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Abstract

This dissertation is a collection of three essays that studies decision-making under uncer-

tainty in a crisis context.

The first essay examines the rational behavior of decision-making authority in providing

water to a municipality facing drought. The forward-looking decision-making authority

optimally chooses the size and time of building a desalination plant. The essay formulates

the question as a dynamic programming problem with uncertainty in rainfall. By solving

the problem numerically, the essay studies the behavior of the model through simulation.

The correlation patterns produced by the simulations from the model are consistent with

the correlation patterns observed in real-world data.

The second essay examines the interactions of three different green innovations to com-

bat climate change. It revisits Jevons’ paradox, which states that if demand is sufficiently

elastic, an improvement in the fuel efficiency (FE) increases the flow of fuel consumption

and, in the modern context of climate change, the flow of carbon emissions. An improve-

ment in fuel efficiency also increases the stock of total carbon emissions. However, with

carbon capture and storage (CCS), the effect on the total carbon emissions stock depends

on the time pattern of emissions. Strong enough innovation in CCS reverses the para-

doxical impact of FE. A similar (but reversed) logic holds for innovation in clean energy

(CE) backstops. CE innovations reduce the stock of total carbon emissions. However,

the improving CCS technology reduces the benefits of clean energy innovation, and strong
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Abstract

enough, CCS reverses their beneficial impact.

The third essay examines the interaction of re-election pressure and asymmetric in-

formation in politicians’ decision-making. Politicians and voters update their beliefs in a

Bayesian way. Politicians have asymmetric information and seek re-election. The closer

the election, the more the incumbent politicians refrain from implementing the welfare-

maximizing policy and deviate towards their voting base’s bias. The theoretical model’s

implications are tested with a dataset on gubernatorial decisions during the national Covid-

19 crisis. A difference-in-difference empirical strategy shows that the governors who had an

upcoming election in 2020 were biased towards their base. The Democrat and Republican

governors who did not face a forthcoming election behaved statistically similar to each

other.
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Lay Summary

This thesis aims to provide a framework to improve our understanding of crisis management

and decision-making under uncertainty. To achieve this goal, I studied three different crises

and relevant decisions around those crises.

The first essay concerns local droughts and the decision of cities to install some water

desalination capacity to combat drought. In the second essay, I studied the role of innova-

tion in the fight against the global warming crisis. The last essay concerns the 2020 covid

pandemic and the decisions of politicians to close down economic activity.

The contribution was to model different aspects of crisis decision-making and show

the implications of uncertainty in different situations. It is possible to use some of the

frameworks developed in this paper to study the behavior of decision-makers and measure

the quality of their decisions.
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Preface

Chapters two and four of this dissertation are my original independent work. Chapter

three is joint work with one of my advisers, Professor Ralph A. Winter of the UBC Sauder

School of Business. In this chapter, we collaborated on developing the propositions and

their proofs. Part of this chapter is published as Siami, Winter (2021) in the journal

Economics Letters under the title of “Jevons’ paradox revisited: Implications for climate

change.”
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Chapter 1

Introduction

This thesis is a collection of three essays that study decision-making under uncertainty in

the context of a crisis. The first essay studies the dynamic decisions of municipal author-

ities to provide desalination plants to combat drought. In this essay, I try to answer this

question, “What is the optimal time to build a desalination plant, and what is its optimal

capacity when there is uncertainty in rainfall?” and test whether the behavior of munici-

palities matches the optimal predicted behavior. The second essay studies interactions of

different exogenous green innovations and how they affect the long-term cumulative green-

house gasses in the biosphere and combat climate change. In this essay, my coauthor and I

try to answer this question,“In the absence of the first-best policy of emission pricing, how

does green innovation affect the total cumulative emission?” and shed light on the optimal

second-best policies. The third essay studies the decisions of gubernatorial authorities to

limit economic activities to combat the pandemic. In this essay, I address this questions,

“How does the ballot box pressure affect the decisions of the politicians to limit economic

activity” and find out “how the interaction of uncertainty and ballot box pressure can

deviate politicians from implementing the welfare-maximizing policy.”

The first essay examines the rational and forward-looking behavior of benevolent decision-

making authority. The decision maker solves a dynamic programming problem with un-

certainty in rainfall to optimally choose the size and time of building a desalination plant.

We can observe correlation patterns between the model parameters and the time and size
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Chapter 1. Introduction

of building a plant through simulation of multiple scenarios. I test these patterns against

the real-world data and show that they are consistent.

The second essay examines the effect of different green innovations and how they inter-

act as a portfolio. Without correct carbon pricing, innovations are the second-best policies

to fight the adverse effects of climate change. Economists have been aware of unintended

consequences and paradoxical effects of green innovations, at least since Jevons. Jevons

paradox states that if demand is sufficiently elastic, an improvement in the fuel efficiency

(FE) of internal combustion engines increases fuel consumption flow and, in the modern

context of climate change, raises the flow of carbon emissions. This paper revisits Jevons’

paradox and show that an improvement in fuel efficiency increases the stock of total car-

bon emissions. However, if carbon capture and storage (CCS) is operating, the effect on

the total carbon emissions stock depends on the time pattern of emissions. With strong

enough innovation in CCS, the paradoxical impact of ICE efficiency is reversed. A similar

(but reversed) logic holds for innovation in clean energy backstops. Clean energy innova-

tions reduce the stock of total carbon emissions on their own. However, an improving CCS

technology reduces the benefits of clean energy innovation, and when strong enough, CCS

can reverse their beneficial impact.

The third essay examines the interaction of re-election pressure and asymmetric infor-

mation in decision-making under uncertainty by politicians. Politicians and voters form

their beliefs and update their information in a Bayesian way. Politicians have asymmet-

ric information and seek re-election. This paper shows that given exogenous information

structure, election timing interacts with the decision quality of the politicians. The closer

the election, the more the incumbent politicians refrain from implementing the welfare-

maximizing policy and deviate toward their voting base’s bias. Moreover, endogenizing

the politicians’ information gathering leads to a higher level of information asymmetry
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between the politicians and voters. The theoretical model’s implications are tested with

a dataset on gubernatorial decisions during the national Covid-19 crisis. A difference-in-

differences empirical strategy shows that the governors who had an upcoming election in

2020 were biased towards their base. The Democrat and Republican governors who did

not face a forthcoming election behaved similar to each other statistically.

Economists use uncertainty to describe a situation where an agent, a player, or a

decision-maker has imperfect information relevant to their decision-making objective. The

source of uncertainty may be natural (as in the realization of next month’s rainfall or

realization of global warming), or it could be about other agents’ beliefs and actions. This

thesis studies both of these situations.

Another distinguishing dimension between different uncertainty classes is whether the

uncertainty is quantifiable (risk) or non-quantifiable (Knightian). On one end of this spec-

trum lies the perfectly quantifiable uncertainty, where all possible outcomes and the prob-

ability of each realization are perfectly known beforehand (like rolling a dice). On the

other end of this spectrum is the idea of a fundamental degree of ignorance, a limit to

knowledge, and an essential unpredictability of future events. I used the term Uncertainty

in this thesis to refer to a quantifiable degree of imperfect knowledge.

In the first essay, the primary source of uncertainty is the unpredictability of rainfall,

and I assume that the decision-maker knows the distribution of rainfall. In the second

essay, uncertainty comes from the fact that innovation is not predictable. Although I

model innovation with a Poisson process of a known magnitude that reduces the price

of an input, the results are more general and do not depend on this quantification for

expositional purposes. In the final essay, the source of uncertainty is how events unfold,

and people’s beliefs evolve about specified actions. The underlying model is a Poisson

process of known characteristics, but the results are more general like the second essay.

3



Chapter 1. Introduction

The results will hold if people’s beliefs converge to the truth over time.

In this essay, the crisis is used to describe a situation where the public and decision-

makers believe that inaction (or status quo) leads to severe difficulty for the public with

a relatively high probability. These challenging situations give unique opportunities to

study the public decision-making process. The decision-makers are under pressure to make

decisions without having all the necessary information. Since the stakes are perceived to

be high, we expect decision-makers to pay much attention to these decisions. Moreover, a

crisis occurs in a time of heightened uncertainty, making it much more essential to study

crisis management under uncertainty.

In the first essay, a city faces a drought crisis, and the planners have to decide whether

or not to build a desalination plant to combat that risk. The second paper concerns the

climate change crisis and how innovation affects the long-run climate outcome. The final

essay concerns the Covid crisis and the political decisions to contain the virus spread.

All three chapters tackle the same fundamental question of crisis management under un-

certainty, though the methodologies vary widely. Although the science of decision-making

is at least as old as the ancient Greeks, the application of various mathematical and com-

putational tools to everyday decision-making is relatively young, and the field suffers from

a lack of consensus among its practitioners. One group of practitioners, mainly compu-

tational economists and rational expectation theorists, emphasize the role of probabilistic

rational dynamic models to explain the optimal behavior of decision makers directly. With

the recent progress in computation power and the computational tools developed around it,

more scientists are attracted to this camp of thinking about decision-making under uncer-

tainty. The first essay of this thesis is primarily in line with the concerns and standards of

this field—the first model detailed aspects of the decision-making problem at hand. Then

try I solve the model that resembles reality as much as the computational power allows
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Chapter 1. Introduction

and compare the model’s predictions with what is observed in the real world to see if there

is a good match between the models and reality.

Another group of practitioners, mainly empirical economists and applied theorists, be-

lieve that many real-world limitations play an essential role in decision-making. Therefore,

an indirect approach to the problem is necessary. For example, in many cases, even though

the first best solution is clear, it is impossible to be implemented due to complex political

and psychological biases. The second essay is in line with this style of thinking. In this

essay, we assume the first-best policy (carbon pricing) cannot be implemented without

analyzing the underlying political reasons. Therefore, instead of studying the dynamics of

the interaction between the environment, economy, and decision makers, we focus on one

measure of environmental variables (cumulative emissions in the biosphere) and study the

effect of one set of economic variables (an innovation portfolio). There is ample scientific

evidence that cumulative emissions are a good predictor of the long-term effect of climate

change, and in this paper, our focus is on long-term decision-making under uncertainty.

The third group of practitioners, primarily political economists and industrial orga-

nization theorists, focuses on the incentives of the decision maker and aims to model a

specific behavior of a decision maker, rather than to assume that the decision maker is

benevolent or it actually solves the problem we expect a benevolent decision maker to

solve. The third essay is in line with this kind of thinking. Politicians, who are supposed

to act quickly in an uncertain environment of international crisis (e.g., pandemic), look at

their electoral incentives and makes decisions that maximize their chance of re-election,

rather than maximizing social welfare.

These three essays tackle the problem of decision-making by finding an optimal solution

in a simplified world. For the sake of completeness, I must add that in contrast to these

ways of thinking, there is also a fourth group of practitioners, primarily behavioral and

5
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experimental economists, who put an emphasis on the limitations of human rationality.

They study psychological biases, heuristics, and actual behaviors of decision makers to

make a satisfactory decision in a more realistic and complex world. In this thesis, I do not

study this important approach to decision-making.
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Chapter 2

Markovian rainfall and

Desalination Demand

2.1 Introduction

Water shortages have caused significant problems throughout history. At present, many

cities struggle with water supply problems, especially in areas where droughts are common.

Desalination, the technology that turns saltwater into freshwater, has become an important

tool for ensuring adequate water supplies. As of 2019, more than 300 million people relied

on desalination for some or all of their daily water needs.

However, desalination plants are costly to build and costly to operate. Therefore,

building or expanding desalination capacity is an important and difficult decision for many

political jurisdictions, especially because criticism of such decisions is commonplace. Some-

times current desalination capacity is insufficient to meet current municipal needs, and yet

sometimes, costly excess capacity is left unused. One source of difficulty in making decisions

is the underlying randomness of rainfall patterns. Merely observing ex post insufficient or

excess desalination capacity does not necessarily mean that one has made poor decisions.

Studying decision-making with rainfall uncertainty is the focus of this paper.

The main research question is whether the observed decisions are consistent with a

rational expectation model of rainfall. First, I develop a model for how a rational decision
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maker provides desalination capacity optimally. Then I ask whether the actual records of

desalination capacity construction are consistent with the model.

The decision to build some capacity depends on how this capacity will be used. There-

fore, both aspects of building and operating the desalination plant are explicitly present

in the dynamic model. The model is a dynamic programming problem with uncertainty

in rainfall with numerous state and control variables. I solve the model numerically for

given parameter values to obtain the capacity trajectory. Simulating the model for differ-

ent parameter values and different realizations of the uncertainty provides the comparative

dynamics needed to characterize the model numerically.

Then I compare the dynamics obtained from simulation with the dynamics observed in

real-world desalination construction decisions. The time-series data consist of all the munic-

ipal desalination capacity built worldwide, the historical rainfall, temperature, population,

and average GDP for more than 60 years. This comparison implicitly tests whether actual

desalination decisions can reasonably match the outcome of a rational decision-making

process.

The correlation dynamics produced by the model are consistent with the actual data

on construction decisions. For example, one interesting property of the model is that the

cities with higher variation in their rainfall patterns would, other things held equal, build

more desalination capacity. A similar correlation is present in the data. Desalination works

as an insurance instrument against probable unfavorable rainfall outcomes.

This analysis is consistent with the hypothesis that decision makers are, on average,

approximating optimal decision rules. However, one advantage of explicit modeling of

rational decision-making is that it can be expanded and used as a decision-making tool.

The model is flexible enough to incorporate the data on the actual usage of the plant.

Section 2.2 contains a brief review of the related literature; section 2.3 summarizes the
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data, section 2.4 studies the theoretical model. Section 2.5 tests the theoretical model, and

section 2.6 concludes.

2.2 Literature Review

This paper combines two aspects of inventory management and investment under uncer-

tainty in the context of water provision with desalination. These aspects are unified in

a single dynamic programming equation that takes short-run and long-run trade-offs into

account. Therefore, the current paper is related to a broader literature in inventory man-

agement (e.g., Gustafson (1958), Samuelson (1971) , Scheinkman, Schechtman (1983), and

Asche et al. (2015)) and investment under uncertainty which was pioneered by Lucas,

Prescott (1971), Kydland, Prescott (1977), and Kydland et al. (1982).

The first application of dynamic programming to water management dates back to

the works of Burt (1964), who studied the optimal allocation of groundwater. Tsur et al.

(1991) improved on Burt’s work and showed the value of groundwater as an insurance

option (or, as they call it, a buffer) to surface water supplies. Truong (2012) studied the

effects of water storage capacity on the agricultural sector.Xie, Zilberman (2018) showed

the substitutability and complementarity patterns of water storage capacity and water use

efficiency. This paper is the first to apply dynamic programming to water management

with the option to build a desalination plant.

The literature on desalination plants has recognized the importance of desalination

plants as an insurance strategy to mitigate the risk of drought (e.g., Schoengold, Zilberman

(2007), Bensoussan, Farhi (2010), Clarke (2014)). Scholars have also studied factors that

affect desalination demand (Ghaffour (2009), Ghaffour et al. (2013) , and Amy et al.

(2017) and how to prepare for future capacity building (?. But a quantitative analysis of

desalination as an insurance policy is missing from the literature.
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This paper contributes to this literature by highlighting the role of uncertainties in-

troduced by rainfall patterns and the trade-offs that municipalities face in their optimal

choice. Here, I develop a framework for studying the optimal timing of construction and

optimal size of desalination plants.

Many economists used dynamic programming problems with continuous decision vari-

ables and inequality constraints to model optimal timing problems (e.g.,Deaton (1991)).

The standard way to deal with inequality constraints is to discretize the choice space to

rule out any violation of the inequality constraint by design. This discretization increases

the dimension of the state space, so it suffers from the curse of dimensionality.

Rendahl (2015) proposed the method of time iteration. This is a faster method based

on the corresponding problem’s Euler equation. This method is faster than traditional

value function iteration methods when we need to discretize a continuous state space. In

this paper, I implement the time-iteration algorithm to solve the dynamic programming

model.

It is necessary to clarify the relationship between this work and relatively well-developed

literature on dynamic choice models because this literature empirically studies dynamic

decision making under uncertainty. The famous bus engine replacement model by Rust

(1987) is suitable for comparing this literature and the current work. Rust estimated a

dynamic discrete choice model by solving a fixed-point problem for every iteration of the

estimation procedure because, for every iteration, a fixed-point problem has to be solved;

his method suffers from the curse of dimensionality (meaning that the state space grows

exponentially as the number of state variables increase).

Hotz, Miller (1993), Ai, Chen (2003), and Su, Judd (2012) allow the econometricians

to sidestep one aspect of the curse of dimensionality. They directly estimated the value

functions and inferred the model’s parameters from the estimated value functions without
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the need to calculate a fixed-point problem on each iteration.

The current work contributes to understanding dynamic models in two ways. First,

rather than estimating the parameters (or a family of non-parametric functions) of an

underlying dynamic model, in this paper, I test whether or not the dynamics produced

by the model match with the real-world data. Second, these models are data intensive.

Multiple observations of each decision maker are necessary to estimate the underlying

model. With the proposed simulation approach in this paper, there is not need to estimate

each agent’s behavior explicitly. Instead, I compare the collective patterns produced by

the model’s simulation and what is observed in the real-world data.

2.3 Data

The information on desalination plants is from the DesalData.com. This database has

comprehensive information on all desalination plants built all around the globe. The ge-

olocation of each plant, the building date, and information such as capacity, technology,

and construction prices are variables of interest. There were 19,232 plants in the data as

of March of 2017. I selected 3,262 plants in municipalities with a population of more than

300,000 in January 2017. This criterion narrows down the focus of this paper to municipal

demand for desalination plants.

The data on the cities’ population are from the population division of the United

Nations. This dataset consists of information on the population of cities with a current

population larger than 300,000. The geolocation of these cities is used to match each

desalination plant with the corresponding city. A match happens if a desalination plant is

within 100km of the city’s centroid. If a desalination plant is within the boundaries of two

cities, the closest city is chosen.
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Table 2.1: Descriptive Statistics

Variable Min. Median Mean Max.

Capacity 1 1000 14388 880000

Nominal Prices 3.500e+04 1.170e+06 3.164e+07 1.800e+09

Population(/1000) 0.0 668.5 2064.6 35861.0

Average Rainfall 4.39 309.15 620.07 3452.37

Average Temperature 3.118 23.194 21.330 29.168

GDP per Capita 168 16094 20333 88565

-

The data on rainfall are from the U.S. Department of Commerce—National Oceanic

and Atmospheric Administration website. The data used in this paper are monthly average

rainfall from 1900 onward on a 1
◦

by 1
◦

grid. Each city is matched to its closet grid. The

monthly rainfall levels are summed up to provide the annual rainfall for each city. Long-

term average rainfall (mean rainfall from 1900 to the present), the long-term standard

deviation of rainfall, and each year’s rainfall average are calculated and used in the analysis.

The data on temperature are from CRUTEM (Berkeley). The resolution of the data

is similar to the rainfall data, and all the relevant variables are similarly calculated. The

GDP per capita and populations are from World Development Indicators of the World

Bank. I calculated the year-to-year GDP per capita from this source.
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2.4 Demand

The theoretical framework for modeling desalination is a time-discrete dynamic program-

ming problem. A benevolent central planning authority wants to provide water to a city.

The planning authority faces a trade-off between two types of losses, population dissatis-

faction, and monetary costs.

If it does not provide enough water, the population gets dissatisfied, and that incurs

a loss. However, there are long-term and short-term costs associated with building and

running the plant, respectively. In the long-term, the planning authority chooses how much

desalination capacity to build. In the short run, it has to decide how much of the installed

capacity to use.

There are three main mechanisms that derive the investment behavior and usage rate

of the model: the trade-offs between utilizing the plant and not providing enough water,

the trade-off between building the plant (and incurring a cost) now and running the risk

of not having enough water, and the interaction of these trade-offs.

The first trade-off is easy to understand if we assume the city’s optimal water need is

constant and it has built all of its required desalination plants or cannot build any. In both

situations, the planner acts similar to an agent that wants to smoothen its consumption

over time. In the first case, if the planner’s constraints bind, they will provide enough

water such that the marginal utility of providing water in each period equals the marginal

cost of providing desalinated water. In the second case, the planner acts like a consumer

who maximizes its consumption utility intertemporally when its income is uncertain.

The second trade-off is easy to understand if we assume that the planner has to either

provide a fixed amount of water to the municipality (if it has the water) and zero otherwise.

This planner will not build a plant if there is enough water to provide next year no matter

what the realization of rainfall is and would always build a plant if it does not have enough
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water to provide again no matter what the realization of rainfall. The planner is indifferent

between building and not building if the expected value of not providing water equals the

cost of building the plant. So there is a threshold amount of water in the reservoirs above

which the planner would not build and below which would always build.

The interaction effect comes into play while cities have not yet transitioned to their

steady-state equilibrium level of desalination capacity. Before transitioning to the equilib-

rium level of capacity, if the planner not only takes next-period water needs into account

but also considers that if in this year they provide more water to the city or desalinate just

enough water to meet this year’s needs, then they increase the chance of having to build a

plant in the following year. Therefore, before reaching the equilibrium levels, the planner

desalinates more water and provides less water than if it had an equilibrium capacity level.

This effect can only be captured in a dynamic programming framework.

2.4.1 Variables and Dynamics

Three state variables describe the dynamic programming problem:

1. Kt desalination capacity at the beginning of period t;

2. Wt water reserves available at the beginning of period t;

3. Rt rainfall in period t.

All these states are observable at the beginning of the period. After observing these state

variables, the planner decides on three variables:

1. wft amount of fresh water to provide;

2. wdt amount of desalinated water to provide;

3. xt amount of capacity to build.
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Define S = (Kt,Wt, Rt) as the vector of state variables and d = (wft , w
d
t , xt) as the vector

of decision variables.

The state variables evolve according to three dynamic equations Dt. The evolution of

capacity is deterministic; capacity in next period is the capacity from the beginning of this

period plus the capacity built in this period. The plants are assumed to have an infinite

life-time.

Kt+1 = Kt + xt (2.1)

The evolution of water reserves is deterministic conditional on current period rainfall.

Water reserves available during the period t (Wt+1) comprise the sum of current rainfall

Rt, and water remained from the last period minus the freshwater provided.

Wt+1 = Wt +Rt − wft

This equation does not take water evaporation into account; therefore, the amount of

reserves might diverge. Taking water evaporation into account, I modify the equation in

the following way, where (θ) is the fraction of water that evaporates from the reserves:

Wt+1 = (1− θ)Wt +Rt − wft . (2.2)

Rainfall follows a Markov distribution. For simplicity, we assume that rainfall can only

have two states (h,l) with corresponding rainfall levels Rh, Rl. We denote the probability

of remaining in state i by pi. Finally, the transition matrix is given by:

Θ =

 ph 1− ph

1− pl pl

 . (2.3)

15



2.4. Demand

The first element in the first row of Θ is the probability that the state remains in high

rainfall (ph), and the second element is the probability of moving from high to low rainfall

(1− ph). In the second row, the first element is the probability of moving from low to high

rainfall (1 − pl). The second element is the probability of remaining in the low rainfall

state.

