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Abstract 

 

Predicting crop yield response to climate change is a topic of active research. A popular method 

involves building statistical models using historical climate and agricultural data, and then 

applying them on future climate projections for predicting crop yields. Using India as a case 

study, this dissertation examines these statistical models along two dimensions: the type of 

climate variables included, and the statistical techniques used. We also employ these models for 

predicting climate change impact on Indian crop yields till 2100. 

 

First, we examine the role of seasonal (e.g. total seasonal precipitation) versus subseasonal (e.g. 

precipitation over each crop growing stage) climate variables in explaining crop yields. We 

observe that even though adding extra climate variables does not always improve overall model 

accuracy, the proportion of yield variability explained by climate (versus non-climatic variables 

like geography and time) can increase significantly. This underscores the importance of 

combining physiological and statistical knowledge while choosing climate variables for 

statistical crop models. Second, we compare the well-known statistical method of OLS linear 

regression (LR) to a popular machine learning method called boosted regression trees (BRTs). 

While LR models were simpler to interpret, BRTs could uncover unexpected non-linear 

relationships and exhibited better yield prediction accuracy. Compared to LR, BRTs sometimes 

showed lower sensitivity to temperature variation. Higher flexibility of BRTs allowed them to 

identify obscure interactions between variables that could be missed by LR. 
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We then use different climate variables and statistical techniques for building statistical models 

to predict climate change impact on India’s future crop yields. We found that nationally-

averaged rice, wheat, and pearl millet yields could reduce by up to 3.4, 4.3, and 5.5 percent 

(respectively) by 2050 under the intermediate emissions scenario. Some parts of India may 

benefit from climate change, while other regions could face yield losses of up to 20 percent. 

Depending on the climate variables or statistical technique employed, we observe high 

variability in yield change predictions. We therefore suggest combining multiple models for 

estimating climate change impact on crop yields. 
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Lay Summary 

 

Agriculture is often counted among the sectors most vulnerable to climate change. To predict the 

impact of climate change on future crop yields, scientists frequently use statistical models built 

using historical climate and agricultural production data. We examined these models along two 

dimensions: the climate variables included in them, and the statistical techniques used. We find 

that the utility of adding potentially important climate variables may be obscured if the models 

are ranked using standard statistical metrics; incorporating physiological knowledge during 

model selection is recommended. Moreover, advanced techniques like machine learning can 

offer certain advantages over the more commonly used linear regression methods. Finally, we 

applied these models to India which predicted that nationally-averaged rice, wheat, and pearl 

millet yields could reduce by up to 3.4, 4.3, and 5.5 percent (respectively) by 2050 under the 

“middle of the road” climate change scenario. 



vi 

 

Preface 

 

I am the primary responsible person for all chapters in this dissertation. The overall objectives 

and structure of the dissertation were co-designed with my supervisory committee members Dr. 

Navin Ramankutty, Dr. Milind Kandlikar, and Dr. Mark Johnson. My contributions include 

developing the methodology, collecting and analyzing data, summarizing results, and preparing 

the manuscripts. 

 

This dissertation contains three stand-alone chapters (Chapters 2-4) that were written as 

independent articles. Since each chapter was prepared with the intention of publication in a 

different peer-reviewed journal, there may be some repetition in the background and introduction 

sections to maintain the flow of narrative in each.  

 

Versions of chapters 2 and 3 will be submitted for publication with Dr. Navin Ramankutty, Dr. 

Milind Kandlikar, and Dr. Zia Mehrabi as co-authors. A version of chapter 4 will be submitted 

for publication with Dr. Navin Ramankutty, Dr. Milind Kandlikar, and Dr. Mark Johnson as co-

authors. 

 

This dissertation required no ethics approval because no primary data was collected. 



vii 

 

Table of Contents 

 

Abstract ......................................................................................................................................... iii 

Lay Summary .................................................................................................................................v 

Preface ........................................................................................................................................... vi 

Table of Contents ........................................................................................................................ vii 

List of Tables ............................................................................................................................... xii 

List of Figures ............................................................................................................................. xiii 

List of Abbreviations ................................................................................................................ xvii 

Acknowledgements .................................................................................................................... xix 

Dedication ................................................................................................................................. xxiii 

Chapter 1: Introduction ................................................................................................................1 

1.1 Overview ......................................................................................................................... 1 

1.2 Typology of climate-crop models ................................................................................... 3 

1.3 Indian agriculture ............................................................................................................ 6 

1.4 Dissertation chapters ....................................................................................................... 9 

1.4.1 Chapter 2 ................................................................................................................. 9 

1.4.2 Chapter 3 ............................................................................................................... 10 

1.4.3 Chapter 4 ............................................................................................................... 11 

1.4.4 Chapter 5: Conclusion........................................................................................... 12 

Chapter 2: On the relative importance of climatic and non-climatic factors in crop yield 

models............................................................................................................................................13 

2.1 Introduction ................................................................................................................... 13 



viii 

 

2.2 Data and methods .......................................................................................................... 16 

2.2.1 Crop production data............................................................................................. 16 

2.2.2 Climate data .......................................................................................................... 17 

2.2.2.1 Degree day bins................................................................................................. 18 

2.2.3 Statistical techniques ............................................................................................. 19 

2.2.3.1 Statistical models .............................................................................................. 20 

2.2.3.2 Model performance metrics .............................................................................. 23 

2.2.3.3 Relative importance of variables ...................................................................... 23 

2.2.4 Evaluating yield predictions during extreme weather events ............................... 25 

2.2.5 Simulations of climate change impact .................................................................. 25 

2.3 Results ........................................................................................................................... 26 

2.3.1 Model performance evaluation using statistical metrics ....................................... 26 

2.3.2 Relative importance of variables .......................................................................... 28 

2.3.3 Model sensitivity to extreme weather events ........................................................ 30 

2.3.4 Simulations of climate change impact .................................................................. 35 

2.4 Discussion ..................................................................................................................... 39 

2.4.1 Role of a priori climate-crop relationship knowledge .......................................... 39 

2.4.2 Model performance for extreme weather events and long-term climate change .. 41 

2.4.3 Implications........................................................................................................... 43 

2.4.4 Limitations and future work.................................................................................. 44 

2.5 Conclusion .................................................................................................................... 46 

Chapter 3: Statistical versus machine learning methods for estimating the impact of 

climate variability on Indian crop yields ...................................................................................47 



ix 

 

3.1 Introduction ................................................................................................................... 47 

3.2 Data and methods .......................................................................................................... 52 

3.2.1 Climate and crop production data ......................................................................... 52 

3.2.2 Statistical software and methods ........................................................................... 52 

3.2.3 Models and climate variables................................................................................ 53 

3.2.4 Model inference .................................................................................................... 57 

3.2.4.1 Partial dependence plot ..................................................................................... 57 

3.2.4.2 Specification of segmented LR using BRT partial dependence plots............... 58 

3.2.5 Simulations of climate change impacts................................................................. 59 

3.3 Results and discussion .................................................................................................. 59 

3.3.1 Model accuracy ..................................................................................................... 59 

3.3.2 Partial dependence plots ....................................................................................... 62 

3.3.3 Inference from synthetic data................................................................................ 65 

3.3.4 Simulations of climate change impacts................................................................. 71 

3.3.5 Limitations ............................................................................................................ 74 

3.4 Conclusion .................................................................................................................... 75 

Chapter 4: Indian agriculture in a changing climate: using CMIP6 projections for short-

term and long-term crop yield predictions ................................................................................77 

4.1 Introduction ................................................................................................................... 77 

4.2 Data and methods .......................................................................................................... 80 

4.2.1 Historical climate and crop production data ......................................................... 80 

4.2.2 Soil moisture model .............................................................................................. 80 

4.2.3 Statistical techniques ............................................................................................. 82 



x 

 

4.2.3.1 Climate variables .............................................................................................. 82 

4.2.3.2 Statistical models .............................................................................................. 83 

4.2.4 CMIP6 climate projections for future yield prediction ......................................... 85 

4.3 Results ........................................................................................................................... 86 

4.3.1 CMIP6 climate projections ................................................................................... 86 

4.3.1.1 Temperature and growing degree days ............................................................. 86 

4.3.1.2 Precipitation amount and variability ................................................................. 90 

4.3.1.3 Soil moisture variability .................................................................................... 92 

4.3.2 Future crop yield predictions ................................................................................ 95 

4.3.2.1 Nationally aggregated results ............................................................................ 95 

4.3.2.2 Spatial patterns of climate change impacts on yields ....................................... 98 

4.4 Discussion ................................................................................................................... 107 

4.4.1 CMIP6 climate projections ................................................................................. 107 

4.4.2 Crop yields in a changing climate ....................................................................... 110 

4.4.3 Limitations and future work................................................................................ 114 

4.5 Conclusion .................................................................................................................. 115 

Chapter 5: Conclusion ...............................................................................................................118 

5.1 Application of my models: an irrigation expansion case study .................................. 122 

5.2 Limitations and future work........................................................................................ 128 

5.3 Open questions and concluding thoughts ................................................................... 132 

References ...................................................................................................................................134 

Appendices ..................................................................................................................................150 

Appendix A Chapter 2 ............................................................................................................ 150 



xi 

 

A.1 Schematic of degree day bins calculation ............................................................... 150 

A.2 Model performance with irrigation ......................................................................... 151 

A.3 State-level model performance in 1993, 1996, 2002, 2009 .................................... 152 

A.4 Simulations of climate change impact (wheat and pearl millet) ............................. 155 

Appendix B Chapter 3 ............................................................................................................ 159 

B.1 Model accuracy for out-of-sample predictions ....................................................... 159 

B.2 Partial dependence plots for rice and wheat ........................................................... 160 

B.3 Analysis with synthetic data ................................................................................... 161 

B.4 Climate change simulation for rice and wheat ........................................................ 163 

Appendix C Chapter 4 ............................................................................................................ 166 

C.1 Soil moisture model development methodology .................................................... 166 

C.2 Temporal trend in various climate variables for a sample district .......................... 171 

C.3 Soil moisture trends for a sample district ............................................................... 173 

C.4 Growing degree days .............................................................................................. 174 

