
Efficient in-hardware compression of
on-chip data

by

Amin Ghasemazar

M.Sc., University of Tehran, 2015
B.Sc., Iran University of Science and Technology, 2012

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2021

© Amin Ghasemazar 2021



The following individuals certify that they have read, and recommend to
the Faculty of Graduate and Postdoctoral Studies for acceptance, the dis-
sertation entitled:

Efficient in-hardware compression of on-chip data

submitted by Amin Ghasemazar in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
in Electrical and Computer Engineering

Examining Committee:

Mieszko Lis, Electrical and Computer Engineering, UBC

Co-supervisor

Prashant Nair, Electrical and Computer Engineering, UBC

Co-supervisor

Alexandra Fedorova, Electrical and Computer Engineering, UBC

Supervisory Committee Member

Shahriar Mirabbasi, Electrical and Computer Engineering, UBC

University Examiner

Frank Wood, Computer Science, UBC

University Examiner

Alaa Alameldeen, School of Computing Science, SFU

External Examiner

ii



Abstract

The past decade has seen tremendous growth in how much data is collected
and stored, and consequently in the sizes of application working sets. On-
chip memory capacities, however, have not kept up: average CPU last-level
cache capacity per core (thread) has stagnated at 1MB. Similar trends exist
in special-purpose computing systems, with only up to tens of megabytes of
on-chip memory available in most recent AI accelerators.

In this dissertation, we explore hardware-friendly online data compres-
sion techniques to gain the performance benefits of larger on-chip memories
without paying the costs of larger silicon. We propose several solutions in-
cluding two methods to compress general workloads in CPU caches, and two
methods to compress AI workloads in special-purpose computing systems.

In order to efficiently compress on-chip data, the compression mecha-
nisms need to leverage all relevant data stored in on-chip memory. We
propose 2DCC, a cache compression mechanism that leverages redundancy
both within and across all cache data blocks, and results in a 2.12× com-
pression factor. We then extend this insight by observing that many on-chip
blocks are often similar to each other. We propose Thesaurus, a hardware-
level on-line cacheline clustering mechanism to dynamically form clusters as
these similar blocks appear in the data access stream. Thesaurus signifi-
cantly improves the state-of-the-art cache compression ratio to 2.25×.

Next, we apply our insights to special-purpose applications. We first pro-
pose Channeleon, which tackles the problem of compressing the activation
maps in deep neural networks (DNNs) at inference time. Leveraging the ob-
served similarity among activation channels, Channeleon first forms clusters
of similar activation channels, and then quantizes activations within each
cluster. This enables the activations to have low bit-width while incurring
acceptable accuracy losses. Lastly, we propose Procrustes, a sparse DNN
training accelerator that prunes weights by exploiting both software and
hardware knowledge. Procrustes reduces the memory footprint of models
by an order of magnitude while maintaining dense model accuracy.

iii



Lay Summary

This dissertation explores the potential to improve the performance and
efficiency of workloads through efficient representation of data. It pro-
poses workload acceleration for both general-purpose workloads and machine
learning workloads. We first address missed opportunities in the general-
purpose systems and propose techniques for in-hardware compression of
these workloads which makes them run faster compared with when using
the existing methods. Then, we propose two compression techniques for
machine learning workload memory footprint reduction and acceleration.

iv



Preface

This section lists my publications and posters that were completed at The
University of British Columbia in chronological order and form a part of this
thesis work. This section finishes by highlighting my contributions to this
dissertation.

The publications and posters that are incorporated in this thesis are
listed as follows:

[C1] A. Ghasemazar, M.Ewais, P.Nair, M. Lis,“Cache Compression in
Two Dimensions,” IEEE 37th International Conference on Computer Design
(ICCD) , 2019.

[C2] A. Ghasemazar, M. Ewais, P. Nair, M. Lis, “2DCC: Cache Com-
pression in Two Dimensions,” In Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2020.

[C3] A. Ghasemazar, M. Ewais, M. Lis, “Decoupling Approximation
and Cache Compression,” The 2020 Workshop on Approximate Computing
Across the Stack (WAX), ASPLOS workshop, 2020.

[C4] A. Ghasemazar, P. Nair, M. Lis, “Thesaurus: Efficient Cache Com-
pression via Dynamic Clustering,” In The International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

[C5] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, M. Lis,
“Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network
Training,” In The International Symposium on Microarchitecture (MICRO),
2020.

Thesis Outline

Chapter 2. This chapter combines and expands on the material presented
in [C1], [C2], [C3], [C4], and [C5] to describe the necessary background
information for this dissertation.

Chapter 3. A version of this material has been published as [C1], and
presented as [C2] and [C3]. In [C1], [C2], and [C3], I was the lead re-

v



searcher responsible for conducting the majority of the research and writing
the manuscript under the guidance of Dr.Mieszko Lis and Dr.Prashant Nair.
Mohammad Ewais was responsible for the functional integration of the prior
work into the simulator, as well as an initial implementation of the proposed
method. I was responsible for the detailed timing implementation, integra-
tion, and evaluation of the prior work as well as optimizing the proposed
method implementation for better performance, conducting most of the ex-
periments, analyzing the results, and writing the corresponding portions of
the manuscript.

Chapter 4. A version of this material has been published as [C4]. In
[C4], I was the lead researcher responsible for conducting the research, imple-
menting the proposed method in the simulator, performing the experiments,
collecting and analyzing the results, and writing the manuscript under the
guidance of Dr.Mieszko Lis and Dr.Prashant Nair.

Chapter 5. I was the lead researcher for this work and responsible for
the background research, the majority of the algorithm and design, most of
the writing, and parts of the implementation. Dingqing Yang, was respon-
sible for the majority of the implementation and was also involved with the
methodology.

Chapter 6. A version of this material has been published as [C5]. in
[C5], I was the second author responsible majorly for the software and algo-
rithm side of the work. Specifically, I was responsible for some background
research, the implementation of the machine learning models including re-
producing the prior work on sparse training, extending the software frame-
work to support the proposed mechanisms, understanding the trade-offs for
hyperparameter search and tuning them to work with the proposed meth-
ods, conducting the experiments to collect and analyze model performance
and accuracies, and writing the corresponding sections in the manuscript. I
was also partly involved with the design of the hardware architecture of the
proposed work. The lead author, Dingqing Yang, and the other author, Xi-
aowei Ren, were responsible for the majority of the background research, the
dataflow and data layout choices and trade-offs in the hardware, the sparse
data compression format, algorithm adaption to make it hardware-friendly,
most of the architectural decisions, all the hardware implementation, con-
ducting hardware simulation experiments, and writing the manuscript for
the corresponding sections.

Chapter 7. This chapter combines and expands on the related work sec-
tions that were presented in [C1], [C2], [C3], [C4], and [C5] with the related
work for the work in Chapter 6.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Computing Trends and Storage Requirements . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Computing Systems . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Multi-level Memory Hierarchy . . . . . . . . . . . . . 10
2.2 Data Compression . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Lossless Data Compression . . . . . . . . . . . . . . . 14
2.2.2 Lossy Data Compression . . . . . . . . . . . . . . . . 17

2.3 Hardware-Based Data Compression . . . . . . . . . . . . . . 18
2.3.1 Opportunities . . . . . . . . . . . . . . . . . . . . . . 18

vii



2.3.2 Software or Hardware Implementation . . . . . . . . . 19
2.3.3 Challenges of Hardware Implementation . . . . . . . 21
2.3.4 Inefficiencies of Using Traditional Methods . . . . . . 22

2.4 Hardware-Based On-Chip Memory Compression . . . . . . . 24
2.4.1 Compression in Caches . . . . . . . . . . . . . . . . . 25
2.4.2 Compression in Scratchpads . . . . . . . . . . . . . . 31
2.4.3 Addressing the Limitations of Prior Methods . . . . . 34

3 Leveraging Redundancy Within and Across Blocks . . . . 36
3.1 Beyond Single Type of Redundancy . . . . . . . . . . . . . . 38
3.2 Architecture and Operation . . . . . . . . . . . . . . . . . . . 39

3.2.1 Cache Architecture . . . . . . . . . . . . . . . . . . . 40
3.2.2 Cache Operation . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Walk-through Example . . . . . . . . . . . . . . . . . 44
3.2.4 Replacement Policies . . . . . . . . . . . . . . . . . . 44

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Effectiveness of 2D compression. . . . . . . . . . . . . 49
3.4.2 Compression Analysis . . . . . . . . . . . . . . . . . . 49
3.4.3 Miss Rates Analysis . . . . . . . . . . . . . . . . . . . 52
3.4.4 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . 52
3.4.5 Speedup Analysis . . . . . . . . . . . . . . . . . . . . 54

3.5 Reducing Redundancy with Approximation . . . . . . . . . . 54
3.5.1 Approximate Value Locality In Caches . . . . . . . . 54
3.5.2 Decoupling Compression and Approximation . . . . . 54
3.5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.4 Evaluation Results . . . . . . . . . . . . . . . . . . . 57

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Reducing Data Redundancy via Dynamic Clustering . . . 59
4.1 Near-Exact Data Redundancy . . . . . . . . . . . . . . . . . 59
4.2 Capturing Near Exact Data . . . . . . . . . . . . . . . . . . 61
4.3 The Opportunity for In-Cache Clustering . . . . . . . . . . . 62
4.4 Dynamic Clustering . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Locality-Sensitive Hashing (LSH) . . . . . . . . . . . 64
4.4.2 Using LSH for Clustering and Compression . . . . . . 65
4.4.3 Hardware-Efficient LSH . . . . . . . . . . . . . . . . . 66

4.5 Cache Architecture and Operation . . . . . . . . . . . . . . . 67
4.5.1 Compression Format . . . . . . . . . . . . . . . . . . 67
4.5.2 Cache Structures . . . . . . . . . . . . . . . . . . . . 68

viii



4.5.3 Cache Operation . . . . . . . . . . . . . . . . . . . . . 70
4.5.4 Walk-through Examples . . . . . . . . . . . . . . . . 73

4.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7.1 Compression Analysis . . . . . . . . . . . . . . . . . . 76
4.7.2 Miss Rates Analysis . . . . . . . . . . . . . . . . . . . 79
4.7.3 Speedup Analysis . . . . . . . . . . . . . . . . . . . . 79
4.7.4 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . 79
4.7.5 Clustering Analysis . . . . . . . . . . . . . . . . . . . 82
4.7.6 Threats to Validity . . . . . . . . . . . . . . . . . . . 86

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Dynamic Clustering of Layer Activations in DNNs . . . . 90
5.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Existing Compression Techniques . . . . . . . . . . . . . . . 92

5.2.1 Drawbacks of Existing Techniques . . . . . . . . . . . 92
5.2.2 Channeleon Key Insights . . . . . . . . . . . . . . . . 94

5.3 The Opportunity for Channel Clustering . . . . . . . . . . . 95
5.3.1 Compressing Activation Tensors . . . . . . . . . . . . 95

5.4 Quantization Methods . . . . . . . . . . . . . . . . . . . . . . 97
5.4.1 Uniform Quantization . . . . . . . . . . . . . . . . . . 97
5.4.2 Non-Uniform Quantization . . . . . . . . . . . . . . . 98

5.5 Dynamic Clustering . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.1 Dynamic Channel Grouping . . . . . . . . . . . . . . 100
5.5.2 Non-Uniform Quantization . . . . . . . . . . . . . . . 100
5.5.3 Channeleon in the Inference Process . . . . . . . . . . 102

5.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.7 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . 104
5.7.2 Classification Results . . . . . . . . . . . . . . . . . . 105
5.7.3 Memory footprint analysis . . . . . . . . . . . . . . . 107

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Sparse Training Accelerator . . . . . . . . . . . . . . . . . . . 110
6.1 DNN training . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Potential Savings of Sparse-From-Scratch . . . . . . . . . . . 111
6.3 Sparse Training Considerations . . . . . . . . . . . . . . . . . 113

6.3.1 Sources of Sparsity . . . . . . . . . . . . . . . . . . . 113
6.3.2 Mappings, Dataflows, and Load Balancing . . . . . . 114
6.3.3 Sparse Weight Representation . . . . . . . . . . . . . 117

ix



6.3.4 Sparse Training Algorithms . . . . . . . . . . . . . . . 117
6.4 Sparse Training Algorithms in Hardware . . . . . . . . . . . 118

6.4.1 Creating Computation Sparsity . . . . . . . . . . . . 119
6.4.2 Choosing Which Weights to Keep . . . . . . . . . . . 120

6.5 Dataflow and Sparse Data Format . . . . . . . . . . . . . . . 122
6.5.1 Storage and Sparsity During Training . . . . . . . . . 122
6.5.2 Compressed Sparse Weight Representation . . . . . . 122
6.5.3 Load Balancing and Dataflow . . . . . . . . . . . . . 124

6.6 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7.1 Pruning Ratios and Accuracy . . . . . . . . . . . . . 130
6.7.2 Energy Savings and Speedup . . . . . . . . . . . . . . 131
6.7.3 Mapping and Dataflow Choice . . . . . . . . . . . . . 131

6.8 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . 132
6.8.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . 132
6.8.2 Silicon Area Overheads . . . . . . . . . . . . . . . . . 135
6.8.3 Generality . . . . . . . . . . . . . . . . . . . . . . . . 135

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.1 Cache Compression . . . . . . . . . . . . . . . . . . . . . . . 136

7.1.1 Inter-Block Data Compression . . . . . . . . . . . . . 136
7.1.2 Intra-Block Data Compression . . . . . . . . . . . . . 137
7.1.3 Non-Block-Granularity Compression . . . . . . . . . . 138
7.1.4 Replacement Policies With Compression . . . . . . . 138

7.2 DNN Compression . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.1 Weight Compression . . . . . . . . . . . . . . . . . . . 139
7.2.2 Activation Map Compression . . . . . . . . . . . . . . 141

7.3 AI Hardware Accelerators . . . . . . . . . . . . . . . . . . . . 144

8 Discussion and Future Work . . . . . . . . . . . . . . . . . . . 146
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . 147

8.2.1 A Unified and Dynamic Compressed Cache . . . . . . 147
8.2.2 Compressing Across All Levels of the Memory Hierar-

chy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.3 Compressed Compute Caches . . . . . . . . . . . . . 152
8.2.4 Activation Map Compression in Training . . . . . . . 153
8.2.5 Compression-Aware Regularization . . . . . . . . . . 155

x



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

xi



List of Tables

2.1 Cost of accessing off-chip and on-chip memories in 65nm nor-
malized to a MAC operation (Table IV in [57]) . . . . . . . . 24

3.1 Configuration of the simulated system. . . . . . . . . . . . . . 47
3.2 Storage allocation of 1MB compressed caches. . . . . . . . . . 48
3.3 Dynamic energy and leakage power of compressed caches and

conventional of 1MB. . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Quality cut-off levels for fp64/fp32 and QoR criteria. . . . . . 56

4.1 Configuration of the simulated system. . . . . . . . . . . . . . 75
4.2 Dynamic read energy and leakage power per bank of com-

pressed and conventional caches with the same silicon area. . 80
4.3 Synthesis results for the added logic area of Thesaurus. . . . 81

5.1 Accuracy (top-1) improvement of the per-channel quantiza-
tion over per-layer quantization. . . . . . . . . . . . . . . . . 95

5.2 Accuracy (top-1) comparison of the group-channel quantiza-
tion and per-channel quantization. . . . . . . . . . . . . . . . 101

5.3 Top-1 accuracy comparison of uniform quantization and non-
uniform quantization under the same group clustering setting 102

5.4 Accuracy improvement from channel clustering in Channeleon
over a naive layer-wise quantization. . . . . . . . . . . . . . . 104

5.5 Accuracy improvement from non-uniform quantization in Chan-
neleon over widely used uniform quantization at a channel-
group granularity. . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Accuracy comparison of Channeleon on quantized post-training
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Activation storage requirements of a baseline already quan-
tized to 8 bits, and Channeleon at 6, 5, and 4 bit widths. . . 107

6.1 Hardware configurations for the baseline dense training ac-
celerator and Procrustes sparse training accelerator. . . . . . 129

xii



6.2 Sparsity achieved using the Procrustes training scheme for
the CNNs tested, together with weight footprint and the final
accuracy compared to the dense baseline. . . . . . . . . . . . 129

6.3 Sparsity achieved using the Procrustes training scheme for
the CNNs tested, together with weight footprint and MAC
reduction compared to the dense baseline. . . . . . . . . . . . 130

6.4 Silicon area costs and overheads (synthesis using Synopsys DC
with the FreePDK 45nm library). For fairness, the power es-
timates assume the same dense computation (i.e., no sparsity).134

xiii



List of Figures

1.1 Area, leakage power, dynamic power, and access time are af-
fected by the SRAM array size. . . . . . . . . . . . . . . . . . 2

2.1 Typical memory hierarchy illustrated for (a) single-core general-
purpose computing systems and for (b) special-purpose AI
computing systems. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Percentage of the redundant cache blocks illustrated for sev-
eral benchmarks from Figure 1 of [242]. . . . . . . . . . . . . 17

2.3 Potential storage savings when duplicate and near-duplicate
data blocks are compressed on SPEC2017. . . . . . . . . . . . 18

2.4 Potential energy savings and speedup from ideally leveraging
all weight sparsity. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Comparison of power, area and access latency when compress-
ing the Last-Level cache as opposed to doubling the size of
the cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Structure of a 8-way set associative cache. . . . . . . . . . . . 27
2.7 Last-Level Cache (LLC) implementing Deduplication. . . . . 28
2.8 Last-Level Cache (LLC) implementing B∆I compression. . . 30
2.9 Example of compressing a 64-byte cache block from roms r

benchmark (d1 ). . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.10 Impact of best state-of-the-art activation value quantization

method on the top-1 inference accuracy. . . . . . . . . . . . . 35

3.1 Space reduction in last-level cache images (100 per bench-
mark) using entropy encoding. . . . . . . . . . . . . . . . . . 37

3.2 Redundancy in LLC snapshots and cache space saved using
inter-block compression as well intra-block compression for
these LLC samples. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 The three decoupled storage structures that comprise the
2DCC cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Read access flowchart in 2DCC. . . . . . . . . . . . . . . . . . 42
3.5 Example of compressing a 64-byte cache block from roms r (d1. 43

xiv



3.6 Example of 2DCC operation on lines. . . . . . . . . . . . . . 45
3.7 The bubble sizes represent storage savings due to combined

intra- and inter-block compression, plotted against different
compression factors. . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Cache occupancy, cache miss rates, and performance improve-
ments of 2DCC for insensitive benchmarks. . . . . . . . . . . 50

3.9 Cache occupancy, cache miss rates, and performance improve-
ments of 2DCC for sensitive benchmarks . . . . . . . . . . . . 51

3.10 A decoupled approximate cache design that separates the ap-
proximation (a) and compression (b) aspects. . . . . . . . . . 55

3.11 Approximating and compressing a cacheline from jmeint us-
ing a base-delta representation. . . . . . . . . . . . . . . . . . 55

3.12 Compressed working sizes for Doppelgänger and several de-
coupled approximation+compression combinations. . . . . . . 57

4.1 Effective LLC capacity from data compression by executing
the SPEC-2017 suite. . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Fraction of 64-byte cachelines in an LLC snapshot of mcf that
can be deduplicated with at least one other cacheline. . . . . 61

4.3 Cluster parameters after applying DBScan to LLC snaphots
from different SPEC workloads. . . . . . . . . . . . . . . . . . 63

4.4 Computing the fingerprint of a cacheline using dimensionality
reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 A hardware-friendly variant of dimensionality reduction for
computing the fingerprint of a cacheline developed for The-
saurus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Hardware implementation using an adder tree and a com-
parator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 The base+diff compression encoding in Thesaurus. Left:
compression; right: decompression. . . . . . . . . . . . . . . . 68

4.8 A two-set, two-way Thesaurus cache with two memory blocks
cached in the base+diff format. The entries share the same
base but have different diffs. . . . . . . . . . . . . . . . . . . . 68

4.9 Top: Data array entries for uncompressed data (left) and
the base+diff/0+diff encodings (right). Bottom: Tag en-
try format (left) and the base table entry that contains base
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 The segment index (here, 5) and the startmap combine to
locate the compressed data block within a set. . . . . . . . . . 70

4.11 Processing a read request in Thesaurus. . . . . . . . . . . . . 71

xv



4.12 Thesaurus structures during cache operations: (a) initial state;
(b) read request processing; (c) eviction; (d) new entry inser-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.13 Compressed working set size, cache miss rates, and perfor-
mance of Thesaurus compared to baselines on cache-insensitive
benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.14 Compressed working set size, cache miss rates, and perfor-
mance improvements of Thesaurus compared to baselines on
cache-sensitive benchmarks. . . . . . . . . . . . . . . . . . . . 78

4.15 Fraction of cache insertions that are potentially compressible
with respect to their clusteroid (avg. 87%). . . . . . . . . . . 80

4.16 Difference in total power consumption using Thesaurus com-
pared to the baseline. . . . . . . . . . . . . . . . . . . . . . . 82

4.17 Distribution of clusters (= same LSH) with different sizes
(average over the runtime of each benchmark). . . . . . . . . 83

4.18 Frequency of different compression encodings in compressing
benchmarks from SPEC. B+D=base+diff; 0+D=0+diff;
RAW=uncompressed; Z=all-zero. . . . . . . . . . . . . . . 83

4.19 The average size of the byte difference from the relevant clus-
teroid for base+diff and 0+diff, in # bytes. . . . . . . . . 84

4.20 How the diff size varies over time: 1 million cache insertions
after skipping the first 40B instructions. . . . . . . . . . . . . 85

4.21 Base cache hit rate (left axis) and storage cost (right axis) for
different base cache sizes. . . . . . . . . . . . . . . . . . . . . 85

5.1 (a) A block representing convolutional layer and its activa-
tion, weight, bias, and gradient values. (b) A demonstration
of network layers for building block of residual learning net-
works as in Figure 2 and Figure 3 of [112] (black arrows illus-
trate activation in forward path). . . . . . . . . . . . . . . . . 91

5.2 Share of the activation and weight values. . . . . . . . . . . . 93
5.3 Impact of our proposal on the top-1 inference accuracy of the

MnasNet1 0 networks. . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Distribution and visualization of the activation values in the

first layer of the ShuffleNet v2. . . . . . . . . . . . . . . . . . 96
5.5 Quantizing values of a non-uniform distribution (blue dots)

with a 2-bit budget. . . . . . . . . . . . . . . . . . . . . . . . 99
5.6 Illustration of the channel clustering method in Channeleon. 101
5.7 The overhead of Channeleon normalized to the network in-

ference operation. . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvi



6.1 Potential training energy savings and speedup from ideally
leveraging all weight sparsity. . . . . . . . . . . . . . . . . . . 112

6.2 CNN training consists of (a) the forward pass, (b) the back-
ward pass, and (c) the weight update pass. . . . . . . . . . . 113

6.3 A weight-stationary mapping: input and output channel di-
mensions (C and K) are distributed spatially. . . . . . . . . . 114

6.4 DNN computation on a 2D PE array with a weight-stationary
C,K mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Load imbalance histogram of full-PE-array working sets. . . . 116
6.6 Validation accuracy over the course of training when initial

weights decay 0.9ˆ every iteration. . . . . . . . . . . . . . . . 119
6.7 Validation accuracy over training epochs when sparse training

and quantile estimation is used. . . . . . . . . . . . . . . . . . 121
6.8 The compressed sparse block (CSB) weight representation in

Procrustes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.9 Load balancing in the weight-stationary C,K dataflow in a

four-PE array. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.10 Mappings and dataflows that spatially distribute the mini-

batch across one dimension of the PE array. . . . . . . . . . . 125
6.11 Load balancing in the proposed K,N dataflow in a four-PE

array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.12 Procrustes system architecture. . . . . . . . . . . . . . . . . . 127
6.13 Validation accuracy over training time for Procrustes and the

unpruned baseline (Stochastic gradient descent) on CIFAR-10. 128
6.14 Validation accuracy over training time for Procrustes and the

unpruned baseline for ResNet18 and MobileNet v2 on ImageNet.129
6.15 Energy breakdown of using KN dataflow. . . . . . . . . . . . 133
6.16 Energy Comparison across different dataflows. . . . . . . . . . 133
6.17 Training latency across different dataflows. . . . . . . . . . . 133
6.18 Scalability of Procrustes on 16ˆ16 (256) to 32ˆ32 (1024) cores.134

8.1 Indication of how compressibility varies over time. Y-axis
shows the number of unique bytes at each cacheline using
Thesaurus compression. 1 million cache insertions after skip-
ping the first 40B instructions. . . . . . . . . . . . . . . . . . 148

8.2 Possible unified cache scheme. . . . . . . . . . . . . . . . . . . 149
8.3 Compute Cache overview from [18]. (a) Cache Geometry (b)

In-place compute in a sub-array . . . . . . . . . . . . . . . . . 152
8.4 Possible compression method where similar chunks of activa-

tions are pushed to produce same value. . . . . . . . . . . . . 156

xvii



Abbreviations

ALU Arithmetic logic unit

B∆I Base-delta immediate

CNN Convolutions neural network

CONV Convolutional

CPU Central processing unit

CSB Compressed sparse block

CSC Compressed sparse column

DNN Deep neural network

DRAM Dynamic random-access memory

FC Fully connected

GLB Global buffer

IPC Instructions per cycle

LLC Last-level cache

LRU Least recently used

LSH Locality-sensitive hashing

MAC Multiply and accumulate

MPKI Misses per 1000 instructions

MSE Mean squared error

PE Processing element

PTQ Post-training quantization

xviii



QoR Quality of result

ReLU Rectified linear unit

RF Register file

RNG Random number generator

SRAM Static random-access memory

xix



Acknowledgements

None of this work would have been possible without the support of my fam-
ily, advisors, colleague, and peers. First, I would like to thank my advisors
Mieszko Lis, and Prashant Nair for many years of guidance, patience, mo-
tivation, and support. Thank you for providing an environment for me to
fail and grow and an opportunity to pursue my ideas. Thank you for your
invaluable insights into our work, research, and all the days and nights that
you stayed and worked with me. Thank you for always being there whenever
I needed you. Thank you for always expecting the best and pushing me to
do high-quality research. Your dedication will always inspire me both in my
personal and professional life.

I would especially like to thank my family for helping me throughout
this journey. To my father – thank you for everything. You inspired me to
be the best of me, to become an engineer, and removed many barriers for
me to become who I am today. Thank you for your non-stop support. To
my mother – thank you for your love and patience. Thank you for all your
emotional support, worrying about my worries, and becoming happy on my
happy days. I wouldn’t be able to overcome ups and downs without your
love. To my brothers – thank you for always opening the path for me and
being a good example in front of me. Thank you for your dedication in what
you do and your achievements, which inspired me to step up my game as
well. Thank you for always being someone who I can trust, feel loved, talk
to, and feel understood. Thanks to all my relatives, who pumped a lot of
positive energies by believing in me and motivating me to pursue my path.

Finally, I thank all my peers and colleagues both in university and out-
side who helped me overcome challenges during my PhD program. Without
their emotional and technical support, this journey would not be enjoy-
able. To all of the UBC friends I had the pleasure of working with and
learning from them – Xiaowei Ren, Jeff Goeders, Dingqing Yang, Moham-
mad Ewais, Maximilian Golub, Khaled E. Ahmed, Mohamed Omran Matar,
John Deppe, Peter Deutsch, Mohammad Olyaiy, Jose Pinilla, Al-Shahna Ja-
mal, Hossein Omidian, Tayler Hicklin Hetherington, Shadi Assadikhomami,
Ahmed ElTantawy, Ayub Gubran, Dave Evans – thank you for making this

xx



such a memorable experience. Especially, it was my pleasure to collaborate
with Xiaowei Ren, Dingqing Yang, and Mohammad Ewais.

xxi



Dedication

To my mother, Shamsi, and father, Hassan.

xxii



Chapter 1

Introduction

1.1 Computing Trends and Storage
Requirements

Off-chip memory bandwidth has been considered one of the major limiting
factors to processor performance. The “Memory Wall” [257] describes the
disparity between the rate of CPU performance improvement and the rel-
atively flat rate of off-chip memory bandwidth increase. Researchers have
ameliorated the issue of limited off-chip bandwidth by adding on-chip caches
in CPUs and on-chip scratchpads in HW accelerators. This makes a subset
of memory requests, for example, more frequently accessed addresses, ac-
cessible at lower latencies. These on-chip memories had been useful for sev-
eral decades; recently, however, due to big data’s exponential growth [162],
memory requirements have surpassed on-chip memory capacities. Now, the
problem arises from not having enough on-chip memory capacity, which
translates to an increased number of accesses to off-chip memories with or-
ders of magnitudes more energy and latency costs [57, 105] compared to
on-chip memories.

Limited on-chip memory capacity is a challenging problem to solve. To
begin with, it is not practical to increase the chip size to provide more on-
chip memory storage space. Increasing the chip size makes the processor
unmanufacturable because of the silicon cost and yield problems [145, 244].
Moreover, progress in memory improvement has not kept up with demand
for faster and larger memories due to energy and cost limitations [121].
This means that even if we can allocate more silicon, simply increasing the
amount of on-chip memory may result in less overall chip efficiency: larger
SRAM memories, have larger number transistors, more complex routers,
longer wires, and larger sense amplifiers; thus, larger on-chip memories have
higher leakage power, higher dynamic power, higher access latency, and
higher silicon costs (see Figure 1.1).

Therefore, these challenges necessitate innovative solutions in order to
increase on-chip memory capacities without the drawbacks of increasing the

1



Figure 1.1: Area, leakage power, dynamic power, and access time are affected
by the SRAM array size. Measured at 32nm technology using CACTI [138].

silicon area.
An immediate alternative could be to use denser memories with the help

of emerging memory technologies. Unfortunately, there are some practical
limitations in using these memories. Although they can be built in dense
and higher capacities, they tend to have high latency and energy consump-
tion, reliability issues, limited bandwidth, and low endurance compared to
SRAM [60, 180].

Moreover, currently there is no commercial emerging memory that can
be used as a good replacement for current memories. Academic efforts [60,
75, 180, 217, 270] resulted in a few non-production level prototypes [75, 217];
to the best of our knowledge, Intel® Optane™ DC PMM [28] is the only
commercial device in production, but, this device suffers from high latency,
low bandwidth, and added software complexity in order to use it [130, 224].

Due to these limitations, the only solution left is to efficiently utilize
on-chip memory to fit more data on existing storage space. In this thesis, we
investigate the problem of increasing effective capacity of on-chip memories
through data compression. We use hardware-level efficient data compression
methods to store the same amount of information in smaller memory blocks
in on-chip memories. Although our techniques are not limited to SRAM and

2



can be applied to all types of memories including the emerging memories
without the loss of generality, here we specifically focus on last-level cache
memories in general-purpose computing systems, and scratchpad memories
in special-purpose AI accelerators.

State-of-the-art techniques for last-level cache compression can gener-
ally fall into two classes: intra-cacheline compression, which places multiple
memory blocks within each cacheline [191, 200, 219], and inter-cacheline
deduplication [242], which helps capture data redundancy across cacheline
boundaries by detecting identical cachelines and storing only a single copy.
These methods suffer from either a small compression ratio, high hardware
complexity, or large decompression latency.

In the special-purpose computing domain, AI accelerators have attracted
special attention in recent years. Deep Neural Networks (DNNs) [152] were
developed to identify relationships in high-dimensional data, and now are
the driving technology for numerous application domains [65, 66, 99]. Re-
cent DNNs contain several millions [112, 216, 281] or even billions [74, 203]
of parameters with gigabytes of memory footprint. The memory footprint
can be reduced by leveraging more efficient values (i.e., parameters, activa-
tion maps) through various techniques such as pruning and quantization at
the cost of consequent accuracy degradation. A major drawback of existing
methods is their inability to significantly reduce the memory footprint while
preserving the network accuracy.

Although data compression can help tackle the trend of having larger work-
ing set sizes, it is not trivial to make data compression work in hardware for
these applications.

1.2 Challenges

Aside from achieving high compression ratio, the following considerations
need to be taken into account when designing a hardware compression
method:

• Low complexity and implementation cost: To make any com-
pression feasible in hardware, it should require minimal changes to
existing software and hardware stack. Significant changes to existing
hardware can hinder the integration and implementation of such meth-
ods, especially in commercial devices.

The focus of chapter 3 and chapter 4 is to develop efficient compression
methods for existing CPU caches; therefore, we make minimal changes

3



to the structure of the conventional cache to be able to integrate our
compression modules. Furthermore, the compression happens almost
entirely in hardware, which means no changes to the software stack
are required.

• Low latency, area, energy, and memory management over-
heads: In order for the methods to be more feasible to be imple-
mented in on-chip memories, they should operate at reasonably fast
speeds. Many of the applications are latency-critical, and the compres-
sion methods should stay within the access times of on-chip memories
(only a few cycles). Further, the added area and energy overheads
should be low enough so that the benefits of having the compression
method surpass the overheads. Having data blocks with various sizes
also complicates the space management and block lookup procedures
on the memory. Therefore, more advanced replacement policies are
needed in order not to waste the memory space and keep the access
latency low.

In chapter 3, we develop a hardware-friendly compression method via
a novel combination of two well-known cache compression methods,
and develop a novel replacement policy to efficiently manage space in
a compressed cache. In chapter 4, we develop a novel in-hardware com-
pression method that captures and compresses similar data blocks by
using a dynamic clustering mechanism. We perform the dynamic clus-
tering using a hardware-friendly variant developed based on locality-
sensitive hashes (LSH) [127]; it computes the hashes using only addi-
tion and subtraction operations. We also propose a cache replacement
policy in order to avoid the issue of under-utilization of cache space
due to variable-sized blocks. Later in chapter 5, we use sampling be-
fore performing the clustering task in order to keep the computation
costs low. Lastly, in chapter 6, we replace the sorting algorithm needed
for model pruning with an on-the-fly cheap partitioning method. All
of these techniques help add compression to on-chip memories with
negligible overheads.

• Zero or low application quality loss: In most cases applying the
compression method to applications should not affect the quality of
results (QoR) which is measured by metrics such as accuracy. How-
ever, there exist some applications like machine learning applications
where relaxing some quality constraints enables higher memory sav-
ings. Therefore, application quality is being traded for memory com-

4



pression, and so the least amount of quality degradation is desired for
any given compression ratio.

In chapter 3 and chapter 4, we propose lossless compression methods
targeted for general-purpose processors. The decompressed block can
be reconstructed to its original value using simple operations such as
subtraction and logical XOR. In chapter 5 and chapter 6, however, due
to the fact that machine learning models are able to tolerate errors,
we use and develop lossy compression methods such as low-bitwidth
quantization and pruning to significantly reduce the memory footprint;
these methods use domain-specific knowledge such as the statistics of
the values, and are specifically designed to keep accuracy losses low.

Considering all these challenges, we describe the insights we leveraged to
develop efficient on-chip compression methods in the following section.

1.3 Thesis Statement

This dissertation explores the potential to utilize in-hardware compression
of on-chip data in order to increase overall system performance without
incurring the energy and cost overheads of larger memories. Methods de-
scribed here enable efficient compression of on-chip data that are dynamic
and constantly changing.

First, it is essential to go beyond compressing values in isolation or only
a few consecutive data blocks. An effective compression scheme performs
the compression across a broader set of blocks by taking advantage of re-
dundancies across and within memory blocks. This essentially enables the
compression method to make better compression decisions (i.e., what data
blocks can be compressed together, what values can be dropped, etc.) based
on the relevant data points in the entire set of available on-chip data.

Second, efficient data compression methods, need to account for not only
exact repetitions (duplicates), but also more importantly for approximate
repetitions (near-duplicates). We observed that there are similarities among
memory blocks stored in on-chip memories both in general-purpose and
special-purpose computing systems. This similarity can be used toward de-
veloping compression methods that search for these near-duplicate memory
blocks throughout the memory, and efficiently stores non identical parts.

Third, dynamic clustering algorithms are well-suited to convert this sim-
ilarity in on-chip data to storage savings. Similar data blocks within each
cluster can be delta encoded with respect to the centroid of each cluster,

5



therefore, occupying much less memory. Also, as the data comes to on-chip
memory when accessed and might be evicted after it is consumed, the clus-
tering and compression should be dynamic at run time.

Finally, efficient in-hardware clustering is crucial to convert storage sav-
ings into system performance. The benefits from the compression method
should outweigh the cost of having it; complex algorithms that work best
(i.e., form better clusters) in software are not necessarily the best choice
for in-hardware implementation. On-chip memories are latency and energy-
critical, and any compression methods should be hardware-friendly. Clusters
can be formed cheaply using approximate similarity search methods, while
keeping the compression method lossless for sensitive applications.

1.4 Contributions

We propose and develop two novel hardware-level techniques for compressing
last-level CPU caches, as well as two techniques for compressing the data in
machine learning applications.

In the first work, we identify the missed opportunity in compressing
cache memories due to not considering data throughout the on-chip memory
when capturing data redundancy. We show that leveraging redundancies
within cachelines, or only across cachelines leads to a significant loss in
compression opportunities for several applications: some workloads exhibit
either inter-block or intra-block redundancy, while others exhibit both. We
propose 2DCC, a simple technique that takes advantage of both types of
redundancy to compress the data by 2.12ˆ (geomean) over the baseline
with no compression. We evaluate 2DCC in an iso-silicon basis compared to
the baseline and show that it can cheaply be integrated into existing caches.

Next, we identify a previously untapped source of inefficiency in cache
compression methods: not accounting for similar memory blocks that is
stored on on-chip memories. we propose Thesaurus, a dynamic inter-cacheline
compression technique to efficiently detect and compress groups of memory
blocks that have nearly identical, rather than exactly identical, data values.
The similar data is clustered using a hardware-friendly variant of locality-
sensitive hashing. To compress the cache, Thesaurus stores the “clusteroid”
of each cluster together with the (much smaller) “diffs” needed to recon-
struct the rest of the cluster, which significantly improves cache compression
to 2.25ˆ (geomean).

As the third contribution we tackle the problem of data compression
in DNNs; more specifically, DNN activation map compression at inference-

6



time, which can significantly reduce the memory footprint in scratch-pad
memories. We observe that many activation channels share similar statistics.
Thus, we propose Channeleon, a technique which looks at the entire set of
channels at each layer, clusters them based on activation statistics, and
performs non-linear quantization on each cluster separately. This method,
unlike prior work, does not need to have access to the training data and does
not need any tuning. Channeleon is able to compress the activation maps
to 5-bit while outperforming the best state-of-the-art method by 60% top-1
accuracy on large-scale visual dataset (ImageNet [71]).

As the final contribution, we propose Procrustes, an AI hardware ac-
celerator that produces compressed sparse weights from scratch based on
software-hardware co-design. This accelerator produces an order-of-magnitude
compressed models by considering the entire set of gradient values and keep-
ing the ones with the highest change, rather than looking at the gradients or
weights individually. In order to make this technique hardware-friendly, we
use a computationally simple quantile estimation method to track weights,
and also leverage a novel data-flow and load-balancing scheme that converts
sparsity into speedups. Procrustes results in up to 3.26ˆ energy savings
and up to 4ˆ speedup compared to the state-of-the-art accelerators, while
maintaining dense model accuracy.

1.5 Organization

The rest of this dissertation is organized as follows:

• Chapter 2 discusses the relevant background information for this dis-
sertation, such as data compression, memory hierarchy in general-
purpose and special-purpose systems, as well as compression tech-
niques for on-chip memories.

• Chapter 3 characterizes the workloads and studies the state-of-the-art
methods for data compression in cache memories. Then it presents a
compression method that leverages redundancy within and across data
lines in the cache memory.

• Chapter 4 extends the prior insight on granularity with approximate
nearest neighbour search to find similar blocks of data in cache mem-
ory. It proposes and evaluates a novel compression technique based on
dynamic clustering to compress blocks against similar data lines that
are already stored in the cache.

7



• Chapter 5 identifies the trend in memory usage of modern machine
learning models, which is dominated by activation maps, and proposes
and evaluates a novel online compression mechanism to reduce the
memory footprint of activation maps at inference time.

• Chapter 6 demonstrates co-design approach for accelerating AI train-
ing. It adapts a model pruning method that achieves an order of mag-
nitude in weight footprint reduction by considering the entire set of
gradients to suit the hardware constraints. Then, it develops dataflow,
data layout, load balancing techniques and proposes a sparse train-
ing hardware accelerator to convert this compression to speedups and
energy gains.

• Chapter 7 discusses the related work for this dissertation.

• Chapter 8 concludes this dissertation and discusses directions for fu-
ture work.

8



Chapter 2

Background

In this chapter, we give a concise overview of the necessary background
topics and materials, and place the rest of the thesis in the content of the
existing literature. We begin with an overview of computing systems and
their memory hierarchies. Then, we describe the motivation and potential
of data compression for on-chip memories. We continue with some back-
ground in data compression and outline a few of the traditional compression
methods. Next, we discuss the challenges of compression in hardware. Fi-
nally, we conclude this section by a brief overview of the state-of-the-art
methods and their drawbacks.

2.1 Computing Systems

Von Neumann computers, like general-purpose personal computers, have
separate processing and data storage components. This generalized design
enables these systems to run a wide range of everyday applications. In these
systems, energy efficiency and performance are bounded by the frequency of
data movement between processors and off-chip memory [182].

This easily becomes a limiting factor with the increasing volume of data
in massive-scale applications such as real-time sensor data and genetics
data [42, 174, 188].

However, due to energy and bandwidth constraints and difficulty in scal-
ing memory technologies, using large-size memory systems becomes infeasi-
ble [13, 49, 50, 168, 182, 215].

Moreover, the explosion of big data applications is driving the develop-
ment of machine learning applications [203, 248]; this imposes severe chal-
lenges of data processing speed and scalability on conventional computer
systems [54, 57]. Such applications require a stand-alone technical solution
and computing platforms that are specifically designed for them.

These special-purpose computing systems, namely AI accelerators [54,
57, 58, 105, 259], usually require a deep understanding of the target work-
loads and are often constructed with a large number of highly parallel com-
puting and storage units. Many of these systems are designed to be used

9



on the edge where data exists, therefore, they are constrained by limited re-
sources and energy budget. Thus, similar to conventional computers, using
large-size memory systems are infeasible in hardware in accelerators as well.

Over-provisioning of memory system resources alone cannot solve the
rising demands of data processing and storage; in fact, efficient approaches
for storing and processing data are critical in memory systems. Therefore,
there is considerable amount of effort not only to improve the compute
unit [18, 77] and memory technologies [75, 75, 175, 217, 270], but also to
reduce the data movement [21, 200, 242, 243, 260] and therefore make this
data movement cheaper throughout the memory hierarchy.