The variable Rt is known at time t. Its future value Rt+1 is a probabilistic function

of current value. Variation in rainfall is the only source of exogenous uncertainty in this

model.

Equations 2.1, 2.2, and the Markov processes described in 2.3 constitute the dynamic

equations. These equations fully describes the transition of the state St+1 = Dt(St, dt).

2.4.2 Loss Function and Constraints

In each period, the planning authority incures a per-period loss of lt. Its goal is to minimize

the stream of discounted (β) expected losses subject to constraints (Gt ≥ 0) and dynamics

(St+1 = D(St, dt)).

L = min
d0,d1,...

∞∑
t=0

βt(Et[lt]) s.t. Gt ≥ 0, St+1 = D(St, dt) (2.4)

In equation 2.4 Et is the expectation conditional on the informations available at time

t.

This per-period loss does not directly depend on time. It depends on time only through

the state of the system (St) and the planner’s decision (dt) at time t. Therefore, it is possible

to drop the t subscript on l and write is as a function of St, dt:

lt ≡ l(St, dt). (2.5)
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The loss in each period consists of three terms.

l(St, dt) = (αP − (wft + wdt ))
2︸ ︷︷ ︸

1

+ (FI(xt ≥ 0) + κxt)︸ ︷︷ ︸
2

+ cwdt︸︷︷︸
3

(2.6)

1. the loss of the planning authority from water underprovision;

2. the cost of building new desalination capacity;

3. the cost of using current capacity.

The first term in equation 2.6, P , represents population of the city. On average, each

city targets α units of water per capita annually. The planner provides wft + wdt liters of

water to the city dwellers. Any deviation from the target level gives the planner a quadratic

loss. This damage is meant to be a convex function of the amount of under-provision. A

second-degree polynomial simplifies the computation while preserves the convexity.

The second term in equation 2.6 concerns the cost of building new capacity. It costs κ

to build one unit of capacity. The planner decides to build xt units of capacity. F models

the economies of scale, and I is the indicator function. If the planner chooses to build some

capacity, they must pay a fixed cost to build the plant.

And finally, in the last term, it costs c to use one unit of an already built capacity.

The last term is a linear function of the amount of provided desalinated water, which lies

between zero and current desalination capacity.

Note that the loss function defined as a convex utility function incorporates many as-

pects of our perception when we think of water shortage. If available water is slightly below

the abundance level (desired level), then society adopts simple measures to compensate for

this: water efficiency and conservation technologies would be adopted (e.g., lower pressure

tap and showers, reuse water for specific purposes), certain activities would be limited (no
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extravagance large fountain in the middle of a park), or water prices may increase. All of

these incur some minor costs or cause a minor inconvenience.

At the mid-size level of water shortage, the government may start to import water, ban

or severely limit certain water-consuming activities, or even enact some rationing measures.

AT higher levels of water shortage, the government may limit the water supply to the bare

minimum. Cities may start to leave cities, and people who remain may suffer diseases or

even premature death due to water shortage. A convex utility function captures all of these

effects in a relatively simple formulation.

The set of constraints (Gt ≥ 0) limits the choice set of the planner.

1. xt ≥ 0 : the planner can only build new capacity and cannot reduce capacity.

2. Kt ≥ wdt ≥ 0 : The desalinated water cannot exceed current capacity, and it cannot

be negative.

3. Wt(1 − θ) + Rt ≥ wft ≥ 0 : The fresh water cannot exceed the water available, and

it cannot be negative.

2.4.3 Bellman Equation and Solution Concept

To solve the stochastic dynamic programming problem, I first rewrite the loss function

as a Bellman equation, then simplify it analytically, and finally use known quantitative

methods to numerically solve it.

Let’s start from the loss minimization problem of equation 2.4. Multiply both sides of

2.4 by a minus sign and define V ∗(S0) ≡ −L. This converts the problem to a maximization

problem shown in equation 2.7.

V ∗(S0) = max
d0,d1,...

(

∞∑
t=0

βtEt[−lt]), s.t. Gt ≥ 0, St+1 = D(St, dt) (2.7)
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V ∗(S), which we call ex ante value function (similar to ?) plays an import role in

setting up the Bellman equation. This function tells us intuitively the lifetime value of

being in a state S. Bellman’s principle of optimality allows us to translate the infinite

horizon programming problem to a corresponding functional equation for the ex ante value

function of ?.

Bellman’s principle of optimality states that the solutions of equation 2.7 is equivalent to

the solutions of the functional equation 2.8, if some minimal assumptions are met (theorem

9.4 of ?). Equation 2.8 is called the Bellman equation

V (S0) = max
d0

(
− l(S0, d0) + βE(V (S1)

)
s.t. G(S0, d0) = 0, S1 = D(S0, d0) (2.8)

In our case the decision space is Euclidean (d ∈ R3) and −l ≤ 0. Therefore, the

conditions of theorem 9.4 of SL are satisfied. Hence, the solutions of equations 2.8 and 2.7

are equivalent. Intuitively, equation 2.8 tells us that one obtains the ex ante value of being

in a state (before realization of uncertainties) by making the optimal decision to balance

out the current utility and future expected continuation value.

Abstractly speaking, the Bellman equation maps from functional space (space of bounded

functions from R3 to R) to itself with the sup norm. Equation 2.8 is concisely written as

V = T (V ), where T is the right-hand side of equation 2.8 for any S0 including the con-

straints.

First, I need to show that this equation is a contraction mapping, meaning that the

sup norm distance between two output functions of the functional will be smaller than the

distance between any two input functions. This means that for any two functions V1 and
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V2 there exists some 0 ≤ k < 1 such that

||T (V1)− (V2)||∞ ≤ k||V1 − V2||∞ (2.9)

I take advantage of the Blackwell sufficient condition to prove that the current Bellman

equation is a contraction mapping. Blackwell Sufficient Condition states that (Theorem

3.3 ?):

Let X ⊆ Rl and B(X) be the space of bounded function f : X → R, with a supnorm.

T is a contraction mapping with modulus β if:

a. [Monotonicity] If f, g ∈ B(X) and ∀x ∈ X : f(x) ≤ g(x), Then ∀x ∈ X : (Tf)(x) ≤

(Tg)(x)

b. [Discounting] ∃β ∈ (0, 1) such that ∀f ∈ B(X), a ≥ 0, x ∈ X : [T (f + a)](x) ≤

T (f)(x) + βa

It suffices to show that these monotonicity and discounting hold for the current Bellman

equation and that the Bellman equation is bounded on B(X). Let’s clarify the correspon-

dence between the variables in Blackwell sufficient condition and our problem:

X ⊆ R3, is the space of state triplet S := (Kt,Wt, Rt) ∈ X

B(X) : the space of bounded functions on X → R, V (Kt,Wt, Rt) ∈ B(X)

T := max
D0

[u(D0, S0) + βpV (S1(D0) + β(1− p)V (S2(D0)]

Proof.
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[Monotonicity] :

V1(S) ≤ V2(S), ∀S ∈ B(S) (∗)

T (V1(S0)) = max
D0

[u(S0, D0) + βpV1(S1(D0)) + β(1− p)V1(S2(D0))]

Define

D̂0 := arg max
D0

[u(S0, D0) + βpV1(S1(D0)) + β(1− p)V1(S2(D0))]

T (V1(S0)) = u(S0, D̂0) + βpV1(S1(D̂0)) + β(1− p)V1(S2(D̂0))

from (*) :

T (V1(S0)) ≤ u(S0, D̂0) + βpV2(S1(D̂0)) + β(1− p)V2(S2(D̂0))

Then using the definition of max, the RHS of last equation is smaller than the RHS of

the following:

T (V1(S0)) ≤ max
D0

[u(S0, D0) + βpV2(S1(D0)) + β(1− p)V2(S2(D0))]

Therefeore,

T (V1(S0) ≤ T (V2(S0))

Monotonicity is satisfied.

[Discounting]
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T (V + a) = max
D0

[u(D0, S0) + βp(V (S1(D0) + a) + β(1− p)(V (S2(D0) + a)]

T (V + a) = max
D0

[u(D0, S0) + βp(V (S1(D0)) + β(1− p)(V (S2(D0)) + βa]

T (V + a) ≤ max
D0

[u(D0, S0) + βp(V (S1(D0)) + β(1− p)(V (S2(D0))] + max
D0

(βa)

T (V + a) ≤ max
D0

[u(D0, S0) + βp(V (S1(D0)) + β(1− p)(V (S2(D0))] + βa

Discounting is satisfied.

[bounds]

V is bounded from above by 0 and it is bounded from below by
min(u)

1− β
Since it is established that T is a contraction mapping, the Banach fixed point theorem

(Theorem 3.2 in ?) guarantees that T admits a unique fixed point and that value function

iteration converges to that fixed point.

The number of states and decisions are large (9 dimensions, 3 state variables, and 3 de-

cision variables of period 0 and 3 state variables of period 1), so the curse of dimensionality

makes the problem hard to solve numerically. We take three steps to make the problem

manageable.

In the first step, note that the variable wdt only appears in the per-period loss function

(l) and inequality constraints (G ≥ 0). It does not appear in the dynamic equation (St+1 =

Dt). This allows us to take the derivative of equation 2.4 with respect to wd and obtain
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the first-order condition.

We start from the Bellman equation 2.8 and use the Dynamic equation to replace

S1 = D(S0, d0). We can specify the exact dependence of S1 on S0 and d0 . This gives the

equation:

V (S0) = max
d0

(
− l(S0, d0) + βE(V (K0 + x0, (1− θ)W0 +R0 − wf0 , R1))

)
s.t. G0 > 0.

To get the F.O.C. for wd0 , we must write down the Lagrangian with the inequality

constraints.

L = −l(S0, d0) + βE(V (K0 + x0, (1− θ)W0 +R0 − wf0 , R1)) + λG0

Then the F.O.C. would be given by the derivative of L with respect to wd0 .

−∂l(S0, d0)
∂wd0

+ λ
∂G0

∂wd0
= 0

Where the inequalities do not bind, we get λ = 0 and the following solution holds:

wd0 = P − wf0 −
c

2
.

If the inequalities bind, either wd0 = 0 or wd0 = K0. Therefore, the final solution would

be given by equation 2.10. This provides wd as a function of only one state variable (Kt)

and one decision variable (wf ).

wd0 = max(0,min(Kt, P − wf0 −
c

2
)) (2.10)

Therefore, by plugging the value of wdt (2.10) into the Bellman equation 2.8, we can
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reduce the dimension of the decision space from 3 to 2 (total dim: 9 → 8).

The next step is to get rid of the dynamic equation as a constraint. We can directly

plug in the dynamic constraints (equations 2.1 and 2.2) to rewrite the Bellman equation

as a function of state variables of this period and state variables of the next period. In this

way, we eliminate one constraint and reduce the dimension of the problem from 8 to 6.

Although the problem is simplified significantly, the curse of dimensionality still pre-

vents convergence in a reasonable time. For the contraction mapping to converge in a

reasonable amount of time, the quality of the first guess becomes crucial: the better the

initial guess, the lower the number of iterations.

To develop a reasonable initial guess, I develop an intuitive heuristic specific to the

current problem that significantly helps find the starting point for the optimization. The

idea behind this heuristic is intuitive and straightforward. It suggests that instead of having

a planner that makes two decisions simultaneously, have two decision makers that take two

independent decisions, taking the decision of the other decision maker as given.

This intuition behind this model is similar to the solution concept of a Cournot game.

The first player takes the behavior of the second player as given and plays its optimal

strategy. The second player does so by taking the behavior of the first player as given. By

reiterating this process, the solution converges to the answer.

In the actual problem, the planning authority takes two related decisions. It decides

on how much capacity to build in the next period and how much water to keep in the

reservoirs.

The heuristic suggests that first, I fix the capacity and allow the first planner to find

the optimal amount of water remaining in the reservoirs. This heuristic is a 2-dimensional

dynamic programming problem, and it can be solved quickly, using conventional methods.

I used time-iteration, which is usually faster than value function iteration in 2-dimensional
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problems.

After that, I let the second planner choose the optimal capacity to be built while taking

the solution of the first planner as given. This problem is also 2-dimensional and easy to

solve.

I am then to repeat these two stages by feeding the answer of each of them to the other

one. After a few iterations, the result of this procedure serves as a starting point for the

value-function iteration procedure. This procedure makes the algorithm converge faster in

a reasonable number of steps by providing a suitable initial guess.

Figures 2.1-2.9 depict the behavior of some variables of the model as a function of

current capacity and water reserves. These graphs are obtained for some specific parameters

of the model, but they capture the important qualitative behavior of the model.

Figure 2.1 shows capacity building as a function of current capacity and water reserves.

The population water target (P ) in this model is 50, and the minimum rainfall is 40.

The maximum amount of desalination must be smaller than 10, and we can see that it is

between 8 and 9.
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Figure 2.1: Capacity building as a function of current capacity and water reserves
during years with unfavorable rainfall

Figure 2.2 shows that there would be no capacity building in the good rainfall years.

Because in good years the rainfall is 65, which is much larger than the population water

target (P = 50), it is not efficient to build capacity in good years. But this is not a general

result, and for some parameters some capacity would be built even in the good years.
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Figure 2.2: No capacity would be built in years with favorable rainfall

The first two figures showed capacity building, and the next two figures show the amount

of next period water reserves for good and bad rainfall years. Generally, the amount of

reserves will be higher in good years.
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Figure 2.3: With small fixed costs the reserves are independent from current
capacity. The plot is for years with bad rainfall.

For the parameters of this simulation, the amount of reserves are independent from the

current capacity. This is not a general feature of the model. For high enough fixed costs,

the reserves will depend on current capacity.
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Figure 2.4: With small fixed costs the reserves are independent from current
capacity. The plot is for years with good rainfall.

The fixed cost (F ) and variable costs (κ) of building a plan in last two figures were

relatively low. The next few figures show the behavior of the solution under these param-

eters.
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Figure 2.5: For high enough fixed costs the reserves will depend on current
capacity

Figure 2.5 shows the 3-dimenstional plot of next period reserves for the case with high

costs of building a desalination plant for good rainfall draws.
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Figure 2.6: Future water reserves vs. current capacity: for current capacity
above 8.5 the decision maker would keep smaller reserves for the next period
because there would be enough capacity even in a low rainfall realization.

Figure 2.6 shows a slice of the 3-dimenstional plot in Figure 2.5. For a fixed level of

current water reserves, future water reserves are plotted against current capacity. If the

current capacity is high enough (above 8.5), the decision maker would keep smaller reserves

for the next period because there would be enough capacity in the next period even in a

low rainfall realization.
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Figure 2.7: Next period reserves in bad years are qualitatively similar to the
ones in good years

Figure 2.7 shows next period reserves for parameters similar to Figure 2.5 but for a

bad rainfall realization. The results are qualitatively similar.
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Figure 2.8: In a year with bad rainfall if water reserves are low, not having
enough desalination capacity is very costly

Figures 2.8 and 2.9 show the continuation value function for both good and bad rainfall

draws. The continuation value function is continuous. It is lower when the rainfall is bad

becasue the municipality has to use desalination capacity or provide a less than ideal

amount of water. For the same reasons, the function is smaller when there is less water

reserves or less installed capacity.
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Figure 2.9: In a year with good rainfall, when water reserves are low, not having
enough desalination capacity is not as costly as good rainfall years, but it
increases the probability of building a desalination plant soon.

2.5 Testing the model

A theoretical model is a simplified version of reality. A model captures some essence of

reality and neglects the rest. At this stage, I am primarily concerned about the qualitative

implications of the model. Many simplifications have been made in the literature. For

example, the dynamic programming model has only two possible states, yet I classified any

year with below (above) median rainfall as bad (good). In reality, the decision maker might

consider more than two states, or the criteria for good vs. bad year might be different.

There are other potential issues. It may be that transition probabilities from one state

to another are not always Markovian, or the loss function of a municipality is different

from my specifications.

The task is further complicated because, in our dynamic model, many variables are in
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principle observable to the decision maker, but the econometrician only has noisy proxies

of the data. Table 2.2 shows what data the decision maker observes versus what data is

available to the econometrician.

If the model is rich enough, and the econometrician simulates the model for many

different parameters, it is possible to identify some correlations between the variables of

the model’s solution. These correlations should qualitatively match the correlations that

we observe in the data. Note that the data is a noisy proxy of what the decision maker

could observe.

What I do is similar to what empirical researchers do. They explain how a model

behaves. Iin many cases, they do so verbally or symbolically. They make a quantitative

prediction (e.g., signs of some parameters) in a regression model based on those explana-

tions. Then by running a regression, they test the proposed hypothesis. Instead of verbally

explaining the model, I propose and numerically solve a dynamic programming problem

for multiple random parameters. Then I simulate numerous draws and develop a predic-

tion for the signs of many observable variables in a separate regression with the real-world

data. Then I run the regression with the data and test those hypotheses. Specifically, I

solve the dynamic model for fifty different random parameters drawn from jointly normal

distributions.
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[H]
Table 2.2: Simulation Parameters

Variable Model Proxy

P population observed

R volume of water made average monthly

available by rainfall rainfall in mm

θ annual evaporation average monthly

rate temperature

σR difference in average sd of annual

annual rainfall rainfall

α water target per -

population unit

c yearly cost of -

using capacity

κ marginal cost of partially observed

building more capacity

F fixed cost of building partially observed

µ conversion rate of GDP per capita

waterunderprovision

-

The parameters of the distribution are listed in Table 2.3. Some of these variables

in the model have a corresponding variable in the real-world data. The variables in the

real-world data are proxies for the variables in the theoretical model.
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Table 2.3: Simulation Parameters

Variable Proxy Distribution

P Population N(50,5)

µ GDP per Capita N(1.5,5)

θ average Temperature N(0.2,0.02)

R average Rainfall N(50,10)

σR sd Rainfall N(5,3)

α - 1

γ - 0.1

f - 1

F - 0

-

Each solution of the model for these fifty different parameters represents one city. Each

city goes through one hundred years of simulation stream. But this may introduce a spuri-

ous correlation because some cities may build desalination capacity early on, not because

the parameters dictate that they are more likely to build early but because they randomly

got bad initial rainfall draws. If each city gets multiple rainfall realization streams, we can

capture a city’s average behavior. Therefore, each city is simulated for 200 realizations.

Eventually, there would be fifty distinct city types, 200 rainfall realizations streams, and

a hundred years of simulation for each city-realization pair. Both the simulated data and

the real data are panels, and each observation corresponds to one year for one city.

The simulated data contains information on the simulated endogenous variable (when

and what capacity is being built) and respective parameters and timing of rainfall realiza-

37



2.5. Testing the model

tions. The goal is to compare the sign of coefficients in a regression with the simulated

data and the real-world data. If the model is a good approximation of reality, we expect

the regression results for both tables to have similar signs.

The empirical model that I use to compare the simulation data and real-world data is

shown in equation 2.11. In the following model, Ui is a city-specific random effect, and εit

is the error term distributed with 0 mean.

dit = β0 + β1Pi + β2Rit + β3R̄i + β4θ̄i + β5µi + β6σi + Ui + εit (2.11)

The regression Table 2.4 shows the coefficients of a random effect model 2.11 applied

to the simulated data.

Table 2.4: Simulated Data, Random Effects

Capacity Coeff. std. error t-Value

(Intercept) 0.47 0.077 6.08 ***

population 0.0121 0.0008 15.2 ***

relativerain -0.59 0.03 -17.0 ***

ave Rain -0.0128 0.0004 -31.0 ***

ave Temp 1.07 0.24 4.46 ***

GDP per capita 0.018 0.009 1.96 .

sd Rain 0.01595 0.0017 9.3 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1
-

Table 2.5 applies the same empirical model of equation 2.11 to the real data.
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Table 2.5: Actual Data, Random Effects

Capacity Coeff. std. error t-Value

(Intercept) -2.55e+03 2.84e+02 -9.0 ***

Population 1.45e-01 3.8e-02 3.9 ***

relative rain -5.39e+02 1.47e+02 -3.7 ***

ave Rain -5.6e-01 1.7e-01 -3.4 ***

ave Temp 9.1e+01 1.5e+01 6.2 ***

GDP per capita 7.60e-02 4.3e-03 17.7 ***

sd Rain 7.00e+03 9.0+02 7.8 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

-

We should compare the results in Tables (2.4 and 2.5) qualitatively only, meaning that

what matters are the sign and significance, but the values do not matter. Comparing the

two tables tells us that all the six variables have similar signs and are statistically significant.

This match indicates that the proposed dynamic demand model captures essential features

of reality, and its predictions agree with real-world data.

One alternative hypothesis would be that factors other than temperature and rainfall

affect the timing of the desalination plant. For example, cities could decide how much

desalination they need in the long run and randomly build the plant. It is also possible

that the institutional hurdles determining the available budget for desalination play a more

decisive role in building a plant. This hypothesis means that building patterns would be

independent of rainfall. In this hypothesis, there would be no correlation between rainfall

patterns and building desalination. Another important feature that does not seem intuitive

is that this model and real-world data predict that cities with higher s.d. in rainfall would
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build more desalination capacity. It could well be that cities rely on desalination for their

entire water needs. Still, it seems that desalination acts more as an insurance policy than

the primary water provision source.

The reason behind the dramatic increase of desalinatoin capacity in the previous years

is a combination of multiple factors. The model predicts that each city has an equilibrium

level of desalination based on its geographic characteristics, demographic characteristics,

price of desalination construction, and price of desalination operation. The significant

factors that affect demand for desalination have been widely studied. Some of the more

important ones that explain the major adoption of desalination plants are: an increase in

population, an increase in marginal willingness to pay for water in super arid areas (think

of population booms in prosperous cities in the middle east and Mediterranean), a sharp

drop in desalination construction cost, an improvement in desalination efficiency.

It is theoretically possible for an increase in extreme weather events and a drop in

average rainfall levels to cause an increase in the adoption of desalination, but it has not yet

been documented to this day. This model can allow for all of the aforementioned changes

and give a specific and quantitative prediction on the equilibrium level of desalination

capacity for each city in the long run.

