
Joint Resource Management and
Pricing in Edge Computing

by

Tarannum Nisha

B.Tech., Malaviya National Institute of Technology, India, 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

November 2021

© Tarannum Nisha 2021

The following individuals certify that they have read, and recommend to the Faculty of

Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:

Joint Resource Management and Pricing in Edge Computing

submitted by Tarannum Nisha in partial fulfillment of the requirements for

the degree of Master of Applied Science

in Electrical and Computer Engineering

Examining Committee:

Dr. Vijay K. Bhargava, Professor, Electrical and Computer Engineering, UBC

Supervisor

Dr. Vincent W.S. Wong, Professor, Electrical and Computer Engineering, UBC

Supervisory Committee Member

Dr. Mohammad Shahrad, Assistant Professor, Electrical and Computer Engineering, UBC

Supervisory Committee Member

ii

Abstract

Edge computing (EC) has emerged as a vital technology that works in tandem with the cloud to

reduce network traffic and enhance user experience by distributing computational and storage

resources closer to end-users and data sources. Despite the tremendous advancements made in

EC technology and the enormous potential it holds, it is still in its infancy stage with numerous

open challenges to overcome. In this thesis, we particularly aim to design efficient algorithms

for pricing, service placement, resource management, and workload allocation in EC.

While considering the joint resource management and pricing problem in EC, we take into

account the preferences of the services. Specifically, we propose a novel bi-level optimization

framework to assist the EC platform to determine the optimal edge resource prices not only

to maximize its profit, but also help each service find an optimal resource procurement and

workload allocation solution to minimize its cost while improving the user experience. When

there is a single edge node (EN), we derive a simple analytic solution for the underlying prob-

lem. However, for general case with multiple ENs, the follower problem becomes sophisticated.

To this end, we develop two efficient approaches based on the Karush–Kuhn–Tucker (KKT)

conditions and linear programming duality, respectively, combined with a series of lineariza-

tion techniques to optimally solve the underlying bi-level optimization problem. The proposed

optimal solution will maximize the profit of the EC platform and improve the edge resource uti-

lization while minimizing the cost of every service. Numerical results demonstrate the superior

performance of the proposed dynamic pricing scheme.

When the services need to pay for the service placement costs, the follower problems contain

integer variables, which results in an extremely challenging bi-level mixed integer optimization

problem. Due to the non-convex lower-level problems, we cannot use the KKT or duality-based

approach to transform each lower problem equivalently into a set of linear constraints. Inspired

by the column-and-constraint generation method from the adaptive robust optimization lit-

iii

erature, we design an iterative algorithm to find an exact optimal solution to the formulated

bi-level integer optimization problem.

iv

Lay Summary

The emerging edge computing paradigm promises to provide low-latency and ubiquitous com-

putation to numerous mobile and Internet of Things (IoT) devices by bringing storage, com-

puting, control, and networking functions closer to the end-users. How to efficiently allocate

numerous geographically distributed heterogeneous edge resources to a variety of services (e.g.,

Google, Amazon, Uber) is a challenging task. In this thesis, we examine and formulate the

interaction between an EC platform and multiple services as a bi-level optimization problem,

which explicitly takes the service preferences into consideration. Given the optimal service

placement and resource pricing computed by the platform, the goal of each service is to mini-

mize the resource procurement cost while enhancing the user experience. The proposed frame-

work not only maximizes the profit of the platform but also minimizes the cost of every service.

We also extend the model to tackle the case where the services need to pay for the service

placement costs. Extensive numerical results confirm the superior performance of the proposed

dynamic pricing scheme.

v

Preface

Submitted journal that resulted from the research presented in this thesis is as follows:

• T. Nisha, D. T. Nguyen, and V. K. Bhargava, “A Bilevel Programming Framework

for Joint Edge Resource Management and Pricing,” Accepted for publication subject

to revision in IEEE Internet of Things journal (Date of decision: 28 October, 2021)

(Accepted for presentation at INFORMS Annual Meeting, 2021).

I am the primary researcher and author for all the research contributions made in this the-

sis. I conducted the literature review to develop the original ideas and identified the research

problems. I formulated the research problems, developed solution approaches, performed math-

ematical analysis, and carried out the numerical simulations. I also wrote the manuscript for

the above submitted paper for publication. The contributions of my co-authors are as follows.

Prof. Vijay K. Bhargava is my honorable supervisor and he provided valuable guidance as

well as gave insightful feedback during the preparation of the manuscript. Prof. Duong Tung

Nguyen is my unofficial co-supervisor. He guided me in identifying the research problems

and provided constructive technical feedback during the problem formulation and mathemat-

ical analysis stage. He also helped in editorial corrections while preparing the corresponding

manuscript for publication.

vi

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . vii

List of Tables . ix

List of Figures . x

List of Abbreviations . xi

Acknowledgements . xiii

Dedication . xv

1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Outline of Thesis . 6

2 Bi-level Programming for Joint Edge Resource Management and Pricing 8

2.1 Introduction and Research Contributions . 8

2.2 Related Work . 11

2.3 System Model . 14

2.4 Problem Formulation . 18

2.4.1 The Follower Problem . 19

vii

2.4.2 The Leader Problem . 21

2.5 Solution Approaches . 25

2.5.1 KKT-based Reformulation . 27

2.5.2 Duality-based Reformulation . 32

2.6 Summary . 34

3 Numerical Results . 36

3.1 Simulation Setting . 36

3.2 Performance Evaluation . 37

3.2.1 Comparison between the KKT-based and duality-based reformulation

approaches . 37

3.2.2 Comparison between dynamic, flat, and average pricing schemes 37

3.2.3 Sensitivity Analysis . 40

4 Extension: Bi-level Mixed Integer Optimization Problem 44

4.1 Motivation . 44

4.2 Problem Formulation . 45

4.2.1 Follower Problems . 46

4.2.2 Leader Problem . 47

4.3 Solution Approaches . 50

4.3.1 KKT-based Reformulation . 51

4.3.2 Duality-based Reformulation . 54

4.3.3 Master Problem . 56

4.3.4 Subproblems . 57

4.3.5 Iterative Algorithm and Proof of Convergence 58

4.4 Summary . 60

5 Conclusions and Future Work . 61

5.1 Future Research Directions . 62

Bibliography . 64

viii

List of Tables

2.1 Notations . 17

3.1 Computational time comparison between the duality-based and KKT-based re-

formulation methods . 38

ix

List of Figures

1.1 Edge network architecture . 3

2.1 System model . 15

2.2 Interaction between the platform and services 18

3.1 Performance comparison between Dynamic, Flat, and Average pricing schemes 39

3.2 Workload allocation comparison . 40

3.3 Impacts of number of APs on the system performance 41

3.4 Impacts of resource demand on the system performance 42

3.5 Impacts of number of services on the system performance 43

x

List of Abbreviations

ADMM Alternating Direction Method of Multipliers

AP(s) Access Point(s)

AR Augmented Reality

BiMIP Bilevel Mixed Integer Programming

BS(s) Base Station(s)

CCG Column and Constraint Generation

DC(s) Data Center(s)

DM Decision Maker

EC Edge Computing

EN(s) Edge Node(s)

FLEN First Layer Edge Node

IoT Internet of Things

KKT Karush–Kuhn–Tucker

ME Market Equilibrium

MILP Mixed Integer Linear Programming

MINBP Mixed Integer Non-Linear Bilevel Programming

MINLP Mixed Integer Non-Linear Programming

xi

MP Master Problem

MPCC Mathematical Program with Linear Complementarity Constraints

MPEC Mathematical Program with Equilibrium Constraints

OTT Over-the-Top

PC Personal Computer

POA Point of Aggregation

SLEN Second Layer Edge Node

SP Service Provider

UHD Ultra-High-Definition

VR Virtual Reality

xii

Acknowledgements

First and foremost, I would like to express my gratitude to my MASc supervisor, Professor

Vijay K. Bhargava. Without his assistance and dedicated involvement in every step throughout

the process, this research work would have never been accomplished. His advises, patience and

encouragement with a perfect blend of insight and humour have pushed me to sharpen my

thinking and fully explore my research interests without any pressure. My time working with

him is something I’m proud of, and I’m grateful for it. Indeed, I will truly miss listening to

his inspiring life lessons and experiences during our virtual group lunch meetings. Professor

Vijay’s motivation, vision, generosity, and integrity will forever stay with me for my future

career.

I would also like to extend my deepest gratitude and immeasurable appreciation to my co-

supervisor, Professor Duong T. Nguyen for introducing me to this interesting line of research.

The many hours of thought-provoking conversations I had with him were extremely beneficial

to me. His valuable technical suggestions and feedback were instrumental in presenting my

research work as clearly as possible. Professor Duong’s immense knowledge and plentiful

experience have aided me throughout my research and daily life. A special thanks goes to my

colleagues, Surya Vara Prasad, Kevin Bradley Dsouza, and, Jiaming Cheng for not only taking

time to review my thesis but also for their friendly support and fruitful discussions.

I would also like to take this opportunity to thank Professor Vincent Wong and Professor

Mohammad Shahrad, members of my committee, for their thoughtful suggestions and con-

structive feedback during my Thesis defense. Their suggestions have been extremely beneficial

in improving this thesis.

Last but not the least, I especially thank my dear family and friends for patiently listening

to me and for their unfailing emotional support over the past two years. This journey would

have been much more difficult and a lot less enjoyable if it hadn’t been for their unwavering

xiii

support, unconditional love, and encouragement.

xiv

Dedication

Dedicated to my beloved parents, siblings, and close friends,

who have been my source of inspiration and strength.

xv

Chapter 1

Introduction

1.1 Background and Motivation

The widespread use of mobile devices, combined with the rapid growth of cloud computing, has

resulted in unprecedented volumes of data traffic across the communication network. Cloud

computing provides users with a variety of benefits by allowing them to access a wide range of

services and virtually unlimited resources and storage capacity [1]. This trend is expected to

continue in the near future, with new applications such as 4K/8K Ultra-High-Definition (UHD)

video, interactive gaming applications, tactile Internet, virtual/augmented reality (VR/AR),

mission-critical communication, smart grids, smart cities, and a variety of Internet of Things

(IoT) applications [2]. Owing to this trend, the network will be put under a tremendous amount

of pressure as the cloud infrastructure and the number of devices continue to grow at a rapid

pace. Thus, it is vital for the network operators to make fundamental decisions of handling

increasing traffic alongside accommodating the diverse requirements of various services and

use cases in the next generation communication network.

Cloud computing will likely continue to play a prominent role in the future computing

landscape due to significant economies of scale resulting from providing the same services

to a wide range of customers and supercomputing performance advantages. However, due

to geographically distant placement of cloud data centers (DCs), there arises the issue of

enormous network traffic that results in communication delay and jitter when processing time-

driven data. Furthermore, the cloud server performance is severely affected in the event of

an attack or slow Internet connectivity, among other things. Hence, despite the immense

power and potential, cloud computing alone is facing growing limitations in satisfying the

stringent requirements in terms of latency, reliability, security, mobility, and localization of

many new systems and applications (e.g., embedded artificial intelligence (AI), manufacture

1

automation, 5G wireless systems) [2]. To this end, edge computing (EC) [2, 3] has emerged as

a new computing paradigm that augments the traditional cloud computing model to enable

the implementation of a variety of services closer to the end-users right at the network edge.

Virtualization technology powers the edge networks to distribute computing, storage, con-

trol, and networking services closer to the end-users. This proximity to data at its source

can deliver strong business advantages, including faster insights, improved response time and

better bandwidth connectivity [4]. Generally, “edge” can be referred to any network resource

between data sources and cloud data centers. Moreover, the size of an edge node can vary

from smartphones, personal computers (PCs), smart access points (APs), base stations (BSs)

to edge clouds [5]. For example, a smartphone is the edge between wearable devices and the

cloud, a home gateway is the edge between smart appliances and the cloud, a cloudlet, a tele-

com central office, a micro DC is the edge between mobile devices and cloud core network.

In this thesis, edge clouds, micro DCs in campus buildings, enterprises, hospitals, malls, and

telecom central offices, servers at BSs, and idle PCs in research labs are all examples of ENs

[2, 6, 7]. EC offers many remarkable capabilities by providing cloud resources and intelligence

at the edge of the network. This includes local data processing and analytics, distributed

caching, location awareness, resource pooling and scaling, enhanced privacy and security, and

mobility support.

These capabilities in combination with short distance communication allows the operators

to efficiently handle the traffic load both upstream and downstream between the cloud and the

edge users, which in turn results in drastic reduction in the network traffic thereby improving

the user experience. EC with its growing computing capabilities such as edge caching, near

real-time data processing and analysis, can not only power innovation to enhance network

performance but also help service providers serve user content requests locally. Moreover, EC

helps to unlock the potential of large amounts of untapped data generated by connected devices

[4]. This opens up numerous business opportunities to improve operation of the network,

customer experience, workload management and secure operation.

In addition, most data generated by IoT sensors is expected to be processed at the edge

and only important information is sent to the cloud for further analysis. Besides, EC is the

key enabler for ultra-reliable low-latency applications such as AR/VR, multimedia streaming,

2

video transcoding, autonomous driving, industrial automation, remote robotics, and health-

care. Numerous advantages and other use cases (e.g., offloading, caching, advertising, smart

homes/grids/cities) of EC can be found in [2, 3, 5]. It’s worth noting that the intersection of

EC and AI, has recently emerged as a fascinating research topic with numerous intriguing and

practical applications [8–11].

Due to the tremendous potential that EC holds, it has attracted significant attention from

both academia and industry. Indeed, large telecommunication companies (e.g., AT&T, Ver-

izon) and cloud providers (e.g., Amazon, Google, Microsoft), as well as many startups and

third parties, have made significant investments in EC technology. [4, 12–18]. EC is still in

its early stages of development and faces numerous new challenges, including network archi-

tecture design, programming models and abstracts, IoT support, service placement, resource

provisioning and management, security and privacy, incentive design, resource pricing and edge

device reliability and scalability [2, 3, 5]. To fully realize the enormous potential of this new

technology, significant collaboration between industry and academic professionals is required.

Figure 1.1: Edge network architecture

Fig. 1.1 depicts the new network architecture where the EC layer lies between the cloud

and the aggregation layer. In particular, the aggregation layer consists of numerous Points of

Aggregation (POA) also known as access points, such as BSs and network routers/switches,

3

which aggregate data and requests from end-users/IoT devices. As mentioned earlier, various

sources can act as ENs. An EN can, in fact, be co-located with a POA. For instance, edge

servers can be placed at a base station. The service requests first arrives at the APs. Thereafter,

depending on whether the service is placed on the ENs or cloud, the requests are routed for

further processing. For example, with EC, when a user submits an Amazon order request or an

Uber ride request, the request can now be handled by an EN rather than going all the way to

Amazon or Uber’s remote servers. Clearly, EC can help the SP not only significantly improve

service quality but also significantly reduce network bandwidth consumption.

In this thesis, we focus on addressing the pricing, resource procurement, service placement,

and workload allocation in EC. Specifically, we model the interaction between an EC platform

and multiple services as a bi-level optimization model to capture the diverse interests of de-

cision makers at both levels. The platform is basically an infrastructure provider operating

the ENs and providing necessary framework to meet the hardware and software requirements

of placing and running services onto different ENs. The services in turn utilize these edge

resources from the ENs managed by the provider to meet the resource demand. These services

are price responsive agents and respond to the edge resource prices set by the EC platform

to optimize user experience. Optimization problems involving two decision-makers interacting

sequentially are called bi-level optimization problems. When decisions are made in this hierar-

chical fashion, the first player in the upper level makes his decision first and conveys the same

to the second player in the lower-level [19]. The first player is commonly referred to as the

leader and the second player is referred to as the follower. As a result, the feasible decision

set of the follower problem is influenced by the leader and since the follower problem serves as

nested optimization problem to the leader, the leader’s optimization problem can be solved op-

timally by anticipating the optimal lower-level decisions, thus reflecting the inter-dependency

in decisions made by the players at both levels of the problem.

In our model, the platform manages a set of ENs and acts as the leader while the services are

the followers. The terms EC platform and edge infrastructure provider are used interchangeably

in this thesis. The content/application/service providers (e.g., AR/VR companies, Google,

Netflix, Facebook, Uber, Apple, and other over-the-top (OTT) providers) can proactively

install their applications, particularly latency-sensitive and/or data-intensive ones like AR/

4

VR, cloud gaming, and video analytics onto selected ENs closer to end-users to improve their

experience and reduce bandwidth usage. By selling edge resources to the services, the platform

can maximize its revenue. The services in turn compete for those edge resources given the

prices announced by the platform to improve the user experience by serving the requests

directly at the network edge. In particular, these decisions are quite challenging due to the

interdependence between the decisions of the platform and the services. While the resource

procurement decisions of the services depend on the prices set by the platform, the pricing

decisions made by the platform depends on the demand for resources by the services.