C.5 Precipitation amount and precipitation days ........................................................... 175 

C.6 National percent loss in crop yield.......................................................................... 177 

C.7 Predicted reduction in crop yield (all climate variable sets) ................................... 178 

 



xii 

 

List of Tables 

 

Table 2.1 Description of variables included in the crop models................................................... 18 

Table 2.2 Model names and climate variables included in the ten models................................... 21 

Table 3.1 Model specifications.. ................................................................................................... 55 

Table 3.2 Context-dependent advantages and disadvantages of BRT compared to LR. .............. 69 

Table 4.1 Climate variable sets analyzed in this study. ................................................................ 83 

Table 4.2 Relative importance of crop model choices and future climate projections in 

determining percent yield changes in the future. .......................................................................... 98 

 



xiii 

 

List of Figures 

 

Figure 2.1 Model performance measured in terms of adjusted R2 and RMSE. ............................ 27 

Figure 2.2 Relative importance of time (blue), geography (green), and climate (red) variables 

across the ten models analyzed for rice, wheat, and pearl millet.. ................................................ 29 

Figure 2.3 Improvement in model performance for median precipitation (1993), median 

temperature (1996), drought (2002), and hot (2009) years. .......................................................... 31 

Figure 2.4 Difference between predicted and observed pearl millet yield for all districts of the 

state of Rajasthan for 1993, 1996, 2002, and 2009. ...................................................................... 33 

Figure 2.5 Nationally averaged score of the best performing model for each crop-state 

combination for 1993, 1996, 2002, and 2009. .............................................................................. 34 

Figure 2.6 Nationally averaged yield change due to historical climate change............................ 35 

Figure 2.7 Simulated impact of long-term climate change (since 1966) on rice yield in the last 

decade (2002-2011) of the study time period. .............................................................................. 37 

Figure 3.1 Model performance measured in terms of percent decrease in RMSE. ...................... 61 

Figure 3.2 Partial dependence plots of the Tavg_Psum models for pearl millet. ......................... 63 

Figure 3.3 Partial dependence plots for LR and BRT models fitted on synthetic data. ................ 66 

Figure 3.4 Predictions of LR and BRT models of crop yield as a function of temperature versus 

actual crop yields in the training data. .......................................................................................... 69 

Figure 3.5 Simulated impact of long-term climate change (since 1966) on pearl millet yield in the 

last decade (2002-2011) of the study time period. ........................................................................ 72 

Figure 4.1 Distribution of district-wise increase in mean growing season temperature for kharif 

and rabi crops. ............................................................................................................................... 87 



xiv 

 

Figure 4.2 Distribution of district-wise increase in mean growing season daily minimum and 

daily maximum temperature for kharif and rabi crops. ................................................................ 89 

Figure 4.3 Increase in mean growing season minimum daily temperature, maximum daily 

temperature, and average daily temperature for kharif and rabi crops. ........................................ 90 

Figure 4.4 Total seasonal precipitation and number of precipitation days for kharif (rice) and rabi 

(wheat) crops. ................................................................................................................................ 91 

Figure 4.5 Distribution of change in district-wise fraction of growing season days spent at 

moisture availability of 25 percent or less of actual crop water requirement and at full moisture 

availability for kharif and rabi crops. ............................................................................................ 93 

Figure 4.6 Fraction of growing season spent at moisture availability of 25 percent or less of 

actual crop water requirement and at full moisture availability for kharif and rabi crops. ........... 94 

Figure 4.7 Nationally-averaged percent change in yield. ............................................................. 96 

Figure 4.8 Distribution of district-level percent change in yield for rice. .................................... 99 

Figure 4.9 District-level percent change in yield for rice. .......................................................... 100 

Figure 4.10 Distribution of district-level percent change in yield for wheat. ............................. 102 

Figure 4.11 District-level percent change in yield for wheat...................................................... 103 

Figure 4.12 Distribution of district-level percent change in yield for pearl millet. .................... 105 

Figure 4.13 District-level percent change in yield for pearl millet. ............................................ 106 

Figure 4.14 Partial dependence plots of the seasonal variable set models for rice. ................... 113 

Figure 5.1 Frequency distribution of each state in different irrigation categories. ..................... 125 

Figure 5.2 District-wise yield loss predictions under “no irrigation expansion” scenario versus 

those under “50 percent crop area with irrigation access” scenario. .......................................... 127 

Figure 5.3 District-level yield values for the full dataset. ........................................................... 130 



xv 

 

Figure A.1 Degree days accumulated on a particular day in different bins ................................ 150 

Figure A.2 Model (with irrigation included) performance. ........................................................ 151 

Figure A.3 Improvement in rice model performance (in terms of RMSE reduction compared to 

the null model with no climate variables). .................................................................................. 152 

Figure A.4 Improvement in wheat model performance (in terms of RMSE reduction compared to 

the null model with no climate variables). .................................................................................. 153 

Figure A.5 Improvement in pearl millet model performance (in terms of RMSE reduction 

compared to the null model with no climate variables). ............................................................. 154 

Figure A.6 Simulated impact of long-term climate change (since 1966) on wheat yield in the last 

decade (2002-2011) of the study time period. ............................................................................ 155 

Figure A.7 Simulated impact of long-term climate change (since 1966) on pearl millet yield in 

the last decade (2002-2011) of the study time period. ................................................................ 157 

Figure B.1 Model performance in terms of RMSE..................................................................... 159 

Figure B.2 Partial dependence plots of the Tavg_Psum models for rice. ................................... 160 

Figure B.3 Partial dependence plots of the Tavg_Psum models for wheat. ............................... 161 

Figure B.4 Partial dependence plots for models fitted on synthetic data. ................................... 162 

Figure B.5 Simulated impact of long-term climate change (since 1966) on rice yield in the last 

decade (2002-2011) of the study time period. ............................................................................ 163 

Figure B.6 Simulated impact of long-term climate change (since 1966) on wheat yield in the last 

decade (2002-2011) of the study time period. ............................................................................ 164 

Figure C.1 Relative importance of time, geography, and climate. ............................................. 170 

Figure C.2 Temporal trends in various climatic variables from 2020-2100 for a sample district 

(Patiala (Punjab)) and rice. ......................................................................................................... 171 



xvi 

 

Figure C.3 Temporal trends in various climatic variables from 2020-2100 for a sample district 

(Patiala (Punjab)) and wheat. ...................................................................................................... 172 

Figure C.4 Temporal trends in soil moisture amount from 2020-2100 for a sample district 

(Patiala (Punjab)) and rice. ......................................................................................................... 173 

Figure C.5 gdd_10, gdd_20, and gdd_30 as a ratio of the corresponding variable for the reference 

climatology (1951-2000). ........................................................................................................... 174 

Figure C.6 Distribution of district-wise ratio of total seasonal precipitation (to reference 

climatology precipitation). .......................................................................................................... 175 

Figure C.7 Distribution of district-wise ratio of total seasonal precipitation days (to reference 

climatology precipitation days)................................................................................................... 176 

Figure C.8 Nationally-averaged percent change in yield for rice, wheat, pearl millet. .............. 177 

Figure C.9 Distribution of district-level percent change in yield for rice. .................................. 178 

Figure C.10 Distribution of district-level percent change in yield for wheat. ............................ 179 

Figure C.11 Distribution of district-level percent change in yield for pearl millet. ................... 180 

 



xvii 

 

List of Abbreviations 

 

AgMIP Agricultural Model Intercomparison and Improvement Project  

AIC Akaike Information Criterion  

AR5 IPCC Fifth Assessment Report  

AR6 IPCC Sixth Assessment Report  

BIC Bayesian Information Criterion  

BRT Boosted Regression Trees  

CMIP5 Coupled Model Intercomparison Project Phase 5  

CMIP6 Coupled Model Intercomparison Project Phase 6  

DTR Diurnal Temperature Range  

DV Dependent Variable  

ET Evapotranspiration  

ETc Crop Specific Evapotranspiration  

ETo Reference Evapotranspiration  

FAO Food and Agriculture Organization 

GCM General Circulation Model  

GDD Growing Degree Days  

GR Green Revolution  

ha Hectare  

HPC High Performance Computing  

ICRISAT International Crop Research Institute for The Semi-Arid Tropics  



xviii 

 

IPCC Intergovernmental Panel on Climate Change  

IV Independent Variable  

LR Ordinary Least Squares Linear Regression  

ML Machine Learning  

PDP Partial Dependence Plot  

PMKSY Pradhan Mantri Krishi Sinchayee Yojana  

R2 Coefficient of Variation  

RCPs Representative Concentration Pathway  

RMSE Root Mean Square Error  

SSP  Shared Socio-Economic Pathway  

WG II Working Group II  

 



xix 

 

Acknowledgements 

 

Ah, the acknowledgements section, where I am expected to convey my gratitude to everyone that 

made this dissertation possible. Let me admit outright that it is impossible for me to thank 

everyone that was a part of my journey, but the best attempt I shall make. 

 

There is a reason why almost all graduate students, in a rather predictable and unoriginal manner, 

begin the acknowledgements section by thanking their supervisor(s). Comparing my master’s 

and doctoral experience, I have realized beyond doubt that a student’s learning experience, skill 

development, career progress and, most crucially, overall well-being are highly dependent on the 

support they receive from their supervisor(s). Unfortunately, this is something most graduate 

students have little control over when they join a research group. I would probably make many 

peers jealous when I say that I hit a double jackpot with Navin Ramankutty and Milind 

Kandlikar. Eminent researchers with illustrious careers that they are, they require no introduction 

here, which shaves off quite a lot of text from this section and gives me more space to truly 

express my gratitude. Starting from day one, they exceeded all expectations a graduate student 

may have from their supervisors: granting freedom to chart my own research path while 

providing invaluable and timely guidance when I was stuck, giving opportunities to expand my 

skill set beyond the usual graduate school curriculum, or providing honest advice that enabled 

me to separate the wheat from the chaff and spend time doing stuff that actually matters. Besides 

that, I am equally grateful for their unwavering belief in my capabilities and work even on the 

darkest of days when I doubted myself. Equally important was their constructive feedback that 

has undoubtedly improved my research capabilities and led to this dissertation. Having them 



xx 

 

both as supervisors was a truly amazing experience to say the least. Navin’s relentless belief in 

going back to first principles, combined with Milind’s love of torturing and questioning all 

assumptions that others accept as self-evident truth, admittedly made for some gruelling and 

tiresome coding sessions but led to highly relevant learning experiences and projects. 