I estimated another version of this model regarding the relative value of constructing

a plant in good vs. bad times. I moved this estimation, along with some other analyses

regarding optimal utilization rate, the possibility of mistakes on rainfall probabilities, and

estimating the price elasticity of demand for construction of desalination plants, to Ap-

pendix A. These results are not directly contributing to the central intellectual contribution

of this paper but are part of my explorations about decision-making regarding desalination

plants.
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2.6 Conclusion

This paper first investigates the question of optimal timing and optimal size of building

desalination plants, given the uncertainties inherent to rainfall patterns using seventy-six-

years-long panel data on desalination plant construction worldwide. Secondly, this paper

aims to explicitly define the criteria of rationality in a specific problem and test whether

decision makers act consistently with these criteria in this limited domain.

This paper adopts a dynamic programming framework to answer the first question. A

rational decision maker maximizes the expected utility of building the plant. The decision-

making authority considers decisions on both the plant construction and plant use. It finds

the optimal time to build a plant and its size. All three aspects of optimal use, optimal

timing, and optimal size of the plants are critical issues that experts face in the real world.

By calibrating the elements of this model to dimensions of cities in need of building a

desalination plant, this model can serve as a tool to provide a baseline for the needs of a

city and a tool to measure the quality of decisions made by decision-making authorities.

To compare the behavior of the real-world decision makers with the optimal behavior

provided by this model, I compare the correlations predicted by simulations from the model

and the correlations observed in the real-world data. All of the compared variables had

the correct signs and were significant in the correct directions.

In this paper, the micro-level behavior of the decision maker was observed. Admittedly,

this is not the only micro-level rational model to write for decision-making in this context.

This paper is evidence that the predictions of a dynamic model are consistent with real-

world behavior on average. To develop more robust tests, we should develop further models

and gather more data on the usage of desalination plants and local characteristics.

Another limitation of this paper is that I implicitly assumed that the management

of desalination plants is relatively similar in different cities. Any difference observe in
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construction patterns is due to observables or year-city-specific shocks. With more data

on desalination plants’ annual usage rate, it would interesting to see if there are inherent

differences in the management of these plants.

This model can be used to make some some predictions about desalination adoption

due to climate change. In this model, the rainfall patterns follow a Markov process in its

steady state. If we model climate change as a one time shift in the probabilities of different

rainfall patterns, which increases the standard deviation of rainfall and decreases the mean

value of rainfall in arid areas, then this model predicts that:

1. Cities in arid areas would build more desalination per capita to compensate for lower

rainfall levels

2. Cities would generally build more desalination to use desalination as an insurance

policy against extreme events

3. It can explain how does the timing of these transitions work: cities would wait

until the available freshwater in the reservoir to fall below a threshold, and then they start

building desalination capacity

Another aspect worthy of exploration is relaxing or improving the rationality assump-

tion of decision makers. In this paper I assumed that decision makers believe that their

need for water follows a Markov process that is a function of observables and shocks. In

principle, the municipalities can overreact or underreact to observables, or they might have

superior information on predicting water needs that the econometrician does not observe.

It is interesting to know how decision-making authorities come up with decisions consistent

with a relatively complex dynamic programming problem.
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Chapter 3

Can Innovation Help Us in the

Battle against the Climate

Change?

3.1 Introduction

Climate scientists, economists, and politicians run out of superlatives while describing the

disastrous long-term effects of climate change. They agree on the enormity of climate

change’s threat. But when it comes to action, the agreement seems to fade away. While

climate scientists emphasize the long-term catastrophic effects of climate change, politicians

tend to think in the short-term. Economists are somewhere in between, balancing the short-

to mid-term costs of mitigating climate change and its mid-to-long- term consequences of

action (or lack of it). There is also a sea of disagreement about the best instruments to

fight climate change. Some climate scientists, overwhelmed by the sheer magnitude of

this disaster, prefer an outright ban of any form of greenhouse gas emission. At the same

time, politicians tend to prefer innovation policies to combat climate change. Economists,

again, take the middle ground by accepting the merits of both emission restrictions and

innovation policy. Their studies show a preference for carbon pricing, either through taxes

or cap and trade systems.
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Some OECD countries like Canada, Japan, Chile, and some European countries imple-

mented some forms of carbon pricing. But according to the World Bank 1, as of 2021, less

than 22 percent of the total carbon emissions would be priced. This does not take into

account the fact that the prices in many jurisdictions vary, and they may be far below the

marginal damage of carbon.

In the United States, carbon pricing proved to be politically impossible at the federal

level, as evident from the latest environmental policy of the Biden administration. In 2022,

the Biden administration would increase the budget to fight climate change from $22 billion

to more than $36 billion without any indication of a carbon tax. The main bulk of this

funding would be spent on research, innovation, and infrastructure.

The emphasis on innovation without a clear taxation policy raises a fundamental ques-

tion that we plan to address in this chapter: Is innovation even helpful in the battle

against climate change? In some cases, it does, but a closer look at the portfolio of

innovations and their interactions raises multiple paradoxes that rule out a simple answer

to this question.

In this paper, we set out the economic logic of the impact of innovation on climate

change. We primarily focus on the portfolio of the most promising green technological

innovations that have been pursued in the past decades: clean energy innovation, innovation

in fuel efficiency of internal combustion engines, and innovation in carbon capture and

storage. We ask when innovations help the battle against climate change and how these

innovations interact with each other.

Our focus is to study the long-term effect of a green innovation portfolio on climate

change. While the economic literature neglected these long-term effects and focused on

the short-to-medium range, we know from climate studies that long-term (beyond fifty

1https://carbonpricingdashboard.worldbank.org/
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years) climate outcomes are much more predictable than short-to-medium-range climate

outcomes. Many climate studies emphasize the long-term disastrous effects of carbon

emission and climate change. These studies show that the long-term climate outcome is

independent of the emission patterns. A simple measure of cumulative carbon emissions is

a sufficient statistic for long-term climate outcomes. Therefore, we study the effect of the

green innovation portfolio on one measure of impact: cumulative carbon emission.

While trying to answer when innovation helps us against climate change, we revisit

some of the well-known strong green paradoxes and introduce some new ones. A strong

green paradox arises when a policy or innovation intended to improve climate outcomes

end up causing greater cumulative environmental damage. In the rest of this introduction,

we set out the green paradoxes that we visit in this paper.

The history of strong green paradoxes dates back to the late nineteenth century. Jevons

(1865) first observed an improvement in energy efficiency involves the so-called rebound

effect: the demand for output will increase as fuel costs fall, and in terms of the overall

impact, this increase in demand may increase the overall flow of fuel consumption and

carbon emissions.

Our first contribution is the introduction of a new paradox: an improvement in fuel

efficiency will always increase the total stock of fossil fuel extracted. Fossil fuel deposits

vary in the cost of extraction. In a simple setting, fossil fuel deposits are extracted in order

of extraction cost until they reach a point where the marginal cost of extraction, say c1,

justifies using a clean-energy backstop, which is the alternative to an internal combustion

engine. If the fuel efficiency (FE) of internal combustion engines increases, with a drop in

the fuel requirement per unit output, fossil fuels will continue to be used until the marginal

cost of extraction at a higher level, say c2, is reached. All fuel with extraction costs in

(c1, c2) will be extracted under the new technology instead of being left in the ground, thus
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adding to total carbon emissions. Innovation in fuel efficiency on its own leads to a strong

green paradox.

The logic applies not only to internal combustion engines but also to fossil fuel pro-

duction of energy. With an increase in fossil fuel energy production efficiency (as ith the

introduction of combined-cycle natural gas generation in the 1960s), fossil fuel will be used

to a greater extent for energy production. The switch to a clean alternative such as solar

or wind power would take place at a higher cost of fossil fuel extraction.

Our next contribution involves innovation in carbon capture and storage (CCS). An

innovation in CCS (given that it is implemented) always improves long-term climate out-

comes. Moreover, this kind of innovation alleviates and may even reverse the paradoxical

result of a FE innovation. If energy demand is inelastic enough, a substantial innovation in

FE pushes more emissions into the future; these emissions will occur when CCS technology

is more advanced so that the emissions net of CCS are reduced.

Then we turn our attention to innovation in clean energy (CE). It is well-known in the

literature that innovation in clean energy (e.g., wind energy, solar energy) or even the threat

of it reduces the expected future rents of fossil fuel owners, hence reducing the current price

of fossil fuel. If demand is elastic enough, current emission will increase, meaning that CE

innovation causes a weak green paradox: a green-intentioned policy (innovation) leads to

greater short-term environmental damage.

We establish that the effect of CE innovation on its own is always positive for the long-

term cumulative emissions. CE acts as a backstop (or alternative) to fossil fuel deposits.

With cheaper green backstops, the deposits that would otherwise be extracted are left in

the ground. Hence, CE innovation will not lead to a strong green paradox on its own.

We show, as our final contribution, that for an elastic demand, the CE innovation is

less beneficial if CCS improves over time: the greater the share of emissions that occurs
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in the near future (when CCS technology is less advanced than in the distant future) the

greater the emissions net of carbon captured and sequestered. CE innovation accelerates

the fossil fuels extraction flow and, therefore, the flow of emissions. For strong enough

innovation in CCS, the CE innovation becomes harmful, and the interaction of these two

innovations yields a strong green paradox.

The starting point of our analysis is the Hotelling model of an exhaustible fossil fuel

resource with variable costs. Throughout the paper, we represent innovations in FE and CE

as Poisson processes on a one-time improvement of known magnitude, following established

literature. We represent CCS innovation, in contrast, by an exogenous and increasing

fraction a(t) of emissions that are captured at zero cost over time. This representation

reflects an underlying assumption that the government (regulator), not firms, bears the

cost of the CCS. In reality, this cost is mainly the cost of storage and the cost of the

network to transport CO2 to storage.

In the appendix B, we extend the model to allow for the endogenous choice of a by the

regulatory agency by assuming a CCS technology represented by a cost function c(a; θt),

in which θt is a technological parameter representing (possibly) improving technology over

time. In the extension, the regulator decides how intensively to use existing CCS technology

at any time given the cost function and the state of technology in the dimensions of clean

energy or fuel efficiency. The use of CCS changes with the discovery of a clean energy

substitute or an increase in fuel efficiency. We show that our central results are preserved

in this extension.

In the next section, we give a brief survey of the literature. Then we introduce the

theoretical setup and discuss our assumptions in section 3. In sections 4 and 5, we study

the effects of FE innovation and CE innovation, respectively. In section 6, we conclude by

discussing the limitations of our results and the policy implications of our paper.
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3.2 Literature Review

Fossil fuel innovation affects both the flow pattern of emissions and the total stock of

emissions. The impact on the flow of emissions involves the rebound effect studied by

Fullerton, Ta (2019), Gillingham et al. (2016) and possibly Jevons’ paradox (1865).2 An

increase in the efficiency of car engines, for example, will increase the current flow of demand

for gasoline if the elasticity of the demand for car travel is sufficiently high because the

cost per mile of travel falls with the innovation; the extra miles driven may offset the lower

fuel needed per mile. The rebound effect is well known. But a paradoxical stock effect of

an innovation in fuel efficiency has, to our knowledge, gone unnoticed.

The paper contributes to the green paradox literature. In his seminal work, (Sinn

(2012)) coined the term “the Green Paradox”. According to Ploeg van der, Withagen

(2012), the green paradox is the idea that well-intended policies to improve the climate

outcome lead to outcomes that are below the social optimal and counter-productive. This

is because such policies reduce the expected rent collectible by fossil fuel producers, and

they choose to produce more fuels and sell them at a lower price. More specifically, this

paper contributes to the literature on innovation and green paradox, which focuses on the

unintended consequence of innovation policies to improve the climate outcome.

Werf, Maria (2012) review more than 20 papers on the climate change policy and

the green paradox. Several papers in the literature have investigated the interaction of

innovation and climate change (Hoel (2009), Ploeg van der, Withagen (2012), Winter

(2014), Acemoglu et al. (2016)). The models developed in most of these papers contain

assumptions that imply that in the long-term the environment will converge to a steady-

state independent of any temporary effects of policy.

2Jevons’ paradox is a rebound effect from an increase in the efficiency of internal combustion engines
that is so strong that it more than offsets the direct, negative effect of the increased efficiency on fuel
demand.
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This independence is explicit in Hoel (2009) and Ploeg van der, Withagen (2012). But

Acemoglu et al. (2016) operate at a higher level of abstraction: environmental quality

is represented at a state variable St, which either reaches 0 (“environmental disaster”)

during any period of carbon emissions and remains at that level, or converges to complete

environmental recovery in the long-term. The assumption of a categorical connection

between short run policy and the long-term environment (“disaster” or perfection) rules

out consideration of the effects we examine in this paper.

Winter (2014) pairs an economic model of innovation in clean energy with climate dy-

namics that incorporate feedback effects. Dynamical systems with feedback effects yield

tipping-point dynamics, which link short-term to long-term effects of innovation. In this

paper we explore a different link between innovation and long-term climate outcome, mo-

tivated by the scientific evidence cited above, that cumulative carbon emissions are a good

indicator of the long-term climate impact of the emissions. Gans (2012) examines the in-

centives for innovation in clean technologies induced by policy. Gans considers essentially

the same portfolio of technologies as this paper, and establishes a parallel result: only

for technologies that directly abate carbon pollution is there an unambiguously positive

impact on innovation. In our paper, only for these technologies is exogenous innovation

unambiguously beneficial. Gans investigates incentives for innovation. We investigate a

more basic issue, the impact of exogenous innovation.

Our paper is related to the literature on second-best climate policies and their in-

teractions.Fischer, Newell (2008), Grimaud, Lafforgue (2008), and Hart (2019) assessed

the interaction of carbon tax and clean energy subsidies. They showed that they both

have substantial welfare effects in the optimal general equilibrium and quantified different

deviations from the first best.

Lafforgue et al. (2008), Hoel, Jensen (2012), and Kalkuhl et al. (2015) examined the
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optimal pattern of CCS with constant technology when there is clean energy innovation.

However, they did not consider improving CCS technology and infrastructure. With an

improving CCS, the percentage of emissions captured may increase over time.

Because the theoretical starting point of our paper is the Hotelling model of resource

extraction, it is worth discussing the relevant literature on Hotelling model and empirical

evidences for it. It has been empirically established that in the short-run, aggregate oil

production is inelastic in price (Griffin (1985) ; Dahl et al. (1991); Ramcharran (2002);

Güntner (2014).

As Cairns (2014) points out, Hotelling style models will break-down in the short-run

because production cannot be re-arranged at will. But aggregate oil production, in the long

run, is determined by both how much firms produce from existing wells (intensive margin)

and how many new drilling projects do firms initiate (extensive margin). A recent study

(Anderson et al. (2018)) shows that an extension of the Hotelling model (that takes drilling

into account) explains why the Hotelling model can only hold in the long run. Because our

scope of analysis is long-run, the Hotelling model deems appropriate.

3.3 Setup

3.3.1 The Green Innovation Portfolio and Damage Function

We set out three classes of clean-tech innovation, clean energy (CE), fuel efficiency (FE),

and carbon capture and storage (CCS). We study both the ex post realization and the ex

ante threat of FE and CE innovations on their own and their interaction with a steady

improvement in CCS technology.

Clean energy (CE) alternatives consist mainly of solar energy and wind energy. The

cost of generating electricity from solar power depends upon geography, but the cost of

50



3.3. Setup

solar panels per kw generated has dropped by 2 orders of magnitude since the 1970’s.

Solar power bids for generating electricity have in places reached $ 50 dollars per mega-

watt hour, substantially less than the cost of coal,3 but the cost of storingand transmission

of this energy has to this point ruled out significant global market share to date for either

solar or wind energy.

Fuel efficiency (FE) innovation in the of internal combustion engines in particular and

any form of fossil fuel production of energy in general is our second source of innovation.

This innovation is illustrated by the increases in average automobile fuel efficiency of about

90 percent since 1975. 4 and in efficiency gains of generating electricity from fossil fuel,

such as the development of combined-cycle fossil fuel plants in the 1960’s.

We represent innovation in a clean energy alternative more simply by the exogenous

discovery of a single new technology. Following much of the economic literature on innova-

tion, we assume a Poisson process for the discovery of the new innovation, with probability

of discovery ρdt in any instant dt at any date for which the innovation has not been discov-

ered. We adopt the same process in examining the impact of fuel efficiency innovation. For

both clean-energy and fuel-efficiency innovation, we distinguish between the ex post effect

of a realized discovery on long-term climate change and the ex ante effect of the threat of

innovation, as this threat alters the equilibrium in the existing market for fossil fuel as an

exhaustible resource.

Carbon capture and storage (CCS), or sequestration consists of capturing the

carbon dioxide produced with combustion and moving the gas to a storage facility such as

an underground geological site.5 Innovation in this area is promising but highly uncertain:

IPCC(2005) Metz et al. (2005) predicts that the economic potential of CCS will be between

3Jeremy Berke (2018)
4https://www.epa.gov/fuel-economy-trends/highlights-co2-and-fuel-economy-trends#Highlight2
5We set aside innovation (prior to T , the maximum date of significant carbon emissions) direct carbon

capture and sequestration from air as well as other green-tech innovation such as large scale batteries.
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10% and 55% of the total carbon mitigation effort until year 2100. We represent CCS by

an increase over time in the fraction a(t) of emissions captured. CCS is exogenous, costless

and implemented by regulation. We represent CCS simply by an increase over time in the

fraction a(t) of emissions captured.

We consider the ex post and ex ante impact of innovation of various types on the

cumulative carbon emissions over a finite period [0, T ] over which carbon emissions are

positive. (T is the termination date of fossil fuel extraction with no prospect of innovation.)

Our focus on total emissions is motivated by scientific evidence that cumulative emissions

are a close proxy for the long-term impact of emissions on climate. A recent editorial

in Nature Allen et al. (2009) discussed evidence supporting the “insight that cumulative

CO2 emissions determine the long-term climate outcome, essentially independent of the

evolution of CO2 releases over time.”6

It is helpful to elaborate on the physics of why the pattern of emissions of a given

amount of cumulative emissions might be irrelevant, or nearly irrelevant, within the range

of parameters contained in a realistic climate model. Why might an earlier path of a

given amount of carbon emissions, for example, have only a small impact on the state of

the environment at T? Such a shift would (1) have a negative (i.e., beneficial) impact

on the atmospheric concentration of carbon at T because the emitted carbon would have

on average a longer time to settle back to the earth’s surface. But this beneficial impact

would be offset or mitigated by: (2) a significant portion of carbon emitted remaining

in the atmosphere for hundreds or thousands of years; (3) the feedback effects of higher

temperature (realized earlier) on the flow of carbon into the atmosphere, even if not to

the extent of triggering runaway global warming; (4) the earlier settling of carbon into the

6Nature Geoscience Vol.2, December 2009. This editorial refers to Meinshausen et al (2009), which
reports that for the wide set of emission scenarios modeled, cumulative carbon emissions up to 2050 is a
robust indicator of the probability that twenty-first century warming will not exceed 2 degrees C relative
to pre-industrial temperatures.
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ocean in reducing the capacity of the ocean to absorb additional carbon and heat; and,

(5) the carbon and heat settling earlier into the ocean has itself a longer time to damage

the ocean through increased acidity, higher temperatures and decreased oxygen. From the

Nature(2009) editorial cited before, in terms of the net long-term environmental impact,

these effects evidently balance out. In seeking to understand the long-term environmental

impact of carbon emissions, it is therefore, reasonable to focus as a first approximation on

a simple parameter, cumulative emissions.

Government policy to reduce carbon emissions falls into two general classes: carbon

pricing (taxes or cap-and-trade) or other means of incentivizing reductions in emissions,

and policies to encourage innovation that would reduce carbon emissions. Although carbon

pricing is the preferred policy, for political reasons, incentivizing innovation is more widely

implemented. With optimal carbon pricing, all policies are beneficial, and there would

be no green paradox. But the current levels of carbon prices are well below the optimal

carbon price.

Formulating an optimal policy on carbon pricing and stimulating endogenous innova-

tion requires an understanding of the impact of exogenous innovation. If a technological

discovery or the mere possibility of a discovery makes climate change worse, for example,

this should be known. Our focus is limited to the consideration of the long-term impact

of innovation. While the long-term environmental impact is only one component of the

total welfare impact of innovation, it is a critical component and often under-emphasized

in economic models. By limiting our focus to long-term impact of exogenous innovation,

we can set out a potentially complex economic logic in simple terms.

By long-term damage, we mean any damage that may occur after extracting all fossil

fuels. Because many geophysical interactions are very slow, it may take centuries after

raised carbon levels that these adverse effects come into effect. This damage includes
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an increasing extinction probability of various life forms on earth, including humans. If

the extinction probability spikes decades after extracting all fossil fuels, then the total

damage is a function of cumulative carbon emission after the exhaustion of all fossil fuels.

Our analysis explores the possibility of strong green paradoxes in green innovations with

damage function dependencies as described.

3.3.2 Vanilla Model

Our starting point is the standard Hotelling model of a competitive market for an ex-

haustible resource, fossil fuels. The distribution of deposits at various extraction costs is

G(c), with density g(c) and support [c, c]. We assume a stationary demand for an output

such as miles driven, Q(P ), which can be produced by either an internal combustion engine

or a clean energy backstop such as electric cars. The backstop supply of output costs y0

dollars per unit. The ICE requires inputs of cost z other than fuel. The fuel requirement

is λ0 per unit output.

The markets for both machines and fuel are competitive, with prices over time given by

P (t) and p(t). We adopt a regularity condition on output demand, Q(P ), that the elasticity

of demand be non-decreasing in price. The variables q(t) and x(t) represent both the flow

and cumulative fuel extracted and (by choice of units and in the absence of sequestration)

the flow and cumulative amounts of carbon emissions. Finally, there is a constant interest

rate, r.

The equilibrium of this well-known model is studied in the literature(Heal (1976),

Stiglitz (1976)). The resource is extracted in order of lowest extraction-cost deposits until

a date T at which production of energy switches entirely to the backstop. The dynamics

of p(t), q(t), c(t), and x(t) (price and quantity of fuel, cost of extraction, and cumulative
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emissions) are determined by the following conditions:

q(t) = λ0Q(z + λ0p(t)). (3.1)

The date of extraction of a deposit of cost c, t̃(c), maximizes the present value of rents

for the owner of the deposit:

t̃ = argmaxt[p(t)− c]e−rt. (3.2)

The function c(t) is the inverse of t̃(c).

From the first-order conditions for the maximization problem (3.2) we get the following

differential equation:

ṗ(t)

p(t)− c(t)
= r. (3.3)

with a terminal condition given by:

p(T ) = c(T ) = (y0 − z)/λ0 (3.4)

Here, T is the date of the switch to the backstop. At T , the costs of the two technologies

are equal: z + λ0c(T ) = y0.

The variable x(t) is the cumulative extraction of fossil fuel (first carbon reservoir).