Also, because of the heterogeneity of the ENs, the services may have diverse preferences

towards them. Consequently, the valuations of different ENs to a service can be different. In

general, a service prefers low-priced edge resources as well as ENs with powerful hardware

and geographically close to it. Intuitively, to minimize the network delay between its users

and computing nodes, a service tends to procure resources from its closest ENs. Hence, some

ENs can be over-demanded (e.g., ENs in or near high-demand areas) while some other nodes

are under-demanded, which leads to low resource utilization. In such cases, the platform can

reduce the resource prices of underutilized ENs to encourage load shifting from the overloaded

ENs. Moreover, these services needs to serve a large number of users/subscribers located in

different areas.

In our proposed model, each service aims to minimize the total resource procurement cost

while maximizing the service quality (i.e., minimizing the delay of the requests) and the EC

platform aims to maximize profit, selling these resources to multiple latency-sensitive services.

Thus, how to jointly optimize the service placement, sizing, and workload allocation decisions

is an important and challenging problem, which becomes even more sophisticated due to the

interdependence between the decisions of the platform and the services. To this end, we present

a single-leader-multi-follower bi-level optimization model where the EC platform interacts with

multiple services. Given the resource pricing and placement decisions computed by the leader,

each follower optimizes its resource procurement and workload allocation strategies. When

there is only one EN, we can deduce a simple analytic solution to the underlying problem.

Most of the existing literature on pricing and resource provisioning issues in edge and cloud

networks have special structural properties in their follower problems, that makes analysis of

5

these problems quite restrictive. However, in our formulation, we design flexible objective

functions and constraints for the follower problems. Furthermore, up to know, majority of

the previous work tackles these issues from the viewpoint of a single entity, namely, the edge

infrastructure provider. This motivated us to study the problem of joint pricing, placement,

and resource management by incorporating price responsive agents, namely, services to utilize

the price information revealed by edge infrastructure provider to enhance user experience.

Computing bi-level optimization problems is generally extremely hard. The problem becomes

even more sophisticated due to several bilinear terms, which are the products of two variables.

Due to the large size of certain applications, significant downloading/data transferring costs

and storage costs are incurred by the platform. As a result, the services may have to pay for

the service placement cost which consists of downloading, installation and storing services of

desirable size onto different edge nodes. This motivated us to extend the previous bi-level

model to capture the service placement cost in the lower-level problem. The resulting problem

becomes a bi-level mixed integer formulation with integer placement variables in the lower-

levels, which is extremely challenging to solve. Given the computing prices computed by the

leader, each service will decide on the service placement decisions. Different from the previous

model, the platform is no longer responsible for the placement decisions. Thus, we model the

interaction between the platform and the services such that the platform can maximize its

revenue and the services can minimize their placement and procurement costs.

We propose and formulate a novel mathematical model to tackle the extended problem. We

develop an iterative decomposition algorithm inspired by the column-and-constraint generation

method from the robust optimization literature to present a clear mathematical foundation for

solving the extended problem. Based on this motivation, we believe our work is novel and is

of great significance in practice.

1.2 Outline of Thesis

The rest of this thesis is organized as follows:

• In Chapter 2, we study the problem of joint edge resource management and pricing. The

interaction between EC platform and services is modeled as a bi-level optimization prob-

6

lem, which explicitly takes the service preferences into consideration. The platform solves

for optimal edge resource prices whereby the services decide on optimal resource procure-

ment and workload allocation decisions. The proposed bi-level program is then solved by

reformulation using a KKT-based solution and a duality-based solution, combining with

a series of linearizations. We further examine a special case with single EN managed by

the platform and propose to solve the underlying bi-level problem analytically.

• In Chapter 3, we first present the simulation settings and then compare the performance

of the duality and KKT-based reformulation solution approaches. This provides insights

on the running time of the solution techniques. Then we compare the proposed dynamic

pricing scheme against benchmark schemes. Finally, we perform sensitivity analysis to

analyze the impact of important system parameters on the optimal solution.

• In Chapter 4, we present the extended bi-level mixed integer model to capture the ser-

vice placement cost in the lower-level problems. The formulation now has integer service

placement variables in the follower problems. Inspired by the column-and-constraint

generation (CCG) method, we elaborate on the iterative decomposition algorithm devel-

opment to solve the underlying problem and provide proof of convergence.

• In Chapter 5, concluding remarks are provided and possible future research directions

are discussed.

7

Chapter 2

Bi-level Programming for Joint

Edge Resource Management and

Pricing

One of the most important challenges in EC is the problem of multitenancy of shared and het-

erogeneous edge resources, which becomes even more complicated due to the interdependence

between the decisions of the platform and the services. This chapter focuses on the problem

of joint edge resource pricing, service placement, and workload allocation, formulating an in-

teractive bi-level model between an EC platform and multiple services. Our model not only

maximizes the profit of the platform but also minimizes the cost for every service. We present

two solution approaches based on the Karush–Kuhn–Tucker conditions and the LP duality to

convert the bi-level optimization problem into a single-level optimization problem. However,

the resulting single-level problem contains several bilinear terms. Therefore, we introduce a

series of linearization techniques to transform the bilinear terms into a set of equivalent linear

constraints. It is worth noting that the proposed model can be easily modified to study other

applications such as robust edge network planning and robust network slicing.

2.1 Introduction and Research Contributions

In this chapter, we study the interaction between an EC platform (i.e., an edge infrastructure

provider), and multiple services (e.g., AR/VR applications, Google Maps). The platform (e.g.,

a telco, a cloud provider, a third-party [20]) manages a set of ENs and can monetize the edge

resources by selling them to the services. By placing and running the services at the ENs, the

service providers (SPs) can drastically enhance the quality of experience for their users since

8

the user requests can be served directly at the network edge.

Our work aims to address two fundamental questions: (1) how the platform can set the

edge resource prices optimally, and (2) how much resources a service should purchase from

each EN. These questions are challenging due to the interdependence between the decisions of

the platform and the services. Specifically, the resource procurement decisions of the services

depend on the resource prices set by the platform. On the other hand, the pricing decisions of

the platform depends on the resource demands of the services.

To this end, we formulate a joint edge resource management and pricing problem between

the platform and the services, and propose to cast it as a bi-level optimization model [21] (i.e.,

a Stackelberg game). It is designed such that the platform can derive optimal edge resource

prices to maximize its profit, and also help each service find an optimal resource procurement

and workload allocation solution to minimize its cost while improving the user experience

through delay reduction. Consequently, this new market-based framework aims to harmonize

the interests of different market participants so that every service is happy with its allotment

while the system maintains high resource utilization. In the formulated bi-level problem, the

platform is the leader and each service is a follower. The leader decides the optimal resource

prices to assign to different ENs, while anticipating the reaction of the followers. Given the edge

resource prices computed by the leader, each service solves a follower problem to identify the

optimal amount of resource to buy from each EN, considering its delay and budget constraints.

On that account, we consider a fog node as any edge node consisting of one or more com-

puting units (e.g., edge clouds, micro data centers in campus buildings, enterprises, hospitals,

malls, and telecom central offices, servers at base stations, and idle PCs in research labs) [5].

Unlike the traditional cloud with virtually infinite capacity, ENs have limited computational

power. They also come with different sizes and configurations. Furthermore, in contrast to a

small number of cloud DCs, there are numerous distributed ENs. Therefore, a primary concern

is how to intelligently price these limited edge resources and efficiently allocate them to the

competing services with diverse characteristics and preferences, considering the service prior-

ity and fairness. When the market clears, the resulting prices and allocation form a market

equilibrium (ME) [6], [22].

To the best of our knowledge, this is the first bi-level programming formulation for the

9

joint edge service placement, resource procurement, and pricing problem. Note that while

Stackelberg games have been used extensively to study various problems in EC, most of the

existing models contain a simplified follower problem that normally has a special closed-form

solution to facilitate the backward induction method. For our problem, we followed a similar

procedure to obtain an analytic solution for the case with a single EN in the system. However,

for the general case with multiple ENs, the follower problem becomes sophisticated. Also, our

formulation contains integer service placement variables. Hence, backward induction cannot

be applied to solve our bi-level optimization problem. Our formulation makes it easier and

more flexible for the services to express their objective functions and constraints.

Bi-level optimization problems are generally extremely hard to solve [21]. In this chapter,

we present two solutions to compute an exact optimal solution to the formulated mixed integer

non-linear bi-level program (MINBP) in the general case. The first solution relies on the

Karush–Kuhn–Tucker (KKT) conditions to convert the bi-level problem into an equivalent

mathematical program with equilibrium constraints (MPEC) [23], which is a mixed integer

nonlinear program (MINLP). By employing the strong duality theorem and some linearization

techniques, we transform this MINLP into a mixed integer linear program (MILP) that can

be solved efficiently using off-the-shelf MILP solvers such as Gurobi1 and CPLEX2.

Although the first solution can solve the bi-level program optimally, the resulting MILP has

a large number of constraints and auxiliary integer variables due to the complimentary slackness

constraints from the KKT conditions. Therefore, we propose an alternative solution that uses

linear programming (LP) duality and a series of linearizations to convert the original bi-level

problem into an equivalent MILP with significantly less number of constraints and integer

variables compared to the one obtained by the KKT-based approach. Our main contributions

can be summarized as follows:

• Modeling: We propose a novel bi-level optimization framework for joint edge resource

management and pricing, where the platform optimizes the resource pricing, EN activa-

tion, and service placement decisions in the upper level while each service optimizes its

workload allocation decisions in the lower level. The service preferences are explicitly

1https://www.gurobi.com/
2https://www.ibm.com/analytics/cplex-optimizer

10

captured in the proposed framework.

• Solution approach: The formulated problem is a challeging MINBP. We first present an

analytic solution for the special case with a single EN. When there are multiple ENs in

the system, we develop two efficient approaches based on the KKT conditions and LP

duality, respectively, to optimally solve the bi-level problem.

• Simulation: Extensive numerical results are shown to illustrate the effectiveness of the

proposed scheme, which provides a win-win solution for both the EC platform and the

services. In particular, it can help increase the profit for the platform, decrease the costs

for the services, and improve the edge resource utilization.

2.2 Related Work

The emerging EC paradigm has attracted a lot of attention from the research community. Most

of the previous work has focused on the joint optimization of communication and computational

resources in mobile edge computing [6]. References [7] and [24] introduce a market equilibrium

approach for fair and efficient allocation of heterogeneous edge resources to budget-constrained

services. A primal-dual method for online matching between edge resources and multiple

services is presented in [25] to maximize the system efficiency. In [22], Zhang et al. combine

Stackelberg game and matching theory to address the edge resource allocation problem.

Recently, the service placement and workload scheduling problem has been studied ex-

tensively. In [26], Lyapunov dynamic stochastic optimization method is utilized to solve the

problem of joint admission control and resource allocation in edge computing for the internet

of things. In [27], a two-stage robust optimization framework is proposed to optimize the

service placement and sizing decisions for a service provider, taking into account the demand

uncertainty. Jia et al. [28] employs queuing models to jointly optimize the cloudlet placement

and workload allocation decisions to minimize the system response time, considering a fixed

number of cloudlets. In [29], the authors propose a ranking-based heuristic algorithm for effi-

cient cloudlet deployment in an IoT network. Authors of [30] optimize the cloudlet placement

and task allocation to minimize the energy consumption subject to delay constraints. A novel

workload allocation model in a hybrid cloud-fog system to minimize the total energy cost

11

subject to latency constraints is proposed in [31].

L. Yang et al. [32] introduces a unified service placement and request dispatching model

to limit service placement transitions and reduce data transmission costs. In [33], the authors

present an application image placement and task scheduling problem in a fog network with

dedicated storage and computing servers to minimize the makespan. R. Yu et al. [34] considers

an IoT application provisioning problem that jointly optimizes application placement and data

routing to support all data streams with both bandwidth and delay guarantees. A constant-

factor approximation algorithm is presented in [35] to find a feasible service placement that

maximizes the total user utility considering the heterogeneity of ENs and user locations. In

[36], the authors present a joint application placement and workload allocation scheme to

minimize the response time of IoT application requests. The authors of [37] present a two-

timescale optimization framework to optimize service placement and request scheduling under

the budget and multi-dimensional resource constraints. In [38], A. Yousefpour et al. introduce

an edge service provisioning model to minimize the total system cost by dynamically deploying

and releasing applications on different ENs. Joint optimization of access point selection and

service placement is addressed in [39] to enhance user QoS by balancing the access delay,

communication delay, and switching delay. The joint service placement and request routing

in mobile edge computing (MEC) is investigated in [40] to minimize the workload to the

cloud, considering the asymmetric bandwidth requirements of the services and the limited

storage capacities of ENs. In [41], Ouyang et al. formulates the dynamic service placement

problem as a contextual multi-armed bandit problem and propose a Thompson-sampling based

online learning algorithm to assist a user to select an EN for offloading considering the trade-

off between latency and service migration cost. Wang et al. in [42], examines the service

placement problem for social VR applications to minimize the total application deployment

cost, including the cloudlet activation, service placement, proximity, and colocation costs.

A substantial amount of research has also been carried out on pricing design in cloud and

edge networks. In [43], H. Xu et al. propose a revenue maximization model and employ

stochastic dynamic programming to tackle the dynamic pricing problem in an infrastructure

as a service (IaaS) cloud. In [44], various pricing frameworks have been studied to tackle

the problem of joint resource provisioning and procurement applying an online procurement

12

algorithm. Similar research on joint virtual machine pricing, task scheduling, and server pro-

visioning is studied in [45] via an online profit maximization algorithm. Reference [46] studies

the problem of resource pricing by thoroughly analyzing several dynamic pricing schemes based

on auctions and fairness-seeking properties from the perspective of game-theory and existence

of unique Nash or Stackelberg equilibrium. In [47], the Lagrange multiplier method and a

dynamic closed loop control scheme are integrated to solve the user perceived value-based

dynamic pricing problem.

Stackelberg games and bi-level optimization have been proposed for studying resource allo-

cation and pricing in cloud and edge computing. In [48], the authors introduce a bi-level model

and a heuristic algorithm to study the task allocation problem in a two-layer multi-community

cloud/cloudlet social collaborative computational framework. The authors of [49] propose a

Stackelberg game between a single EN and multiple mobile users, in which the former seeks to

maximize revenue within capacity constraints, while the latter seeks to minimize cost perform-

ing optimal task allocation. In [50], the authors present a bi-level optimization model, in which

the upper-level model represents the task allocation problem and the lower-level captures the

resource allocation problem, to minimize energy consumption under delay constraints.

Authors of [51] study the interaction among cloud/edge providers that sell computing ser-

vices at the upper-level and a set of peer nodes called miners that decide on the service demand

to be purchased at the lower-level. The alternating direction method of multipliers (ADMM)

method is employed to solve this multi-leader multi-follower Stackelberg game. On the simi-

lar lines, a sophisticated Stackelberg game between first and second layer edge nodes (FLEN

& SLEN) for energy-aware profit maximization is tackled where service price is determined

by SLEN and the workload distribution by the FLEN leveraging the flat-rate pricing scheme

[52]. Additionally, a sophisticated Stackelberg game has been dealt with the authors of [53] to

study the bi-level resource pricing problem in mobile edge computing and solved by evolution-

ary algorithms. To solve the pricing and purchasing dilemma of the data consumer and the

market-agency, a two-stage Stackelberg game is formulated in [54]. In [55], the authors propose

a two-stage dynamic game between wireless devices and a base station connected to an edge

server. In the first stage, the base station determines service pricing and placement decisions

to maximize its profit whereas in the second stage, each device executes task offloading with

13

the goal of reducing the service latency and cost.

In this chapter, we consider both cloudlet placement and service placement aspects of the

edge resource allocation problem. The service placement and cloudlet placement/activation

problems are often addressed independently in the previous literature. Furthermore, most

of the existing optimization models are studied from the perspective of a centralized service

provider. In this work, we jointly address the problem of optimal service placement and EN

activation. Furthermore, the preferences of the services are also integrated into our proposed

optimization model, which have been largely ignored in the existing literature.

In most of the existing Stackelberg games and bi-level optimization models for cloud/edge

pricing, the follower problems are quite restrictive and have closed-form solutions that facilitate

the application of the backward induction method to find a Stackelberg equilibrium. Some of

the proposed algorithms are also heuristic and provide only suboptimal solutions. Unlike

the previous literature, our proposed bi-level model allows the services to be more flexible

in defining their objective functions and operating constraints, which enables the follower

problems to be more expressive. Furthermore, our proposed solutions are exact and give an

optimal solution to the bi-level program. Our proposed model and design objective are also

different from the previous work.