2.1.1 Multi-level Memory Hierarchy

Memory hierarchy separates computer storage into a hierarchy based on
response time (i.e., latency) and capacity. Latency and capacity are related,
as addressing a high-capacity memory incurs a higher latency.

An underlying assumption of the memory hierarchy is the data locality
principle, consisting of temporal and spatial locality. Temporal data locality
means that data that is accessed is likely to be accessed again in the near
future, whereas spatial data locality means that data stored in adjacent
memory blocks is likely to be accessed together.

Usually, when a piece of data is requested by the computing unit, it will
be retrieved from the closest level to the processor. These memories are faster
but have limited capacity. The request will be propagated further to the next
levels if the data is missing at that level. Memories farther from compute
unit have larger capacities, but take longer to access. Faster memories are
vital for faster computation; thus, storing more data on levels closer to the
processor will improve the system performance by reducing the access to
slower memory levels.

While processor is executing instructions, random-access memories tem-
porarily store data. Random-access memory cells are divided into SRAM
(Static Random Access Memory) and DRAM (Dynamic Random Access
Memory). Briefly, SRAM is fast but requires more silicon space, whereas
DRAM is slower but allows for a higher capacity due to their simpler struc-
ture and higher density.

Designing for high performance requires considering the restrictions of
the memory hierarchy, i.e., the size and capabilities of each memory. The
typical memory hierarchy in both general-purpose and specific-purpose com-
puting systems are as follows:

10



Figure 2.1: Typical memory hierarchy illustrated for (a) single-core general-
purpose computing systems and for (b) special-purpose AI computing sys-
tems.

General-purpose systems

Applications are becoming more sophisticated and as a result, their memory
footprint keeps increasing [162]. In response, the number of levels in the
memory hierarchy and the performance at each level have increased over
time in the general-purpose computers. Latency, bandwidth, and capacity
of each level are the key determinants of each level’s performance.

Modern processors contain multi-level on-chip SRAM memories called
cache memories, which leverage data locality in order to mitigate the latency
and bandwidth limitations of accessing the main memory; therefore, levels
closest to the CPU (i.e., registers and cache memories) focus on providing
data with very low latency, constraining their physical size.

Moving away from the CPU, the latency cost of missing in a particular
level of a hierarchy grows rapidly: from a few processor cycles for a first-
level access, to hundreds of cycles for a main memory (i.e., DRAM) access,
to millions of cycles for a disk access.

The memory hierarchy can be seen as a pyramid of storage mediums.
Each computing system will have its specific design constraints and ex-
act numbers. The following hierarchy (illustrated on Figure 2.1(a)) is what
the typical memory hierarchy looks like in general-purpose computers these
days:

11



• Processor registers and Level-0 cache: usually accessible in couple of
cycles with a few KB of capacity.

• Level-1 caches for instructions and data: accessible in a few cycles with
around hundreds of KB of capacity.

• Level-2 cache: with access times of a couple of tens of cycles with up
to a couple of MB of capacity.

• Last-level cache(s): shared storage with an order of magnitude higher
capacities and access latency of tens of cycles.

• Main memory : resides off-chip and requires hundreds of cycles to ac-
cess but offers GBs of capacities.

• Secondary storage: used to store bulk data with TBs of capacity and
can be an order of magnitude slower to access. Examples are SSDs and
HDDs.

• Tertiary and offline storage: can be an order of magnitude slower to
access than secondary storage but offer orders of magnitude bigger
capacity. Examples are optical disks and tapes.

Processors are typically running instructions on separate cores at the
same time, increasing overall speed for programs that support multithread-
ing or other parallel computing techniques. Each core has its own registers
and first-level and second-level caches, but all cores share the Last-Level
Cache (LLC) in current designs.

One of the major constraints with the increase in the number of on-
chip cores is the tremendous increase of bandwidth requirements, especially
off-chip bandwidth [182]. Off-chip bandwidth is mainly generated by the on-
chip LLC misses and writebacks. These off-chip accesses depend on cache
size and the cache replacement policy.

Improving cache memories can have a huge impact on overall computing
system performance by avoiding the expensive access to off-chip memories.

special-purpose systems

Typical memory hierarchy of AI accelerators, as illustrated in Figure 2.1(b)
is composed of an off-chip memory (e.g., DRAM) and multiple on-chip
scratchpad memories. Compute efficiency and power consumption are major
considerations especially in an edge deployment scenario.

12



A DNN generally requires a large memory footprint which affects both
the energy and performance. The majority of the power consumption of
these applications is due to the on-chip and off-chip memory accesses rather
than compute unit. For large and complicated networks, it is unlikely that
the whole network can be mapped onto the chip. Due to the limited off-chip
bandwidth, it is important to reduce the off-chip data transfer to improve
the computing efficiency. Moreover, the cost of accessing off-chip DRAM is
orders of magnitude more than that of on-chip memory [58] which is another
important consideration in reducing the off-chip access as much as possible.

There has been a lot of research on improving the memories in these com-
puting systems in order to improve their performance and energy. Some [60,
75, 156, 175, 180, 217, 246] proposed emerging memory technologies as a
solution. Although these may become very attractive as a possibility for
future memory hierarchies, there are currently major issues with their reli-
ability and performance, as described in chapter 1. In addition, the lack of
compatibility of the technology with the fabrication process is also a very
important issue [40].

Intel® Optane™ DC, the only commercially available device nowadays,
suffers from lower bandwidth and higher latency compared to DRAM [130,
224], and targets the gap between DRAM and SSD memories. It is possible to
achieve speedups using this device, but this requires redesigning the software
specifically to access persistent memories directly [130].

2.2 Data Compression

Data accessed by real-world applications in the memory hierarchy of com-
puting systems show a significant amount of redundancy, which provides an
opportunity for compression [237, 243]. Such redundancy may arise due to
the nature of program inputs and operations.

Several applications use a common value (e.g., zeros) for initializing a
large array of integers that causes the most common data redundancy in
applications. Zero is also used to represent null pointers or false boolean
values, and to represent sparse matrices (in dense form).
Similarly, with variable assignment or on using memcpy(), two copies of
data may be stored in the memory. A large contiguous region of memory
may contain a single value repeated multiple times [223].

In several cases, programmers provision large-size data types to handle
worst-case scenarios even if most values can fit in a smaller data type, for
example, a 4-byte integer may store only a 1-byte value. Special cases such

13



as null values (i.e., all zero bits) can be represented with a single flag bit
only. Further, in many cases, the differences between values stored within
a memory block may be small, and hence they are occupying the memory
space with repeated upper bits. A stride sequence might appear when a
data structure such as an array is being accessed in a regular fashion; loop
induction variables also have a stride characteristic [223].

Data compression is the process of encoding information using fewer
bits than the original representation. Assuming that data consists of some
number of symbols (i.e., bytes, words, etc.), compression methods replace
these symbols with a new set of codewords that occupy less space in memory.

Data symbols can be replaced with codewords using two types of cod-
ing: a) fixed-length coding and b) variable-length coding. Fixed-length cod-
ing uses the same number of bits for each codeword. Variable-length coding
can generate more efficient codes assuming that some of the symbols are
more likely than others. By assigning shorter codewords to the more fre-
quently occurring symbols and longer codewords to the symbols that occur
infrequently, the average size of output codewords can be smaller.

Compression methods can also be categorized as static or dynamic. Static
techniques provide a fixed mapping from data to the code words. Dynamic
techniques can change the mapping over time and require only one pass on
the input data to generate the encoded message on the fly.

Depending on whether the compression and decompression change the
original information, data compression algorithms can be categorized as ei-
ther lossless or lossy. In lossless compression methods, no information is lost
and the size of data is reduced by identifying and eliminating statistical re-
dundancy. On the other hand, lossy compression reduces bits by removing
unnecessary or less important information. Therefore, there is a correspond-
ing trade-off between preserving information and reducing size.

In the remainder of this section, we discuss common software-based lossless
and lossy compression methods used for data storage and communication.

2.2.1 Lossless Data Compression

A lossless technique means that the restored data is identical to the origi-
nal. This is absolutely necessary for many types of data such as executable
codes. Lossless compression is possible because most real-world data ex-
hibits statistical redundancy. For example, an image of snow may have areas
of white color that do not change over several pixels. Run-length encoding,
delta compression, Huffman encoding, and dictionary coding are among the

14



most popular algorithms for lossless storage. The main performance metric
in these methods is compression ratio.

Run-length encoding

Run-length coding is a well-known method based on the assumption of long
data sequences without change of content. These sequences can be described
by the value being repeated and length. For instance, a data block contain-
ing a value repeated eight times can be compressed to a block storing the
repeated value itself followed by the value eight.

Therefore, run-length encoding is a good candidate for transmission of
streaming data where the consecutive data blocks does not differ signifi-
cantly from earlier data, but can be inefficient when there are lots of unique
occurrences of data blocks. It is also used for compressing bitmapped images
where many consecutive repeated values, for example, white pixel, might ex-
ist in the image. Image formats such as TGA [9] and BMP [7] are based on
run-length encoding.

Delta Compression

Delta compression is a way of storing or transmitting data in the form
of differences (known as diffs or deltas) between sequential values rather
than directly storing or transmitting the entire data. It is widely used in
HTTP servers [222] to send updated web pages, to perform the online backup
of user data with respect to the previous version [239], in the Git source
control system to pack objects where the source or data files are changed
incrementally between commits, to copy the data with lower bandwidth
requirement using the rsync [8] tool, and so on.

Delta compression performs best when data has some small variation.
Its effectiveness will be affected if it is applied on an unsorted data set where
there is not much similarity among consecutive values. The decompression
procedure also involves a sequential process depending on the delta calcula-
tion procedure.

Huffman Coding

Huffman coding eliminates data redundancy using the statistical properties
of data values. It is a static compression method and directly maps individual
symbols to binary words. The Huffman coding algorithm is a simple and
systematic way to design good variable-length codes given the probabilities
of the symbols; it generates a tree by repeatedly joining two nodes with the

15



smallest probabilities to form a new node with the sum of the probabilities
just joined. It assigns a 0 to one branch and a 1 to the other branch. The
codeword for each symbol is given by the sequence of 0’s and 1’s starting
from the root node and leading to the leaf node corresponding to the symbol.

Huffman coding [126] assumes the probabilities of the symbols are known
apriori. This might not be possible for many applications where the data
cannot be studied statically. Moreover, the value distribution of data being
compressed is assumed to not changed (e.g., in the case of compressing
files). To overcome these challenges, dynamic Huffman coding [247] which
creates the tree as data enters at the cost of complicating the decompression
procedure.

Despite achieving optimal compression rates for individual symbols, Huff-
man coding can be highly inefficient for compressing groups of symbols,
particularly when the information content of each individual symbol in a
sequence is close to zero. Moreover, it is possible for an infrequent symbol to
have a wider Huffman codeword than its original representation [136]. This
inefficiency can be caused by a bad selection of symbol granularity.

Dictionary Coding

Dictionary coding works by going through a stream of symbols and sub-
stituting any sub-sequence which has already occurred in the stream with
an index or pointer to the previous occurrence of that sub-sequence. If the
length of the index or pointer is smaller than the length of the sub-sequence,
then this results in savings. This is done either by creating a table or using
sliding windows.

In methods that create a table, compression happens by analyzing the
file to create a list of the 2n most common words and then process the
file from beginning to end based on that. Methods using sliding windows,
create a search buffer and processing the file based on previous matches in
that buffer. If the current word is in the dictionary/buffer, then it is replaced
by a tag, followed by the position of the entry in the dictionary. If it is not
available in the dictionary, then it is replaced by another tag followed by the
word that remains unchanged.

The family of Lempel-Ziv(LZ) [285, 286] compression uses dictionary
based techniques to perform dynamic compression of data. A variant which
is a combination of LZ77 [285] and Huffman is called DEFLATE [2] and it
is used in methods including ZIP [10], zlib [11], and gzip [3]. These schemes
are generic and ideal for arbitrary collections of data, but at the same time
very complex.

16



Figure 2.2: Percentage of the redundant cache blocks illustrated for several
benchmarks from Figure 1 of [242].

2.2.2 Lossy Data Compression

In these schemes, some loss of information is accepted as dropping nonessen-
tial detail can save storage space. For example, an image of the sky may have
variants of the blue color that are very similar to each other (but not iden-
tical) and the difference cannot be detected by eye if all are replaced with
a single (similar) blue color. Most forms of lossy compression are based on
transform coding which is widely used in multimedia formats such as in
JPEG for images.

Another common way to compress data with loss of information is called
quantization. Broadly, a quantization function maps the set of real values
(full-precision data) to low-precision data with lower bit-widths. The func-
tion is chosen to minimize the quantization error between the full-precision
values and their low-precision representations. This error is usually measured
as the mean squared error (MSE).

As these methods trade off information to data size, both the error in
data and the reduction in data size after compression (i.e., compression
ratio) should be considered.

17



Figure 2.3: Potential storage savings when duplicate and near-duplicate data
blocks are compressed on several benchmarks from SPEC2017.

2.3 Hardware-Based Data Compression

2.3.1 Opportunities

In previous sections, we talked about potential cases that can cause data
redundancy. Now let us look into potential benefits if we avoid storing the
redundant data by compressing on-chip data. Figure 2.2 depicts the percent-
age of the redundant data in cache memory for four benchmarks. In the case
of zeusmp and GemsFDTD, the majority of the redundancy comes from null
blocks (i.e., zero lines). Therefore, an ideal method that avoids storing null
blocks can free up more than 90% of cache space in the case of zeusmp and
GemsFDTD.

Figure 2.3 shows how much storage space can potentially be saved if we
use a delta compression method to encode near-duplicate blocks as series
of differences with respect to other residing blocks in cache. The figure also
compares the amount of savings with respect to exact deduplication and
highlights the huge potential of compressing near-duplicate blocks.

Aside from the data redundancy, in some special applications such as
ones developed in AI field many works [48, 157, 161, 184, 229, 254] have
claimed that a full-precision operation is not necessarily needed. These works
propose various fixed-point systems with accuracies similar to the baseline
accuracy to reduce the computational cost and storage requirements. Simi-
larly, prior research [92, 107] verified that not all parameters of the neural

18



Figure 2.4: Potential energy savings and speedup from ideally leveraging all
weight sparsity (here, 5ˆ using [92]) in the forward path of training VGG-S
(15M weights) to convergence.

networks are important, and the less important ones can be dropped from
the computation and storage. For example, Figure 2.4 illustrates how a com-
pressed model may lead to around 2 times energy reduction and speedup.

These insights about redundancies, inefficiency in data representation,
and the possibility of using low-bit data types motivate the use of data
compression in the hardware to make more efficient systems.

2.3.2 Software or Hardware Implementation

Compression performance is dependent on available computation resources
[186] and the compression techniques employed. There is a trade-off between
a compression technique that is implemented in software (i.e. mapping the
compression algorithms onto dedicated processing cores) in comparison to a
hardware compressor (i.e., application-specific compression logic embedded
in the memory): at software level, there is more information about the data
(e.g. related data) but less control over bit-level manipulations and data
placement in the memory which is essential for high performance compres-
sion [288].

Several mechanisms were proposed to perform memory compression with
software implementation for various modern operating systems in the com-
piler [151] or in the operating system [97, 250]. While using the additional
information that software have can be quite efficient in reducing applications’
memory footprint, the major limitation of these works is very slow decom-
pression [199, 288]. Further, there is also a read latency overhead which
comes from the fact that this way of decompression in software, consumes

19



CPU cycles [275] and extra CPU-DRAM data traffic.
Another difference between a software implementation and the way data

is stored in the hardware is the block granularity. In filesystems that provide
transparent compression (e.g., ZFS [39], Btrfs [208], and NTFS [210]), data
compression is typically performed over fixed-size data chunks (e.g., 64 or
128 kB), and access to any 4 kB page requires reading and decompressing the
entire chunk [51]. However, for example in the last-level caches, data are be-
ing stored typically in 64-byte chunks which are orders of magnitude smaller.
Therefore, special considerations are needed to rearrange data in memories
so that bigger chunks of compressible data can be compressed and placed
together. Overall, these challenges require changing the file system or appli-
cation layers both by modifying their standard data access behaviors [288]
which imposes scaling challenges.

Aside from the block granularity, another fundamental difference is that
software does not have direct access to the data being stored in several
memories in memory hierarchy including on-chip cache memories which are
hardware managed. This means, in order to have better data management
in those memories, there is a need for special support and drivers, which
adds new levels of indirection.

In addition, as software must keep tracking the location and size of each
compressed data chunk (therefore, additional metadata look-up), the meta-
data management becomes more complicated. The variable sizes of com-
pressed data can create inefficiencies such as adding another level of indi-
rection, which slows down the whole compression and decompression pro-
cesses. Slow compression and decompression can be tolerated for files stored
in slower memories in the memory hierarchy (i.e. secondary storages) with
low bandwidth and slow access times.

As a result, software-based compression is usually employed when the
latency is not critical and storage capacity is the most important design
goal; they are usually designed to provide better compressibility for a large
amount of data whose size is several KBs and are not frequently accessed [288],
therefore, more suitable for a secondary storage device [155].

Problems of software-compression are mostly avoided once compression
is shifted down to the lowest level, i.e. by putting hardware compression
engines into memories [282]. Hardware compressors have an order of mag-
nitude higher data rates [16, 68, 240]. Moreover, valuable CPU bandwidth
can be freed by offloading the compression task to these specialized hard-
ware which can also reduce the power consumption [16], as a result, CPU
resources can be allocated to run other tasks in parallel.

20



2.3.3 Challenges of Hardware Implementation

We briefly listed several major considerations for practical implementations
of compression in hardware in chapter 1. Here we describe them in more
detail:

• Reasonable complexity and implementation cost

• Minimum overheads

• Zero or low application quality loss

A main challenge to implement any compression method in hardware is
to balance the compression ratio and hardware simplicity. The conventional
way to achieve this is usually to aim for the highest possible compression
ratio (i.e., using existing software-based compression algorithms) and then
simplifying these algorithms so that they can be implemented in hardware.
An alternative option is to prioritize the simplicity of the compression algo-
rithm over its compression ratio and choose simpler methods.

Another major challenge is accounting for the overheads, for example,
the effect of a compression method on the latency of the system. As pro-
cessor performance is sensitive to memory access latency, it is critical that
the decompression latency be as small as possible when accessing any com-
pressed data in the memory hierarchy; otherwise, this may hinder the system
performance. Using compression methods in on-chip memories with a few
cycle budgets means that every added cycle can have an impact on sys-
tem performance and should be considered while designing or choosing the
compression method. The same considerations are needed for the area and
energy overheads.

Moreover, compressing data into variable-size blocks as well. poses sev-
eral challenges, including: a) where to store these variable-size blocks in the
memory, b) how to avoid the memory fragmentation, and c) how to later
locate these blocks in the memory.

One design consideration in compressed memories is how to store variable-
size blocks. For example, one can store the same-size blocks in the same
structure/region of the memory for lower hardware complexity as the bound-
aries of each block are known on that region. Another design can place all
the blocks with different sizes in a unified regime to make the most use of
the available space. This greatly depends on the application the compression
is applied to and should be studied carefully.

Another challenge posed by the variable size blocks is data fragmenta-
tion. The problem arises when an already stored compressed data block is

21



updated with new data with a different compressed size. A bigger new block
means older blocks should be evicted and a new memory space should be al-
located for the new block. This can leave some of the old space empty (cause
fragmentation). Similarly, if the new compressed block is smaller than the
old one, one option is to store this compressed block in the same old space
and again end up with an empty leftover space. In naive implementations,
this could lead to significant energy waste and design complexity due to
shuffling data around.

Locating a variable size compressed block in the memory is also another
challenge. In uncompressed memory, finding a certain cache block is usually
trivial and calculated from the address/offset of the block being accessed. As
data is not stored in the conventional manner in the compressed memories,
there is another level of indirection (e.g., added offset or pointer) in order
to locate the data block. This usually means there is a need to repeatedly
recompute this new offset (or pointer), or store it somewhere in the mem-
ory. If not done carefully, this can lead to significant latency overheads and
considerable design complications.

Lastly, the effect of compressing data on final application quality should
also be considered. Most applications do not tolerate any errors, therefore,
need lossless compression methods, which can limit the amount of compres-
sion possible. In some cases, such as machine learning applications, some loss
of accuracy is acceptable for bigger compression gains. These lossy methods
should be carefully chosen and sometimes tune to make sure the amount of
quality loss is minimal.

2.3.4 Inefficiencies of Using Traditional Methods

As we mentioned, the performance of the compression is not only dependant
on the resource that runs it, but also depends on the algorithm that is being
performed. Most software-based compression algorithms are not suitable for
low-latency hardware implementation due to their high complexity. They
usually assume files are stored on disk, and their content will be intact
during and even after the compression process.

In contrast to accessing files from disk, three things are fundamentally
different with the data stored on-chip:

• Data is commonly accessed randomly, rather than sequentially

• Latency and also most of the time, energy are extremely critical

• File content does not change after compression

22



In traditional methods, files are often accessed as sequential streams, and
the large decompression latencies are considered to be acceptable given that
disk accesses are already slow.

Lempel-Ziv algorithms need to trade-off compression latency with com-
pression ratio by tuning the sizes of sliding windows. Prior attempts to use
the optimized versions of the Lempel-Ziv algorithm [15] in hardware had
decompression latencies of more than 60 cycles, which makes it not suitable
for on-chip memories with 1-10 cycles of access time. One way to reduce the
time complexity, is to analyze the file statically and come up with some pre-
defined items in dictionary. Also, some variants of Lempel-Ziv [285] needs to
scan through the entire file, building up a dictionary of common character
sequences before the compression pass.

In the static Huffman algorithm, the frequency of the symbols should
be known beforehand or should be calculated by looking at the entire data
once to create the encoding for the Huffman tree stored in the frequency
table. The problem arises with the table size: a larger frequency table gives
a better compression factor but reduces speed, increases area and energy
consumption in a hardware implementation [136]. Besides, applying static
Huffman to compress the data during the execution of a program, may
degrade the compression ratio to unacceptable low levels [136]. The same
overhead exists with the dynamic version of this method. Dynamic Huffman
is even more complex due to the effort to form the tree dynamically and
requires more area and energy to operate [247].

Moreover, the fact that some memories in the memory hierarchy (e.g.,
on-chip caches and main memory) are accessed randomly creates additional
challenges including efficiently locating and decompressing arbitrary blocks
of potentially variable sizes.

Lastly, the data stored in files does not change after compression is done.
On the other hand, data stored in memory hierarchy, more specifically on-
chip memories, will constantly change upon every insertion and eviction
to and from that memory. Similarly, writes to any block that changes any
word of that block also require that the entire block be compressed again
and potentially produce a new uncompressed or compressed data block.
This requires in-hardware compression methods that can dynamically handle
these changes and still efficiently compress the data.

Therefore, directly applying well-known compression algorithms which
are usually implemented in software, leads to high hardware complexity
and unacceptable decompression/compression latencies, which in turn can
negatively affect performance.

23



Off-Chip DRAM SRAM Buffer Register File
(ą 100KB) (0.5KB)

Normalized 200× 6× 1×
Energy

Table 2.1: Cost of accessing off-chip and on-chip memories in 65nm normal-
ized to a MAC operation (Table IV in [57])

2.4 Hardware-Based On-Chip Memory
Compression

Accessing the off-chip memories is orders of magnitude more energy costly
and considerably slower than on-chip memories (See Table 2.1); thus, it is
preferred to have larger on-chip memories to avoid these costly accesses.
Unfortunately, adding more on-chip silicon area is not an option. recalling
from Chapter 1, increasing the size of the on-chip memory not only increases
the area and leakage power, but also hurts the dynamic energy and the access
time; this makes larger memories challenging to be used in latency and/or
energy critical applications. In fact, in current multi-core systems, the last-
level cache capacity per logical core tends to be less than only 1MB [119].
Therefore, any optimization that results in increased effective capacity of
on-chip memories, rather than physical memory space, has a great impact
on energy and performance of the entire system.

Memory compression is an effective technique to increase on-chip mem-
ory capacity as well to decrease the on-chip and off-chip bandwidth usage.
Hence, there is a need for a simple yet efficient compression technique that
can effectively compress common data patterns, and has a minimal effect on
memory access latency.

Compression methods for on-chip memories deals with frequently ac-
cessed data whose size is only several bytes (e.g. 64B) as compared to sev-
eral kilo-bytes in software based methods [288]. Some of the drawbacks of
software-compression such as high decompression latency as mentioned in
the previous section, makes using the software-based implementations and
algorithm impractical with the tighter latency budget, smaller data block
granularities, and high bandwidth requirements of on-chip memories.

On the other hand, specific compression schemes are more suitable to
compress the data in on-chip memories as compared with the traditional
generic data compression methods. However, there are several inefficien-
cies of performing application specific compression techniques in software;

24



Figure 2.5: Comparison of dynamic read power, leakage power, silicon area
and access latency when compressing the LLC (compressed 1MB) as op-
posed to doubling the size of the cache. All values are normalized to the
1MB uncompressed cache. Capacity indicates the effective capacity of each
cache. For speedup, only the workloads that benefit from compression are
considered (details in chapter 4).

these algorithms typically feature complex, scheme-specific bit manipula-
tions [21, 143, 200] and variable control, both of which are ill-suited to
the wide, deep processing pipelines found in modern CPUs [142]. As a re-
sult, application-specific compression schemes that require high performance
should be implemented in hardware.

Figure 2.5 illustrates how a hardware-based compressed 1MB cache
(described in chapter 4) can fit more than double the cachelines as the
conventional uncompressed 1MB cache and achieve similar speedups of un-
compressed 2MB cache. This compression technique requires only 1% of un-
compressed 1MB cache silicon area for implementing the compression logic.
Therefore, doubling the effective capacity in this way, does not incur the
area, latency, and power overheads of a uncompressed 2MB cache.

We continue this section by providing a brief background on on-chip
cache and scratchpad memories, and discussing existing compression pro-
posals.

2.4.1 Compression in Caches

As mentioned earlier in this chapter, memory hierarchy consists of multiple
cache memories with the smaller L1 cache being closer to the CPU and the

25



bigger LLC being farthest. This way, more frequently needed addresses will
be accessed at the highest speeds. Cache compression can improve cache hit
rates by fitting more blocks in the cache, provided the blocks are compress-
ible.

One question that arises is: which of these caches are better targets for
compression? To answer this, we need to consider what are the challenges
of compressing each cache level and what will be the potential benefits.

Unlike compression, which takes place in the background upon a cache
fill, cache decompression is on the critical path of a cache hit access. Choos-
ing a cache close to CPU as the compression target, like the L1 cache, brings
mediocre benefits: first, L1 cache hit times are of utmost importance, there-
fore, there is a very tight cycle budget for decompression task before it
starts hurting the performance. Trying to constrain the method for faster
decompression means that only simple methods can be leveraged, limiting
the compression method’s storage savings. Second, the timing improvement
per cost of added overhead can be questionable, as it only reduces the access
to the next on-chip cache level (which is only a few cycles extra). Finally,
the amount of data stored at that level is pretty low, which means there is
less chance for compression to leverage spatial locality and redundant data,
and as a result less storage saving benefits.

LLCs on the other hand, have larger capacities, which can result in
capturing more data locality and considerable storage savings. They have
more cycle budget for decompression task to be performed as well; this
means not only that the compression method is not limited to only very
simple ones, but also that the penalty accessing the compressed line is low
given the original access latency. Finally and most importantly, improving
LLC will avoid the costly off-chip accesses, saving 100s of cycles on every
cache hit due to the increased effective capacity.

To better understand how data is stored and accessed in LLC, we need
to look into the LLC organization. The LLC logically consists of several sets
and each set contains multiple ways; modern LLCs have 4–16 ways per set.
Physically, the LLC consists of tag and data arrays, usually with a dedicated
tag and data array for each way in a set: e.g., an 8-way LLC has eight tag
and eight data arrays as illustrated in Figure 2.6. Each cacheline in the
data array is allocated one tag in its respective tag array: when an incoming
memory block is placed in the LLC, it is assigned to the set that corresponds
to its address, and replaces the tag and data entries for one of the ways. If
this way previously contained valid data, this data is first evicted.

The capacity of a cache has a major impact on performance, die area,
and power consumption. The decision of how large to make a given cache

26



Figure 2.6: Structure of a 8-way set associative cache.

involves trade-offs: while larger caches often result in fewer cache misses, this
potential benefit comes at the cost of a longer access latency and increased
area and power consumption. Therefore the caches are limited in their sizes
and adding more silicon area is not a desirable way of increasing cache
capacity.

Several prior works [21, 78, 104, 191, 200, 242, 250, 260] have tried to
reduce cache misses, and improve the bandwidth requirements through cache
compression. This requires several changes to the cache organization, such as
resizing the size of arrays and changing the way the data lookup is performed.

In order to store more data in the cache via compression, the LLC needs
to have multiple tags per cacheline. One way to do this is to increase the
associativity of the tag array (e.g., double it) while keeping the associativity
of the data array intact. For example, Figure 2.8 shows a structure used
by [200] to store up to two memory blocks per cacheline. An alternative is
increasing the number of tags and decoupling the tag array and data array
so that multiple tags can point to any data entry in data array [242].

In general, cache compression proposals take advantage of either of two
different dimensions of redundancy in cached data:

1. Inter-block redundancy exists when multiple cache indices store the
same blocks of data. This can result from symmetry of some kind
(e.g., fluid flow around a symmetric object), when sizable parts of the
working set have the same value (e.g., the background of an image),
etc. In this scheme, each incoming memory block is examined in iso-
lation, and, if possible, compressed independently of other blocks.

27



C
a

ch
el

in
es

Tag Arrays Data ArraysSet

Cacheline

64 Byte Memory Block

Tag Entry 2

8 
W

ay
s

Tag Entry 1

Tag Arrays

Hash-Table
1

2

Figure 2.7: Last-Level Cache (LLC) implementing Deduplication
(Dedup) [242]. Dedup enables multiple tags to point to the same
cacheline containing a common memory block. During the LLC insertion of
the memory block, Dedup uses a hash-table of the most recently used data
values to identify exactly identical cachelines.

2. Intra-block redundancy exists when a single cache block contains com-
pressible patterns within itself. For example, integers are usually al-
located at 32-bit or 64-bit sizes but their values often fit in the least
significant byte; similarly, pointers used in a data structure may have
been allocated close by and so may have identical most significant bits.

Inter-Block Data Compression

Block-level data deduplication techniques leverage the observation that many
cache blocks are either entirely zero [76, 78, 200] or are copies of other blocks
that concurrently reside in the cache [59, 70, 117, 231, 242]. Instead of stor-
ing several identical copies, they aim to store only one copy of the block in
the cache, and propose techniques to point the redundant data entries to
this single copy.

To address inter-block redundancy, Dedup [242] modified a conventional
cache to store one copy of the redundant data and reference it with multiple
tags. The tag array is still arranged in sets and ways; the data array is
decoupled from the tag array, and is designed to be explicitly accessed by
pointers. An augmented hashing technique is used for faster duplication
detection. Thereafter, a quick look-up occurs in the hash table indexed by

28



the hashed data.

Intra-Block Data Compression

A simple technique to increase the capacity of the LLC is to employ intra-
cacheline compression. For some applications, data values stored within a
block have a low dynamic range resulting in redundancies [21, 200, 250].
Prior work [200] categorized these into (a) repeated values, (b) a set of
values (especially zeros) repeated in a data block, and (c) near values, a set
of values with the same upper data bits and different lower bits.

One way to reduce redundancy within the memory block is to capture
the replicated data in dictionary entries and then point to that entry when
new replicated data is presented [21, 129, 250].

Another method to reduce redundancy of nearly identical values is to try
to separate repeated parts of values from distinct lower bits in a memory
block. [191] extracts distinct 4-byte chunks of a memory block and uses
encoding schemes to compress them, with dictionaries potentially shared
among contiguous blocks.

Base-Delta-Immediate (B∆I), a state-of-the-art intra-cacheline LLC com-
pression technique [200], exploits the insight that, in many workloads, data
values within a memory block are similar, and therefore can be compressed
as a “base” value combined with small offsets. To store up to two memory
blocks per cacheline, B∆I doubles the number of tag arrays for each way in
the LLC, as shown in Figure 2.8.

Figure 2.9 shows an example of this process. The block d1 consists of
64-bit floating-point numbers whose values are close. The intra-block com-
pression reduces the block to 40 bytes (an 8-byte base value followed by
eight 4-byte offsets), and compacts it to take up 5 segments in the set.

Limitations: Intra-cacheline compression schemes can work well when
the working set consists of arrays of primitive data types with a relatively low
range of values. However, they do not capture the structural properties of
more substantial, heterogeneous data structures, whose redundancy surfaces
only when considering multiple cachelines.

Moreover, aside from B∆I, none of the existing methods account for
the near-duplicate similarity in the data stored on-chip and miss a huge
potential in reducing the memory footprint. Proposals like exact dedupli-
cation can only exploit data regularity if multiple LLC lines have exact
data values [242], while techniques that directly leverage program-level data
structure information require pervasive program changes and ISA exten-
sions [243]. Some work like [21] suffers from high decompression latency

29



Tag Arrays Data ArraysSet

To/From 

L2 Cache

Cacheline

64 Byte Memory Block

Tag Entry

8 
W

ay
s

Tag EntryC
ac

he
li

n
es

Tag Arrays

LLC Controller with 
To/From
Main Memory

BΔI Compression

Figure 2.8: Last-Level Cache (LLC) implementing B∆I compression. The
LLC has multiple tags per cacheline to store additional tags for each of the
compressed memory block within the physical cacheline.

3F4967FD8A8F8E3A 3F4967FD8AC0F946 3F4967FD8AF2024C 3F4967FD8B22A978 ... 3F4967FD8BE17592d1:

3F4967FD8A8F8E3A                   (+316B0C)                   (+627412)                   (+931B3E)  …               (+151E758)

---- -- ---- -- --

d1-c:

Figure 2.9: Example of compressing a 64-byte cache block from roms r
benchmark (d1 ) using B∆I. The block consists of 64-bit floating-point num-
bers whose values are close; they are compressed to a 64-bit base value
followed by eight 32-bit offsets, for a total compressed size of 36 bytes.

30



which can affect the system performance, while other proposals cannot
achieve significant compression ratios [200, 242] and therefore speedups.
Some cache compression methods that return approximate values [173, 211]
work well for noise-resilient data (e.g., images), but are unsuitable for general-
purpose workloads.

2.4.2 Compression in Scratchpads

DNNs have been applied to different applications and achieved dramatic
accuracy improvements in many tasks in recent years. These works rely on
deep networks with millions or even billions of parameters, and megabytes
to gigabytes of footprint.

Reducing off-chip memory accesses in AI applications saves a lot of en-
ergy [58, 105]. Scratchpads are high-speed memories used to hold data for
rapid retrieval and are explicitly manipulated by applications. Therefore,
there has been a lot of focus to improve the on-chip memory requirements
and footprint. Broadly, these works propose to employ novel methodologies
to make machine learning models more efficient. Efficient models are mod-
els with compressed values (i.e., weights, activation maps, etc.) and similar
performance (i.e., accuracy) having less computation and memory demand.
For the purpose of this thesis, we only focus on the two common techniques,
pruning and quantization.

Model Compression

Model (weight) compression techniques, which the majority of the DNN
compression proposals focused on [29, 30, 33, 67, 81, 94, 102, 107, 115, 116,
122, 131, 135, 146, 177, 234, 251, 274], can be divided into the following
general categories:

• Pruning: explores the redundancy in the model weights and try to
remove the redundant and uncritical ones. This makes the model small
yet sparse, thus reducing the off-chip memory access [67, 107, 122, 177].

• Quantization: allows the model to operate in a low-precision mode,
thus reducing the required storage capacity and computational cost [33,
81, 94, 131, 146].

• Low rank factorization: uses tensor decomposition to estimate the in-
formative weights of the DNNs [135, 234, 251].

31



• Transferred convolutional filters: designs special structural convolu-
tional filters to reduce the weight space and save storage and/or com-
putation [29, 30, 102, 274].

• Knowledge distillation: learn a distilled model and train a more com-
pact neural network to reproduce the output of a larger network [115,
116].

Early works on model pruning showed that it is effective in reducing net-
work complexity and addressing the over-fitting problem [96]. The Optimal
Brain Damage [20] and the Optimal Brain Surgeon [21] methods, reduced
the number of connections based on the Hessian of the loss function. A fol-
lowing trend in this direction is to prune redundant, non-informative weights
in a pre-trained DNN model [106].

Prior work on DNN inference has established that it is unnecessary to
represent data — both model weights and model activations — at full (32-
bit) precision [94, 131, 146]. Often, instance, bit-widths can be reduced from
32-bit to 8-bit precision (reducing the memory footprint by 4ˆ) while in-
curring a top-1 accuracy drop of under 1% [96] on large-scale datasets such
as ImageNet [209].

Limitations: Pruning has become common practice to make compressed
sparse networks but one major issue those proposals are facing is their need
to train a network, prune, and then retrain to get the efficient sparse net-
work [92]. This means that they will see a negligible memory and compu-
tation savings over course of training a network. While this saves energy
at inference time, training the pruned network takes more time and en-
ergy than training an equivalent dense network to the same accuracy. Skip-
ping the pre-training step is not an option: even if oracular knowledge of
the pruned model connectivity is assumed, training the pruned model from
scratch sacrifices accuracy compared to the original network [107, 159].

Several works [179, 278] achieve only small pruning factors and suffer
accuracy loss. Some [84, 278] prune the model very gradually; this implies
(i) no peak memory footprint reduction, (ii) mediocre energy savings be-
cause the average sparsity is low during most of the training process. The
remaining technique [92] maintains the target weight sparsity throughout
training, but gives up computation sparsity — a significant drawback for
training, where weights are usually 32-bit floating-point numbers that are
energetically expensive to multiply.

The issue with the existing quantization based methods is that typically
they cannot achieve substantial memory savings without losing too much

32



accuracy. Methods that quantize models after training, suffer from this more
severely. To compensate for this accuracy loss, several works proposed to
perform the quantization while training the network which again hinders
training-time storage savings. Ideally, we want a mechanism that has the
benefits of the efficient model from the beginning of the training task.

Finally, the majority of the DNN compression mechanisms miss com-
pression opportunities as they focus on the weight compression, however,
the activation maps have become the dominant data type in the modern
compact networks like ShuffleNetV2 [281] and MobileNetV2 [216]. Compres-
sion techniques are more difficult to apply to activations because activations
change for every input while weights stay constant once the model is trained.
Activation maps must be compressed dynamically, so the model cannot be
retrained offline to reverse the accuracy drop due to activation quantization,
as is commonly done with weight quantization [61, 106].

Activation Compression

DNNs not only can be accelerated by compressing weights, but also by mak-
ing the activation maps efficient. Unlike weights that are trainable parame-
ters and can be easily adapted during training, activation maps need special
consideration as they are input dependant and are generated dynamically
at the runtime.

Activation map size plays an important role in power consumption and
memory footprint of DNNs [58, 105]. In low-powered AI accelerators, on-
chip memory is extremely limited [54, 58, 105]. The accelerator is bound
to access both weights and activations from off-chip DRAM, which requires
approximately 2 orders of magnitude [58] more power than on-chip access,
unless the input/output activation maps and weights of the layer fit in the
on-chip memory.

Most modern Convolutional Neural Networks (CNNs) use the Rectified
Linear Unit (ReLU) as an activation function. As a result, a large per-
centage of activations are zero and can be safely skipped in multiplications
without any loss. One issue with pruning is that it introduces imbalance in
the working set, and so, compression may not translate directly to faster in-
ference since modern hardware exploits regularities in computation for high
throughput.

Zero-skipping input activation maps to save computation and storage
is widely used in AI accelerators [23, 105, 193]. A network would greatly
benefit in terms of memory usage and model acceleration by effectively
sparsifying even more activation maps. One drawback for pruning meth-

33



ods is that they usually requires long fine-tuning times that may exceed the
original network training, for example by a factor of 3 or larger [177] in
the case of EIE [105]. There has been some work to prune the activation
channels [52] or to make activation maps sparser [87] using regularization
terms. Regularization-based pruning techniques require per layer sensitivity
analysis which adds extra computations.

Similar to quantization for model weights, there has been some work
on quantizing the activation maps, such as [48, 96]. These methods usually
suffer from huge accuracy drops in low bit-widths and need retraining before
they can be used.

Limitation: A drawback which is more prominent in compressing the
activation maps of networks is that reducing the bitwidth of the data to very
low bit-widths (i.e., below 6 bits) to date resulted in significant accuracy
degradation [125, 229], limiting the benefits.

Methods like quantization-aware training [61, 95] and fine-tuning [106]
try to mitigate the accuracy drop due to activation quantization during the
training phase, by calibrating quantization ranges on different inputs. How-
ever, they generally require access to at least some of the training data as well
as the details of the training procedure (hyperparameters etc.), something
often impossible with commercial vendors on account of security, privacy, or
trade secret concerns.

To address this challenge, recent work has proposed post-training quan-
tization (PTQ) techniques that do not require access to the original training
data [48, 164]. While these PTQ techniques are effective in quantizing acti-
vations down to 8 bits, they fail dramatically at lower bit-widths. Figure 2.10
shows the impact of low-bitwidth activation maps on the top-1 model accu-
racy using the best state-of-the-art method [48].

2.4.3 Addressing the Limitations of Prior Methods

Existing compression methods suffer from either a small compression ra-
tio, high hardware complexity, large decompression latency, or unacceptable
quality losses. These limitations restrict the expected benefits from the com-
pression task. There are lots of applications that are already increasing in
size [38, 43, 114] and contain considerable amount of redundant and similar
data that prior methods are not leveraging.

We capture larger amount of on-chip data: Throughout this disser-
tation, we develop novel compression techniques for on-chip data to further
reduce the memory footprint of workloads by considering and compressing

34



Figure 2.10: Impact of best state-of-the-art activation value quantization
method [48] on the top-1 inference accuracy of the MnasNet1 0 network.

a larger amount of on-chip data that are dynamic and constantly changing.
This, essentially enables the compression method to capture more relevant
data and make better compression decisions.

We leverage data similarity, not just redundancy: We observe
that there are similarities among data stored in on-chip memories caches
and scratchpads, which we leverage towards developing efficient compression
methods.