 

Graduate school also brings its fair share of mental fatigue and stress. Adding to that the 

pandemic chaos makes for an even more potent mixture. I too struggled with some professional 

and personal problems during my years at UBC, and Navin and Milind’s support during that time 

deserves a special mention. In them, I saw not just professional coaches, but also wise mentors 

with whom I could share my struggles when overwhelmed. They both claim they were just 

following their assigned duties, but my conversations with colleagues from other groups and 

departments is a testament to how fortunate I am. Special mention for the extremely funny 

Twitter banter I have had with them over the years. By putting this all on paper, it is possible that 

I am digging a hole for my future self if I end up in academia! (My future students, if you are 

reading this, too bad.) 

 

I am also immensely grateful to my committee member professor Mark Johnson. His invaluable 

advice when I approached him with technical questions, and the sheer patience in his replies to 

my incessant volley of emails during the final few weeks of this dissertation preparation are truly 

appreciated. The submission of this dissertation during the busiest months of the academic year 

was only possible because of my committee’s patience and support. 

 



xxi 

 

My research experience was complemented by a wide range of teaching opportunities as the 

instructor for my institute’s summer programs 2018 and 2019, a teaching assistant across 

multiple faculties, and a climate expert for the UBC Climate Teaching Connector. Special thanks 

to IRES and UBC for the same. Professors Dowlatabadi, Boyd, Ramankutty, and Kandlikar 

deserve a special mention for assisting me with planning and delivering the summer program 

course that added immensely to my pedagogical experience. 

 

I’d also like to acknowledge the wonderful group of people I was fortunate to work alongside in 

my lab and at IRES. Special thanks to Verena, Vinny, Kalifi, Matt and Larissa for helping me 

settle down and making my transition into the group as smooth as it could ever be; Ginni and 

Juan for being perfect peers to learn statistics with; Zia, Christian and Vinny for patiently 

introducing me to the research methods that this dissertation heavily relies on; Erika, Jumi and 

Kushank for prodding me to graduate soon so they can take over my desk; Julie for diligently 

navigating me through the administrative maze; Susanna, Dana, Laura and Bejoy for 

demonstrating the relevance of examining social aspects of my otherwise mostly technical 

research; Char, Pedro and Marie-Theres for livening up the office with their stories and laughter; 

and Sameer for patiently bearing with my slow progress on a wonderful project we got a chance 

to collaborate on. Working late nights at the Liu institute (sometimes as the lone occupant of the 

building) also gave me a chance to find a wonderful friend in the ever-smiling Moses; it was nice 

to know you, my friend. My thanks also go to Gillian, Bonny, Stefanie, Linda and Kelsey for 

making my experience at IRES so wonderful and easy. I am of course missing a lot of other folks 

here, to whom I once again convey my sincerest gratitude. This journey would never have been 

as fun and fulfilling as it was, if it were not for them. 



xxii 

 

My biggest thanks go to my family. My brother Harsher, who I was lucky enough to be 

housemates with for most of my doctoral study years. As an immigrant living thousands of 

kilometers away from the homeland, I had the rare privilege of having a sibling to share my good 

and bad days with. My parents provided unparalleled advice and encouragement from afar. Their 

uncanny ability to sense when I was feeling sad and cheer me up over the phone, will forever be 

a mystery to me. I drew a lot of inspiration from their Facetime calls, which I am also guilty of 

ignoring when chasing deadlines. And finally, my wife Ardeep. She came to Canada and we 

started living together just as I was wrapping up my doctoral research, and her contribution 

during these crucial few months cannot be overstated. She patiently bore my tantrums which 

became increasingly frequent as my dissertation deadline neared. Her constant reassurances and 

sagely advice helped me cross the finish line. 

 

I would like to thank the Vanier Canada Graduate Scholarship and the University of British 

Columbia Four Year Doctoral Fellowship for their financial support. This research was enabled 

in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada 

(www.computecanada.ca). 

http://www.westgrid.ca/
http://www.computecanada.ca/


xxiii 

 

Dedication 

 

 

 

To the farmers of India.



1 

 

Chapter 1: Introduction 

 

1.1 Overview 

Once again, the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC) has underscored the reality of climate change; it has also been proven beyond any doubt 

that anthropogenic activities and emissions are responsible (IPCC, 2021). Numerous studies have 

shown the sensitivity of agricultural productivity to both short-term and long-term variability in 

weather and climate (to cite a few: Davis, Chhatre, Rao, Singh, & Defries, 2019; Lobell, 

Schlenker, & Costa-Roberts, 2011). Consequently, agriculture occupies a prominent spot in the 

list of sectors most vulnerable to climate change. Any reduction in agricultural yields not only 

affects food and commodity production adversely (thereby increasing chances of inflation, food 

insecurity, malnutrition, and famines), but also puts at risk hundreds of millions of people 

globally who directly or indirectly depend on agriculture for their livelihood. 

 

Therefore, the importance of understanding agriculture’s response to climate and other 

environmental changes cannot be overstated. Over the past decades, predicting crop yields as a 

function of climate change has been a topic of extensive research, both at a regional and global 

scale. The results paint a worrying picture. To cite a few out of numerous examples, Lobell & 

Field (2007) reported a negative impact of rising global temperature on wheat, maize and barley 

yields, and pegged the losses at $5 billion per year. Model simulations have also shown a 

negative impact on maize yields of 8-12 percent globally under 2 degrees Celsius warming 

scenario (Bassu et al., 2014). Wheat production studies in India have estimated a reduction of 5.9 

percent per degree Celsius rise in temperature (R. Gupta, Somanathan, & Dey, 2017). Similarly, 
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Asseng et al. (2017) analyzed multiple climate change scenarios using mean growing season 

temperature and reported a decrease of 0.34 tonnes/hectare in India’s wheat yield per degree 

Celsius temperature rise. 

 

Climate change does not affect agriculture only through shifts in mean temperature and 

precipitation; it is also altering short-term precipitation patterns and the intensity, duration, and 

frequency of extreme weather events like heat waves and droughts (IPCC, 2021). Past research 

has shown that such subseasonal (or intra-seasonal) climate variability too can have significant 

impacts on crop yields (Riha, Wilks, & Simoens, 1996). For instance, a season with drought 

during the early growing stage followed by heavy rains during harvest may cumulatively be 

considered a “normal rainfall season”, but erratic rainfall can cause yield losses or even crop 

failure. In recent years, this limitation of seasonal climate-crop analyses has been addressed by 

some researchers using subseasonal climate data. An agricultural productivity study for Tanzania 

predicted 4.2, 7.2, and 7.6 percent yield reduction for maize, sorghum, and rice for a 20 percent 

increase in intra-seasonal precipitation variability (measured in terms of coefficient of variance 

of monthly precipitation measurements) (Rowhani, Lobell, Linderman, & Ramankutty, 2011). 

Schlenker & Roberts (2009) conducted an intra-seasonal analysis in the US and reported that 

temperatures above thresholds of 29o, 30o, and 32o Celsius have adverse and nonlinear impacts 

on corn, soybeans, and cotton yields. Analysis with weekly soil moisture data from a land 

surface model for rainfed regions of the US found a significant impact of subseasonal water 

stress on multiple crops (Ortiz-Bobea, Wang, Carrillo, & Ault, 2019). Thus, there is ample 

evidence that intra-seasonal climate variations can have strong impacts on crop yields (Yu & 
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Goh, 2019), and furthering our understanding of the climate-crop relationship at subseasonal 

level is of utmost importance.  

 

One of the most commonly used methods for predicting future crop yields under various climate 

change scenarios is to build statistical models with existing/historical data and apply the results 

to climate data projected into the future. In these models, crop yield is the dependent variable 

(DV), or the variable of interest, and relevant climate variables like temperature, water 

availability, or precipitation variability act as independent variables (IVs). The models aim to 

elicit the relationship between the DV and the IVs, and then use that relationship for future yield 

predictions. The primary focus of this dissertation is to build, analyze and contrast different types 

of these models, using rice, wheat, and pearl millet production in India as a case study. 

 

In the next section, I start by describing the different types of models and their advantages and 

disadvantages. I next provide a brief description of Indian agriculture, primarily from a climate 

change perspective. Concurrently I identify the three major research gaps that this dissertation 

aims to fill. The last section in this chapter outlines the structure of this dissertation. 

 

1.2 Typology of climate-crop models 

Depending on the experimental design and type of data used, studies involving models for 

analyzing the impact of climate variability and change on crop yields can be divided into two 

groups. Many researchers use process-based models which incorporate experimentally-

determined plant responses to various factors (temperature, water availability, soil moisture, 

radiation, carbon dioxide concentration among others) and build empirical mathematical 



4 

 

relationships between them (Roberts, Braun, Sinclair, Lobell, & Schlenker, 2017). The 

advantage of these process-based models is that the relationships and equations used for building 

the models are based on biophysics and plant physiology and are backed by clear mechanisms 

linking weather and crop growth. However, such models are usually built using limited results 

from lab-controlled experiments and do not necessarily reflect real-life outcomes in farmers’ 

fields because they do not include factors external to the experimental setting like farmer 

behavior or pest infestation. 

 

The shortcomings of the process-based models can be overcome by building statistical models 

using observational data collected from real-life agricultural activity. These statistical models 

find relationships between historical climate and agricultural data; these data can be cross-

sectional (multiple measurements across space at a single moment in time), time series 

(measurements over time from a single geographical unit (district, county, or state)), or a panel 

(time series data from multiple geographic entities). The strength of statistical models is that they 

can implicitly incorporate variables not in the control of the observer, like variation in farmer 

behavior and management. Also, observational statistical models can take full advantage of the 

large amount of data available, collected over many years across many regions of the world 

(Roberts et al., 2017). Statistical models are also somewhat easier to build than process-based 

models and take far less computational resources1. 