2.3 System Model

We consider a system that consists of an EC platform, also known as an edge infrastructure

provider, and a set K of K services. The platform manages a set N of N ENs to provide

computational resources to the services. The services can be proactively installed onto selected

ENs to reduce the communication latency and improve service quality. In practice, various

sources (e.g., under-utilized DCs in schools/malls/enterprises, idle PCs in research labs, edge

servers at base stations, telecom central offices) can serve as ENs [5]. In addition to its own ENs,

the platform may also control ENs owned by other entities (e.g., telcos, malls, universities).

The EN owners can offer their idle edge resources to the platform in exchange for a certain

compensation. The service requests from end-devices normally arrive at a point of aggregation

(e.g., switches, routers, base stations, WiFi access points), then will be forwarded to an EN or

14

Figure 2.1: System model

the cloud for processing.

Throughout this chapter, the points of aggregation are referred to as access points (AP).

We assume there is a set M of M APs in the system. Each service serves users located in

different areas, each of which is represented by an AP. Note that an EN can be co-located

with an AP. For instance, edge servers can be placed at a base station. In enterprise data

centers, edge servers can be deployed near routers/switches. Similar to the previous literature

[7, 24, 27, 28, 30, 37, 38, 40, 42], we study the service placement and request scheduling problem

from the APs to the ENs and the cloud only. Fig. 2.1 depicts the system model.

Let i, j, and k be the AP index, EN index, and service index, respectively. The network

delay between AP i and EN j is di,j , and the delay between AP i and the cloud is di,0. The

goal of each service is to minimize not only the resource procurement cost but also the network

delay for its users. Define Rki as the resource demand (i.e., workload) of service k at AP i.

Given the resource prices, locations, and specifications of the ENs, each service decides how to

optimally divide its workload to the active ENs and the cloud for processing. In Fig. 2.1, each

active EN is represented by a green dot while a red dot indicates an inactive EN.

Each service k has a budget Bk for resource procurement. The amount of workload of ser-

15

vice k at AP i assigned to EN j is denoted by xki,j . Also, xki,0 is the amount of workload of service

k at AP i routed to the cloud. Define xk0 = (xk1,0, x
k
2,0, . . . , x

k
M,0), xki = (xki,1, x

k
i,2, . . . , x

k
i,N), and

xk = (xk1, x
k
2, . . . , x

k
M). Clearly, to enhance the user experience, a service prefers to have its

requests processed by ENs closer to its users rather than the remote cloud. Let yk0 and ykj

represent the amounts of computing resources that service k purchases from the cloud and EN

j, respectively. Also, yk = (yk1 , y
k
2 , . . . , y

k
N). Define Dk,m as the maximum delay threshold of

service k. The average delay of service k at AP i is dk,ai . Denote by wk the delay penalty

parameter for service k. Let sk be the size of service k. The placement cost of service k

at EN j is φkj , which includes the downloading, installation, and storage costs. The binary

variable tkj indicates if service k is installed at EN j or not. Define tk = (tk1, t
k
2, . . . , t

k
N) and

t = (t1, t2, . . . , tK).

For each EN j, its storage capacity and computing capacity are denoted by Sj and Cj ,

respectively. Since the services may have different preferences towards the ENs, some ENs can

be over-demanded while others are under-demanded. Hence, a natural solution is to efficiently

price the edge resources to balance supply and demand. The unit price of computing resource

of EN j is denoted by pj . Define p = (p1, p2, . . . , pN). Moreover, due to the limited storage

resource, each EN can host only a subset of services. The operating cost of an active EN j

includes a fixed cost cj and a variable cost depending on its computing resource utilization.

Let zj be a binary variable that equals one if EN j is active and zero otherwise. Define

z = (z1, z2, . . . , zN). The platform needs to jointly decide which ENs to be active, which

service to place at which node, and the resource prices of individual ENs to maximize its

revenue while minimizing the total operation cost. The main notations are summarized in

Table 2.1.

Our work focuses on the interaction between the platform and multiple latency-sensitive

services. The platform needs to properly price resources at different ENs to maximize its profit

and ensure load balancing, while considering diverse service preferences. The edge resource

prices are interdependent because whether a service chooses to offload its tasks to an EN or

not depends not only on the price at that EN but also on the prices at other ENs. Besides

resource pricing, the platform is also responsible for downloading and installing the services

onto different ENs. The placement decision is subject to the storage capacity constraints of

16

Table 2.1: Notations

Notation Meaning

i, M, M Index, number, and set of APs

j, N, N Index, number, and set of ENs

k, K, K Index, number, and set of services

Sj Storage capacity of EN j

Cj Computing resource capacity of EN j

cj Fixed cost of EN j

qj Variable cost of EN j

di,j Network delay between AP i and EN j

di,0 Network delay between AP i and the cloud

Dk,m Delay threshold of service k

dk,ai Average delay of service k in area i

Bk Budget of service k

sk Storage resource requirement of service k

wk Delay penalty parameter for service k

Rki Resource demand of service k at AP i

φkj Placement cost of service k at EN j

tkj Binary variable, 1 if service k is placed at EN j

zj Binary variable, 1 if EN j is active

pj Unit price of computing resource at EN j

xki,j Workload of service k at AP i assigned to EN j

xki,0 Workload of service k at AP i assigned to the cloud

ykj Amount of resource of EN j allocated to service k

yk0 Amount of resource of cloud allocated to service k

the ENs.

By anticipating the reaction of the services, the platform optimizes the resource prices and

service placement. Given the pricing and placement decisions announced by the platform, each

17

service responds by computing its favorite edge resource bundle (i.e., the optimal amount of

resource to purchase from each EN). Since the platform acts first and the services make their

decisions based on the platform’s decisions, the process is sequential. Thus, we model the

interaction between the platform and the services as a bi-level program, where the platform

and services are the leader and followers, respectively.

2.4 Problem Formulation

Figure 2.2: Interaction between the platform and services

In this section, we formulate the interaction between the platform (i.e., the leader) and the

services (i.e., the followers) as a bi-level program which consists of an upper-level optimization

problem and K lower-level problems, each for one service. The platform solves the upper-level

problem to maximize its profit, and then announces the resource prices and service placement

decisions to the services. After receiving the information from the platform, each service solves

a lower-level problem to minimize its cost under the delay and budget constraints, and then

send the optimal resource procurement and workload allocation solution back to the platform.

Fig. 2.2 summarizes the interaction between the platform and services. In bi-level pro-

gramming, the upper-level problem is commonly referred to as the leader problem while the

lower-level ones are the follower problems. The optimal solutions of the followers and the leader

are interdependent. In particular, the decisions of the followers serve as input to the profit

maximization problem of the leader. The output of the leader problem also directly affects

the followers’ decisions. The follower problems are indeed constraints to the leader problem.

18

In the following, we will describe the follower problem for each service, the leader problem for

the platform, as well as the bi-level optimization model.

2.4.1 The Follower Problem

Given the resource prices and service placement decisions announced by the platform, each

service aims to minimize not only the resource procurement cost but also the total network

delay by judiciously distributing its workload to the cloud and the ENs that have installed the

service. The cost of service k for purchasing cloud resource is p0y
k
0 , where p0 is the unit resource

price at the cloud. The total cost of service k for purchasing edge resources is
∑

j pjy
k
j . Thus,

the total resource procurement cost for service k is p0y
k
0 +

∑
j pjy

k
j . The delay cost between

AP i and EN j is proportional to the amount of workload allocation from AP i to EN j

and the network delay between them. Hence, the delay cost of service k can be expressed

as wk(
∑

i x
k
i,0di,0 +

∑
i,j x

k
i,jdi,j). The goal of service k is to minimize the following objective

function, which is the sum of its resource cost and delay cost:

p0y
k
0 +

∑
j

pjy
k
j + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
, (2.1)

where the delay penalty parameter wk can be adjusted by the service to control the trade-off

between the resource procurement cost and the delay cost. A higher value of wk implies that

the service is more delay-sensitive and willing to pay more to buy edge resources to reduce the

overall delay. Note that the actual payment of each service is the resource procurement cost

only. The delay penalty cost is a virtual cost, which is used to express the delay-sensitive level

of the service.

The constraints of the follower problem are described in the following. First, the total

workload of service k allocated to EN j cannot exceed the amount of computing resource

purchased from the EN, i.e., we have:

∑
i

xki,j ≤ ykj , ∀j, k. (2.2)

Similarly, for the resource purchased from the cloud, we have:

∑
i

xki,0 ≤ yk0 , ∀k. (2.3)

19

The resource demand from AP i must be served by either the cloud or some EN, which implies:

xki,0 +
∑
j

xki,j = Rki , ∀i, k. (2.4)

While the capacity of the cloud is virtually unlimited, the resource of each EN is limited.

Hence, the amount of resource purchased from an EN cannot exceed the capacity of that node.

Additionally, service k buys resources from EN j only if the service is placed on EN j (i.e.,

tkj = 1). Therefore:

ykj ≤ Cjtkj , ∀j, k. (2.5)

Since the total resource procurement cost of a service is limited by its budget, we have:

p0y
k
0 +

∑
j

pjy
k
j ≤ Bk, ∀k. (2.6)

The average delay of service k in area i can be expressed as:

dk,ai =
xki,0di,0 +

∑
j x

k
i,jdi,j

Rki
, ∀i, k. (2.7)

For a delay-sensitive service, it may require that the average delay in every area should not

exceed a certain delay threshold, which imposes dk,ai ≤ Dk,m, ∀i, k.

Furthermore, each service may have certain hardware and software requirements for the

ENs that can host the service. For example, some service can only be deployed on ENs that

support TensorFlow and Ubuntu. Additionally, if a service is delay-sensitive, its requests from

any area should be handled by ENs that are not too far from that area. Thus, we use a binary

indicator aki,j to indicate whether EN j is eligible to serve the demand of service k at AP i or

not. Clearly, we have:

xki,j ≤ aki,jRki , ∀i, j, k. (2.8)

Overall, the follower problem for service k can be written as follows:

min
xk,yk

p0y
k
0 +

∑
j

pjy
k
j + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
(2.9)

20

subject to

xki,0 +
∑
j

xki,j = Rki , ∀i (ξki) (2.10)

∑
i

xki,0 ≤ yk0 , (µk1) (2.11)∑
i

xki,j ≤ ykj , ∀j (λkj) (2.12)

yki,j ≤ Cjtkj , ∀j (Γkj) (2.13)

xki,j ≤ aki,jRki , ∀i, j (ηki,j) (2.14)∑
j

pjy
k
j + p0y

k
0 ≤ Bk (µk2) (2.15)

xki,0di,0 +
∑
j

xki,jdi,j = dk,ai Rki , ∀i (σki) (2.16)

dk,ai ≤ D
k,m, ∀i (τki) (2.17)

xki,0 ≥ 0, ∀i (ζki,0) (2.18)

xki,j ≥ 0, ∀i, j, (εki,j) (2.19)

where the notations in the parentheses associated with the constraints are the Lagrange multi-

pliers of the corresponding constraints. It is easy to see from the follower problem (2.9)-(2.19)

that a service buys resource from an EN only if the gain from delay reduction outweighs the

cost increment due to the price difference between the cloud resource and edge resource. Note

that we have K follower problems, one for each service. In addition, although p and t are

variables in the leader problem, they are parameters in the follower problems.

2.4.2 The Leader Problem

The objective of the platform is to maximize its profit which is equal to revenue minus cost.

The revenue of the platform obtained from selling computing resources is
∑

j pj
∑

k y
k
j , where∑

k y
k
j is the total amount of computing resource from EN j allocated to the services. The

total cost of the platform includes the operating cost of the ENs and the service placement

cost. The operating cost of an EN depends on the electricity price and power consumption of

the node. For simplicity, as commonly assumed in the literature [56, 57], the operating cost of

a node is approximated by a linear function. When an EN is active, its operating cost is the

sum of a fixed cost and a variable cost which depends on its computing resource utilization.

21

Thus, the operation cost of EN j can be expressed as:

Costej = cjzj + qj

∑
k y

k
j

Cj
, ∀j. (2.20)

The second term is actually qjzj

∑
k y

k
j

Cj
. However, we later enforce that ykj = 0, ∀k if zj = 0

(i.e., if EN j is not active). Hence, we can ignore zj in the second term. Note that if EN j is

owned by a third party, we can simply set qj = 0 in (2.20), and interpret cj as the price of the

EN offered by the third party and zj as a binary indicator which equals one if the platform

buys EN j and zero otherwise.

Besides the electricity cost, in this work, we consider the setting where the platform is also

responsible for the service placement cost. The placement cost φkj captures the downloading,

installation, and storage costs of service k at EN j. Since a service can only operate on an

active EN, the cost of running service k on EN j is φkj t
k
j , ∀j, k.

Overall, the profit of the platform is:

P =
∑
j

pj
∑
k

ykj −
∑
j

cjzj + qj

∑
k y

k
j

Cj
+
∑
k

φkj t
k
j

. (2.21)

Next, we describe the leader problem’s constraints. The EN activation and service place-

ment decisions are binary. Thus:

tkj ∈ {0, 1}, ∀j, k; zj ∈ {0, 1}, ∀j. (2.22)

Since a service can only be installed on active ENs, we have:

tkj ≤ zj , ∀j, k. (2.23)

We can only allocate computing resource from an active EN to the services. Furthermore,

the total allocated computing resource from an EN cannot exceed its computing capacity.

Therefore, we have:

∑
k

ykj ≤ zjCj , ∀j, (2.24)

which implies if zj = 0, then ykj = 0, ∀j, k. Hence, the services cannot receive computing

resource from an inactive EN. Similarly, the total storage resource of an EN allocated to the

22

services is limited by its storage capacity, i.e., we have:

∑
k

sktkj ≤ zjSj , ∀j, (2.25)

where sk is the storage size required for storing service k.

We assume that the unit resource price at each EN belongs to a predefined discrete set,

i.e., we have

pj ∈ {p1
j , . . . , p

V
j }, ∀j, (2.26)

where v ∈ {1, . . . , V } represent different price options p1
j < p2

j < . . . < pVj . This is a natural

assumption since the price options can express different levels of the price (e.g., very low price,

low price, medium price, high price, very high price). Another reason that we use discrete

sets to express the prices is due to the linearization procedure described later in the solution

approach section. Note that if the price is continuous, we can discretize the price range into a

large number of intervals.

When the price pj is continuous and belongs to the range of
[
pmin
j , pmax

j

]
, we can discretize

this range into 2Hj intervals of equal length, and the price should belong to an interval. The

length of an interval is ∆j =
pmax
j −pmin

j

2Hj
. If pj lies in interval l, it can be expressed approximately

as: pj = pmin
j + ∆j(l − 1). Thus, we can express the resource price as:

pj = pmin
j +

2Hj∑
l=1

∆j(l − 1)bl, (2.27)

2Hj∑
l=1

bl = 1; bl ∈ {0, 1}, ∀l, (2.28)

where the binary variable bl indicates if pj lies in interval l. Since pj appears in several bi-linear

terms, we write it in the form of (2.27)-(2.28) and further linearize the product of a binary

variable and a continuous variable, as shown in (2.66)-(2.67).

As Hj increases, the approximation gap decreases and the accuracy increases. However

when Hj is large, expressing pj in forms of (2.27)-(2.28) will create a large number of bi-

nary variables. To address this issue, we can use binary expansion to express the price more

23

efficiently. We have:

pj = pmin
j +

2Hj∑
l=1

∆j(l − 1), (2.29)

l =

Hj∑
h=0

2hbh; bh ∈ {0, 1}, ∀h. (2.30)

Therefore, by expressing pj as (2.27)-(2.28) or (2.29)-(2.30), we can linearize all the bilinear

terms related to pj during KKT-based reformulation and duality-based reformulation.

Note that in our formulation we consider a binary variable rvj which equals one if the

resource price at EN j is pvj . Since the price can take only one value, we have:

pj =
∑
v

pvj r
v
j , ∀j;

∑
v

rvj = 1, ∀j; rvj ∈ {0, 1},∀j, v. (2.31)

We are now ready to present the leader problem, which is indeed a bi-level program as

presented below:

max
p,z,t,x,y

∑
j,k

pjy
k
j −

∑
j

(
cjzj + qj

∑
k y

k
j

Cj

)
+
∑
j,k

φkj t
k
j

 (2.32)

subject to

(2.22)− (2.31)

xk, yk ∈ argmin
(xk,yk)∈Fk

∑
j

pjy
k
j + p0y

k
0 +

wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

), ∀k, (2.33)

where Fk is the feasible set of (xk, yk) satisfying constraints (2.10) − (2.19) of the follower

problem for service k. The platform aims to maximize its profit by jointly optimizing the EN

activation, service placement, and resource pricing decisions. The follower problems (i.e., the

lower-level problems) serve as constraints of the leader problem, as shown in (2.33).