We use dynamic clustering: We group data by searching the entire
on-chip memory and clustering or partitioning. The grouping is performed
based on statistical properties, similarity, and importance of data. Then we
apply specific compression to each group.

We utilize hardware-friendly algorithms: In order to convert these
compression methods to on-chip savings, we use hardware-efficient variants
of sorting and dynamic clustering methods.

35



Chapter 3

Leveraging Redundancy
Within and Across Blocks

In this chapter1, we argue that in order to develop an efficient compression
method, it is essential to consider data redundancy both across and within
data blocks. In general, redundancy in workloads varies widely. Some bench-
marks have only intra-block redundancy, some only inter-block redundancy,
and there are several workloads that showcase both types of redundancy.
Moreover, we show that caches can be comprise a lightweight decoupled
approximation stage to reduce the redundancy in data.

To this end, we propose an in-hardware compression technique, 2DCC,
that leverages both the inter and intra block redundancies: it allows working
sets that contain either type of redundancy to be compressed while also
enabling compressing working sets that contain both types of redundancy.
We also demonstrate that approximation and compression are orthogonal,
complementary techniques that should be decoupled in cache designs and
propose a cache compression method for approximate data.

First, we illustrate the opportunity in the state-of-the-art cache com-
pression methods missed by not capturing the data redundancy in various
granularities dynamically. Next, we overview the proposed cache architec-
ture and describe the cache operations needed when a new line is inserted
and evicted from the cache, followed by the new structures and operations
added to support both types of redundancies in 2DCC. Because this requires
decoupling cache structures, replacement policies become a challenge. 2DCC
therefore uses separate replacement policies for the tag array and the data
array, which optimizes for both reuse and space savings. Then, we study
extensive set of benchmarks, categorize them based on their cache foot-
print, and evaluate 2DCC on them. When applied to the LLC in a server-
class CPU, compared with best prior methods that compressed the cache
to only 1.43ˆ–1.49ˆ, 2DCC achieves 2.12ˆ geomean compression factor

1Parts of this chapter appear as: A. Ghasemazar, M. Ewais, P. Nair, M. Lis, “2DCC:
Cache Compression in Two Dimensions,” In DATE, 2020.

36



  0%  20%  40%  60%  80% 100%

intra-block storage savings

  0%

 20%

 40%

 60%

 80%

100%

in
te

r-
bl

oc
k 

st
or

ag
e 

sa
vi

ng
s

GemsFDTD

nab_r

canneal

bodytrack

roms_r

bwaves_r

blackscholes

libquantum

calculix

swaptions

lbm

x264_r

Figure 3.1: Space reduction in last-level cache images (100 per benchmark)
using entropy encoding (Huffman compression). The x-axis shows encoding
within each cache block (symbol size of 1 byte); the y-axis shows encoding
across cache blocks (symbol size 64 bytes). 0% indicates that no compression
was possible while 100% would indicate that the entire cache was completely
compressible. These results provide a motivation for 2D cache compression.

across cache sensitive subset of SPEC CPU2017 [14], SPEC CPU2006 [114],
and PARSEC [38]. 2DCC resulting in a geomean 11.7% speedup compared
with best prior methods given the same silicon budget. Finally, we propose
an approximate cache compression mechanism where approximation and
compression stages are decoupled, and evaluate it on extensive set of bench-
marks. When applied to LLC, it achieves better compression than bespoke
approximate caches.

37



3.1 Beyond Single Type of Redundancy

As discussed in chapter 2, state-of-the-art cache compression methods [21,
78, 104, 191, 200, 242, 250, 260] have tried to increase effective cache capacity
by focusing on either inter-block or intra-block data redundancy, however,
real workloads exhibit a wide variety of redundancy patterns. To demon-
strate this, we estimated intra-block and inter-block entropy in last-level
cache snapshots from a range of SPEC [114] and PARSEC [38] benchmarks
(see section 5.6 for details) by using Huffman compression [126]. To estimate
inter-block entropy, we compressed the entire cache using 64-byte symbols
(i.e., one cache block); to estimate intra-block entropy, we compressed each
block independently using one-byte symbols.

Figure 3.1 shows how much space can be recovered for each benchmark
by taking advantage of inter-block entropy (y-axis) and intra-block entropy
(x-axis). Some benchmarks show significant savings by using only one type
of redundancy: for example, lbm has many identical blocks which are gen-
erally not amenable to intra-block compression, while the blocks cached by
canneal have intra-block value redundancy but most cache blocks are differ-
ent. Others, such as bwaves and roms, contain a mixture of identical blocks
and some compressible blocks. (The outlier, GemsFDTD, has nearly all of
its working set filled with zeros and is therefore trivially compressible.)

For example, Figure 3.2(a) shows cache block fragments of last-level
cache snapshots for three benchmarks, along with the number of exact copies
of each block found in the cache.

The top panel shows three blocks of the destination grid written in-
side LBM performStreamCollideTRT() in lbm r. The cache block is filled
with 64-bit floats, which differ enough that intra-block compression (e.g.,
B∆I [200]) is ineffective. Because of fluid flow symmetry, there are multiple
copies of many cache blocks, all of which can potentially be deduplicated,
allowing the size of the cache snapshot to be reduced by 67%.

The middle panel shows three blocks addressed by swap locations() in
canneal. In contrast to lbm r, the working set contains no duplicate blocks.
However, there is substantial intra-block redundancy: the data consists mainly
of small 32-bit integers (netlist elements and locations). This allows the cache
snapshot size to be reduced by 61%.

Finally, the third panel shows cache blocks from roms r, an ocean fore-
casting model. The locality of behaviour within an surface patch, together
with similarities across some patches, creates both intra-block and inter-
block redundancy: many cache blocks in the working set are present in sev-
eral copies, and each contains 64-bit floats that are close to one another.

38



3FAC6C541BBFEA50 3FD5541D0AC64D01 0000000000000000 3F9C771DAF7DF3EE ... 3F9C778732B6F6FF    2x

3FAC71FEA63944A0 3FAC7525DB6AC0A6 3FAC6F986E5A686D 3FAC73DF6669D86B ... 3F9C75711BCC54A4    6x

3F9C6FB92A6D1C66 3F9C7237EE71A6B1 3F9C70B5B41B07CD 3F9C761D9639DAD4 ... 3FAC744503090CB4   4x

0000006E71656964 0000000000000000 0000000000000005 0000000000000005 ... 0000000000000001    1x

0000000000000041 0000000000000000 000000676C686C63 0000000000000005 ... 0000000000000031    1x

0000000000000005 0000000000000005 0000000000000031  00002AAAC1FBF3D0 ... 0000000000000000   1x

3BD21C680908CBF7  BF3500DC8C0FBDF9  BBB0BC2805442A35  BF3600F20DDE3A29 ... BF38012012014418     1x

3F4967FD8A8F8E3A  3F4967FD8AC0F946  3F4967FD8AF2024C  3F4967FD8B22A978 ... 3F4967FD8BE1759      4x

C0150D32E29C3759  C0150D32E29C3759 C0150D32E29C3764 C0150D32E29C375F ... C0150D32E29C3754   4x

(a) (b)
ro

m
s_

r 
  

 c
a
n

n
e
a
l 
  

  
 l
b

m
_r

L0

L1

L2

L0

L1

L2

L0

L1

L2

67%

61%

91%

Figure 3.2: (a) Redundancy in LLC snapshots of three benchmarks: lbm r
shows inter-block redundancy: the three cache lines shown appear twice, 6
times, and 4 times; canneal shows different blocks each of which has a com-
pressible 0 prefix; in roms r, blocks appear in multiple copies but words also
have similar prefixes. (b) Cache space saved using inter-block compression
(y-axis) as well intra-block compression (x-axis) for these LLC samples.

For these cache snapshots, taking advantage of both forms of entropy can
potentially save 91% of the cache space.

Figure 3.2(b) shows the potential cache silicon savings for intra-block (x-
axis) and inter-block (y-axis) entropy by using an ideal compression method
on the cache snapshots analyzed.

3.2 Architecture and Operation

Unlike conventional caches, which store one full (e.g., 64-byte) data block
for every tag, compressed caches can either store multiple blocks in the same
space [20, 21, 200, 260] or store only one block for multiple tags [242]; 2DCC
similarly decouples the tag and data arrays. In contrast to prior approaches,
each tag may point to an 8-byte segment anywhere in the data array rather
than to only one index or a few possible locations; this maximizes data
array utilization. To avoid storing duplicate blocks, multiple tags may point
to the same segment. To detect inter-block redundancy, 2DCC adds a third
structure — the hash array — which stores summaries of cached blocks and
allows the controller to quickly identify duplicate lines.

When a 2DCC cache inserts a new block, it checks whether an identical

39



Set0

Set1

...

Set0

Set1
...

Tag Array Data Array

Hash Array

Tag
Prev 
Ptr

Next 
Ptr

Data 
Ptr

Rpl. 
bitsTag Entry

a)

b)

Setn

Encd
bits

Data
Tag 
cntr Hash

Data 
Ptr

Hash
Data 
Ptr Hash EntryData Entry Tag 

Ptr

0 0 1 1        …       1 1
Free list

Figure 3.3: (a) The three decoupled storage structures that comprise the
2DCC cache: arrows show pointers logically linking the structures. (b) Entry
contents.

block is already present; if the block is a duplicate, then a reference to the
existing block is inserted instead. If the block is unique, 2DCC attempts to
compress it and store it in a part of a line in the cache’s data array, with
the rest of the line usable by other compressed cache blocks.

This approach presents several challenges. Firstly, duplicate cache blocks
must be detected quickly. Secondly, allocating and evicting blocks with dif-
ferent compression factors must not cause fragmentation. Finally, the vary-
ing compressibility of workloads means that the cache may be limited by
either tag storage or data storage, with each storage structure requiring a
separate and different replacement policy.

3.2.1 Cache Architecture

2DCC cache consists of three structures: Data array, Tag array and Hash
array. Figure 3.3 illustrates these three structures and shows how these com-
ponents are interconnected with pointers.

Data Array

Storage of variable-sized blocks is accomplished by segmenting each set in
the data array into eight-byte segments (similar to prior work [200]): a single
cache block may occupy from one up to eight contiguous segments depending
on the compression factor.

Because the tag array is decoupled from the data array (unlike in [200])
and the cache can store more tags than uncompressed blocks, 2DCC may

40



need to evict blocks when space in the data array runs out even if some tags
are still free. To identify the tags that point to a given data segment, 2DCC
uses a per-segment back-pointer to one of the corresponding tags.

To support the data array replacement policy, each segment also stores
a count of tags pointed to it. A free-list bit vector is used to allocate entries
and manage free space in the data array. Upon insertion in the cache, the
controller consults this free-list to find an empty set with free blocks, and
the compressed is inserted there. This helps the replacement policy to avoid
evicting blocks due to space limitation in a particular set, while there are
empty sets (example in section 3.2).

Tag Array

As in a conventional set-associative tag array, each entry contains the tag
itself, tag replacement policy state, and validity/coherence state. Each entry
also specifies the compression encoding. The tag entry also contains a “data
pointer” to identify the segment(s) storing the cached block.

Finally, multiple tags that point to the same data segment form a doubly-
linked list, used to remove all tags associated with an evicted block, and to
form a free-list of unused tags.

Hash Array

To detect identical cache blocks, 2DCC needs to compare the contents of
an incoming block with the contents of blocks that are already cached. Nat-
urally, scanning through the entire cache is not an option. Instead, 2DCC
detects candidates for deduplication by storing hashes of block contents in a
separate small hash array. Because the common case is that incoming lines
are unique, the hash array essentially serves to filter out most lines that
cannot be deduplicated.

The hash array is a set-associative table. Each entry points to the data
array segment where the original block is stored. (This is safe even if the orig-
inal block is modified or evicted, as hash collisions mean that hash matches
must in any case be verified against the full cache block.) Based on our ex-
periments, storing only 1024 hashes is the hash array is sufficient to capture
nearly all possible deduplication while reducing the hash collisions to less
than 1%.

In operation, each incoming block’s contents are hashed using a 64-bit
H3 hash [214]. If the hash is not found, insertion proceeds normally. If the
hash matches (i.e., a duplicate block may already exist in the cache), the

41



Read 
Request

Read 
Serviced

Data Array
Access

Tag Hit ?

Evict
Victim Tag

Evict DataLine
& change LL

Req from 
Memory

Hash & 
Compress

Hash Hit?
Data 

Similar?
Insert

Tag In LL

Insert Hash &
Pick Victim Data Set

Enough 
Space ?

Insert 
Data &Tag in LL

Pick Victim
Segment(s)

Evict 
Associated 

Tag(s)

N

Invalid
Line

N

N

Y

a)

b)

c)

End

N Y

YY

7

88

77

33 44 6655

66
22

11+1+1 +1+1

+1+1 +1+1

+1+1

Figure 3.4: Read access flowchart in 2DCC. Shaded (a) = on the critical path;
unshaded (b, c) = off the critical path. LL = linked list of deduplicated tags.

block it points to is fetched from the data array and the actual data are
compared; if the data are identical, then the line is deduplicated, otherwise
it is inserted as a new block.

3.2.2 Cache Operation

2DCC operation is largely similar to that of a conventional cache, with some
differences due to tag/data array decoupling and the need to deduplicate and
compress stored data. We detail those differences below.

Reads, evictions, and insertions. The operation of these accesses is illus-
trated in Figure 3.4. The critical-path portion of read accesses — both hit ¶

and miss · — corresponds to a conventional cache.
The hash and the compressed line size are calculated off the critical

path ¸ ¹. If the hash exists in the hash array, the new block is a deduplica-
tion candidate, and the existing block is retrieved from the data array and
compared against the newly arrived data º to determine if the block is a
duplicate.

If the entry is to be deduplicated, an unused tag is obtained either from
the tag free list or by evicting an existing tag ». If the entry cannot be
deduplicated, a data entry is also allocated, possibly following an eviction

42



3F4967FD8A8F8E3A 3F4967FD8AC0F946 3F4967FD8AF2024C 3F4967FD8B22A978 ... 3F4967FD8BE17592d1:

3F4967FD8A8F8E3A                   (+316B0C)                   (+627412)                   (+931B3E)  …               (+151E758)

---- -- ---- -- --

d1-c:

Figure 3.5: Example of compressing a 64-byte cache block from roms r (d1
from Figure 3.6). The block consists of 64-bit floating-point numbers whose
values are close; they are compressed to a 64-bit base value followed by eight
32-bit offsets, for a total compressed size of 36 bytes.

of some data segments and their associated tags ¼. If the entry was not
deduplicated, its hash is also inserted into the hash array to enable future
deduplicaton ½.

Writes. Writes reflect those in a conventional cache: with inclusive write-
back caches, which we use in this work, write requests always hit, and execute
off the critical path.

Writes may also change the compressed size. In parallel to the tag access,
therefore, the hash of the contents is computed; if this hits in the hash array,
the relevant block is fetched and compared to the newly written data. If the
newly written block can be deduplicated, the data pointer swings to the
existing copy and the redundant segments are freed.

If the written block cannot be deduplicated, it is first re-compressed. If
it fits in the same number of segments, the data array entry is overwritten,
possibly freeing some segments. If the line is larger, victim segments are
selected from the data array before inserting the block as if it were a new
insertion.

Intra-block compression/decompression. For compressing individual cache
blocks, we use the B∆I compression method [200]. Briefly, B∆I calculates
the mean of the words in the block to determine the number of bytes needed
to express the distance from this base value or from 0. If all distances can
be expressed in fewer bytes than the original value (e.g., 4 bytes), the com-
pressed block consists of the base value followed by a sequence of distance
offsets used to reconstruct the original words in the cache block. Decom-
pression consists of adding the offsets to the base, and is completed in one
cycle.

Figure 3.5 shows an example of this process. The block (d1 from Fig-
ure 3.6) consists of 64-bit floating-point numbers whose values are close. The
intra-block compression reduces the block to 40 bytes (an 8-byte base value

43



followed by eight 4-byte offsets), and compacts it to take up 5 segments in
the set.

3.2.3 Walk-through Example

In order to better understand the operations, we describe the cache operation
by tracing “the life of a cache block” on a tiny version of 2DCC in Figure 3.6
with an example from the roms r ocean simulation workload. We begin with
the state in panel (a), with one uncompressible, unduplicated block in the
cache with tag t0 and data d0, such as block L0 in Figure 3.2(a).

In panel (b), a lower-level cache requests an address with tag t1, which
misses in the tag array ¶ and triggers a backing memory request for its
data d1. When d1 arrives, it is compressed to d1-c, and, in parallel, hashed
to search for duplicates ·. The hash is then looked up in the hash array
to determine whether the block can be deduplicated, but as it is the first
occurrence of this data, the lookup fails.

To insert the new block in the cache, the controller consults the freelist to
find that set 1 has a free block, and the compressed d1-c is inserted there ¸.
At the same time, t1 is inserted in the tag array with its data pointer set to
point at d1-c and vice versa ¹, and the hash for d1 is inserted in the hash
array º.

In panel (c), a lower-level cache requests an address with tag t2, which
also misses in the tag array »; this triggers another memory request. Once
data block d2 arrives, it is compressed (to d2-c) and hashed as before ¼.
This time, however, the hash hits in the hash array with the entry pointing
to d1-c, indicating that d2 is a possible duplicate of d1 ; to verify this, d1-c
is retrieved and compared against d2-c. An exact match is determined, the
deduplication count in d1-c is incremented ½, and t2 is inserted into the
tag array pointing to d1-c ¾.

3.2.4 Replacement Policies

As described in earlier, 2DCC has three decoupled structures: a tag array,
a data array, and a hash array. Unlike in a conventional cache, the three
arrays have different goals and need different replacement policies.

Tag array: The goal of the tag array replacement policy (RP) is to pref-
erentially retain addresses likely to be accessed in the future. The RP should
therefore be the same as the equivalent conventional cache RP. In this work,
we use the least-recently-used victim selection with most-recently used in-
sertion (LRU), but other eviction policies may be more appropriate for large

44



d1-c   

d0               (1x) Set0

Set1

Set0

Set1

Tag Array Data Array

Free list

d0               (1x)

d1-c   (1x)

Set0

Set1

00

hash(d1) = {0x02, 0x03f2} 

10

0x01
0x02

Hash Array

0x01
0x02

d1 Compress

d0               (1x)

d1-c   (2x)

Set0

Set1

00

hash(d2) = {0x02, 0x03f2} 

0x01
0x02

Insert

Insert

22

33

44

55

66

77

88
99

11

d2-c   Compress

Lookup

t0

t2

t1

t0

t0

t1

d2

a)

b)

c)

77

Figure 3.6: Example of 2DCC operation on lines from roms r benchmark:
(a) initial state; (b) insertion of unique but compressible block; (c) insertion
of a new block whose data is identical to that of panel (b).

45



caches and specific workloads [86, 252, etc.].
Data array: The data array, on the other hand, provides storage space

for the blocks identified as likely to be re-referenced. The storage is many-
to-one: when several cache blocks contain the same data, one data array
entry will be shared among several tags. When evicting a data array entry,
all of the tag array entries that point to it must also be evicted. This makes
conventional cache victim policies, which do not account for the cost of
evicting multiple tags, unsuitable.

Observe that the policy does not need to consider which blocks are likely
to be re-referenced, as the tag array replacement policy already ensures that
only useful blocks are cached. The goal of the data array, therefore, should
be to enable the tag array to store more blocks. Our policy has three stages:

1. If a set in the data array is free, insert the block there.

2. Otherwise, attempt to find space in a partly occupied block: randomly
select four sets, and, if one of them has enough space, insert the new
block there.

3. Finally, examine the four blocks from step 2, and select the one that
(a) has enough space, and (b) minimizes the number of evicted tags
from the tag array.

In effect, this process combines a random sampling process with a selection
policy that retains the most deduplicated entries.

Hash array: The main purpose here is to enable deduplication of blocks
stored in the data array. Thus, the hash array should identify (a) currently
cached blocks whose contents are likely to reappear in other, soon-to-be-
accessed blocks, and (b) incoming blocks whose contents are likely to reap-
pear later. We therefore use the LRU policy applied to content hashes.

3.3 Methodology

We extended ZSim [213] to implement 2DCC and the state-of-the-art hard-
ware compression techniques for intra-block compression (B∆I [200]) and
inter-block deduplication (Dedup [242]). We modeled detailed event timing
and interconnect congestion for both on- and off-critical-path events. The
simulated system is shown in Table 3.1; compression was applied to the L3
level only. We used CACTI 6.0 [138] to estimate silicon area requirements,
including all data structures for each compression method. For all perfor-
mance studies, we normalized the three designs to the same silicon area.

46



CPU i5-750-like: x86-64, 2.6GHz, 4-wide OoO, 80 entry ROB

L1I 32KB, 4-way, 3 Cycle access lat, 64B lines, LRU

L1D 32KB, 8-way, 4 Cycle access lat, 64B lines, LRU

L2 Private, 256KB, 8 way, 11 Cycles lat, 64B lines, LRU

L3 Shared 1 MB, 8-way, 39 Cycles lat, 64B lines, 8 banks

Memory DDR3-1066, 1GB

Table 3.1: Configuration of the simulated system.

We used an extensive set of integer and floating-point applications from
SPEC CPU2017 [14] and PARSEC [38], as well as those applications from
SPEC CPU2006 [114] that are not in CPU2017. All were run with large
input sizes (native in Parsec and reference in SPEC). Simulations skipped
the first 40 billion instructions, and then sampled the last 20% of each 1
billion instructions for a total of 40 billion instructions.

Sizing data structures
Sizing decoupled structures (tag, data, and hash arrays) under a fixed sil-
icon area budget is key to our design. In 2DCC, we must make two sizing
decisions: (a) the ratio of tags to raw data blocks (which must exceed 1
to enable compression) and (b) the size of the hash array that captures
inter-block redundancy.

Tag array vs. data array
We observed that the compressibility of cache blocks varies not only among
applications, but also among different phases within an application, from as
low as 1ˆ in streamcluster to more than 10ˆ in fotonik3d r. Similar to prior
work [242], we allow the cache to store four times more compressed lines
than uncompressed lines.

Hash Table
For the hash array, the tradeoff is between, on the one hand, reducing the
silicon footprint to make more space for tags and data entries and, on the
other hand, making it large enough to capture enough of the inter-block
redundancy.

To examine the design space, we compared an oracle hash table — which
searches the entire cache for a match — against hash array sizes from 64 to
16,384 entries. In our experiments, 99.2% of the locality was captured with

47



Baseline B∆I [200] Dedup [242] 2DCC
T

a
g

#Entries 16384 49152 40960 36864
Entry Size 39b 49b 85b 93b
Total Size 78KB 294KB 425KB 414KB

D
a
ta

#Entries 16384 12288 10240 9216
Entry Size 512b 512+0b 512+16b 512+104b
Freelist 1152b
Total Size 1024KB 768KB 660KB 694KB

H
a
sh

# Entries - - 1024 1024
Entry Size - - 3B 3.375B
Total Size - - 3KB 3.375KB

Total Size 1.08MB 1.05MB 1.07MB 1.08MB

Table 3.2: Storage allocation. All compressed caches are sized to fit in the
same silicon size of a 1MB conventional cache with 48-bit address space.

1,024 entries (64 sets ˆ 16 ways), with a collision rate of ă 1%. We use this
hash size for the remainder of the experiments.

Silicon area allocation
We configured 2DCC as well as our three baselines to match that of a conven-
tional, uncompressed cache with 1MB of data storage. For the compressed
caches, the total space available in the data array is less that 1MB because
more of the available silicon budget must be dedicated to tags; Table 3.2
shows space allocation details.

Metadata for each conventional cache tag entry consists of valid, dirty,
and LRU bits. 2DCC adds 4 bits for the compression type encoding, 32 bits
for the previous and next tag pointers, and 17 bits for the data pointer (11
bits to index the set and 6 bits to index the segment within that set). B∆I
adds 10 bits over the conventional cache for compression-type encoding and
the segment pointer. Finally, Dedup tag entries add 32 bits for tags pointers
and 14 bits for the data pointer. Data array overheads in 2DCC are 16 bits
per segment for the tag list pointer, while Dedup has one 16-bit pointer for
each cache block. 2DCC also requires a hash array, with each entry consisting
of 10 bits for the hash tag and 17 bits for the data segment pointer; Dedup
has a similar table but uses only 14 bits for the data pointer.

48



 1 2 3 4 5 6 7 8
intra-block compression factor

 

1

2

3

4

5

6

7

8

9

10+
in

te
r-

bl
oc

k 
co

m
pr

es
si

on
 fa

ct
or

Z

E

C

D

A
B

A: 16.9%
B: 12.1%
C: 3.4%
D: 5.7%
E: 5.2%
Z: 9.5%

Figure 3.7: The bubble sizes represent storage savings due to combined intra-
and inter-block compression, plotted against different compression factors.
Z is the amount of savings due to all-zero blocks.

3.4 Evaluation Results

3.4.1 Effectiveness of 2D compression.

Figure 3.7 shows the inter-block compression factor for each possible intra-
block compression factor averaged over all benchmarks; the bubble size
shows how much cache area was saved due to a specific combination. The
largest savings — 16.9% of cache — come from blocks that cannot be com-
pressed by themselves, but can be deduplicated, on average, 1.4ˆ (bubble
A). The next 12.1% is saved by blocks that cannot be deduplicated, but are
amenable to intra-block compression with a compression factor of 1.6ˆ on
average (B). Significant additional savings (14.3% cache space total) come
from blocks that are both compressible within each block but also identical
to other blocks (C, D, E). Finally, 9.5% cache space is saved by using a
special representation for zero-only blocks.

This validates the 2DCC intuition: both choosing the appropriate com-
pression for each block (A, B) and using both compress

3.4.2 Compression Analysis

Figure 3.8(a) shows the cache space needed by different workloads using
2DCC compared to state-of-the-art methods for intra- (B∆I [200]) and inter-
block compression (Dedup [242]), normalized to a conventional cache. The
compressed size indicates the ratio of number of tags in the cache over the
number of data blocks (compressed and uncompressed) which varies among

49



Figure 3.8: Cache occupancy, cache miss rates, and performance improve-
ments of 2DCC compared to iso-silicon B∆I (intra-block) and Dedup (inter-
block) caches, normalized to an iso-silicon conventional (uncompressed)
cache for the cache-insensitive subset of benchmarks.

50



Figure 3.9: Cache occupancy, cache miss rates, and performance improve-
ments of 2DCC compared to iso-silicon B∆I (intra-block) and Dedup (inter-
block) caches, normalized to an iso-silicon conventional (uncompressed)
cache for the cache-sensitive subset of the benchmarks.

51



different phases within an application. We report averages over the entire
program runtime from an execution-driven simulation (see Section 3.3). All
caches take the same silicon area as a 1MB conventional cache (see Ta-
ble 3.2).

On average, 2DCC is able to reduce the cache footprint to 47.2% of the
original footprint (i.e., 2.1ˆ compression), a substantial improvement over
B∆I (67.1%) and Dedup (69.2%).

3.4.3 Miss Rates Analysis

We divided the benchmarks into cache sensitive (S) and cache insensi-
tive (NS): we consider a benchmark to be cache insensitive if there is ă 3%
change in MPKI when the conventional LLC size is doubled (this typically
means that their workloads mostly fit in the L2 or even L1D cache).

Figure 3.8(b) shows that 2DCC reduces cache misses per 1,000 instruc-
tions (MPKI) by 1.6ˆ compared to 1.3ˆ for B∆I and 1.2ˆ for Dedup on
average for the cache sensitive benchmarks. At the same time, the MPKI im-
pact of cache compression on the cache-insensitive benchmarks is negligible
(1.6%)

3.4.4 Cost Analysis

As with every compressed cache, there can be various overheads:
Area Impact: As described in section 3.3, all compressed caches are

sized to fit in the same silicon size of a 1MB conventional cache. Therefore,
2DCC incurs no area overheads.

We also implemented and synthesized the B∆I scheme [200]. The com-
pression/decompression units require 0.037mm2 (20k nand gates) for its
logics, which at 45nm is less than 1% of the silicon area required for even a
1MB cache.

Latency Impact: Latency overheads of 2DCC is very similar to Dedup
cache; as our technique and Dedup breaks the direct mapping between the
tag and data array, this means one additional data array lookup for locating
a data block in data array. This is a sequential event and cannot be masked
by requesting the tag and data in parallel, therefore we model it by adding
an extra access latency.

Another additional latency is due to having the compressed blocks. To
model the additional latency due to decompression, which is also on the
critical path of read requests, we use +1 cycles for both B∆Iand 2DCC
which is on par with [200]. We also experimented with +2 and +3 cycles

52



Cache Size(MB) Dynamic read energy Leakage power

Conv. 1 0.35 nJ 677.66 mW

B∆I 1 0.37 nJ 679.21 mW
Dedup 1 0.39 nJ 699.70 mW
2DCC 1 0.39 nJ 695.16 mW

Table 3.3: Dynamic energy and leakage power of compressed caches and
conventional of 1MB (silicon area of 2.52mm2) in 32nm technology.

and observed that when decompression latency of 2DCC increases from 1
to 3 cycles, performance degrades by less than 0.6% on average.

Multiple tag eviction: In a compressed cache, there are cases which
multiple cache blocks may need to be evicted because evicting a single cache
block may not create enough space for the incoming or modified block. First,
when a new cache block is inserted into the cache. Second, when a block
already in the cache is modified such that its new size is larger than its old
size. In both cases, with the help of replacement policy, the cache evicts
multiple cache blocks to create enough space for the incoming or modified
blocks. Such a policy can increase the latency of eviction due to multiple
tag evictions. We also investigated whether evictions of multiple tags are a
significant problem, by measuring the ratio of evicted tags to cache accesses.
Because of its better compression, 2DCC has the lowest eviction rate of 0.032
evictions per access, compared to 0.049, 0.042, and 0.041 for the conventional
cache, B∆I, and Dedup, respectively. This means that multi-tag evictions
are very rare, and do not have any performance impact.

Energy and power Impact: We used CACTI [138] to measure the
latency, read energy, and leakage power of 2DCC and the three baselines (see
Table 3.3); results show that 2DCC uses 11% more energy for each read, and
has a 2.5% leakage power overhead. The added per access overhead of 0.04nj
is trivial compared to the energy of accessing external DRAM (32.61nJ using
the same CACTI model). This means that 2DCC can actually save energy
when the entire memory hierarchy is considered (by calculating the total
added power of compressed cache and total power saved by accessing off-chip
DRAM less frequently). We investigate this in more details in the following
chapter.

The B∆I decompression/decompression power is also 7.4 mW/20.59 mW
on average [200] which is a negligible number compared with the power
consumption of the entire processor.

53



3.4.5 Speedup Analysis

Figure 3.8(c) shows that the lower MPKI allows 2DCC to improve perfor-
mance (IPC) by 11.7% for the cache-sensitive benchmarks, vs. 7.3% for B∆I
and 5.2% for Dedup. Cache-insensitive benchmarks can suffer a slight perfor-
mance degradation (avg. 2.6%): for example, bwaves is highly compressible
but cache-insensitive, so the compression/decompression latencies are not
offset by more frequent cache hits.

3.5 Reducing Redundancy with Approximation

3.5.1 Approximate Value Locality In Caches

Prior approximate cache proposals [173, 211] have observed that many values
stored in a cache are so close that replacing one value by another makes little
difference to the effectiveness of many applications; approximate caches can
substantially increase effective cache capacity by taking advantage of the
approximate value locality. This locality can be converted to increased cache
capacity by detecting cachelines with approximately equal value sequences,
storing only one of those lines in the cache, and returning an acceptable
approximation when a line is retrieved. For example, Doppelgänger [173]
treats the average of all values in the cacheline as a “signature” and stores
only one representative cacheline for each signature.

3.5.2 Decoupling Compression and Approximation

Existing designs, share two significant limitations. First, because they are
in effect lossy compression techniques, they can only compress data that
identified as approximable (e.g., by the programmer), and are of little use
for applications where approximation is not practical. Second, because ap-
proximation is an integral part of the lossy compression mechanism, they
can only compress approximable data that fit a single redundancy pattern:
for example, Doppelgänger captures value similarity between cachelines, but
ignores value similarity within each cacheline [173], and Bunker Cache is
only effective on image-like data [211]. Both of these are serious barriers to
adoption in commercial CPUs.

We argue that approximation and compression are orthogonal, comple-
mentary techniques that should be decoupled in cache designs. Such a de-
sign, illustrated in Figure 3.10, would comprise two stages: (a) a lightweight
approximation stage, applied only to data identified as approximable, and
(b) a cache compression stage, applied to all data, that leverages one of the

54



cacheline Y Approximation 
Module

Approximate
?

Compression
Module

N

(a) (b)

Figure 3.10: A decoupled approximate cache design that separates the ap-
proximation (a) and compression (b) aspects.

R
ig

h
t 

sh
if

t
b

y 
1

6 
bi

tsApproximation
3F00 

19
03 
1F

3F00 
19
03 
1F

 

00003F00 
00003F19
00003F03 
00003F1F

 

00003F00 
00003F19
00003F03 
00003F1F

3F008E69 
3F19A240
3F03DD66 
3F1FB949

3F008E69 
3F19A240
3F03DD66 
3F1FB949

3F008E69 
3F19A240
3F03DD66 
3F1FB949

  

In
co

m
in

g 
d

at
a

 

B
as

e
-d

el
taCompression

mechanismModule (s=16)

(a) (b)

Figure 3.11: Approximating and compressing a cacheline from jmeint [178,
263] using a base-delta representation [200].

many existing cache compression proposals [21, 26, 56, 88, 191, 200, 242?
]. To demonstrate the practicality of this approach, we combine approxima-
tion with 2DCC as well as the two other representative compressed caches,
B∆I [200] and Dedup [242]. The decoupled paradigm allows the designer to
choose a compression algorithm that is suitable for the application rather
than one that is dictated by the approximate cache design, which in turn
can result in better space savings: simulations on a range of applications
from AxBench [263], Parsec [37], and SPEC [114] show that, under the
same quality-of-results criteria, decoupled designs achieve up to 63% more
compression (7.4ˆ geomean) than a bespoke design like Doppelgänger.

Importantly, decoupled designs can also compress non-approximable data,
potentially making approximate caches more attractive for commercial ap-
plications.

3.5.3 Methodology

Quality of results criteria
For all benchmarks, we determined quality cutoffs where degradation was
(a) barely noticeable visually or (b) did not compromise the purpose of the
benchmark. The quality metrics are shown in Table 3.4.

We focused on floating-point array structures, and applied the maximum
single approximation level suitable for the entire workload; more approxima-
tion may be possible by using per-datastructure levels. Approximation and
compression are applied only at the LLC level whenever a new cacheline is
brought in from DRAM; decompression and deapproximation are applied

55



BM fp64/fp32 Quality BM fp64/fp32 Quality

swaptions 45/0 MSEă1 fft 0/17 MSEă82.5
streamcluster 0/11 AE=0% sobel 0/18 PSNRą60
calculix 47/0 MSE=0 vips 43/17 PSNRą60
inversek2j 0/17 MSEă5e-3 milc 32/0 MSEă5e-8
blackscholes 0/18 MSEă5e-3 ferret 0/5 AE=0%
K-Means 0/6 PSNRą50 namd 32/0 AEă1e3
cactusADM 38/0 MSEă2e-7 jmeint 0/17 REă5e-3

Table 3.4: Quality cut-off levels for fp64/fp32 and QoR criteria.

whenever the line is read or written.

Bespoke approximate cache
We implemented Doppelgänger [173], the best-performing approximate cache
proposal to date (the more recent Bunker Cache [211] has worse compres-
sion [211, fig. 22]) Value ranges for the approximation maps were taken from
recorded runtime minimum and maximum values in the manually annotated
approximable regions of each benchmark using the 14-bit map space.

Decoupled approximation scheme
To approximate floating-point numbers, we zero the s rightmost bits of the
mantissa, where s is chosen per application according to the QoR metrics
above; we then right-shift the entire value by s bits. When an approximate
value is fetched, we left-shift the stored value by s bits and use that to service
the request. This mechanism, illustrated in Figure 3.11(a), naturally lends
itself to a simple, fast hardware implementation.

Like prior work [173, 211, 212], we assume that approximate data struc-
tures are annotated by the programmer. In our design, the approximation
level s is included in every cache request, as is a single bit identifying the
datatype (fp32 or fp64); this can be implemented either by extending the
ISA with approximate variants of load/store instructions or by adding a
hardware region lookup table that can be filled by the application and con-
sulted during load/store execution.

To fairly compare with Doppelgänger, we only approximate to cachelines
where all elements have the same type.

Decoupled compression schemes
Compression is applied after approximation and before deapproximation, as
shown in Figure 3.11(b). We combined this approximation scheme with three

56



Figure 3.12: Compressed working sizes for Doppelgänger and several decou-
pled approximation+compression combinations.

representative cache compression techniques: base-delta-immediate compres-
sion (B∆I) [200], exact deduplication (Dedup) [242], and our proposal, 2DCC.

3.5.4 Evaluation Results

Figure 3.5.2 shows the savings from compression and approximation nor-
malized to the uncompressed footprint for all caches, measured as a running
average over each workload’s region of interest. The decoupled approximate
caches reduce workload footprints to as little as 36.5% (sobel) and 60%
on average (gmean); all outperform Doppelgänger, which only manages to
reduce the footprint to 95% (gmean).

This is largely due to two factors. One is that the decoupled approximate
caches capture the intra-line redundancy created by the approximation stage
(e.g., fft, inversek2j, jmeint, sobel, streamcluster); because Doppelgänger ef-
fectively implements near-deduplication, it cannot capture intra-line effects.
The other is that the decoupled designs can also compress non-approximable
data (e.g., ferret).

Overall, these results make a case for decoupling approximation and
cache compression — general-purpose designs where approximation is im-
plemented as a separate, optional stage in the cache compression pipeline.
These achieve better compression than bespoke approximate caches, and of-
fer a practical strategy for introducing approximation in commercial cache
hierarchies.

3.6 Summary

This chapter, demonstrates that a simple technique that takes advantage
of both types of of redundancy results in improvement in compression for
several applications: some workloads exhibit either inter-block or intra-block

57



redundancy, while others exhibit both. It proposes 2DCC, a simple technique
that fills this gap.

This chapter also demonstrates that approximation and compression are
orthogonal, complementary techniques that should be decoupled in cache
designs. Compressed caches can be comprise a lightweight approximation
stage and an effective cache compression stage.

58



Chapter 4

Reducing Data Redundancy
via Dynamic Clustering

In this chapter2, we leverage similarity across memory data blocks in order
to reduce the redundancy in cache memories.

Below, we first describe the missed opportunity in compressing multiple
cachelines if we only consider exact values (duplicates). We demonstrate sig-
nificant similarity but not identity (i.e., near-duplicates) in the data values
of memory blocks across different cachelines for a broad range of workloads.
With that intuition in mind, we describe the opportunities for in-cache clus-
tering of the data. Then, we propose Thesaurus, a dynamic inter-cacheline
compression technique which uses dynamic clustering to efficiently detect
and compress groups of similar memory blocks. Thesaurus uses a novel,
hardware-friendly locality-sensitive hashing design in order for the approxi-
mate near data search. It continues the chapter with the architectural and
operational changes needed for this proposal as well as the detailed descrip-
tion on the compression formats. We also develop a replacement policy for
the data array in the LLC that balances the development of new clusters
with conserving existing clusters. Finally, we evaluate this design on an ex-
tensive set of benchmarks.

4.1 Near-Exact Data Redundancy

As described in chapter 2, several existing compression schemes [20, 21, 25,
26, 56, 76, 187, 191, 200, 218–220] take advantage of low entropy of data
within a small memory block (e.g., a cacheline) by compressing each block
independently. On the other hand, state-of-the-art inter-cacheline compres-
sion schemes such as exact deduplication [242], work on larger parts of the
memory (e.g., multiple memory blocks) and can reveal redundancies only
when multiple cachelines are considered.

2Parts of this chapter appear as: A. Ghasemazar, P. Nair, M. Lis, “Thesaurus: Efficient
Cache Compression via Dynamic Clustering,” In ASPLOS, 2020.

59



Although exact deduplication can capture structural properties of more
substantial, heterogeneous data structures, it can only exploit data regu-
larity if multiple LLC lines have exact data values [242]. To see how much
opportunity is lost, consider an ideal inter-cacheline compression scheme
that inserts data by searching the entire LLC for similar cachelines and
stores only the bytes that differ from the most similar existing cacheline
whenever this representation is smaller than an uncompressed cacheline; we
refer to this setup as Ideal-Diff. Figure 4.1 shows the effective LLC capacity
for (a) a system without compression, (b) an idealized deduplication scheme
that also instantly searches the LLC for exact matches (Ideal-Dedup), and
(c) Ideal-Diff, on SPEC CPU 2017 suite [43]. The potential of detecting
and compressing similar lines is significant: Ideal-Diff increases the LLC
capacity by 2.5ˆ over the baseline (geomean), compared to only 1.3ˆ for
Ideal-Dedup.

Figure 4.1: Effective LLC capacity from data compression by executing the
SPEC-2017 suite [43]. On average, Ideal Deduplication (Ideal-Dedup) im-
proves the effective LLC capacity by 1.3ˆ. However, Ideal-Diff, that groups
nearly identical memory blocks, can increase effective LLC capacity by 2.5ˆ.

To achieve good compression with Ideal-Diff, the overheads of storing
diffs must be low (i.e., the diffs must be relatively small). We observed
that this tends to be true for a wide range of workloads. For example, Fig-
ure 4.2(top) illustrates this using an LLC snapshot of the mcf workload from
SPEC CPU 2017 [43]. The working set contains very few duplicate memory
blocks, making exact deduplication ineffective. Intra-cacheline techniques
also have limited effectiveness, as the primary datatype contains a variety

60



l1: 00002AAAC02419D8 00002AAAC0237610 0000000000000000 FFFFFFFFFECEF790 00006A04FFFFFE67 ¨ ¨ ¨

l2: 00002AAAC024B8B0 00002AAAC023EE60 0000000000000000 FFFFFFFFFECEF73C 00006A2CFFFFEEE7 ¨ ¨ ¨

l3: FFFFFFFFFFFFFFC 4 00002AAAC11FE988 0000000000000000 0000000001312724 FFFFFFFFFECED8DC ¨ ¨ ¨

l4: FFFFFFFFFFFFFFC 4 00002AAAC11FA920 0000000000000000 00000000013123A0 FFFFFFFFFECEDC60 ¨ ¨ ¨

Figure 4.2: Top: Fraction of 64-byte cachelines in an LLC snapshot of mcf
that can be deduplicated with at least one other cacheline if differences
up to n bytes are permitted for 0 ď n ď 64. Bottom: Two clusters of near-
duplicate cachelines from mcf.

of fields with different types and ranges (see Listing 4.1).
On the other hand, exploiting similarity across cacheline boundaries and

relaxing the exact-duplicate requirement is very effective: almost half of the
cached memory blocks differ from another block by a maximum of 8 bytes,
and nearly all memory blocks differ only by a maximum of 16 bytes. There-
fore, we can obtain significant LLC storage capacity by storing 16-byte diffs
instead of full 64-byte blocks.

