesis can be that spatial structure does not affect the

affinity values of cell type clusters between different subtypes.

Future work may be to investigate the interaction matrices and modifications
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that can be made to the beta parameter to explore cell-cell interactions more effec-

tively.

Figure 3.36: Interaction matrices for Basal subtype of the METABRIC
dataset. The left is running SpatialSort without a semi-supervised ap-
proach. The right is semi-supervised with 30% of patients with known
labels.

Figure 3.37: Interaction matrices for Her2 subtype of the METABRIC
dataset. The left is running SpatialSort without a semi-supervised ap-
proach. The right is semi-supervised with 30% of patients with known
labels.
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3.4.7 Computational Performance

The complexity of SpatialSort largely depends on the the DMH step in the updates

of the beta interaction term. Time complexity of SpatialSort in terms of big O

is O(CK2PNEεδ + 2KPNEδ ), where C is the number of patient cells, K is the

number of clusters, P is the number of patients, N is the number of cells, E is the

number of edges, ε is the number of iterations for DMH, and δ is the number of

total iterations.

Using a package called Lineprofiler, we profiled the run time of each major

parameter updating function. The ratio between updating X, Swendsen-Wang, and

updating beta is 0.29:0.34:0.37.

The total run time for fitting the model to the synthetic and semi-real datasets

took about 0.04 minutes per iteration, and the real dataset took about 1.5 minutes

per iteration. The settings of all parameters were explained in each of the sections.
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Chapter 4

Conclusion

4.1 Summary of Contributions
In this thesis, we present SpatialSort, a statistical framework to perform spatial-

aware clustering of single cells and estimation of cell-cell interactions.

As new high-throughput spatial profiling technologies emerge, spatial infor-

mation can be viewed as a direct measurement of cell-cell interaction. The novelty

of SpatialSort lies in the incorporation of spatial structure with expression data to

perform probabilistic cell type cluster assignment.

SpatialSort addresses the problems of ignoring spatial context in current meth-

ods that rely on solely disaggregate data, and also address the uncertainty of cell

type assignment using a Bayesian probabilistic model.

We have also shown in our experiments that spatial context does influence the

cell type assignment. In our synthetic experiments, we were able to provide a

proof of concept fitting to a forward simulated dataset as well as a mixed Gaus-

sian simulated dataset. In the semi-real experiments, we were able to find that the

introduction of a prior expression matrix and/or labeled disaggregate data as an-

chors, we could yield a high clustering performance using SpatialSort. Our results

have shown that we perform better than the current state-of-the-art. In our real

experiments, we begin to see differences between methods that incorporate spatial

context and those that do not. Despite infrequently having non-homogeneous clus-

ters, we are able to spot out cells that seem to have clustered incorrectly. This can
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indicate the value in incorporating spatial context which is a variable in cell type

assignment.

4.2 Limitations
Various limitations are present in this thesis, in which we will discuss here.

The model proposed is of a Gaussian distribution and is very sensitive to the

shape of the data. As we can observe through real data studies, we can observe non-

smooth clusters. This implies that SpatialSort relies highly on the pre-processing

and normalization.

The proposed inference of beta is done through Double Metropolis Hastings.

DMH is a realistic approximation although being an asymptotically inexact algo-

rithm. The results for our interaction matrices as shown in the results do not have

good accuracy between inferred and truth.

It is also to note that our method is an unsupervised method that treats each the

expressions of each marker as independent and identically distributed. This will

mean that we assume that the markers are mutually independent despite possible

violation of biological properties of proteins.

In addition, the approach of introducing labeled disaggregate data in the model

as cell type anchors rely on accurate patient cell type labels that are considered as

gold standard for the inference. As the cell type labels are anchors in the assign-

ment inference, the overall cell type assignments may be biased if the known labels

are incorrectly inputted.

4.3 Future Directions
Many directions can be explored beyond on the current proposed method in this

thesis.

A possible improvement to inference would to explore parallel tempering or

variational inference to improve on the dynamic MCMC sampling performed for

inference of parameters. We may not have the most efficient implementation of

the samplers, potentially we could look at probabilistic programming languages to

refactor the code base.

Important work can be also done to improve beta to become an interpretable
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parameter for describing cell-cell interactions. An alternative design of the Hot-

Potts model and thus the beta term can possibly improve the accuracy of cell type

assignments and possibly bring more information regarding the spatial structure.

Lastly, to explore an automated way of determining the input number of clus-

ters. Deciding the proper cluster count for unsupervised learning tasks is a difficult

task and, in our case, relies on prior knowledge and testing. An automated method

would improve on obtaining better results.
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J. Bergenstråhle, F. Tarish, A. Tanoglidi, S. Vickovic, L. Larsson, F. Salmén,
C. Ogris, K. Wallenborg, J. Lagergren, P. Ståhl, E. Sonnhammer,
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Appendix A

Supplementary Tables

A.1 Table of Results
We provide the tables of results of the performance of model fitting on differ-

ent datasets with betas having stronger same-same interactions or sampled from

Beta(1,1).
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Table A.1: Mean and standard deviation of model fitting performance of bi-
ased forward simulation dataset.