24

2.5 Solution Approaches

The bi-level program (2.32)-(2.33) is generally hard to solve due to not only the constraints

(2.33) in forms of optimization problems but also the bilinear terms pjy
k
j in the objective

function (2.32).

For the special case with only a single EN (e.g., an edge cloud serving several areas) in

the system, we can solve the bi-level problem analytically as the number of possible resource

prices (i.e., V) at the EN is finite and small. In particular, when there is only an EN, called

EN1, the workload of any service can either be served by that EN or the cloud. This can be

expressed as:

yk0 + yk1 =
∑
i

Rki , ∀k. (2.34)

By replacing yk0 by yk1 from (2.34), the budget constraint (2.15) of service k implies:

p0

(∑
i

Rki − yk1
)

+ p1y
k
1 ≤ Bk, ∀k (2.35)

⇒ (p1 − p0)yk1 ≤ Bk − p0

∑
i

Rki , ∀k. (2.36)

There are two cases:

i) Case 1 : p1 ≤ p0. Then, all the services will buy edge resources due to lower price and latency.

If the total workload of all the services exceeds the capacity of the EN (i.e.,
∑

i,k R
k
i ≥ C1), the

EN becomes overloaded and our problem becomes infeasible. On the other hand, if
∑

i,k R
k
i ≤

C1, then workload of each service will be fully served at the EN, i.e., yk1 =
∑

iR
k
i , ∀k. In this

case, the service placement and energy costs of the platform are fixed. The amount of resource

sold to the services is also fixed. Thus, the platform should set the price as large as possible

to maximize its revenue and profit, i.e., the optimal unit resource price at the EN is

p1,∗
1 = max

p1

{
p1 ∈ {p1

1, . . . , p
V
1 }; p1 ≤ p0

}
. (2.37)

The platform’s profit is:

profit∗1 =
∑
k,i

p1,∗
1 Rki −

(c1 + q1

∑
k,iR

k
i

C1

)
+
∑
k

φk1

. (2.38)

25

ii) Case 2 : p1 ≥ p0. From (2.36), we have yk1 ≤ αk, ∀k, where αk =
Bk−p0

∑
iR

k
i

p1−p0 . From the

objective function of the follower problem, the cost for serving one unit of workload of service

k from AP i at the cloud is p0 + wkdi,0. Similarly, the cost for serving one unit of workload

of service k from AP i at the EN is p1 + wkdi,1. Therefore, if p0 + wkdi,0 ≤ p1 + wkdi,1 or

equivalently wk(di,0− di,1) ≤ p1− p0 (i.e., the increased resource cost outweighs the gain from

offloading), the workload of service k from AP i will be fully served at the cloud (i.e., xi,1 = 0

and xi,0 = Rki). On the other hand, if p0 + wkdi,0 > p1 + wkdi,1, service k will offload its

workload at AP i to the EN as much as possible.

Without loss of generality, we can index the APs such that d1,1 ≤ d2,1 ≤ . . . ≤ dM,1. Then,

we have p1 + wkdM,1 ≥ . . . ≥ p0 + wkdi,0 > p1 + wkdh,1 ≥ . . . ≥ p1 + wkdi,1, for some h. It

is easy to see that the benefit of offloading increases from AP 1 to AP h. Hence, to minimize

its cost, service k will schedule the workload from AP 1 to AP h to the EN until the total

amount of offloaded workload is equal to αk due to the budget constraint. If the average delay

of service k is larger than Dk,m, the follower problem of service k is infeasible for the given

value of p1. By using the procedure above, given p1, each service can solve its corresponding

follower problem analytically, without solving problem (2.9)-(2.19).

Thus, the platform can find an optimal price p∗1 by enumerating the set of possible prices

p1 ≥ p0. In particular, the platform can start by announcing the maximum price pV1 . Then,

each service responds by optimizing its resource procurement and workload allocation strategy

using the procedure above and send yk,∗1 to the platform. If
∑

k y
k,∗
1 ≤ C1, the platform

computes its profit at the current price. Then, it announces the next price pV−1
1 to the services.

The procedure repeats until
∑

k y
k,∗
1 > C1 at price pm1 , which means the EN is over-demanded

and the algorithm stops. By comparing its profits for different prices from pm+1
1 to pV1 , the

platform selects the price p2,∗
1 that gives it the highest profit, called profit∗2.

Finally, if case 1 and case 2 are both feasible, the platform will choose the higher optimal

profit. Specifically, if profit∗1 < profit∗2, the optimal price is p∗1 = p2,∗
1 . Otherwise, p∗1 = p1,∗

1 .

In the following, we tackle the general case with multiple ENs. First, we present the

KKT-based approach to reformulate the bi-level problem into an equivalent single-level MILP.

Specifically, the bi-level program is transformed into an MPEC by replacing each follower

problem by its KKT conditions. Then, by combining several linearization approaches and

26

the strong duality theorem [23, 58], the resulting MPEC can be recast as an MILP. Instead

of relying on the KKT conditions, the second approach employs LP duality to convert the

bi-level problem into an equivalent MILP with considerably less number of constraints and

integer variables compared to the one obtained from the KKT-based approach.

2.5.1 KKT-based Reformulation

The Karush–Kuhn–Tucker (KKT) conditions are first derivative tests (also known as first-order

necessary conditions) that determine whether a solution in nonlinear programming is optimal

if certain regularity conditions are met. Constrained optimization theory and algorithm devel-

opment rely heavily on these conditions for a solution to be optimal. The KKT conditions are

sufficient when the constraint set (i.e., solution space) is convex and the maximizing (minimiz-

ing) objective function is concave (convex). When applied to a linear-programming problem,

these conditions yield the complementary slackness conditions of the primal and dual problems

[59]. Consider a constrained optimization problem where we aim to minimize a function f(x)

under a given constraint:

(P) : min f(x) , x ∈ R

s.t g(x) ≤ 0

h(x) = 0.

Using the method of Lagrange multipliers, the Lagrangian is given by:

L(x, λ, ν) = f(x) + λg(x) + νh(x)

The KKT conditions are as follows, where the optimal solution for this problem, x∗ must

satisfy all conditions below:

g(x) ≤ 0; h(x) = 0,

λ ≥ 0; ν is unrestricted in sign,

λg(x) = 0,

fx(x) + λgx(x) + νhx(x) = 0.

The first condition is called “primal feasibility”, and it states that x must satisfy all of the

constraints specified in problem. According to the second condition, also known as “dual

27

feasibility” constraint, the dual variables associated with the inequality constraints must be

non-negative. Third condition is called “complementary slackness” condition that applies only

to inequality constraints and enforce a positive Lagrange multiplier when the constraint is

active (=0) and a zero Lagrange multiplier when the constraint is inactive (≥0). The last

condition is called “stationarity” which tells that for the given dual variables λ and ν, the

point x minimizes the lagrangian L(x, λ, ν) [60].

Getting back to our problem, first, recall that the optimization variables p and t of the

leader problem are parameters of the follower problems. Thus, for fixed values of p and tk,

the lower-level problem (2.9)-(2.19) is a linear program, and thus convex. As a result, the

KKT conditions are necessary and sufficient for optimality. Consequently, we can replace each

follower problem by its corresponding KKT conditions, including the stationary, complemen-

tary slackness, primal feasibility, and dual feasibility conditions [60]. The primal feasibility

conditions are (2.10)–(2.19). The Lagrangian of the follower problem (2.9)–(2.19) is:

Lk(xk, yk, dk,a, ξk, σk, τk, µk1, λ
k,Γk, ηk, µk2, ζ

k, εk) (2.39)

=
∑
j

pjy
k
j + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
+ p0y

k
0

+
∑
j

λkj

(∑
i

xki,j − ykj

)
+ µk1

(∑
i

xki,0 − yk0

)

+
∑
i

ξki

(
Rki − xki,0 −

∑
j

xki,j

)
+
∑
j

Γkj

(
ykj − Cjtkj

)

+
∑
i,j

ηki,j

(
xki,j − aki,jRki

)
+
∑
i

τki

(
dk,ai −D

k,m

)

+
∑
i

σki

(
xki,0di,0 +

∑
j

xki,jdi,j − d
k,a
i Rki

)
−
∑
i

xki,0ζ
k
i,0

+µk2

(
p0y

k
0 +

∑
j

pjy
k
j −Bk

)
−
∑
i,j

xki,jε
k
i,j .

28

Thus, the KKT stationary conditions are given as follows:

δL

δxki,0
= wkdi,0 − ξki + σki di,0 + µk1 − ζki,0 = 0, ∀i, k (2.40)

δL

δxki,j
= wkdi,j − ξki + σki di,j + λkj

+ηki,j − εki,j = 0, ∀i, j, k (2.41)

δL

δdk,ai
= −σki Rki + τki = 0, ∀i, k. (2.42)

δL

δyk0
= p0 − µk1 + p0µ

k
2 = 0, ∀k (2.43)

δL

δykj
= pj − λkj + Γkj + pjµ

k
2 = 0, ∀j, k (2.44)

Also, the complementary slackness, dual feasibility, and the primal feasibility conditions of the

follower problems render:

0 ≤ τki ⊥ Dk,m − dk,ai ≥ 0, ∀i, k (2.45)

0 ≤ µk1⊥ yk0 −
∑
i

xki,0 ≥ 0, ∀k (2.46)

0 ≤ λkj ⊥ ykj −
∑
i

xki,j ≥ 0, ∀j, k (2.47)

0 ≤ Γkj ⊥ Cjt
k
j − ykj ≥ 0, ∀j, k (2.48)

0 ≤ ηki,j ⊥ aki,jR
k
i − xki,j ≥ 0, ∀i, j, k (2.49)

0 ≤ µk2 ⊥ Bk − p0y
k
0 −

∑
j

pjy
k
j ≥ 0, ∀k (2.50)

0 ≤ ζki,0 ⊥ xki,0 ≥ 0, ∀i, k (2.51)

0 ≤ εki,j ⊥ xki,j ≥ 0, ∀i, j, k. (2.52)

Note that 0 ≤ a ⊥ b ≥ 0 means a ≥ 0, b ≥ 0, and ab = 0. Constraints (2.45)-(2.52) are called

complementarity constraints or equilibrium constraints. By replacing constraints (2.33) for

the follower problems with the set of constraints (2.10)–(2.19) and (2.40)–(2.52), the bi-level

program (2.32)-(2.33) becomes an MPEC problem. This MPEC problem has three sources of

nonlinearity, including: i) the complementarity constraints (2.45)-(2.52); ii) the bilinear terms

pjµ
k
2 in (2.44); and iii) the bilinear term

∑
j,k pjy

k
j in the objective function (2.32). To convert

the MPEC problem (i.e., an MINLP) into an MILP, we need to linearize these nonlinear terms.

First, the nonlinear complementarity constraints (2.45)–(2.52) can be transformed into

equivalent exact linear constraints by using the Fortuny-Amat transformation [61]. Specifically,

29

the complementarity condition 0 ≤ a ⊥ b ≥ 0 is equivalent to the following set of mixed-integer

linear constraints:

a ≤ (1− u)M ; b ≤ uM ; a ≥ 0; b ≥ 0; u ∈ {0, 1}, (2.53)

where M is a sufficiently large constant, which is often referred to as “bigM”. Therefore, the

set of constraints (2.45)–(2.52) can be rewritten as:

Dk,m − dk,ai ≤ ψ
k
iM1; τki ≤ (1− ψki)M1, ∀i, k (2.54)

yk0 −
∑
i

xki,0 ≤ vk1M2; µk1 ≤ (1− vk1)M2, ∀k (2.55)

ykj −
∑
i

xki,j ≤ κkjM3; λkj ≤ (1− κkj)M3, ∀j, k (2.56)

Cjt
k
j − ykj ≤ θkjM4; Γkj ≤ (1− θkj)M4, ∀j, k (2.57)

aki,jR
k
i − xki,j ≤ ρki,jM5; ηki,j ≤ (1− ρki,j)M5, ∀i, j, k (2.58)

Bk − p0y
k
0 −

∑
j

pjy
k
j ≤ vk2M6; µk2 ≤ (1− vk2)M6, ∀k (2.59)

xki,0 ≥ 0; xki,0 ≤ Φk
i,0M7; ζki,0 ≤ (1− Φk

i,0)M7, ∀i, k (2.60)

xki,j ≥ 0; xki,j ≤ Ωk
i,jM8; εki,j ≤ (1− Ωk

i,j)M8, ∀i, j, k (2.61)

τki ≥ 0; µk1 ≥ 0; λkj ≥ 0; Γkj ≥ 0 (2.62)

ηki,j ≥ 0; µk2 ≥ 0; ζki,0 ≥ 0; εki,j ≥ 0 (2.63)

ψki , κ
k
j , θ

k
j , ρ

k
i,j , Φk

i,0, Ωk
i,j , v

k
1 , v

k
2 ∈ {0, 1}, ∀i, j, k, (2.64)

where M1, M2, M3, M4, M5, M6, M7 and M8 are sufficiently large numbers. For the bilinear

terms pjµ
k
2, using (2.31), we can rewrite it as:

pjµ
k
2 =

∑
v

pvj r
v
jµ

k
2 =

∑
v

pvjπ
v,k
j , (2.65)

where πv,kj = rvjµ
k
2. Note that πv,kj is a continuous variable and we have πv,kj = µk2 if rvj = 1

and πv,kj = 0, otherwise. Hence, using (2.65), the bilinear term pjµ
k
2 can be written as a

linear function of πkj = (π1,k
j , . . . , πV,kj). Additionally, the constraints πv,kj = rvjµ

k
2,∀j, k can be

implemented through the following linear inequalities [62]:

πv,kj ≤Mrvj , ∀j, k, v; πv,kj ≤ µk2, ∀j, k, v (2.66)

πv,kj ≥ 0, ∀j, k, v; πv,kj ≥ µk2 +Mrvj −M, ∀j, k, v, (2.67)

30

where M is a sufficiently large number.

We assume that the bi-level problem has an optimal solution and the strong duality theorem

holds for every follower problem. Then, the strong duality theorem gives us the following:

∑
j

pjy
k
j + p0y

k
0 + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
=

−
∑
i,j

Rki a
k
i,jη

k
i,j −

∑
j

Cjt
k
jΓ

k
j −Bkµk2

+
∑
i

Rki ξ
k
i −

∑
i

Dk,mτki , ∀k. (2.68)

Hence, using (2.68), the bilinear term
∑

j,k pjy
k
j can be written as the sum of several linear

terms. Note that the bilinear terms tkjΓ
k
j in (2.68) is a product of a continuous variable and

a binary variable. Therefore, we can linearize it similar to what we did for the bilinear terms

rvjµ
k
2 using (2.66) and (2.67).

Based on the linearization steps described above, we can then express the bi-level problem

(2.32)-(2.33) with an equivalent single-level MILP as follows:

(P1) : max
p,z,t,x,y

Rev−

∑
j

(
cjzj + qj

∑
k y

k
j

Cj

)
+
∑
j,k

φkj t
k
j

subject to

Rev = −
∑
k

p0y
k
0 + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)

+
∑
i,j

Rki a
k
i,jη

k
i,j +

∑
j

Cjt
k
jΓ

k
j +Bkµk2 +

∑
i

Rki ξ
k
i +

∑
i

Dk,mτki

pj − λkj + Γkj +

∑
v

pvjπ
v,k
j = 0; (2.66), (2.67)

(2.10)− (2.19), (2.22)− (2.31), (2.40)− (2.43), (4.34)− (4.45),

where Rev is the revenue of the platform from selling edge resources, i.e., Rev =
∑

j,k pjy
k
j .

Problem (P1) is a large-scale MILP, which can be solved by MILP solvers.

31

2.5.2 Duality-based Reformulation

In linear programming, duality means that each problem can be analyzed from two perspec-

tives, the primal problem or the dual problem. The feasible and optimal solutions of the dual

provide very useful information about the original primal LP. The dual can be used to find

upper bounds on the optimal value of the primal LP if it is a maximization problem (Similarly,

if the primal problem is a minimization problem, the dual provides lower bounds). It is worth

noting the term, duality gap which refers to the difference between the dual optimal solution

and the primal optimal solution.

The duality gap is zero for linear and convex nonlinear problems. A solution to these

problems cannot be feasible to both primal and dual unless it is the optimal solution. Therefore,

searching for optimality is equivalent to searching for a solution that are feasible in both primal

and dual [63]. Given the primal problem in section 2.5.1, we define its Lagrange dual problem

as:

(D) : max
λ,ν

inf
x
L(x, λ, ν)

s.t λ ≥ 0.