Without sequestration (CCS), this variable also represents the cumulative addition of car-

bon to the atmosphere(second carbon reservoir). The total extraction of fossil fuel is given

by:

x(T ) = G((y0 − z)/λ0). (3.5)

CCS is represented by the fraction of emission that is captured from emission a(t).

55



3.4. Clean Energy Innovation

With CCS, the dynamics of carbon in two reservoirs changes: q(t) still measures the rate

of carbon removed from the earth, but now the rate of carbon added to the atmosphere is

now [1− a(t)]q(t).7

Each technology is represented by one parameter in our model. The parameter y

represents the per-unit cost of CE technology. Lower levels of y0 means cheaper (superior)

technology. The FE technology is represented by λ0. A smaller λ means more efficient

(superior) technology. And finally, a represents CCS technology. Larger a means more

(superior) sequestration technology.

3.4 Clean Energy Innovation

Initially, the per-unit cost of CE backstop is y0. But there is the possibility of a single

innovation at any time that would lower the costs to y1 < y0. The probability of discovery

of the new CE technology follows a Poisson process: if at date t the new backstop has not

been discovered, then with probability ρdt the new technology will be discovered in the

interval [t, t+ dt] for dt vanishingly small.

3.4.1 Unexpected CE innovation on its own is a boon

In asking about the impact of innovation on climate change, we distinguish between the ex

post effect of realized innovation, and the ex ante effect that of the threat of innovation. To

isolate the ex post effect, suppose that innovation has zero (or vanishingly small) probability

but is possible, and consider the impact of a realized discovery of the new technology.

Before discovery, the equilibrium follows the same path as if innovation were impossible.

7A third reservoir, the cumulative carbon stored, is potentially important in reality since the under-
ground space required to store CO2 is several times the space taken up by the fossil fuel prior to extraction
and combustion. Storage space may be limited. We set aside this complication in our simple model, how-
ever, assuming that the cost of CCS does not include the shadow price of a limited amount of storage
space.
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After a discovery, the equilibrium is described by the set of equations above, with y0

replaced by y1. The time of switch to backstop is given by t̃((y1 − z)/λ0). If discovery

occurs at a date at or beyond t̃((y1 − z)/λ0), then fossil fuel extraction stops immediately

and production switches to the new backstop technology.

The following proposition is immediate.

Proposition 1 The ex post effect of the discovery of a new clean-energy technology at a

date t ∈ [0, t̃((y1 − z)/λ0)] is a reduction in cumulative emissions, E, by the following

amount:

(y0−z)/λ0∫
(y1−z)/λ0

g(c)dc = G(
y0 − z
λ0

)−G(
y1 − z
λ0

).

The effect of a discovery at date t ∈ [t̃(b1),T] is a reduction in cumulative emissions

by:

G(t̃((y0 − z)/λ0))−G(c(t)).

An unexpected CE innovation always reduces the long-term cumulative carbon and it

is beneficial for the climate in the long-term.

3.4.2 CE-CCS interaction: The devil is in the details

To study the interaction of CE and CCS, first we need to define innovation in CCS technol-

ogy. Innovation in CCS is taken to be a monotonic increase over time in a(t), starting at

a(0) = 0. “Stronger” innovation in CCS is the partial order given by: a1(t) is stronger than

a2(t) if a′1(t) > a′2(t) for all t. (A statement S is true with “sufficiently strong” innovation

in CCS means that there exists a pattern of innovation a∗(t) such that for all a(t) stronger

than a∗(t) the statement S is true.)

57



3.4. Clean Energy Innovation

CCS does not affect the patterns of extraction, but it reduces the amount of carbon

emitted to the atmosphere. Therefore, CCS innovation is beneficial on it its own. With

no innovation in clean energy, the impact on total net emissions of an innovation in CCS

from a1(t) to a2(t), given the equilibrium flow of fossil fuel q(t) is
∫ T
0 [a2(t)− a1(t)]q(t)dt.

This generalizes easily to the case of clean-energy innovation at any date:

Proposition 2 Given the discovery of clean energy technology at any date t, or no inno-

vation in clean energy, an increase in CCS efficiency lowers cumulative carbon emissions.

To apply the clean-energy model in the presence of CCS innovation in the next section,

we need to characterize the impact of innovation not just on cumulative extraction but also

on the entire path of extraction. To this end, let p(s) ≡ p(x−1(s)) be the equilibrium price

path as a function of the amount s extracted to date in the basic model; with innovation

introduced, p0(s) represents the price path when the backstop technology fixed at y0 and

p1(s; τ) is the price path for t > τ when the new technology is discovered at date τ. For

t > τ , the current extraction cost is c1(t; τ), the inverse of this function (in t) is t̃1(c; τ)

and total extraction to date is x1(t; τ).

Innovation accelerates extraction:

Lemma 1 With discovery of the new backstop y1at date τ , we have: p1(s; τ) < p0(s), for

all s > x0(τ); for all t > τ , x1(t; τ) > x0(t); and for all c > c(τ), t̃1(c; τ) < t̃0(c).

Proof: in the Appendix.

The interaction of CCS innovation and clean-energy innovation is central. The acceler-

ation of emissions that results from clean energy innovation brings the emissions from the

fossil fuel available at each extraction cost c forward in time to a date when CCS is less

developed.
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Proposition 3 In the presence of CCS innovation a(t), the impact of clean energy dis-

covery at a date τ ∈ [0, t̃0((y0 − z)/λ0)] is a change in cumulative emissions given by

(y1−z)/λ0∫
c(τ)

[a(t̃0(c)− a(t̃1(c; τ)]dG(c)−
(y0−z)/λ0∫

(y1−z)/λ1

[1− a(t̃0(c))]dG(c) (3.6)

For sufficiently strong innovation in CCS, the first term on the right-hand side of (3.6)

dominates, so that total cumulative emissions increase with the clean energy discovery.

Proof. In (3.6), the first term represents the increase in emissions net of CCS of those

units of carbon that are emitted with or without the discovery of the new clean-energy

alternative. This term is positive (by Lemma 1) because all deposits of extraction cost

between (y1 − z)/λ1 and (y0 − z)/λ0 are extracted more quickly and therefore, subject

to the lower value of a(t). The second term represents the emissions released under the

original clean energy technology but not under the new technology.

Choosing a∗(t) greater than 1− ε over, for arbitrarily small ε, makes the second term

arbitrarily small for all innovation patterns stronger than a∗(t). Thus, for sufficiently strong

innovation in CCS, the discovery of clean energy leaves the environment worse off in the

long-term.

3.4.3 CE innovation threat and a green paradox

We have, to this point, examined the impact of a realized discovery on the long-term climate

outcome. To isolate the ex ante effect of a threat on innovation, we compare two paths

for fossil fuel prices: the price path that the fossil fuel market would follow if innovation

is impossible, and the price path that the market follows if innovation is possible (with

probability ρdt in a small interval dt) but never realized. This comparison captures the

impact of the threat of innovation on prices and consequently on the extraction path and

59



3.4. Clean Energy Innovation

cumulative extraction.

We start with the model of clean-energy innovation. The examination of the ex ante

impact of clean energy innovation requires ex ante price paths for both the innovation-

is-impossible case and the innovation-is -possible case. The former price path is given by

(3.3). The innovation-is-possible price path we derive from a recursive model with state

variables (x, δ), where x is the cumulative extraction to date and δ takes on the value 0 if

the new technology has not been discovered to date and the value 1 if it has. We again

let p0(t) denote the price path prior to innovation and p1(t; τ) denote the price at date t

following discovery of the technology at date τ ≤ t. Thus, p1(t; t) is the equilibrium price

in the market established immediately upon discovery at date t. The differential equation

for the ex ante price path is determined by the condition that the owner of a deposit of

extraction cost c be indifferent, as dt approaches 0, between extracting at date t̃(c) and

extracting at date t̃(c) + dt. This condition is:

p0(t)− c(t) = limdt→0e
−rdt[(1− ρdt)p0(t+ dt) + ρdt · p1(t; t)− c(t)]. (3.7)

Taking this limit yields the following lemma, proved in the Appendix B:

Lemma 2 With clean-energy innovation under the parameter ρ, the price path prior to

discovery satisfies:

ṗ0(t) = r{[p0(t)− c(t)] + ρ[p0(t)− p1(t, t)]}. (3.8)

We denote the variables before and after discovery with the subscripts 0 and 1. The

endogenous variables without subscripts refer to the innovation-is-impossible case. Equa-

tion (3.8) differs from the price innovation-impossible path, (3.3), only in the inclusion of

the last term on the right-hand side. This term reflects the additional opportunity cost for

which the holder of reserves of cost c(t) must be compensated to be indifferent between
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holding the reserves for an additional instant and selling them at t: the threat of a capital

loss with a price drop to p1(1, 1).

Proposition 7 below characterizes the impact of the threat of unrealized innovation on

the price path: the price starts lower as a result of the threat and moves more steeply,

under (3.8) than under (3.3). This means that the date at which reserves of cost c are

extracted, t̃(c), is reduced by the threat of innovation, for all c up to the terminal cost, b.

The earlier date means that for each c, emissions at c are subject to CCS at any earlier

date. If there is innovation in CCS, then this earlier date leads to greater net emissions.

The proposition is proved in the appendix.

Proposition 4 (a) In the absence of CCS innovation, the ex ante impact of clean-energy

innovation on cumulative emissions is zero.

(b) With CCS innovation , ȧ(t) > 0, the ex ante impact of clean energy innovation is to

increase emissions by:

∫ (y0−z)/λ0

0
[a(t̃(c))− a(t̃0(c))g(c)dc > 0

The threat of innovation does not affect the gross cumulative carbon emissions (i.e.,

emissions prior to the application of CCS) but increases net emissions because each unit

of fossil fuel is subject to the less well-developed CCS technology at an earlier date.

3.5 Fuel Efficiency Innovation

In this section, we turn off innovation in CE technology and fix the backstop cost at y.

Our focus in this section is the effect of innovation in FE technology. First, we study the
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effect of a realized but unexpected innovation in FE. Then we study the interaction with

CCS in two scenarios: first, an inelastic demand. This example helps solidify the intuition.

And later, we allow for a general demand function, which brings the Jevons paradox into

play. Finally, we study the effect of the threat of innovation in FE.

3.5.1 Paradoxical effect of an unexpected FE innovation

Similar to CE innovation, we consider a single innovation in fossil fuel efficiency that

would lower the fuel requirements per unit of machine output from λ0 to λ1. Only the

date of discovery is uncertain, and this date follows a Poisson process with ρdt being the

probability of an exogenous innovation in a small interval dt if the innovation has not yet

been discovered.8 In the absence of CCS innovation, the cumulative amount of carbon

emission after innovation is given by changing λ0 to λ1 in equation 3.5.

x(T ) = G((y − z)/λ1)

The following proposition summarizes the FE innovation paradox.

Proposition 5 Suppose that with an initial technology described by fuel requirements per

unit of λ0, the terminal date for fossil fuel extraction in this model is T . An innovation

in [0, T ] that reduces the fuel requirements to λ1 < λ0 raises the cumulative fuel extraction

and carbon emissions by:

G((y − z)/λ1)−G((y − z)/λo).

Fuel of extraction cost in the interval [(y − z)/λ0, (y − z)/λ1 becomes economic only

8We assume that innovation requires that the market for fossil fuels has a positive quantity; that is, we
ignore the possibility that new innovation occurs after the fossil fuels market is closed that would render
fossil fuels once again economic.
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with the discovery of the new fossil fuel technology. The new technology allows each unit of

fuel to produce more machine output, offsetting the higher cost. The proposition is easily

generalized to the case where the backstop technology is improving over time(i.e. where y

is a decreasing function of t). 9

3.5.2 CCS innovation saves the day: Inelastic demand

The impact of fuel efficiency innovation if CCS innovation is in place depends on the

elasticity of demand for machine output. We start with the assumption that this demand

is perfectly inelastic, at a fixed quantity h. In interacting fuel efficiency innovation and

CCS, we have in mind ICE’s in industrial production as well as electricity production,

rather than transportation.

With the original technology, the date of extraction of a fuel reserve of cost c is given by

t̃0(c) = G(c)/λ0h for values of c up to the maximum cost of reserves extracted, (y− z)/λ0,

because fossil fuel is extracted at the rate λ0h. With discovery of a new fuel-efficiency

technology at date τ , the rate of emissions drops to λ1h. That is, the emissions rate is

identical up to the reserves of cost c0(τ), but then decreases to λ1h up to the (higher)

terminal cost (y − z)/λ1. Thus for c > c0(τ),

t̃1(c; τ) =
G(c0(τ))

λ0h
+
G(c)−G(c0(τ))

λ1h
>
G(c)

λ0h
= t̃0(c). (3.9)

Given CCS innovation, a′(t) > 0. Hence, from (3.9), a(t̃1(c; τ) > a(t̃0(c)).

Proposition 6 With the discovery of a new fossil fuel technology at date τ ∈ [0, (y−z)/λ],

9And we conjecture that endogenizing innovation in the clean backstop magnifies the detrimental
effect of an increase in fuel efficiency. Successful innovation in clean energy would be rewarded with delayed
presence in the market if the innovator were competing against a higher FE. This would decrease the
incentives to innovation and the reduced innovation would in turn allow the fossil fuel power generation to
survive until the fossil fuel extraction cost reached a higher level.
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given CCS innovation, cumulative emissions fall by

∫ (y−z)/λ0

c0(τ)

[
a(t̃1(c; τ))− a(t̃0(c))

]
dG(c)−

∫ (y−z)/λ1

(y−z)/λ0

[
1− a(t̃1(c; τ))

]
dG(c) (3.10)

For sufficiently strong innovation in CCS, the first term dominates, and the discovery

decreases cumulative emissions.

There is no change in emissions up to the discovery date τ(i.e., no change in emissions

from reserves of cost c ∈ [c, c(τ)]). Beyond this cost interval, the first term of (3.10)

represents the reduction in cumulative emissions net of CCS from those deposits that are

used under either technology. This is positive because the lower rate of emissions following

fuel-efficiency innovation means that t̃1(c; τ) > t̃(c) in this interval. The emission of carbon

from the deposits of cost c, which had resulted in net emissions of 1− a(t̃0(c)) prior to the

discovery of the new fossil fuel technology, result in smaller net emissions of 1− a(t̃1(c; τ))

after the discovery. The second term of (3.10) represents the emissions from deposits that

are rendered economic only by the more efficient new fuel technology. For sufficiently strong

CCS innovation, this second term is smaller than the first term, proving the proposition.

3.5.3 CCS-FE interaction: General demand

We have to this point discussed two paradoxes. FE innovation on its own can damage

the environment in the long-term. CE innovation with sufficiently strong CSS innovation

has the same effect. If demand is sufficiently elastic, then in extending the model of FE

innovation the logic brings into play a third paradox, Jevons paradox. The increase in

fuel efficiency reduces the cost and thus the competitive price for machine output. If the

demand is elastic, this price reduction raises the quantity demanded of machine output,
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offsets the lower rate of fuel required per mile, and increases the demand for fuel.10

Jevons’ paradox, or the rebound effect, like our fuel-efficiency paradox, is about the

impact of a decrease in the fuel requirements of internal combustion engines and electric

generation from fossil fuels. Jevons’ paradox describes the possible short run effect. It does

not enter the economic logic of long-term impact when CCS innovation is zero, because it

is irrelevant for long-term gross output. But whether Jevons’ paradox holds matters when

we have CCS innovation in the portfolio because this affects the time path of emissions.

In our model the derived demand for fuel is given by q(p;λ) = λQ(z + λp), where Q is

the demand for machine output. Jevons’ paradox, dq/dλ < 0, holds if the elasticity of Q

exceeds 1/λ. It is easily verified that ∂2q/∂λ∂p < 0, so that if Jevons paradox holds at a

particular value of p, then it holds at all higher p. Because in equilibrium p is increasing

over time, Jevons paradox holds for all time if it holds for p(0) and holds at no time if it

does not hold at p(T ). Proposition 5 follows directly.

Proposition 7 Suppose that the elasticity of demand of Q(P ) is increasing in price. Then

a sufficient condition for fuel efficiency innovation to increase cumulative emissions with

(or without) CCS innovation is that the elasticity of demand for machine output exceed

1/λ at the price P = z + λp(0). A sufficient condition for fuel efficiency innovation to

decrease cumulative emissions with sufficiently strong CCS innovation is that the elasticity

of demand for machine output be less than 1/λ at the price P = z + λp(T ).

3.5.4 Last piece of the puzzle: the threat of FE innovation

In the fuel efficiency model, existing technology in the production of machine output uses

λ0 units of fossil fuel per unit output and requires z dollars per unit output in additional

input expenditures. A backstop technology is available at cost per unit y. Innovation

10Jevons (1965) argued that the increased efficiency of internal combustion engines might actually
increase the demand for fuel. The (misplaced) concern at the time was that reserves of coal would run out.
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occurs with probability ρdt in any instant dt and consists of discovery of a new technology

λ1 < λ0.

The ex ante impact of fuel efficiency innovation refers to the impact on cumulative

carbon emissions of the threat, ρ, of innovation - when the innovation is never actually

realized. The ex ante impact operates through the impact of ρ on the price. In the

clean-energy innovation model, we compare the ex ante price path with the innovation-is-

impossible price path. If the ex ante price path is lower, then the fixed amount of cumulative

emissions, G((y − x)/λ), is released at an earlier time with predictable consequences if we

have CCS innovation in the existing portfolio of innovation.

The dynamics of the endogenous variables (using the same notation as in the ex ante

clean-energy model) p0(t), q0(t), c0(t), x0(t); p1(t; τ), q1(t; τ), c(t; τ) are governed by the fol-

lowing conditions.

Using a logic parallel to the ex ante case for clean energy, one can show that the ex

ante price path follows equation (3.8). The terminal condition is p0(T ) = c(T ) = (y−x)/λ.

(That is, if the new technology is not discovered, fossil fuel extraction continues until the

alternative technology is equally costly.) The cumulative gross emissions, G((y − x)/λ,

are unaffected by the threat of innovation. The ex ante price given the state x is less

than the innovation-impossible price path if and only if the price falls with discovery(i.e.,

if p1(t; t) < p0(t), equivalently, if p1(c; τ) < p0(c)).

Unlike the case in the clean-energy innovation model, this latter inequality holds, if at

all, only in early years. There are two forces at work. First, the new technology reduces

future consumption conditional upon innovation, assuming demand elasticity below the

critical point for Jevons’ paradox to kick in. This increases the length of time that the fuel

will last, reducing its scarcity value. To take an extreme example, suppose that the current

cost of extraction is zero, but fossil fuel will run out (or become prohibitively expensive
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to extract) in one year. Then the current price in the market for fossil fuels is bounded

below by [(y − z)/λ0]/(1 + r) because holders of reserves have the option to wait one year

to sell at (y − z)/λ0. This fossil fuel price may be very high, if y is high. But suppose

that the innovation is so miraculous that if it occurs it reduces the requirements of fossil

fuel per mile from λ0 to λ̇1 = 0.001 · λ0 with the effect that fossil fuel will be available at

zero extraction cost for about 1,000 years. The price of fossil fuel will fall to about zero.

The threat of the capital loss from innovation therefore, reduces the fossil fuel price in this

example, accelerating extraction and emissions. In the presence of CCS innovation, this

brings emissions forward to a time of low CCS effectiveness. Net emissions rise.

The second force underlying the ex ante impact of fuel efficiency innovation works

in the opposite direction. Consider an innovation at the exact date, T, of at which the

market would switch to the alternative technology downstream. (T = G−1((y−z)/λ0) The

Hotelling rent, p(t)− c(t), jumps from zero to a positive value. (The price after innovation

follows an innovation-impossible path, and Hotelling rent is always positive before the end

date.) From continuity of the price paths, there is an interval [t, T ] over which the impact

of an innovation on price is always positive.11 The ex ante impact of innovation over this

interval is therefore, to raise price, due to the promise of the capital gain. This lowers

the output for sufficiently elastic demand, deferring emissions to the future. With CCS

innovation in place, net cumulative emissions are reduced. In short, the threat of fuel

efficiency innovation always helps net emissions late in the game.

The following proposition formalizes this discussion:

Proposition 8

(a) In the absence of CCS innovation, the ex ante impact of fuel-efficiency innovation on

cumulative emissions is zero.

11This interval may include t = 0.
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(b) With CCS innovation but perfectly inelastic demand for machine output, the ex ante

impact is again zero.

(c) With CCS innovation and d′(p) < 0, the ex ante impact of fuel efficiency innovation,

beyond some t̂ < T, is to reduce cumulative net emissions.

The proof is in the appendix B.

3.6 Conclusion

To formulate optimal climate change policy, we must first understand the impact of exoge-

nous innovation. We show in this paper that the impact of the main types of innovation

depends on the portfolio of existing innovation. In two cases, clean-tech innovation can

have a perverse long-term impact both in terms of realized innovation and, under further

conditions, the ex ante threat of innovation.

The models in the paper relied on two technical assumptions (Hotelling Model for price

path of fossil fuels and innovation modeled as an unexpected one-time reduction of some

input), both of which can be relaxed in an extension of this work. The first assumption is

strong in that it requires the price of fossil fuels to increase with the annual interest rate.

Our results will still hold if fuel producers collect rent on top of the extraction cost and

that rent decreases if renewable prices drop.

The second assumption (of a one-time Poisson process) can be relaxed to allow for mul-

tiple Poisson processes. We showed that both an unexpected innovation and anticipation of

innovation lead to qualitatively similar results. If the results hold for one Poisson process,

it will hold for multiple Poisson processes as well. Therefore, if one can model gradual

innovation as the sum of multiple incoming Poisson processes (with different probabilities

for the size of each), our results would still hold.
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We emphasize that our results about perverse impacts of innovation do not make this

an “anti-innovation” paper. The paradoxical results all pertain to a world with no carbon

taxes. With optimal Pigouvian carbon taxes, all emission externalities would be inter-

nalized and innovation, by expanding the social planner’s choice set, could only increase

welfare. The main policy implication of this paper is to underscore the importance of car-

bon pricing. Without carbon taxes, one cannot even be sure that innovation has positive

value.

Policy discussions have not appreciated the limitations of innovation as a sole instru-

ment for tackling climate change. One example is the Green New Deal, a pair of resolutions

submitted to US Congress in 2019, sponsored by Rep. Alexandria Ocasio-Cortez (D-NY)

and Sen. Ed Markey (D-MA). These resolutions discuss proposed goals of reducing green-

house gas emissions, among other objectives. The goal of reducing emissions is laudatory,

but the Green New Deal resolutions contain no mention of carbon taxes whatsoever. In-

stead, the proposed methods for achieving the goals include “making public investments in

the research and development of new clean and renewable energy technologies and indus-

tries”. 12 Our message is that carbon pricing is essential even to ensure that the research

and development of clean energy technologies has a positive value, let alone be the central

tool for reducing greenhouse gas emissions.