 

1 Statistical models also have some disadvantages; they may derive mathematical relationships between the observed 

climate and agricultural data that are not necessarily grounded in crop physiology (Roberts et al., 2017). A possible 

solution exists in the form of hybrid models. These depend on domain knowledge to identify important 

climatological metrics for a crop, and then use observational climate and crop data to identify important 

relationships. A good example of this can be observational models that use soil moisture, based on plant water 
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In statistical models based on observational data, a variety of different climate variables can be 

used as input. These include the most intuitive and widely used variables such as average 

temperature and total precipitation, to variables geared towards identifying and incorporating 

more complex determinants of yield like number of precipitation days (Fishman, 2016), duration 

of longest dry-wet spell (Tebaldi, Hayhoe, Arblaster, & Meehl, 2006), growing degree days 

(Albers, Gornott, & Hüttel, 2017), vapor pressure deficit (Jiang et al., 2021), among others. In 

addition to climate, statistical models also need data on non-climatic factors that may impact 

crop yields, such as soil characteristics, irrigation, agrochemicals (fertilizers or pesticides), 

mechanization, or cultivar varieties. In the absence of some of this data, modelers often include a 

geographic factor (e.g., lowest geographical entity like district, county, state, or country, as 

applicable) as a dummy variable to account for spatially-variable but time-invariant drivers of 

crop yield like soil characteristics, and temporal variables (e.g., year of planting or harvest) to 

account for factors with temporal trends such as advancement in farming practices, technology 

adoption, introduction of improved cultivars and others (Lobell & Burke, 2009). These two 

categories of variables (climatic and non-climatic) together act as input in the statistical models.  

 

The use of time and geography dummies may present a complication for studies using standard 

statistical metrics like prediction accuracy to estimate the utility of including a specific climatic 

variable in statistical models. This is because time and geography components in the model 

 

demand. In chapter 4, we examine this at greater length by building a crop-specific soil moisture model and 

combining it with an observational model. 
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might act as partial proxies for finer scale climatic variables (e.g. subseasonal weather) and mask 

their impact. Chapter 2 delves into this issue in greater detail, and suggests methods to uncover 

potential overlaps between the yield variability explained by climatic and non-climatic portions 

of statistical models.  

 

Within statistical models using observational data, there are a wide variety of techniques that can 

be used for building these models. Given the increasing availability of high-quality data and 

advanced computational facilities, this choice continues to expand, and researchers now have 

access to a variety of techniques to choose from. Among the most well-known and commonly 

used is ordinary least squares linear regression (LR hereafter), which minimizes the sum of 

squares in the differences between observed and predicted values. This popular method has been 

used by numerous studies (Butler & Huybers, 2013; Davis et al., 2019; Lobell & Field, 2007). At 

the other end of the spectrum are supervised machine learning methods that do not need a priori 

specification of the functional forms like LR. Understanding the advantages and disadvantages 

of these statistical tools, and methods to identify the most appropriate technique, is of utmost 

importance. In chapter 3, I contrast LR approaches to boosted regression trees, a popular 

machine learning algorithm, using identical training data. This comparison is conducted with the 

ultimate goal of furthering our understanding of the link between climate variability and crop 

yields. 

 

1.3 Indian agriculture 

One of the worst food disasters of the twentieth century occurred in 1943 in Bengal, a province 

in British-ruled India. An estimated 3 million people died in the Bengal Famine (Patnaik, 2017) 
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When India gained independence in 1947, food security was thus on the top of the new 

government’s agenda. Efforts at achieving food self-sufficiency materialized into the Green 

Revolution (GR) in the 1960s. While expansion of land under cultivation had been ongoing since 

1947 and continued to be encouraged during GR, the most striking and successful features of this 

program related to increasing land productivity through double-cropping and higher crop yields. 

High yielding crop varieties were fiercely promoted by policymakers and bureaucrats, along with 

better and more agrochemicals (fertilizers and pesticides) and improved irrigation facilities 

(Frankel, 2015), which rapidly increased yields of wheat and rice, the two crops that were the 

major focus of the Revolution. The results have been extremely promising: from 1961 to 2019, 

national wheat and rice yields increased by 320 and 160 percent (FAOSTAT, 2021), which 

played a crucial role in transforming the country into a net exporter of food crops. Subsidized 

inputs and government-assured procurement prices are two prominent tools from the proverbial 

Green Revolution toolbox that have today made rice-wheat rotation the most prevalent cropping 

pattern in India (Scott & Sharma, 2009). 

 

The importance of Indian agriculture goes well beyond just producing sufficient food for its own 

citizens. It also occupies a critical international spot in terms of its contribution to the global food 

stocks. For example, India produces 70 percent of the world's chickpeas (16 times more than the 

second largest producer, Turkey), and over one-third of the world’s millets and a quarter of the 

world’s rice are grown in India (FAOSTAT, 2021). Global food supply chains are heavily 

dependent on crop yields in India. During the 2007-2008 food crisis India’s ban on rice exports 

out of concern for domestic food security caused a surge in global rice prices (Menelly, 2016; 

Reuters, 2008). Besides, many African and Asian countries depend on imports of Indian rice, 
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closely tying their food security to the success of Indian agriculture. Beyond just the direct value 

of its output, agriculture in India is also the biggest employment provider: over 42 percent of the 

national workforce is currently employed in this sector (World Bank, 2021b). Agriculture in 

India thus plays a prominent role in not only ensuring food security (both within the country and 

globally) but also by providing livelihood to millions of households.  

 

Indian agriculture is particularly vulnerable to climate change due to its heavy dependence on 

monsoon rains for water (Sharma, Rao, Vittal, Ramakrishna, & Amarasinghe, 2010). This makes 

it extremely sensitive to dry spells and short-duration rains which continue to get increasingly 

frequent with the changing climate (Annamalai, Hafner, Sooraj, & Pillai, 2013; V. Gupta, Singh, 

& Jain, 2020). This vulnerability is amplified in the rainfed regions which account for 

approximately half of the net sown area in India (Ministry of Agriculture and Farmers Welfare, 

2018). Working group II’s (WG II) contribution to the Fifth Assessment Report of the IPCC 

ranked Indian agriculture among those most vulnerable to climate change (IPCC, 2014). Given 

the certainty and rapid pace of climate change, it is of utmost importance to build robust crop 

models for India to not only identify crops and regions most at risk across the country, but also 

estimate the losses under different possible climate change scenarios. In chapter 4, I apply the 

findings of chapters 2 and 3 to use a range of statistical crop models (varying in both the 

underlying statistical technique as well as the climatic variables included) to predict future crop 

yields as a function of climate. 
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1.4 Dissertation chapters 

The overarching objective of this dissertation is to examine and further our understanding of the 

mechanisms and processes that statistical crop models are based on, and then apply them for 

predicting climate change impact on crop yields in India. The dissertation chapters are organized 

as follows: 

 

1.4.1 Chapter 2 

Research questions 

What is the role of geography and time, as proxies of unobserved non-climate variables, in 

explaining crop yields across multiple models with different sets of climate variables? What are 

the implications of comparing and selecting models based solely on generic statistical metrics, in 

light of the role of non-climatic factors (geography and time) in these models? 

 

Data 

Crop production (tonne) and harvested area (ha) data, disaggregated by crop, year, and district, 

was acquired from the International Crop Research Institute for the Semi-Arid Tropics 

(ICRISAT) Village Dynamics Studies in South Asia (ICRISAT, 2015). This data is reported for 

311 districts from 1966-2011 using 1966 district boundaries as base. District-level daily 

minimum temperature, daily maximum temperature, and daily precipitation data were acquired 

from Indian Meteorological Department (Rajeevan, Bhate, Kale, & Lal, 2006). The temperature 

data (1961-2015) covered 634 districts using current boundaries, while the precipitation data 

(1961-2015) had 651 districts. I harmonized the climate data to ICRISAT district boundaries by 
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apportioning data for new districts created after 1966 to their parent districts using area-weighted 

averaging. 

 

Methodology 

I used ordinary least squares (OLS) linear regression to construct multiple statistical models with 

crop yield as the DV, district dummy and year of harvest as non-climatic IVs, and various 

combinations of weather parameters (temperature, precipitation, precipitation days, growing 

degree days among others) as the climatic IVs. I then compared those models using standard 

statistical metrics like overall variance explained (R2) and root mean square error (RMSE), in 

addition to separating the total variance explained into climatic and non-climatic portions using a 

metric called “relative importance” (Grömping, 2006). The multiple models with different sets of 

climatic variables were analyzed and contrasted in detail using production data of three major 

crops from India (rice, wheat, and pearl millet) as a case study. 

 

1.4.2 Chapter 3 

Research questions 

What are the advantages and disadvantages of using OLS linear regression (LR, hereafter) versus 

more advanced machine learning methods like boosted regression trees (BRTs) for predicting the 

relationship between climate variability and crop yields? 

 

Data 

I used the same data as chapter 2 described above. 
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Methodology 

I built statistical models using LR and BRTs algorithms. These models were compared in terms 

of model accuracy (using RMSE as a metric). I analyzed the role various climate variables play 

in each model using partial dependence analysis, and examined the fundamental methods and 

assumptions followed by these models using synthetic data. The models were then contrasted in 

terms of their prediction of historical climate change impacts on India’s crop yields for rice, 

wheat, and pearl millet. 

 

1.4.3 Chapter 4 

Research questions 

What is the predicted impact of climate change on crop yields in India? How do the estimates 

vary across various climate change scenarios and statistical model construction methods? 

 

Data 

I used the same historical climate and crop data as chapter 2 described above. For the soil 

moisture model, I relied on crop evapotranspiration coefficients from FAO (Allen, Pereira, Raes, 

& Smith, 1998). Future climate projections were acquired from Coupled Model Intercomparison 

Project Phase 6 (CMIP6), the latest framework of climate model experiments. I analyze four 

shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) as defined in the 

Sixth Assessment Report of the IPCC (IPCC, 2021) to cover the range of possible future 

outcomes.  
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Methodology 

I used the techniques examined in chapter 3 to build my models for predicting yields as a 

function of climate. The soil moisture model was built using methods detailed in Hargreaves & 

Allen, (2003), Ramankutty, Foley, Norman, & Mcsweeney (2002), and Saxton & Rawls (2006). 