4.2 Capturing Near Exact Data

Unfortunately, working sets usually do not contain a single reference memory
block around which all other memory blocks could cluster; on the contrary,
we may require several reference memory blocks with vastly different data
values. This is the case in mcf : in Figure 4.2(bottom), lines l1 . . . l4 all come
from the same node data structure in mcf, but only tl1, l2u and tl3, l4u are
near-duplicate pairs. This is because node takes up 68 bytes (see Listing 4.1)
and is not aligned to the 64-byte cacheline size. The misalignment naturally
creates several “clusters,” each with its own reference memory block re-
ferred to as the “clusteroid.” To achieve effective compression, therefore,
multiple clusters must be identified; in addition, because the contents are
input-dependent, this must happen dynamically at runtime.

61



struct node {
val (8 Bytes) potential;
val (4 Bytes) orientation;
ptr (8 Bytes) child, pred
ptr (8 Bytes) sibling, sibling_prev;
ptr (8 Bytes) basic_arc,firstout;
ptr (8 Bytes) firstin, arc_tmp;
val (8 Bytes) flow;
val (8 Bytes) depth;
val (4 Bytes) number;
val (4 Bytes) time;

};

Listing 4.1: The node data structure in mcf

4.3 The Opportunity for In-Cache Clustering

To determine whether in-cache clustering is practical, and whether it should
be dynamic, we asked three questions:

1. Do caches contain clusters with enough elements to provide substantial
opportunities for compression?

2. Are there few clusters with clusteroids that could be hardcoded, or
must clusteroids be computed at runtime?

3. Do cluster count and size vary among workloads enough to need a
runtime-adaptive solution?

To answer these questions, we performed DBScan clustering [80] on LLC
snapshots from the SPEC CPU 2017 suite, configuring similarity criteria for
each workload to target 40% space savings. The experimental setup here is
idealized in two ways: (a) the algorithm sees the entire LLC at once rather
than each memory block separately at insertion time, and (b) DBScan uses
far more computation and storage than is practical to implement within a
cache controller.

Figure 4.3 shows that the LLC in most workloads has significant clusters
of 10 or more members, with many exhibiting larger clusters of even 1,200
memory blocks (povray, roms). Because some workloads need many separate
clusters to achieve substantial compression (e.g., bwaves and cactuBSSN ),
hard-coding cluster parameters in hardware is impractical. Finally, because
cluster counts and sizes vary widely across the benchmark suite, cluster-
ing must be done dynamically at runtime, with performance considerations
dictating a hardware-based or hardware-accelerated solution.

62



0

100

200

300

400

bw
av
es

ca
ctu
BS
SN
ca
m4

de
ep
sje
ng

ex
ch
an
ge
2

fo
ton
ik3
d
gc
c

im
ag
icklbmlee

la
mc
f
na
b
na
md

om
ne
tpp
pa
res
t

pe
rlb
en
ch

po
vr
ay
ro
mswr

f
x2
64

xa
lan
cb
mk x

z
0

400

800

1200

m
em
be
rs

cl
us
te
rs

Figure 4.3: Cluster parameters after applying DBScan to LLC snaphots
from different SPEC workloads. Workloads were run for 40B instructions
after skipping the 100B instructions. Cluster distance was set to achieve an
average 40% space savings in each snapshot.

4.4 Dynamic Clustering

Directly applying clustering techniques to cache compression is complicated
by two challenges. Firstly, cache contents can change as often as every few
cycles as lines are inserted and evicted, so there is never a stable image
“snapshot” to be analyzed. Secondly, the need to incorporate clustering in
a cache controller requires that it is both relatively quick (on the order of a
few cycles) and inexpensive to implement in hardware. These requirements
exclude common clustering algorithms like DBScan [80].

To overcome these challenges, we observe that an approximate cluster-
ing technique — one where a point is placed in the “correct” cluster with
high probability, but can also end up in an entirely “wrong” cluster with low
probability — is sufficient for cache compression. This is because the few
lines that end up in the wrong cluster can simply be stored uncompressed;
provided this happens rarely, compression ratio will not be significantly af-
fected.

Thesaurus therefore uses a dynamic approximate clustering mechanism
based on locality-sensitive hashing [127]. In this section, we will briefly dis-
cuss two key underlying concepts: (a) how locality-sensitive hashing can be

63



used for approximate clustering, and (b) how locality-sensitive hashing can
be efficiently implemented in hardware.

4.4.1 Locality-Sensitive Hashing (LSH)

LSH was initially developed as a data structure for the approximate-nearest-
neighbour problem [127]. It has been especially popular in big-data en-
vironments, and used for streaming nearest-neighbour queries [163, 190],
encrypted data search in cloud storage [283], detecting near-duplicate web
pages [169], finding DNA patterns [44], unsupervised learning [89], computer
vision [65], deep learning [79, 233], etc.

The idea is to create a family of hash functions that map points in some
metric space to discrete buckets, so that the probability of hash collision
is high for nearby points but low for points that are far away from each
other. Specifically, given two points x and y in an d-dimensional real space
Rd with a distance metric }x, y}, a family of hash functions H is called
locality-sensitive if it satisfies two conditions:

1. if }x, y} ď r1, then Prrhpxq “ hpyqs ě p1, and

2. if }x, y} ą r2, then Prrhpxq “ hpyqs ď p2,

when h is chosen uniformly at random from H, r1 ă r2 are distances, and
p1 ą p2 are probabilities [127]. In the context of cache compression, we want
a distance metric that (a) correlates with the number of bytes needed to
encode the difference between x and y, and (b) is easy to evaluate, the `1
metric being a natural candidate. Typically, we want r2 “ p1`εqr1 for some
small ε ą 0.

To see how such a hash family could be created, consider the space t0, 1ud

of d-bit strings under the Hamming distance metric, and, without loss of
generality, choose two bit strings x and y in this space. Let H “ th1, . . . , hdu,
where hi simply selects the ith bit of its input. Intuitively, if }x, y} is small
(i.e., few bits differ), the probability that hipxq ‰ hipyq (i.e., selecting a
different bit) with a randomly selected hi will be small; in contrast, if }x, y}
is large (i.e., many bits differ), the probability that hipxq ‰ hipyq will be high.
Observe that the difference between the two probabilities will be amplified
if we again select an hj at random and require x and y to match under both
hi and hj to conclude that hpxq “ hpyq.

The locality-sensitive hashing algorithm leverages this insight by map-
ping each point to an LSH fingerprint by concatenating the outputs of k
randomly chosen functions in family H. Typically, bit sampling is replaced

64



¨

˚

˚

˚

˝

´0.32 0.10 ¨ ¨ ¨ ´0.16
0.71 ´0.08 ¨ ¨ ¨ ´0.58

...
...

. . .
...

´0.80 0.15 ¨ ¨ ¨ 0.22

˛

‹

‹

‹

‚

looooooooooooooooooomooooooooooooooooooon

LSH matrix

¨

˚

˚

˚

˝

169
80
...
6

˛

‹

‹

‹

‚

loomoon

cacheline

Ñ́

¨

˚

˚

˚

˝

97
´82

...
25

˛

‹

‹

‹

‚

looomooon

fingerprint

Figure 4.4: Computing the fingerprint of a cacheline using dimensionality
reduction.

with multiplication by a matrix randomly sampled from a suitably con-
structed normal distribution, as illustrated in Figure 4.4; such random pro-
jections preserve the distance between any two points to within a small er-
ror [83, 137]. By carefully selecting the LSH matrix, an arbitrarily high prob-
ability of finding a near neighbour within a chosen radius can be achieved
(see [90] for details and a formal analysis).

4.4.2 Using LSH for Clustering and Compression

The fingerprint obtained by applying the chosen subset of H and concate-
nating the results naturally leads to a clustering scheme where all points
with the same fingerprint are assigned to the same cluster. Crucially for
cache compression, computing this fingerprint requires no preprocessing or
queries of previously cached data.

At the same time, there are two challenges. One is that a cacheline
may rarely be assigned to the “wrong” cluster, and be incompressible with
respect to that cluster’s clusteroid. Because this occurs very rarely, however,
the effect on the overall compression ratio is negligible.

The other challenge is that cluster diameters vary across workloads
(see section 4.3), but combining LSH functions in a single fingerprint re-
quires fixing the near-distance radius r1 (see subsection 4.4.1). Again, cor-
rectness is not compromised because the “misclassified” lines can be stored
uncompressed; however, the near-distance radius must be carefully chosen
to keep those events rare and provide good compression.

To effect compression, we must also select a base (clustroid) for each
cluster: the base will be stored uncompressed, and lines in the same cluster
will be encoded as differences with respect to this base (see subsection 4.5.1).
Because a clustering scheme based on LSH treats all points in a cluster
equally and does not identify a true centroid, we simply choose the first
cacheline to be inserted with a given LSH as the cluster base.

65



¨

˚

˚

˚

˝

´1 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 1
...

...
. . .

...
1 0 ¨ ¨ ¨ ´1

˛

‹

‹

‹

‚

looooooooooomooooooooooon

LSH matrix

¨

˚

˚

˚

˝

169
80
...
6

˛

‹

‹

‹

‚

loomoon

cacheline

Ñ́

¨

˚

˚

˚

˝

95
´23

...
3

˛

‹

‹

‹

‚

ą0?
Ñ́

¨

˚

˚

˚

˝

1
0
...
1

˛

‹

‹

‹

‚

loomoon

fingerprint

Figure 4.5: A hardware-friendly variant of dimensionality reduction for com-
puting the fingerprint of a cacheline developed for Thesaurus

4.4.3 Hardware-Efficient LSH

A key disadvantage of the dimensionality reduction method for computing
LSH fingerprints (see Figure 4.4) is that applying the LSH matrix to the
cacheline requires many expensive multiplication operations (e.g., 64 if we
treat the cacheline as a byte vector); directly implementing this would incur
unacceptable overheads in silicon area, latency, or both.

The hardware-efficient LSH implementation in Thesaurus combines two
separate refinements of random projection. The first is that multiplication
can be avoided by replacing the elements of the LSH matrix with `1, 0, or
´1, chosen at random with probabilities 1{6, 2{3, and 1{6 respectively, with
negligible effects on accuracy [17]. Indeed, the sparsity can be further im-
proved by reducing the probabilities of non-zero values to d{logpdq (where d
is the number of dimensions in the original space), again at negligible accu-
racy loss [160]; this allows for very efficient hardware implementations [82].
(Refer to [17, 160] for a formal analysis of these optimizations.)

To reduce the resulting LSH fingerprints from many bytes to a small
number of bits, we combine this with another refinement: the idea that each
component of the LSH fingerprint vector can be replaced with 1 if it is
positive or 0 if it is negative while retaining the chosen LSH probability
bounds [53]. Besides resulting in small fingerprints, this allows us to select
the fingerprint size at bit granularity by simply varying the number of hash
functions used (i.e., number of LSH matrix rows).

Figure 4.5 illustrates the LSH fingerprint computation in Thesaurus. The
cacheline is first multiplied by a sparse matrix with entries from t´1, 0, 1u;
then, only the sign of each scalar is retained, resulting in a fingerprint bit
vector. Figure 4.6 illustrates the hardware implementation using only adders
and comparators.

66



+
+

+ +
+

> P-P+

bi,m-1

aia  aib   aic   aid aie  aif    aig   aih

+

Figure 4.6: Hardware implementation using an adder tree and a comparator.

4.5 Cache Architecture and Operation

Briefly, Thesaurus operates by applying the LSH hash as each memory block
is inserted. When another “base” memory block with the same LSH exists,
the incoming memory block is stored as a byte-level difference with respect
to the base (if the difference is small enough to result in compression); if no
other memory blocks share the LSH, the incoming memory block becomes
the new “base” for the cluster.

Below, we first outline the Thesaurus compression format and storage
structures, then walk through an example, and finally detail how Thesaurus
operates.

4.5.1 Compression Format

Thesaurus uses two primary data encodings: a compressed base+diff for-
mat, and an uncompressed raw format used when compression is ineffective.
We also use secondary data encodings to optimize for three common-case
patterns: all-zero lines, base-only for lines that do not need a diff, and
0+diff for lines that do not need a base.

In the base+diff encoding, illustrated in Figure 4.7, memory blocks
within a cluster are represented as a compacted byte difference with respect
to a base memory block common to the entire cluster. The encoding consists
of a 64-bit mask that identifies which bytes differ from the base Ë, followed
by a sequence of the bytes that differ Ê. During decompression, the “base”
and the compressed “diff” encoding are combined by replacing the relevant
bytes Ì.

Lines encoded as all-zero are identified as such in the tag entry (see sec-
tion 4.5.2), and require no additional storage. Similarly, base-only lines are
equal to the cluster base, and so do not need a diff entry in the data ar-
ray. Finally, 0+diff lines are encoded as a byte-difference from an all-zero

67



startmap

Base

Data

Data 0010...

0010...

Base

Data

Data

(B+D)

(B+D)

00000111100000111100000111100000 Mask

Mask

Mask

22

11

33

Figure 4.7: The base+diff compression encoding in Thesaurus. Left: com-
pression; right: decompression.

Set 0

Set 1

Set 0

Set 1

Tag Array Data Array

1

Base Cache

0

Figure 4.8: A two-set, two-way Thesaurus cache with two memory blocks
cached in the base+diff format. The entries share the same base but have
different diffs.

cacheline.

4.5.2 Cache Structures

Figure 4.8 shows the storage structures used to implement Thesaurus and
the connections among them. As is typical in prior compressed cache pro-
posals [202, 242, etc.], the tag array and the data array are decoupled to
enable the storage of a larger number of tags as compared to data entries.

Thesaurus stores the clusteroids for each possible LSH fingerprint in
main memory, and caches the most recently used clusteroids within a small
LLC-side structure similar to a TLB, which we refer to as the base cache.

Tag Array

The tag array is indexed by the physical address of the LLC request, and
entries are formatted as shown in Figure 4.9. The tag, coh, and rpl fields
respectively correspond to the tag, coherence state, and replacement policy
state of a conventional cache. The new lsh field identifies the LSH fingerprint
for the cached data, which points to the clusteroid for this LSH in the
base table (see section 4.5.2). The setptr field points to a set in the data
array, whereas segix identifies the segment within the set (see section 4.5.2

68



Base DataBase Entry

Data Entry tagptr bit-mapData Entry Uncompressed Datatagptr

tagTag Entry coh rpl fmt segixsetptr

delta(s)
(BASE+DIFF)

lsh

(RAW)

cntr

Figure 4.9: Top: Data array entries for uncompressed data (left) and the
base+diff/0+diff encodings (right). Bottom: Tag entry format (left) and
the base table entry that contains base (right).

for details). Finally, the fmt field identifies the cacheline as an all-zero
cacheline, a base+diff encoding, or an uncompressed raw cacheline.

Data Array

As in a conventional cache, the data array is organized in individually in-
dexed sets. To facilitate the storage of variable-length compressed diffs,
however, each set is organized as a sequence of 8-byte segments: a single
data array entry (i.e., cacheline in base+diff or raw format) may take
up anywhere from two to eight segments. To avoid intra-set fragmentation,
segments in a set are compacted on eviction as in prior work [200, etc.].

As the data array is decoupled from the tag array, any set in the data
array can store the incoming memory blocks. Therefore, each data array
entry contains a tagptr that identifies the corresponding tag array entry.
This entry is used to evict the tag if the data array entry is removed to free
space for an incoming memory block.

Each set also contains a map called the startmap. The startmap helps
identify which segments begin new entries; this enables intra-set compaction
without the need to traverse the tag array and modify the (possibly many)
tag entries to reflect new data locations. The startmap has as many entries
as there are segments, where each entry is one of valid-raw, valid-diff,
or invalid (128 bits total).

The startmap works in conjunction with the segix field in the tag array:
segix identifies the ordinal index in the set (e.g., first, second, nth, etc.),
while the startmap identifies which entries are valid. The location of the
nth entry is obtained by adding the sizes of the first n ´ 1 valid-raw or
valid-diff startmap entries. Because evicted entries can set their startmap
tags to invalid without affecting the segix for the following entries, sets can
be recompacted without updating the tag array.

Entries can come in two flavours: raw and base+diff. Lines stored in
the raw format (Figure 4.9, top-left) contain a 15-bit tag pointer followed by
64 bytes of data across eight contiguous segments. Lines in the base+diff

69



Set 0

Set 0

Tag Array

Data Array

startmap

2Evicted Tag

1

11

3 4

8 14 15

5

1V

I

V

11

 1  -  2  3 -  -  -  4  -  -  5   -   -   -        
D  -   I   R  -   -   -  D  -   -  D    -   -    -  [1]    

 1      x   4              8  

segix

V 4

Figure 4.10: The segment index (here, 5) and the startmap combine to locate
the compressed data block within a set.The second entry (shaded grey) is
invalid, so it is skipped in the startmap. D=valid-diff, R=valid-raw,
I=invalid.

format (Figure 4.9, top-right) also begin with a 15-bit tag pointer; this is
followed by a 64-bit map that identifies which bytes differ from the base,
and then by a sequence of the differing bytes.

Base Table and Base Cache

To store the clusteroid (base memory block) for each LSH fingerprint, The-
saurus uses a global in-memory array allocated by the OS, which we refer
to as the base table. Each base table entry contains a counter of how many
current cache entries are using this base. When the counter decreases to 0,
the base is replaced with the next incoming cacheline for that LSH, which
allows Thesaurus to adapt to changing working sets.

For performance, the base table is cached in a TLB-like table near the
LLC, which we refer to as the base cache; for us, this is an pseudo-LRU-
managed, 64-set, 8-way set-associative structure. The entries in this cache
contain the base entry itself, an LSH tag, and replacement policy state.

4.5.3 Cache Operation

Read Requests

Figure 4.11 shows how Thesaurus services a read request. Shaded areas are
on the critical path, while unshaded areas occur after the read has been
serviced.

When the request is received, the address is looked up in the tag array
as in a conventional cache. If the tag hits, the setptr is used to index the
data array Ê (for 0+diff and base+diff formats) and, in parallel, the lsh
indexes the base cache Ë (for base-only and base+diff formats). If the
LSH is not in the base cache, an access is made to the memory to retrieve
the base entry for that LSH (not shown).

70



Read 
Request

Read 
Serviced

Data Array
Access ?

Tag Hit ?

Evict Victim 
Tag & Data

Req. from 
Memory

Calculate lsh
& Access

Base Cache 

Base
Valid?

Insert base

Pick Victim
Data Set

Enough 
Space ? Insert RAW 

Data or Diffs

Pick Victim
Segment(s)

Y

N

Y

a)

b)

c)

End

N Y

N

88

77

33

44
55

11

Base Cache 
Access?

22

Diff with base

+

Evict Associated 

Tag(s)

66

99

Figure 4.11: Processing a read request in Thesaurus: (a) critical-path lookup
sequence; (b) cluster ID computation for new data brought in by a miss; (c)
insertion of new data and possible data array evictions. Shaded steps are
on the critical path, while unshaded steps are performed in parallel with
servicing the read request.

71



If the tag misses, a request is made to the backing memory Ì; meanwhile,
the victim tag and its corresponding data array entry are evicted and the
new tag is inserted. The data is returned to the requesting cache as soon as
it arrives; inserting the new line in the cache happens off the critical path
as other read requests are handled.

If the newly arrived line consists of zeros, an all-zero tag is inserted
and processing ends. Otherwise, the LSH for the newly arrived line is com-
puted Í, and used to index the base cache; if the LSH is not in the base
cache, the data is inserted uncompressed (in raw format) while the base is
retrieved from the base table in memory (not shown). If there is currently
no base for the LSH, the new line is installed as the base and processing
ends Î by inserting a base-only tag entry. Otherwise, the byte-difference
with respect to the base is calculated Ï; if there are no differences, the a
base-only tag is inserted and no entries in the data array are made.

For non-base entries, the diff is packed together with a bitmask in the
base+diff or 0+diff format; if compression is not possible, the entry will
use the raw format. In either case, the appropriate tag is inserted, and a
block must be added to the data array. To make space, a data array victim
set is selected Ð as described in section 4.5.3; if there is not enough space
there, enough victim segments are selected to make space for then new block,
and their tags evicted Ñ. Finally, the block is inserted, possibly recompacting
the set Ò.

Write and Atomic Requests

Accesses that modify the data can change the mode of compression or the
size of the compressed block. If the diff is smaller, the data array entry
is either removed (for all-zero or base-only) or the block’s bitmap is
updated and the set is compacted. If the diff is larger, other entries are
evicted from the set to make space Ñ, and the set is updated and compacted.

For write operations in memory models without write acknowledgements
(most extant ISAs), the entire write is performed off the critical path.
For atomic read-modify-write operations (e.g., compare-and-swap), the read
part is serviced as soon as possible, and the write part is completed off the
critical path.

Replacement Policies

The tag array follows the corresponding conventional replacement policy (in
this work, we use pseudo-LRU); the base cache follows pseudo-LRU. Unlike

72



in a conventional cache, however, the data array entry requires a separate
replacement policy: in this case, a policy that favours evicting fewer data
entries over recency makes sense, as not-recently-used data array entries will
have been evicted anyway by the tag array replacement policy.

To choose a victim set, we use a best-of-n replacement policy [88, 242].
First, we randomly select four sets. If one of the sets has enough free seg-
ments to store the incoming (possibly compressed) block, it is chosen and
no evictions are made; otherwise, we select the set with the fewest segments
that would have to be evicted to make enough space.

Observe that the randomness ensures that frequently used blocks do not
evict each other in a pathological pattern: if a block is evicted and soon
thereafter reinserted, it will likely end up in a different set than the block
that evicted it.

4.5.4 Walk-through Examples

Figure 4.12(b) shows an example lookup the Thesaurus LLC. First, as in
a conventional cache, the address is used to index the tag array Ê; in this
example, the cacheline uses the base+diff encoding. The LSH stored in the
tag entry is used to index into the base cache and retrieve the compression
base Ë. Concurrently, the set index from the tag entry is used to retrieve
the set. The segment index from the tag entry and the startmap from the
data entry are combined to identify the beginning of the encoded cacheline
in the set Ì. Finally, the bitmask and bytes stored in the diff entry are used
to replace the corresponding bytes from the base entry, and the resulting
line is returned Í.

Figure 4.12(c) illustrates how the startmap is updated during an eviction,
showing a set before and after evicting entry d1. Before the eviction, d1 is
the second valid index in the startmap Ê, d2 is the third, and so on. After
the eviction, the tag array entry for d1 has been invalidated Ë, the other
entries (d0, d2 ) have been compacted to form a contiguous set, and the
startmap entry that previously identified B has become invalid Ì. This
means that d2 is still the third overall entry, and the tag array entries for
d2 do not need to be updated to reflect the compaction.

Finally, Figure 4.12(d) shows an insertion of a new entry d3. First, the
access misses in the tag array and a request is made to the backing mem-
ory Ê. When the cacheline data arrives, it is immediately returned to the
requesting cache (e.g., L2) Ë. In parallel, the cacheline’s LSH fingerprint is
computed Ì and used to index the base cache. In our example this access
hits and returns the data for the base Í. The incoming line is then xor’d

73



d0 Set0

Set0

Set1

Tag Array Data Array

Insert

t0a)

b)

d3

lookup

c)

Base Cache

0x01
0x02

 D - - - D - D - - - - -    

d0

t0

0x01
0x02

 D - - - D - D - - - - -    
t211

d2

t2

d2

22

33

d244

d1

t1

t1

d1

d0

t0

0x01
0x02

 D - - - D - D - - - - -    

t2 11

d2

t1

I
22

X

33

d0

t0

0x01
0x02

 D - - - I - D - - - - -    

t3
11

xorxor

t2

lsh(d3) = {0x01, 0x04e1} 

d3

33

22

44

xorxor

55
d3(B+D)

d2

D 66d)
lookup

Startmap

Startmap

Startmap

Startmap

Figure 4.12: Thesaurus structures during cache operations: (a) initial state;
(b) read request processing; (c) eviction; (d) new entry insertion.

74



CPU x86-64, 2.6GHz, 4-wide OoO, 80-entry ROB
L1I 32KB, 4-way, 3-cycle access lat., 64B lines, LRU
L1D 32KB, 8-way, 4-cycle access lat., 64B lines, LRU
L2 Private, 256KB, 8-way, 11-cycle lat., 64B lines, LRU
LLC Shared 1MB, 8-way, 39-cycles lat., 64B lines, 8 banks
Memory DDR3-1066, 1GB

Table 4.1: Configuration of the simulated system.

with the base, and the non-zero bytes of the resulting difference are encoded
as a bitmask and a list of differing bytes Î; in the example, this encod-
ing takes up 16 bytes, or two segments. Next, this entry is inserted in the
cacheline from the previous example containing d0, d2, and d3 : the invalid
startmap entry is replaced by valid-diff Ï, and the entry is inserted in the
corresponding sequence in the set Ð.

4.6 Methodology

To evaluate effects on cache behaviour and performance, we implemented
Thesaurus and the comparison baselines in the microarchitecture-level sim-
ulator ZSim [213]. We simulated an out-of-order x86 core similar to an i5-
750, modelling on- and off-critical-path events as well as limited interconnect
bandwidths; the simulated system is shown in Table 4.1. Compression was
applied at the LLC level only.

To estimate silicon area and power impacts, we implemented all logic that
is required in Thesaurus but not in a conventional cache in Verilog RTL, and
synthesized these with Synopsys Design Compiler tool using FreePDK45 [236]
standard cell library. We used CACTI 6.5 [181] to estimate the area, access
time, and power of storage structures.

As the baseline, we modelled a conventional (uncompressed) LLC with
1MB capacity per core; we also modelled a hypothetical LLC with 2ˆ the
capacity (2MB), which has an effective capacity similar to a 1MB The-
saurus cache. To study relative improvements over prior state-of-the art
intra- and inter-cacheline compression, we also implemented B∆I [200] and
Dedup [242]. All compressed configurations (Thesaurus, Dedup, B∆I) were
sized to occupy the same silicon area as the baseline LLC: Table 4.6 com-
pares the storage allocations.

To find a suitable LSH size, we swept sizes of 8–24 bits. We found that
12-bit LSHs result in good compression for most workloads while keeping

75



Conv. B∆I Tian:2014:LLCDedup Thesaurus
T

a
g

#Entries 16384 32768 32768 32768
Entry Size 37b 47b 81b 72b
Total Size 74KB 188KB 324KB 288KB

D
a
ta

#Entries 16384 14336 11700 11700
Entry Size 512b 512+0b 512+16b 512+32b
Total Size 1024KB 896KB 754KB 777KB

D
ic

t. # Entries - - 8192 512
Entry Size - - 24b 24+512b
Total Size - - 24KB 33KB

Total Size 1.07MB 1.06MB 1.07MB 1.07MB

the base table size low.
We evaluated all designs on the SPEC CPU 2017 suite [43]. For each

benchmark, we skipped the first 100B instructions, and executed the last
20% of each 1B instructions. For miss rate and speedup measurements, we
split the benchmarks into cache-sensitive (S) and cache-insensitive (NS). In
our evaluation, a benchmark was considered cache-sensitive if doubling the
cache size to 2MB improves the MPKI by more than 10%. (In a practical im-
plementation, the LLC could dynamically detect cache-insensitive workloads
by measuring average memory access times and disable LLC compression.)

4.7 Evaluation Results

4.7.1 Compression Analysis

Figure 4.14 shows the improvements over the uncompressed baseline and
state-of-the-art compressed caches. We also compare against the ideal clus-
tering method (which searches the entire cache for the nearest match and
diffs against it in one cycle) and a conventional cache with 2ˆ the capacity.

Figure 4.14(a) shows the effective cache footprint reduction — i.e., the
data array space taken up by the cached addresses normalized to the equiv-
alent space that would have been required to hold the same addresses in
a conventional cache. Overall, Thesaurus compresses the working sets by
2.25ˆ, compared to 1.28ˆ for exact deduplication and 1.48ˆ for B∆I com-
pression (all geomeans); this demonstrates that Thesaurus compresses more
effectively than state-of-the-art cache compression techniques.

76



Figure 4.13: Compressed working set size, cache miss rates, and perfor-
mance of Thesaurus compared to baseline (uncompressed) cache, iso-silicon
B∆I (intra-block) and Dedup (inter-block), Ideal-Diff, and an uncompressed
cache with 2ˆ capacity on cache-insensitive benchmarks. All but ideal and
the 2ˆ baseline are sized to the silicon area of the uncompressed cache. a)
Average cache occupancy (100% = no savings,0% = perfect compression),
b)Misses per 1,000 instructions (MPKI) relative to a conventional (uncom-
pressed) cache (lower is better), c)Performance improvement normalized to
a conventional (uncompressed) cache.

77



Figure 4.14: Compressed working set size, cache miss rates, and performance
improvements of Thesaurus compared to baseline (uncompressed) cache, iso-
silicon B∆I (intra-block) and Dedup (inter-block), Ideal-Diff, and an uncom-
pressed cache with 2ˆ capacity on cache-sensitive benchmarks. All but ideal
and the 2ˆ baseline are sized to the silicon area of the uncompressed cache.
a) Average cache occupancy (100% = no savings,0% = perfect compression),
b)Misses per 1,000 instructions (MPKI) relative to a conventional (uncom-
pressed) cache (lower is better), c)Performance improvement normalized to
a conventional (uncompressed) cache.

78



The LSH scheme in Thesaurus also captures nearly all data that can be
effectively clustered: the cache footprint obtained using Thesaurus is within
5% of the ideal clustering scheme, which searches the entire cache for the
nearest match. In a few cases, compression is, in fact, slightly better (e.g.,
povray, perlbench, gcc): this is because Thesaurus can diff against a clusteroid
whose tag has since been evicted from the cache, while the ideal clustering
model is restricted to currently cached entries.

4.7.2 Miss Rates Analysis

Figure 4.14(b) shows that Thesaurus substantially reduces miss rates: for
the cache-sensitive subset of the suite, MPKI drops to 0.78 of the conven-
tional cache compared to 0.98 for exact deduplication and 0.89 for B∆I (all
geomeans). Thesaurus is also within 1.5% of the ideal clustering model, and
within 8% of the MPKI that can be attained with a conventional cache with
2ˆ capacity. This is because, thanks to the effective compression, more data
can be cached within the same silicon area, which benefits cache-sensitive
workloads.

4.7.3 Speedup Analysis

Figure 4.14(c) shows that the reduced MPKI rates result in execution time
speedups over the baseline as well as Dedup and B∆I. Thesaurus is up to
27.2% faster than the conventional baseline (7.9% geomean), and up to 9.1%
faster than B∆I (5.4% geomean). Indeed, performance is within 1.1% of the
ideal clustering model, and within 2.2% of a conventional cache with 2ˆ
capacity.

4.7.4 Cost Analysis

Latency. We modelled access times to each LLC structure using CACTI;
because compressed caches have smaller data array sizes, its overall access
time is slightly reduced („2% for Thesaurus). To measure compression and
decompression latencies, we implemented the logic for compression, decom-
pression, as well as locating and reading the compressed cachelines in 45nm
ASIC; the results are shown in Table 4.3. At the relevant CPU frequency
(2.66GHz), compression and decompression take one cycle each, while locat-
ing the compressed data block in the set (described in section 4.5.2) takes
four more cycles. This brings the total decompression latency to 5 cycles,
which we used for the performance simulations.

79



45nm 32nm
dynamic leakage dynamic leakage
energy power energy power

Conv. 0.50 nJ 205.47 mW 0.28 nJ 109.96 mW
B∆I 0.55 nJ 196.47 mW 0.31 nJ 105.22 mW
Dedup 0.56 nJ 226.33 mW 0.32 nJ 121.06 mW
Thesaurus 0.56 nJ 236.01 mW 0.31 nJ 125.85 mW

Conv. 2ˆ 0.78 nJ 349.21 mW 0.44 nJ 186.50 mW

Table 4.2: Dynamic read energy and leakage power per bank of com-
pressed and conventional caches scaled to the same silicon area (1MB
uncompressed = 5.56mm2 in 45nm or 2.82mm2 in 32nm).

bw
av

es

ca
ctu

BSSN
ca

m4

de
ep

sje
ng

ex
ch

an
ge

2

fo
ton

ik3
d
gc

c

im
ag

icklbmlee
la
mcfna

b
na

md

om
ne

tpp
pa

res
t

pe
rlb

en
ch

po
vr

ay
ro

ms
wrf

x2
64

xa
lan

cb
mk xz

Ave
rag

e
  0%

 20%

 40%

 60%

 80%

100%

%
 a

cc
es

s 
to

 b
as

e 
ta

bl
e

Figure 4.15: Fraction of cache insertions that are potentially compressible
with respect to their clusteroid (avg. 87%).

Power. We used CACTI 6.5 [181] to estimate the read energy and leak-
age power of all cache structures; the results are shown in Table 4.2. While
Thesaurus uses „12% more energy for each read and has a „14% leakage
power overhead, these overheads are significantly lower than „57% increase
in dynamic energy and „70% increase in leakage power for conventional
cache with the same effective capacity.

Most importantly, the overhead of Thesaurus („0.06nJ per access at the
45nm node) is trivial compared to the energy of accessing external DRAM
(32.61nJ using the same CACTI model). This means that Thesaurus can
actually save energy when the entire memory hierarchy is considered. In
order to measure this, we calculated the total added power of compressed
cache (30.54mW + 6.4mW + 0.06nJ ˆ access rate) and total power saved by
accessing off-chip DRAM less frequently (32.61 nJ ˆ access rate difference
between Thesaurus and uncompressed).

80



latency dynamic leakage area
power power

comp. 1 cycle
0.116
mW

2.44
mW

0.016
mm2

decomp. 1 cycle
0.084
mW

1.74
mW

0.013
mm2

segix
4
cycles

0.035
mW

0.49
mW

0.007
mm2

multi-bank -
0.101
mW

1.42
mW

0.025
mm2

Table 4.3: Synthesis results for the added logic area of Thesaurus: segix
refers to locating the compressed block within a set (decoding the indirect
segix format), while multi-bank refers to the muxing needed to access lines
across multiple banks; 64-byte cachelines were used. Latency is in units of
CPU cycles at the 2.66GHz frequency of the equivalent 45nm i5-750 core.
All results obtained Synopsys DC and the 45nm FreePDK.

While the power consumption of the Thesaurus LLC increases (from
36.87mW to 51.28mW) because of the added logic and more data array
reads (due to the higher LLC hit rate), accounting for DRAM accesses re-
sults in power consumption savings of up to 101mW in the cache sensitive
benchmarks. Cache-insensitive benchmarks do not see fewer off-chip DRAM
accesses despite effective compression, and therefore power overheads are not
outweighed by power savings; however, a practical implementation would de-
tect cache-insensitive workloads and simply disable compression for cache-
lines they access.

Area. We implemented and synthesized the compression and decompres-
sion units in Thesaurus. The logic required for Thesaurus incurs an area
overhead of 0.06mm2 in 45nm: this includes the compression (0.016mm2)
and decompression (0.013mm2), the logic to locate the segments in the set
using the indirect segix encoding (0.007mm2), and the additional muxing
needed to read a set across multiple banks (0.025mm2). This is equivalent
to 1% of the silicon area required for even a 1MB cache, and a tiny fraction
of a 4-core i5-750 in the same 45nm node (296mm2).

To compare with prior compressed caches, we also implemented and
synthesized the B∆I scheme [200], which at 0.037mm2 (20k nand gates)
is slightly smaller than Thesaurus (0.06mm2 or 32k nand gates); this is
not surprising as B∆I offers much less compression. We also used nand-
gate estimates for prior work from [56, 243] to compare against other prior

81



de
ep

sje
ng

ex
ch

an
ge

2
lbm

bw
av

es

fo
ton

ik3
d

ca
ctu

BSSNna
b
na

md

po
vr

ay
x2

64
pa

res
t

pe
rlb

en
ch

lee
la xz

ca
m4

im
ag

ick wrf
mcf gc

c

xa
lan

cb
mk

om
ne

tpp
ro

ms
-60
-40
-20

0
20
40
60
80

100
120
140

to
ta

l p
ow

er
 d

if
f.

(m
W

)

Sensitive (S)Insensitive (NS)

Figure 4.16: Difference in total power consumption using Thesaurus com-
pared to the baseline. Positive values indicates less power consumption
whereas negative values shows additional power consumption.

compression schemes, all of which incur more area overhead than Thesaurus:
C-PACK [56] needs 0.075mm2 in 45nm (40k nand gates) and FPC [21] needs
0.544mm2 (290k nand gates) just for decompression [56], while BPC [143]
needs 0.127mm2 (68k nand gates).

As described in
, all compressed caches are sized to fit in the same silicon size of a 1MB

conventional cache. Therefore, overall, 2DCC incurs no area overheads.

4.7.5 Clustering Analysis

To investigate the effectiveness of cacheline clustering based on locality-
sensitive hashing, we first examined how many cache insertions are, in fact,
compressed. Figure 4.15 shows that, on average, 87% (a significant majority)
of cache insertions can potentially result in compression — i.e., their differ-
ences versus the relevant clusteroid are small enough that encoding them
would take ă 64 bytes even with the overhead of the difference bitmask.
This observation validates both our choice of LSH for clustering and the
effectiveness of our clusteroid selection strategy to increase compressibility.

Figure 4.17 shows that most working sets have many small clusters rather
than few large clusters. Nevertheless, because Thesaurus tracks clustroids
for many LSH fingerprints, effective compression can still be obtained.

Next, we examined the compression encodings used by Thesaurus. Fig-
ure 4.18 shows that different workloads tend to benefit from different en-
codings. For most of the benchmarks, the byte-difference-based encodings
are the most effective: the base+diff encoding covers an average of 76.2%
of LLC insertions, while 0+diff covers a further 13.2%. Another 6.1% are

82



bw
av

es

ca
ctu

BSSN
ca

m4

de
ep

sje
ng

ex
ch

an
ge

2

fo
ton

ik3
d
gc

c

im
ag

icklbmlee
la
mcfna

b
na

md

om
ne

tpp
pa

res
t

pe
rlb

en
ch

po
vr

ay
ro

ms
wrf

x2
64

xa
lan

cb
mk xz

Ave
rag

e
 0%

10%

20%

30%
en

tr
ie

s 
in

 b
as

e 
ta

bl
e  <10  <50 <500 500+

Figure 4.17: Distribution of clusters (= same LSH) with different sizes (av-
erage over the runtime of each benchmark).

bw
av

es

ca
ctu

BSSN
ca

m4

de
ep

sje
ng

ex
ch

an
ge

2

fo
ton

ik3
d
gc

c

im
ag

icklbmlee
la
mcfna

b
na

md

om
ne

tpp
pa

res
t

pe
rlb

en
ch

po
vr

ay
ro

ms
wrf

x2
64

xa
lan

cb
mk xz

Ave
rag

e
  0%

 20%

 40%

 60%

 80%

100%

%
 o

f 
m

em
or

y 
bl

oc
ks B+D 0+D Z RAW

Figure 4.18: Frequency of different compression encodings in com-
pressing benchmarks from SPEC. B+D=base+diff; 0+D=0+diff;
RAW=uncompressed; Z=all-zero.

83



bw
av

es

ca
ctu

BSSN
ca

m4

de
ep

sje
ng

ex
ch

an
ge

2

fo
ton

ik3
d
gc

c

im
ag

icklbmlee
la
mcfna

b
na

md

om
ne

tpp
pa

res
t

pe
rlb

en
ch

po
vr

ay
ro

ms
wrf

x2
64

xa
lan

cb
mk xz  

Ave
rag

e
0
8

16
24
32
40
48
56
64

B
yt

es

Figure 4.19: The average size of the byte difference from the relevant clus-
teroid for base+diff and 0+diff, in # bytes.

covered by the all-zero encoding. Finally, 17.7% of LLC insertions are left
uncompressed as the diff from the clusteroid (base) is too large.

Figure 4.19 shows the average size of the byte-difference block for the
base+diff and 0+diff encodings. In most cases, the differences tend to
be small, with a quarter of the benchmarks averaging about 8 bytes or less,
and half of the benchmarks averaging about 16 bytes or less. This confirms
that, for many benchmarks, caches have relatively tight data clusters with
very small intra-cluster differences even at cacheline granularity.

In fact, diff sizes can change significantly over the run time of even a
single workload. Figure 4.20 shows the diff sizes for 1 million cache inser-
tions after the first 100 billion instructions for four workloads. In mcf, the
data compression ratios are relatively stable; in xalancbmk, the tiny diffs of
most accesses are punctuated by rare spikes of 32-byte diffs; bwaves has two
distinct but small diff sizes; finally, cam4 intersperses blocks that offer little
compression with periodic short bursts of compressible data.

Together with the number of insertions that can be compressed (Fig-
ure 4.15), the diff sizes explain the compression ratios for each benchmark.
For example, more than 90% of inserted blocks in imagick can be com-
pressed, but the average diff size is 32.6 bytes, resulting in a compression
ratio of 1.3ˆ (see Figure 4.14). In contrast, xalancbmk and mcf combine
a high (ą 90%) proportion of compressible insertions with a small average
diff size (6 and 9 bytes, respectively), for a total compression factors of 2.6ˆ
and 3.7ˆ.

Finally, we established an efficient size for the base cache and examined
its effectiveness. To establish size, we swept sizes ranging from 32 to 2048
entries; results are shown in Figure 4.21. Compared to a 94.8% hit rate for
a 512-entry cache (33KB), a 2048-entry cache (+100KB storage) increases

84



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

32

64
B

yt
es

bwaves

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

32

64

B
yt

es

cam4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

32

64

B
yt

es

mcf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Millions of access to LLC

0

32

64

B
yt

es

xalancbmk

Figure 4.20: How the diff size varies over time: 1 million cache insertions
after skipping the first 40B instructions.