The results of our analysis are one piece of a large issue, the optimal policy towards

climate change. This policy would consider not only the long-term impact of innovation but

also the full welfare, taking into account short- and medium-term effects. A fuller analysis

would also consider the sensitivity of innovation size and likelihood to government subsidies

of innovation. In our model, the potential perverse impact of clean-energy innovation of

innovation (when the rate of improvement in CCS is substantial) would disappear if the

12p.12 of the House resolution
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innovation were sufficiently large. A large innovation in clean energy would eliminate all

emissions immediately. This suggests a non-concavity in optimal innovation policy. Small

subsidies to innovation may have a negative value in the absence of carbon pricing, whereas

the marginal value of innovation subsidies may be invariably positive at a sufficiently high

subsidy level. The policy implication of this non-concavity; in an optimal world, innovation

subsidies cannot be half-hearted.
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Chapter 4

Asymmetric Information,

Reelection Pressure and Political

Decision Making under

Uncertainty

4.1 Introduction

A foundational principle of a well-functioning democratic government is that elected leaders

have strong incentives to act in the public or voters’ interest. We expect a politician who

acts against this interest to lose electoral support and be replaced in a future election.

However, some considerations may undercut this principle. One possibility is that

voters may be less informed about major issues than are elected officials. A politician

seeking re-election may prefer to implement policies consistent with the beliefs of poorly

informed voters rather than enact better (welfare-superior) but less popular policies.

In a nutshell, the public relies on the politician to acquire relevant information and

make informed decisions. The politician is better informed, but the relatively ill-informed

electorate chooses the politician’s re-election fate. The information asymmetry creates

tension between decisions in the voters’ interest and what merely looks good to the voters.
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This tension manifests itself in the decisions that the politician makes and the politician’s

information-gathering efforts.

This paper studies different aspects of this tension, theoretically and empirically. I

examine the interaction of the next election’s proximity with politicians’ distortion towards

policies that appear to be in the public’s interest - but are not. We expect the asymmetry

of information between politicians and the public to diminish over time. Therefore, the

politicians who have an imminent upcoming election will be more likely to act toward the

ill-informed voters’ beliefs. On the contrary, the politicians facing distant elections can

act based on voters’ interests (and ignore voters’ misguided beliefs), knowing that they

will update their belief until the election. I also examine how a lack of incentive for the

politician to act in the public’s interest leads to the politician’s sub-optimal information

acquisition.

In the paper’s theory section, an incumbent politician has to decide on independent

issues in an uncertain environment (e.g., response to a crisis). Each particular issue consists

of two opposing extremes (i.e., act strongly vs. ignore the crisis). The politicians can choose

anywhere between the two extremes.

The politicians’ objective is to get re-elected (or their party to stay in power). They act

to maximize their re-election probability at the election date in expectation. The voters

are not active players. They judge politicians’ actions based on the information available

to them. The incumbent politicians’ chance of re-election declines if their decision deviates

from the public’s belief about the optimal action. The decline is proportional to the size

of the deviation and the quality of public information.

The politician receives an unbiased signal of the best policy before making their deci-

sion. Before making any decision, the public receives a noisier version of the same signal.

The politician forms an expectation of the public’s belief on the election day and takes ac-
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tion. The public receives many more independent signals until the election day and keeps

updating its belief. The public can have a diffuse or non-diffuse prior, and their signals

may be more or less informative than the politician’s signal.

I consider two possibilities for the public’s belief and solve the model for those cases:

unified and polarized. A unified public means that voters agree about the probabilities

of the optimal action, whereas a polarized public means that voters sort themselves into

two opposing groups. The group members agree within itself but disagree between the two

groups.

In either case, with an innocuous assumption about information asymmetry, I show that

the politician deviates from implementing the best action conditional on their information

set. Moreover, the closer the election, the more the politician deviates from implementing

the welfare optimizing policy, holding everything else constant. The required assumption

is that the politician has superior information at the time of decision-making about the

best action compared to the public. Some (but not all) of this superior information fades

away over time as the public receives more informative signals.

A polarized public implies that any politician must consider two opposing beliefs and

its effect on their popularity when making a decision. Polarized elections are decided by

voter turnout, and turnouts are proportional to candidates’ popularity. Following this

logic, I assume that the politicians care about their popularity among their supporters,

hoping to excite them to turn out, more than their popularity among their opposition.

This assumption allows me to pin down that the direction of the politicians’ deviation

from the optimal decision. Their bias is towards their voting base.

As the last theoretical contribution, I endogenize the quality of the politician’s signal.

Exogenous signal quality is unrealistic because the politician can exert time and resources

to obtain a higher quality signal. We should investigate if endogenizing the signal quality
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affects the result. I show that previous results still hold. Moreover, I show that the signal’s

quality is directly proportional to voters’ signal quality and is inversely proportional to

the election timing. A politician with a later election spends more resources to acquire a

higher quality signal.

In the empirical section of the paper, I use a difference-in-differences strategy to test

the following prediction: two politicians who are identical except for their next election’s

timing behave differently during the crisis. In early 2020, the United States was hit by the

Covid-19 pandemic. In this setting, US governors are responsible for deciding on multiple

policies to limit business activities and protect citizens’ health in their state. About half

of these governors were Republican, and the other half were Democrats. One-fifth of these

governors have an upcoming election in 2020.

The voting base of Democrats assess the threat of the disease higher than the Re-

publicans and required a more robust response from the government. The voting base of

Republicans, however, emphasizes the individual liberties of citizens and oppose decisive

government intervention. The situation is highly uncertain since the threat of the dis-

ease’s infectivity and lethality is unknown, and there are doubts about the effectiveness of

different policies.

Eventually, the data shows that the Democrat governors who have an upcoming election

in 2020 are the most likely to close economic activity. The Democrats and Republicans

who do not have an upcoming election behaved statistically similar to each other. Finally,

the Republicans who have an upcoming election in 2020 are the least likely to close any

economic activity.

The empirical data are consistent with the hypothesis that the governors with an up-

coming election are biased towards their voters. In contrast, the ones without an upcoming

election implement their best expectation. It is worth noting that this empirical strategy
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does not require knowing what the optimal (i.e., correct and informed) action is. It only

relies on the observed decisions made by politicians.

In the next section, I review the relevant literature. In section 3, I proceed to explain

the model and derive the theoretical results. In section 4, I explain the data, set up the

model’s empirical implications, and present the results. And I conclude in section 5.

4.2 Literature Review

Retrospective voting is the idea that voters hold the politicians (or parties) accountable

for their actions during their tenure. Key (1966) formalizes this idea in his seminal work,

the Responsible Electorate. Retrospective voting readily invites the idea of the principal-

agent problem faced by the public. Barro (1973) and Ferejohn (1986) model the moral

hazard problem in the accountability of the politician to allocate economic resources effi-

ciently. Reed (1994) addresses the adverse selection problem by introducing heterogeneous

politicians.

Nordhaus (1975) introduces the idea of political business cycles. If the electorate votes

retrospectively, the incumbent chooses the economic policy that maximizes its probability

of re-election, which is different from the optimal policy. The incumbent increases its re-

election chance by “manipulating” the economy and increasing welfare in the election year

(Nordhaus (1975), Suzuki (1992)). The incumbent may also “surf” the economy (i.e., to

call elections more (Palmer, Whitten (2000), Roper, Andrews (2003)) or less Smith (2003)

opportunistically in favorable economic times). Kayser (2005) studies the case where the

incumbent both surfs and manipulates the economy for re-election.

In recent years, researchers started to focus more on studying retrospective voting on

issues other than national macroeconomic policies (e.g. school performance

Berry, Howell (2007), handling disasters Healy, Malhotra (2010), and relative
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unemployment in a city Hopkins, Pettingill (2018)). This literature concludes that if a

policy influences a tangible outcome and is within the politician’s sphere of control, then

the incumbent’s poor decisions harm their chances in the next election. Moreover, these

papers suggest that the incumbent’s punishment is mediated by media attention level on

an issue.

A laboratory experiment by Woon (2012) confirms these conclusions. Woon asserts that

“retrospective voting is a simple heuristic that voters use to cope with a cognitively difficult

inference and decision problem and, in addition, suggest that voters have a preference for

accountability.”

Healy, Malhotra (2013), raise a few open research questions. I partially address two of

them in this paper. They uncovered that no one has studied the effect of retrospective vot-

ing on policy outcomes. They also state that no one studied the interaction of polarization

and political sorting with retrospective voting.

This brings us to the literature on political polarization, specifically the effects of polar-

ization on political decision-making. The consensus among political scientists is that the

American political elites have become more polarized over the past few decades Fiorina,

Abrams (2008). Most of the literature show polarization by focusing on congress roll calls

and deviation from the party ranks McCarty et al. (2006). In addition to that, a historical

analysis of politicians’ speech by Gentzkow et al. (2019) shows polarization has significantly

increased among the political elite since the 1990s.

But there is an ongoing debate on the degree to which the American public is polarized.

Some academics Abramowitz, Saunders (2008) assert that polarization has grown among

the American public, and people hold more extreme and opposing beliefs. Others point

out Fiorina et al. (2008) that only party sorting has increased among the public, and

even though opinions are not more polarized, voter-party identification is much stronger.
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Political parties play a significant role in this polarization by increasing control over their

members and setting a polarized agenda Canen et al. (2020). Whether the public has

become more polarized (holds more extreme views) or it becomes more sorted (more people

self identify with political parties and its politics), it caused “the nation as a whole to hold

more aligned political identities, which has strengthened partisan identity” Mason (2015).

Grumbach (2018) analyzes sixteen issues of gubernatorial policies across US states

to study the interaction of decision making and polarization. He shows that party control

predicts socioeconomic decisions in polarized topics like health care but not in nonpolarized

areas like criminal justice. Moreover, the policy disparity between parties on polarized

issues has increased from 1970 up to 2014.

Gentzkow, Shapiro (2010) show that the media find it economically optimal to de-

viate from reporting an unbiased version of the news. They found evidence that profit-

maximizing American newspapers respond to their readership biases by introducing a slant

towards their base. In a similar vein, I show here that incumbent politicians find it optimal

to introduce a slant towards their base in implementing policies.

In this paper, I make use of the findings of the literature on public learning and opinion

formation. Acemoglu et al. (2006) show that it is theoretically possible for the public to be

Baysian and holds polarizing opinions . Others showed that pre-existing polarized opinions

might lead to a different assessment of similar information (Gerber, Green (1999), Dixit,

Weibull (2007)).

This paper can be classified as part of the emerging literature on responses to Covid-19.

I contribute to this literature by studying how the governor’s party and the election timing

affect the governments’ decision for implementing social distancing policies. Chernozhukov

et al. (2021) study the effect of government policies in the contagion of Covid 19. In a

recent study, Allcott et al. (2020) show that Democrats and Republicans perceive Covid-19
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differently. Democrats see Covid 19 as more dangerous and expect more stringent behavior

from the government. In the absence of the aforementioned political considerations, Alvarez

et al. (2021) theoretically study the optimal policies to respond to Covid-19 . To my best

knowledge, this is the first paper that discusses the political challenges in finding and

implementing the optimal policy.

4.3 Theoretical Model

This section formalizes a game between politicians and voters. Incumbent politicians (and

political parties) make decisions during their tenure. The politician wants to win re-

election, whereas the voters want the politician to make the welfare-maximizing decision.

We need to formally distinguish among welfare maximizing, the politicians’ information

about it, and what voters believe. These three do not always fully agree. There is an

information asymmetry between politicians and voters.

This information asymmetry interacts with election timing through an information

channel. Voters learn new information after the politician makes a decision. The politicians

form expectations about what voters will learn until the election and bases the decision on

that expectation. If the election is in the distant future and enough information becomes

available to the voters at the election day, the politicians tend to act based on their superior

information. Nevertheless, if the election is in the near future and politicians do not expect

the voters to update their information, they tend to act more similarly to the voters’ priors.

The model allows for a polarized electorate, and it also paves the way for endogenizing

the information gathering efforts of the politician. The model yields a clear difference in

differences style prediction that can be tested with real-world data on politicians’ decisions.
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4.3.1 Setup

To formally model the interaction between the politician and voters, assume that nature

sets the welfare-maximizing action and sends a signal to the politician and the public. The

politician may be a Democrat or Republican. The public may be unified and receive a

signal or be polarized, and each group receives a signal separately.

Every player updates their belief according to their signal. The politician takes action.

Then the public receives new signals. Finally, an election takes place. For some politicians,

this election is early, and for the others, it is later.

For every politician, the model has the following timing:

• Nature sets the welfare-maximizing action for an issue.

• Nature sends a signal to the politician, and the politician updates their belief with a

diffuse prior belief.

• Nature sends a noisier version of the same signal to the public, and the public updates

its belief with its prior belief.

• The politician chooses their action.

• The public receives N independent signals from nature and updates their beliefs until

the election day.

• Election takes place (it may be early or late).

The real line represents the issue. A point represents the politician’s decision on the

real line s ∈ IR. I assume that there exists a unique decision point on the issue line that

maximizes social welfare. Still, neither the politician nor the public knows the optimal

decision point with certainty. They both have a belief about the optimal decision.
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A belief is a normal distribution ∼ N (sx, σx) over the issue. This belief represents the

true probability that a belief holder assigns every decision to be the welfare-maximizing

decision. The higher the standard deviation (σx), the lower the certainty of the belief

holder.

Take the welfare-maximizing action to be so. The politician has a diffuse prior. They

then receive a signal sg about the optimal action. The signal is an unbiased random

variable with known uncertainty σg. Therefore, the signal has the distribution N (so, σg).

The realization of this signal is sg. Following the Bayes rule, their belief on the best policy

after receiving the signal will be N (sg, σg).

Similarly, the public receives a signal sg + εg. εg is a mean-zero normally distributed

random variable. The public combines the signal using its initial prior and form its belief.

Therefore, the posterior belief will be normally distributed as N (sp, σp). It is possible

to write sp and σp as a function of the prior and the signal, which will be done later.

Nevertheless, this suffices for the moment.

We can think of the public’s belief as the wide-held opinion of the voters. Ideology,

past shared experience, and the media slant all influence public opinion. Therefore, it

consists of prior information, potential bias, and a noisier version of the politician’s signal.

The politician knows about this belief; hence, it has no extra information for a politician’s

inference of so. They can safely ignore this belief for inferring so.

After the politician and the public both receive the signal, the politician chooses their

action. However, the public’s belief is dynamic. For simplicity, assume that the public

receives exactly N signals from nature up to the election day. Each signal is consistent

and distributed as N (so, σy). Label every realization of these signals as ŝip. Therefore, the
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public opinion on the election day would be normal with the following distribution:

sp(T ) ∼ N (
spσ

2
y +

∑N
i=1 ŝ

i
pσ

2
p

σ2y +Nσ2p
,

σ2pσ
2
y

σ2y +Nσ2p
) (4.1)

The public wants the politician to implement the welfare-maximizing policy, but it

does not know about the information set available to the politician. The politician may

be incompetent and have high uncertainty. They may have some ulterior motives and

not implement the best policy, or they get unlucky, and the signal’s realization is far off.

Irrespective of the reason, the politician will lose popularity if they deviate from the mean

of public belief.

4.3.2 Solution for a unified public

The politician wants to maximize their re-election probability. In Appendix C, I show how

to derive a loss-function approach for such a politician. With a unified public, the following

loss-function (re-election probability) captures the politician’s objective:

P = P0 −
(s∗ − sp(T )

σp(T )

)2
. (4.2)

The politician does not have to act (s∗) based on what they believe to be the best policy

(sg). As new information emerges, the public’s belief about the optimality of politician’s

action changes. The politician wants to maximize their expected re-election probability.

This probability is negatively proportional to the squared difference of what they did and

what the public holds to be true on average at the election day (T). The coefficient of

proportionality is the inverse of the public’s certainty about the best action.

If issues are independent of each other, they enter the probability function in a separable

additive way. As a result, the politician can make decisions on each issue separately.
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Therefore, as long as each issue is independent of all others, the model can be generalized

to multiple issues.

The politician acts to maximize their expected re-election probability conditional on

the information set they have at the decision-making time:

s∗ = argmax
s

P0 − E[(
s− sp(T )

σp(T )
)2|I]. (4.3)

Proposition 9 With a unified public, the politician’s optimal action is a linear combina-

tion of the politician’s belief and public’s belief.

s∗ =
1

σ2y +Nσ2p
(spσ

2
y +Nsgσ

2
p). (4.4)

Proof. From equation 4.1, the politician knows the voters’ uncertainty on the election

day:

σp(T ) =
σ2pσ

2
y

σ2y +Nσ2p
.

Therefore, the following first-order condition is obtained:

s∗ = E[sp(T )|I]. (4.5)

Using the linearity of the expectation operator and equation 4.1 we get:

s∗ =
spσ

2
y +

∑N
i=1 E[ŝip|I]σ2p

σ2y +Nσ2p
. (4.6)

The politician’s expectation of the optimal action given their information (E[ŝip|I]) is sg,

hence equation 4.4 holds.

The welfare-maximizing action from the societal perspective, conditional on the infor-

mation available at the decision-making time, is sg. This information is available to the
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politician, yet proposition 9 tells us that they refrain from implementing the optimal ac-

tion. The amount of deviation decreases with voters’ informedness. This channel is the

“action channel” of political inefficiency.

Corollary 1 The politician’s deviation from the welfare-maximizing action reduces with

voters information.

∂(|s∗ − sg|)
∂σ2y

> 0,
∂(|s∗ − sg|)

∂N
< 0. (4.7)

Proof. The deviation from the welfare-maximizing action is given by:

|s∗ − sg| =
σ2y

σ2y +Nσ2p
|sp − sg|. (4.8)

Higher N means the voters receive more signal and lower σy means that the voters

receive better quality signals. Both increase voters’ information.

∂(|s∗ − sg|)
∂σ2y

=
Nσ2p

(σ2y +Nσ2p)
2
|sp − sg| > 0.

and

∂(|s∗ − sg|)
∂N

=
−σ2p

(σ2y +Nσ2p)
2
|sp − sg| < 0.

Note that if the public will be adequately informed by the election day, meaning that

either σy → 0 or N →∞, the politician will act based on their best knowledge.

4.3.3 Solution when the voters are sorted

If there is more than one group in public, a single number cannot summarize the public

belief, and the politician pays attention to multiple opposing opinions. The case where
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voters sort themselves into two groups is most relevant in a polarized society. In the

American society, Democrats hold more left-leaning ideologies and pay attention to similar

media. It is similarly true for the Republicans and those right-leaning ideologies.

The loss function introduced in equation 4.2 should be modified to incorporate both

opposing views. The problem is set for an incumbent Democrat, but the logic is similar if

the incumbent is Republican. If the incumbent’s base judges the politician’s action poorly,

they might get demoralized, refrain from voting, or even switch to the opposition. Yet if

the opposition’s base judges the politician’s action poorly, they might get mobilized and

turn out more than usual for the opposition. Hence, each action affects the two groups

separately to make different decisions. (For more discussion, see Appendix C) The following

expression gives the incumbent Democrat’s re-election probability:

P = P0 − α
(s∗ − sd(T )

σd(T )

)2
−
(s∗ − sr(T )

σr(T )

)2
. (4.9)

The subscript r denotes Republican, and d denotes Democrat. The parameter α de-

notes the relative strength of the politician’s decision effect on different voting groups’

turnout. With costly voting and a large enough ideological distance between two parties,

the elections are decided by turnouts and less so by voters, switching parties. In such an

environment, it is plausible that a Democrat cares more about exciting their base, rather

than influencing Republican voters’ opinion. Therefore, for a Democrat politician α > 1.

The politician chooses the action that maximizes the expected weighted re-election

probability among both groups conditional on their information set:

s∗ = argmax
x

{
P0 − E[α(

s∗ − sd(T )

σd(T )
)2 − (

s∗ − sr(T )

σr(T )
)2|I]

}
. (4.10)

Proposition 10 With a polarized public, the politician’s optimal action is a linear combi-
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nation of the politician’s belief and both groups’ beliefs.

s∗ =
1

σ2d + ασ2r
(

ασ2r
σ2y +Nσ2d

(sdσ
2
y +Nsgσ

2
d) +

σ2d
σ2y +Nσ2r

(srσ
2
y +Nsgσ

2
r )) (4.11)

Proof. Because the politician knows σD(T ) and σR(T ) at the time of decision-making,

we can bring those out of expectations. The first-order condition for this maximization

problem is the following:

s∗ =
1

σ2d + ασ2r
(ασ2rE[sd(T )|I] + σ2dE[sr(T )|I])

Using the equation 4.1 for both Democrats and Republicans and linearity of the expectation

operator we get:

s∗ =
1

σ2d + ασ2r
(ασ2r

sdσ
2
y +Nσ2dE[ŝid|I]

σ2y +Nσ2d
+ σ2d

srσ
2
y +Nσ2rE[ŝir|I]

σ2y +Nσ2r
)

The fact that E[ŝid(te)|I] = E[ŝir(te)|I] = sg gives equation 4.11.

From equation 4.11, we can derive the comparative statics for how partisanship interacts

with election timing. Equation 4.11 gives the incumbent Democrat’s action (s∗d). We can

obtain a similar expression for an incumbent Republican (s∗r) by symmetry (d→ r, r → d).

Then, by calculating s∗d − s∗r we can compare the level of partisanship for earlier vs. later

election timing (small vs. larger N).

From this point onward, I set σd = σr := σp, mainly because there is no evidence

that Democrats and Republicans’ uncertainty levels are different, and this assumption

marginally simplifies the results. Moreover, by abstracting away from the effects caused by
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the voting groups’ uncertainty levels, we can focus on the effects caused by their belief’s

difference, which is empirically documented.

The next corollary that readily follows from proposition 10 is the foundation for the

main empirical tests. This corollary gives a testable difference-in-differences prediction

for the behavior of politicians. Specifically, the equation
∂|s∗d − s∗r |

∂N
< 0 predicts that the

difference between Democrats and Republicans who face an imminent election is larger

than the similar difference if the election is in the distant future.

Corollary 2 The difference in politicians’ actions is proportional to the difference in their

bases’ opinion.

s∗d − s∗r =
α− 1

(1 + α)(1 + σ2p
N

σ2y
)
(sd − sr) (4.12)

The difference size shrinks with better-informed voters.

∂|s∗d − s∗r |
∂N

< 0,
∂|s∗d − s∗r |
∂σ2y

> 0 (4.13)

Proof. Replace both σd and σr with σp in equation 4.11 to get s∗d for the Democrat

incumbent:

s∗d =
1

σ2p + ασ2p
(

ασ2p
σ2y +Nσ2p

(sdσ
2
y +Nsgσ

2
p) +

σ2p
σ2y +Nσ2p

(srσ
2
y +Nsgσ

2
p)).