When (P) has a finite optimal value that coincides with the optimal value of (D) , strong

duality holds. Strong duality usually (but not always) holds for convex problems. For cases

with quadratic objective and inequality constraints, strong duality holds provided Slater’s

condition holds [60]. Informally, the feasible region must have an interior point, according to

Slater’s condition.

For our problem instead of using KKT conditions, we can utilize the LP duality to transform

the original bi-level problem into an equivalent MILP. We first write the dual maximization

form of each lower-level minimization problem (2.9)–(2.19). Subsequently, we can replace each

lower-level problem by its corresponding dual feasibility conditions, as well as equating the

primal and dual objective functions [60]. The dual problem of the follower problem (2.9)–

(2.19) of service k is given below:

maximize
ξk, σk, τk, µk1 , µ

k
2 , λ

k, ηk, Γk

∑
i

Rki ξ
k
i −Bkµk2

−
∑
i

∑
j

Rki a
k
i,jη

k
i,j −

∑
j

Cjt
k
jΓ

k
j −

∑
i

Dk,mτki (2.69)

32

subject to

λkj − Γkj ≤ pj(1 + µk2), ∀j (2.70)

µk1 ≤ p0(1 + µk2) (2.71)

−Rki σki − τki ≤ 0, ∀i (2.72)

ξki + σki di,j − λkj − ηki,j + εki,j ≤ wkdi,j , ∀i, j (2.73)

ξki + σki di,0 − µk1 + ζki,0 ≤ wkdi,0, ∀i (2.74)

ηki,j ≥ 0, ∀i, j; µk1 ≥ 0; µk2 ≥ 0 (2.75)

τki ≥ 0, ∀i; λkj ≥ 0, ∀j; Γkj ≥ 0, ∀j. (2.76)

The dual feasibility constraints are (2.70)-(2.76). Thus, the complete form of the final MILP

optimization problem resulting from the duality-based reformulation is given as follows:

(P2) : maximize
p,x,y,z,t,λ,ξ,η,τ,µ1,µ2,Γ,σ

∑
k

Revk (2.77)

−

∑
j

(
cjzj + qj

∑
k y

k
j

Cj

)
+
∑
j,k

φkj t
k
j

subject to

Revk + p0y
k
0 + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
=

−
∑
i,j

Rki a
k
i,jη

k
i,j −

∑
j

Cjt
k
jΓ

k
j −Bkµk2

+
∑
i

Rki ξ
k
i −

∑
i

Dk,mτki , ∀k (2.78)

(2.70)− (2.76), ∀k (2.79)

(2.10)− (2.19), (2.22)− (2.31).

Note that Revk is the revenue from selling edge resources to service k, i.e., Revk =
∑

j pjy
k
j , ∀k.

Constraints (2.78) in problem (P2) enforce the primal objective function equals the dual objec-

tive function, which indeed expresses the strong duality theorem. We can linearize the bilinear

terms tkjΓ
k
j in (2.78) by applying the same procedure that we employed in the KKT-based

33

transformation approach. Consequently, using (2.78), we can linearize the bilinear terms pjy
k
j .

Finally, the dual feasibility constraints (2.70)-(2.76) should hold for all k.

Compared to the MILP problem (P1), it is easy to see that the MILP problem (P2) does

not need to deal with the complementarity constraints (2.45)-(2.52) or their equivalent linear

constraints (4.34)-(4.45). Thus, it drastically reduces the number of constraints and auxiliary

binary variables in problem (P1). As a result, solving (P2) is normally faster than solving (P1).

2.6 Summary

In this chapter, we studied the joint optimization problem of resource pricing, service place-

ment, resource sizing, and workload allocation taking into consideration the service preferences.

We derive a simple analytic solution for a single EN case and present a Karush–Kuhn–Tucker-

based solution and a duality-based solution for the general case with multiple ENs and multiple

services, to solve the bi-level problem. We thus transform the MINLP into a mixed integer

linear program (MILP) that can be solved efficiently using off-the-shelf MILP solvers such as

CPLEX or Gurobi. The aim of the formulated problem is to highlight the benefits of adopting

dynamic pricing in edge computing networks compared to the fixed pricing schemes in addi-

tion to minimizing sum of the resource procurement cost, and the total network delay cost of

the services, while considering various system design criteria such as resource capacity limits,

budget constraint, and delay preference.

One major drawback of bi-level optimization problems is that they are non-convex and

hence difficult to solve. Because of the inter-dependency between the decision variables in

the upper and lower level problems, the resulting bi-level program would be non-convex even

if the problem at both levels are convex. Additionally, if the optimization problems at both

levels were limited to linear programs, the bi-level program would still be challenging to solve.

Another hiccup with Stackelberg games (or bi-level programs) is the underlying assumption

that the leader foresees how the other players will react. In other words, it is assumed that

the other players will react rationally. However, in practice, this may not be the case. Using

bounded rationality to model the behaviour of players is one way to deal with this. It includes

using behavioural models that account for errors in a player’s best response selection as well as

34

the fact that players are not always rational. Nevertheless, computational difficulties arise in

this modeling approach due to extra parameters involved. Thus our work focuses on providing

flexible and extensible tools for services and infrastructure providers to optimize their operation

and planning strategies.

35

Chapter 3

Numerical Results

3.1 Simulation Setting

Similar to the previous work [24, 27, 28], we adopt the widely-used Barabasi-Albert model [64]

to generate a random scale-free edge network topology. The number of nodes in the graph (N),

initial number of nodes in the network (m0), number of nodes with which a new node in the

network connects to (m), minimum and maximum link delay are the important parameters of

a Barabasi-Albert network generator. We start with an initial connected graph of m0 nodes

and gradually add new nodes to the network. Each new node “attaches” to a maximum of

m0 nodes in the network at random (m < m0), resulting in a maximum of m0 new links. The

network generator will continue in this manner until the network has N nodes. We generate an

edge network topology with 100 nodes and an attachment rate of 2. The link delay between

each pair of nodes is randomly generated in the range of [2, 5] ms. The network delay between

any two nodes is computed as the delay of the shortest path between them. In the base case

scenario, we consider a small system with 6 services, 10 APs and 4 ENs, which are picked

randomly in the set of 100 nodes. Thus, in the base case, M = 10, N = 4, K = 6. We will also

run the proposed algorithms on different system sizes for sensitivity analysis later. The delay

between each AP and the remote cloud is set to be 60 ms. The maximum delay threshold Dk,m

for each service is selected randomly between 30 ms and 100 ms. This reflects the sensitivity

of a service towards latency. During the scheduling horizon, for each service, the resource

demand (i.e., workload) in each area is randomly drawn in the range of [20, 35] vCPUs.

Each EN is chosen randomly from the set of Amazon EC2 M5 instances. Using the hourly

price of a general purpose m5d.xlarge Amazon EC2 instance [65] as reference, the unit resource

price at the cloud is set to be 0.01 while the set of possible unit prices of edge resources is [0.01,

0.02, 0.03, 0.04, 0.05]. The fixed and variable operational costs cj and qj of each EN j are set

36

in the range of [0.05, 1.8] and [0.04, 1.44], respectively, depending on the size of the EN. The

delay penalty parameters wk are generated randomly between 10−5 and 10−3. Additionally,

the placement cost of each service at each EN is set to be 0.02 (i.e., φkj = 0.02, ∀j, k). The

size of each service is randomly generated between 10 and 100. The budget of each service is

chosen in the range of [150, 300].

Unless stated otherwise, the default setting is used in most experiments. Our computational

study is made through Matlab 2020b software and solved by Gurobi solver on an Intel Core

i7-10510U CPU and 16 GB RAM laptop. The computational time limit is set to 10,000 seconds.

3.2 Performance Evaluation

3.2.1 Comparison between the KKT-based and duality-based

reformulation approaches

We compare the computational time between the KKT-based and duality-based solution meth-

ods. Both methods allow us to compute an optimal solution to the original bi-level problem.

The two methods are compared under different system sizes by varying the numbers of APs,

ENs, and services. The computational results are reported in Table 3.1. Note that “NA” im-

plies a method cannot produce a solution within the time limit. As expected, the duality-based

approach offers superior performance compared to the KKT-based approach. It is because of

the smaller size of the MILP obtained from the duality-based method compared to the one

obtained from the KKT-based method. Another disadvantage of the KKT-based method is

that we have to choose suitable bigM values, which greatly affects its running time. We thus

adopt the duality-based method to generate results in the following experiments.

3.2.2 Comparison between dynamic, flat, and average pricing schemes

In this thesis, since we are not aware of any existing work tackling similar problem, we only

compare the proposed pricing scheme with traditional schemes and leave out on performance

comparison with state-of-the-art methods. The dynamic pricing scheme (Dyn) is the proposed

model where the resource prices at the ENs can be different to balance supply and demand.

In the flat pricing scheme (Flat), we solve the same bi-level model with an extra constraint in

37

K = 6, N = 4, varying M

M Duality (seconds) KKT (seconds)

2 5.8930 8.8937

4 7.9730 25.7110

6 6.9494 99.5641

K = 6, M = 10, varying N

N Duality (seconds) KKT (seconds)

4 11.993 53.4655

6 175.0676 515.0104

8 288.42 4919.8

M = 10, N = 4, varying K

K Duality (seconds) KKT (seconds)

4 3.9131 39.5804

6 9.8309 53.5309

8 74.3804 NA

10 146.3724 NA

Table 3.1: Computational time comparison between the duality-based and KKT-based refor-

mulation methods

the leader problem that enforces the resource prices at all the ENs to be equal. In the average

pricing scheme (Avg), the unit resource prices at the ENs are the same, which are simply set

to the average value in the set of possible prices. We first examine the impact of cloud resource

price on the profit of the platform, as shown in Fig. 3.1(a). We define % as the scaling factor of

the cloud price. For example, when % = 1.5, the cloud resource price in the base case increases

1.5 times.

It can be seen that the proposed dynamic pricing scheme significantly outperforms the flat

and average pricing schemes. Indeed, with dynamic pricing, the platform can reduce the prices

of under-demanded ENs, which incentivizes the services to reallocate their workload to these

nodes, thus, improving revenue and resource utilization of these nodes. Also, the prices of

38

1 1.5 2 2.5 3
30

40

50

60

70

80

P
ro

fi
t

Dyn

Flat

Avg

(a) Varying cloud price

0.2 0.4 0.6 0.8 1
0

20

40

60

P
ro

fi
t

Dyn

Flat

Avg

(b) Varying delay penalty

Figure 3.1: Performance comparison between Dynamic, Flat, and Average pricing schemes

highly-demanded ENs are often set to the maximum price value. Hence, the profit in Dyn is

highest due to higher edge resource demand and generally higher prices. Since the service buys

more edge resources, the average network delay of each service tends to decrease. In both the

flat and average pricing schemes, the prices at all the ENs are the same. Thus, the services

do not have any incentive for load shifting. Furthermore, we can see that the profits in all

these schemes increase as the cloud resource price increases. This is because an increase in the

cloud resource price would encourage the services to shift more workload to the ENs. Thus,

the platform can sell more edge resources and increase it revenue and profit.

Fig. 3.1(b) shows the impact of delay penalty on the profit of the platform. Let Λ be the

scaling factor of the delay penalty parameters wk. It is easy to see the superior performance of

the dynamic pricing scheme compared to the flat and average pricing schemes. Also, the profit

increases as the delay penalty parameters increase. It is because when the services are more

delay-sensitive, they are willing to pay more for edge resources to reduce the overall delay for

their users. Hence, the platform can increase the edge resource prices to increase its profit.

Figs. 3.2(a)-3.2(b) depict the total workload at the cloud and at the edge under the three

pricing models with varying delay penalty. In Dyn, all the demands are served at the edge and

there is no cloud traffic. The reason is that Dyn allows the platform to adjust the edge prices.

Hence, the prices at under-demanded ENs can be reduced so that the gain from offloading

at these nodes outweighs the price difference between the cloud and each node. In Flat, the

39

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

C
lo

u
d
 W

o
rk

lo
a

d
 (

v
C

P
U

s
)

Dyn Flat Avg

(a) Total workload at the cloud

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

E
d

g
e

 W
o

rk
lo

a
d

 (
v
C

P
U

s
)

Dyn Flat Avg

(b) Total workload at the edge

Figure 3.2: Workload allocation comparison

platform is less flexible in setting the prices since the prices at all the ENs are equal. A low

edge resource price will affect the revenue of the platform. Thus, the flat price should not

be too low to maximize the profit. As a result, in Flat, a portion of demand will go to the

cloud. Finally, in the average pricing scheme, the prices at the ENs are the same and fixed.

Thus, when the delay penalty increases, the gain from offloading to the edge increases and less

workload goes to the cloud.

3.2.3 Sensitivity Analysis

We now study the effects of various design parameters on system performance. Figs. 3.3(a)-

3.3(d) summarizes the impact of number of APs on the system performance with varying

demand, delay penalty, capacities of ENs, and cloud price by factors of δ, Λ, γ0, and % re-

spectively. These figures further confirm the superior performance of Dyn. Also, when there

are more APs, the total workload in the system increases. Thus, we can see that the profit

increases when M increases due to increasing workload.

When we increase the demand, the profit further increases, as shown in Fig. 3.3(b). In

Fig. 3.3(c), the profit increases when there are more edge resources (i.e., when the EN capacities

increase) because the services can buy more resources from the ENs that are beneficial for them

to do offloading. Fig. 3.3(d) show that when the cloud price increases, the services will allocate

more workload to the edge, which leads to increasing profits for the platform. Figs. 3.4(a)

40

4 8 12 16 20

M

0

20

40

60

80

P
ro

fi
t

(a) Varying M and resource demand

4 8 12 16 20

M

0

20

40

60

P
ro

fi
t

(b) Varying M and delay penalty

4 8 12 16 20

M

0

50

100

150

P
ro

fi
t

(c) Varying M and EN capacities

4 8 12 16 20

M

20

40

60

80

P
ro

fi
t

(d) Varying M and cloud price

Figure 3.3: Impacts of number of APs on the system performance

and 3.4(b) further illustrate the impacts of the resource demands of the services on the system

performance. Similar to the results in Figs. 3.3(a)-3.3(d), the profit increases as the resource

demands, the delay penalty, and the capacities of ENs increase.

Figs. 3.5(a)-3.5(d) present the impacts of the number of services on the optimal solution.

It can be observed that the profit increases as the number of services increases. It is because

when there are more services, it imposes higher resource demand in the system. Furthermore,

when more services compete for edge resources, the platform can raise the edge resource prices

to increase its profit. Figs. 3.5(c)-3.5(d) show the total amount of edge resource procurement

of all the services. It is easy to see that the total workload at the ENs increases as the number

of services increases due to increasing demand. When the resource demand increases (i.e., from

41

δ = 0.5 to δ = 1), the amount of procured edge resources also increases.

0.5 1 1.5 2 2.5
0

20

40

60

P
ro

fi
t

(a) Varying R and delay penalty

0.5 1 1.5 2 2.5
0

50

100

150

P
ro

fi
t

(b) Varying R and EN capacities

Figure 3.4: Impacts of resource demand on the system performance

2 4 6 8 10

K

0

20

40

60

80

P
ro

fi
t

(a) Varying K and resource demand

2 4 6 8 10

K

20

30

40

50

60

P
ro

fi
t

(b) Varying K and delay penalty

42

2 4 6 8 10
K

0

500

1000

1500

2000

E
d

g
e

 W
o

rk
lo

a
d

 (
v
C

P
U

s
)

(c) Demand scaling factor δ = 0.5

2 4 6 8 10
K

0

500

1000

1500

2000

E
d

g
e

 W
o

rk
lo

a
d

 (
v
C

P
U

s
)

(d) Demand scaling factor δ = 1

Figure 3.5: Impacts of number of services on the system performance

43

Chapter 4

Extension: Bi-level Mixed Integer

Optimization Problem

4.1 Motivation

Due to the large size of certain applications (e.g., image and video processing), greater storage

cost is incurred by the EC platform and thus it becomes crucial to design a model that largely

focuses on maximizing the revenue of the platform. To address this, we now have the service

providers pay for the service placement costs in order for the services to minimize this cost by

intelligently deciding on placing and running services of desirable size on suitable edge nodes

i.e., at edge nodes that has its favorite resource bundle. This motivated us to discuss a variant

of the previous model in this chapter.