32 128 512 1024 2048
number of entries in the base cache

  0%

 25%

 50%

 75%

100%

ba
se

 c
ac

he
 h

it 
ra

te

  0

100

200

  0

100

st
or

ag
e 

co
st

 (
K

B
)

hit rate
cost

Figure 4.21: Base cache hit rate (left axis) and storage cost (right axis) for
different base cache sizes.

85



the hit rate by only 3.9%; we therefore used a 512-entry base cache for the
remainder of our experiments.

On average, this cache has a 5.2% miss rate over all benchmarks; however,
all but 8% of misses (i.e., all but 0.5% of accesses) miss when a line is being
inserted in the cache, and are off the critical path. Because the data is
inserted uncompressed while the clusteroid (base) is fetched into the cache,
these misses represent a missed compression opportunity but do not affect
insertion latency.

Nevertheless, the lost compression opportunities due to base cache misses
can have a significant impact. The benchmarks with high off-critical-path
base cache miss rates — bwaves, nab, namd, x264 and, wrf with 8–13% —
also lose the most compression opportunity compared to the idealized Ideal-
Diff clustering (cf. Figure 4.14). For those workloads, a larger base cache
would improve compression.

4.7.6 Threats to Validity

Throughout this chapter and chapter 3, we illustrated how considering the
data throughout the cache, as well as leveraging the similarity among the
data lines, can improve the compression ratio of the data being stored in
the cache and as a result improve the entire system performance (speedup
and energy).

For consistency with prior work [20, 21, 200, 242, 260], our evaluations
have modeled an Intel Lynnfield core i5-750-like CPU [4] based on the Ne-
halem microarchitecture [5, 12] with 4-wide OoO and 80 entry ROB, man-
ufactured in 45nm and connected to a DDR3-1066 RAM. Below, we argue
that our insights apply to more recent devices, such as Intel Sunny Cove
microarchitecture [6] at 10nm (352-entry ROBs) and later.

Reorder-buffer size: Any architectural changes and designs comes with
a trade-off. While in general increasing the number of ROBs, can be a way to
reduce cache miss penalties, on the other hand, larger ROB entries increases
the demand for more storage space in the silicon; therefore, to be able to keep
our cache footprint within 1MB iso-silicon requirement, we need to trade-
off some other memory silicon or some logic silicon (with far less silicon
footprint than memory units).

Main memory technology: In general, technology advancement not
only impacts the area and power consumption, but also impact the latency
and access times of CPU and entire memory system. However, using better
technology nodes, does not have any effect on the number of unavoidable
more expensive off-chip memory accesses (i.e. LLC misses). Cache compres-

86



sion is trying to reduce the negative impact of missing a block by reducing
the number of these misses seen at LLC.

On the one hand, better technology means miss penalties will become less
severe due to faster main memories, but on the other hand, better technology
also means having even faster CPUs(from 2.6GHz in i5-750 [4] to 3.7GHz in
i5-12600 [1]). The effective DRAM access latency in terms of the number of
cycles, then, tends to actually grow [1].

Overall, while the final speedup and power numbers reported for all
caches including the compressed and uncompressed will likely change due to
technology advancement, our techniques and insights are independent from
the technology being used. As our designs outperforms all other designs in
terms of reduced misses, the relative benefits versus prior compressed cache
designs should still hold.

Replacement policy: While our uncompressed baseline uses LRU re-
placement policy, we have reimplemented other baselines [200, 242] with
their proposed replacement policies (i.e. modified LRU in [200] and DFRR
in [242]). In both 2DCC and Thesaurus we have developed a customized
replacement policy based on two pillars: a) a timing aspect that accounts
for the frequency of accessing the blocks, and b) a compression-aware aspect
which takes the compressibility and size of the blocks being replaced, which
is orthogonal to the first aspect.

In theory, using a better and state-of-the-art replacement policies (e.g.,
SHiP[252] and RRiP [134]) can improve the first pillar (impacting the un-
compressed baseline’s speedup the most). However, these policies are not
aware of how compressed caches organize data (e.g., with independent tag
and data arrays), and redesigning them to apply to compressed caches is
not a trivial task. In addition, the benefits from a better replacement policy
mainly affect the first pillar (timing), and are orthogonal to the second pillar
(fitting more data in the cache).

Our results demonstrates that the second pillar used in our policy is
effective in managing the cache, outperforming all other compressed designs
and, therefore incorporating it into another timing-based policy would likely
still result in better result that other designs.

Capturing workload phases: Understanding the cycle level behavior
of a processor running an application is crucial to computer architecture
research. Simulating the full execution of industry standard benchmarks
in a detailed (cycle accurate) simulation takes on the order of weeks to
months to complete. This problem gets even worse as to properly perform
an architectural evaluation requires these benchmarks to be evaluated across
many separate runs. To address this issue a common practice is to use a

87



sampling technique to gather simulation data.
There are several works [63, 228] that address this issue in a more sophis-

ticated manner for multi-core systems. SimPoint [228] tries to automatically
find a small set of Simulation Points to represent the complete execution of a
program by intelligently chosen sections from the full program. An assump-
tion of this work is that most of the important metrics of an application
are a function of the code executed, and that IPC is the key figure of merit.
This assumption makes it unsuitable for us, as IPC does not convey informa-
tion about data compressibility. Compressibility of data in an application
is generally a slowly changing value, rather than changing in phases like
IPC [63].

CompressPoints [63], addresses the limitation of [228] by choosing a re-
gion in the application that is representative of both compression ratio and
workload performance. Its benefits are more prominent when simulating
multiple workloads in a multi-core system with presence of compressed main
memory. Instead of capturing representative points individually for each
benchmarks, which can miss the fact that these workloads can compete for
resources, CompressPoints accounts for interplay between the benchmarks
running together.

By skipping the early instructions that fast forwards initialization phase
of workloads and then sampling afterwards, we were also able to capture
these kinds of workload phase changes. Figure 4.20 illustrates compression
phase changes in several benchmarks. Therefore, we believe our methodology
is effective in capturing both IPC and compressibility aspects of individual
workloads on particular benchmarks that we evaluated.

Other workloads: We chose SPEC 2017 benchmarks [43] for our evalu-
ations as they are representative of modern day workloads. They cover wide
range of application areas such as finance, database, AI, and so on, and use
different data structures and algorithms that are widely used. The bench-
mark set also consists of variety of cache sensitive and insensitive workloads
with different LLC MPKIs; this helps us evaluate our work on various work-
load scenarios.

We also applied our technique to other database and graph benchmarks
such as the GAP Benchmark Suite [34] and observed its effectiveness in
reducing cache memory footprint of these benchmarks. Most GAP bench-
marks have great locality and very low MPKI, especially those processing
the web [35].

As we only run each workload in isolation on a single core setup, cache-
insensitive workloads will not benefit from increased cache space, and in
come cases may experience minor performance degradations. However, in

88



a multi-core setup with larger caches, we expect to see considerable bene-
fits: as cache-insensitive workloads can be compressed significantly, running
them along other cache-sensitive workloads which convert this extra avail-
able cache space to performance, will improve the overall system perfor-
mance.

4.8 Summary

In this chapter, we demonstrated that inter-cacheline compression can be
very effective if small differences among the cached memory blocks are al-
lowed. We proposed Thesaurus, an LLC compression based on dynamic clus-
ter detection, and describe an efficient in-hardware implementation based on
locality-sensitive hashing. We also develop a replacement policy for the data
array in the LLC that balances the development of new clusters with con-
serving existing clusters.

89



Chapter 5

Dynamic Clustering of Layer
Activations in DNNs

In this chapter, we leverage the insights developed for clustering data blocks
in CPU caches from chapter 4 to reduce the memory footprint of DNNs.
We demonstrate the effectiveness of data clustering in compressing special-
purpose applications by designing a dynamic clustering method to tackle
activation maps compression in deep neural networks (DNNs).

First, After a brief overview of DNNs, we review the existing compres-
sion work on DNN and identify their drawbacks. Then, we show that acti-
vation distributions are similar across large groups of channels, and there-
fore channels can be clustered based on their statistical properties. We pro-
pose Channeleon, an activation compression technique for off-the-shelf, opti-
mized, deployment-ready models — all without relying on access to training
data, knowledge of the training algorithms and their hyperparameters, or
statistics from the batch-norm layers. We continue this chapter by argu-
ing that non-uniform quantization method is necessary to retain the model
accuracy as low-bit-widths.

Channeleon maintains accuracy at bitwidth ranges where prior meth-
ods fail: it can compress activations to as few as 4 bits, where existing
post-deployment methods fail below 8 bits. Channeleon results in 1.33ˆ the
compression factors achievable by the 8-bit prior art at the similar accuracy
levels.

5.1 Deep Neural Networks

Throughout the thesis, we use convolutional neural networks (CNNs) [112,
216, 230, 241, 273, 281] to evaluate our work. CNN is class of deep neural
networks (DNNs), most commonly applied to analyze visual imagery. There
are two phases involved in employing a DNN model: training and inference.

In training phase, DNN weights are optimized via approaches such as
stochastic gradient descent (SGD) [154] using a training dataset in order

90



Figure 5.1: (a) A block representing convolutional layer and its activation,
weight, bias, and gradient values. (b) A demonstration of network layers
for building block of residual learning networks as in Figure 2 and Figure 3
of [112] (black arrows illustrate activation in forward path).

to minimize a certain loss function. In each training step, a forward pass is
first performed to calculate the loss, followed by a backward pass to back-
propagate the error. Finally, the gradient of each parameter is computed
and accumulated. Then, in the inference phase, only forward passes are
performed in order to make predictions.

DNNs are designed using a combination of multiple types of layers, most
notably convolutional (conv) layers, fully-connected (fc) layers, activation
layers, batch normalization layers, and so on. Depending on the type of
a layer, it may consist of various values such as activation, weight, bias,
and gradients. Weights and biases are the learnable parameters of a layer,
while activations and gradients are the intermediate values that needs to
be exchanged among layers. Learnable parameters do not change after the
training task is completed and therefore, they can be optimized statically.
whereas activation map depend on the input data and therefore, change
dynamically. We illustrate activation maps, weights, and other values of a
convolution layer in Figure 5.1(a).

conv layers contains a set of filters to identify meaningful features in
the input data. For visual data such as images, usually 2-dimensional filters
are employed which slide over the input of a layer to perform the convolu-
tion operation. Activation layers apply an element-wise activation function
to the input feature maps. The ReLU activation function [185] in particular
is known to provide state-of-the-art performance for CNNs, which allows

91



positive input values to pass through while thresholding all negative input
values to zero [27]. For example, we illustrate the layers within the build-
ing block of a widely used family of networks for image classification task,
ResNet [112], in Figure 5.1(b).

Running DNNs requires lots of computing power and memory and these
costs have increased as CNNs get wider and deeper to perform better pre-
dictions for a variety of applications [144]. Although a DNN may include
many types of layers, matrix multiplications and convolutions dominate
over 80% of the operations, and are the main targets of DNN computation
acceleration [267]. As mentioned in chapter 2, model compression meth-
ods [32, 48, 61, 62, 95, 106, 164, 184, 207, 253] try to reduce the memory
footprint as well as computation requirement of DNNs by removing or esti-
mating layer parameters and activations.

5.2 Existing Compression Techniques

Modern compact networks [216, 241, 281] aim to reduce the “size” of the
model, i.e., the number of model parameters that must be stored in, and
retrieved from, memory. Similarly, techniques like weight pruning [84, 92,
107, 113, 280] and weight quantization [32, 48, 61, 62, 95, 164, 184, 207, 253],
try to minimize the memory footprint used to store the weights of a trained
model, either by reducing the effective size or omitting some (often „90%)
of the parameters altogether.

As the weight footprints of such DNNs have shrunk, however, the rela-
tive footprint of their activations has increased to match or even exceed that
of the weights even without pruning. Figure 5.2 illustrates this: while older
(and larger) networks like VGG16-BN [230], ResNet18 [112], and WideRes-
Net50 [273] have 5ˆ–10ˆ more weights than activations, modern compact
networks like MnasNet1 0 [241], ShuffleNet v2 [281], and MobileNet v2 [216]
have as many activations as weights (or more) even when processing a single
input (i.e., no batching).

5.2.1 Drawbacks of Existing Techniques

Recalling from chapter 2, techniques like quantization and compression are
more difficult to apply to activations than weights. Because activations
change for every input at inference time while weights stay constant once
the model is trained, activations cannot be quantized off-line; as a result, the
model cannot be retrained to reverse the accuracy-drop due to activation
quantization, as is commonly done with weight quantization [61, 106].

92



Figure 5.2: Share of the activation and weight values. The right side shows
older models where weights can be up to an order of magnitude more than
activations. On the other hand, the more modern and compact networks are
illustrated on the left side and contain almost equal number of weights and
activation values.

Methods like quantization-aware training [61, 95] and fine-tuning [106]
try to mitigate the accuracy drop due to activation quantization during the
training phase, by calibrating quantization ranges on different inputs re-
quiring access to some training data. Often it is impossible with commercial
vendors on account of security, privacy, or trade secret concerns to access
the training data. Because of this, these techniques cannot be used post-
deployment. Many of post-training quantization (PTQ methods attempt to
quantize the activations without retraining or fine-tuning [32, 48, 62, 164,
184, 207, 253], while other proposals fine-tune the model using synthetic data
that is distilled from the statistics stored in batch normalization layers [48].

While these PTQ techniques are effective in quantizing activations down
to 8 bits, they fail dramatically at lower bit-widths. Figure 5.3 demonstrates
this accuracy drop where weights are kept at 8-bit precision, but activation
values are quantized to 6/5/4-bit precision for the state-of-the-art technique,
ZeroQ [48]. When all activation layers are quantized, the accuracy of Mnas-
Net1 0 using 4-bit activations drops to 0.12%. In contrast, the Channeleon
technique we propose in this paper maintains a top-1 accuracy at 62.2%.

Apart from the accuracy loss, a key drawback of these state-of-the-art
PTQ techniques is that they rely on per-channel statistics from the batch
normalization layers, and require these to be stored in a full-precision format.

93



8-
bi
t

6-
bi
t

5-
bi
t

4-
bi
t

Activation bit-width

MnasNet1_0

Figure 5.3: Impact of our proposal on the top-1 inference accuracy of the
MnasNet1 0 networks compared to the best state-of-the-art activation value
quantization methods [48].

This means that these methods fail on “Normalization Free” networks [41],
which eschew batch normalization. Finally, batch normalization layers in off-
the-shelf networks are often folded into the preceding layers for computation
efficiency, and thereby lose the distinction between the weight values and
normalization constants.

5.2.2 Channeleon Key Insights

The approach we propose in this chapter is based on two key observations:

1. Activation distributions are similar across large groups of channels,
and that channels in each such group can be compressed together.

2. At very low bit-widths (less than 8 bits), the non-uniformity of acti-
vation distributions must be taken into account during quantization
and compression.

Compressing each channel group together avoids the overheads of com-
pressing each channel separately — especially prominent towards the end
layers of deep convolutional networks — as well as the accuracy losses due
to using the same quantization parameters for all of a layer’s activations.
Further, while traditional non-linear quantization techniques are too compu-
tationally expensive for inference, we develop a variant that incurs minimal
computation overheads.

94



Table 5.1: Accuracy (top-1) improvement of the per-channel quantization
over per-layer quantization. Per-channel quantization matches the 6-bit bud-
get method match (or even outperform) the accuracy of the 8-bit per-layer
quantization method. All weights are quantized to 8-bit.

Method A bits MnasNet1 0 MobileNet v2 ShuffleNet v2

Per-Layer 8 71.300 68.898 65.200
6 58.812 38.438 56.490

Per-Channel 6 71.210 69.896 65.168

5.3 The Opportunity for Channel Clustering

5.3.1 Compressing Activation Tensors

Below, we first discuss two approaches to perform compression — com-
pression based on computing the statistics of the entire layer, and compres-
sion based on computing the statistics for every channel separately — and
their weaknesses, and then develop the proposed channel grouping technique
in the next section.

Per-layer compression. The most common [32, 48, 62, 164, 184, 207,
253] way to compress the activation values is to quantize and compress an
entire activation layer all at once based on statistics collected during calibra-
tion. In this approach, the quantization statistics — such as the min/max
thresholds and the scale — are shared across all activations in a layer.

While this approach is simple and induces minimal overheads — the
compression metadata are stored only once per layer — it also wastes com-
pression opportunities.

Figure 5.4(a)(1) shows the distribution of the entire activation tensor
after the first conv layer of ShuffleNet v2 (including batch-norm ReLU) for
two input samples. Quantizing the entire activation tensor uniformly will
yield min/max thresholds of 0 and 6. However, many of the channels, shown
in Figure 5.4(a)(2–7), have much narrower activation value ranges, and only
use a small portion of the r0, 6s range. This leads to overquantization, and
substantially impacts accuracy as compression factors grow: Table 5.1 shows
that while per-layer quantization works acceptably when targeting 8-bit ac-
tivations, it suffers significant accuracy loss when targeting 6-bit activations.

Per-channel compression. An alternative to compressing the entire
activation layer at once is to consider each channel independently [32]. This

95



(a)

(b)

Figure 5.4: (a) Distribution of the activation values in the first layer of
the ShuffleNet v2 illustrated on 2 input images (blue and red colors). The
distribution of the entire values in the layer tensor is shown on the top; the
distribution of values for 6 of the channels also separately illustrated on the
bottom. The distributions and their statistics (µ, σ) vary for every channel,
and are different from the distribution of the entire tensor. (b) Visualizing
the same 6 channels as images for the first input image; while each image
has unique features, there is similarity among pairs in each row.

96



allows the quantization to account for the different activation distributions
present in each channel (Figure 5.4), and maintains accuracy at lower bit-
widths (Table 5.1).

However, quantizing each channel independently also means an increased
storage cost for the quantization metadata, which can significantly reduce
the effective amount of compression. For example, consider the last three
blocks of MobileNet v2, where activations are 7 ˆ 7. Moving from 8-bit
quantization to 6-bit quantization theoretically saves two bits per activa-
tion, but with the overhead of storing the quantization metadata for each
channel, the savings reduce to only 0.7 bits per activation. Because of this,
per-channel quantization is also undesirable as activations are quantized to
narrower bit-widths.

5.4 Quantization Methods

Quantization is an effective technique to reduce bitwidth [33, 81, 94, 131,
146]. A quantization function Quant maps the set of reals R (full-precision
data) to Qb (low-precision data at bit-width b) with a bitwidth of b. Quant
is chosen to minimize the quantization error between the full-precision val-
ues and their low-precision representations, usually measured as the mean
squared error (MSE).

Broadly, there are two types of quantization methods: uniform and non-
uniform.

5.4.1 Uniform Quantization

A uniform quantizer linearly maps the full-precision data (x) into low-
precision data (x̂) with a scaling factor (denoted as scale). Uniform sym-
metric quantization (QU ,sym) maps full-precision data values as: QU ,sym

b “

scale ˆ t´2b´1, . . . 0, . . . ,`2b´1 ´ 1u, where b is the bitwidth of the low-
precision data. Because most activations in a layer generally fall into a lim-
ited range, the quantization is usually cut off at upper and lower thresholds
Xmax and Xmin , i.e., the maximum and minimum values.

Because the commonplace ReLU activations set all negative values to
0, activations often use asymmetrical quantizers (QU ,asym) which map the
values as: QU ,asym

b “ offset ` scale ˆ t0, ...,`2b ´ 1u, where the values are
shifted (denoted by shift) appropriately.

The quantized integer value xq and low-precision value x̂ are then defined
as:

97



shift “ Xmin , step “ pXmax ´Xminq{2
b

xq “ t
x´ shift

step
s

x̂ “ shift ` step ˆ xq `
step

2

(5.1)

While uniform quantization can be performed with low latency over-
heads, it treats all data values equally and does not adapt to the the data
distribution. For instance, using a uniform quantization for data that follows
(say) a log-normal distribution will increase the quantization error and can
cause a drop in accuracy.

5.4.2 Non-Uniform Quantization

A non-uniform quantizer non-linearly maps the full precision data (x) into
low-precision data (x̂). While this increases complexity, a non-uniform quan-
tizer tends to have a smaller drop in accuracy as its quantization error is
low.

In non-uniform quantization, the quantized values no longer contain a
particular approximate value, but an index into a table of values. Finding
the intervals that should be quantized as one value is often accomplished
through clustering techniques (using, e.g., K-Means), with the centroids rep-
resenting the quantized values and the cluster boundaries representing the
quantization regions [106, 201].

Figure 5.5(b) shows how such a method chooses centroids cent0, . . . , centK´1.
The boundaries of the quantization regions rr0, r1q, . . . , rrK´1, rKq can be ex-
pressed as the mean of the centroid values. In iterative quantization (e.g.,
based on K-Means), these steps are repeated iteratively until the MSE for
the quantized values is less than the desired threshold. The quantized integer
value xq and low-precision value x̂, is then defined as:

x̂ “ cent i “ ErX|ri ď x ă ri`1s

ri “

$

’

&

’

%

Xmax , if i “ K

Xmin , if i “ 0

pcent i ` cent i´1q{2, otherwise

xq “ i s.t. ri ď x ă ri`1,

(5.2)

98



Figure 5.5: Quantizing values of a non-uniform distribution (blue dots) with
a 2-bit budget. (a) uniform quantization: first, given the min/max of the
values, the entire range will be divided into 4 equally spaced regions, then
middle point of each region (i.e., the red cross c0 ... c3 ) will be chosen
as the approximate values of each region. (b) Non-uniform: Assuming an
initial region, the centroids are calculated for each region, and then the
region boundaries r1,... r3 will be re-calculated accordingly to the mean
of centroids. This process can happen iteratively to have less quantization
error. Finally, the centroids can be used as the approximate value of values
in each corresponding region. The approximated values using non-uniform
quantization better match the blue dots than the uniform method.

99



5.5 Dynamic Clustering

Channeleon quantizes activations by combining two techniques: (i) it groups
channels whose activations exhibit similarity and compresses them together,
and (ii) it uses a Gaussian mixture approach to approximate and efficiently
represent activation values. We discuss each of these in turn, and then
present the quantization as part of the complete inference algorithm.

5.5.1 Dynamic Channel Grouping

To compress activation tensors, Channeleon dynamically groups subsets of
channels with similar activation statistics, and uses the common statistics
to compress those channels together.

Channel-Group quantization. To develop a better quantizations, we
observe that, while activations are distributed differently in different chan-
nels, there are groups of channels with similar distributions. This is visible
in the activation distributions in Figure 5.4(a): in each row, the distributions
are visually similar. Figure 5.4(b) shows the same pairs of channels as 2D
image; the similarity is also visible.

This observation suggests a best-of-both-worlds approach to activation
quantization: instead of treating all activations in a layer as one distribution
or treating all channels separately, detect similarity among channel activa-
tion distributions.

If an activation tensor has C channels and they can be arranged in K
groups, we only need to store one set of quantization parameters for each of
the K groups, not for each of the C channels.

The remaining question is how to detect channel similarity. We empir-
ically found that collecting xσ,min,maxy statistics for each channel and
clustering them using K-Means allowed us to detect channels that could
share quantization parameters without impacting inference accuracy.

Table 5.2 shows that applying this method gives an effective K that
is much smaller than C, resulting in significant savings: for example, for
MnasNet1 0, channel grouping can reduce the total number of quantizers
by more than 22ˆ (from 18.9K Ñ 0.8K) while maintaining top-1 accuracy.

5.5.2 Non-Uniform Quantization

Figure 5.4(a) also shows that — especially if channels are considered sepa-
rately — activations are not uniformly distributed between the cutoff thresh-
olds. Quantizing these ranges uniformly is acceptable if the range is suffi-

100



Table 5.2: Accuracy (top-1) comparison of the group-channel quantization
and per-channel quantization. Grouping channels into 16 groups reduces the
number of quantizers by an order of magnitude while preserving the final
model accuracy with 8-bit weights.

Model Per-Channel (6-bit A) Per-Group (6-bit A)
Q. unit top-1 Q. unit top-1

MnasNet1 0 18,961 71.210 833 (22.8ˆ) 71.272
MobileNet v2 17,851 69.896 995 (17.9ˆ) 69.904
ShuffleNet v2 8,115 65.168 913 (8.9ˆ) 65.164

Quantizer1

Quantizer2

Quantizer3
 

Activation
Tensor

Compressed
Activation

Tensor

C×W×H
              

4-bit
values

C×W×H
              

32-bit
values

metadata
              

Compression Module

Figure 5.6: Illustration of the channel clustering method in Channeleon on
tensor With C “ 8 channels, each with the dimension of W ˆH, and K “ 3
number of channel clusters. First, the similar channels will be grouped to-
gether, then each group will be quantized with their corresponding quantizer.
The output will be the the integer indices for each 8 channels with the same
W ˆH dimension (with lower bit-width per value) as well as the metadata
for each of the 3 groups.

101



ciently fine-grained — say 8-bit quantization — but quickly fails as fewer
bits are used for the quantization: Table 5.3 shows that uniform quantization
causes significant accuracy losses at 4-bit quantizations.

One possibility is to use clustering-based non-linear quantization, as has
been proposed in the context of weight quantization [106]. However, there is
a key difference: while weight quantization can occur off-line before deploy-
ment, activation quantization must be done on-line during inference. And
clustering is computationally expensive: using three iterations of K-Means
to quantize the activations of MobileNet v2 requires 400M operations, com-
pared to the 287M operations required for the convolution operations.

Channeleon therefore adapts clustering-based quantization method to
the inference-time performance constraints by sampling and clustering a
subset of the activations. We sample about 1% of the activations from each
channel group as they are produced, and use them to determine the quan-
tization parameters. This produces computation overheads in the range of
„1%, well below the overhead needed for the actual quantization (cf. Fig-
ure 5.7).

Table 5.3: top-1 accuracy comparison of uniform quantization and non-
uniform quantization under the same group clustering setting (16 channel
groups). Accuracy is significantly improved at low activation bit-widths.

Quant. MnasNet1 0

method 6-bit 5-bit 4-bit

Uniform 71.272 68.628 57.328
Non-Unif. 71.436 (+0.164) 69.179 (+0.551) 62.228 (+4.9)

As the activation values are sparse after the ReLU layer, we refine the
compression by first encoding zero values with a bitmask (1 bit per value)
and then applying K-Means on the non-zero values.

5.5.3 Channeleon in the Inference Process

After the computation for each layer is complete (including batch-norm
and activation function), the output activation tensor T piq is collected and
quantized.

This proceeds by first clustering the channels of T piq into Kl clusters (a
hyperparameter selected independently for each layer to balance accuracy
and memory footprint). This process assigns a group ID g id to each channel.

102



Next, each channel group is quantized separately by sampling „1% of
the activations and clustering them into Kg clusters using K-Means (Kg =
16 for 4-bit quantization, 32 for 5-bit quantization, and so on). This results
in the quantized activations qt for the channel group and the quantization
metadata (cluster centroids), which are collected in qT and Ml, respectively.

Finally, the quantized output activation tensor qT piq is used as input
activations for the next layer.

5.6 Methodology

We evaluate the benefits of Channeleon on three modern compact DNNs,
MnasNet1 0 [241], MobileNet v2 [216], and ShuffleNet v2 [281] on the Ima-
geNet [209] dataset.
We implement Channeleon in ‘Distiller’ [287] using the PyTorch [197] frame-
work. We quantize all the Convolutional (CONV) and Fully Connected (FC
) layers, including the first and the last layers. As it is common in inference,
the Batch Normalization values are folded into the weights of corresponding
layers. Furthermore, ReLU layers are also fused with corresponding previ-
ous layers. To highlight the benefits of compressing activations, we fix the
weights bit-width to 8-bit in all our experiments.

To quantify the impact of Channeleon on compressing non-zero acti-
vations, we encode the zero activations with a bitmask and only quantize
the non-zero activations. Channeleon uses K-Means clustering with linear
initialization to perform the quantization task. We observed that sampling
only 1% of the activations enables us to capture the characteristics of all
the activations in a group. Sampling reduces the computational overheads
of K-Means clustering significantly. This is even more beneficial when we
have multiple channels, especially at the later DNN layers, where the av-
erage number of members per cluster is observed to be significantly higher
than the earlier layers.

We observed that on average, K-Means clustering for a group requires up
to three iterations before ending the clustering task. We also tried various K
values and found K “ 16 forms good clusters while keeping a low overhead.

103



Table 5.4: Accuracy improvement from channel clustering in Channeleon
over a naive layer-wise quantization. Channel clustering in Channeleon helps
significantly even at low (5-bit and 4-bit) activation bit-widths.

Act Model Layer Channeleon top-1
bits wise (ours) diff.

5-bit
MnasNet1 0 63.74 69.18 +5.44
MobileNet v2 64.61 67.45 +2.84
ShuffleNet v2 57.80 64.57 +6.77

4-bit
MnasNet1 0 48.85 62.23 +13.38
MobileNet v2 47.60 59.00 +11.40
ShuffleNet v2 39.92 60.12 +20.20

5.7 Evaluation Results

5.7.1 Ablation Study

We perform an ablation study for the two components of Channeleon, namely
(a) Channel Grouping, and (b) Non-Uniform Quantization.

Impact of Channel Grouping
We conduct experiments on MobileNet v2 and ShuffleNet v2 and Mnas-
Net1 0 with 8-bit weight quantization with 5-bit and 4-bit activation quan-
tization. Table 5.4 shows that Channel Grouping quantization outperforms
the accuracy of layer-wise quantization by at least 2.84% and up to 20.2%
points. This showcases that channel grouping in Channeleon benefits over
layer-wise quantization even for low activation bit-widths.

Impact of Non-Uniform Quantization
To validate the effectiveness of non-uniform quantization in Channeleon,
we use channel clustering methods on a fixed number of channel groups.
However, for each channel group, we perform non-linear quantization and
compare these against uniform quantization. Table 5.5 shows the effect of
non-uniform quantization with 5-bit and 4-bit activations. Channeleon con-
sistently outperforms the group-wise uniform quantization across all net-
works, and achieves up to 7.78% top-1 improvement (4.9% – 7.78%) for
4-bit activations.

104



Table 5.5: Accuracy improvement from non-uniform quantization in Chan-
neleon over widely used uniform quantization at a channel-group granularity.
Non-uniform clustering in Channeleon helps significantly even at low (5-bit
and 4-bit) activation bit-widths.

Act Model Groupwise Channeleon top-1
bits Uniform (ours) diff.

5-bit
MnasNet1 0 68.63 69.18 +0.55
MobileNet v2 66.72 67.45 +0.73
ShuffleNet v2 63.14 64.57 +1.43

4-bit
MnasNet1 0 57.33 62.23 +4.9
MobileNet v2 52.25 59.00 +6.75
ShuffleNet v2 52.34 60.12 +7.78

5.7.2 Classification Results

Table 5.6 reports the accuracy of Channeleon compared to the state-of-the-
art ‘datafree’ PTQ method called ZeroQ [48]. We also report the results for
an idealized version of ZeroQ, denoted by ZeroQ+, which uses a part of the
training dataset for calibration. This establishes the upper bound for the
distillation mechanism in ZeroQ. Similar to ZeroQ, our baseline quantizes
weights into 8-bit integers and keeps the activation values at 32-bit floating
point. The baseline accuracies are reported with *. We also report the accu-
racy of a full-precision model in parenthesis below each model. The accuracy
gap between the baseline and the full-precision model is due to weight quan-
tization and can be mitigated by orthogonal weight quantization techniques.

Our experiments show that using 8-bit activation quantization can result
in close-to-baseline accuracies for the ZeroQ+ techinique. However, reduc-
ing the activation bitwidth to 6-bit (and below) has a significant impact on
the accuracy for all models. For instance, even with ZeroQ+, MobileNet v2
shows an accuracy drop from 68.9% to 38.44% when we reduce the activation
bitwidth from 8-bits to 6-bits. On the other hand, Channeleon consistently
outperforms ZeroQ and ZeroQ+ on all models at reduced bit-widths. Af-
ter using Channeleon, MobileNet v2 increases the accuracy to 69.35% even
while using 6-bit activation values. Furthermore, the 6-bit activation version
of Channeleon produces higher accuracies than the 8-bit ZeroQ+, and are
within 0.21% to 0.49% of the baseline accuracy.

The benefits from Channeleon start becoming more obvious at lower
bit-widths. On a setup with 4-bit activation values, the prior work including

105



Table 5.6: Accuracy comparison of Channeleon on quantized post-training
models. The accuracy of the unquantized network is reported in the paren-
thesis below each model. The baseline is the model with INT8 weights and
unquantized 32-bit floating point activations. ZeroQ is our implementation
of [48] with batchnorm folding and ReLU fusion. ZeroQ+ denotes the ide-
alized version of ZeroQ when it has the ideal calibration dataset (subset
of the training dataset). Even idealized ZeroQ suffers on accuracy on lower
activation bit-widths while Channeleon consistently outperforms it at each
bit-width.

Method top-1 Accuracy

MnasNet1 0
(73.46)

baseline 71.93*

8-bit 6-bit 5-bit 4-bit

ZeroQ 12.13 10.23 5.10 0.75
ZeroQ+ 71.30 58.81 13.64 0.18
Channeleon 71.44 69.18 62.23

MobileNet v2
(71.89)

baseline 70.39*

8-bit 6-bit 5-bit 4-bit

ZeroQ 22.34 15.15 3.30 0.22
ZeroQ+ 68.90 38.44 2.64 0.13
Channeleon 69.35 67.45 59.00

ShuffleNet v2
(69.36)

baseline 65.50*

8-bit 6-bit 5-bit 4-bit

ZeroQ 15.60 14.77 8.36 2.98
ZeroQ+ 65.20 56.49 16.81 0.26
Channeleon 65.29 64.57 60.12

106



Table 5.7: Activation storage requirements of a baseline already quantized
to 8 bits, and Channeleon at 6, 5, and 4 bit widths. The amount of overhead
of storing centriods and bitmasks are included below Channeleon activation
footprint. Channel index overhead is negligible and not included here. Last
column shows ZeroQ’s total activation size using 4 bits (per tensor scale
and shift parameters are negligible in size and ommited here). As ZeroQ
uses linear quantization only, the activation size of 8-bit ZeroQ is equivalent
to values reported in the 8-bit baseline.

Model baseline Channeleon ZeroQ

8-bit 6-bit 5-bit 4-bit 4-bit

MnasNet1 0 5.21MB 3.28MB 2.78MB 2.33MB 2.61MB
(20.82MB) 6%/20% 4%/23% 2%/28%

MobileNet v2 6.37MB 4.22MB 3.58MB 3.00MB 3.2MB
(25.48MB) 5%/19% 3%/22% 2%/26%

ShuffleNet v2 1.86MB 1.42MB 1.15MB 0.94MB 0.94MB
(7.44MB) 15%/16% 10%/20% 6%/25%

the idealized version ZeroQ+ has an accuracy of under 3% while Channeleon
maintains an accuracy of at least 59%. As an example, in the case of Shuf-
fleNet v2, Channeleon causes only a 5.38% reduction of baseline accuracy
while ZeroQ+ drops the baseline accuracy by a massive 65.24% points.

5.7.3 Memory footprint analysis

Table 5.7 reports the total activation size of each layer before and after the
compression. The total number of activation in the entire network is show-
cased in parenthesis below each network. We also report the overhead of the
metadata in the format of ‘(centriods/bitmasks)’ in terms of the percent-
age of the total footprint. For example, the activations of the MnasNet1 0,
can be compressed from 5.21MB to 2.33MB. This is 2.24ˆ lower as Chan-
neleon reduces the bitwidth from 8-bits in the baseline to 4-bits, including
the 2%(0.05MB) centroid and 28%(0.65MB) bitmask overheads.

The channel index that identifies the channel group incurs negligible
at overheads ranging from 0.2% to 0.4% of the compressed size, and so
we omit that in the table. This reduced memory footprint is crucial for
energy-efficient inferences as Dynamic RAM accesses are order of magnitude
expensive than arithmetic operations [105].

107



6-bit 5-bit 4-bit
0%

50%

100%

M
na

sN
et

M
na

sN
et

M
na

sN
et

M
ob

ile
Ne

t

M
ob

ile
Ne

t

M
ob

ile
Ne

t

Sh
uf

fle
Ne

t

Sh
uf

fle
Ne

t

Sh
uf

fle
Ne

t

Quant. op. Clust. op. MAC op.

Figure 5.7: The overhead of Channeleon normalized to the network inference
operation. Note that the gray bar shows the MAC operation in inference,
while the black and red bars, shows the overhead in terms of the simple
subtraction operations.

Cost analysis
To evaluate the overhead of Channeleon, we profiled the K-Means iterations
and sampled activation sizes etc during runtime. We calculate average oper-
ations performed by K-Means relative to network inference operations. As
shown in Figure 5.7, channel clustering adds only 2% to 3.5% more opera-
tions as compared with total inference operations. Furthermore, non-linear
quantization only adds an additional 10% to 22% as compared with total
inference operations. Moreover, the dominant primitive operations in K-
Means are subtraction whereas the more expensive multiply-and-accumulate
(MAC) operations dominate during network inference.

The energy consumption is more than than 4ˆ less for operations re-
quired for clustering compared with operations at network inference (based
on [105]). Therefore, we project that Channeleon only adds 3% to 6.4%
energy overheads. As DRAM accesses are an order of magnitude more en-
ergy consuming than arithmetic operations [105], this overhead is negligible
comparing to the saving obtained from the reduced memory footprint.

5.8 Summary

In this chapter, we tackle the problem of activation map compression in
DNNs. We observe that modern compact DNNs, unlike older networks, tend
to have almost equal proportions of weights and activations. Thus traditional
techniques that statically compress weights during training are not feasible
for activations (as they are dynamic) on these in-deployment devices.

108



The key observation here is that many activation channels share similar
statistics and this makes them clusterable. Therefore, we propose Chan-
neleon, a computationally efficient technique that enables activation quanti-
zation by using sampling and K-Means clustering across channels. Moreover,
Channeleon does not require access to any training data or model hyperpa-
rameters.

109



Chapter 6

Sparse Training Accelerator

In this chapter3, we tackle the problem of accelerating a sparse training from
scratch. First, we review an sparse training algorithm [92] where the weight
values are categorized as more important and less important over the course
of training. This is done by considering the entire set of gradient values and
keeping the ones with the highest change rather than looking at the gradients
or weights individually. Then, we show how to adapt this algorithm to make
it suitable for hardware accelerator implementation; the adapted algorithm
achieves 3.9ˆ–11.7ˆ sparsity while maintaining unpruned accuracy on tasks
like CIFAR10 and ImageNet.

We then propose a hardware architecture that adapts a standard 2D-
PE-array inference accelerator to enable sparse training without incurring
the dataflow limitations and interconnect complexity of the only prior sparse
training accelerator proposal [278] and achieves much higher sparsity.

Finally, we develop a sparse data representation suitable for training ac-
cess patterns, and an inexpensive load-balancing technique that preserves
maximum spatio-temporal reuse without complicating the on-chip intercon-
nect. Most of the modifications are not specific to the sparse training method
we adapt, but rather are necessary for accelerating any existing sparse train-
ing approach.

Compared to an equivalent accelerator that does not support training-
time sparsity, Procrustes uses 2.27ˆ–3.26ˆ less energy and offers 2.28ˆ–4ˆ
speedup without compromising accuracy on state-of-the art networks on
ImageNet and CIFAR-10.

6.1 DNN training

Stochastic gradient descent (SGD) — the de facto standard training algo-
rithm for deep neural networks [154] — comprises three stages, illustrated

3Parts of this chapter appear as: D. Yang, A. Ghasemazar, X. Ren, M. Golub, G.
Lemieux, M. Lis, ”Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network
Training”, MICRO, 2020.

110



in Figure 6.2:

1. The forward pass runs the inference algorithm to determine the model’s
predictions for training inputs and calculate the loss L (i.e., the train-
ing error). For a convolutional layer, this consists of convolving the
input activation (iact) tensor x with a set of filters w to obtain the
output activation (oact) tensor y (Figure 6.2a).

2. The backward pass back-propagates the loss gradient across the model’s
layers. For a convolutional layer, this is done by convolving the loss
gradient with respect to the oacts BL

By with filters w; unlike in the for-
ward pass, however, each filter is first rotated 1800 (Figure 6.2b).

3. The weight update pass determines how much a weight w should be
adjusted to decrease the loss by computing the gradient BL

Bw . For a
convolutional layer, this consists of convolving the backpropagated loss
gradient with respect to the oacts BL

By with the input activations (iacts)
x (Figure 6.2c).

In fully connected layers, x and y are 1D vectors, a weight matrix replaces
the weight filters, inner product replaces convolution, and matrix transpose
replaces the 1800 rotation.

6.2 Potential Savings of Sparse-From-Scratch

Pruning techniques can typically reduce the weight count by an order of
magnitude [106, 107, 109, 153, 159, 166, 261, etc.]. This sparsity comes
at the cost of irregular memory accesses and computation patterns, and
several accelerators have been proposed to enable efficient inference on sparse
models [58, 93, 105, 193, 279, etc.].

None of these approaches were, however, designed for energy-efficient
training. This is because they target a context where pruning occurs after
training: a model is first trained with the full parameter set, then pruned,
and finally re-trained to recover accuracy [107]. While this saves energy at
inference time, training the pruned network takes more time and energy than
training an equivalent dense network to the same accuracy. Skipping the pre-
training step is not an option: even if oracular knowledge of the pruned model
connectivity is assumed, training the pruned model from scratch sacrifices
accuracy compared to the original network [107, 159].

Still, the very existence of pruned networks suggests that it must be pos-
sible to somehow train them. Recent work has demonstrated that a model

111



Figure 6.1: Potential training energy savings and speedup from ideally lever-
aging all weight sparsity (here, 5ˆ) while training VGG-S (15M weights) to
convergence with Dropback [92]. fw/bw/wu = forward/backward/weight-
update phases.

pruned by an order of magnitude can be trained provided that the initializa-
tion for the unpruned subset of weights is preserved [84]; this can be achieved
either by dynamically selecting the most productive gradient subspace [92]
or by iteratively increasing sparsity [179, 278].

Ideally, such sparse-from-scratch training can offer significant savings.
Figure 6.1 shows this for VGG-S [272] pruned 5ˆ (15MÑ3M weights) using
the Dropback algorithm [92], in an idealized 16ˆ16 PEs training system
where (i) sparsity is evenly distributed within each layer so all PEs receive
the same workload (i.e., perfect load balancing), and (ii) sparse weights are
stored in an idealized compressed format with no overhead, and (iii) retained
weights selection is instant and cost-free (see Figure 4.7.4 for setup details).
While the exact improvement varies with the geometry and sparsity of each
layer, leveraging 5ˆ sparsity can yield up to 2.6ˆ speedup with 2.3ˆ less
energy consumption over the entire network.