This yields:

s∗d =
σ2y(αsd + sr) +Nσ2psg(1 + α)

(1 + α)(σ2y +Nσ2p)
.

Using the symmetry d → r, r → d, we can similarly obtain for the Republican incum-

bent:
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s∗r =
σ2y(αsr + sd) +Nσ2psg(1 + α)

(1 + α)(σ2y +Nσ2p)
.

Subtracting s∗r from s∗d gives:

s∗d − s∗r =
α− 1

(1 + α)(1 + σ2p
N

σ2y
)
(sd − sr).

By taking the derivative of |s∗d − s∗r | with respect to N :

∂|s∗d − s∗r |
∂N

= −
σ2p
σ2y

α− 1

(1 + α)(1 + σ2p
N

σ2y
)2
|sd − sr| < 0.

, and σ2y :

∂|s∗d − s∗r |
∂σ2y

=
σ2pN

σ4y

α− 1

(1 + α)(1 + σ2p
N

σ2y
)2
|sd − sr| > 0.

Informative signals reduce polarization. The more efficient the voters become in getting

informed, the less polarized the politicians would act. We expected this result because

voters’ initial bias is the source of polarization, and with better information, this initial

bias fades away.

It is evident from equation 4.13 that as elections are getting closer, the politicians start

to act more partisan. So in the cross-section, we expect politicians who have an upcoming

election act more partisan than politicians who would not face an upcoming election.

In addition to the comparative statics, it is insightful to examine expression 4.11 for

politician’s action s∗ in the limiting cases. The next corollary concerns two limiting cases

that the new incoming signals are highly informative (large N and small σy) and not
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informative at all (N = 0 and large σy). Define the variable Iy ≡
σ2y
N

, as the measure of

new signals’ informativeness.

Corollary 3 If signals are highly informative, Iy → 0, both Democrat and Republican

incumbents act based on their best information sg.

lim
Iy→0

s∗d = lim
Iy→0

s∗r = sg (4.14)

If signals are not informative, Iy → ∞, both Democrat and Republican incumbents ignore

their information (sg) and act closer to their base’s beliefs, respectively.

lim
Iy→∞

s∗d =
1

1 + α
(sr + αsd) (4.15)

lim
Iy→∞

s∗r =
1

1 + α
(sd + αsr) (4.16)

Proof. The result follows from taking the limit of equation 4.11 for Democrats and the

corresponding equation for Republicans.

Highly informative signals fully break inefficiencies. Both politicians implement their

expectation of the optimal policy, and they behave similarly. However, when the new

signals are not informative, politicians ignore facts and implement a policy biased towards

their base.

Polarization stems from two different sources, both of which are necessary for a disparity

in politicians’ behaviors. The first one is a divergence in initial opinions (bias) of different

groups sd 6= sr. However, as it is evident is equation 4.12, it is not enough that these two

social groups have different opinions for politicians to act differently. It is also necessary

that the relative influence that the politician’s actions have over their political base to be
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larger than their influence on the opposition α > 1.

4.3.4 Endogenizing the politician’s information gathering

The politician’s action in both unified and polarized cases crucially depends on the ratio

of the public’s uncertainty (σp) and the signal’s quality (σy). In the previous sections, I

have assumed that nature gives this information structure. This assumption is not real-

istic because, in many situations, a substantial amount of public learning depends on the

politician’s information gatherings.

The public’s information has no predictive value conditional on the politician’s infor-

mation, and it consists of the politician’s signal plus noise. We can interpret the noise as

a measure of the politician’s transparency and the public’s political awareness. The prior

belief of the public is normally distributed with a standard deviation of σ0, and the noise’s

standard deviation is σn then:

σp =
(σ2g + σ2n)0.5σ0

(σ2g + σ2n)0.5 + σ0
. (4.17)

The politician chooses the quality of their signal (σg). They can increase their effort to

get a better signal(lower σg) of the optimal action. The cost of getting better information

is proportional to the inverse of the signal’s variance:
θ

σ2g
Because the intuition does not change with heterogeneous voters, I set the case up with

a unified public for the sake of expositional simplicity. As in equation 4.2, the politician

cares about their popularity in public:

P = P0 −
(s∗ − sp(T )

σp(T )

)2
.

The timing of events is similar to before, except for the first step. After nature chooses
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the optimal action, the politician decides on the quality of the signal. They face a tradeoff

between being more informed and paying an extra cost of information. Their utility is

given by:

U = P − θ

σ2g
. (4.18)

The politician does not know what their realization or the public’s realizations would

be. However, she knows the public’s ability to accurately determine the optimal decision by

the election day (σy, σp). Therefore, they maximize their (unconditional) expected utility.

σ∗g = argmax
σg

E[P0 −
(s∗ − sp(T )

σp(T )

)2
− θ

σ2g
] (4.19)

The politician optimizes the equation with backward induction. First, they solve how

they would act given a signal quality (as in proposition 1) and then chooses the optimal

signal quality that maximizes their utility.

Proposition 11 The signal quality must satisfy the following first-order condition:

2θ

σ3g
=

∂

∂σg

(
Nσ2p(σ

2
y +Nσ2g)

σ2y(σ
2
y +Nσ2p)

)
. (4.20)

Proof. Use equations 4.1 and 4.4 to replace the values of s∗, sp(T ), σp(T ), and write down

the first-order condition of equation 4.20:

2θ

σ3g
=

∂

∂σg

(
σ2y +Nσ2p
σ2yσ

2
p

E
[(spσ2y +Nsgσ

2
p

σ2y +Nσ2p
−
spσ

2
y +

∑N
i=1 ŝ

i
pσ

2
p

σ2y +Nσ2p

)2])
,

which will be further simplified to:

2θ

σ3g
=

∂

∂σg

(
σ4p

σ2yσ
2
p(σ

2
y +Nσ2p)

E
[(
Nsg −

N∑
i=1

ŝip

)2])
.
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After adding Ns0 and subtracting it from the term inside the expectation, and noting

that sg and ŝip are independent random variables with mean s0, we get:

2θ

σ3g
=

∂

∂σg

(
σ2p

σ2y(σ
2
y +Nσ2p)

[
E[N2(sg − s0)2] + E[

( N∑
i=1

(ŝip − s0)
)2

]
])
,

which yields the result.

By plugging the definition of σp (equation 4.17) into equation 4.20, we can numerically

solve for the optimal quality of the signal. However, it is possible to study two limiting

behaviors relevant to the intuition analytically. One is when the public’s initial signal is

very noisy, so the politician’s signal quality does not affect the public. The other is when

the public has a diffuse prior and maximally learns from the politician’s signal.

In the next corollary, we consider the case that the public receives a very noisy signal

(σn → ∞). Label this signal quality as σ̂g. Recall that we have shown new signals’

informativeness with Iy ≡
σ2y
N

Corollary 4 If the public receives a very noisy signal (σn →∞), the optimal signal quality

increases with voters’ signal informative quality.

σ̂2g := lim
σN→∞

σ∗g =

√
Iyθ
(
1 +

σ2y
Nσ20

)
(4.21)

Proof. First, calculate the limit for σo from equation 4.17:

lim
σN→∞

σp = σ0

Then use the first-order condition in proposition 3 and replace σp with σ0 to get:

2θ

σ3g
=

Nσ20
σ2y(σ

2
y +Nσ20)

∂

∂σg
(σ2y +Nσ2g) =

2N2σ20σg
σ2y(σ

2
y +Nσ20)

.
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By moving the terms around, we get:

σ̂g
4 =

θσ2y(σ
2
y +Nσ20)

N2σ20
.

The square root of it gives equation 4.21.

Since the initial signal that the public receives is not informative, the public’s belief’s

uncertainty on the election day is proportional to the information quality (Iy) and their

initial uncertainty. Since this initial information is a form of bias, the more assured of their

initial biased opinion, the less the politician can dissuade them, and their information

will not be useful. Smaller σ0 decreases politician’s incentive to obtain higher quality

information.

Next, consider the case that the public has a diffuse prior (σ0 →∞). Label this signal

quality as σ̃g.

Corollary 5 If the public has a diffuse prior (σ0 →∞), the optimal signal quality increases

with voters’ signal informative quality.

σ̃2g = lim
σ0→∞

σ∗g =
√
Iyθ

1√
1−

Nσ2nσ
2
y

(σ2y +Nσ̃2p)
2

(4.22)

Proof. The proof is similar to the proof of corollary 3.1.

In the first scenario, the noise shields the politician’s information from the voters;

therefore, they can use all of that information to their benefit. In the second scenario, some

of the information would leak to voters, and they would use that to judge the politician.

Controlling for the signal quality, the politician seeks a lower quality signal if the voters

can learn from the politician’s information.

The next proposition concerns the general relationship between voters’ signal’s infor-
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mative quality and the politician’s signal quality.

Proposition 12 The optimal signal quality increases with voters’ signal’s informative

quality.
∂σ∗g
∂σy

> 0,
∂σ∗g
∂N

< 0 (4.23)

Moreover, if voters are uninformed (Iy →∞), the politician obtains no signal.

lim
Iy→∞

σ∗g =∞ (4.24)

Proof. For the first part of the proposition, I use the envelope theorem on equation 4.19

and use the results from equation 4.20 to write the following equation for the derivative

with respect to σy:

∂σ∗g
∂σy

= − ∂

∂σy

(
Nσ2p(σ

2
y +Nσ2g)

σ2y(σ
2
y +Nσ2p)

)

Taking the partial derivative gives:

∂σ∗g
∂σy

= −Nσ2p
2σy(σ

4
y +Nσ2yσ

2
p)− (σ2y +Nσ2g)(4σ

3
y + 2Nσyσ

2
p)

(σ4y +Nσ2yσ
2
p)

2
,

which gives:
∂σ∗g
∂σy

= Nσ2p
2σ5y + (Nσ2g)(4σ

3
y + 2Nσyσ

2
p)

(σ4y +Nσ2yσ
2
p)

2
> 0,

and similarly for the derivative with respect to N :

∂σ∗g
∂N

= − ∂

∂N

(
Nσ2p(σ

2
y +Nσ2g)

σ2y(σ
2
y +Nσ2p)

)
< 0.

For the second part of the proposition, assume the contrary and call the finite value of the

limit S:

lim
Iy→∞

σ∗g = S.
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Then take the limit of the first-order condition given by proposition 3 (equation 4.20):

lim
Iy→∞

2θ

σ3g
= lim

Iy→∞

∂

∂σg

(
Nσ2p(σ

2
y +Nσ2g)

σ2y(σ
2
y +Nσ2p)

)
.

We can change the order of derivative and limit, and use the fact that the limit of σp and

σg are finite to get:

lim
Iy→∞

2θ

σ3g
=

∂

∂σg
lim
Iy→∞

(
Nσ2p
σ2y

)
= lim

Iy→∞

(
σ2p
Iy

)
.

The left-hand side is finite by assumption, but the right-hand side grows unboundedly.

In the first two propositions, we explored the “action channel” of political inefficiency.

The politician has the relevant information, yet she refrained from implementing the effi-

cient option. Nevertheless, proposition 4 tells us that if voters cannot collect information by

election time, the politician will not have any incentives to obtain any information. Propo-

sition 4 is the “information channel” that prevents the political system from implementing

an efficient solution.

4.4 Empirics

The empirical section is an indirect test of the theory developed in the previous section.

Specifically, I test the implication of proposition 2, corollary 2.1, which states that the

difference between Democrats and Republicans shrinks the further their election since the

politicians expect the voters to be more informed regarding later elections than earlier ones.

The context of this section is gubernatorial decisions regarding the economy shutdown

during the Covid-19 crisis.
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4.4.1 Empirical Setup

Alternative models that explain the difference between Democrat and Republican politi-

cians’ actions implicitly or explicitly assume preference for actions based on the politicians’

types. The politician either acts in their own best judgment and preference or their voting

base’s best interest and preference. In either case, this should not have any interaction

with the election timing. On the contrary, this paper, based on information asymmetry,

predicts that the incumbent’s bias will be intensified when the election is closer or the

signals are noisier.

The optimal action is not directly observable. Hence, it is not possible to directly

measure politicians’ bias from optimal behavior. If we suppose Democrats and Republicans

have different optimal actions, it seems impossible to distinguish whether this action is in

line with the corresponding optimal action, or it is a biased behavior to get re-elected. A

general disparity of behaviors is consistent with rational decision makers with heterogeneous

preferences and strategic bias towards the base.

The Covid-19 crisis allowed us to test the idea that elections interact with political

decision making. In 2020, the Covid-19 virus hit all US states. The governments at the

state level were partially responsible for responding to the crisis. They enacted policies

to protect civilians’ life. This paper focuses on a subset of these policies that entailed a

trade-off between economic objectives and health objectives.

The subset consists of governors’ policies on whether to close specific businesses or

not. Some governors closed all but essential businesses early on, while others allowed all

businesses to remain open. These decisions embody a clear trade-off between potential

health risk and imminent economic costs. Early closure of businesses guarantees that the

spread of the virus slows down, but it initially hurts the local economy. The optimal

decision on business closure depends on both the perceived severity and infectivity of the
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virus and the magnitude of economic costs.

The literature shows that in response to Covid-19, Democrats and Republicans’ voting

base had different opinions about how severe the condition is and what the proper response

of the government should be. Democrats believed the virus to be more dangerous compared

to what Republicans believed. Democrats also expected the government to react quickly

and more intensely. They required the government to limit a broader range of economic

activity to prevent the spread of the virus early on. On the other hand, Republicans down-

played the government’s role and put more emphasis on individual freedom and economic

costs of such policies.

Out of fifty US states, about half of the governors were Republicans (26), and the other

half were Democrats. Eleven of these governors had an upcoming election in 2020. This

variation allows us to test whether the next election’s timing impacted governors’ decisions.

Regardless of the election timing, we expect that both parties’ governors acted more

in line with their bases and differently from each other. We expect a Democrat to limit

economic activity more. Taking election timing into account, the model predicts that a

Republican governor with an upcoming election will be further away from other Democrats

on the issue line than a Republican without an upcoming election. The model predicts

that a Republican with an upcoming election is the least likely to close any business. In

contrast, a Democrat with an upcoming election is most likely to close all businesses.

I test the implications of the theoretical model by estimating the following difference

in differences linear probability regression model:

yi = β0 + β1IR + β2I>2020 + β3IR × I>2020 + β4Si + εi. (4.25)

The dependent variable represents decisions made by governors. If a governor closes a

specific business, then the corresponding y equals one; else, it is zero. The first independent
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variable (IR) is an indicator function that equals one if the governor is a Republican and

zero otherwise. The second independent variable (I>2020) is an indicator function for facing

an election later than 2020 (distant elections). If a politician had an upcoming election

in 2020, this variable is zero. The third independent variable is the interaction of being a

Republican and facing an election later than 2020. And finally, Si is a variable that linearly

controls the severity of the disease in the state during the decision-making period.

The difference between Democrats and Republicans who face an election in 2020 is

given by:

E[yi|D, 2020]− E[yi|R, 2020] = β0 − (β0 + β1) = −β1, (4.26)

and the difference between Democrats and Republicans who face an election later than

2020 is given by:

E[yi|D,> 2020]− E[yi|R,> 2020] = β0 + β2 − (β0 + β1 + β2 + β3) = −β1 − β3. (4.27)

Using equation 4.26 and 4.27 we can calculate the difference of these two differences:

(E[yi|D, 2020]− E[yi|R, 2020])− (E[yi|D,> 2020]− E[yi|R,> 2020]) = β3. (4.28)

The central coefficient of interest is β3, which captures the change in the difference

between Republicans and Democrats as the next election’s time increases. The theory

predicts this coefficient to be positive. A competing theory that only relies on preferences

predicts β1 + β3 to be positive and β3 to be zero.
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4.4.2 Data

The dependent variable consists of decisions of governors to close down economic activity in

the middle of the first phase of the pandemic. Each governor had to make different decisions

as to whether to close down an economic activity or not. There are two independent

variables that are relevant to the main result: Whether a governor’s term is finishing in

2020 and whether the governor is a Democrat. There is also a series of control variables

that capture the level of virus severity in each state. The control variables used were the

cumulative number of deaths and the cumulative number of positive cases per capita in

each state.

The data regarding the governors’ political parties and their next election are scrapped

from Wikipedia. Republicans govern twenty-six and Democrats govern twenty-four states.

Eleven of these states have an election forthcoming in 2020, and thirty-nine do not have

an election in the coming year.

Table 4.1: Party Affiliation and Election

Party Election 2020 Election Later Start < 2016 Total

Repulican 7 19 7 26

Democrat 4 20 7 24

The summary statistic for governors

-

The data regarding the Covid-19 policies were collected by Raifman et al. (2020). This

dataset contains multiple variables on when each state put some policies into place and

removed them later. Specifically, it contains data related to economics vs. health trade-off.

The decisions are on whether the restaurants, the theaters, the gyms, and non-essential

businesses are closed on a particular day.
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Table 4.2: Closing Days—Summary Statistics

Variable count min 0.25 % 0.5% 0.75% max

Closed Theatres 50 76 78 82 85 never

Closed Dine-in Restaurants 50 75 77 78 80 never

Closed Gyms 50 76 78 81 85 never

Closed Non-essential Businesses 50 79 84 87 92 never

The summary statistic closing day, starting from the beginning of 2020

-

Table 4.2 summarizes the distribution of closing decisions for the relevant variables.

Similarly, Table 4.3 summarizes the distribution of re-opening decisions for those variables.

From these two variables, it is possible to reconstruct whether a particular business within

a state was closed on any given day.

Table 4.3: Re-opening Days—Summary Statistics

Variable count min 0.25 % 0.5% 0.75% max

Opened Theatres 50 118 143 163 237 (not opened)

Opened Dine-in Restaurants 50 115 128 139 153 (not opened)

Opened Gyms 50 115 136 153 171 (not opened)

Opened Non-essential Businesses 50 111 122 129 138 (not opened)

The summary statistic for the day of openning, starting from the beginning of 2020
-

All of the decisions are included as separate decisions. For each day in the data, the

dimension of y (200) would be the number of governors (50) times the number of decisions

(4).
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4.4.3 Empirical Results

The first column of Table 4.4 shows the result of the regression equation 4.25 for the main

specification. Columns 2 and 3 shows the regression with probit and logit specifications. In

all of these specifications, the interaction coefficient is statistically significant. The ballot

box’s pressure makes politicians 30.5 percent more likely to act partisan and please their

base without acting in their interest.

Table 4.4: Main Specifications

Close down an activity:

(Linear) (Probit) (Logit)

Const 1.003∗∗∗ 7.267∗∗∗ 17.766∗∗∗

(0.002) (0.758) (1.451)
Rep -0.249∗∗ -5.277∗∗∗ -14.242∗∗∗

(0.126) (0.422) (0.927)
” > 2020” -0.071∗∗ -4.731∗∗∗ -13.275∗∗∗

(0.034) (0.292) (0.773)
Rep×” > 2020” 0.305∗∗ 6.115∗∗∗ 16.040∗∗∗

(0.131) (0.623) (1.437)
Severity 0.016∗ 5.174∗ 9.426∗

(0.009) (2.697) (5.105)

Observations 192 192 192
R2 0.103 0.2443 0.2383
Adjusted R2 0.084
Residual Std. Error 0.241(df = 187) 1.000(df = 187) 1.000(df = 187)
F Statistic 2.344∗ (df = 4.0; 187.0) (df = 4; 187.0) (df = 4; 187.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Most of this effect comes from Democrats, and Republicans’ different behavior who

have an election in 2020 (−β1 > 0). The behavior difference of politicians from different

parties who did not have an election in 2020 is not statistically significant at the 95 per-

cent level. Moreover, the sign of this difference is in the opposite direction of the base’s
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opinion (−β1− β3 = −0.0558 < 0). Republicans who did not face an election in 2020 were

more likely to limit economic activity and act not in line with their base’s belief. Table 4.5

summarizes these results.

Table 4.5: Summary

Close down an activity:

(Linear) (Probit) (Logit)

Difference election later (−β1 − β3) -0.0558* -0.8384** 1.798**
(0.0363) (0.465) (1.091)

Difference election 2020 (−β1) 0.2489** -5.277*** -14.24***
(0.1263) (0.422) (0.927)

Difference in differences (β3) 0.305** 6.115*** 16.04***
(0.131) (0.623) (1.437)

Marginal effect 0.305** 0.390* 0.416***
(0.131) (0.250) (0.170)

Partisanship increases for decisions made cloeser to elections

To compare the results between linear and non-linear (Probit, Logit) model we need to

look at the marginal effect which is given by equation 4.28. These results are statistically

and economically significant. The logit model is statistically significant at 0.01 level, while

the linear is at 0.05 level, and the probit model is at 0.10 level. Logit seems to be a better

fit for the data, but in all specifications, the results are statistically different from zero.

These models predict that election pressure significantly increases the difference be-

tween Republicans and Democrats. Democrats and Republicans, under re-election pres-

sure, act between %30 to %40 more polarized than their counterparts who are not under

reelection pressure.

The decisions of each governor are correlated. It is necessary to make sure the correla-

tion between different governors decisions does not artificially inflate the significance of the

results. I have done so by clustering the standard errors around each state. The reported
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error bars in Table 4.4 are robust to clustering around states.

Figure 4.1: Daily β3

Democrats and Republicans with an election in 2020 behave differently as soon as 10 days
after implementing the first policy

In the main specification, the decision y is whether a business is closed as of April the

20th. On this day, states have implemented the first phase of limitations, and no state has

re-opened any business yet. Figure 4.1 shows the evolution of this interaction term from

the time that first business is closed on mid-March until the time that states re-opened the

businesses by early May.