The water availability index as calculated from the soil moisture model was input as an IV in the 

crop statistical models for examining the role of soil moisture variability in determining future 

crop yields in India. 

 

1.4.4 Chapter 5: Conclusion 

In the concluding chapter, I bring together my findings from chapters 2, 3, and 4. I reiterate the 

impact that choices made while building statistical models (like the statistical techniques, or 

climate variables to include) can have on predicted crop yields. I also summarize the future of 

Indian agriculture in a changing climate, and discuss the utility of crop models for stakeholders 

trying to make crop yields more resilient to the predicted impacts of climate change. 
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Chapter 2: On the relative importance of climatic and non-climatic factors in 

crop yield models 

 

2.1 Introduction 

Climate is among the major drivers of agricultural output, and predicting crop yields as a 

function of climate has been a topic of active research for many decades. A common method to 

predict yields involves building statistical crop models from historical weather and yield data 

collected over time and/or space. These models can then be used for multiple purposes: 

estimating the sensitivity of crops to climate variability (Lobell & Field, 2007; Ortiz-Bobea, 

Wang, Carrillo, & Ault, 2019; Ray, Gerber, Macdonald, & West, 2015; Zachariah, Mondal, Das, 

Achutarao, & Ghosh, 2020), predicting crop yields under different future climate change 

scenarios (Birthal, Khan, Negi, & Agarwal, 2014; Ray et al., 2015), assessing benefits of crop 

switching (Rising & Devineni, 2020), identifying regions where agricultural interventions like 

irrigation can help mitigate climate change impacts (Zaveri & Lobell, 2019), among others. 

 

A variety of different weather and climate drivers of crop yields have been reported in statistical 

crop modeling literature. These include the most intuitive and widely used variables like average 

temperature and total precipitation over the crop growing season, to variables geared towards 

identifying and incorporating more complex determinants of yield like number of precipitation 

days (Fishman, 2016), duration of longest dry-wet spell (Tebaldi, Hayhoe, Arblaster, & Meehl, 

2006), growing degree days (Albers, Gornott, & Hüttel, 2017), heat or killing degree days 

(Butler & Huybers, 2013), vapor pressure deficit (Jiang et al., 2021), among others. There are 
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also studies which indirectly estimate the impact of water availability by including variables 

related to soil moisture content over different crop growth stages (Ortiz-Bobea et al., 2019). 

 

In addition to weather and climate, statistical models also need data on non-climatic factors that 

may impact crop yields, such as soil characteristics, irrigation, use of agrochemicals (fertilizers 

or pesticides), mechanization and technology uptake, cultivar varieties, and others. Since not all 

data are usually available, this task is often accomplished indirectly by including a geographic 

factor (e.g., lowest geographical entity like district, county, state, country, as appropriate) as a 

dummy variable to account for spatially-variable but time-invariant drivers of crop yield like soil 

characteristics, with temporal variables (often the year of planting or harvest) employed to 

account for factors with temporal trends such as advancement in farming practices, technology 

adoption, mechanization, or introduction of improved cultivars (Lobell & Burke, 2009). These 

two categories of independent variables, climatic and non-climatic, together act as input in 

statistical crop models, which then model the dependent variable (crop yield in this case) as a 

function of these independent variables2. 

 

Crop models are then built, with the data discussed above, using a wide variety of statistical 

techniques, each with their own strengths and weaknesses. These vary from the most popular 

Ordinary Least Squares (OLS) linear regression (henceforth, linear regression), to advanced 

machine learning techniques that can extract more resolved climate-yield relationships that linear 

 

2 We use the designation “non-climatic” for district dummies and time fixed effect, but this is not strictly true 

because climatic conditions vary across space, hence district dummies may also carry some climatic signal. This 

aspect of statistical models is examined in greater detail in this chapter. 
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regression models may not detect (Beillouin, Schauberger, Bastos, Ciais, & Makowski, 2020). 

Depending on the statistical method used, a model’s accuracy is often measured using statistical 

parameters like coefficient of variation (R2), adjusted R2, Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), or root mean square error (RMSE), among others. More 

details about all these metrics can be found in James, Witten, Hastie, & Tibshirani (2013). 

Researchers also use these metrics to build multiple models with different climate variables, 

compare and contrast them, rank them, or identify the most appropriate and accurate one from 

the mix. The model thus selected may then be employed for accomplishing tasks discussed 

previously. 

 

This study focuses on the interplay between the two concepts discussed above: the role of non-

climatic variables in explaining crop yield, and the use of standard statistical metrics to estimate 

and compare crop model accuracy. While including geography and time accomplishes the 

objective of accounting for non-climatic crop yield determinants, comparing models solely on 

the basis of overall variance explained (R2) or overall prediction accuracy (RMSE) has a 

limitation: these metrics only refer to overall model accuracy, but do not quantify the individual 

contributions of climatic and non-climatic variables in the model. Consequently, when using 

these metrics to compare two distinct crop models, there is no specific information about the 

climatic or non-climatic source of any potential differences in model performance. This 

complicates studies trying to estimate the utility of including specific climatic variables in their 

statistical models, because a portion of the anticipated improvement in model performance with 

the inclusion of a new climate variable to an existing model may be subsumed within the non-

climatic (geography and time) component. These geography and time variables may therefore 
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complicate the use of generic model performance metrics like R2, adjusted R2, or RMSE for 

model comparison and selection. This is the primary hypothesis examined in this study. While 

we focus only on OLS linear regression, the hypothesis warrants examination for other statistical 

techniques as well. 

 

We start by analyzing the cumulative contributions of climatic and non-climatic (geography and 

time) factors to a crop model’s total predictive worth. We then parse and compare the relative 

importance of these two groups of variables across an array of models. For this, we use a 

statistical metric called “relative importance” that has hitherto not been used widely in the crop 

modeling field (Grömping, 2006). The implications of our findings are then discussed in relation 

to model utility for predicting the impact of anomalous weather events and long-term climate 

change on crop yields. Specifically, our study attempts to answer the following two questions: 

 

1. What is the role of geography and time, as proxies of unobserved non-climate variables, 

in explaining crop yields across multiple models with different sets of climate variables? 

2. What are the implications of comparing and selecting models based solely on generic 

statistical metrics, in light of the role non-climatic factors (geography and time) may play 

in the models? 

 

2.2 Data and methods 

2.2.1 Crop production data 

This study was designed as a detailed analysis of statistical crop models using India as a case 

study. We used data from India because of prior familiarity with this region and easy availability 
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of long-term crop production and climate data. Although our results are specific to India, we 

believe they are more generally applicable to studies analyzing statistical relationships between 

crop yields and climate in other parts of the world. 

 

We focused on India’s three major cereal crops for this study: rice and pearl millet grown during 

the summer monsoon (kharif) season, and wheat, which is primarily grown during the winter 

(rabi) season. Crop production (tonne) and harvested area (ha) data, disaggregated by crop, year, 

and district, was acquired from the International Crop Research Institute for the Semi-Arid 

Tropics (ICRISAT) Village Dynamics Studies in South Asia (ICRISAT, 2015). This data is 

reported for 311 districts from 1966-2011 using 1966 district boundaries as base. Crop calendar 

data for crop sowing and harvesting dates at state-level came from Government of India’s 

Agricultural Statistics at a Glance 2016 (Ministry of Agriculture and Farmers Welfare, 2016). 

Any aggregation of the climate data from daily to seasonal scale was done after masking it for 

the growing season for each crop-state combination. 

 

2.2.2 Climate data 

District-level daily minimum temperature, daily maximum temperature, and daily precipitation 

data were acquired from Indian Meteorological Department (Rajeevan, Bhate, Kale, & Lal, 

2006). The temperature data (1961-2015) covered 634 districts using current boundaries, while 

the precipitation data (1961-2015) had 651 districts. We extracted climate data for 1966-2011 

and harmonized it to ICRISAT district boundaries by apportioning data for new districts created 

after 1966 to their parent districts using area-weighted averaging. With this daily temperature 

and precipitation data, we derived multiple climate variables for use in our models (Table 2.1). 
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Table 2.1 Description of variables included in the crop models. 

Variable name Description 

T_avg_mean Mean daily average temperature during the growing season 

T_min_mean Mean daily minimum temperature during the growing season 

T_max_mean Mean daily maximum temperature during the growing season 

gdd_0, gdd_10,  

gdd_20, gdd_30  

Degree day bins, at 10-degree Celsius intervals. 

P_sum Total seasonal precipitation 

P_days Total seasonal precipitation days (precipitation > 0.1 mm (May, 

2004) 

P_sum_subseasonal_1, 

P_sum_subseasonal_2, 

P_sum_subseasonal_3,  

P_sum_subseasonal_4 

Subseasonal precipitation over the four crop growing stages, as 

defined by FAO (Allen, Pereira, Raes, & Smith, 1998) 

P_days_subseasonal_1, 

P_days_subseasonal_2, 

P_days_subseasonal_3, 

P_days_subseasonal_4 

Subseasonal precipitation days over the four crop growing stages, as 

defined by FAO (Allen et al., 1998) 

 

2.2.2.1 Degree day bins 

The concept of degree days is very common in crop modeling research; for a clear explanation of 

the concept with illustrative examples, readers are referred to Roberts, Braun, Sinclair, Lobell, & 

Schlenker (2017). In our study, instead of using single thresholds for growing or killing degree 

days, we adopted a more flexible approach and included multiple degree day bins, which the 

model could then parametrize independently. A continuous temperature function was calculated 

by fitting a sinusoidal curve to the daily minimum and maximum temperature (University of 
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California Agriculture & Natural Resources, 2016). Degree days were then calculated for five 

different bins at 10-degree Celsius intervals: less than 0, 0-10, 10-20, 20-30, greater than 30. The 

last bin can represent killing degree days as temperatures in this range can have detrimental 

effects on crop yield. For instance, the upper temperature threshold for wheat’s anthesis stage has 

been reported to be 31 oC (Porter & Gawith, 1999). Degree days in the [Tlower, Tupper] bin were 

calculated using equation (2.1) where T is the continuous temperature function. A schematic for 

this calculation is shown in Appendix A section A.1. 