Model Measure Mean Std

0p completeness 0.857187 0.048560
0p homogeneity 0.983157 0.007022
0p v-measure 0.915144 0.029284
1p completeness 0.735447 0.188198
1p homogeneity 0.868191 0.216154
1p v-measure 0.795606 0.199292
2k completeness 0.883850 0.065996
2k homogeneity 0.971594 0.016790
2k v-measure 0.924713 0.043516

GMM completeness 0.705593 0.048127
GMM homogeneity 0.842986 0.049120
GMM v-measure 0.767450 0.042649

Phenograph completeness 0.814558 0.043042
Phenograph homogeneity 0.784184 0.059775
Phenograph v-measure 0.798461 0.047262
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Table A.2: Mean and standard deviation of model fitting performance of bi-
ased MixSim dataset.

Model Measure Mean Std

0p completeness 0.875236693 0.075659425
0p homogeneity 0.921128581 0.037124119
0p v-measure 0.896914581 0.055081612
1p completeness 0.892359215 0.054872263
1p homogeneity 0.918600488 0.024575641
1p v-measure 0.904120785 0.026149414
2k completeness 0.869725684 0.066449448
2k homogeneity 0.890028726 0.023868577
2k v-measure 0.878754192 0.04013768

GMM completeness 0.50772849 0.048283077
GMM homogeneity 0.586571789 0.043093081
GMM v-measure 0.544109815 0.04558028

Phenograph completeness 0.510982017 0.046239169
Phenograph homogeneity 0.493967119 0.042074589
Phenograph v-measure 0.501615384 0.039890154
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Table A.3: Mean and standard deviation of model fitting v-measure perfor-
mance of biased semi-real dataset.

Model Has Prior? Has Anchors? Mean Std

0p 0 0 0.90822527 0.031673053
0p 0 1 0.960859876 0.030996736
0p 1 0 0.89789876 0.033694059
0p 1 1 0.96127564 0.027232366
1p 0 0 0.632109566 0.17067411
1p 0 1 0.628925145 0.255461044
1p 1 0 0.696573952 0.175336741
1p 1 1 0.690310272 0.266144896
2k 0 0 0.888648131 0.068104716
2k 0 1 0.956780217 0.052743099
2k 1 0 0.884343444 0.078135827
2k 1 1 0.95009383 0.051585232

GMM - - 0.785940718 0.045673875
Phenograph - - 0.936051601 0.032967326
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Table A.4: Mean and standard deviation of model fitting performance of uni-
form forward simulation dataset.

Model Measure Mean Std

0p completeness 0.867941 0.053820
0p homogeneity 0.880434 0.041366
0p v-measure 0.873984 0.046574
1p completeness 0.900424 0.038062
1p homogeneity 0.899736 0.041870
1p v-measure 0.899641 0.034050
2k completeness 0.985440 0.006708
2k homogeneity 0.973067 0.012521
2k v-measure 0.979203 0.009442

GMM completeness 0.612733 0.080277
GMM homogeneity 0.867231 0.044680
GMM v-measure 0.716034 0.062209

Phenograph completeness 0.859643 0.044780
Phenograph homogeneity 0.825205 0.050460
Phenograph v-measure 0.841972 0.047024
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Table A.5: Mean and standard deviation of model fitting performance of uni-
form MixSim dataset.

Model Measure Mean Std

0p completeness 0.413696449 0.111553408
0p homogeneity 0.457907526 0.146299594
0p v-measure 0.431120036 0.1237403
1p completeness 0.521230963 0.178908829
1p homogeneity 0.588238326 0.101380625
1p v-measure 0.545777682 0.122047162
2k completeness 0.879518108 0.047495373
2k homogeneity 0.818225678 0.059007305
2k v-measure 0.846960739 0.046674122

GMM completeness 0.523863427 0.08101238
GMM homogeneity 0.625963909 0.05946859
GMM v-measure 0.569637994 0.071668829

Phenograph completeness 0.513937401 0.058683697
Phenograph homogeneity 0.534124028 0.052772978
Phenograph v-measure 0.522920606 0.052424961
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Table A.6: Mean and standard deviation of model fitting v-measure perfor-
mance of uniform semi-real dataset.

Model Has Prior? Has Anchors? Mean Std

0p 0 0 0.709633825 0.063060025
0p 0 1 0.778817134 0.091896866
0p 1 0 0.802928888 0.064422264
0p 1 1 0.8292731 0.075974591
1p 0 0 0.69354209 0.069579469
1p 0 1 0.727117676 0.10180895
1p 1 0 0.7525763 0.085215506
1p 1 1 0.809881181 0.083977301
2k 0 0 0.816013177 0.102819054
2k 0 1 0.91427773 0.050941199
2k 1 0 0.937497633 0.07967313
2k 1 1 0.950588104 0.049260237

GMM - - 0.701186096 0.051789961
Phenograph - - 0.858827987 0.116769618
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A.2 Software Packages Used
We provide a list of software packages that were used in the implementation, test-

ing, and benchmarking of SpatialSort.

Table A.7: Table of Software Packages and Versions

Name Version

NumPy 1.21.2

Pandas 1.3.3

SciPy 1.7.1

Matplotlib 3.4.3

Seaborn 0.11.2

Scikit-learn 1.0

NetworkX 2.6.3

Numba 0.53.1

Phenograph 1.5.7

Scikit-Posthocs 0.6.7
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