One of the most important challenges that arises now in this variant formulation is the

integer service placement decisions in lower-levels of the problem. For a bi-level problem with

convex linear follower problem, we can reformulate using the classical KKT or LP duality-

based reformulation techniques to obtain a single-level mixed integer linear program. Indeed,

because these key structural features apply solely to LP, strong duality does not hold for bi-

level MIP with integer variables in lower-levels of the problem resulting in optimality gap. For

each follower problem, we have integer constraints and we need to enumerate over all possible

integer variables, resulting in a large bi-level MIP. Hence, the computational complexity greatly

increases, making it difficult to derive exact global optimal solutions.

To this end, we propose and design a decomposition algorithm to enumerate over all possible

integer variables in an iterative fashion to compute exact global optimal solutions in finite

iterations. For a given optimal lower-level integer variable, the bi-level MIP reduces to lower-

level LP that can be solved by an extended set of equivalent constraints using KKT or duality-

44

based reformulation approaches.

Specifically, we decompose the comprehensive bi-level MIP into a master problem (MP)

and two subproblems (SPs). At every iteration we solve the master and subproblems to obtain

lower and upper bounds respectively. First step is to obtain the master problem for which we

begin by reformulating the lower-level problem for a given optimal lower-level integer variable

obtained in the previous iteration. These reformulated constraints serve as cuts to the single-

level mixed integer linear program and allow the upper-level decision maker to use these cuts

to generate a feasible solution space that is in favor of the lower-level decision maker.

In order to adopt and expand on the iterative decomposition algorithm, we first solve the

leader problem and communicate the optimal upper-level decisions to the follower and obtain

associated lower bound. Given the optimal leader decisions, we solve the subproblems. A

second subproblem is generally necessary when the first subproblem has multiple solutions

for given upper-level decisions. This helps us compute an optimal solution which is in favor

of the upper-level problem and a smaller upper bound. We then update our discrete set to

include the optimal lower-level solutions at a given iteration and expand our leader problem.

In a new iteration, we solve the leader problem augmented with reformulated constraints and

enumerate for a given optimal integer solution from the previous iteration to obtain new upper-

level decisions and a new stronger lower bound (weakly increasing). Solving the problem in

this iterative fashion, we anticipate the lower and upper bounds to converge to exact global

optimal solution in finite iterations.

4.2 Problem Formulation

In this section, we present extensively the mathematical formulation of the problem with the

necessary notations listed in the following paragraphs. Generally, a cloud or edge node can

offer various types of resources like vCPUs, memory, storage, etc for demand fulfillment. The

edge nodes owned by EC platform offers resources (vCPUs) to K services, each requiring a

specific bundle of resource type for meeting the network traffic.

45

4.2.1 Follower Problems

Given the EN activation, number of active servers and pricing decisions made by the leader, the

followers i.e., the services aim at maximizing the user experience in terms of delay associated in

fulfilling the demands by minimizing their delay cost in addition to the resource procurement

and placement cost by deciding on optimal service placement, resource sizing and workload

allocation.

It’s worth noting that the delay penalty cost is a virtual cost that reflects the sensitivity

of services towards latency. The actual payment of services only includes the resource pro-

curement and service placement costs. Furthermore, the placement cost of a service at any

EN encapsulates the cost of downloading, installation and storing services onto different ENs.

Clearly, a service can operate only on an active EN. Thus the goal of service k is to minimize

the objective function (4.1).

Consequently, the follower problem for service k can be represented as follows:

min
xk,yk,tk

p0y
k
0 +

∑
j

pjy
k
j +

∑
j

φkj t
k
j + wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
(4.1)

subject to

p0y
k
0 +

∑
j

pjy
k
j +

∑
j

φkj t
k
j ≤ Bk (4.2)

tkj ≤ zj , ∀j (4.3)

ykj ≥
∑
i

xki,j , ∀j (4.4)

yk0 ≥
∑
i

xki,0 (4.5)

ykj ≤ Qqjtkj , ∀j (4.6)

xki,0di,0 +
∑
j

xki,jdi,j = dk,ai Rki , ∀i (4.7)

dk,ai ≤ D
k,m, ∀i (4.8)

xki,j ≤ aki,jRki , ∀i, j (4.9)∑
j

xki,j + xki,0 = Rki , ∀i (4.10)

xki,j , x
k
i,0 ≥ 0; ykj , y

k
0 ≥ 0; dk,ai ≥ 0; tkj ∈ {0, 1}, ∀i, j, k. (4.11)

The budget constraint (4.2) reflects all possible combination of edge resources that can be

46

bought given the prices are less than the maximum budget of the service. This constraint is

useful for utility maximization. Constraint (4.3) indicates that a service can operate only on

an active EN. The amount of resource yk0 and ykj purchased from cloud and each EN j should

be adequate to meet the resource demand of all requests. This is reflected by constraints (4.4)

and (4.5). Equation (4.6) indicates that given the total number of active servers per EN (qj),

a service k placed on an edge node j can buy no more than a specific amount qjQ of resource,

where Q is number of vCPUs per server.

For a delay-sensitive service k, constraints (4.7) and (4.8) ensure that the average delay

in each location i does not exceed a given threshold. Furthermore, every service may have

different requirements in terms of hardware systems and software environments to operate on

any given edge node. Thus, we use aki,j in (4.9) as a binary indicator to denote the EN j

that satisfy the prerequisites for serving the requests of service k in area i. Equation (4.10)

implies that the resource demand be served either by ENs or cloud. Constraints on variables

are expressed in (4.11). The workload allocation x and resource procurement y must be non-

negative . Also, the service placement t decisions are binary. In addition, although p, q, and

z are variables in the leader problem, they are parameters in the follower problems.

4.2.2 Leader Problem

While many issues on the path to edge computing remain unclear, the development of new and

creative use cases is easy to envisage. Investment strategy that improves network performance

in terms of network parameters like latency, scalability and reliability are major factors for

future profits. We are thus interested in maximizing the profit of EC platform by optimizing

the edge resource prices that help services reduce cost and improve quality of service. For

most operators, this evolutionary approach will be the natural direction that will allow them

to reduce investment while EC’s incremental revenue potential remains uncertain and is still in

its infancy stage. We thus express the objective of the leader as profit maximization problem

which is equal to revenue minus cost. The revenue of the infrastructure provider is generated

from selling edge resources to services for demand fulfilment i.e.,
∑

j pj
∑

k y
k
j .

Furthermore, the cost function of the leader includes cost for operating ENs. For an active

EN, its operating cost can then be expressed as the sum of a fixed cost and a variable cost

47

which directly depends on the amount of computing resources used giving us the following

expression:

Cost =
∑
j

cjzj +Aj

∑
k y

k
j

Cj

. (4.12)

Finally, the difference between revenue and cost functions can be used to establish the

leader’s profit function:

P =
∑
j

pj
∑
k

ykj −
∑
j

cjzj +Aj

∑
k y

k
j

Cj

. (4.13)

Next, we describe the leader problem’s constraints. Clearly, the number of active servers

on each EN must be less than or equal to its computing capacity of active ENs.

qj ≤ Cjzj , ∀j. (4.14)

qj ∈ Z+; zj ∈ {0, 1}, ∀j. (4.15)

Also, it is necessary to ensure that the amount of computing resource allocated should

be less than the total available active vCPUs on an EN. Equation (4.15) indicates that the

number of active servers q must be a positive integer and EN activation z decisions are binary.

∑
k

ykj ≤ qjQ, ∀j. (4.16)

Likewise equation (4.17) ensures that the total storage resource allocated to each EN is

constrained by its storage capacity.

∑
k

bktkj ≤ Sjqj , ∀j. (4.17)

As discussed earlier, we assume a predefined discrete set of unit resource prices at each EN,

i.e., we have

pj ∈ {p1
j , . . . , p

V
j }, ∀j, (4.18)

where v ∈ {1, . . . , V } represent different options for price p1
j < p2

j < . . . < pVj . Let rvj be a

binary variable which equals one if the resource price at EN j is pvj . Since the price can take

48

only one value, we have:

pj =
∑
v

pvj r
v
j , ∀j;

∑
v

rvj = 1, ∀j; rvj ∈ {0, 1},∀j, v. (4.19)

We now present the leader problem, which is indeed a bi-level mixed integer program in

the compact form as follows:

BiMIP : max
p,q,z

∑
j

pj
∑
k

ykj −
∑
j

cjzj +Aj

∑
k y

k
j

Cj

 (4.20)

subject to

(4.14)− (4.19)

xk, yk, tk ∈ argmin
(xk,yk,tk)∈Sk

p0y
k
0 +

∑
j

pjy
k
j +

∑
j

φkj t
k
j

+wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
: (4.2)− (4.11)

, ∀k, (4.21)

where Sk is the feasible set of (xk, yk, tk) satisfying constraints (4.2) − (4.11) of the follower

problem for service k. The platform aims to maximize its profit by jointly optimizing the EN

activation, number of active servers and resource pricing decisions. The follower problems (i.e.,

the lower-level problems) serve as constraints of the leader problem, as shown in (4.21). Note qj

and zj represents the integer variables at the upper-level of the problem and tkj represents the

lower-level integer variables. Thus we obtain a bi-level mixed integer programming problem.

Furthermore, we reformulate the original bilevel MIP model (4.20)-(4.21) to provide a

decomposable structure for algorithm development which can be represented as follows:

BiMIPd : min
p,q,z
−
∑
j

pj
∑
k

y′kj +
∑
j

cjzj +Aj

∑
k y
′k
j

Cj

 (4.22)

49

subject to

(4.14)− (4.19)

−

wk
(∑

i

x′ki,0di,0 +
∑
i,j

x′ki,jdi,j

)
+ p0y

′k
0 +

∑
j

pjy
′k
j +

∑
j

φkj t
′k
j

 ≥

max
(xk,yk,tk)∈Sk

− wk
(∑

i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
− p0y

k
0 −

∑
j

pjy
k
j −

∑
j

φkj t
k
j :

(4.2)− (4.11)

, ∀k. (4.23)

Here (x′k, y′k, t′k) set represents the set of duplicate lower-level decision variables. In simple

terms, by duplicating variables (and constraints), a complete variable set is at the control of the

upper-level decision maker. Eventually, the upper-level DM would be able to use (x′k, y′k, t′k)

to simulate the response of the lower-level DM and assess how that response affects her decision

scheme [66].

Also, for each follower problem, we have integer constraints and we need to enumerate over

all possible integer variables. This results in a very large MILP problem which motivated us to

adopt an iterative decomposition algorithm to iteratively enumerate over all possible integer

variables in finite iterations.

4.3 Solution Approaches

We now tackle the challenging bi-level programming problem in which the upper-level DM

solves an optimization problem which includes another optimization problem (lower-level prob-

lem) in its constraints [67]. In this literature, we present an iterative decomposition algorithm

for solving the proposed bi-level mixed integer model based on column-and-constraint genera-

tion method using reformulations and decomposition [66]. This solution approach is an exten-

sion to the already existing CCG algorithm proposed for solving two-stage robust optimization

problems in [68]. The CCG algorithm for bi-level MIP follows the same master-subproblem

framework as that of [68] with an additional advantage of dealing with challenging problems

50

that involve discrete variables in the lower-level of the problem. The optimal value of the

master problem in each iteration offers a lower bound, while the optimal solution to the sub-

problem allows us to determine the upper bound of the bi-level MIP. We expect that the lower

and upper bounds converge to the exact optimal values by iteratively solving those updated

master and subproblems.

Basically, solving the upper-level problem yields solutions p∗, q∗ and z∗ which can be used

for solving lower-level problems to derive optimal (xk∗, yk∗, tk∗). As (p∗, q∗, z∗, xk∗, yk∗,

tk∗) represents the feasible solution set, we can obtain stronger lower and upper bounds by

expanding tk∗ set and evaluating corresponding optimal value of master problem. Thus solving

the augmented master problem leads to new values for p∗, q∗ and z∗ and a better lower bound

in every new iteration. For a fixed (p∗, q∗, z∗), optimal solution to the lower-level problem

provides upper bound (UB). Solving the master and subproblems in this iterative fashion

results in convergence of lower and upper bounds.

We now define the master problem with augmented decision variables and constraints.

Then, given the first-stage decisions, we expand on how to solve the subproblems (i.e., the

second-stage problems). Finally, in a master-subproblem setting, we present the iterative

decomposition algorithm for solving the bi-level MIP for optimal pricing design, resource man-

agement and service placement. For reformulation step, first we present KKT-based approach

that can easily be converted into a regular MIP using the linearization techniques. Next we

present another popular approach based on strong duality theorem of linear programming. We

finally elaborate on the strong duality approach due to considerably less number of constraints

and integer variables compared to the one obtained from the KKT-based approach.

4.3.1 KKT-based Reformulation

We present a single-level equivalent reformulation of BiMIP in this subsection which serves

as the foundation for our solution scheme. The primary goal of this reformulation is to expand

(4.23) by enumeration. We assume that the remaining lower-level problem has a finite optimal

value for any possible (p, q, z, t). First, we separate discrete and continuous variables in the

51

lower-level to restructure the righthand-side of (4.23) as follows:

−wk
(∑

i

x′ki,0di,0 +
∑
i,j

x′ki,jdi,j

)
− p0y

′k
0 −

∑
j

pjy
′k
j −

∑
j

φkj t
′k
j ≥

max
tk∈Tk

−
∑
j

φkj t
k
j + max

xk,yk

− wk
(∑

i

xki,0di,0 +
∑
i,j

xki,jdi,j

)

−p0y
k
0 −

∑
j

pjy
k
j : (4.2)− (4.11),

, ∀k, (4.24)

where Tk represents the collection of all possible tk obtained from the lower-levels of the

problem. We now apply the classical reformulation method using KKT conditions to the second

maximization problem on the right-hand side of (4.24). Thus the complementary slackness,

dual feasibility, and the primal feasibility conditions of the follower problems render:

0 ≤ µk1 ⊥ Bk −
∑
j

φkj t
k
j − p0y

k
0 −

∑
j

pjy
k
j ≥ 0, ∀k (4.25)

0 ≤ µk2 ⊥ yk0 −
∑
i

xki,0 ≥ 0, ∀k (4.26)

0 ≤ Γkj⊥ ykj −
∑
i

xki,j ≥ 0,∀j, k (4.27)

0 ≤ σkj ⊥ Qqjt
k
j − ykj ≥ 0, ∀j, k (4.28)

0 ≤ τki,j ⊥ aki,jR
k
i − xki,j ≥ 0, ∀i, j, k (4.29)

0 ≤ yk0 ⊥ p0(1 + µk1)− µk2 ≥ 0, ∀k (4.30)

0 ≤ ykj ⊥ pkjµ
k
1 − Γkj + σkj + pj ≥ 0, ∀j, k (4.31)

0 ≤ xki,0 ⊥ µk2 + di,0ξ
k
i + ηki − wkdi,0 ≥ 0, ∀i, k (4.32)

0 ≤ xki,j ⊥ Γkj + di,jξ
k
i + τki,j + ηki − wkdi,j ≥ 0, ∀i, j, k. (4.33)

Note that 0 ≤ a ⊥ b ≥ 0 means a ≥ 0, b ≥ 0, and ab = 0. Constraints (4.25)-(4.33) are

called complementarity constraints or equilibrium constraints. Here µk1, µ
k
2,Γ

k
j , σ

k
j , and τki,j

are dual variables associated with the lower-level constraints involving continuous variables

to be reformulated. By replacing constraints (4.23) for the follower problems with the set

of constraints (4.2)–(4.11), and (4.25)–(4.33), the bilevel program (4.22)-(4.23) becomes a

mathematical program with complementarity constraints (MPCC). This MPCC problem has

52

four sources of nonlinearity, including: i) the complementarity constraints (4.25)-(4.33); ii) the

bilinear terms pjµ
k
1 in (4.31); iii) the bilinear term

∑
j,k pjy

k
j in the objective function (4.22);

and iv) the bilinear term
∑

j pjy
k
j in (4.25). To convert the MPCC problem (i.e., an MINLP)

into an MILP, we need to linearize these nonlinear terms.