In practice, however, none of the existing sparse training methods can
reach this potential. Most [84, 92, 278] require sorting all weights to de-
termine the parameters to retain; with weight counts in the tens of mil-
lions, sorting is an expensive proposition. Several [179, 278] achieve only
small pruning factors and suffer accuracy loss. Some [84, 278] prune the
model very gradually; this implies (i) no peak memory footprint reduction,
(ii) mediocre energy savings because the average sparsity is low during most
of the training process, and (iii) the need to support two weight storage for-
mats (dense and sparse) and switch formats mid-way during training. The
remaining technique [92] maintains the target weight sparsity throughout

112



x y

w

w

w

˚ Ñ

(a) forward: x ˚W Ñ y

BL
By

BL
Bx

w

w

w

˚ Ñ

(b) backward: BL
By
˚Wþ

Ñ BL
Bx

x BL
By

BL
BW

BL
BW

BL
BW

˚ Ñ

(c) weight update: x ˚ BL
By
Ñ BL

BW

Figure 6.2: CNN training consists of (a) the forward pass, (b) the backward
pass, and (c) the weight update pass; minibatch size adds a fourth dimension
to the activations. Weights are accessed in different order during the forward
and backward passes. Training fc layers is similar but uses multiplication
instead of convolution and WJ instead of Wþ in the backward pass. L =
loss; x = iacts; y = oacts; W = weights; þ = 1800 filter-wise rotation.

training, but gives up computation sparsity — a significant drawback for
training, where weights are usually 32-bit floating-point numbers that are
energetically expensive to multiply.

In addition, existing accelerators that support sparse inference are inad-
equate for sparse training. Weights are represented in formats that directly
correspond to the dataflow being used [58, 93, 105, 193, 279, etc.]; this works
well when weights are always accessed in the same order during inference,
but does not support the different weight access patterns that arise in dif-
ferent phases of training (see section 6.1). Accelerators that perform load
balancing (e.g., Sparten [93]) do this in software as a preprocessing step;
this works for inference where weight sparsity is static, but not for train-
ing where weight sparsity changes dynamically. Finally, recent proposals like
parashar2017scnn [193] and Sparten [93] use complex hardware to exploit
two-sided sparsity (i.e., both weight and activation sparsity); this can be
leveraged during the forward-pass phase of training, but usually does not
exist in the backpropagation or weight update phases because the ubiquitous
batch normalization destroys layer sparsity in the back-propagated gradient
BL
By , so the additional hardware costs are not warranted for training. (We
describe these challenges in more detail in chapter 2.)

6.3 Sparse Training Considerations

6.3.1 Sources of Sparsity

Inference accelerators that support sparsity [58, 93, 105, 193, 279, etc.] can
leverage two sparsity sources: (a) zero-valued weights that result from prun-
ing [107], and (b) zero-valued activations that result from the relu acti-

113



w – unicast

y – collect V

x 
– 

m
ul

tic
as

t H
K (out. ch.)

C
 (i

n.
 c

h.
)

fw bw wu

(H)orizontal x BL{Bx x
(V)ertical y BL{By BL{By
(U)nicast w w BL{Bw

w weights x input activations
y output activation partial sums

Figure 6.3: A weight-stationary mapping: input and output channel dimen-
sions (C and K) are distributed spatially.

vation function [23]. With suitable hardware support, multiply-accumulate
(MAC) operations that involve zero weights or activations can be skipped,
while zero-valued weights and activations need not be stored if a suitable
sparse data format is used; some accelerators can take advantage of both
sparsity sources simultaneously [58, 93, 193].

During training, weight sparsity can also be used in the backward gra-
dient propagation phase, and input activation sparsity in the weight update
phase (cf. Figure 6.2). However, the back-propagated gradient BL

By does not
exhibit sparsity because of the prevalent use of batch normalization [128]:
batch normalization layers are commonly used between conv and relu
layers, which means that the BL

By sparsity generated from backpropagating
through relu is destroyed by backpropagating through the batch normal-
ization layer.

Designers of sparse training accelerators, therefore, are faced with a
choice: either spend additional hardware to accelerate one third of the train-
ing process, or reduce hardware complexity but give up on leveraging ac-
tivation sparsity in the forward pass. In this work, we focus on the latter
approach.

6.3.2 Mappings, Dataflows, and Load Balancing

The computation required to evaluate a conv layer can be represented as
a seven-dimensional nested loop, where each loop traverses a different di-
mension of the operation space [192] (single-sample inference accelerators
may not have the N minibatch dimension). Regions of this operation space
are then distributed as “work tiles” to different PEs by mapping two of the
loops to the horizontal and vertical dimensions of a 2D PE array; together
with exchanging the order in which loops are nested, this determines the

114



PE
s

···

time

···

time

···

time

(a) dense (b) sparse +bcast (c) sparse –bcast

Figure 6.4: DNN computation on a 2D PE array with a weight-stationary
C,K mapping: (a) dense model, equal work and spatial reuse; (b) sparse
model, unequal work but spatial iact/psum reuse; (c) sparse model, equal
work but no spatial iact/psum reuse. = work tile; = overhead due to
lack of reuse / complex interconnect. Each column is a full PE array’s worth
of work; a single layer’s computation comprises many of these. ˘bcast =
with/without spatial weight reuse.

dataflow [149, 192].
Figure 6.3 shows the ubiquitous weight-stationary dataflow [24, 54, 139,

189, 226, 227, 238, 276, etc.], which results from mapping the C,K dimen-
sions across the PE array in the forward pass (mapping R,S is less common
due to small filter sizes); the corresponding mappings for the backward and
weight-update passes are shown in the adjacent table.

In this mapping, each workload (e.g., DNN layer) is first divided into PE-
sized work tiles, all of which have the same number of weights. The tiles are
mapped among the PEs; once a PE receives one work-tile, the computation
begins and runs until all work-tiles have finished. Finally, the next set of
work-tiles is distributed among the PEs, and the process repeats until the
entire layer has been evaluated (Figure 6.4a).

This mapping results in advantageous dataflow properties in a 2D PE
array. Because all work tiles have the same amount of work, execution is
naturally synchronized, and data can be spatially reused by broadcasting
across multiple PEs. For example, in the forward pass in Figure 6.3, input
activations are broadcast horizontally (read-only reuse), while partial sums
are reduced vertically (read-write reuse). The dataflow patterns also allow
the on-chip network to be simple: our example requires two one-dimensional
flows (for the activations and the partial sums) and one unicast flow (for the
weights); typically, those would be three separate interconnects.

However, difficulties arise when the network is sparse. At reasonable

115



0% 31% 62% 94% 125%
Execution Overhead

0%

5%

10%

15%

Fr
ac

tio
n 

of
 w

or
kin

g 
se

ts

Figure 6.5: Load imbalance histogram of full-PE-array working sets (columns
in Figure 6.4b) when training VGG-S [272]/CIFAR-10 [148] using Dropback
sparse training [92]. A perfectly load-balanced workload would have 100%
of the sets at 0% overhead.

pruning levels, on the order of 10% of the weights survive [107], with sparsity
distributed unevenly among the worktiles (by chance and learning pressure).
This leaves designers with two unpleasant alternatives:

1. Retain the same tiling and mapping of operations to the PE array
as in the dense case. This preserves the single-dimensional dataflow
patterns shown in Figure 6.3, allowing input activations and partial
sums to be spatially reused. However, different amounts of work are
distributed to different PEs, and utilization is low because latency
is limited by the “slowest” PE (Figure 6.4b). Figure 6.5 shows how
latency differs among full-PE-array sets of work tiles (i.e., columns
in Figure 6.4b): frequently, the load imbalance causes execution time
overheads in excess of 50%, and sometimes in excess of 100%.

2. Distribute an equal number of non-zero weights to each PEs. This
balances the workload among the PEs (Figure 6.4b), but destroys the
desirable single-dimensional on-chip traffic flow patterns of Figure 6.3
and severely reduces the benefits from spatial reuse. In addition, be-
cause related partial sums can be generated in any PE, a complex
interconnect is required to reduce them [58, 278].

Choosing other dataflows also does not provide a panacea: for example,
the activation-stationary dataflow used for some sparse accelerators [193]
suffers similar issues in the weight update pass, requires two datatypes to be
unicast, and suffers from low PE array utilization towards the tail of many
networks where the activation tensors are small [58].

116



Subsection 6.5.3 describes how Procrustes employs the additional mini-
batch dimension available during training to achieve effective load balancing
while preserving a hardware-friendly dataflow and avoiding the need for a
complex interconnect.

6.3.3 Sparse Weight Representation

Existing sparse-weight inference accelerators [58, 93, 105, 193, 279] employ
a linear run-length encoding that is tightly coupled to the dataflow they use.
For example, EIE [105] stores non-zero entries as an interleaved compressed
sparse column (CSC) format, which permits a single column of an fc layer
weight matrix W to be streamed to the PE array to interact with the same
input activations. This layout matches the dataflow during the forward pass,
but makes it impossible to calculate addresses within a column of WJ in
the backward pass.

Similarly, the compressed format used for conv filters in SCNN [193]
organizes filter layers so that all sparse filters with the same input chan-
nel (and different output channels) are adjacent. In the forward pass, this
corresponds to SCNN’s input-stationary dataflow where a single input acti-
vation is multiplied by all filters from the same input channel and the partial
sums are distributed to different output channels; however, in the backward
pass the equivalent gradient-stationary dataflow would need to compute ad-
dresses for all filters from one output channel, which is not possible due to
varying filter sparsity.

Procrustes instead uses a variant compressed block format (CSB) [45]
(subsection 6.5.2) to ensure that weights can be compressed but still read
efficiently during all relevant training phases.

6.3.4 Sparse Training Algorithms

Training of sparse networks relies on the observation that dense deep neural
networks contain small subnetworks („20% weights) that can be trained
to match or exceed the original accuracy provided that the initial weight
settings for the subnetwork are retained [84, 158]. In effect, most („80%–
90%) of the weights serve as a scaffolding necessary only to identify the
weights that should survive in the final pruned subnetwork.

Most of the proposed sparse training algorithms work by gradually in-
creasing sparsity during the training process. The lottery ticket algorithm [84]
prunes 20% of the network every 50,000 training iterations by removing the
lowest-magnitude weights; the authors report 5–10ˆ model size reduction

117



on CIFAR10 targets. Eager Pruning [278] follows a similar magnitude-based
approach, but adds a feedback loop and a checkpoint-based rollback scheme
to avoid overpruning; maintaining top-1 accuracy on ImageNet, it can prune
ResNet50 2.4ˆ (25.6MÑ10.8M weights) by removing 0.8% of the weights
every 24,000 iterations. Both approaches rely on sorting all weight values to
select which weights to keep.

Dynamic sparse reparametrization [179] starts by randomly distributing
zero weights at the desired sparsity level, but allows the zeros to redis-
tribute across the weight tensor during training. For ResNet50, for example,
„200,000 additional parameters are set to zero every 1,000–8,000 iterations,
but an equal number of weights are allowed to regrow after each pruning
step. It avoids the need to sort all weights by using a value threshold adjusted
via a set-point feedback loop whenever the network is pruned; however, the
initial value of this threshold becomes a hyperparameter. ResNet50 can be
pruned 3.5ˆ (25.6MÑ7.3M) with some top-1 accuracy loss on ImageNet
(´1.6%).

In contrast to the gradual pruning approaches [84, 179, 278], the Drop-
back algorithm [92] prunes the network from the beginning: only a fixed
percentage of the parameters (e.g., 10%) are ever allowed to change. In ev-
ery iteration, only the weights with the highest accumulated gradient survive
(which again requires sorting), on the theory that this represents learning
better than magnitude during early iterations; the pruned weights are reset
to their initial values rather than to 0. Dropback prunes ResNet18 11.7ˆ
(11.7MÑ1M) while maintaining top-1 accuracy on ImageNet.

In this chapter, we focus on Dropback algorithm, which offers by far the
highest compression ratios and introduces only one additional parameter
(the sparsity factor) during training. Unfortunately, two aspects stand in
the way of hardware acceleration: (a) pruned weights are not set to 0, and
so MAC energy is not saved; and (b) millions of gradients must be sorted to
determine which weights should be pruned. We demonstrate how to over-
come these drawbacks and make Dropback algorithm hardware-friendly in
section 6.4.

6.4 Sparse Training Algorithms in Hardware

To adapt Dropback algorithm to the requirements of an efficient hardware
implementation, Procrustes

(i) creates computation sparsity by decaying initial weight values W p0q

over the first 1,000 iterations, and

118



0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
at

ion
 A

cc
ur

ac
y

Init Decay
No Init Decay

Figure 6.6: Validation accuracy over the course of training when initial
weights decay 0.9ˆ every iteration, compared to a baseline without de-
cay (VGG-S on CIFAR-10). The dashed vertical line indicates the point
at which all initial weights have decayed to zero (1,000 iterations, or early
in the second epoch as epochs are 800 iterations each).

(ii) avoids the need to sort all gradients by using dynamic quantile esti-
mation to continuously determine a threshold value that tracks the
target sparsity.

We discuss the details below.

6.4.1 Creating Computation Sparsity

A key challenge in using Dropback algorithm [92] to enable energy-efficient
training is the fact that it never entirely removes pruned weights: instead,
pruned weights have their values returned to their initialization-time val-
ues. These are generally non-zero, so no MAC operations are saved, and,
because MAC computation accounts for much of the energy during training
(cf. Figures 6.1 and 6.15), energy savings are also limited.

To determine how to recover computation sparsity, we first considered
the function of the weights during training. We hypothesized that the initial
weight values are important during the early iterations when weights have
not moved far from their initial state and the accumulated gradients are
small compared to the initial weights. Later on, we reasoned, the accumu-
lated gradients are much larger than the initial weight values, and the initial
scaffolding could safely be removed.

119



We therefore examined whether the initial weight values could be grad-
ually decayed to zero so that eventually only the accumulated gradients
remain and all pruned weights become zero. We decayed the initial weight
values 10% every iteration (decay parameter λ “ 0.9), eventually zeroing
them. Figure 6.6 shows how validation accuracy evolves over the course of
training compared to a baseline where weights do not decay: neither accu-
racy nor convergence time are affected.

In this experiment, the initial weight decay scheme results in 80% weights
set to zero by iteration 1000 (out of 234,400 total iterations). This means
that 60% of computation in 99.5% of iterations can be entirely skipped,
potentially resulting in significant energy savings.

6.4.2 Choosing Which Weights to Keep

The second key challenge of the original Dropback algorithm is the need
to sort all accumulated gradients to determine which weights should be
kept and which should be reset to their initial values. A comparison-based
sort requires a minimum of log2 pn!q comparisons in the worst case — 336M
comparisons for the relatively compact VGG-S with 15M weights, compared
to the 4.3G MACs required for one training iteration with batch 16. Even if
the DNN accelerator were modified to support sorting (i.e., to return both
indices and values), sorting would take in excess of 1.3M cycles on a 256-PE
device.

To overcome this challenge, we considered replacing the target sparsity
factor (such as 10ˆ) with a global value threshold ϑ. In this scheme, every
computed gradient is tested whether it should be added to the tracked set
T , and added to T only if it exceeds ϑ. This would reduce the number of
comparisons to one per produced gradient (15M for VGG-S).

The question is how to determine ϑ for each iteration. Dynamic sparse
reparametrization [179] accomplishes this via a set-point feedback scheme
that adjusts ϑ every 1,000–8,000 iterations, but this introduces an additional
hyperparameter, the initial value of ϑ. Instead, we determine ϑ dynamically
via a streaming quantile estimation technique [265]. To allow for peak update
rate (up to 4 per cycle in the last VGG-S conv layer), we extended the
technique to process four updates at once.

The tracking process proceeds as follows:

• If the gradient dimension δw is not in the tracked set T , |δw| is com-
pared against ϑ. If it is higher, δw evicts and replaces the lowest entry
in T ; otherwise, it is discarded. In either case, |δw| is used to update
the quantile estimate.

120



0 50 100 150 200 250 300
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
at

ion
 A

cc
ur

ac
y

Quantile Estimation
No Quantile Estimation

Figure 6.7: Validation accuracy over training epochs when sparse training
is used and quantile estimation is used to determine the value threshold ϑ
under which accumulated gradients are discarded, compared to a baseline
with initial weight decay and exact sorting (VGG-S on CIFAR-10).

• If δw is tracked, it is added to the stored accumulated gradient δacc
w .

The quantile estimate is updated with |δacc
w ` δw|.

In our experiments, we found that the tracking accuracy sensitivity to the
values of Q̂qp0q and % is negligible, so we use the same values for all experi-
ments rather than treating them as hyperparameters.

To determine the accuracy of this estimate, we trained VGG-S using a
sparsity target of 7.5ˆ and streamed the computed accumulated gradients to
the estimator. Figure 6.7 shows that while the quantile estimation exhibits
minor deviations from ground truth (because different layers have different
amounts of sparsity), these estimation errors have no detrimental effect on
the validation accuracy of the trained network. Overall, the quantile estima-
tion error results in extra weights being tracked, and reduces the sparsity
factor slightly from 7.5ˆ to 5.2ˆ; however, this overhead is much lower than
that required to sort all weights or to train a dense network.

Note that selecting weights through quantile estimation is not specific
to the Dropback algorithm: separating some fraction of the highest-value or
highest-gradient weights is needed by all sparse training algorithms [84, 92,
176, 179].

121



Weight ArrayMask Array Pointer Array
B1P0

P1
P2

M0

M1

M2

Wa  Wb Wc Wd We

Wa   0  Wb  0  0  Wc Wd  0 We

1    0   1   0  0  1    1    0  1 

101001101

Compressed Sparse Block (B1) 

Mask (M1)

Uncompressed Block (B’1)

∑M1

101000101

001100010

Figure 6.8: The compressed sparse block (CSB) weight representation in
Procrustes.

6.5 Dataflow and Sparse Data Format

6.5.1 Storage and Sparsity During Training

Weights (or, more precisely, accumulated gradients) are always stored com-
pressed using the format described in subsection 6.5.2. Typically, all weight
gradients are produced, but most gradients that are not already tracked will
not survive the comparison with existing accumulated gradients.

Activations are stored uncompressed for immediate reuse and in a com-
pressed format for long-term reuse. The forward pass reads sparse weight
tensor, and produces a dense output activation tensor, which is then immedi-
ately reused as inputs to the next layer; the activations are then compressed
using a sparse, zero-free format, and reused in the weight update stage. This
technique is similar in spirit to Gist [133].

6.5.2 Compressed Sparse Weight Representation

To avoid the challenges discussed in subsection 6.3.3, a sparse weight storage
format designed for training must support:

(i) iterating through 2D convolution filters across different dimensions in
different stages (for conv layers), and across both rows and columns
of weight matrices (for fc layers),

122



(ii) rotating kernels (for conv layers) or transposing weight matrices (for
fc layers), and

(iii) different kernel sizes in conv layers.

Procrustes uses a modified compressed sparse block (CSB) format [45] shown
in Figure 6.8 to store weights in the on-chip global buffer and external
DRAM. Blocks store non-zero values and are variable in size because of
sparsity, but correspond to fixed-size regions in the corresponding dense
weight space — kernels for conv layers, square fragments of the weight
matrix in fc layers, etc. The region size can vary on layer granularity to
support different kernel sizes.

The Procrustes CSB format comprises three components, illustrated in
Figure 6.8:

(a) the weight array, which stores variable-size packed weight blocks cor-
responding to kernels, etc.;

(b) the pointer array, indexed by tensor coordinates, which identifies the
weight array location that stores the relevant weight values; and

(c) the mask array, also indexed by tensor coordinates, which stores a
mask identifying non-zero value locations in the unpacked block (and
therefore also the packed size).

The pointer and mask arrays are decoupled to support different mask lengths
for each layer (e.g., different kernel sizes in conv layers, flexible block sizes
in fc layers and during weight update, and so on); in all of our simulations,
mask arrays fit in the on-chip GLB.

Because the pointer array is indexed by coordinates in the original (dense)
operation space and is decoupled from the compressed contents, the format
makes computing kernel addresses straightforward while adapting cleanly
to different kernel dimensions. The indirection also makes it easy to deter-
mine the density of working sets assigned to each PE: it suffices to subtract
pointers of adjacent work tiles. In addition, because blocks are sized to and
retrieved on filter granularity, they can be rotated (to be used in the back-
prop pass) while being fetched from the global buffer to the per-PE register
files; similarly, transposition of the weight matrix for the fc layers can be
done by transposing subtensors piecewise.

Activations are stored uncompressed for short term reuse (as activations
in the next layer) and compressed in CSB format for long-term reuse (for-
ward pass to weight update).

123



(a)

yyyy AAAA
xxxxAAAA

yyyy BBBB

xxxxAAAA
yyyy AAAA

xxxxBBBB
yyyy BBBB

xxxxBBBB

(b)

xxxxAAAA

yyyyy A
1A1A1A1A1 yyyyy A
2A2A2A2A2

xxxxAAAA

yyyyy B
1B1B1B1B1 yyyyy B
2B2B2B2B2

xxxxBBBB

yyyyy A
1A1A1A1A1 yyyyy A
2A2A2A2A2

xxxxBBBB

yyyyy B
1B1B1B1B1 yyyyy B
2B2B2B2B2

xxxxAAAA

yyyyy B
1B1B1B1B1 yyyyy B
2B2B2B2B2

xxxxBBBB

yyyyy A
1A1A1A1A1 yyyyy A
2A2A2A2A2

yyyyy A
1A1A1A1A1 yyyyy B
1B1B1B1B1

xxxxxBBBBB

xxxxxAAAAA

yyyyy A
2A2A2A2A2 yyyyy B
2B2B2B2B2

xxxxxAAAAA

xxxxxBBBBB

(c)

Figure 6.9: Load balancing in the weight-stationary C,K dataflow in a four-
PE array: (a) PE workload imbalance (shaded PEs) due to different weight
sparsities (shaded arrows); (b) PE workloads and the corresponding weight
(w) and partial sum (y) tiles split in half across the K dimension (note the
thinner arrows); (c) half-tiles exchanged between the top-left and bottom-
right PEs for load balancing. Activations must be sent on both rows and
columns, and require twice the buffer space in the PEs.

6.5.3 Load Balancing and Dataflow

First, every work tile (a) is cut into two halves along one of the tile dimen-
sions (b); because sparsity is almost certainly uneven within the tile, the two
halves will likely have different densities. Next, the halves are sorted accord-
ing to density, and half-tiles are matched starting from opposite ends (c):
the sparsest half-tile is matched with the densest half-tile, and so on. This
ensures that each newly formed tile is as close as possible to the average
density across all PE work tiles (d).

However, naively applying this rebalancing scheme to the entire PE array
without changing the dataflow would impact on-chip communications pat-
terns and require a complex interconnect. Figure 6.9 demonstrates this on
the weight-stationary C,K dataflow on a 4-PE array. In pane (a), input acti-
vations are broadcast horizontally (xA in the top row and xB in the bottom
row), partial sums are accumulated vertically (yA in the left column and yB
in the right column), while the weights are unicast (as in Figure 6.3); how-
ever, because the weights have different levels of sparsity (shaded arrows),
the PEs have different amount of computation (shaded PEs). In pane (b),
each PE’s workload is cut in half as discussed above; each weights tile (wA

and wB) is also split in half (e.g., into wA1 ` wA2 and wB1 ` wB2, note the
thinner arrows), as are the corresponding partial sums (yA and yB). Finally,

124



y – collect unicast

x – multicast V

w
 –

 m
ul

tic
as

t H

N (minibatch)

K 
(o

ut
. c

h.
)

fw bw wu

(H)orizontal w w BL{Bw
(V)ertical x BL{Bx x
(U)nicast y BL{By BL{By

w weights x input activations
y output activation partial sums

Figure 6.10: Mappings and dataflows that spatially distribute the minibatch
across one dimension of the PE array.

(a) (b) (c)

wwwwAAAA

xxxxAAAA

wwwwBBBB

xxxxAAAA
wwwwBBBB

xxxxBBBB

wwwwAAAA

xxxxBBBB xxxxAAAA
wwwwwA1A1A1A1A1

wwwwwA2A2A2A2A2

xxxxBBBB
wwwwwA1A1A1A1A1

wwwwwA2A2A2A2A2

xxxxBBBB
wwwwwB1B1B1B1B1

wwwwwB2B2B2B2B2

xxxxAAAA
wwwwwB1B1B1B1B1

wwwwwB2B2B2B2B2

xxxxAAAA
wwwwwA1A1A1A1A1

wwwwwB1B1B1B1B1

xxxxBBBB
wwwwwA1A1A1A1A1

wwwwwB1B1B1B1B1

xxxxBBBB
wwwwwA2A2A2A2A2

wwwwwB2B2B2B2B2

xxxxAAAA
wwwwwA2A2A2A2A2

wwwwwB2B2B2B2B2

Figure 6.11: Load balancing in the proposed K,N dataflow in a four-PE
array: (a) PE workload imbalance (shaded PEs) due to different weight
sparsities (shaded arrows); (b) PE workloads and the corresponding weight
(w) and partial sum (y) tiles split in half across the K dimension (note the
thinner arrows); (c) half-tiles exchanged between the top-left and bottom-
right PEs to load-balance across K. Each input activation tile is still sent
to only one column.

125



in pane (c), the workload halves are balanced across the PE array, so that
the top-left and bottom-right PEs swap half their workloads; this, however,
means that all input activations (xA and xB) must now be sent to both
columns and rows, requiring more bandwidth and a more complex intercon-
nect, and double the activations must be buffered at the target PEs. The
P,Q input-stationary dataflow faces similar challenges in the weight update
pass (cf. Figure 6.2) and requires unicasting two of the three datatypes.

Procrustes addresses both of these problems by leveraging a simple ob-
servation: training is typically done across a minibatch of 32–64 samples
rather than on single items [36, 171].4

Because a training accelerator does not need to support single-sample in-
ference, the minibatch dimension can be used to distribute work tiles across
one dimension of the PE array. The other dimension can then be safely
chosen to be a dimension where sparsity exists — e.g., the input or out-
put channel dimensions (C or K) with weight sparsity. Because only one
dimension is sparse, and that dimension corresponds to spatial reuse, the
load balancing process needs to be applied only to one dimension of the PE
array (i.e., the dimension opposite to the spatial reuse pattern, here N).

Figure 6.10 illustrates how a K,N mapping (output channel, minibatch)
with load balancing across the output channel (K) dimension preserves the
single-dimension dataflow properties (cf. Figure 6.3) during the forward pass.
Weights are now the same across the minibatch and are multicast across the
horizontal dimension of the PE array, partial sums are collected across the
vertical dimension, and input activations vary across both dimensions and
so are unicast.

A detailed example is shown in Figure 6.11. As in Figure 6.9, pane (a)
shows the unbalanced workload, pane (b) shows each PE’s workload (and
consequently the weight and partial sum tiles) cut into half, and pane (c)
shows the PE array after load-balancing along the K dimension. Observe
that, in contrast to Figure 6.9, the load-balanced dataflow in pane (c) has the
same on-chip interconnect communication patterns and requires the same
interconnect bandwidth as the unbalanced dataflow in pane (c).

6.6 Architecture

The overall hardware architecture of Procrustes is based on 2D PE array
where each PE has a local register file (RF) and all PEs share an on-chip

4Minibatches in the 1,000s allow faster training on large multi-GPU clusters but can
incur some accuracy cost [19, 98].

126



off-chip
DRAM

QE

load 
balancer 16×16 PE Array 

64
bits

on-chip 

acts.

∑∇s

Reg File

PRNGs

Scaling factor

WR
> PE control logic 

MAC

input 

accumulated

activations

gradients

output
activations

masksweight 
masks

+0

0,150,0 0,1 0,2
PE PE PE PE

global
buffer
128KB

2,152,0 2,1 2,2
PE PE PE PE

1,151,0 1,1 1,2
PE PE PE PE

15,1515, 0 15, 1 15, 2
PE PE PE PE

Figure 6.12: Procrustes system architecture. The WR module is added to
recreate initial weights for Dropback-style training, the QE unit is added to
support quantile estimation, and the load balancer is added to support work
tile re-balancing.

127



0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

1.0
Va

lid
at

ion
 A

cc
ur

ac
y

VGG

Procrustes
baseline (SGD)

0 100 200 300 400 500
Epochs

DenseNet

Procrustes
baseline (SGD)

0 100 200 300 400 500
Epochs

WRN

Procrustes
baseline (SGD)

Figure 6.13: Validation accuracy over training time for Procrustes and the
unpruned baseline (SGD) on CIFAR-10: (left) VGG-S, (centre) DenseNet,
and (right) WRN-10-28.

global buffer (GLB); an off-chip DRAM completes the memory hierarchy.
PEs are interconnected via three simple interconnects: two support one-
dimensional traffic flows in the horizontal and vertical directions, and one
supports unicast traffic to any PE in the array. Because Procrustes focuses
on training, we use 32-bit floating point MAC units in the PE datapath, but
the design can be used with any datatype.

The design is illustrated in Figure 6.12, with differences from the baseline
accelerator dashed. Procrustes places one global quantile estimation unit
(QE) between global buffer and the external DRAM; the QE unit monitors
accumulated gradients flowing from the GLB to DRAM and discards all
except those above the target sparsity quantile.

In addition, each PE contains a weight recomputation unit (WR) re-
sponsible for generating the initial weight values. The WR accepts a weight
index and generates a 32-bit integer initial value for the relevant weight. It
consists of 3 xorshift [170] pseudo-random generators (RNGs) whose out-
puts are added to produce an approximately Gaussian output. Note that,
unlike conventional RNG, the WR unit does not contain hidden state, and is
purely a function of its seed and the weight index. The “RNG” output is then
scaled using an integer multiplier; this this enables popular initialization for-
mulæ like Xavier [91] or Kaiming [111], and allows the initial weights to be
decayed. Finally, the scaled value is converted to FP32 and added to the
accumulated gradient retrieved from weight storage if the weight is tracked,
or to zero if the weight has been pruned.

6.7 Methodology

We re-implemented the baseline Dropback training algorithm [92] using Py-
Torch [196] and verified the reported training sparsity levels and accuracy re-

128



Baseline dense accelerator

PEs 256 (16ˆ16)
datatype 32-bit floating-point
pruning type none
interconnect 3ˆ 1D-flow interconnect
global buffer 128 KB
local buffer (RF) 1 KB per PE
dataflow optimal (via Timeloop+Accelergy)

Procrustes modifications

pruning type lowest accumulated gradients
pseudo-RNG xorshift [170], one per PE
quantile estimator DUMIQUE [265], max 4 requests / cycle
dataflow optimal spatial-minibatch dimension

Table 6.1: Hardware configurations for the baseline dense training accelera-
tor and Procrustes sparse training accelerator.

model dataset dense sparse sparsity #ep dense pruned
size size accuracy accuracy

Densenet CIFAR-10 2.7M 692k 3.9ˆ 340 94.2% 93.7%
WRN-28-10 CIFAR-10 36M 8.3M 4.3ˆ 462 96.0% 96.1%
VGG-S CIFAR-10 15M 2.9M 5.2ˆ 236 93.0% 93.1%

MobileNet v2 ImageNet 3.5M 0.35M 10ˆ 131 70.98% 71.13%
ResNet18 ImageNet 11.7M 1M 11.7ˆ 81 69.17% 69.31%

Table 6.2: Sparsity achieved using the Procrustes training scheme for the
CNNs tested, together with weight footprint and the final accuracy com-
pared to the dense baseline.

0 20 40 60 80 100
Epochs

0

0.2

0.4

0.6

0.8

V
al

id
at

io
n 

A
cc

ur
ac

y

baseline (SGD)
Procrustes 2.9× 
Procrustes 5.8×
Procrustes 11.7×

ResNet18

0 25 50 75 100 125 150
Epochs

0

0.2

0.4

0.6

0.8

V
al

id
at

io
n 

A
cc

ur
ac

y

baseline (SGD)
Procrustes 7×
Procrustes 10×

MobileNet v2

Figure 6.14: Validation accuracy over training time for Procrustes and the
unpruned baseline for ResNet18 (left) and MobileNet v2 (right) on Ima-
geNet.

129



model dataset dense dense sparse sparse sparsity
size MACs size MACs

Densenet CIFAR-10 2.7M 528M 692k 157M 3.9ˆ
WRN-28-10 CIFAR-10 36M 4G 8.3M 863M 4.3ˆ
VGG-S CIFAR-10 15M 269M 2.9M 113M 5.2ˆ

MobileNet v2 ImageNet 3.5M 301M 0.35M 75M 10ˆ
ResNet18 ImageNet 11.7M 1.8G 1M 359M 11.7ˆ

Table 6.3: Sparsity achieved using the Procrustes training scheme for the
CNNs tested, together with weight footprint and MAC reduction compared
to the dense baseline.

sults; we then implemented the initial weight decay and quantile-estimation
extensions needed for Procrustes.

We evaluated Procrustes on five CNNs: ResNet18 [112] (11.7M weights)
and MobileNet v2 (3.5M weights) applied to the ImageNet image classifica-
tion task [209], as well VGG-S [272] (a 9.2ˆ reduced version of VGG-16 with
15M weights), WRN-28-10 [273] (36.5M weights), and a small Densenet [123]
(growth rate 24, 3 blocks ˆ 10 layers, for a total of 2.7M weights), all CIFAR-
10 [148].

To determine optimal mappings and dataflows, we extended Timeloop
tool [192] to support sparse weight masks (retrieved from our PyTorch
model), model sparse computation, account for sparse encoding overheads,
and accurately reflect latency due to load imbalances. We also used Timeloop
to determine cycle-level latency; to determine energy costs, we use energy
access cost provided in Accelergy [256] with its default 40nm library. We
modelled all layers of all networks and all stages of training (forward, back-
ward, and weight update).

As a dense baseline, we used a 2D PE array architecture with 16ˆ16 PEs,
adapted to the 32-bit floating-point precision commonly used in training;
we used Timeloop to determine the optimal tiling and dataflow. Hardware
modules not present in the baseline were implemented in Verilog RTL and
synthesized using Synopsys DC in the 45nm FreePDK process. Accelerator
configuration details are shown in Table 6.1.

6.7.1 Pruning Ratios and Accuracy

Table 6.2 shows the sparsity factors achieved while maintaining the same ac-
curacy as the corresponding dense (unpruned) network using the Procrustes

130



sparse training algorithm. Depending on the network, our training scheme
achieves 3.9ˆ–11.7ˆ weight sparsity without compromising accuracy.

Importantly, achieving unpruned-level accuracy does not require ad-
ditional convergence time. Figure 6.13 demonstrates this on the VGG-S,
DenseNet, and WRN, all on CIFAR-10. Figure 6.14 demonstrates the same
effect on ResNet18 trained on ImageNet at various weight pruning ratios.
Overall, Procrustes converges and reaches state-of-the-art accuracy as quickly
(or faster) than the baseline unpruned network.

6.7.2 Energy Savings and Speedup

Figure 6.15 shows the energy savings obtained by training with Procrustes
across several CNNs. Most of the energy is saved by performing fewer MAC
operations; because training is most often done on FP32 values, MACs dom-
inate the energy usage. Intra-PE register file (RF), global buffer (GLB), and
DRAM access energies are also substantially reduced, but account for less of
the baseline energy expenditure, and therefore contribute less to the overall
savings.

The figure also illustrates that Procrustes can transform higher sparsity
ratios into bigger energy savings: ResNet18, which has the highest pruning
factor (11ˆ), saves the most energy compared to the dense baseline (3.26ˆ),
while WRN has the best speedup (4ˆ). MobileNet v2 benefits less in energy
because its depth-separable convolutions limit reuse and so comparatively
more energy is spent on DRAM accesses; however, Procrustes still trains it
with 2.39ˆ less energy than the dense baseline, and almost as much speedup
as WRN (3.88ˆ faster than dense).

For most networks, the forward and back-propagation passes offer more
energy savings; this is because those passes can take advantage of weight
sparsity, which is generally higher than activation sparsity. VGG-S demon-
strates a less common case where the weight sparsity is concentrated in the
layers that perform relatively few MACs, so the activation sparsity leveraged
by the weight-update phase actually saves more operations.

Overall, Procrustes is effective in converting training-time sparsity to
energy savings.

6.7.3 Mapping and Dataflow Choice

Figure 6.16 shows how energy expenditure varies with different spatial par-
titioning schemes. Sparsity enables energy improvement across all phases
and all mappings. Because the number of MAC operations and the mem-

131



ory hierarchy are the same across the different mappings, the lion’s share of
the energy use is the same across the different dataflows, and variations are
negligible. This is in agreement with prior work that also reported negligible
impact of the chosen dataflow on the energy during inference [262].

This finding enables us to select spatial partitioning that results in the
best performance (i.e., shortest execution time).

Figure 6.17 shows how execution times vary when the working set is
mapped to the PE array using different spatial partitioning schemes; all
schemes can be implemented using the simple network topology shown in
Figure 6.12 except the weight-stationary C,K scheme, which requires a com-
plex network to load-balance PE working sets across the entire chip. The
partitioning schemes that distribute the minibatch dimension along one of
the PE array dimensions (C,N and K,N) are the fastest mappings be-
cause they are able to achieve effective load balancing and good utilization
across all layers of the CNNs; K,N performs slightly better because it offers
slightly higher utilization in the first network layer. The C,K scheme per-
forms less well even though it requires a more complex interconnect, largely
because it is inefficient on layers that have few channels. The activation-
stationary P,Q scheme does not require load-balancing in the forward and
back-propagation phases, is hard to load-balance during the weight update
phase, and has low utilization when activation tensors are relatively small;
it is overall the slowest mapping.

Procrustes uses the overall fastest K,N scheme for all phases of training.

6.8 Evaluation Results

6.8.1 Scalability

Figure 6.18 shows how Procrustes scales when the PE array size is quadru-
pled from 256 cores (16ˆ16) to 1024 cores (32ˆ32); the global buffer size
is doubled over the 256-core size (a factor of

?
2). Overall, energy is very

similar same for all dataflows / passes because the number of MAC opera-
tions is the same. Latency scales near ideally (3.9ˆ on 4ˆ the cores) in the
K,N mapping used by Procrustes. Other mappings (especially activation-
stationary P,Q) do not scale as well since they trade off PE array utilization
to retain spatial reuse.

132



Figure 6.15: Energy breakdown of using KN dataflow for (left) WRN-10-
28, (middle left) DenseNet, (middle) VGG-S, (middle right) ResNet18, and
(right) MobileNet v2. Lower is better. K = output channel dimension; N
= minibatch dimension. S = sparse; D = dense. fw = forward pass; bw =
backward pass; wu = weight update phase.

Figure 6.16: Energy Comparison across different dataflows for (left) WRN-
10-28, (middle left) DenseNet, (middle) VGG-S, (middle right) ResNet18,
and (right) MobileNet v2. Lower is better. C = input channel dimension; K
= output channel dimension; P and Q = output activation dimensions; N
= minibatch dimension. S = sparse; D = dense. fw = forward pass; bw =
backward pass; wu = weight update phase.

Cy
cle

s (
x1
09

)

WRN DenseNet VGG ResNet18 MobileNet v2

D S
PQ

0.0

1.0

2.0

3.0

4.0 7.94(total)

D S
CK

D S
CN

D S
KN

D S
PQ

0.0

0.2

0.4

0.6

0.8

D S
CK

D S
CN

D S
KN

D S
PQ

0.0

0.2

0.4

0.6

0.8 2.90(total)

D S
CK

D S
CN

D S
KN

D S
PQ

0.0

0.5

1.0

1.5

2.0 3.02(total)

D S
CK

D S
CN

D S
KN

D S
PQ

0.0

0.1

0.2

0.3

0.4 0.76(total)

D S
CK

D S
CN

D S
KN

fw bw wu

Figure 6.17: Training latency across different dataflows for (left) WRN-10-
28, (middle left) DenseNet, (middle) VGG-S, (middle right) ResNet18, and
(right) MobileNet v2. Lower is better. C = input channel dimension; K =
output channel dimension; P and Q = output activation dimensions; N =
minibatch dimension. S = sparse; D = dense. fw = forward pass; bw =
backward pass; wu = weight update phase.

133



En
er

gy
 (J

)

ResNet18 MobileNet v2

16 32

fw

0.0

1.0

2.0

3.0

16 32

bw

16 32

wu

16 32

fw

0.0

0.2

0.4

0.6

16 32

bw
16 32

wu

DRAM GLB RF MAC

En
er

gy
 (J

)

ResNet18 MobileNet v2

16 32

PQ

0.0

2.0

4.0

6.0

16 32

CK

16 32

CN

16 32

KN

16 32

PQ

0.0

0.5

1.0

1.5

16 32

CK

16 32

CN

16 32

KN

fw bw wu

Cy
cle

s (
x1
09

)

ResNet18 MobileNet v2

16 32

PQ

0.0

0.2

0.4

0.6

0.8

16 32

CK

16 32

CN

16 32

KN

16 32

PQ

0.0

0.1

0.2

0.3

0.4

16 32

CK

16 32

CN

16 32

KN

fw bw wu

Figure 6.18: Scalability of Procrustes on 16ˆ16 (256) to 32ˆ32 (1024)
cores on ResNet-18 and MobileNet v2 classifying ImageNet configured as
in Figs. 6.15–6.17. Energy differences are is negligible as the workload is
the same. Speedup scales best for the Procrustes mappings (CN and KN)
because other mappings trade off utilization for reuse.

Component Power (mW ) Area (µm2)

Per-PE area: Procrustes overheads italicized

FP32 MAC 7.29 18,875.72
Register File 15.61 198,004.71

PRNG 0.35 1,920.84
Mask Memory 2.65 44,932.66

System area: Procrustes overheads italicized

Global Buffer 73.74 17,109,596.5
Quantile Engine 1.38 9,861.4
Load Balancer 2.05 8,725.23

Table 6.4: Silicon area costs and overheads (synthesis using Synopsys DC
with the FreePDK 45nm library). For fairness, the power estimates assume
the same dense computation (i.e., no sparsity).

134



6.8.2 Silicon Area Overheads

The silicon area and power overheads of Procrustes are detailed in Table 6.4.
Despite the RNG initial weight recomputation module being included in
every PE, its area and power pale in comparison to the FP32 MAC unit
which all PEs include.