 

∑ { ∫ (𝑇 − 𝑇𝑙𝑜𝑤𝑒𝑟)𝑑𝑡
𝑡𝑖𝑚𝑒𝑙𝑜𝑤𝑒𝑟_2

𝑡𝑖𝑚𝑒𝑙𝑜𝑤𝑒𝑟_1

   −  ∫ (𝑇 − 𝑇𝑢𝑝𝑝𝑒𝑟)𝑑𝑡
𝑡𝑖𝑚𝑒𝑢𝑝𝑝𝑒𝑟_2

𝑡𝑖𝑚𝑒𝑢𝑝𝑝𝑒𝑟_1

 }

𝑔𝑟𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛

  , (2.1) 

 

where 

timelower_1: time of day when temperature first crosses the lower threshold (while increasing), 

timelower_2: time of day when temperature next crosses the lower threshold (while decreasing), 

timeupper_1: time of day when temperature first crosses the upper threshold (while increasing), 

timeupper_2: time of day when temperature next crosses the upper threshold (while decreasing). 

 

2.2.3 Statistical techniques 

All statistical analysis was conducted in R (R core team, 2020); R packages used include 

tidymodels (Wickham et al., 2019), data.table (Dowle & Srinivasan, 2021), relaimpo (Grömping, 

2006), ggthemes (Arnold, 2021), RColorBrewer (Neuwirth, 2014), wesanderson (Ram & 

Wickham, 2018), gridExtra (Auguie, 2017), doParallel (Microsoft & Weston, 2020a), and 

foreach (Microsoft & Weston, 2020b). 
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2.2.3.1 Statistical models 

For building and comparing multiple crop models with different sets of climate variables, we 

used OLS linear regression model specification of the form shown in equation (2.2). 

 

𝑦𝑖𝑡  =  𝛼𝑖  +  𝛽(𝑡)  + 𝛾1(𝑐𝑙𝑖𝑚_𝑣𝑎𝑟1)  +  …  + 𝛾𝑛(𝑐𝑙𝑖𝑚_𝑣𝑎𝑟𝑛)  + 휀𝑖𝑡  ,   (2.2) 

 

where yit is crop yield in district i and year t; αi is district specific intercept; β is parameter for 

time (harvest year) trend; γn is parameter for the nth climate variable (clim_var) included in the 

model; εit is the standard error. 

 

We constructed ten models with varying complexity of climate variables. After a null model with 

no climate variables (only district ID and year of harvest as variables), the other nine models 

ranged from a simple model with only mean seasonal temperature and total seasonal 

precipitation, to the most complex one with mean daily minimum temperature, mean daily 

maximum temperature, degree day bins, subseasonal precipitation amounts, and subseasonal 

precipitation days. For clarity, we have divided the climate variables into groups of temperature 

and precipitation variables, with three sub-groups or levels in each as shown in Table 2.2. The 

model names and the climate variables included in each are also presented in Table 2.2. 
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Table 2.2 Model names and climate variables included in the ten models. 

Model name Temperature Precipitation 

Sub-group 

level 

Variables Sub-group 

level 

Variables 

Null 0 -- 0 -- 

Tavg_Psum 1 T_avg_mean 1 P_sum 

Tavg_Psumday 1 T_avg_mean 2 P_sum, P_days 

Tavg_ 

Psumday_ 

subseasonal 

1 T_avg_mean 3 P_sum_subseasonal_1, 

P_sum_subseasonal_2, 

P_sum_subseasonal_3, 

P_sum_subseasonal_4, 

P_days_subseasonal_1, 

P_days_subseasonal_2, 

P_days_subseasonal_3, 

P_days_subseasonal_4 

Tminmax_ 

Psum 

2 T_min_mean, 

T_max_mean 

1 P_sum 

Tminmax_ 

Psumday 

2 T_min_mean, 

T_max_mean 

2 P_sum, P_days 

Tminmax_ 

Psumday_ 

subseasonal 

2 T_min_mean, 

T_max_mean 

3 P_sum_subseasonal_1, 

P_sum_subseasonal_2, 

P_sum_subseasonal_3, 

P_sum_subseasonal_4, 

P_days_subseasonal_1, 

P_days_subseasonal_2, 

P_days_subseasonal_3, 

P_days_subseasonal_4 

Tminmaxgdd_ 

Psum 

3 T_min_mean, 

T_max_mean,  

gdd_0, gdd_10, 

gdd_20, gdd_30 

1 P_sum 
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Model name Temperature Precipitation 

Sub-group 

level 

Variables Sub-group 

level 

Variables 

Tminmaxgdd_ 

Psumday 

3 T_min_mean, 

T_max_mean,  

gdd_0, gdd_10, 

gdd_20, gdd_30 

2 P_sum, P_days 

Tminmaxgdd_ 

Psumday_ 

subseasonal 

3 T_min_mean, 

T_max_mean,  

gdd_0, gdd_10, 

gdd_20, gdd_30 

3 P_sum_subseasonal_1, 

P_sum_subseasonal_2, 

P_sum_subseasonal_3, 

P_sum_subseasonal_4, 

P_days_subseasonal_1, 

P_days_subseasonal_2, 

P_days_subseasonal_3, 

P_days_subseasonal_4 

 

Studies estimating impacts of weather and climate usually include irrigation in their analysis. We 

began by adopting percent area irrigated for each crop-year-district combination as a proxy for 

irrigation (data on actual water used was unavailable), with interactions between irrigation and 

each precipitation variable. However, in the “relative importance” section of our analysis 

(discussed later), irrigation would be deemed a non-climatic variable, but its interaction with 

climate would complicate the disaggregation of total variance explained into climatic and non-

climatic portions. So, we left out irrigation in our analysis presented in the main paper from here 

on. Nonetheless, we present our results with irrigation included in Appendix A section A.2. The 

general trends between models’ performance are consistent with our results without irrigation. 
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2.2.3.2 Model performance metrics 

We used three popular statistical metrics for computing and comparing model accuracy. The first 

two were R2 and adjusted R2. Both these metrics vary from 0 to 1, and measure how well the 

model predictions match the actual observed data. A drawback of R2 is that it always increases 

(or stays the same at a minimum) with the addition of any variable, regardless of whether that 

variable has any correlation with the variable of interest (James et al., 2013). Adjusted R2 fixes 

this limitation by penalizing the R2 statistic for the number of variables included in the model. 

Therefore, adding a variable with little explanatory power can decrease a model’s adjusted R2, 

unlike R2 which increases monotonically. Nevertheless, we retained R2 because of its 

fundamental relationship with the statistical metric called “relative importance” which we 

introduce and discuss in the next section.  

 

The third statistic we used was root mean square error (RMSE), the square root of the mean of 

the squared differences between observed and predicted values. We conducted RMSE analysis 

using out-of-sample 10-fold cross-validation with random samples stratified over years, a 

technique commonly used in model comparison and selection studies (Ortiz-Bobea et al., 2019). 

Out-of-sample predictions prevent overfitting by keeping the model’s training and testing 

datasets separate. 

 

2.2.3.3 Relative importance of variables 

To estimate the individual contribution of different variables in explaining the observed yield 

variance, we used the concept of “relative importance” (Grömping, 2006). This metric refers to 

the contribution of individual IVs to a multivariable linear regression model. Specifically, 
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relative importance denotes the portion of total variance explained (or R2) by a model that can be 

attributed to a particular variable in the model. For linear regression with uncorrelated data, each 

IV’s contribution is simply the increase in R2 observed with the addition of that IV to a model 

with the remaining variables. This, however, is not true in most observational studies like ours 

where the various IVs are not necessarily independent and usually have some spatial and/or 

serial correlation. 

 

The various climate variables described earlier are not only correlated with each other, but also 

with geography and time. Consequently, the increase in R2 with the addition of a variable is 

dependent on the variables previously present in the model. To disaggregate total variance 

explained among the regressors, both climatic and non-climatic, we calculated the average 

increase in R2 with the addition of a variable to all possible models with distinct permutations of 

the remaining variables (Grömping, 2006). For example, for a model with independent variables 

IV1, IV2, and IV3, the relative importance of IV2 equaled the average of the increase in R2 when 

IV2 is added to every possible model without IV2. The resultant relative importances of all 

variables then add up to total R2 of the model. 

 

By adding the relative importances of geography and time, we quantified the proportion of 

variance explained attributable to non-climatic factors, and then added up the relative 

importances of all climate variables to compute the total variance explained by climate in each 

model formulation. The trends in non-climatic and climatic variables’ relative importance with 

increasing model complexity were then analyzed to ascertain the overlap, if any, between 

variance explained by these variables. 
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2.2.4 Evaluating yield predictions during extreme weather events 

In addition to comparing models based on their spatio-temporally averaged accuracy, we also 

wanted to analyze model performance in different parts of the country during anomalous periods 

of extreme weather events. For the time period of our study, 1966-2011, we calculated national 

mean annual temperature and total annual precipitation from area-weighted average of district-

level climate data. The years with least total precipitation and highest mean temperature were 

designated as “drought year” and “hot year”, respectively. Individual years with conditions 

closest to the median temperature and median total precipitation respectively were designated as 

“normal years” for benchmarking purposes. The performance of all models was then compared 

for the drought, hot and normal years, in terms of RMSE reduction for a particular year. This 

analysis was conducted for the whole country as an aggregate, as well as for each state 

separately. 

 

2.2.5 Simulations of climate change impact 

After comparing the models’ accuracy and their flexibility to account for anomalous weather 

patterns, we conducted scenario analysis (as is commonly done in other studies investigating the 

impact climate change on crop yields (Lobell, Schlenker, & Costa-Roberts, 2011)) to estimate 

the impact that long-term climate change over the historical period of 1966-2011 has already had 

on India’s crop yields. The daily minimum temperature, daily maximum temperature, and daily 

precipitation data was linearly detrended to remove time trend at district-scale. This detrended 

data was then assumed to denote the weather that would have occurred if climate change had not 

occurred. Using this detrended daily weather data, we used the exact same procedure as we did 
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with the actual weather data to construct all our climate variables of interest. To obtain district-

level estimates of climate change impact on crop yields, we conducted residual bootstrapping (Li 

& Maddala, 1996) with 500 repetitions to predict crop yields with and without climate change, 

and then computed the median value and 95 percent confidence intervals of the difference 

between predictions from the two scenarios. For each crop-district-model combination, the 

average of the ten yield loss values in the last decade in the dataset (2002-2011) was then 

presented as the expected impact of climate change that has occurred since 1966, the starting 

year of this study’s time period. While our calculation of the climate change impact on crop 

yields uses 1966 as the baseline year, anthropogenic climate change has been ongoing since long 

before that, and therefore our estimated impact of climate change with this simulation is 

conservative. 