A non-linear control for severity led to excluding from the regression the two outlier

states of South Dakota and Wyoming, which had the smallest number of deaths per capita

in this early period. Both results are robust to dropping/non-dropping multiple states per

capita. Table 4.6 summarizes the regression results controlling for the different exclusion

of states with low severity. Only the linear probability model is reported; nevertheless, in

other specifications (probit and logit), the results’ statistical significance does not change.
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Table 4.6: Robustness to Outliers

Close down an activity:

(No exclusion) (Drop 3 states) (Drop 7 states)

Const 1.004∗∗∗ 1.003∗∗∗ 1.003∗∗∗

(0.003) (0.002) (0.002)
Rep -0.249∗∗ -0.249∗∗ -0.299∗

(0.126) (0.126) (0.168)
” > 2020” -0.072∗∗ -0.071∗∗ -0.060∗

(0.034) (0.034) (0.034)
Rep ×” > 2020” 0.242∗ 0.305∗∗ 0.344∗∗

(0.141) (0.131) (0.172)
Severity 0.019∗ 0.016∗ 0.014

(0.011) (0.009) (0.009)

Observations 200 188 172
R2 0.060 0.101 0.132
Adjusted R2 0.041 0.082 0.111
Residual Std. Error (df) 0.281(195) 0.244(183) 0.231(167)
F Statistic (df=4) 2.634∗∗ 2.340∗ 1.830

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The measure of severity was the number of deaths per capita from the beginning of

the epidemic until April 20th. In Table 4.7, the number of infected per capita is used as a

measure of severity. Another specification includes a quadratic control of severity.
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Table 4.7: Robustness to Measures of Severity

Close down an activity:

(Cases as Severity Measure) (Quadratic Mesaure)

Const 1.007∗∗∗ 1.029∗∗∗

(0.004) (0.016)
Rep -0.249∗∗ -0.245∗

(0.126) (0.126)
> 2020 -0.078∗∗ -0.088∗∗

(0.036) (0.039)
Rep× > 2020 0.308∗∗ 0.315∗∗

(0.131) (0.132)
Severity 0.022∗ 0.133∗∗

(0.012) (0.064)
Severity2 -0.019∗∗

(0.009)

Observations 192 192
R2 0.106 0.114
Adjusted R2 0.086 0.090
Residual Std. Error 0.241(df = 187) 0.240(df = 186)
F Statistic 2.374∗ (df = 4.0; 187.0) 1.948∗ (df = 5.0; 186.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results of Table 4.5 is robust to all of these specifications. As is shown in Tables 4.6

and 4.7, the results are robust to including all states, different functional forms (polynomial)

for severity, and different measures of severity.

4.5 Conclusion

This paper shows how higher election pressure can lead politicians to act more partisan.

The theory suggests that voters’ different priors and politicians expecting them not to learn

the full truth until the next upcoming election is a potential cause of partisanship. With a

longer election horizon, parties act more similarly and, based on the theory, more optimal.
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The theory sheds light on why more polarized democracies might be poorly equipped

with instruments to respond effectively to a crisis. I discuss how the politician’s decision

to acquire information interacts with the social signals’ informativeness and election dates.

When the election is close, the politician spends fewer resources on information acquisition.

On top of that, the closer the election, the less they weigh their decision towards that

information set, controlling for their information quality.

In a more general setting, the interaction between a politician and the voting base is

similar to a principal-agent “P-A” problem. The principals (here, voters) choose an agent

to make decisions in an uncertain environment for their benefit. Information asymmetry

poses a challenge for the principal to monitor the agent’s behavior efficiently and for the

agent to signal the quality of their decisions.

Similar to conventional P-A problems, the politician is better informed. They make

many decisions over their tenure, and voters later evaluate their performance on election

day. The information asymmetry causes an opinion divide between the politician and the

voters at the time of decision making, as does the fact that these opinions evolve until the

election day as more information immerges.

In this paper, voters are Bayesian learners, and they perfectly update their beliefs given

a new signal. This assumption does not hold in reality (people are far from perfect Bayesian

updaters). But the results from this model can be extended as long as some learning

happens and the voters’ beliefs get closer to the truth about the welfare-maximizing policy.

A further avenue for research is to design mechanisms to increase politicians’ incentives

to acquire high-quality information and stick to the best expectation. I did not explicitly

formulate the individual rationality and incentive compatibility of the politician, but a full

analysis must consider it.

This paper provides evidence that the pressure of an upcoming oversight induces the
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decision maker to deviate from implementing the optimal policy towards the principal’s

bias. Although the example is tailored for a political representative, it can be generalized to

other managerial settings. For example, a manager who faces an uncertain decision before

a significant event (e.g., merger, critical board meeting) deviates from implementing the

optimal action. Can we find similar evidence to show that the manager is more likely to

deviate towards the principal’s bias if they expect it to affect their evaluation?

If this effect can be found in other settings, we should examine other possible mech-

anisms that would create similar empirical results. In this paper, I have explained the

rational behavior of an agent who forms an expectation of voters’ information set at the

election date. The mechanism at play may be much more complicated than what was

discussed. More research is needed to pin down how this shift occurs. Is it a deliberate

calculation of the agent to implement a policy that maximizes their popularity, or is it

coming from a psychological bias?

Maybe the psychological pressure of an upcoming election makes it easier for the politi-

cian to think of what voters want, which shifts the politicians towards their base’s favorite

policies. Finding out the mechanism behind this bias is an avenue for further research in

managerial decision making under uncertainty.
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Conclusion

This thesis consists of three chapters that study crisis management under uncertainty

from the lens of exactly solving simplified models. Each chapter focuses on one aspect of

simplification and studies a real-world problem.

Chapter two studies a municipal decision-making authority to provide a public good

(water security) to its citizens. In this chapter, I abstract away from complexities arising

from political economies of providing a public good and focus on the trade-off that a

benevolent decision maker faces. The decision maker uses all of the information available

to them. They solve a dynamic problem that balances the risk of not having enough water

and the cost of building and operating an expensive water provision facility. The model

first explains what a benevolent decision maker would do and then tests the correlation

patterns produced by the real-world data against the expected correlation produced by the

benevolent planner.

In chapter three, the decision-making’s scope is global (climate change), and the decision

maker aims to understand the implications of innovation policies for long-term cumulative

atmospheric CO2. In this chapter, we abstract away from the optimal dynamic policy. We

assume that the decision maker cannot implement the first-best policy (carbon pricing)

due to political reasons. Then we ask a theoretical question about whether the effect of

an exogenous innovation in clean energy or fuel efficiency is always beneficial for long-

term cumulative CO2. We introduce new occurrences of the strong green paradox in fuel
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efficiency innovation and the interaction of innovation in carbon capture and storage and

clean energy innovation.

Chapter four concerns decision-making at the gubernatorial level to combat the Covid-

19 pandemic. In contrast to the first two chapters, the decision maker is not benevolent

and maximizes their own (party) utility. The decision-making authority faces a trade-off

between the policy that they find beneficial for society and the policy that merely looks

good to the public. There is inherent uncertainty in the unfolding of future events and the

information that the public learns in the future. I develop a theoretical model and predict

the behavior of a utility-maximizing politician and test the results against the observed

behavior of US governors during the Covid crisis. I show that their behavior is consistent

with the predicted behavior in that the politician who faces an imminent election cares

more and acts more similarly to what their base deems appropriate.

Decision-making researchers have a plethora of tools at their disposal to examine how

authorities manage crises in uncertain situations. But we are yet to find a framework that

unites different aspects of decision-making. There are numerous questions regarding the

scope of the problem, decision makers’ incentives and goals, limitations they face, and even

the analytical framework to study decision-making under uncertainty. With the advent

of novel computation techniques (e.g., reinforcement learning) and their wide adoption in

multiple governing bodies, we will need more convergence in decision-making science.

We may need to re-evaluate what we call a “rational” decision. A decision made by a

municipal authority under great public pressure might seem irrational in comparison to the

decision suggested by cold calculations of a well-tuned dynamic programming algorithm.

Ignoring first-best policies and implementing second bests should be declared irrational

when all models suggest otherwise. And having a governor getting swayed by self-interest

and making decisions that merely look good must be declared against public interest and
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irrational if an independent decision-making body can suggest better policies.
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Lafforgue Gilles, Magné Bertrand, Moreaux Michel. Energy substitutions, climate change

and carbon sinks // Ecological Economics. 2008. 67. 589–597.

Lucas Robert E, Prescott Edward C. Investment Under Uncertainty. 1971. 659–681.

Mason Lilliana. ”I disrespectfully agree”: The differential effects of partisan sorting on

social and issue polarization // American Journal of Political Science. 2015. 59, 1. 128–

145.

McCarty Nolan, Poole Keith T., Rosenthal Howard. Polarized America: The Dance of

Ideology and Unequal Riches. Cambridge, MA: MIT Press, 2006.

Metz Bert, Davidson Ogunlade, Coninck Heleen de, Loos Manuela, Meyer Leo. Carbon

Dioxide Capture and Storage. 2005.

115



Bibliography

Nordhaus William D. The Political Business Cycle // The Review of Economic Studies.

1975. 42, 2. 169.

Palmer Harvey D., Whitten Guy D. Government competence, economic performance and

endogenous election dates // Electoral Studies. 2000. 19, 2-3. 413–426.

Ploeg Frederick van der, Withagen Cees. Is there really a green paradox? // Journal of

Environmental Economics and Management. 2012. 64. 342–363.

Raifman J, Nocka K, Jones D, Bor J, Lipson S, Jay J, Chan P. COVID-19 US state policy

database. 2020.

Ramcharran Harri. Oil production responses to price changes: an empirical application of

the competitive model to OPEC and non-OPEC countries // Energy Economics. 2002.

97–106.

Reed W Robert. A Retrospective Voting Model with Heterogeneous Politicians // Eco-

nomics and Politics. 1994. 6, 1.

Rendahl Pontus. Inequality Constraints and Euler Equation Based Solution Methods //

Economic Journal. 2015. 125. 1110–1135.

Roper Steven D., Andrews Christopher. Timing an Election: The Impact on the Party in

Government // American Review of Politics. 2003. 23, Routledge 2000. 305.

Rust John. Optimal replacement of GMC bus engines: An empirical model of Harold

Zurcher // Econometrica: Journal of the Econometric Society. 1987. 999–1033.

Samuelson Paul A. Stochastic Speculative Price. 1971. 335–337.
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Appendix A

This appendix consists of three sections inspired by the model developed in the second

chapter. First, I present the pattern of usage and define the concept of optimal utilization

rate. Second, I discuss how does a mistake in the wrong estimation of rainfall probabilities

affects decision-making. Finally, I estimate the relative value of being in a good year using

a simpler version of the dynamic model.

A.1 Optimal Utilization Rate

The dynamic model is solved numerically, and we are interested in further studying the

model and understanding some implications of it. I achieve this by fixing most parameters

of the model and change only one or two parameters and simulate the behavior of such

city.

The first thing that I look into is how the capacity of a typical city evolves and how

this capacity is used. For a city that faces no economy of scale (F = 0), the accumulated

capacity looks similar to Figure A.1. Initially the city gets a few good draws and there

is no need to build any capacity. Then after some bad draws, the city starts to build a

desalination plants, and finally some more bad draws and city builds the optimal level of

desalination that they maintain forever.
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Figure A.1: Realized capacity over time

Conditional on building some capacity the city uses some of the capacity in some years

and lets it remain idle in others. The blue line in Figure A.2 shows the relative amount of

used capacity for each year. For this specific city, the city wont use the capacity in good

years (because it gets more waters than it needs) but as you can see in average (the yellow

line) only 22 percent of the capacity is used. This usage is spread out over time. Variance

of usage is correlated with variance of rainfall.

This pattern of sporadic use of desalination capacity is typical behaviour of desalination

usage in many cities. Any city that builds desalination for combating bad draws of rainfall

and not for base water needs should see a behavior of this sort. If rainfall patterns accross

different cities are not heavily correlated, rainfall patterns of this sort suggests a need for

mobile desalination plants. Imagine a large desalination plant installed on a vessel that

can move around the world and provides water on demand. This vessel would have a

much higher utilization rate and further studies into this area might prove this to be cost

effective.
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The realization of built capacity in Figure A.1 depends on the specific random rainfall

realization. In order to average across these rainfall realizations I simulated different rainfall

patterns for each city 1000 times for 300 years. Then each point is the average built capacity

for each year. In Figure A.3 each line represents the average capacity built for each city.

Figure A.2: Usage over time

Each line in this figure represents different cities that are faced with changing rainfall

variations between good and bad years (δ = r2 − r1). After twenty-five turns (years)

in simulation most cities converge to the optimal desalination capacity. As expected an

increase in rainfall variation leads to an increase in the optimal capacity level.
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Figure A.3: Average capacity over time

A.2 Mistakes in Probability Estimation

Municipalities have to decide on their model of weather dynamics. In the basic setting,

the municipality needs to have an estimation of two probabilities (p11, p22). If there is no

predictive power in the data, the planner should set p11 = p22 = 0.5. But the data shows

different levels of predictivity for different cities (p11 6= 0.5, p22 6= 0.5). The question we

will ask in this section is how a mistake in estimating these probabilities would affect the

outcome of this model.

The estimation mistake can go both ways. The “availability heuristic” is a psychological

bias. It means that there is a “tendency to overestimate the likelihood of events with greater

availability in memory, which can be influenced by how recent the memories are or how

unusual or emotionally charged they may be.” This bias may lead to an overestimation of

the probability of remaining in bad draws. Another psychological bias is Gambler’s fallacy.

It means a “tendency to think that future probabilities are altered by past events when in

reality they are unchanged.” This bias may lead to an underestimation of the probability

of remaining in bad draws.
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Suppose a city’s population in aggregate shows tendencies toward any of these biases.

In that case, a decision maker’s choice might be affected because the decision maker cares

both about the outcome of the decision and the public’s judgment.

As in a previous section, I simulated 1,000 cities for 300 years for each remaining

probability p11 = p22. Figure A.4 shows the average capacity built over time. The final

capacities of cities are almost equal, but the rate at which they are built is different. Figure

A.5 shows the average utilization rate as a function of the probability of remaining in a

(good or bad) state. As probabilities of remaining in a state increase, more capacity is

used on average.

Figure A.4: Average capacity over time for different probabilities p11 = p22
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Figure A.5: Average utilization rate vs. probability of remaining in a state
p11 = p22

Last plots were about how the optimal behaviour changes with probabilities if there is

no mistake in the estimation of probabilities. Now I simulate the same 1000 cities for 300

years and look at how much the utility changes if a city makes its decisions based on a

mistaken model rainfall probabilities.

The y-axix of Figure A.6 is the weighted sum (β) of the mean (over different cities)

of capacities built with the mistaken beliefs minus the mean of capacities built with the

correct belief.

y =
300∑
t=0

βt
1

1000

1000∑
i=1

(d̂ti − d
t
i,p)

If y > 0, the optimal thing to do is to build the capacities earlier, and y < 0 means

the opposite. We can see that for making a small mistake the effect is negligible, but

for larger mistakes, underestimation leads to building later and overestimation leads to
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building earlier.

Figure A.6: Effect of mistakes on capacity, actual transition probability is p11 =
p22 = 0.55

The y-axix of Figure A.7 is the weighted sum (β) of the mean (over different cities) of

utilities with the mistaken beliefs minus the mean of utilies with the correct belief.

y =
300∑
t=0

βt
1

1000

1000∑
i=1

(Û ti − U
t
i,p)

The y-axis shows the utility lost due to mismanagement. For the worst mistake (be-

lieving probability is 0.75 when it is really 0.55) the effect is still very small ( 0.008) where

lifetime utility is around −45. This shows that for the current variables, the mistake in

estimating the correct form of the weather dynamics is negligible.
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Figure A.7: Effect of mistakes on utility, actual transition probability is p11 =
p22 = 0.55

A.3 Estimation

It is not possible to fully estimate all the parameters of the dynamic demand model but I can

make some progresses by making some simplifying assumptions. It is helpful to estimate

the long-term price elasticity of demand for desalination capacity and a structural model

that specifies the relative value of plants in years with favorable and unfavourable rainfall

draws.

Estimation of the price elasticity requires some supply shifters that do not affect demand

separately, and I will discuss them in the next section. With the current data, one can

estimate the long-term price elasticity with some simplifying assumptions.

I would continue to estimate a simple structural model which abstracts away from

questions about plant size and quantifies the value of building a plant in years with a bad
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draw of rainfall relative to the similar value in a year with good draw.

A.3.1 Supply

I choose a model-free approach to understand supply. Table A.1 shows what variables affect

the volume unit price of constructing a desalination plant using a linear regression model

with fixed effects on each subregion and a dummy for technology type. The coefficient for

East Asia/ Pacific is set to zero, so all the subregion fixed effects are measured with respect

to that.

The coefficient of year variable captures the annual decreasing of prices. This is partially

caused by process innovation and learning by doing that consistently reduces the cost of

construction of desalination plants. The coefficient on time variable (year) captures this

effect. Each year the price of building a new plant drops on average by about 4.0 percent.

The technology fixed effect captures the other aspect of innovation. Major desalination

plants are designed based on one of three technologies: multi-effect distillation (MED),

multi-stage flash MSF, and reverse osmosis (RO). In Table A.1 the coefficient of MED

is set to zero, and other technologies are measured with respect to this technology. RO

(the most recent technology) is a revolutionary technology and brought down prices by 61

percent in comparison with with MED or MSF.

The negative coefficient on log(Capacity) captures economies of scale. Building a plant

twice the size of a normal plant would reduce the price by 3.6 percent.
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Table A.1: Variables Affecting Price

log(Price per Volume) Coeff. std. error t-Value

(Intercept) 8.49 0.13 63.0 ***

Eastern Europe / Central Asia -0.54 0.28 -1.912 .

Latin America / Caribbean -0.22 0.15 -1.46

Middle East / North Africa -0.624 0.064 -9.7 ***

North America -0.929 0.071 -13.0 ***

Southern Asia -0.44 0.15 -2.91 **

Sub-Saharan Africa -0.26 0.23 -1.17

Western Europe -0.517 0.079 -6.60 ***

MSF (Multi-stage Flash) 0.15 0.11 1.39

RO (Reverse Osmosis) -0.611 0.089 -6.9 ***

log(Capacity) -0.0365 0.0096 -3.8 ***

year -0.0396 0.0020 -20.4 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-

In further sections, I treat innovation as an exogenous supply shifter. Two cities with

similar observables (population, city size, and climate) but facing different supply due to

availability of more modern (hence cheaper) technology would identify the elasticity of

demand. Similarly two cities with the same observables except population are helpful in

identification, because one city is able to build a larger plant and face a smaller price per

capita.

The results in Table A.1 guide us in finding supply shifter and from there instrumental

variables that help identify the demand elasticity.
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A.3.2 Estimation of demand elasticity

The demand model should be convincing that in the long-term cities move to the equlibrium

capacity that is determined by supply and demand fundamentals. A city is in equilibrium

if it has passed bad rainfall years and has built its equilibrium capacity.

Demand fundamentals include some observables like GDP, population, and climate pat-

terns (e.g., standard deviation of rainfall) and some unobservables like the cost of water

underprovision, average water usage, and local geographic characteristics. Supply funda-

mentals include the cost of technology and local economic characteristics (e.g., wages, land

value, local infrastructure, and environmental characteristics).

To estimate the long-term elasticty of demand, I make the following simplifying as-

sumptions:

1. The desalination capacity is in equilibrium over a five-year period.

2. The log of equilibrium demand capacity is a linear function of log of prices.

3. Conditional on GDP per capita, population of cities, and local climate patterns, cities

are similar up to a random constant term and random shocks.

4. Average annual prices of desalination construction that city “i” faces are independent

of city “j”’s demand for desalination.

From these four assumptions, I can proceed to the following specification:

Cit = Aitp
β
itR

α1
it G

α2
it P

α3
it T

α4
it . (A.1)

where Ait = Uie
εit and Ui is coming from a random distribution and εit is the error

term.
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In equation A.1, C represtents cumulative capacity available for each city, p the pre-

dicted price that a city face in building new capacity, R rainfall, G the GDP, P population

of the city, T temperature. All the explanatory variables are averaged over five-year peri-

ods.

For each city-year observation, the value of p is predicted using a model with year and

country fixed effects. p is the price that cities face if they choose to build a desalination

plant (though in many years they have not).

Two major worries are that the city specific term A might be correlated with prices

and the elasticity β is not measured correctly. To address this issue, I take advantage of

an instrument for price based on assumption 4.

Because the average annual price of desalination in cities other than “i” is excluded

from demand of city “i”, the average price of desalination in cities other than “i” in year

“t” p−it can be used as an IV for pit

Table A.2: Demand Elasticity

log(Price per Volume) Coeff. std. error t-Value

(Intercept) -304 30 -7.86 ***

log(price.per.cap) -0.74 0.12 -6.00 ***

log(rainfall) 0.054 0.099 0.54

log(GDPperCap) 0.728 0.074 9.77 ***

log(temp + 273) 54 6.7 8.08 ***

log(city.pop) 0.376 0.09 4.2 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

1

-

Table A.2 summarizes the result of regression A.1. The price elasticy of demand is
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−0.74. As you may have noticed, after controlling for temperature, rainfall is no longer

significant. This shows that temperature is sufficient statistics for long-term climate pat-

terns, and five years is a suitable time scale for the cities to reach equilibrium.

Table A.3: Demand Elasticity—IV

(Intercept) -284 39 -7.2 ***

log(price.per.cap) -0.96 0.13 -7.2 ***

log(rainfall) 0.072 0.099 0.72

log(GDPperCap) 0.635 0.078 8.2 ***

log(temp + 273) 51.0 6.8 7.5 ***

log(city.pop) 0.300 0.090 3.2 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

‘.’ 0.1 ‘ ’ 1

-

Table A.3 replicates table A.2 with price of desalination in other countries as an in-

strument. The results are qualitatively similar, and price elasticity in this case is closer to

−1.

A.3.3 Estimation of utility function

In the last section we studied demand from a long-term aspect, and it became clear that

the fluctuations in rainfall does not affect demand after controlling for average temperature

over a five-year period.

This is in stark contrast to the effect of rainfall in the short run. Both the prediction

of the theoretical dynamic programming model and the results of regression in Table 2.5

suggest that rainfall affect the timing of building the plants.

Further evidence supports that lower rainfall in short-term is correlated to an increased
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desalination demand. Assuming that city characteristics does not change much from this

year to the next, we can take advantage of fixed effect models and show that how a relatively

bad draw of rainfall is correlated with the city’s higher demand for desalination.

Table A.4: Fixed Effects—Capacity Built Is the D.V.

Capacity Coeff. std. error t-Value

lag(relativerain, -1) -110 142 -0.77

lag(relativerain, 0) 582 142 -4.1 ***

lag(relativerain, 1) -347 143 -2.4 *

lag(relativerain, 2) -296 143 -2.1 *

lag(relativerain, 3) -48 143 -0.33

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

0.1 ‘ ’ 1
-

The dependent variable in Table A.4 is Capacity. The independent variables, relative

rain (rainfall in a given year divided by mean of the city rainfall) and its lead and lags, are

defined by dividing corresponding year’s rainfall by average rainfalls. The correlation is

very strong for current rainfall and significant for the last two previous rainfall. But it soon

starts to fade away for years further in time and the year after the plant is awarded. This

evidence supports the causal story that a bad draw of rainfall trigerrs building the plant.

Municipalities choose to build a desalination plant when the supply of water is stressed.