First, the nonlinear complementarity constraints (4.25)–(4.33) can be transformed into

equivalent exact linear constraints by using the Fortuny-Amat transformation [61] mentioned

earlier in chapter 2. Therefore, the set of constraints (4.25)–(4.33) can be rewritten as:

Bk −
∑
j

φkj t
k
j − p0y

k
0 −

∑
j

pjy
k
j ≤ vk1M1; µk1 ≤ (1− vk1)M1, ∀k (4.34)

yk0 −
∑
i

xki,0 ≤ vk2M2; µk2 ≤ (1− vk2)M2, ∀k (4.35)

ykj −
∑
i

xki,j ≤ κkjM3; Γkj ≤ (1− κkj)M3, ∀j, k (4.36)

Qqjt
k
j − ykj ≤ θkjM4; σkj ≤ (1− θkj)M4, ∀j, k (4.37)

aki,jR
k
i − xki,j ≤ ρki,jM5; τki,j ≤ (1− ρki,j)M5, ∀i, j, k (4.38)

p0(1 + µk1)− µk2 ≤ vk3M6; yk0 ≤ (1− vk3)M6, ∀k (4.39)

pjµ
k
1 − Γkj + σkj + pj ≤ Φk

jM7; ykj ≤ (1− Φk
j)M7, ∀j, k (4.40)

µk2 + di,0ξ
k
i + ηki − wkdi,0 ≤ Ωk

i,0M8; xki,0 ≤ (1− Ωk
i,0)M8, ∀i, k (4.41)

Γkj + di,jξ
k
i + τki,j + ηki − wkdi,j ≤ ζki,jM9; xki,j ≤ (1− ζki,j)M9, ∀i, j, k (4.42)

xki,0 ≥ 0; xki,j ≥ 0; yk0 ≥ 0; ykj ≥ 0 (4.43)

µk1 ≥ 0; µk2 ≥ 0; Γkj ≥ 0; σkj ≥ 0; τki,j ≥ 0 (4.44)

Φk
j , κ

k
j , θ

k
j , ρ

k
i,j , Ωk

i,0, ζ
k
i,j , v

k
1 , v

k
2 , v

k
3 ∈ {0, 1}, (4.45)

where M1, M2, M3, M4, M5, M6, M7, M8 and M9 are sufficiently large numbers. For the

bilinear terms pjµ
k
1, using (4.19), we can rewrite it as:

pjµ
k
1 =

∑
v

pvj r
v
jµ

k
1 =

∑
v

pvjπ
v,k
j , (4.46)

where πv,kj = rvjµ
k
1. Note that πv,kj is a continuous variable and we have πv,kj = µk1 if rvj = 1

and πv,kj = 0, otherwise. Hence, using (4.46), the bilinear term pjµ
k
1 can be written as a

linear function of πkj = (π1,k
j , . . . , πV,kj). Additionally, the constraints πv,kj = rvjµ

k
1, ∀j, k can be

53

implemented through the following linear inequalities [62]:

πv,kj ≤Mrvj , ∀j, k, v; πv,kj ≤ µk1, ∀j, k, v (4.47)

πv,kj ≥ 0, ∀j, k, v; πv,kj ≥ µk1 +Mrvj −M, ∀j, k, v, (4.48)

where M is a sufficiently large number.

Note that the bilinear terms
∑

j,k pjy
k
j in (4.22) and

∑
j pjy

k
j in (4.25) are both products of

a discrete and continuous variable. By expressing, pj using (4.19) it becomes similar to what

we did for the bilinear terms rvjµ
k
1 using (4.47) and (4.48).

Based on the linearization steps described above, we can then express the bi-level prob-

lem (4.22)-(4.23) with an equivalent single-level MILP. Due to large number of variables and

constraints in the reformulation, we limit on presenting the overall expanded single-level for-

mulation using KKT-based approach and instead use duality-based approach as a platform to

point out the whole strategy of algorithm development.

4.3.2 Duality-based Reformulation

Instead of using KKT conditions, we can utilize the LP duality to transform the original bilevel

problem into an equivalent MILP. As the lower-level problem involves discrete variables, it is

indeed challenging to solve. We propose to convert the optimization problem of the services

into a single-level comparable reformulation. Similar to what we did in (4.3.1), we derive

(4.23) by enumeration. First, we separate discrete and continuous variables in the lower-level

as follows:

max
tk∈Tk

−
∑
j

φkj t
k
j + max

xk,yk
− wk

(∑
i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
− p0y

k
0 −

∑
j

pjy
k
j (4.49)

54

subject to:

p0y
k
0 +

∑
j

pjy
k
j ≤ Bk −

∑
j

φkj t
k
j , (µk1) (4.50)

∑
i

xki,j − ykj ≤ 0, ∀j (Γkj) (4.51)∑
i

xki,0 − yk0 ≤ 0, (µk2) (4.52)

ykj ≤ Qqjtkj , ∀j (σkj) (4.53)

xki,0di,0 +
∑
j

xki,jdi,j = dk,ai Rki , ∀i (ξki) (4.54)

∑
j

xki,j + xki,0 = Rki , ∀i (ηki) (4.55)

xki,j ≤ aki,jRki , ∀i, j (τki,j) (4.56)

where µk1, Γkj , µ
k
2, σkj , ξki , ηki and τki,j are non-negative continuous dual variables. Thus the

lower level problem becomes:

maximize
p, q, x, y, µk1 , µ

k
2 , Γk, σk, ξk, ηk, τk

−
∑
j

φkj t
k
j + µk1

(
Bk −

∑
j

φkj t
k
j

)
+
∑
i

Rki ξ
k
i

+
∑
i

Rki η
k
i +

∑
j

Qqjt
k
jσ

k
j +

∑
i,j

aki,jτ
k
i,jR

k
i (4.57)

subject to

p0

(
1 + µk1

)
− µk2 ≥ 0, ∀k (4.58)

pjµ
k
1 − Γkj + σkj + pj ≥ 0, ∀j, k (4.59)

µk2 + di,0ξ
k
i + ηki ≥ wkdi,0, ∀i, k (4.60)

Γkj + di,jξ
k
i + τki,j + ηki ≥ wkdi,j , ∀i, j, k. (4.61)

We note that this reformulation, as compared to the reformulation based on KKT condi-

tions, has simpler structure, fewer variables and constraints and is usually far less computation-

ally expensive. Indeed, it can be estimated by professional MIP solvers which are conveniently

accessible in practice. In the next subsection, utilizing the discussed reformulation strategy, a

master-subproblem framework is constructed for algorithm development.

55

4.3.3 Master Problem

At iteration L the master problem (MP) is given by:

MP : Θ∗ = min
p,q,z,x′,y′,t′

−
∑
j

pj
∑
k

y′kj +
∑
j

cjzj +Aj

∑
k y
′k
j

Cj

 (4.62)

subject to

t′kj ≤ zj ; qj ≤ Cjzj , (4.63)∑
k

y′kj ≤ qjQ; y′kj ≤ Qqjt′kj ;
∑
k

bkt′kj ≤ Sjqj , (4.64)

p0y
′k
0 +

∑
j

pjy
′k
j +

∑
j

φkj t
′k
j ≤ Bk, (4.65)

y′kj ≥
∑
i

x′ki,j ; y′k0 ≥
∑
i

x′ki,0, (4.66)

x′ki,j ≤ aki,jRki ;
∑
j

x′ki,j + x′ki,0 = Rki , (4.67)

x′ki,0di,0 +
∑
j

x′ki,jdi,j = d′k,ai Rki ; d′k,ai ≤ Dk,m, (4.68)

wk

(∑
i

x′ki,0di,0 +
∑
i,j

x′ki,jdi,j

)
+ p0y

′k
0 +

∑
j

pjy
′k
j +

∑
j

φkj t
′k
j ≥ −

∑
j

φkj t
k,l
j +

µk,l1

(
Bk −

∑
j

φkj t
k,l
j

)
+
∑
i

Rki ξ
k,l
i +

∑
i

Rki η
k,l
i +

∑
j

Qqjt
k,l
j σ

k,l
j

+
∑
i,j

aki,jτ
k,l
i,j R

k
i , 1 ≤ l ≤ L (4.69)

p0

(
1 + µk,l1

)
− µk,l2 ≥ 0, 1 ≤ l ≤ L (4.70)

pjµ
k,l
1 − Γk,lj + σk,lj + pj ≥ 0, 1 ≤ l ≤ L (4.71)

µk,l2 + di,0ξ
k,l
i + ηk,li ≥ w

kdi,0, 1 ≤ l ≤ L (4.72)

Γk,lj + di,jξ
k,l
i + τk,li,j + ηk,li ≥ w

kdi,j , 1 ≤ l ≤ L (4.73)

x′ki,j , x
′k
i,0 ≥ 0; y′kj , y

′k
0 ≥ 0; d′k,ai ≥ 0; µk,l1 ,Γk,lj , µ

k,l
2 , σk,lj , ξk,li , ηk,li , τk,li,j ≥ 0

zj , t
′k
j ∈ {0, 1}; (4.19). (4.74)

where duplicated lower-level variables (and constraints) are denoted in the upper level by x′k,

y′k, and t′k to provide a complete variable set which is under the control of the leader. Since

56

each new iteration adds more constraints to the MP, we obtain a stronger lower bound. Thus:

LB = Θ∗ (4.75)

Note that the bilinear terms qjt
′k
j in (4.64) can be replaced with a new integer variable gkj

and the constraints gkj = qjt
′k
j can be implemented through the following linear inequalities:

gkj ≤ Cjt′kj , ∀j, k; gkj ≤ qj , ∀j, k (4.76)

gkj ≥ qj − (1− t′kj)Cj , ∀j, k; gkj ≥ 0, ∀j, k, (4.77)

where qj is upper bounded by Cj and lower bounded by 0. Additionally, the bilinear terms

qjσ
k,l
j is the product of an integer and continuous variable. To implement this, first step is

to perform binary expansion of the integer variable. This way we convert integer variable to

binary variable and further perform linearization of binary and continuous variables. Following

the same steps from [62] we enforce the binary expansion on qj to obtain a linear MIP. Since

qj is upper bounded by Cj , we can rewrite qj as follows:

qj =
∑
e∈Ej

2e−1Dj,e, (4.78)

where Dj,e ∈ {0, 1} and Ej = {1, 2, ..., blog2Cjc + 1},∀j. Thus we can rewrite the nonlinear

term as follows:

qjσ
k,l
j =

∑
e∈Ej

2e−1Dj,eσ
k,l
j (4.79)

Note that the bilinear terms Dj,eσ
k,l
j is a product of a continuous variable and a binary variable

which we can linearize similar to what we did for bilinear terms rvjµ
k
1 using (4.47) and (4.48).

4.3.4 Subproblems

We formulate and evaluate the following subproblems, SP1 for a given upper-level resource

selling price decision. The second subproblems, i.e. SP2, are generally necessary because the

lower-level problems may have multiple optimal solutions for SP1 and doing so derives the

one in support of the upper-level problem (i.e., valid inequalities). Thus we denote the two

57

subproblems as follows:

SP1 : ϕk(p∗,q∗, z∗) = max
xk,yk,tk

− wk
(∑

i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
− p0y

k
0 −

∑
j

pjy
k
j

−
∑
j

φkj t
k
j (4.80)

subject to :

(4.2)− (4.11)

SP2 : Θo(p
∗,q∗, z∗) = min

xk,yk,tk
−
∑
j

∑
k

pjy
k
j +

∑
j

cjzj +Aj

∑
k y

k
j

Cj

 (4.81)

subject to :

(4.2)− (4.11)

−wk
(∑

i

xki,0di,0 +
∑
i,j

xki,jdi,j

)
− p0y

k
0 −

∑
j

pjy
k
j

−
∑
j

φkj t
k
j ≥ ϕk(p∗,q∗, z∗), ∀k. (4.82)

As integer variables are involved at both levels, they can be easily computed using existing

MIP solvers such as Gurobi and Mosek. Also we can express the upper bound as follows:

UB = min

{
UB,Θo(p

∗,q∗, z∗)

}
(4.83)

4.3.5 Iterative Algorithm and Proof of Convergence

Basically solving the upper problem gives optimal solution set (p∗,q∗, z∗). Using this

we solve subproblems for obtaining optimal (xk∗,yk∗, tk∗). As (p∗,q∗, z∗,xk∗,yk∗, tk∗) is a

feasible solution set, its value , Θo(p
∗,q∗, z∗), provides an upper bound (non-increasing) to

the problem. Then we update the Tk set by including tk∗ and expand our master problem Θ.

Solving the augmented master problem leads to new p∗, q∗, and z∗ values, as well as a stronger

lower bound (weakly-increasing) for the new iteration. By iteratively solving the master and

subproblems, we anticipate the lower and upper bounds to converge to the optimal value. Using

Algorithm 1, we can derive optimal resources prices, service placement, workload allocation

and resource procurement decisions.

58

Algorithm 1 Iterative Decomposition Algorithm

1: Initialization: set L = 0, LB = −∞, and UB = +∞.

2: Solve the master problem in (4.3.3). Derive optimal solutions (p∗, q∗, z∗, x′∗, y′∗,

t′∗, x1∗,. . . ,xL∗, y1∗,. . . ,yL∗, t1∗,. . . ,tL∗, Γ1∗,. . . ,ΓL∗, µ1∗,. . . ,µL∗, σ1∗,. . . ,σL∗, ξ1∗,. . . ,ξL∗,

η1∗,. . . ,ηL∗, τ1∗,. . . ,τL∗) and update LB = Θ∗.

3: If UB−LB
UB ≤ ε, return the associated UB and terminate. Otherwise, go to step 4.

4: Solve SP1 for given optimal solutions of step 2 and obtain ϕk(p∗,q∗, z∗).

5: Then solve SP2. Report optimal (xk∗,yk∗,tk∗) and Θo(p
∗,q∗, z∗). Update UB following

(4.83).

6: Add cuts (4.69)-(4.73) to the MP. Set L = L+ 1 and go to Step 2.

Proposition 4.3.1 Let ε = 0 and assume that integer set T is finite. The presented iterative

decomposition algorithm converges to the optimal value of BiMIPd within O(|T |) iterations.

Proof:

This can be shown by contradiction that any repeated tk∗ implies LB = UB. Specifically,

assume that the current iteration index is L1, (p∗, q∗, z∗, x′k∗, y′k∗, t′k∗) is obtained in Step

2 with LB ≤ UB, and (xk∗, yk∗, tk∗) is obtained from Step 4. From step 5 of Algorithm 1,

we have: UB ≤ Θo(p
∗,q∗, z∗) = −

∑
j p
∗∑

k y
′k∗
j +

∑
j

[
cjz
∗
j + Aj

∑
k y
′k∗
j

Cj

]
and optimal (xk∗,

yk∗, tk∗) that is in favor of the upper-level decision maker.

We further assume that in some previous iteration L0(< L1), tk∗ was also derived. Since

UB−LB
UB > ε, we augment the MP with a set of new variables and constraints associated

with tk∗ (=tk,L1+1), ∀k. However, since those variables and constraints are the same as those

created and included in iteration L0, the increase does not essentially change MP. Thus

in iteration L1 + 1 it yields the same optimal value as iteration L1. Therefore, when the

algorithm goes from iteration L1 to iteration L1 + 1, LB does not change. We have: LB ≥

−
∑

j p
∗∑

k y
′k∗
j +

∑
j

[
cjz
∗
j +Aj

∑
k y
′k∗
j

Cj

]
.

As tk,L1+1 is optimal to ϕk(p∗,q∗, z∗), ∀k and constraints from strong duality ensures

that (at iteration L1 + 1), −
∑

j φ
k
j t
k,L1+1
j + µk,L1+1

1

(
Bk −

∑
j φ

k
j t
k,L1+1
j

)
+
∑

iR
k
i ξ
k,L1+1
i +∑

iR
k
i η
k,L1+1
i +

∑
j Qqjt

k,L1+1
j σk,L1+1

j +
∑

i,j a
k
i,jτ

k,L1+1
i,j Rki = ϕk(p∗,q∗, z∗), ∀k. Then, it’s

easy to see from Step 3 that LB ≥ UB, which typically converges the algorithm in a finite

59

number of iterations. �

Note that the algorithm’s actual implementation is independent of the cardinality of T

set, which could be infinite. The proposed algorithm will converge to an optimal solution over

finite iterations if a finite optimal solution exists. The algorithm produces an optimal solution

in a small number of iterations, which may be significantly less than the cardinality of T [66].

4.4 Summary

In this chapter, we studied the problem of joint service placement and pricing in EC and de-

signed an iterative computing scheme based on reformulations and decomposition strategies

to solve the resulting challenging bi-level mixed integer programming problem. Our proposed

model not only maximized the profit of EC platform but also helped each service find their de-

sirable edge nodes for placement and resource procurement to minimize its cost while enhancing

user experience. As a result, the solution to underlying problem proves economical, working

in favor of both EC platform and services to minimize their costs and improve edge resource

utilization. It is worth noting that the solution approach based on column-and-constraint

generation method used in this algorithm can reduce the impact of enumeration and greatly

improve the overall computational efficiency.

60

Chapter 5

Conclusions and Future Work

By bringing cloud resources closer to the network edge, EC is beginning to reshape the future

landscape of a number of industries, resulting in increased innovation that promises to deliver

enhanced user experience and enable a wide array of IoT applications. EC is transforming the

network edge into an intelligent platform that benefits largely from local data processing and

analytics, distributed caching, localization, resource pooling and scaling, enhanced privacy and

security, and reliable connectivity by distributing storage, computing, control, and networking

functions closer to end-users and data sources. Additionally, it is the key to satisfying the

stringent requirements of exciting new systems and low-latency applications such as VR/AR,

embedded artificial intelligence, autonomous driving, manufacturing automation, and tactile

Internet. Like any other emerging field, this technology is in its infancy stage with many chal-

lenging questions to be addressed, opening a plethora of possibilities for academic researchers

[5].