 

2.3 Results 

2.3.1 Model performance evaluation using statistical metrics 

The performance of the models was first analyzed in terms of adjusted R2 and RMSE. Top row 

of Figure 2.1 shows adjusted R2 (red), and increase in adjusted R2 (blue) compared to the null 

model (with only geography and time, no climate variables). Bottom row depicts RMSE (red), 

and percent decrease in RMSE (blue) compared to the null model. Each of the six panels is 

divided into four sub-panels using dotted lines, depending on the number of temperature 

variables in the model. Each sub-panel depicts models that contain the same temperature 

variables, but three different levels of precipitation variables (simple to complex from left to 

right). 
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Figure 2.1 Model performance measured in terms of adjusted R2 (top row; absolute values in red, increase 

compared to null model in blue) and RMSE (bottom row; absolute values in red, percent increase compared 

to null model in blue). The three crops are rice (left), wheat (center), and pearl millet (right). Within each 

panel, models include varying levels of climate data, with three levels each of temperature and precipitation 

(see Table 2.2 for description of levels). The models are divided into sub-panels with dotted lines and 

arranged in the following order: null model; temperature level 1 and precipitation levels 1, 2, 3; temperature 

level 2 and precipitation levels 1, 2, 3; and temperature level 3 and precipitation levels 1, 2, 3.  

 

Adjusted R2 depicts similar trends for all three crops: while it increases as more climate variables 

are added to a model, the increase is only marginal. For rice, the advantage of choosing the best 

performing model with the most climate variables, compared to the null model without any 

climate variables, is an increase in adjusted R2 from 0.780 to 0.794. For wheat, the increase is 
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from 0.784 to 0.797, while pearl millet models outperform the null model by 0.022 units at the 

most (0.620 to 0.642). This apparently limited utility of climate in our crop models is re-affirmed 

in the RMSE plots which show that adding more climate variables may even decrease model 

accuracy, as is visible for both rice and wheat going from level 2 to 3 of precipitation in each 

sub-panel. In fact, selecting T_avg_Psumday_subseasonal model for wheat (bar 4 in bottom-

centre panel in Figure 2.1) provides no benefit over the null model when compared on the basis 

of RMSE reduction. Pearl millet exhibits a more consistent pattern of improvement in RMSE 

reduction with more climate variables, even though that trend is broken between levels 2 and 3 

of the temperature variables. To summarize Figure 2.1, adjusted R2 and RMSE show that the 

accuracy and fit of all models for all three crops are not very different from the null model 

containing only geography and time as the variables of interest, and that a model’s performance 

does not depend much on what climate variables are included in that model. 

 

2.3.2 Relative importance of variables 

We used the previously discussed metric of relative importance to apportion variance explained 

by a crop model to different explanatory variables included in the model. Unlike with the 

standard metrics, for all three crops analyzed, the relative importance of geography, and time to a 

smaller extent, reduces as more climatic variables are added to the models to account for 

subseasonal climate variability (Figure 2.2). Hence, even though the total variance explained, or 

R2, may not increase by the same amount, the portion of the variance explained that can be 

attributed to climate is increasing disproportionately more compared to the change in model R2. 

For all crops, and for all model progressions within each sub-panel, as more climate variables are 

added to account for precipitation availability (going from total seasonal precipitation to 
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subseasonal precipitation and precipitation days), the relative importance of climate goes up, 

while that of time and geography goes down. From a low value of 0.004, 0.078, and 0.005 in the 

simplest models (seasonal temperature and precipitation) for rice, wheat, and pearl millet, the 

relative importance of climate goes up to 0.184, 0.162, and 0.142 in the most complex models on 

the right. While the maximum increase in adjusted R2 or RMSE over the null model is less than 

0.02 units and 3 percent respectively (Figure 2.1), relative importance analysis shows that the 

contribution of climate can be more than 20 percent of the total variance explained by a model. 

 

 

Figure 2.2 Relative importance of time (blue), geography (green), and climate (red) variables across the ten 

models analyzed for rice (left), wheat (center), and pearl millet (right). The plots follow the same arrangement 

as Figure 2.1 for direct comparison. Note that the sum of the relative importances of time, geography, and 
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climate variables equals R2, which shows minimal improvement in overall model fit from the simplest null 

model on the left to the most complex model on the right, for each crop. Similar scheme of arranging models 

by temperature and precipitation variables’ complexity is followed as Figure 2.1. 

 

2.3.3 Model sensitivity to extreme weather events 

In the timeframe of our study, the least amount of rainfall fell during 2002, which we designated 

as a “drought year”; 2009 because of its highest mean annual temperature was designated as a 

“hot year”. Our method matches the results of Aadhar & Mishra (2021) who analyzed South 

Asian climate data from 1951-2016 and found that the worst drought during this period occurred 

in 2002, affecting more than 65 percent of the region. The years with median precipitation 

(1993) and median temperature (1996) constituted “normal years”. Models’ performance in these 

years was compared by calculating national RMSE of model predictions for each of these years 

from the 10-fold out-of-sample cross-validation results described previously (Figure 2.3). We 

also conducted this analysis at a more local-scale by calculating state-level RMSE for each 

model in a similar manner. Nationally aggregated RMSE reduction for all models and crops 

(compared to respective null models) is shown in Figure 2.3. Similar plots, but with RMSE 

aggregated at state-level, are available in Appendix A section A.3. 
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Figure 2.3 Improvement in model performance (in terms of RMSE reduction compared to the null model 

with no climate variables) for median precipitation (1993), median temperature (1996), drought (2002), and 

hot (2009) years. 

 

Compared to the null model with only geography and time, the improvement in performance 

from the simplest model to the most complex models depends a lot on the year in question. In the 

drought year of 2002, all models exhibit an enhanced performance compared to the other years. 

There is a general trend of all models performing better in 2002 than the other years, irrespective 

of the levels of climate variables included in them. While the overall improvement in model 

performance when measured for the full time period hovers around 2-3 percent reduction in 
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RMSE compared to null model (Figure 2.1), Figure 2.3 shows that the more complex models 

exhibit performance improvement in excess of 10 percent during the drought year of 2002. 

 

For rice, the more complex models have a markedly better performance than the simpler models 

for both the anomalous years (2002 and 2009), in contrast to the normal years where additional 

climate variables have little impact on model performance. This trend is also exhibited by wheat 

but only for 2002. Pearl millet shows a more subdued difference between simple and complex 

models in 2002. In contrast, the performance of the simpler and complex models is similar in 

1993 and 1996, leading us to infer that the complex models are often better suited than the 

simpler models at accounting for anomalous weather patterns.  

 

The difference in the performance of the models in anomalous years is more pronounced when 

model predictions are analyzed at state-level (Appendix A section A.3). There are some 

important crop-state combinations, like rice in Madhya Pradesh and Punjab, wheat in Gujarat, 

Haryana, Maharashtra and Punjab, and pearl millet in Karnataka and Rajasthan, where the 

RMSE reduction is highest for the more complex models (over 25 percent in some cases) during 

the drought year of 2002; simpler models are unable to match this accuracy. Figure 2.4 shows the 

difference between predicted and observed pearl millet yield in the state of Rajasthan, the biggest 

producer of this crop in India. The results from the simplest (with seasonal temperature and 

precipitation) and the best performing model are shown in red and blue, respectively. In the 

anomalous years of 2002 and 2009, the complex model performs better than the simple model 

(difference between predicted and observed is closer to zero), while there is no discernable 

difference in models’ performance in 1993 and 1996. 
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Figure 2.4 Difference between predicted and observed pearl millet yield for all districts of the state of 

Rajasthan for 1993, 1996, 2002, and 2009. The advantage of the most complex model (blue) over the simplest 

model (red) is most pronounced in 2002 and to a lesser extent in 2009. Plot shows district-level (round) and 

average state-level values (district values weighted by crop harvested area; diamond). 

 

While there are instances where the simpler models outperform the complex models in the 

drought or hot years, or when the complex models outperform the simpler models during normal 

years too, the trend is biased towards complex models having higher utility than simpler models 

in 2002 and 2009. For quantitative evidence of this trend, we scored and ranked our models 

according to the level of climate complexity (Table 2.2), with scores of 1, 2, and 3 for each level 
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of complexity of temperature and precipitation variables. So, the simplest model (with only mean 

seasonal temperature and total seasonal precipitation) has a complexity score of 2, and the most 

complex model has a complexity score of 6. The scores for the best performing model for each 

crop, year, and state were averaged to get a national score for each crop-year combination. For 

rice, the average scores of both the normal years are 2.9, while the drought and hot years’ scores 

average 4.2 and 3.2. In other words, more complex models performed better than the simpler 

models in years when the climate deviated from the normal, especially the drought year of 2002. 

The trend was visible across the other two crops too, and these scores for wheat and pearl millet 

were 2.3, 3.1, 4.0, 2.4 and 3.2, 2.6, 4.1, 3.2 respectively (Figure 2.5).  

 

 
Figure 2.5 Nationally averaged score of the best performing model for each crop-state combination for 1993, 

1996, 2002, and 2009. The score (metric of complexity level of climate variables) is markedly higher in the 

drought year of 2002. 
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2.3.4 Simulations of climate change impact 

In terms of our simulated impact of climate change, nationally averaged yield change results 

estimate yield losses from all nine models (Figure 2.6). In contrast, more variation is observed 

for wheat, where the most complex models predict a net gain in nationally averaged yield for the 

crop. Our estimates with mean seasonal temperatures show that national pearl millet yield has 

witnessed a reduction due to climate change, although there is no significant change observed 

from the predictions of models with more granular temperature variables. One common pattern 

among all three crops, especially rice and pearl millet, is that the estimated impact of mean 

climate change on crop yields is more dependent on the complexity of temperature variables 

included as opposed to the level of precipitation variables added. 