Overall, the Procrustes accelerator has an area overhead of 14% over an
equivalent dense accelerator, and consumes 11% more power when executing
the same dense workloads. Both are a small price to pay for the 2.27ˆ–3.26ˆ
energy savings offered by sparse training.

6.8.3 Generality

Procrustes is the first sparse training accelerator to combine substantial
sparsity ratios, 2.27ˆ–3.26ˆ energy savings, and up to 4ˆ speedups while
maintaining state-of-the-art accuracy of the trained networks. While in this
work we use Procrustes to extend the Dropback training algorithm, the
quantile estimation and spatial-minibatch dataflow insights apply to all ex-
isting — and likely many future — sparse training algorithms.

6.9 Summary

This chapter introduces Procrustes, a sparse DNN training accelerator that
produces pruned models with the same accuracy as dense models without
first training, then pruning, and finally retraining, a dense model. The spar-
sification process considers the entire set of gradient values to decide on
what weights are important to keep, and what can be dropped.

Procrustes relies on three key techniques. First, it adapts an existing
training algorithm to create computation sparsity that can be converted
into energy savings. Next, it replaces the sorting step present in nearly all
sparse training algorithms with hardware-friendly, computationally simple
quantile estimation. Finally, it leverages a novel load-balancing scheme that
converts sparsity into speedup, and proposes a novel dataflow that enables
load balancing without significant changes to the on-chip interconnect.

135



Chapter 7

Related Work

7.1 Cache Compression

In chapter 3 and chapter 4, we present two novel cache compression mech-
anisms that we develop to overcome limitations of prior methods. Prior
work on cache compression can generally be categorized into three categories
based on their compression granularities: (i) inter-block data compression,
(ii) intra-block data compression, and (iii) techniques that do not operate at
block granularity. Below, we outline past proposals in all of these categories,
and discuss prior work on orthogonal ideas on effective replacement policies
with compression.

7.1.1 Inter-Block Data Compression

Inter-block data deduplication techniques leverage the observation that many
cache blocks are either entirely zero [76, 78, 200] or are copies of other blocks
that concurrently reside in the cache [59, 70, 117, 231, 242]. Instead of stor-
ing several identical copies, they aim to store only one copy of the block in
the cache, and propose techniques to point the redundant data entries to
this single copy.

To address the inter-block redundancy at the cache level, Dedup [242]
modified a conventional cache to store one copy of the redundant data and
allow multiple tags to pointing to the unique copy. The key challenge here is
that probing the entire cache to search for duplicates is impractical (unlike
compressing a single cacheline, as B∆I does).

To overcome this limitation, Dedup uses a “hash table” that stores (say)
16-bit fingerprints of 64-byte memory blocks and their locations in the data
array. While a “hit” must be verified against the actual 64-byte block to
avoid false matches, in practice collisions are rare. Because cached values
have some temporal locality, using a limited-size hash table with the most
recently used fingerprints (say up to 1024 hashes) covers most of the dupli-
cation in typical working sets [242].

In addition to the limitations due to the exact-match requirement, Dedup

136



has two performance challenges. One is that data insertion involves a refer-
ence to the hash-table followed by a reference into the LLC data array to
verify the exact contents of the memory block. Another limitation is that
evicting a deduplicated memory block from the data array requires evict-
ing all tags that point to it; in turn, this means that the tag array entries
must contain two pointers to form a doubly-linked list for each deduplicated
memory block value.

7.1.2 Intra-Block Data Compression

For some applications, data values stored within a block have a low dynamic
range resulting in redundancies [21, 200, 250]. Prior work categorized these
into (a) repeated values (especially zeros) repeated in a data block, and
(b) near values with the same upper data bits and different lower bits.

One way to reduce redundancy within the memory block is to capture the
replicated data in dictionary entries and then point to that entry when new
replicated data is presented. Frequent pattern compression [21] does this on
a word-by-word basis by storing the last 16 observed values as a dictionary.
Similarly, [250] uses an LZ77-like compression algorithm by reading through
the input data word by word and constructing a dictionary of observed
sequences. The authors of [129] propose a small cache placed alongside the
L1data cache to store memory locations with narrow values; this compactly
stores each 32-bit word at 1-, 2-, 4-, and 8-bit granularity.

Another method to reduce redundancy of nearly identical values is to try
to separate repeated parts of values from distinct lower bits in a memory
block. DISH [191] extracts distinct 4-byte chunks of a memory block and uses
encoding schemes to compress them, with dictionaries potentially shared
among a few contiguous blocks. It uses a fixed-width pointer that points to
one of the n dictionary entries: i.e., a cache block is encoded as a dictionary,
some fixed-width pointers, and some lower-bit deltas for each 4-byte chunk.

B∆I [200] uses one word-granularity “base” value for each compressed
cache block, and replaces the other words in the block with their distances
from the base value. B∆I can compress zero lines, as well as various com-
binations of base value and offset sizes; the type of compression selected is
encoded in the tag entry metadata. A data block is logically divided into
eight fixed-size segments, and compressed blocks are stored as multiple seg-
ments allocated at segment granularity.

SC2 [26] uses Huffman coding to compress memory blocks, and recom-
putes the dictionary infrequently, leveraging the observation that frequent
values change rarely. HyComp [25] combines multiple compression algo-

137



rithms and dynamically selects the best-performing scheme, based on heuris-
tics that predict data types. Bit-Plane Compression [143] targets homoge-
neous arrays in GPGPUs to both improve the inherent data compressibility
and to reduce the complexity of compression hardware over B∆I by com-
pressing the deltas better. To reduce tag overhead of the compressed cache,
DCC [221] and SCC [218] use “superblocks” formed by grouping adjacent
memory blocks in the physical address space. More recently, YACC [219]
was proposed to reduce the complexity of SCC by exploiting spatial locality
for compression.

Broadly, intra-block methods are useful in compressing one block or
possibly a “superblock” of contiguous memory blocks. However, unlike The-
saurus, they do not consider value redundancy among different non-contiguous
memory blocks at far-away addresses, which still leads to repeated (albeit
potentially compressed) data values in different parts of the cache.

7.1.3 Non-Block-Granularity Compression

Unlike scientific applications, whose working sets are often dominated by
arrays of primitive-type values, many general-purpose applications traverse
and operate on blocks. Based on this insight, Cross-Block-Compression al-
gorithm (COCO) [243] uses data structure blocks (rather than cache blocks)
as the unit of compression. The authors also present the first compressed
memory hierarchy designed for block-based applications.

Our cache compression proposal, Thesaurus (chapter 4) is able to capture
the redundancy across objects stored in the cache memory. Thesaurus does
not require cachelines to be filled with a particular datatype, as it does
not impose any limitation on the structure of the data being compressed.
Nevertheless, if objects with various fields are stored across multiple lines in
the cache, Thesaurus can form clusters of similar cachelines (storing all or
parts of these objects) and efficiently compress them.

7.1.4 Replacement Policies With Compression

Prior works have also looked at the impact of compression on cache replace-
ment policy. ECM [31] reduces the cache misses using Size-Aware Insertion
and Size-Aware Replacement. CAMP [198] exploits the compressed cache
block size as a reuse indicator. Base-Victim [86] was also proposed to avoid
performance degradation due to compression on the replacement. These pro-
posals are effective for intra-cacheline compression, but do not consider the
inter-cacheline interactions present in Thesaurus and Dedup [242].

138



7.2 DNN Compression

In chapter 5 and chapter 6, we present compression methods to efficiently
reduce activation and weight memory footprints. In what follows, we describe
the contributions of prior work towards reducing storage and energy costs
through lossy and lossless compression, both of weights and of activations
of DNNs

Techniques for weight compression usually explore redundancy in the
weights and try to approximate or remove the redundant and uncritical
parameters of deep CNNs [55, 67, 72, 84, 96, 101, 103, 106, 107, 110, 113, 161,
172, 179, 183, 184, 195, 204, 205, 235, 245, 254, 255, 258, 271, 278, 280, 284?
]. Techniques on activation compression [22, 32, 62, 64, 87, 87, 118, 124, 133,
140, 141, 165, 206, 207, 225, 249, 266] try to save the memory footprint of
the intermediate values as these activation maps can occupy up to 90% of
the GPU-side memory allocations on some networks [205, 232].

7.2.1 Weight Compression

Most of the work to date [67, 92, 101, 110, 161, 183, 184, 195, 284] has
focused on shrinking the size of the model parameters as a way to increase
memory efficiency. Weight pruning cuts the less-important connections in
networks [84, 92, 107, 113, 280] and results in sparse models, shrinking the
model size by an order of magnitude.

Most proposed sparse training algorithms gradually increase sparsity
during the training process. The lottery ticket algorithm [84] prunes 20%
of the network every 50,000 training iterations by removing the lowest-
magnitude weights; the authors report 5–10ˆ model size reduction on CI-
FAR10 targets. Eager Pruning [278] follows a similar magnitude-based ap-
proach, but adds a feedback loop and a checkpoint-based rollback scheme to
avoid overpruning; maintaining top-1 accuracy on ImageNet, it can prune
ResNet50 2.4ˆ (25.6MÑ10.8M weights) by removing 0.8% of the weights
every 24,000 iterations. Both approaches rely on sorting all weight values to
determine which weights to keep. Dynamic sparse reparametrization [179]
follows a similar magnitude-based pruning approach, pruning „200,000 pa-
rameters from ResNet50 every 1,000–8,000 iterations, but allows a fraction
of new weights to regrow after each pruning step. It avoids the need to
sort all weights by using a value threshold adjusted via a set-point feed-
back loop whenever the network is pruned; however, the initial value of this
threshold becomes a hyperparameter. This method prunes ResNet50 3.5ˆ
(25.6MÑ7.3M) with some top-1 accuracy loss on ImageNet.

139



Dropback [92] prunes the network from the beginning: only a fixed per-
centage of the parameters (e.g., 10%) are ever allowed to change. In every
iteration, only the weights with the highest accumulated gradient survive
(which again requires sorting), on the theory that this represents learning
better than magnitude during early iterations; the pruned weights are reset
to their initial values rather than to 0. With Dropback, ResNet18 can be
pruned 11.7ˆ (11.7MÑ1M) while maintaining top-1 accuracy on ImageNet.
Procrustes adapts Dropback to the needs of an efficient hardware implemen-
tation, removing the requirement for sorting and decaying initial weights to
0 to create extra computation sparsity.

[235] explored the redundancy among neurons, and proposed a data-free
pruning method to remove redundant neurons.

Network quantization compresses the original network by reducing the
number of bits required to represent each weight. [245] showed that 8-bit
quantization of the parameters can result in significant speed-up with min-
imal loss of accuracy. The work in [103] used 16-bit fixed-point representa-
tion in stochastic rounding based CNN training, which significantly reduced
memory usage and float point operations with little loss in classification ac-
curacy. In [258], it was shown that Hessian weight could be used to measure
the importance of network parameters, and proposed to minimize Hessian
weighted quantization errors in average to cluster parameters.

Weight clipping methods [161, 184] help quantization by limiting the
data range. Weight sharing and quantization methods assume that many
weights have similar values, and can thus be grouped in order to reduce the
number of free parameters. The work in [55] proposed a hashing technique
to randomly group the connection weights into a single bucket and then
fine-tune the model to recover from the accuracy loss. The most important
property of the hashing trick is, arguably, its approximate preservation of
inner product operations. Other work also proposed grouping the weights
using K-Means [255]. [96, 254] applied K-Means scalar quantization to the
parameter values. Lower bit-width weights like binarization [204] has also
been used for the model compression. Extending this, [284] used ternary
quantization learned from the given data. Recently, [172] conducted the
network compression based on the float value quantization for model storage.
Proposed work on quantization sometimes needs significant manual effort
for each network to choose the right quantization precision and method.
The deep compression method in [106] removed the redundant connections
and quantized the weights, and then used Huffman coding to encode the
quantized weights.

Reducing weight dimensions by low-rank approximation saves storage

140



and simultaneously reduces time complexity during training and testing.
Most methods [72, 132] approximate a tensor by minimizing the reconstruc-
tion error of the original parameters. However, these approaches tend to ac-
cumulate errors when multiple layers are compressed sequentially, and the
output feature maps deviate far from the original values with the increase
of compressed layers [271].

We propose Procrustes in chapter 6 with the energy efficiency in mind.
Prior work target a context where pruning occurs after training: a model is
first trained with the full parameter set, then pruned, and finally re-trained
to recover accuracy [107] whereas in Procrustes, the compression happens
during the training process from the very beginning. Also, most [84, 92,
278] require sorting all weights to determine the parameters to retain; with
weight counts in the tens of millions, sorting is an expensive proposition.
Several [179, 278] achieve only small pruning factors and suffer accuracy
loss. Procrustes also does not give up on the computation sparsity as in [92]
which is a significant drawback for training.

7.2.2 Activation Map Compression

Unlike model compression, surprisingly few work consider intermediate value
compression. This can most likely be explained by the fact that intermediate
values need to be compressed for every input as opposed to offline model
compression. A major drawback of these methods is that they don’t directly
translate to memory savings on recent networks, as their major bottleneck
is the size of activations. The goal here is to decrease computation, mem-
ory storage and bandwidth requirements during inference or training. The
memory and computations required for DNNs can be excessive for low-power
deployments.

In general, similar to model compression, there are some compression
work based on pruning, quantization and clustering.

There has been some work on activation map pruning with the same
insight as weight pruning [108] (i.e., to remove non-informative wights from
the network), which tried to introduce more sparsity to the intermediate ac-
tivation map values. Recently, [87] proposed a three-stage compression and
acceleration pipeline that sparsifies, quantize and entropy encode the activa-
tion maps of CNNs. The sparsification step uses L1-norm and increases the
number of zero values leading to model acceleration on specialized hardware.
The linear quantization and sparse encoding stages lead to compression by
effectively utilizing the lower entropy of the sparser activation maps.

Other work in pruning proposed to prune the entire feature maps of a

141



channel such as [124, 165, 266] with respect to some threshold which yield
more compact networks. [165] performed channel-level pruning by attaching
a learnable scaling factor to each channel and enforcing L1´norm on those
parameters during the training.

Some methods are developed around the idea of quantization. The base
floating-point model is converted to the approximate quantized represen-
tation, and therefore the intermediate values; then, the quantized model is
retrained to restore accuracy.

Proteus [141] suggests that there is a significant variance in the precision
needed for both activations and the weights across different networks and
layers. So, quantizing the values to only a few bits, which can be highly
beneficial in over parameterized networks, can reduce data traffic and stor-
age footprint needed by DNNs significantly. The work in [133] extends this
insight and shows that the bit-width needed for every layer, as well as
each stage of the computation (i.e., forward and backward propagation)
are different and can vary a lot; therefore, they used layer-specific encod-
ing schemes (lossy and lossless) to code backward path activation maps
with as few as 8 bits while keeping forward activation in a 32-bit single-
precision format. Other work focused on bit-serial operation on the values,
such as [22, 140, 225] which significantly reduce the memory bandwidth
needs and exploit the variable bit-width need of values in the network. Re-
cently, ShapeShifter [150] adjusted the data type width at a much finer
granularity by grouping set of 16 values together.

Wen et al. [249] added a structured sparsity regularizer on each layer to
reduce trivial filters, channels or even layers. In the filter-level pruning, all
the above works used L1 or L2-norm regularizers.

In many cases, taking a model trained for full precision and directly quan-
tizing it to 8-bit precision, without any re-training, can result in a relatively
small loss of accuracy [94, 131, 146]; however, the accuracy degradation can
be significant on smaller bit-widths [32]. Many attempts have been made to
ameliorate this effect, usually by training the model with quantization con-
straints [61, 95] or modifying the network structure [258]. The work in [146]
introduces a dynamic range quantization scheme for activations using cali-
bration data to perform post-training quantization (PTQ).

Other work has focused on how to estimate the dynamic range of a layer
with a given activation distribution, ranging from naive min/max statistics
to more advanced methods utilizing statistical analysis. [207] duplicates and
halves outliers (large values affecting the dynamic range) in weight or acti-
vation values to move them to the center of the distribution, and effectively
shrink the range for better quantization resolution. ACIQ [32] approximates

142



the optimal clipping analytically from the distribution of layer by minimiz-
ing MSE, similar to the minimum mean squared error problem formalized
in OMSE [62].

[100] compress activation maps by projecting them down to binary vec-
tors and then applying a nonlinear dimensionality reduction technique. How-
ever, the method modifies the network structure and it has only been shown
to sparsify activations slightly better over simply quantizing activation maps.

Several recent training-free methods cover zero-shot scenarios, where
none of the training data is accessible during the PTQ. DFQ [184], focus-
ing on the weights, equalizes the ranges of pre-trained models and corrects
biases of the quantization error using batch normalization parameters. Ze-
roQ [48] creates a calibration dataset by distilling the data distribution from
the statistics of batch normalization layers, stored at full precision.These
methods suffer from a severe accuracy degradation at lower precision, and
their applications are limited to networks where pre-trained batch normal-
ization layers store statistics of training dataset. In contrast, our proposed
In-Deployment method Channeleon does not need a full precision model and
does not require any distilled data.

The work to compress DMA engines [206] examines three lossless activa-
tion map compression techniques: run-length encoding, zero-value compres-
sion, and zlib compression. The first two are hardware-friendly, but only
achieve competitive compression when sparsity is high, while zlib cannot
be used in hardware in practice due to its high computational complexity.
Other work in [87] proposes an entropy coding algorithm that leverages on
the sparsity and statistical properties of the activation maps to compress
them. This algorithm can stand on its own in scenarios where lossy com-
pression is deemed unacceptable, but it is challenging to perform it cheaply
in hardware. [133] proposed two lossless encoding to reduce values taken
from ReLU layers followed by a specific layers and represent them by as
low as 1 bit. Recently, Buddy Compression [64] applied Bit-Plane Compres-
sion [143] to the values that has been shown to have high compression ratios
for GPU benchmarks when applied for DRAM bandwidth compression. Al-
though this method shows promising results, its focus is on values in GPU
and cannot be used directly for accelerator design.

Non-uniform quantization was suggested by [33] and V-Quant [194]. V-
Quant suffers a huge accuracy drop in low bit-widths and needs retraining
before it can be used for quantized inference. PWLQ [81] breaks the quan-
tization range of weights into non-overlapping regions for each layer while
uniformly quantizing activations. Other work used clustering in order to
compress the values in DNNs. For example, in [106, 201] parameters are

143



approximated using K-Means. Because weights are static, this method can
be applied off-line, whereas activations are dynamic and the high cost of K-
Means prevents it from being computed once for every input image. ACP [52]
uses DBScan to identify similar channels and prunes them; a retraining phase
follows to recover lost accuracy. [201] proposes clustering of weights and ac-
tivations to quantize selected layers in AlexNet [147] and VGG16 [230], with
better accuracy than linear quantization methods. However, QUENN is ap-
plied to older models, and does not quantize all the layers. Moreover, the
cost of applying naive K-Means is not studied in this work.

[118] performs channel-wise quantization of activations and layer-wise
quantization of weights to compress the image super-resolution networks
with and without batch normalization.

We propose Channeleon in chapter 5 which eliminates the need for ac-
cessing the training data while maintaining the baseline model accuracy, a
draw back of prior works.

7.3 AI Hardware Accelerators

DRAM access requires approximately 100–200× more power than local on-
chip cache access [58]. Therefore, currently proposed DNN accelerator archi-
tectures propose various schemes to decrease memory footprint and band-
width. One solution is to keep only a subset of intermediate feature maps
at the expense of recomputing convolutions [24]. The presented fusion ap-
proach seems to be oversimplified but effective due to high memory access
cost. Channeleon is complementary to this work but proposes to keep only
compressed feature maps with minimum additional computations. Another
work [193] exploits model and feature map sparsity using a more efficient
encoding for zeros. While this approach targets similar goals, it requires high
sparsity, which is often unavailable in the first and the largest feature maps.
In addition, a special control and encoding-decoding logic decrease the ben-
efits of this approach. In our work, compressed feature maps are stored in a
dense form without the need of special control and encoding-decoding logic.

cDMA [206] exploit the sparsity inherent in the offload data (from GPU
to CPU) to reduces the size of the data structures that are targeted for
CPU-side allocations. To overcome the GPU memory capacity bottleneck of
DNN training, prior work proposed to virtualize the memory usage of DNNs
(vDNN) so that ML researchers can train larger and deeper neural net-
works beyond what is afforded by the physical limits of GPU memory [205].
By copying GPU-side memory allocations in and out of CPU memory via

144



the PCIe link, vDNN exposes both CPU and GPU memory concurrently
for memory allocations which improves user productivity and flexibility in
studying DNN algorithms.

Eager Pruning [278], a sparse training accelerator, works by starting with
a dense network and very gradually pruning the lowest-magnitude weights,
with fewer than 1% of weights removed every tens of thousands of training
iterations; maintaining accuracy limits pruning to comparatively low fac-
tors of 1.5–3.5ˆ. The accelerator uses a weight-stationary dataflow where
denser filters are distributed over more PEs than sparser filters; to manage
the resulting irregularity in collecting partial sums, the authors propose a
module that connects the PEs and can either accumulate or route partial
sums. Although the Eager Pruning algorithm relies on sorting weights, this
does not appear to be considered in the hardware or the latency and energy
measurements. In contrast, Procrustes achieves higher pruning factors, does
not rely on sorting weights, and avoids the need for a complex interconnect
via a novel load balanced dataflow.

TensorDash [167] is a sparse training accelerator that exploits naturally
occurring sparsity during training, which appears predominantly in the acti-
vations and the gradients: MACs with zero as one of the operands. It borrows
upon the sparse-interconnect approach used by Bit-Tactical’s front-end [69]
and adapt it so that it can be used during training. This interconnect does
not sparsify the models, therefore TensorDash needs to add ideas from train-
ing acceleration that leverage weight sparsity to extracts additional benefits;
it borrows the method in [73] to add weight pruning during the training
which is based on sorting weights and as we described earlier, is not efficient
for hardware implementation. TensorDash achieves only 1.95ˆ speedups and
1.6ˆ energy savings on pruned models with 90% sparsity.

All other sparse accelerators only support inference. EIE [105] and Cam-
briconX [279] use variants of the compressed sparse column format, which
prevents them from efficiently accessing weights during the backward pass.
parashar2017scnn [193] and SparTen [93] use an input-stationary dataflow
to enable both weight and activation sparsity; however, both use a CSC-
like format to encode sparse weights, and neither can be used to accelerate
training.

145



Chapter 8

Discussion and Future Work

In this chapter, we conclude the dissertation and discuss potential directions
for future research.

8.1 Conclusions

In the past decade, on-chip memory capacities have not kept up with the
tremendous growth in how much data is collected and stored: in the general-
purpose computing systems, CPU last-level caches have stayed around 1MB
per core (up to 8MB per core). Similarly, in the special-purpose comput-
ing systems used to accelerate applications including DNNs, there is only
up to 10s of Megabytes of on-chip memory available. In this context, in-
creasing effective capacity by compressing on-chip memory contents rather
than directly increasing memory sizes can reduce the costly off-chip accesses
without incurring the costs of a larger silicon area.

Throughout this dissertation, we demonstrate that in order to develop
efficient in-hardware compression mechanisms, it is essential to go beyond
compressing values in isolation or only a few consecutive data blocks; we can
make better compression decisions (which data blocks can be compressed
together, what values can be dropped) based on the relevant data points in
the entire set of available on-chip data.

In chapter 1, we argue that it is essential to consider both the intra-
line and inter-line data redundancy for improving the compression ratio in
cache memories as various workloads have different types of redundancy. We
propose 2DCC that goes beyond a single type of redundancy and improves
the compression ratio on the best performing state-of-the-art method by
1.42ˆ. We further analyzed its applicability to approximate data and showed
not only that our proposal improves the compression of exact data, but
also that it enables data approximation to achieve competitive compression
ratios.

In chapter 2, we discuss a novel method to reduce data redundancy in on-
chip cache memory that relies on data similarity. We observed that many
on-chip data are similar to each other and therefore can be used to form

146



clusters, and these clusters are often quite distinct. We proposed Thesaurus,
a method to dynamically cluster the data as they come into the memory
and then perform delta compression on data within each cluster to avoid
storing the redundant chunks of the data. Thesaurus achieves a considerable
compression ratio of 2.25ˆ on an extensive set of CPU benchmarks.

In chapter 3, as the first attempt to demonstrate our insights in scratch-
pad memories, we attacked the problem of activation map compression in
DNNs through dynamic clustering. We observed that many activation chan-
nels share similar statistics. Thus, we propose Channeleon, a method that
looks at the entire set of channels at each layer, clusters them based on
activation statistics and performs quantization on each cluster, separately.
Compressing in channel-group-wise fashion, rather than compressing each
activation channel individually or all layer activations at once as it is done
conventionally, enables the values to be compressed to low-bit-widths while
retaining the network accuracy in acceptable ranges. We also observed that
the distribution of the activation values is often non-uniform and heavily
asymmetrical and propose to use an optimized K-Means clustering algo-
rithm as the non-uniform quantizer to further reduce the accuracy loss of
low bit-width quantizations.

In chapter 4, we propose an AI hardware training accelerator that pro-
duces compressed sparse weights from scratch to reduce the weight footprint
by an order of magnitude. In order to compress weights, the compression
algorithm looks at the entire set of gradient values and keeps the ones with
the highest change. In order to make this technique hardware-friendly, we
use a computationally simple quantile estimation method to track weights,
and also leverage a novel data-flow and load-balancing scheme that converts
sparsity into up to 4ˆ speedups.

8.2 Future Research Directions

This section discusses directions for potential future research based on the
work performed in this dissertation. While this dissertation focuses on on-
chip data compression of cache memories in CPUs and scratchpads in AI
accelerators, the techniques and main insights of this dissertation are not
limited to these devices.

8.2.1 A Unified and Dynamic Compressed Cache

A much more open-ended research direction would be to explore new ways
to structure cache memories. The emphasis of this dissertation in chapter 3

147



Figure 8.1: Indication of how compressibility varies over time. Y-axis shows
the number of unique bytes at each cacheline using Thesaurus compression.
1 million cache insertions after skipping the first 40B instructions.

and chapter 4 is to make the cache compression practical for the existing
caches with minimal changed to the existing structures. But, if one can afford
to completely redesign how caches are made, there are bigger potential and
room to optimize the caches.

To better understand the missed opportunity in current cache designs,
let’s revisit the observations described in chapter 3 and chapter 4:

• Different workloads have different compression ratios meaning that
sizing the structures based on one application for other applications
leads to sub-optimal designs.

• Each workload has various phases with different compressiblilty be-
haviour (see Figure 8.1). This also indicates that during the runtime
of a single workload, the ratio of the data to the tag entries and amount
of the storage savings changes considerably.

Existing methods size the cache structures (i.e., tag array and data array)
based on the average working set footprint over all workloads. Picking this
point, will divide the applications into two general groups: tag-bounded and
data-bounded; tag-bound applications are ones that can compress data to
more than the chosen compression ratio, and data-bounded are the ones
that are less compressible.

For example, given a set of workloads, if we observe that the data can
be compressed by 2ˆ on average, conventionally we choose to have 2ˆ tag
entries compared to data entries. This makes all the workloads with the
compression ratio less than 2ˆ to become tag-bounded meaning that can-
not compress to more than 2ˆ although there is empty space available in

148



Figure 8.2: Possible unified cache scheme. (a) a unified scheme where the
tag/data entry is not limited to be stored only on the tag/data arrays. (b) a
unified scheme where the tags and data are stored within a single structure.
The light gray box indicates the metadata used for jumping over the data
blocks.

the data array. Similarly, the workloads with less compressibility (i.e., un-
compressible data) will use up all the entries in the data array and leave
some space in tag array structure unused. These inefficiency in using the all
available space motivates a better silicon area division.

Now, consider a cache where the tags and data are not limited to only be
stored on their corresponding structures. Essentially, in this case, the cache
will adapt to the workload and dynamically decide how much of the memory
is taken by tags and how much by data. One way to achieve this is by letting
the data/tags to be stored on the other structure whenever needed assuming
some overhead (e.g., one more bits to indicate which structure that tag/data
entry is stored at). We illustrate such cache organization in Figure 8.2(a),
however, this complicates the replacement policies, as now a tag insertion
may result in a data eviction (and perhaps the eviction of the corresponding
tag) and vice versa.

As another possibility, consider a unified structure where the tags and
data are stored along each other and there is no physical or virtual division
on where the tags and data should be stored. DICE [269] proposes a similar
idea to increase the bandwidth of DRAM cache. Essentially, there will be
no more tag/data separation when storing each data but rather a bigger
block of data where the data and meta data are stored along each other.
For example, the first few bits will always be the size of this entry, the
next bits store the address/tag bits and the following bytes will be the
compressed/uncompressed data block. This cache organization is illustrated
in Figure 8.2(b). As the size of each block is known, a data lookup is just a
search for the relevant address in the metadata bits of each entry and jump
over the data bits until it reaches to the matching address.

One challenge might be the energy implications of such designs. In con-

149



ventional caches, usually each address lookup results in a tag lookup, and
if the tag is located (tag hit) there will be another data lookup. If both the
tag and data are stored in the same structure, no matter if a lookup is hit of
miss, the entire cache line needs to be accessed. This might result in more
energy if the tag does not exists in the cache.

Obviously, there are many other design and algorithmic choices to make
here such as whether to align the blocks or dedicate some part of the mem-
ory to store some pointers for faster search which needs careful study and
evaluation.

8.2.2 Compressing Across All Levels of the Memory
Hierarchy

Chapter 3 and chapter 4 describe in-hardware mechanisms and evaluate
them on the last-level caches in CPUs. An interesting research direction
would be to understand how to apply those techniques to efficiently compress
the data across all levels of the memory hierarchy, from data origin to where
the data is being consumed.

Whole system compression could reduce the overheads of compression
and decompression at every level of memory hierarchy as now a block can
be transferred in a compressed format through various levels. Furthermore,
as each component plays a slightly different role while storing the data,
different applications with various memory access pattern will benefit from
them differently. For example, cache memories do well with temporal locality
as they cache the most frequently used blocks. Cache compression will have
more benefit with the applications with greater temporal locality, whereas
main memory compression might be helpful for the benchmarks with spatial
locality; main memory compression can reduce the bandwidth on streaming
patterns.

Hence, if the goal is to improve performance of a wide variety of appli-
cations in general-purpose computers, employing the compression across all
levels of the hierarchy can bring the best results.

Below, we list the benefits that compressing each part of the memory system
adds:
Compressing all cache levels: LLC compression improves performance by
reducing the number of main memory accesses, however, there still is consid-
erable data movement among the different levels of the cache. Compressing
the data in smaller and more latency critical caches like L1 cache can be ben-
eficial in reducing those data movements and needs special considerations.

150



The methods we proposed in Chapter 2 and 3 can be used throughout the
entire cache hierarchy due to its very low decompression latency, but things
such as clustering parameters can be different for each cache. If different
compression/decompression process at each step, results in slightly different
format for the compressed block, there is a need for a fast format conversion
mechanism.

There is an interesting research topic here to study this trade-off as well
as figuring out where to put these compression decompression units, whether
to convert the compression format on the fly or after the data is stored at
each level, and so on.
Compressing the bus between LLC and main memory: There are
two major benefits in compressing the link between the caches and main
memory. First, it will reduce the the average latency of memory accesses if
both main memory and cache are compressed. Second it can decrease the
bus energy consumption as there will be less data (i.e., fewer bits per same
information) being transferred. Cache compression mechanisms reduce the
main memory bandwidth by reducing the LLC misses and therefore main
memory accesses due to the misses, but they cannot reduce the bandwidth
required to transfer this missed block from main memory to the LLC. As
we mentioned in chapter 2, delta compression methods are widely used to
compress streams. The method we propose in Chapter 2, reaches to delta
compressed blocks in more efficient way. Therefore, we believe our com-
pression format will be efficient for data movement in the bus as well. The
compression scheme of Thesaurus can be simplified to only consider multi-
ple blocks within an specific range (e.g., some number of consecutive blocks)
while performing the compression.

Compressing the traffic on the bus between LLC and main memory can
be especially beneficial for memory-bandwidth-intensive applications (i.e.,
applications where main memory bandwidth is the bottleneck for perfor-
mance).
Compressing main memory: Main memory compression can benefit the
system performance in couple ways: it can reduce high latency disk accesses,
and, it can enable less main memory bus contention by reducing the memory
bandwidth requirement.

Methods described in Chapter 2 and 3 can be leveraged for the entire
cache hierarchy compression. For the data being communicated on the bus
methods such as Huffman can be a good candidate. Lastly, for the memory
compression proposals like [120, 268] can be leveraged.

151



Figure 8.3: Compute Cache overview from [18]. (a) Cache Geometry (b)
In-place compute in a sub-array

8.2.3 Compressed Compute Caches

Processing-in-memory methods reduces the overheads of moving the data
from where it is stored to where the computation happens [277]. The work
in [18] proposes Compute Cache, an architecture that enables in-place com-
putation in caches. Compute Caches uses emerging bit-line SRAM circuit
technology to transforms existing caches into very large vector computa-
tional units. In these architectures, several operations such as logical AND,
XOR, etc. can be performed on the cached data by simultaneously activat-
ing multiple word-lines and sensing the resulting voltage over the shared
bit-lines.

Neural Cache [77] further augments compute capability to efficiently
support fixed point arithmetic operations. It re-purposes the SRAM arrays
in LLC as bit-serial ALUs, and builds an accelerator for CNN inference.
Therefore, neural cache act as a massively parallel compute units capable
of running inferences for Deep Neural Networks. The proposed architec-
ture also supports quantization in-cache. Later, Duality Cache [85] extends
the operations to support the floating-point arithmetic functions to enable
general-purpose data parallel applications to run on caches.

These proposals are beneficial in eliminating the explicit data transfer
through PCIe from host to device memory; which can be a barrier to achieve
speedups. For example, the initial data transfer between the host (i.e., CPU)
and device memory (e.g., GPU) is costly especially when data reuse is not
high.

The efficiency of Compute Caches arises from two main sources: reduced

152



data movement and massive parallelism. Compute Caches reduce the data
movement by a) reducing the transfer between caches and the cores and
different levels of hierarchy, as well as, b) reducing transfer between a cache
sub-array to its controller through in-cache interconnect. In order to make
parallelism, one challenge that these proposals have to overcome is to align
the data (with the help of compiler) so that data can be computed in bit-
aligned fashion.

Compression benefits: Aside from the obvious benefit of compressing
Compute Caches, which is being able to store more data, compression these
caches can make the data movement even less expensive. A study can look
into the gains and overheads of compressing the cache and memories in the
memory hierarchy, as well as, the interconnect.

Compression can make Compute Cache operations cheaper as well. The
two types of operation that takes place in Compute Caches are in-place
operations, where the data is manipulated in the structures itself, and near-
place operations where the source operands are read out from the cache sub-
arrays and the operation is performed in a logic unit placed close to the cache
controller [18]. While the benefits of the compression can be limited for in-
place operations, the benefits for near-place operations can be considerable;
as essentially less bit-lines needs to be turned on and transferred around,
the cost of reading data out from structures can be reduced for applications
requiring considerable amount of near-place operations.

8.2.4 Activation Map Compression in Training

There is plenty of efficient inference techniques that reduce the number of
trainable parameters and the computation FLOPs [46, 106, 216], however,
parameter-efficient techniques do not directly save the training memory [47].

While chapter 5 evaluates activation map compression mechanism in the
inference phase of DNNs, an immediate follow up work would be to investi-
gate how to efficiently apply that to the DNN training phase. It is essential
to reduce the size of intermediate activations required by back-propagation,
which is the key memory bottleneck for efficient on-device training [47].

The benefits from reducing the activation map memory footprint will be
significantly more than in the training phase: there is more data that needs
to be transferred around (i.e., activations, gradients, etc.) and stored for a
longer time to be reused in the backward step.

Moreover, training tasks are usually done on batches of images, rather
than single image. This potentially help compression to find more similar

153



chunks of data to cluster and bring more benefit to the training phase.
One thing that is different in the training phase as compared to the in-

ference phase is the behaviour of batch-norm layer [128]. Batch-norm layer
is a layer that generally comes after the computation layer. It normalize
the batch by first subtracting its mean, then dividing it by its standard
deviation. Further scale and shift with the parameters of the batch normal-
ization layer. Once the training has ended, each batch normalization layer
possesses a specific set parameters, some being computed using an exponen-
tially weighted average during training [128]. During inference, the batch
normalization acts as a simple linear transformation of what comes out of
the previous layer, often a convolution layer. As convolution is also a linear
transformation, it means that both operations can be merged (folded) into
a single linear transformation. This is a common practice to make infer-
ence faster and reduce the number of parameters. Therefore, the activation
statistics coming out of compute layers in training is different from inference
with folded batch-norm (and even fused ReLU), which means they need spe-
cial considerations such as different clustering hyperparamters. In order to
form better clusters, it is also probable that there is a need for normalizing
activations of compute layer before compressing them.

Another challenge is that the parameters and therefore the range of
activations are constantly changing during the training, especially in the
early iterations. This requires that the method capture these dynamically
changing activation distribution. While the clustering method proposed in
Channeleon should be able to handle this, it might need different clustering
parameters for different training epochs, which needs careful investigation.
Later epochs won’t have this issue as the parameter distribution tends to
become stable and the parameters change relatively little compared to the
earlier iterations.

The last challenge is the precision requirements of training. While in in-
ference some accuracy can be traded for performance, introducing accuracy
errors can be critical in training. After each inference pass, the activations
are discarded; in training, on the other hand, they will be used in the back
propagation phase to tune the parameters for the next step, and therefore
using lossy compression methods might cause the model converge very slowly
or not converge at all. One possibility might be to use a different precision
to pass the activations to next layer and to store them to be reused in back
propagation as suggested by [133]. Then there will be a trade off between
the precision and the memory used for each of those paths.

154



8.2.5 Compression-Aware Regularization

In chapter 5, we presented a compression mechanism to reduce the memory
footprint of the intermediate activation maps. This scheme does not change
the network structure and can work with pretrained models. One interest-
ing research direction here is that how this compression can be boosted
by knowing the training time information; in other words, developing an
efficient compression aware training algorithm.

Currently, the convention to make models more compact in the training
time is to make them sparse, i.e., bring unimportant values down to zero; an
example of such mechanism is illustrated in Figure 8.4(a) where values below
some threshold (boxes with lighter yellow and pink colors in the figure) are
pushed towards or replaced with zero (the white boxes in the figure). This
can be achieved by using terms such as L1-norm as in [87]. They propose to
aid training of neural networks by explicitly encoding in the cost function
to be minimized, the desire to achieve sparser activation maps.

Although sparse activations are more compressible, zeroing out values
will only be beneficial in a specific compression mechanism. Moreover, not
all the networks will tolerate the error introduce by ignoring the connec-
tions [264]. A more generic way of doing this is to reduce the entropy in the
values.

Therefore, we can propose a compression mechanism that goes beyond
value sparsification and uses a regularization term that produce more com-
pressible data, i.e., more repeated data. Such a regularization term can push
the activation maps to have identical value if they are similar to each other.
A possible way to accomplish this is by tiling the activation map tensor into
many chunks, clustering these chunks, and replacing the items within each
cluster with the their corresponding clusteroid. Therefore, the cost function
can be defined as the difference between these items in each chunk, from the
corresponding clusteroid.

Figure 8.4(b) illustrates the case where 3 ˆ 3 tiles of data are clustered
into 5 clusters based on the pixel similarity. These clusters are distinguished
by different colors (black, blue, red, green and maroon boxes, each with
3,2,2,1, and 1 members respectively), and the clusteroid for each of those
clusters (five 3ˆ 3 tiles) are depicted on top and right side of the figure. For
example, it is visible on the bottom of this figure that the tiles in the first
cluster with 3 members can be replaced by a single clusteroid tile; this tile
repetition enables a potential of 3 times compression on this cluster.

We can introduce a regularization term that encourages the values to be
similar with the following cost function using L1-norm:

155



Figure 8.4: Activation map compression. (a) a sparsification method used in
conventional compression methods. (b) possible compression method where
similar chunks of activations are pushed to produce same values.

cost “
k
ÿ

i“0

n
ÿ

j“0

|chunkij ´ centroidi| (8.1)

where k indicates the total number of clusters(chunks), n indicates the total
number of items(tiles) in each cluster and centroidi is the centroid chosen
for that cluster.

The clustering task can be efficiently performed following the method
proposed in chapter 4. The clusteroids can be the average of the members
of each cluster, or simply the first member in each cluster, e.g., the first tile
that maps to an specific hash in an LSH-based clustering method. Since each
training iteration, forms the clutters dynamically, clusters repeatedly get
chances to better capture the similarity of the tiles if they are not perfectly
formed in an earlier iteration.

It is an interesting research question to see how much this regularization
term helps the compression and what will be the accuracy compression trade-
off as the values are being altered.

156



Bibliography

[1]

[2] DEFLATE Compressed Data Format Specification version 1.3.
datatracker.ietf.org/doc/html/rfc1951.

[3] Gnu gzip compression format. www.gnu.org/software/gzip/.

[4] Intel® core™ i5-750 processor specifications, howpublished =
https://www.intel.com/content/www/us/en/products/sku/

42915/intel-core-i5750-processor-8m-cache-2-66-ghz/

specifications.html.

[5] Intel® Sunny Cove microarchitecture. https://en.wikichip.org/

wiki/intel/microarchitectures/nehalem_(client).

[6] Intel® sunny cove microarchitecture.

[7] Microsoft windows bitmap format (bmp), version 5. www.loc.gov/

preservation/digital/formats/fdd/fdd000189.shtml. 2011.

[8] rsync. rsync.samba.org/.

[9] Truevision tga file format, version 2.0. www.loc.gov/preservation/

digital/formats/fdd/fdd000180.shtml. 2005.

[10] zip compression format specifications. pkware.cachefly.net/

webdocs/APPNOTE/APPNOTE-6.3.9.TXT.

[11] zlib compression format, version 1.2.11. zlib.net/. 2017.

[12] First the Tick, Now the Tock: Next Generation Intel® Microarchi-
tecture (Nehalem). https://www.intel.com/pressroom/archive/

reference/whitepaper_Nehalem.pdf, 2008.

[13] International technology roadmap for semiconductors (itrs). 2011.

[14] SPEC releases major new CPU benchmark suite. 2017.