In this thesis, we focus on the joint resource pricing, service placement, EN activation, and

workload allocation problems in EC. Specifically, we first developed two efficient approaches

based on the KKT conditions and LP duality, respectively, to optimally solve the proposed

novel bi-level optimization model which not only maximizes the profit of EC platform but also

minimizes the cost of every service. We further studied the same problem statement but now

having the services to pay for the service placement costs which results in integer variables

in lower-levels of the problem. We then propose to solve this BiMIP problem using a novel

computing scheme based on reformulations and decomposition strategy for allocating resources

of heterogeneous capacity-limited ENs to multiple competing services at the network edge in

a fair and efficient manner [66].

Throughout this thesis, we leveraged techniques from various fields to develop advanced

algorithms addressing different pricing, service placement and resource allocation challenges.

61

The effectiveness of the developed algorithm was illustrated through extensive numerical stud-

ies and theoretical analysis. For the case with continuous variables in the follower problems, we

leveraged the single-level reformulation approaches in addition to the linearization techniques.

Our recommendation is to use the duality-based reformulation ahead of the KKT-based solu-

tion, for it takes lesser computational time due to smaller size of MILP obtained. However, in

our extended model, the follower problems had integer variables and this inspired us to explore

the column-and-constraint method from adaptive robust optimization literature to solve the

challenging BiMIP problem that guarantees convergence in finite iterations.

The proposed models and algorithms can help shed a light on how EC platform and ser-

vices can optimize their operation and planning strategies. Furthermore, they can explore the

benefits of adopting a dynamic pricing policy that strategically sets prices to drive the demand

for resources and utilize the unused capacity to maximize the revenue of decision-makers at

both levels.

5.1 Future Research Directions

In this section, we present some possible directions of future research.

• In our formulation, we have only considered one type of edge resource (vCPUs). We

would like to incorporate virtual network functions (VNFs), multiple resource types and

multi-period pricing and workload allocation, to our existing model. In addition, we

plan to extend the proposed model to account for various system uncertainties such as

resource demand and component failures to build a resilient network.

• Our current bilevel model is of the type, single-leader-multi-follower, basically having only

one edge infrastructure provider interacting with multiple services. We would like to deal

with the case of multiple competing EC platforms and services. This way the services

can find the best-in-class providers. Additionally, as the number of edge infrastructure

providers grows, a competitive market is set that aims at providing the best price for

various resource capacities, while attracting most services. This also gives more freedom

to services for selecting between the providers in the event of power outage or natural

disaster alongside securing best prices that cater to their specific needs.

62

• How to further improve the computational efficiency of the proposed algorithms is another

interesting direction.

63

Bibliography

[1] E. Ahmed and M. H. Rehmani, “Mobile edge computing: Opportunities, solutions, and

challenges,” Future Generation Computer Systems, vol. 70, pp. 59–63, 2017.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities,” IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30–

39, 2017.

[4] https://www.ibm.com/cloud/edge-computing.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”

IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge com-

puting: The communication perspective,” IEEE Communications Surveys & Tutorials,

vol. 19, no. 4, pp. 2322–2358, 2017.

[7] D. T. Nguyen, L. B. Le, and V. K. Bhargava, “Price-based resource allocation for edge

computing: A market equilibrium approach,” IEEE Transactions on Cloud Computing,

vol. 9, no. 1, pp. 302–317, 2021.

[8] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge Intelligence: Paving the

last mile of artificial intelligence with edge computing,” Proceedings of the IEEE, vol. 107,

no. 8, pp. 1738–1762, 2019.

[9] W. Sun, J. Liu, and Y. Yue, “AI-enhanced offloading in edge computing: When machine

learning meets industrial IoT,” IEEE Network, vol. 33, no. 5, pp. 68–74, 2019.

64

https://www.ibm.com/cloud/edge-computing

[10] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge intelligence:

The confluence of edge computing and artificial intelligence,” IEEE Internet of Things

Journal, pp. 1–1, 2020.

[11] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent

edge: Wireless communication meets machine learning,” IEEE Communications Mag-

azine, vol. 58, no. 1, pp. 19–25, 2020.

[12] https://about.att.com/story/2020/google cloud.html.

[13] https://www.datacenterknowledge.com/edge-computing/why-google-cloud-and-

att-may-merge-their-telco-edges.

[14] https://aws.amazon.com/wavelength/.

[15] https://www.lightreading.com/the-edge/verizon-vodafone-embrace-amazons-

aws-for-edge-computing-with-5g/d/d-id/756060.

[16] https://news.microsoft.com/2019/11/26/att-integrating-5g-with-microsoft-

cloud-to-enable-next-generation-solutions-on-the-edge/.

[17] https://www.opennetworking.org/cord/.

[18] https://www.lfedge.org/projects/akraino/.

[19] D. V. Kalashnikov, S. Dempe, T. Matis, J.-F. Camacho-Vallejo, and S. Kavun, “Bilevel

programming, equilibrium, and combinatorial problems with applications to engineering

2016,” Mathematical Problems in Engineering, vol. 2016, pp. 1–3, 01 2016.

[20] https://www.equinix.com.

[21] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization: From classical to

evolutionary approaches and applications,” IEEE Trans. Evol. Comput., vol. 22, no. 2,

pp. 276–295, 2018.

[22] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han, “Computing resource alloca-

tion in three-tier IoT fog networks: A joint optimization approach combining Stackelberg

game and matching,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1204–1215, 2017.

65

https://about.att.com/story/2020/google_cloud.html
https://www.datacenterknowledge.com/edge-computing/why-google-cloud-and-att-may-merge-their-telco-edges
https://www.datacenterknowledge.com/edge-computing/why-google-cloud-and-att-may-merge-their-telco-edges
https://aws.amazon.com/wavelength/
https://www.lightreading.com/the-edge/verizon-vodafone-embrace-amazons-aws-for-edge-computing-with-5g/d/d-id/756060
https://www.lightreading.com/the-edge/verizon-vodafone-embrace-amazons-aws-for-edge-computing-with-5g/d/d-id/756060
https://news.microsoft.com/2019/11/26/att-integrating-5g-with-microsoft-cloud-to-enable-next-generation-solutions-on-the-edge/
https://news.microsoft.com/2019/11/26/att-integrating-5g-with-microsoft-cloud-to-enable-next-generation-solutions-on-the-edge/
https://www.opennetworking.org/cord/
https://www.lfedge.org/projects/akraino/
https://www.equinix.com

[23] S. Gabriel, A. J. Conejo, B. Hobbs, D. Fuller, and C. Ruiz, “Complementarity modeling

in energy markets,” Springer, 2012.

[24] D. T. Nguyen, L. B. Le, and V. K. Bhargava, “A market-based framework for multi-

resource allocation in fog computing,” IEEE/ACM Transactions on Networking, vol. 27,

no. 3, pp. 1151–1164, 2019.

[25] D. T. Nguyen, L. B. Le, and V. K. Bhargava, “Edge computing resource procurement:

An online optimization approach,” in 2018 IEEE 4th World Forum on Internet of Things

(WF-IoT), pp. 807–812, 2018.

[26] S. Li, N. Zhang, S. Lin, L. Kong, A. Katangur, M. K. Khan, M. Ni, and G. Zhu, “Joint

admission control and resource allocation in edge computing for Internet of things,” IEEE

Network, vol. 32, no. 1, pp. 72–79, 2018.

[27] D. T. Nguyen, L. B. Le, and V. K. Bhargava, “Two-stage robust edge service placement

and sizing under demand uncertainty,” IEEE Internet of Things Journal, to be published.

[28] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user to cloudlet allocation

in wireless metropolitan area networks,” IEEE Transactions on Cloud Computing, vol. 5,

no. 4, pp. 725–737, 2017.

[29] L. Zhao, W. Sun, Y. Shi, and J. Liu, “Optimal placement of cloudlets for access delay min-

imization in SDN-based internet of things networks,” IEEE Internet of Things Journal,

vol. 5, no. 2, pp. 1334–1344, 2018.

[30] S. Yang, F. Li, M. Shen, X. Chen, X. Fu, and Y. Wang, “Cloudlet placement and task

allocation in mobile edge computing,” IEEE Internet of Things Journal, vol. 6, no. 3,

pp. 5853–5863, 2019.

[31] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in

fog-cloud computing toward balanced delay and power consumption,” IEEE Internet of

Things Journal, vol. 3, no. 6, pp. 1171–1181, 2016.

66

[32] L. Yang, J. Cao, G. Liang, and X. Han, “Cost aware service placement and load dis-

patching in mobile cloud systems,” IEEE Transactions on Computers, vol. 65, no. 5,

pp. 1440–1452, 2016.

[33] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and

image placement in fog computing supported software-defined embedded system,” IEEE

Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[34] R. Yu, G. Xue, and X. Zhang, “Provisioning QoS-aware and robust applications in Internet

of things: A network perspective,” IEEE/ACM Transactions on Networking, vol. 27, no. 5,

pp. 1931–1944, 2019.

[35] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with provable guarantees

in heterogeneous edge computing systems,” in IEEE INFOCOM 2019 - IEEE Conference

on Computer Communications, pp. 514–522, 2019.

[36] Q. Fan and N. Ansari, “Application aware workload allocation for edge computing-based

IoT,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2146–2153, 2018.

[37] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang, and K. S. Chan,

“Service placement and request scheduling for data-intensive applications in edge clouds,”

in IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1279–

1287, 2019.

[38] A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya, Q. Zhang, W. Xie,

and J. P. Jue, “FogPlan: A lightweight QoS-aware dynamic fog service provisioning frame-

work,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5080–5096, 2019.

[39] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint network selection

and service placement for mobile edge computing,” in IEEE INFOCOM 2019 - IEEE

Conference on Computer Communications, pp. 1459–1467, 2019.

[40] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint service placement

and request routing in multi-cell mobile edge computing networks,” in IEEE INFOCOM

2019 - IEEE Conference on Computer Communications, pp. 10–18, 2019.

67

[41] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-managed service

placement for mobile edge computing: An online learning approach,” in IEEE INFOCOM

2019 - IEEE Conference on Computer Communications, pp. 1468–1476, 2019.

[42] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity placement for so-

cial virtual reality applications in edge computing,” in IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, pp. 468–476, 2018.

[43] H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,” IEEE Transactions

on Cloud Computing, vol. 1, no. 2, pp. 158–171, 2013.

[44] J. He, Y. Wen, J. Huang, and D. Wu, “On the cost–QoE tradeoff for cloud-based video

streaming under amazon EC2’s pricing models,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 24, no. 4, pp. 669–680, 2014.

[45] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. M. Lau, “Dynamic pricing and profit

maximization for the cloud with geo-distributed data centers,” in IEEE INFOCOM 2014

- IEEE Conference on Computer Communications, pp. 118–126, 2014.

[46] B. Baek, J. Lee, Y. Peng, and S. Park, “Three dynamic pricing schemes for resource

allocation of edge computing for IoT environment,” IEEE Internet of Things Journal,

vol. 7, no. 5, pp. 4292–4303, 2020.

[47] P. Cong, L. Li, J. Zhou, K. Cao, T. Wei, M. Chen, and S. Hu, “Developing user per-

ceived value based pricing models for cloud markets,” IEEE Transactions on Parallel and

Distributed Systems, vol. 29, no. 12, pp. 2742–2756, 2018.

[48] F. Hao, D.-S. Park, J. Kang, and G. Min, “2L-MC3: A two-layer multi-community-

cloud/cloudlet social collaborative paradigm for mobile edge computing,” IEEE Internet

of Things Journal, vol. 6, no. 3, pp. 4764–4773, 2019.

[49] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-edge computing with

computation capacity constraints,” IEEE Wireless Communications Letters, vol. 7, no. 3,

pp. 420–423, 2018.

68

[50] P.-Q. Huang, Y. Wang, K. Wang, and Z.-Z. Liu, “A bilevel optimization approach for

joint offloading decision and resource allocation in cooperative mobile edge computing,”

IEEE Transactions on Cybernetics, vol. 50, no. 10, pp. 4228–4241, 2020.

[51] Z. Xiong, J. Kang, D. Niyato, P. Wang, and H. V. Poor, “Cloud/edge computing service

management in blockchain networks: Multi-leader multi-follower game-based admm for

pricing,” IEEE Transactions on Services Computing, vol. 13, no. 2, pp. 356–367, 2020.

[52] Z.-L. Chang, C.-Y. Wang, and H.-Y. Wei, “Flat-rate pricing and truthful offloading mech-

anism in multi-layer edge computing,” IEEE Transactions on Wireless Communications,

pp. 1–1, 2021.

[53] P.-Q. Huang and Y. Wang, “A framework for scalable bilevel optimization: Identifying

and utilizing the interactions between upper-level and lower-level variables,” IEEE Trans-

actions on Evolutionary Computation, vol. 24, no. 6, pp. 1150–1163, 2020.

[54] K. Liu, X. Qiu, W. Chen, X. Chen, and Z. Zheng, “Optimal pricing mechanism for data

market in blockchain-enhanced internet of things,” IEEE Internet of Things Journal,

vol. 6, no. 6, pp. 9748–9761, 2019.

[55] J. Yan, S. Bi, L. Duan, and Y.-J. A. Zhang, “Pricing-driven service caching and task

offloading in mobile edge computing,” IEEE Transactions on Wireless Communications,

vol. 20, no. 7, pp. 4495–4512, 2021.

[56] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-level full-system

power models,” in Proceedings of the 2008 Conference on Power Aware Computing and

Systems, HotPower’08, (USA), pp. 3–7, USENIX Association, 2008.

[57] X. Sun and N. Ansari, “Green cloudlet network: a sustainable platform for mobile cloud

computing,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp. 180–192, 2020.

[58] G. B. Dantzig, Linear Programming and Extensions. Princeton, NJ, USA: Princeton

University Press, 1963.

[59] S. I. Gass and M. C. Fu, eds., Karush-Kuhn-Tucker (KKT) Conditions, pp. 833–834.

Boston, MA: Springer US, 2013.

69

[60] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ.

Press, 2004.

[61] J. Fortuny-Amat and B. McCarl, “A representation and economic interpretation of a two-

level programming problem,” The Journal of the Operational Research Society, vol. 32,

no. 9, pp. 783–792, 1981.

[62] M. H. Zare, J. S. Borrero, B. Zeng, and O. A. Prokopyev, “A note on linearized reformula-

tions for a class of bilevel linear integer problems,” Ann. Oper. Res., vol. 272, pp. 99–117,

2019.

[63] R. J. Vanderbei, Linear Programming: Foundations and Extensions, vol. 196 of Interna-

tional Series in Operations Research Management Science. Springer US, 2014.

[64] R. Albert, H. Jeong, and A. L. Barabasi, “Internet: diameter of the world–wide web,”

Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[65] https://aws.amazon.com/ec2/pricing/.

[66] B. Zeng and Y. An, “Solving bilevel mixed integer program by reformulations and decom-

position,” tech. rep., University of South Florida, 2014.

[67] S. Avraamidou, N. A. Diangelakis, and E. N. Pistikopoulos, “Mixed integer bilevel opti-

mization through multi-parametric programming,” Foundations of computer aided process

operations/chemical process control, pp. In–Press, 2017.

[68] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems using a column-

and-constraint generation method,” Operations Research Letters, vol. 41, no. 5, pp. 457 –

461, 2013.

70

https://aws.amazon.com/ec2/pricing/

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgements
	Dedication
	Introduction
	Background and Motivation
	Outline of Thesis

	Bi-level Programming for Joint Edge Resource Management and Pricing
	Introduction and Research Contributions
	Related Work
	System Model
	Problem Formulation
	The Follower Problem
	The Leader Problem

	Solution Approaches
	KKT-based Reformulation
	Duality-based Reformulation

	Summary

	Numerical Results
	Simulation Setting
	Performance Evaluation
	Comparison between the KKT-based and duality-based reformulation approaches
	Comparison between dynamic, flat, and average pricing schemes
	Sensitivity Analysis

	Extension: Bi-level Mixed Integer Optimization Problem
	Motivation
	Problem Formulation
	Follower Problems
	Leader Problem

	Solution Approaches
	KKT-based Reformulation
	Duality-based Reformulation
	Master Problem
	Subproblems
	Iterative Algorithm and Proof of Convergence

	Summary

	Conclusions and Future Work
	Future Research Directions

	Bibliography