Figure A.8 shows the same effect in a plot from a new perspective. The y-axis represents

the mean of relative rainfall for all cities in year t (x-axix) after a plant is built.
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Figure A.8: relative rainfall around the date of construction

This evidence motivates me to estimate the relative value of a desalination plant. In this

section I eventually estimate the value of building a plant in favorable condition compared

to an unfavorable one.

I estimate a simplified version of the dynamic model. The water levels in each city can

be in two states. In good g state, the water reserve is high enough to provide water. In

bad b state, the rainfall is not enough to provide the required water.

The city can always choose to build a desalination plant, but it takes time for it to

be built. Therefore, cities face a tradeoff between building now and paying the costs or

postponing the construction and risking incurring the cost of not having enough water.

Eventually, I want to estimate (u1(ρ) − u0(ρ)), the utility difference of building and

not building as a function of relative rainfall (ρ =
R

R̄
), and Pgg, Pbb, the probabilities of
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remaining in good or bad states. This allows me to quantify the effect of short term rainfall

fluctuations on demand.

The estimation framework is a discrete choice model. The planner can choose whether

to build a plant. There is only one state variable. An unobserved variable that captures

if the city is in water shortage. This unobserved state variable in principle depends on

many characteristic which includes: current desalination capacity, temperature, other in-

frastructes and population. The unobserved variable represents all of these charecteristics

in a concise manner.

With probability that is to be estimated any given city is in state g or similarly in state

b. With probabilities Pgg, Pbb any given city will remain in its current state correspondingly

and with probabilities 1− Pgg, 1− Pbb the city will move to the other state.

The static value of not building a plant is normalized to 0. The static value of building

a plant for city i at time t is given by:

uit = −αρit + νit + εit.

αρit represents the utility of relatively more rainfall for city i. νit represents the hidden

Markov state. εit is the idiosyncratic preference shock. I assume that the shock is distibuted

i.i.d. type-1 extreme value.

Following Bajari et. al. ? I use four sets of moment conditions, and in total I get 30

moment equalities. Two sets of moments are related to conditional correlation of choices

over time.

In city i, at time t, the city chooses j. j ∈ 0, 1 is the decision of whether to build a

desalination plant or not.

The first set of moment conditions is related to conditional correlation of choices one
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period apart:

M jh
1 = E[Zt(dij,t+1dij,t −

K∑
k,p=1

Πkpσ
k
ij(t+ 1)σpih(t))], (A.2)

where Zt is an instrumental variable, Πkp represent the stationary distribution of

Pr(νit = zk, νit = zp), dij,t is a dummy that is 1 if city i made decision j at time t.

And σkij is the unobserved choice probability of city i choosing decision j in state k.

Similarly, the second set of moment conditions is related to conditional correlation of

choices two periods apart:

M jh
2 = E[Zt(dij,t+2dij,t −

K∑
k,p,r=1

ΠkrΠrpσ
k
ij(t+ 1)σpih(t))]. (A.3)

The two remaining sets of the moment conditions are related to the Bellman equation.

The first one is the Bellman equation for not building choice:

M3 = E[Zt(Vt) + β

K∑
k,p=1

Πk,plog(σki0(t+ 1))− βVt+1], (A.4)

where Vt is the conditional value function and β is the discount factor. Similarly, the

second one is the Bellman equation for building a plant:

M4 = E[Zt(Vt) + β
K∑

k,p=1

Πk,plog(σki0)− βVt+1 − αρit +
K∑

k,p=1

Πkplog(
σkij(t)

σki0(t)
)]. (A.5)

These moment equalities and a set of moment inequalities which states that all proba-

bilities have to be between zero and one identifies the model.
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Table A.5: Results

Parameter Value

Pbb 0.43

Pgg 0.97

α 0.86

Table A.5 shows the results of the estimation procedure. Three estimated parameters

summarizes the data with respect to the effect of rainfall on the utility of building a

desalination plants.

Each city which is in good state remains in a good state with high probability (0.97).

So, there is a small chance that this city goes to a bad state. Then almost 57 percent of

cities move out of a bad state because they either build a plant or the whether condition

changes. Then the remaining 43 percent remains in a bad state.

The parameter of interest α is positive. This shows that building a desalination plant

is more valuable to cities in when they get relatively low level of rainfall compared to when

they rainfall levels are high.
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Appendix B

In the first section of this appendix, we offer proofs of lemmas and propositions that we

removed from the body of chapter three for ease of exposition. Moreover, in that chapter,

we treated the CSS innovation as exogenous. The second section of this appendix provides

an extension of the model that endogenizes CCS innovation and proves that the results

hold under endogenous CCS innovation.

B.1 Proofs

Lemma 1. With discovery of the new backstop y1 at date τ , we have: p1(s; τ) < p0(s),

for all s > x0(τ); for all t > τ , x1(t; τ) > x0(t); and for all c > c(τ), t̃1(c; τ) < t̃0(c).

Proof. At any extraction amount s, equation (3.3) implies that ds
dt ·

dP
ds = r[p(s) − c(s)].

From ds
dt = ẋ(t) = q(p(t)), this yields:

dP

ds
= r[p(s)− c(s)]/q(p(s) (B.1)

where c(s) is the marginal extraction cost at s, i.e. c(·) ≡ G−1(·).This is a differential

equation describing the evolution of p in s. Note that at s∗given by c(s∗) = b1, p1(s
∗; τ) =

b1 < p0(s
∗), since p0(s

∗) covers not only the extraction cost but also the (positive) Hotelling

rent at any s satisfying c(s) < b0. Thus at s∗,the price path is lower after innovation.

Suppose that for some ŝ, the paths cross:

p1(ŝ; τ) = p0(ŝ)
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Then because both price paths extending from ŝ satisfy (B.1), the price paths must

coincide. But this contradicts p1(s
∗; τ) < p(s∗). Therefore, p1(s; τ) < p0(s) for all s.

It follows that ṡ, given by q(p) is greater at any s post innovation. Therefore, the pre-

innovation path and the innovation paths in t start with the same value x(τ), but at any

higher value of s, ẋis greater post-innovation. It follows that x1(t; τ) > x0(t).

Lemma 2: With clean-energy innovation under the parameter ρ, the price path prior

to discovery satisfies

ṗ0(t) = r{[p0(t)− c(t)] + ρ[p0(t)− p1(t, t)]}.

Proof. We aim to show that equation 3.7 in the text

p0(t)− c(t) = limdt→0e
−rdt[(1− ρdt)p0(t+ dt) + ρdt · p1(t; t)− c(t)] (3.7)

yields the differential equation

ṗ0(t) = r{[p0(t)− c(t)] + ρ[p0(t)− p1(t, t)]} (3.8)

We expand the limiting expression on the RHS of (3.7) via Taylor series expansion. Let

o(dt) denote all terms involving dt of order higher than 1. Equation (3.7) becomes:

p0(t)− c(t) = lim
dt→0

[1− rdt+ o(dt)] · {(1− ρdt) [ṗ0(t) + ṗ0(t)dt+ o(dt)] + ρp1(t; t)dt− c(t)}
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= lim
dt→0

(1− rdt− ρdt)p0(t)(1 +
ṗ0(t)

p0(t)
dt) + ρp1(t; t)dt− (1− rdt)c(t) + o(dt)

= lim
dt→0

[p0(t)− c(t)] + p0(t)[
ṗ0(t)

p0(t)
dt− rdt− ρdt] + ρp1(t; t)dt+ rc(t)dt+ o(dt),

from which we get

0 = lim
dt→0

p0(t)[
ṗ0(t)

p0(t)
dt− rdt− ρdt] + ρp1(t; t)dt+ rc(t)dt+ o(dt).

Dividing both sides by the non-zero term dt yields:

0 = lim
dt→0

p0(t)[
ṗ0(t)

p0(t)
− r − ρ] + ρp1(t; t) + rc(t) +

o(dt)

dt
.

The last term disappears in the limit. We can re-arrange the equation to get

ṗ0(t) = (r + ρ)(p0(t))− ρp1(t; t)− rc(t),

which is equivalent to equation 3.8.

Proposition 4: (a) In the absence of CCS innovation, the ex ante impact of clean-

energy innovation on cumulative emissions is zero.

(b) With CCS innovation , ȧ(t) > 0, the ex ante impact of clean energy innovation is to

increase emissions by:

∫ (y0−z)/λ0

0
[a(t̃(c))− a(t̃0(c)]g(c)dc > 0.

Proof. To prove (a), define b ≡ (y0 − z)/λ0 note that the both the innovation-possible

139



B.1. Proofs

price path and the innovation-impossible price path terminate at p = b, with cumulative

extraction (and emissions) given by G(b). If a(t) is constant at a, the net emissions under

either price path are aG(b). The cumulative emissions are therefore, unaffected by the

(unrealized) threat of innovation.

To prove (b), note that it is easily demonstrated first that p1(t, t) < p0(t), i.e. the

current price falls upon discovery of the clean energy technology at lower cost. For any

price and cumulative emissions paths, p(t) and x(t), define P (x) = p(x−1(x)). LetP0(x) and

P (x) describe the prices under the innovation-possible and innovation-impossible models

as functions of cumulative extraction to date. We first show that P0(x) < P (x) for all x

less than the final value, x = G(b).

Note that P0(x) = P (x) = b at x = G(b). At this end-point, we have:

∂P

∂x
=
dp/dt

dx/dt
=

ṗ

q(p)
.

Similarly,

∂P0

dx
=

ṗ0
q(p0)

.

The denominators of the right-hand sides of these equations are the same because at the

end-point, p = p0 = b.

And ṗ < ṗ0 from comparing equations 3.3 and 3.8. Therefore, ∂P/∂x < ∂P0/∂x at the

end point, p = b. Therefore, within a neighborhood of the endpoint, x = G(b), we have

P0(x) < P (x) Suppose that at some values x < G(b), P0(x) ≥ P (x). Let x̂ be the largest

such value. It follows the differentiability of the price functions that P0(x̂) = P (x̂) and

that evaluated at x̂, ∂P/∂x ≥ ∂P0/∂x. (The two price functions either cross or are tangent

at x̂.)

But at x̂, the two functions have the values of p. ∂P/∂x = ṗ/q(p) (following our earlier
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derivation) and similarly ∂P0/∂x = ṗ0/q(p0). Comparing equations 3.3 and 3.8 again, we

have ∂P/∂x < ∂P0/∂x at x̂, which is a contradiction. Hence, P0(x) <P (x) for x < G(b).

From the assumption of downward-sloping demand, P0(x) < P (x) implies that Q0(x) >

Q(x), where these are the flows of demands. For each of these functions, Q(x) = dx/dt

evaluated at the inverse of x(t). Thus we have two variables, x0(t) and x(t), for which

x0(0) = x(0) = 0 and ẋ < ẋ0, evaluated not at the same time, but at the same stock y.

That is, ∀y, ẋ(x−1imp(y)) < ẋ0(x
−1
o (y)). This implies that x grows more slowly than x0 and

therefore,that ∀t > 0, x(t) < x0(t). Because c(t) = G−1(x(t)), this in turn means that

c(t) < c0(t) and that t̃(c) < t̃0(c).

Part (b) of the proposition then follows.

B.2 Extending the CCS Technology

B.2.1 Framework

To this point, we have represented CCS as a function a(t) representing the fraction of

carbon emissions that is captured with the technology existing at time t. This allows a

simple framework to outline the impact of exogenous innovation, but is based on a narrow

assumption on technology (an assumption of zero marginal cost of CCS up to a(t) at each t.

The question arises as to whether our results obtain with a more general CCS technology in

which the extent of CCS at any time is variable and chosen endogenously by the planner.13

We address this question for the analysis of the ex post impact of innovation, for both

clean energy and fuel-efficiency innovation. We represent the cost of CCS of a fraction a of

emissions q as a function q · c(a; θ), where θ is the current state of technology. We assume

13We will continue to assume that the costs of CCS (mainly the costs of storage and the transportation
network) are borne by the government, not by suppliers. The dynamic regulatory game in which CCS
standards are set by the regulator but costs borned privately is important but beyond the scope of this
paper.

141



B.2. Extending the CCS Technology

that ca > 0,caa > 0, cθ < 0 and cθa < 0. Thus c is increasing and convex in a and better

technology reduces the marginal cost of a. The state of technology at date t is θt, and by

innovation or improvement over time in CCS technology we mean that θt is increasing over

time.

Because emissions are a pure externality, the equilibrium extraction rate and emissions,

q(t) is uninfluenced by changes in a. The regulator therefore, takes the path q(t) as

exogenous in deciding on the path a(t). The regulator’s objective in setting a(t) at any time

is to minimize costs, comprised of the cost of CCS and the long-run cost of emissions. We

let T be a date beyond which all emissions have terminated under any scenarios involving

innovation at any date and let the welfare cost (damages) of adding to cumulative emissions

(i.e. the stock of emissions at date T ), as of date t, be e−r(T−t)D(E). As of date 0, given

the exogenous gross emissions path q(t), the regulator’s objective function is

mina(t) e
−rTD

 T∫
0

[1− a(t)]q(t)dt

+

T∫
0

e−rtq(t)c (a(t); θt) dt (B.2)

and the regulator’s objective function at subsequent dates is the obvious extension. Letting

E be the cumulative net emissions,
∫ T
0 [1−a(t)]q(t)dt, the first-order condition for the point-

wise choice of a(t) yields

c′(a(t)) = e−r(T−t)D′(E) (B.3)

The left-hand side of (B.3) represents the marginal cost of reducing emissions by one unit;14

the right-hand side represents the marginal benefit as of date t of reducing emissions by

one unit.

14Since emissions are [1−a(t)]q(t), the cost of reducing emissions by q(t) units is c′(a(t))q(t);the marginal
cost of reducing emissions by only 1 unit are a fraction 1/q(t) of this, which equals c′(a(t)).
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B.2.2 Clean-energy innovation

For the clean-energy innovation model of the previous section, let q0(t) represent the ex

ante path of emissions, i.e. the path followed when innovation is impossible and let q1(t; τ)

represent the path when innovation occurs at date τ . These paths are exogenous in the

regulator’s problem (B.2). We let a0(t) be the solution to the problem given q0(t). Because

innovation occurs with probability zero in the ex post model, in solving for a0(t) the

regulator need not contemplate the possibility of innovation. Once innovation occurs at

date τ , we now let the regulator’s CCS strategy respond to innovation: the solution to

(B.2) given q1(t; τ) is denoted by a1(t; τ).

Suppose that the improvement in technology θt were so strong, with the consequence

of a rapidly increasing a0(t) that

∫ T

0
a0(t)[q1(t; τ)− q0(t)]dt > 0

That is, if the regulator did not respond to innovation by readjusting the optimal CCS

strategy, then innovation would have the paradoxical effect of increasing total emissions.

This is essentially the case analyzed in section 2.3, with a(t) = a0(t) being taken as given

rather than responsive to innovation. The question for us now is whether endogenizing

the regulator’s optimal response to innovation will negate our prediction of a paradoxical

increase in total emissions if CCS technology is improving sufficiently rapidly. The following

proposition shows that the optimal adaptation of CCS by the regulator mitigates, but does

not eliminate, a paradoxical increase in emissions with innovation.

Let the cumulative net emissions under the no-innovation path be E0 =
∫ T
0 a0(t)q0(t)dt

and under the innovation-at-τ path be E1 =
∫ T
0 a1(t; τ)q1(t; τ)dt . (Both definitions are

conditioned on CCS strategy being optimal, i.e. solving (B.2) with the corresponding
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q(t).) Now let Ê1 be the cumulative net emissions under the path q1(t, τ) and the (sub-

optimal) non-innovative CCS, a0(t); Ê1 is what the cumulative net emissions would be

if the regulator did not adjust CCS at all in response to the change in net emissions

with innovation. Given q1(t; τ) and q0(t), suppose that E0 < Ê1. That is, suppose that

emissions would increase with innovation at τ if the CCS were taken as fixed at a0(t). Then

E0 < E1 < Ê1. The proposition states that any (paradoxical) increase in emissions with

clean-energy innovation at τ, is preserved when the optimal CCS strategy is endogenous.

The regulator mitigates but does not eliminate the increase in emissions. The proof of

the proposition is simple, and sketched here. If a0(t) were unchanged with innovation,

with the result that total net emissions equaledÊ1, then the marginal cost of decreasing

emissions (the left-hand side of (B.3) would remain unchanged. But because D(·) is convex,

the increase in emissions from E0 to Ê1 would increase the marginal benefit of decreasing

emissions. The first-order condition (B.3) would be violated. Because of the convexity of

c(·) and D(·), i.e. the second-order conditions for (B.2), an increase in a(t) is optimal. This

implies E1 < Ê1, the second inequality in the proposition. Next, suppose arguendo that

E1 ≤ E0. This would require an increase in a(t), with innovation, for at least some t ≥ τ .

But this increase would raise the marginal cost of reducing emissions, the left hand side

of (B.3) by the convexity of c(·). But since E1 ≤ E0 by hypothesis, the marginal benefit

(the right hand side of (B.3)) would not have risen with innovation. Again the first-order

condition (B.3) would be violated. An increase in emissions would be optimal. This proves

E0 < E1. In short, the optimal response to any innovation that increased emissions would

be to increase CCS but not to the degree that the increase in emissions were eliminated.

For an innovation in clean energy to yield an increase in total net emissions under optimal

regulatory choice of CCS, it is sufficient that the innovation yield an increase in emissions

with CCS policy remaining at a0(t). This corollary means that our basic model, in
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which a(t) is exogenous, captures the conditions under which innovation may will increase

emissions, providing the exogenous a(t) is interpreted as the CCS that would be optimal

in the absence of innovation.

B.2.3 Fuel-efficiency innovation

The identical analysis analysis and proposition to the case of optimal regulatory choice

of CCS in response to a discovery of new fuel-efficiency technology. Let the definitions

of q1(t; τ), E1and Ê1 now correspond to the event of a fossil-fuel efficiency innovation at

τ . Given q1(t; τ) and q0(t), suppose that E0 < Ê1. That is, suppose that emissions would

increase with innovation at τ if the CCS were taken as fixed at a0(t). Then E0 < E1 < Ê1.
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Appendix C

In the fourth chapter, the politician decided based on minimizing a loss function. This

appendix explores the microfoundations of this loss function. It shows that the loss function

is equivalent to an enhanced version of the well-known spatial voting model.

C.1 On the Microfoundations of the Loss Fucntion

Since the Hotelling-Downs model of spatial voting was developed, researchers have pro-

posed numerous variants of the model to explain voters’ behavior. The main theoretical

result from this literature is that when two politicians compete, their platforms on relevant

issues are attracted to the median voter. Short-term frictions, uncertainty about the me-

dian voter’s belief, and primary elections prevent the politicians from becoming identical;

nevertheless, political parties should become more similar over time and have to fight over

winning the median voter.

However, in the real world, over the last four decades, not only have the parties failed to

converge, but also literature showed an increased polarization among the political parties.

Moreover, many pundits believe that elections are decided by which party can excite its

base more strongly, rather than by convincing the median voter to switch to its side.

Finally, the spatial voting models do not have any prediction about turn-outs.

The facts mentioned above makes it is necessary to enhance the contemporary spa-

tial voting models to explain voters’ behavior. The politician uses this enhanced model

to predict voters’ behavior. Exploiting the new model, I show that the politician’s opti-

mal behavior (to the first non-zero approximation) is given by a simple form, which was
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introduced in equations 4.2 and 4.9.

As in the discrete choice literature, voter’s i utility for the incumbent I is given by uiI ,

and similarly for the opposition O, the preference is uiE . The voter faces a cost ci. This

cost is comprised of the actual cost and opportunity cost of going to the polling booth and

casting a vote and all other emotional and intellectual costs of voting. The voter casts his

vote for the incumbent (opposition) if uiI − uiO > ci, (uiO − uiI > ci), and abstains from

voting otherwise.

There are two eqaully large types of voters (D or R). All utility and cost terms can be

written as an average plus a mean zero normal shock. For a Democrat voter, we can write:

uiI = ūID + εiI

uiO = ūOD + εiO

ci = c̄+ εic

(C.1)

And similarly for a Republican voter, we have:

uiI = ūIR + εiI

uiO = ūOR + εiO

ci = c̄+ εic

(C.2)

The incumbent’s vote share is given by the following equation:

Pr(ūID − ūOD − c̄ > εiO + εiC − εiI) + Pr(ūIR − ūOR − c̄ > εiO + εiC − εiI) =

2− Φ(
ūID − ūOD − c̄

σε
)− Φ(

ūIR − ūOR − c̄
σε

)
(C.3)
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where Φ is the cumulative distribution function of the normal distribution, and σε is

the standard deviation of εiO + εiC − εiI .

The incumbent wins the election if their vote share is higher than their opponents’.

Therefore, the incumbent wishes to maximize the difference between their shares and their

opponents’. their actions can only affect ūID and ūIR

max
[
Φ(
ūOD − ūID − c̄

σε
) + Φ(

ūOR − ūIR − c̄
σε

)−

Φ(
ūID − ūOD − c̄

σε
)− Φ(

ūIR − ūOR − c̄
σε

)
] (C.4)

This brings us to the following first-order condition:

−ū′IL(φ(
ūOD − ūID − c̄

σε
) + φ(

ūID − ūOD − c̄
σε

))

−ū′IR(φ(
ūOR − ūIR − c̄

σε
) + φ(

ūIR − ūOR − c̄
σε

)) = 0

(C.5)

Equation C.5 has an straightforward interpretation. Every decision that the incumbent

makes has four effects. It causes some of their base to switch between voting for the

incumbent to 1. the opposition or 2. abstention or it causes some of their opposition base

to switch between voting for the opposition to 3. their or 4. abstention.

To obtain the loss function in the theoretical section of the article, I have to specify

what ūIL and ūIC are.

ūID = ū0ID − θID
(s− sD(T )

σD(T )

)2
ūIR = ū0IR − θIR

(s− sR(T )

σR(T )

)2 (C.6)
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In equation C.6, θID is the attention that average Democrats pay to the incumbent’s

decisions and θIR is the attention of average Republicans to the incumbent’s decision. From

equations C.5,and C.6, the value α in 4.9 is reconstructed:

α =
θID
θIR

φ(
ūOD − ūID − c̄

σε
) + φ(

ūID − ūOD − c̄
σε

)

φ(
ūOR − ūIR − c̄

σε
) + φ(

ūIR − ūOR − c̄
σε

)
(C.7)

If the preferences are symmetric (ūID = ūOR, ūIR = ūOD), then alpha is simplified to:

α =
θID
θIR

(C.8)

Therefore, α > 1 if the incumbent’s decision affects the Democrat base’s utility more

than it affects the Republican’s base utility, which is a reasonable assumption for a Demo-

crat incumbent.
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