157

datatracker.ietf.org/doc/html/rfc1951
www.gnu.org/software/gzip/
https://www.intel.com/content/www/us/en/products/sku/42915/intel-core-i5750-processor-8m-cache-2-66-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/42915/intel-core-i5750-processor-8m-cache-2-66-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/42915/intel-core-i5750-processor-8m-cache-2-66-ghz/specifications.html
https://en.wikichip.org/wiki/intel/microarchitectures/nehalem_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/nehalem_(client)
www.loc.gov/preservation/digital/formats/fdd/fdd000189.shtml
www.loc.gov/preservation/digital/formats/fdd/fdd000189.shtml
rsync.samba.org/
www.loc.gov/preservation/digital/formats/fdd/fdd000180.shtml
www.loc.gov/preservation/digital/formats/fdd/fdd000180.shtml
pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.9.TXT
pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.9.TXT
zlib.net/
https://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
https://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf


[15] Bulent Abali, Hubretus Franke, Dan Poff, R Saccone, Charles O.
Schulz, Lorraine M. Herger, and T.Basil Smith. Memory expansion
technology (mxt): Software support and performance. IBM JRD, 2001.

[16] Mohamed S. Abdelfattah, Andrei Hagiescu, and Deshanand Singh.
Gzip on a chip: High performance lossless data compression on fpgas
using opencl. In IOWCL, 2014.

[17] Dimitris Achlioptas. Database-friendly Random Projections. In SPDS,
2001.

[18] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish
Narayanasamy, David Blaauw, and Reetuparna Das. Compute
caches. In HPCA, 2017.

[19] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large
minibatch SGD: training ResNet-50 on ImageNet in 15 minutes. DLSS
NeurIPS workshop, 2017.

[20] A. R. Alameldeen and D. A. Wood. Adaptive cache compression for
high-performance processors. In ISCA, 2004.

[21] Alaa R. Alameldeen and David Wood. Frequent pattern compression:
A significance-based compression scheme for L2 caches. Technical re-
port, University of Wisconsin-Madison, 2004.

[22] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard
O’Leary, Roman Genov, and Andreas Moshovos. Bit-pragmatic deep
neural network computing. In MICRO-50, 2017.

[23] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Na-
talie Enright Jerger, and Andreas Moshovos. Cnvlutin: ineffectual-
neuron-free deep neural network computing. In ISCA, 2016.

[24] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer CNN accelerators. In MICRO, 2016.

[25] Angelos Arelakis, Fredrik Dahlgren, and Per Stenström. HyComp: A
Hybrid Cache Compression Method for Selection of Data-type-specific
Compression Methods. In MICRO, 2015.

[26] Angelos Arelakis and Per Stenström. SC2: A Statistical Compression
Cache Scheme. In ISCA, 2014.

158



[27] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee.
Understanding deep neural networks with rectified linear units. In
ICLR, 2018.

[28] Kaushik Balasubramanian Kai Cheng Prashant Damle Sham Datta
Chet Douglas Kenneth Gibson Benjamin Graniello John Grooms
Naga Gurumoorthy Ivan Cuevas Escareno Tiffany Kasanicky Kunal
Khochare Zhiming Li Sreenivas Mandava Rick Mangold Sai Muralid-
hara Shamima Najnin Bill Nale Jay Pickett Shekoufeh Qawami Tuan
Quach Bruce Querbach Camille Raad Andy Rudoff Ryan Saffores Ian
Steiner Muthukumar Swaminathan Shachi Thakkar Vish Viswanathan
Dennis Wu Cheng Xu Asher Altman, Mohamed Arafa. Intel® Op-
tane™ Data Center Persistent Memory. In HotChips, 2019.

[29] Stephane Ayache, Ronan Sicre, and Thierry Artières. Transfer learning
by weighting convolution. In IJCNN, 2020.

[30] Mehmet Aygün, Yusuf Aytar, and Hazým Kemal Ekenel. Exploiting
convolution filter patterns for transfer learning. In ICCVW, 2017.

[31] Seungcheol Baek, Hyung Gyu Lee, Cyrysostomos Nicopoulos, Junghee
Lee, and Jongma Kim. Ecm: Effective capacity maximizer for high-
performance compressed caching. In HPCA, 2013.

[32] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry.
Post-training 4-bit quantization of convolution networks for rapid-
deployment, 2019.

[33] Chaim Baskin, Natan Liss, Eli Schwartz, Evgenii Zheltonozhskii, Raja
Giryes, Alex M Bronstein, and Avi Mendelson. Uniq: Uniform noise
injection for non-uniform quantization of neural networks. TOCS,
2021.

[34] S. Beamer, K. Asanović, and D. Patterson. The GAP benchmark suite.
arXiv:1508.03619, 2015.

[35] Scott Beamer III. Understanding and improving graph algorithm per-
formance. PhD thesis, University of California, Berkeley, 2016.

[36] Yoshua Bengio. Practical recommendations for gradient-based training
of deep architectures. In Neural networks: Tricks of the trade. 2012.

[37] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, 2011.

159



[38] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In PACT, 2008.

[39] J. Bonwick and B. Moore. Zfs: The last word in file systems. 2007.

[40] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and Zili Shao.
Emerging NVM: A Survey on Architectural Integration and Research
Challenges. TODAES, 2017.

[41] Andrew Brock, Soham De, Samuel L Smith, and Karen Simonyan.
High-performance large-scale image recognition without normaliza-
tion. arXiv preprint arXiv:2102.06171, 2021.

[42] Randal Bryant. Data-intensive supercomputing: The case for disc.
2007.

[43] James Bucek, Klaus-Dieter Lange, and J’oakim von Kistowski. SPEC
CPU2017 — Next-generation Compute Benchmark. In ICPE, 2018.

[44] Jeremy Buhler. Efficient large-scale sequence comparison by locality-
sensitive hashing. Bioinformatics, 2001.

[45] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert,
and Charles E. Leiserson. Parallel sparse matrix-vector and matrix-
transpose-vector multiplication using compressed sparse blocks. In
SPAA, 2009.

[46] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han.
Once-for-all: Train one network and specialize it for efficient deploy-
ment. In ICLR, 2020.

[47] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce
activations, not trainable parameters for efficient on-device learning.
In NeurIPS, 2020.

[48] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Ma-
honey, and Kurt Keutzer. ZeroQ: A Novel Zero Shot Quantization
Framework. In CVPR, 2020.

[49] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. Threshold volt-
age distribution in mlc nand flash memory: Characterization, analysis,
and modeling. In DATE, 2013.

160



[50] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal,
Osman S. Unsal, and Ken Mai. Flash correct-and-refresh: Retention-
aware error management for increased flash memory lifetime. In ICCD,
2012.

[51] Daniel Rodrigues Carvalho and André Seznec. Understanding cache
compression. TACO, 2021.

[52] Jingfei Chang, Yang Lu, Ping Xue, Yiqun Xu, and Zhen Wei. ACP:
Automatic Channel Pruning via Clustering and Swarm Intelligence
Optimization for CNN. In ArXiv, 2021.

[53] Moses S. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, 2002.

[54] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning. In ASPLOS,
2014.

[55] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and
Yixin Chen. Compressing neural networks with the hashing trick. In
ICML, 2015.

[56] Xi Chen, Lei Yang, Robert P. Dick, Li Shang, and Haris Lekatsas.
C-Pack: A High-Performance Microprocessor Cache Compression Al-
gorithm. IEEE Transactions on Very Large Scale Integration Systems,
2010.

[57] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Ar-
chitecture for Energy-Efficient Dataflow for Convolutional Neural Net-
works. In ISCA, 2016.

[58] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss
v2: A Flexible Accelerator for Emerging Deep Neural Networks on
Mobile Devices. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 2019.

[59] David Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P.
Stevenson, and Omid Azizi. Hicamp: Architectural support for effi-
cient concurrency-safe shared structured data access. SIGPLAN Not.,
March 2012.

161



[60] Yu-Der Chih, Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee,
Hon-Jarn Lin, Yu-Lin Chen, Chieh-Pu Lo, Meng-Chun Shih, Kuei-
Hung Shen, Harry Chuang, and Tsung-Yung Jonathan Chang. 13.3 a
22nm 32mb embedded stt-mram with 10ns read speed, 1m cycle write
endurance, 10 years retention at 150°c and high immunity to magnetic
field interference. In ISSCC, 2020.

[61] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen
Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. Pact:
Parameterized clipping activation for quantized neural networks. In
ICLR, 2018.

[62] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-
bit quantization of neural networks for efficient inference. In ICCV
workshop, 2019.

[63] Esha Choukse, Mattan Erez, and Alaa Alameldeen. Compresspoints:
An evaluation methodology for compressed memory systems. IEEE
CAL, 2018.

[64] Esha Choukse, Michael B. Sullivan, Mike O’Connor, Mattan Erez, Jeff
Pool, David Nellans, and Stephen W. Keckler. Buddy Compression:
Enabling Larger Memory for Deep Learning and HPC Workloads on
GPUs. In ISCA, 2020.

[65] Ondrej Chum, James Philbin, and Andrew Zisserman. Near duplicate
image detection: min-hash and tf-idf weighting. In BMVC, 2008.

[66] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. JMLR, 2011.

[67] Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain
damage. In David S. Touretzky, editor, NeurIPS, 1990.

[68] J. D. Deaton and A. Bacon. White paper: Smashing big
data costs with gzip hardware. http://www.aha.com/Uploads/

GZIPBenefitsWhitepaper11.pdf, 2015.

[69] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis
Poulos, Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu,
and Andreas Moshovos. Bit-tactical: A software/hardware approach
to exploiting value and bit sparsity in neural networks. In ASPLOS,
2019.

162

http://www.aha.com/Uploads/ GZIP Benefits Whitepaper11.pdf
http://www.aha.com/Uploads/ GZIP Benefits Whitepaper11.pdf


[70] Timothy E. Denehy, Windsor W. Hsu, Timothy E. Denehy, and Wind-
sor W. Hsu. Duplicate management for reference data. In IBM Re-
search Report RJ10305, 2003.

[71] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR. Ieee,
2009.

[72] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and
Rob Fergus. Exploiting linear structure within convolutional networks
for efficient evaluation. In NeurIPS, 2014.

[73] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv preprint
arXiv:1907.04840, 2019.

[74] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
NAACL, 2019.

[75] Qing Dong, Zhehong Wang, Jongyup Lim, Yiqun Zhang, Yi-Chun
Shih, Yu-Der Chih, Jonathan Chang, David Blaauw, and Dennis
Sylvester. A 1mb 28nm stt-mram with 2.8ns read access time at 1.2v
vdd using single-cap offset-cancelled sense amplifier and in-situ self-
write-termination. In ISSCC, 2018.

[76] Julien Dusser, Thomas Piquet, and André Seznec. Zero-content aug-
mented caches. In ICS, 2009.

[77] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaaauw, and Reetuparna Das.
Neural cache: Bit-serial in-cache acceleration of deep neural networks.
ISCA, Jun 2018.

[78] Magnus Ekman and Per Stenström. A Robust Main-Memory Com-
pression Scheme. In ISCA, 2005.

[79] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view
deep learning approach for cross domain user modeling in recommen-
dation systems. In WWW, 2015.

[80] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

163



[81] Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Geor-
gios Georgiadis, and Joseph H Hassoun. Post-training piecewise linear
quantization for deep neural networks. In ECCV, 2020.

[82] Sean Fox, Stephen Tridgell, Craig Jin, and Philip H. W. Leong. Ran-
dom projections for scaling machine learning on FPGAs. In FPT,
2016.

[83] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma
and the sphericity of some graphs. Journal of Combinatorial Theory,
Series B, 1988.

[84] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In ICLR, 2019.

[85] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. Duality cache for
data parallel acceleration. In ISCA, 2019.

[86] Jayesh Gaur, Alaa R. Alameldeen, and Sreenivas Subramoney. Base-
victim compression: An opportunistic cache compression architecture.
In ISCA, 2016.

[87] Georgios Georgiadis. Accelerating convolutional neural networks via
activation map compression. In CVPR, 2019.

[88] Amin Ghasemazar, Mohammad Ewais, Prashant Nair, and Mieszko
Lis. 2DCC: Cache Compression in Two Dimensions. In DATE 2020,
2020.

[89] Mohammad Ghayoumi, Miguel Gomez, Kate E. Baumstein, Narindra
Persaud, and Andrew J. Perlowin. Local Sensitive Hashing (LSH) and
Convolutional Neural Networks (CNNs) for Object Recognition. In
ICMLA, 2018.

[90] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity Search
in High Dimensions via Hashing. In VLDB, 1999.

[91] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS, 2010.

[92] Maximilian Golub, Guy Lemieux, and Mieszko Lis. Full Deep Neural
Network Training on a Pruned Weight Budget. In SysML, 2019.

164



[93] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vi-
jaykumar. SparTen: A Sparse Tensor Accelerator for Convolutional
Neural Networks. In MICRO, 2019.

[94] Jiong Gong, Haihao Shen, Guoming Zhang, Xiaoli Liu, Shane Li,
Ge Jin, Niharika Maheshwari, Evarist Fomenko, and Eden Segal.
Highly efficient 8-bit low precision inference of convolutional neural
networks with intelcaffe. In ReQuEST@ASPLOS, 2018.

[95] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu,
Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differentiable soft quanti-
zation: Bridging full-precision and low-bit neural networks. In CVPR,
2019.

[96] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Com-
pressing deep convolutional networks using vector quantization. arXiv
preprint arXiv:1412.6115, 2014.

[97] Google. Compcache. https://code.google.com/archive/p/

compcache/, 2015.

[98] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis,  Lukasz
Weso lowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaim-
ing He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv:1706.02677, 2017.

[99] Alex Graves and Jüergen Schmidhuber. Framewise phoneme classifi-
cation with bidirectional lstm networks. In IJCNN, 2005.

[100] Denis Gudovskiy, Alec Hodgkinson, and Luca Rigazio. DNN feature
map compression using learned representation over GF (2). In ECCV
Workshops, 2018.

[101] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic Network
Surgery for Efficient DNNs. In NeurIPS, 2016.

[102] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Ta-
jana Rosing, and Rogerio Feris. Spottune: Transfer learning through
adaptive fine-tuning. In CVPR, 2019.

[103] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In PMLR,
2015.

165

https://code.google.com/archive/p/compcache/
https://code.google.com/archive/p/compcache/


[104] E. G. Hallnor and Steven K. Reinhardt. A unified compressed memory
hierarchy. In HPCA, 2005.

[105] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. EIE: efficient inference engine on
compressed deep neural network. In ISCA, 2016.

[106] Song Han, Huizi Mao, and William J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. In ICLR, 2016.

[107] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both
weights and connections for efficient neural networks. In NeurIPS,
2015.

[108] Stephen José Hanson and Lorien Pratt. Advances in neural infor-
mation processing systems 1. chapter Comparing Biases for Minimal
Network Construction with Back-propagation. 1989.

[109] Babak Hassibi and David G Stork. Second order derivatives for net-
work pruning: Optimal brain surgeon. In NeurIPS, 1993.

[110] Babak Hassibi, David G. Stork, and Greg J. Wolff. Optimal brain
surgeon and general network pruning. In ICNN, 1993.

[111] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on Imagenet
classification. In ICCV, 2015.

[112] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[113] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accel-
erating very deep neural networks. In ICCV, 2017.

[114] John L. Henning. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News, September 2006.

[115] Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak,
and J. Choi. A comprehensive overhaul of feature distillation. ICCV,
2019.

[116] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. In NeurIPS, 2014.

166



[117] Bo Hong, Demyn Plantenberg, Darrell D. E. Long, and Miriam Sivan-
Zimet. Duplicate Data Elimination in a SAN File System. In MSST,
2004.

[118] Cheeun Hong, Heewon Kim, Junghun Oh, and Kyoung Mu Lee. DAQ:
Distribution-Aware Quantization for Deep Image Super-Resolution
Networks. arXiv preprint arXiv:2012.11230, 2020.

[119] Seokin Hong, Bulent Abali, Alper Buyuktosunoglu, Michael B. Healy,
and Prashant J. Nair. Touché: Towards ideal and efficient cache com-
pression by mitigating tag area overheads. In MICRO, 2019.

[120] Seokin Hong, Prashant J. Nair, Bulent Abali, Alper Buyuktosunoglu,
Kyu-Hyoun Kim, and Michael Healy. Attaché: Towards ideal mem-
ory compression by mitigating metadata bandwidth overheads. In
MICRO, 2018.

[121] Mark Horowitz. 1.1 computing’s energy problem (and what we can do
about it). In ISSCC, 2014.

[122] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network
trimming: A data-driven neuron pruning approach towards efficient
deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[123] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In CVPR,
2017.

[124] Zehao Huang and Naiyan Wang. Data-driven sparse structure selec-
tion for deep neural networks. In ECCV, 2018.

[125] Itay Hubara, Daniel Soudry, and Ran El Yaniv. Binarized neural
networks. In NeurIPS, 2016.

[126] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 1952.

[127] Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. In STC, 1998.

[128] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate Shift. In
ICML, 2015.

167



[129] Mafijul Md Islam and Per Stenström. Characterization and Exploita-
tion of Narrow-width Loads: The Narrow-width Cache Approach. In
CASES, 2010.

[130] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-
manya R. Dulloor, Jishen Zhao, and Steven Swanson. Basic Per-
formance Measurements of the Intel Optane DC Persistent Memory
Module, 2019.

[131] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In CVPR, 2018.

[132] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding
up convolutional neural networks with low rank expansions. arXiv
preprint arXiv:1405.3866, 2014.

[133] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gen-
nady Pekhimenko. Gist: Efficient data encoding for deep neural net-
work training. In ISCA, 2018.

[134] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer.
High performance cache replacement using re-reference interval pre-
diction (rrip). 2010.

[135] Yifei Jiang, Yi Li, Yiming Sun, Jiaxin Wang, and David P. Woodruff.
Single pass entrywise-transformed low rank approximation. In ICML,
2021.

[136] Yu Jiang. Evaluation of huffman coding in memory compression. Mas-
ter’s thesis, Chalmers University, 2014.

[137] William Johnson and J0rdan Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. CMAP, 1982.

[138] Norman P. Jouppi, Andrew B. Kahng, Naveen Muralimanohar, and
Vaishnav Srinivas. Cacti-io: Cacti with off-chip power-area-timing
models. VLSI, 2015.

[139] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

168



den, Al Borchers, et al. In-Datacenter Performance Analysis of a Ten-
sor Processing Unit. In ISCA, 2017.

[140] Patric Judd, Jorge Albericio, Talor Hetherington, Tor M. Aamodt, and
Andreas Moshovos. Stripes: Bit-serial deep neural network computing.
In MICRO, 2016.

[141] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. Proteus: Exploiting
numerical precision variability in deep neural networks. In ICS, 2016.

[142] Sang Woo Jun, Kermin E Fleming, Michael Adler, and Joel Emer.
Zip-io: Architecture for application-specific compression of big data.
In FPT, 2012.

[143] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. Bit-
plane compression: Transforming data for better compression in many-
core architectures. In ISCA, 2016.

[144] Min Soo Kim, Alberto Antonio Del Barrio Garcia, Hyunjin Kim, and
Nader Bagherzadeh. The effects of approximate multiplication on con-
volutional neural networks. TETC, 2021.

[145] Philip Koopman. Stack Computers: The New Wave. Computers and
their applications. Emily Horwood, 1989.

[146] Raghuraman Krishnamoorthi. Quantizing deep convolutional net-
works for efficient inference: A whitepaper. https://arxiv.org/abs/
1806.08342, 2018.

[147] Krizhevsky, Alex, Sutskever, Ilya, Hinton, and Geoffrey E. Imagenet
classification with deep convolutional neural networks. NeurIPS, 2012.

[148] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Master’s thesis, University of Toronto, 2009.

[149] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. Understanding Reuse,
Performance, and Hardware Cost of DNN Dataflow: A Data-Centric
Approach. In MICRO, 2019.

[150] Alberto Delmás Lascorz, Sayeh Sharify, Isak Edo, Dylan Malone Stu-
art, Omar Mohamed Awad, Patrick Judd, Mostafa Mahmoud, Milos
Nikolic, Kevin Siu, Zissis Poulos, and Andreas Moshovos. Shapeshifter:

169

https://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1806.08342


Enabling fine-grain data width adaptation in deep learning. In MI-
CRO, 2019.

[151] Chris Lattner and Vikram S Adve. Transparent pointer compression
for linked data structures. In MSP, 2005.

[152] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 2015.

[153] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain dam-
age. In NeurIPS, 1990.

[154] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Müller. Efficient backprop. In Neural networks: Tricks of the trade.
2012.

[155] Sungjin Lee, Jihoon Park, Kermin Fleming, Jihong Kim, et al. Im-
proving performance and lifetime of solid-state drives using hardware-
accelerated compression. TOCE, 2011.

[156] Bing Li, Bonan Yan, and Hai Li. An Overview of In-Memory Process-
ing with Emerging Non-Volatile Memory for Data-Intensive Applica-
tions. In GLSVLSI, 2019.

[157] Bowen Li, Kai Huang, Siang Chen, Dongliang Xiong, Haitian Jiang,
and Luc Claesen. DFQF: data free quantization-aware fine-tuning. In
ACML, 2020.

[158] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski.
Measuring the intrinsic dimension of objective landscapes. In ICLR,
2018.

[159] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. Pruning filters for efficient convnets. In ICLR, 2017.

[160] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse ran-
dom projections. In KDD, 2006.

[161] Rundong Li, Yag Wang, Feng Liang, Hongwei Qin, Junjie Yan, and
Rui Fan. Fully quantized network for object detection. In CVPR,
2019.

[162] Fan Liang, Wei Yu, Dou An, Qingyu Yang, Xinwen Fu, and Wei Zhao.
A survey on big data market: Pricing, trading and protection. IEEE
Access, 2018.

170



[163] Wanqi Liu, Hanchen Wang, Ying Zhang, Wei Wang, and Lu Qin.
I-lsh: I/o efficient c-approximate nearest neighbor search in high-
dimensional space. In ICDE, 2019.

[164] Xingchao Liu, Mao Ye, Dengyong Zhou, and Qiang Liu. Post-training
quantization with multiple points: Mixed precision without mixed pre-
cision. In AAAI, 2021.

[165] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, S. Yan, and
Changshui Zhang. Learning efficient convolutional networks through
network slimming. ICCV, 2017.

[166] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level
pruning method for deep neural network compression. In ICCV, 2017.

[167] Mostafa Mahmoud, Isak Edo, Ali Hadi Zadeh, Omar Mohamed Awad,
Gennady Pekhimenko, Jorge Albericio, and Andreas Moshovos. Ten-
sordash: Exploiting sparsity to accelerate deep neural network train-
ing. In MICRO, 2020.

[168] J Mandelman, Robert H. Dennard, Gary Bronner, J.k. DeBrosse,
Rama Divakaruni, Ying Li, and Carol Radens. Challenges and future
directions for the scaling of dynamic random-access memory (dram).
IBM JRD, 2002.

[169] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting
near-duplicates for web crawling. In WWW, 2007.

[170] George Marsaglia. Xorshift rngs. JSS, 2003.

[171] Dominic Masters and Carlo Luschi. Revisiting small batch training
for deep neural networks. arXiv preprint arXiv:1804.07612, 2018.

[172] Hui Miao, Ang Li, Larry Davis, and Amol Deshpande. Towards unified
data and lifecycle management for deep learning. In ICDE, 2017.

[173] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie
Enright Jerger. Doppelgänger: a cache for approximate computing. In
MICRO, 2015.

[174] Maximilian Miller, Chengsheng Zhu, and Yana Bromberg. Clubber:
removing the bioinformatics bottleneck in big data analyses. JIB,
2017.

171



[175] Sparsh Mittal and Jeffrey S. Vetter. Ayush: Extending lifetime of
sram-nvm way-based hybrid caches using wear-leveling. In MAS-
COTS, 2015.

[176] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H
Nguyen, Madeleine Gibescu, and Antonio Liotta. Scalable training of
artificial neural networks with adaptive sparse connectivity inspired
by network science. Nature Communications, 2018.

[177] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource efficient
inference. arXiv preprint arXiv:1611.06440, 2016.

[178] Tomas Möller. A Fast Triangle-Triangle Intersection Test. Journal of
Graphics Tools, 1997.

[179] Hesham Mostafa and Xin Wang. Parameter efficient training of deep
convolutional neural networks by dynamic sparse reparameterization.
In ICML, 2019.

[180] Avilash Mukherjee, Kumar Saurav, Prashant Nair, Sudip Shekhar, and
Mieszko Lis. A Case for Emerging Memories in DNN Accelerators. In
DATE, 2021.

[181] Naveen Muralimanohar, Rajeer Balasubramonian, and Norman
Jouppi. Optimizing NUCA Organizations and Wiring Alternatives
for Large Caches with CACTI 6.0. In MICRO, 2007.

[182] Onur Mutlu. Memory scaling: A systems architecture perspective. In
IMW, 2013.

[183] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos,
and Tijmen Blankevoort. Up or down? adaptive rounding for post-
training quantization. In ICML, 2020.

[184] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max
Welling. Data-free quantization through weight equalization and bias
correction. In ICCV, 2019.

[185] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In ICML. Omnipress, 2010.

[186] Seyyed Mahdi Najmabadi, Zhe Wang, Yousef Baroud, and Sven Si-
mon. Online bandwidth reduction using dynamic partial reconfigura-
tion. In FCCM, 2016.

172



[187] Tri M. Nguyen and David Wentzlaff. Morc: A manycore-oriented com-
pressed cache. In MICRO, New York, NY, USA, 2015. ACM.

[188] Marco S Nobile, Paolo Cazzaniga, Andrea Tangherloni, and Daniela
Besozzi. Graphics processing units in bioinformatics, computational
biology and systems biology. BIB, 2016.

[189] NVIDIA. NVIDIA Deep Learning Accelerator (NVDLA), 2017.

[190] Jia Pan and Dinesh Manocha. Fast gpu-based locality sensitive hash-
ing for k-nearest neighbor computation. In GIS, 2011.

[191] Biswabandan Panda and André Seznec. Dictionary sharing: An effi-
cient cache compression scheme for compressed caches. In MICRO,
2016.

[192] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W Keckler, and Joel Emer. Timeloop: A
Systematic Approach to DNN Accelerator Evaluation. In ISPASS,
2019.

[193] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
Stephen W Keckler, and William J Dally. SCNN: An accelerator for
compressed-sparse convolutional neural networks. In ISCA, 2017.

[194] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware quanti-
zation for training and inference of neural networks. In ECCV, 2018.

[195] Jongsoo Park, Sheng R Li, Wei Wen, Hai Li, Yiran Chen, and Pradeep
Dubey. Holistic sparsecnn: Forging the trident of accuracy, speed, and
size. arXiv preprint arXiv:1608.01409, 2016.

[196] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differentiation in PyTorch. In
NIPS Autodiff Workshop, 2017.

[197] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

173



[198] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry. Exploiting compressed block size as an
indicator of future reuse. In HPCA, 2015.

[199] Gennady Pekhimenko. Practical data compression for modern memory
hierarchies. PhD thesis, 2016.

[200] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A.
Kozuch, Philip B. Gibbons, and Todd C. Mowry. Base-delta-
immediate compression: Practical data compression for on-chip caches.
In PACT, 2012.

[201] Miguel D. Prado, Maurizio Denna, Luca Benini, and Nuria Pazos.
Quenn: Quantization engine for low-power neural networks. ICCF,
2018.

[202] Moinuddin K Qureshi, David Thompson, and Yale N Patt. The v-way
cache: demand-based associativity via global replacement. 2005.

[203] Alec Radford and Karthik Narasimhan. Improving language under-
standing by generative pre-training. 2018.

[204] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In ECCV, 2016.

[205] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W. Keckler. VDNN: Virtualized Deep Neural Networks for
Scalable, Memory-Efficient Neural Network Design. In MICRO, 2016.

[206] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, and
S. Keckler. Compressing dma engine: Leveraging activation sparsity
for training deep neural networks. In HPCA, 2018.

[207] Jordan Dotzel Christopher De Sa Zhiru Zhang Ritchie Zhao,
Yuwei Hu. Improving neural network quantization without retrain-
ing using outlier channel splitting. In ICML, 2019.

[208] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree
filesystem. TOS, 2013.

[209] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. IJCV, 2015.

174



[210] R. Russon and Y. Fledel. Ntfs documentation.

[211] Joshua San Miguel, J. Albericio, Natalie Enright Jerger, and A. Jaleel.
The Bunker Cache for spatio-value approximation. In MICRO, 2016.

[212] Joshua San Miguel, M. Badr, and Natalie Enright Jerger. Load Value
Approximation. In MICRO, 2014.

[213] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate
Microarchitectural Simulation of Thousand-core Systems. In ISCA,
2013.

[214] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankar-
alingam. Implementing Signatures for Transactional Memory. In MI-
CRO, 2007.

[215] Gurtej S. Sandhu. Emerging memories technology landscape. In
NVMTS, 2013.

[216] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

[217] Guid Sandre, Luca Bettini, Alessandro Pirola, Lionel Marmonier,
Marco Pasotti, Massimo Borghi, Paolo Mattavelli, Paola Zuliani,
Luca Scotti, Gianfranco Mastracchio, Ferdinando Bedeschi, Roberto
Gastaldi, and Roberto Bez. A 90nm 4mb embedded phase-change
memory with 1.2v 12ns read access time and 1mb/s write throughput.
2010.

[218] Somayeh Sardashti, Andra Seznec, and David A. Wood. Skewed com-
pressed caches. In MICRO, 2014.

[219] Somayeh Sardashti, Andre Seznec, and David A. Wood. Yet another
compressed cache: A low-cost yet effective compressed cache. TACO,
2016.

[220] Somayeh Sardashti and David A. Wood. Decoupled Compressed
Cache: Exploiting Spatial Locality for Energy-optimized Compressed
Caching. In MICRO, 2013.

[221] Somayeh Sardashti and David A. Wood. Decoupled compressed cache:
Exploiting spatial locality for energy optimization. MICRO (top
picks), 2014.

175



[222] Anubhav Savant and Torsten Suel. Server-Friendly Delta Compression
for Efficient Web Access. Kluwer Academic Publishers, 2004.

[223] Yiannakis Sazeides and James E. Smith. The predictability of data
values. In MICRO, 1997.

[224] Anil Shanbhag, Nesime Tatbul, David Cohen, and Samuel Madden.
Large-scale in-memory analytics on intel® optane™ dc persistent
memory. In DaMon, 2020.

[225] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos
Nikolic, Kevin Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas
Moshovos. Laconic deep learning inference acceleration. In ISCA,
2019.

[226] Yongming Shen, Michael Ferdman, and Peter Milder. Overcoming
resource underutilization in spatial CNN accelerators. In FPL, 2016.

[227] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing
CNN accelerator efficiency through resource partitioning. In ISCA,
2017.

[228] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically Characterizing Large Scale Program Behavior. In AS-
PLOS, 2002.

[229] Zekun Ni Xinyu Zhou He Wen Yuheng Zou Shuchang Zhou, Yuxin Wu.
Dorefa-net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. In ArXiv, 2016.

[230] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[231] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. Pageforge:
A near-memory content-aware page-merging architecture. In MICRO,
2017.

[232] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczyn-
ski, Jian Zhang, and Christopher Ré. Low-memory neural network
training: A technical report. arXiv preprint arXiv:1904.10631, 2019.

[233] Ryan Spring and Anshumali Shrivastava. Scalable and sustainable
deep learning via randomized hashing. In KDD, 2017.

176



[234] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approxima-
tions. In ICML, 2003.

[235] Suraj Srinivas and R. Venkatesh Babu. Data-free parameter pruning
for deep neural networks. In BMC. British Machine Vision Associa-
tion, 2015.

[236] James E. Stine, Jun Chen, Ivan Castellanos, Gopal Sundararajan, Mo-
hammad Qayam, Praveen Kumar, Justin Remington, and Sohum So-
honi. FreePDK v2.0: Transitioning VLSI education towards nanometer
variation-aware designs. In MSE, 2009.

[237] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu.
Redundant loads: A software inefficiency indicator. In ICSE, 2019.

[238] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty,
Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-
optimized OpenCL-based FPGA accelerator for large-scale convolu-
tional neural networks. In FPGA, 2016.

[239] Torsten Suel. Delta Compression Techniques.

[240] Tony Summers. Hardware compression in storage and network at-
tached storage. SNIA tutorial, Spring, 2007.

[241] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V. Le. Mnasnet: Platform-aware
neural architecture search for mobile. In CVPR, 2019.

[242] Yingying Tian, Samira M. Khan, Daniel A. Jiménez, and Gabriel H.
Loh. Last-level Cache Deduplication. In ICS, 2014.

[243] Po-An Tsai and Daniel Sanchez. Compress Objects, Not Cache Lines:
An Object-Based Compressed Memory Hierarchy. In ASPLOS, 2019.

[244] Yannis Tsividis. Mixed Analog–Digital VLSI Devices and Technology.
WORLD SCIENTIFIC, 2002.

[245] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the
speed of neural networks on cpus. In NeurIPS, 2011.

[246] Jeffrey S. Vetter and Sparsh Mittal. Opportunities for Nonvolatile
Memory Systems in Extreme-Scale High-Performance Computing.
CSE, 2015.

177



[247] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes.
J. ACM, 1987.

[248] Lidong Wang and Cheryl Alexander. Machine learning in big data.
IJMEMS, 2016.

[249] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Neurips,
2016.

[250] Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The Case
for Compressed Caching in Virtual Memory Systems. In USENIX
ATC, 1999.

[251] David P. Woodruff. Low rank approximation lower bounds in row-
update streams. In NeurIPS, 2014.

[252] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret
Martonosi, Simon C Steely Jr, and Joel Emer. SHiP: Signature-based
hit predictor for high performance caching. In MICRO, 2011.

[253] Di Wu, Qi Tang, Yongle Zhao, Ming Zhang, Ying Fu, and Debing
Zhang. EasyQuant: Post-training Quantization via Scale Optimiza-
tion. arXiv preprint arXiv:2006.16669, 2020.

[254] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
Quantized convolutional neural networks for mobile devices. In CVPR,
2016.

[255] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veer-
araghavan, and Yingyan Lin. Deep k-means: Re-training and parame-
ter sharing with harder cluster assignments for compressing deep con-
volutions. In ICML, 2018.

[256] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy: An
architecture-level energy estimation methodology for accelerator de-
signs. In ICCAD, 2019.

[257] Wm A Wulf and Sally A McKee. Hitting the memory wall: Impli-
cations of the obvious. ACM SIGARCH computer architecture news,
1995.

[258] Wei Pan Xiaofan Lin, Cong Zhao. Towards accurate binary convolu-
tional neural network. In NeurIPS, 2017.

178



[259] Dingqing Yang, Amin Ghasemazar, Xiaowei Ren, Maximilian Golub,
Guy Lemieux, and Mieszko Lis. Procrustes: a dataflow and accelerator
for sparse deep neural network training. In MICRO. IEEE, 2020.

[260] Jun Yang, Youtao Zhang, and R. Gupta. Frequent value compression
in data caches. In MICRO, 2000.

[261] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware pruning.
In CVPR, 2017.

[262] Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak, Qiaoyi Liu,
Steven Emberton Bell, Jeff Ou Setter, Kaidi Cao, Heonjae Ha, Christos
Kozyrakis, et al. DNN Dataflow Choice Is Overrated. arXiv preprint
arXiv:1809.04070, 2018.

[263] Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pej-
man Lotfi-Kamran. AxBench: A Multiplatform Benchmark Suite for
Approximate Computing. IEEE Design Test, 2017.

[264] Reza Yazdani, Marc Riera, Jose-Maria Arnau, and Antonio González.
The Dark Side of DNN Pruning. In ISCA, 2018.

[265] Anis Yazidi and Hugo Hammer. Multiplicative update methods for
incremental quantile estimation. IEEE Transactions on Cybernetics,
2017.

[266] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the
smaller-norm-less-informative assumption in channel pruning of con-
volution layers. ICLR, 2018.

[267] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng
Li, Zihao Liu, Zhangyang Wang, and Yingyan Lin. Shiftaddnet: A
hardware-inspired deep network, 2020.

[268] Vinson Young, Sanjay Kariyappa, and Moinuddin K. Qureshi. En-
abling transparent memory-compression for commodity memory sys-
tems. In HPCA, 2019.

[269] Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. DICE:
Compressing DRAM Caches for Bandwidth and Capacity. In ISCA,
2017.

179



[270] Shimeng Yu and Pai-Yu Chen. Emerging memory technologies: Recent
trends and prospects. ISSCM, 2016.

[271] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On com-
pressing deep models by low rank and sparse decomposition. In CVPR,
2017.

[272] Sergey Zagoruyko. Torch | 92.45% on CIFAR-10 in Torch, 2015.

[273] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In
BMVC, 2016.

[274] Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Doubly
convolutional neural networks. In NeurIPS, 2016.

[275] Can Zhang, Yaming Xu, Hongliang Wang, Wei Liu, Qi Mu, and Wei
Guo. An offloading architecture of lossless compression based on smart
nic. In ICCEIC, 2020.

[276] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing FPGA-based accelerator design for deep con-
volutional neural networks. In FPGA, 2015.

[277] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui
Zhang. In-memory big data management and processing: A survey.
IEEE Transactions on Knowledge and Data Engineering, 2015.

[278] Jiaqi Zhang, Xiangru Chen, Mingcong Song, and Tao Li. Eager prun-
ing: algorithm and architecture support for fast training of deep neural
networks. In ISCA, 2019.

[279] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-X: An accelerator
for sparse neural networks. In MICRO, 2016.

[280] Tianyun Zhang, Shaokai Ye, Yipeng Zhang, Yanzhi Wang, and Makan
Fardad. Systematic Weight Pruning of DNNs using Alternating Di-
rection Method of Multipliers. In ICLR, 2018.

[281] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:
An extremely efficient convolutional neural network for mobile devices.
In CVPR, 2018.

180



[282] Xuebin Zhang, Jiangpeng Li, Hao Wang, Danni Xiong, Jerry Qu,
Hyunsuk Shin, Jung Pill Kim, and Tong Zhang. Realizing transparent
os/apps compression in mobile devices at zero latency overhead. TC,
2017.

[283] Jie Zheng and Jun Luo. A PG-LSH Similarity Search Method for
Cloud Storage. In CIS, 2013.

[284] Hao Zhou, Jose M. Alvarez, editor=”Leibe Bastian Porikli, Fatih”, Jiri
Matas, Nicu Sebe, and Max Welling. Less Is More: Towards Compact
CNNs. In ECCV, 2016.

[285] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 1977.

[286] J. Ziv and A. Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 1978.

[287] Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik.
Neural network distiller: A python package for DNN compression re-
search. arXiv preprint arXiv:1910.12232, 2019.

[288] Aviad Zuck, Sivan Toledo, Dmitry Sotnikov, and Danny Harnik. Com-
pression and SSDs: Where and how? In INFLOW, 2014.

181


	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Acknowledgements
	Dedication
	Introduction
	Computing Trends and Storage Requirements
	Challenges
	Thesis Statement
	Contributions
	Organization

	Background
	Computing Systems
	Multi-level Memory Hierarchy

	Data Compression
	Lossless Data Compression
	Lossy Data Compression

	Hardware-Based Data Compression
	Opportunities
	Software or Hardware Implementation
	Challenges of Hardware Implementation
	Inefficiencies of Using Traditional Methods

	Hardware-Based On-Chip Memory Compression
	Compression in Caches
	Compression in Scratchpads
	Addressing the Limitations of Prior Methods


	Leveraging Redundancy Within and Across Blocks
	Beyond Single Type of Redundancy
	Architecture and Operation
	Cache Architecture
	Cache Operation
	Walk-through Example
	Replacement Policies

	Methodology
	Evaluation Results
	Effectiveness of 2D compression.
	Compression Analysis
	Miss Rates Analysis
	Cost Analysis
	Speedup Analysis

	Reducing Redundancy with Approximation
	Approximate Value Locality In Caches
	Decoupling Compression and Approximation
	Methodology
	Evaluation Results

	Summary

	Reducing Data Redundancy via Dynamic Clustering
	Near-Exact Data Redundancy
	Capturing Near Exact Data
	The Opportunity for In-Cache Clustering
	Dynamic Clustering
	Locality-Sensitive Hashing (LSH)
	Using LSH for Clustering and Compression
	Hardware-Efficient LSH

	Cache Architecture and Operation
	Compression Format
	Cache Structures
	Cache Operation
	Walk-through Examples

	Methodology
	Evaluation Results
	Compression Analysis
	Miss Rates Analysis
	Speedup Analysis
	Cost Analysis
	Clustering Analysis
	Threats to Validity

	Summary

	Dynamic Clustering of Layer Activations in DNNs
	Deep Neural Networks
	Existing Compression Techniques
	Drawbacks of Existing Techniques
	Channeleon Key Insights

	The Opportunity for Channel Clustering
	Compressing Activation Tensors

	Quantization Methods
	Uniform Quantization
	Non-Uniform Quantization

	Dynamic Clustering
	Dynamic Channel Grouping
	Non-Uniform Quantization
	Channeleon in the Inference Process

	Methodology
	Evaluation Results
	Ablation Study
	Classification Results
	Memory footprint analysis

	Summary

	Sparse Training Accelerator
	DNN training
	Potential Savings of Sparse-From-Scratch
	Sparse Training Considerations
	Sources of Sparsity
	Mappings, Dataflows, and Load Balancing
	Sparse Weight Representation
	Sparse Training Algorithms

	Sparse Training Algorithms in Hardware
	Creating Computation Sparsity
	Choosing Which Weights to Keep

	Dataflow and Sparse Data Format
	Storage and Sparsity During Training
	Compressed Sparse Weight Representation
	Load Balancing and Dataflow

	Architecture
	Methodology
	Pruning Ratios and Accuracy
	Energy Savings and Speedup
	Mapping and Dataflow Choice

	Evaluation Results
	Scalability
	Silicon Area Overheads
	Generality

	Summary

	Related Work
	Cache Compression
	Inter-Block Data Compression
	Intra-Block Data Compression
	Non-Block-Granularity Compression
	Replacement Policies With Compression

	DNN Compression
	Weight Compression
	Activation Map Compression

	AI Hardware Accelerators

	Discussion and Future Work
	Conclusions
	Future Research Directions
	A Unified and Dynamic Compressed Cache
	Compressing Across All Levels of the Memory Hierarchy
	Compressed Compute Caches
	Activation Map Compression in Training
	Compression-Aware Regularization


	Bibliography