 

 

Figure 2.6 Nationally averaged yield change due to historical climate change. 
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Figure 2.7 shows the simulated impact of climate change on rice yield during the last decade of 

this study’s time period (2002-2011); similar plots for wheat and pearl millet are available in 

Appendix A section A.4. The null model is not shown because it is climate invariant and predicts 

zero impact of climate change. The panels from top to bottom depict an increasing number of 

variables to account for temperature variability, and panels from left to right denote models with 

increasing levels of precipitation variables. For all three crops, there are significant differences 

between the predictions by the nine different models we analyzed. 
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Figure 2.7 Simulated impact of long-term climate change (since 1966) on rice yield (percent change) in the 

last decade (2002-2011) of the study time period. The climate data was linearly detrended to remove time 

trend at district-scale. District-level estimates of median value and 95 percent confidence intervals of climate 

change impact on yield were obtained through residual bootstrapping (n = 500). The average district-level 

yield loss during the last decade in the dataset (2002-2011) is presented here as the expected impact of climate 
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change that has occurred since 1966. Only results with 95 percent significance of the confidence intervals are 

shown; insignificant results are shown in gray. 

 

Rice plots show a negative impact for most of the country for the simpler models containing only 

mean seasonal temperature (top row), except a small patch in eastern India (region A) where rice 

yields are predicted to have benefited from climate change. As more precipitation variables are 

added, there is a region in south India covering the states of Kerala and Tamil Nadu (region B) 

where the predicted impacts of climate change become more drastic. From top to bottom, as 

more temperature variables are added to the models in the middle and bottom rows, a bigger 

range of predicted impacts is visible: compared to the first row, there are larger regions where 

climate change is predicted to have benefited rice yields. These include the highly mechanized 

Indo-Gangetic belt comprising the states of Punjab, Haryana, and Uttar Pradesh (region C). In 

the third row with the most complex models, even the state of Andhra Pradesh (region D), a big 

rice producer, turns blue from red in the previous panels. Most parts of the country seem to show 

more drastic impacts of climate change with the simpler models, with the exception of some 

districts in south-western India (region E) where the more complex models predict a more drastic 

impact of climate change on rice yields, compared to simpler models in the top row. 

 

For wheat (Figure A.6), while simpler models predict a more consistent impact throughout the 

country, the more complex models in the middle and bottom rows show more variation; there are 

regions where climate change has positively impacted wheat yields, and these include major 

wheat producing states of Punjab, Haryana, Uttar Pradesh (region A). However, there are also 

districts in eastern and southern India where climate change seems to have had a more 
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detrimental impact than that predicted by the simpler models in the top row. In fact, certain 

districts in southern India show a reduction of up to 14 percent in wheat yields because of 

climate change. The patterns observed in pearl millet panels (Figure A.7) are similar to wheat. 

The simpler models in the top row predict a more consistent negative impact throughout the 

country with some blue patches in eastern parts of India (region A), the middle and bottom rows 

depict a higher contrast in the expected impacts of climate change on pearl millet yields. Huge 

parts in north and central India that were depicted in red in the top row now seem to show a net 

positive impact of climate change, while southern India has turned an even darker shade of red, 

denoting a more serious negative impact of climate change than one would observe if the 

analysis is limited to simpler models with only mean seasonal temperature. 

 

2.4 Discussion 

2.4.1 Role of a priori climate-crop relationship knowledge 

Using statistical metrics of adjusted R2 and RMSE, we observed that the model performance 

does not vary noticeably between models with various levels of climate variables. This marginal 

role of climate in improving model performance is consistent with the results of previous studies 

conducted on Indian agriculture. Fishman (2016) analyzed rice yields and reported an increase in 

adjusted R2 from 0.735 for a null model (with no climate data) to 0.758-0.772 with different 

combinations of climate variables including precipitation, degree days, and rainy days as 

measures of climate variability. Davis, Chhatre, Rao, Singh, & Defries (2019) similarly reported 

a decline in their crop model explanatory power (measured using Akaike Information Criteria) 

with the addition of potential climate variables (number of monsoon dry days, ratio of 
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precipitation to number of monsoon rain days, and squared terms of temperature and 

precipitation), and did not include those variables in their final model. 

 

A parsimonious model selection process based purely on examining R2, RMSE or related 

measures as above would advocate for the simplest models as being most appropriate. However, 

relative importance analysis showed that as more climate variables were added, climate started 

occupying an increasingly important role in predicting crop yields, even if that was not reflected 

fully in the increase in total variance explained by a model. Crop yield signal that would 

otherwise be explained by subseasonal climate is subsumed by geography and time in the 

absence of those climate variables, a trend that gets amplified in periods of anomalous weather. 

 

This result has important implications for the study of climate-crop relationships using statistical 

models. There are usually multiple climate variables that can be included in a model, and 

choosing the best model based on generic model performance metrics like R2 or RMSE may lead 

to selection of models which downplay the role of climate. This is especially true if model 

selection were to happen without adequate domain knowledge about important variables that 

need to be included in a model irrespective of their role in increasing overall model performance. 

While our analysis was limited to OLS linear regression, this error of omission could easily 

occur in advanced machine learning based methods as well, where the variables are 

automatically selected by the algorithm.  

 

Adequate importance needs to be given to fundamental plant physiological understanding of how 

weather and climate affect crop yields while building crop models even if those climate variables 
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may initially seem insignificant during model selection. For example, in our study, if models are 

selected based on statistical metrics like R2, adjusted R2, or RMSE, Occam’s razor or the 

principle of parsimonious model selection would dictate that we choose the simplest model with 

only seasonal average temperature and total precipitation. However, this would ignore the 

increasingly significant role climate plays in the more complex models. An argument can thus be 

made for including key a priori variables which are theoretically expected to impact crop yields. 

For example, field experiments have shown that rice yield can decline by up to 10 percent for 

every degree Celsius rise in night temperature, but no significant impacts were observed for 

rising day temperatures (Peng et al., 2004). This is backed up physiologically by evidence of 

high night temperature adversely impacting movement of carbohydrates and nitrogen within the 

rice plant (A. Singh, Chaudhuri, & Roychoudhury, 2020). In this case, separately including mean 

daily minimum temperature and mean daily maximum temperature in statistical crop models 

makes more sense physiologically, than including just mean daily average temperature. In our 

study too, while the models accounting for both mean daily minimum and mean daily maximum 

did not have drastically different adjusted R2 or RMSE compared to the model containing only 

mean daily average temperature, climate change simulations showed opposite results for some 

regions as discussed earlier. 

 

2.4.2 Model performance for extreme weather events and long-term climate change 

Even when extra climate variables may not noticeably improve the model performance measured 

in terms of R2, adjusted R2, or RMSE, we showed that in more complex models, climate plays an 

increasingly crucial role in explaining crop yield variance. Hence, while model performance 

averaged over time was not significantly impacted by the levels of climate variables included, 
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more complex models were better able to account for anomalous weather patterns. As discussed 

earlier, the complex models performed particularly well (in terms of RMSE reduction) for some 

important crop-state combinations like rice in Punjab, wheat in Haryana and Punjab, and pearl 

millet in Rajasthan. The importance of this improved performance is underscored by the fact that 

Punjab and Haryana are among the biggest producers of wheat and rice in India. In 2019-20, they 

together accounted for 50 percent wheat and 30 percent rice to the central food reserves, a crucial 

source of subsidized food for the economically weaker sections of society. Meanwhile Rajasthan 

is the largest pearl millet producer in India. 

 

The accuracy of model predictions is especially critical when the inaccurate predictions are 

biased towards the positive side of observed yields (predictions are higher than observed values), 

something RMSE does not factor in since it is insensitive to the direction of change. Models 

prone to over-predicting crop yields may provide a false sense of security to policymakers when 

they use these models to predict season-end yields and formulate food policies during extreme 

weather events. For example, in 2002 in the state of Madhya Pradesh, the simplest model (levels 

1 of both temperature and precipitation) over-predicted wheat yields by 15.5 percent, while the 

model with levels 3 and 2 of temperature and precipitation variables over-predicted by 11.9 

percent. Similarly, for national pearl millet production, the difference between predictions from 

the simplest model and a 3/2 level model was 769 thousand tonnes, or 15.5 percent of the 

national production in 2002. This susceptibility to over-predict production during anomalous 

weather events strengthens the case for examining model performance more closely under 

different conditions instead of making a selection based on standard statistical criteria. 
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A theoretically grounded (rather than statistically selected) model can also allow researchers to 

detect patterns of long-term climate change impacts on crop yields that may otherwise not be 

visible in simpler models. In our study, for all three crops, the simulated impact of climate 

change on crop yields in the last decade of our dataset’s timeline, from 2002-2011, depicts stark 

differences in the predictions of various models. Simpler models predict more uniform yield 

losses across the country from climate change, whereas the complex models predict more 

variegated patterns of both losses and gains depending on the geographic region being analyzed. 

In addition to these distinct patterns, the more complex wheat models predict yield losses of up 

to 14 percent in some parts of the country, as opposed to the simpler models in the top row of 

Figure A.6 where the predicted losses peak at 5 percent. This observation further underscores the 

importance of considering an ensemble of models for making future yield predictions instead of 

selecting one solely on the basis of statistical parameters. For example, when a certain 

constituent of a group of models predicts negative impacts of climate change but is not the most 

accurate based on standard statistical metrics, the predictions from that model should not be 

dismissed without adequate examination. 

 

2.4.3 Implications 

By breaking up yield variance explained by crop models into climatic and non-climatic 

components, our study shows the potential pitfalls of building and selecting crop models based 

only on generic statistical tests without paying adequate attention to physiological processes that 

may mandate the inclusion or exclusion of specific climate variables. Poor characterization of 

climate impacts may have negative consequences, which can be amplified during periods of 

anomalous weather patterns. This is especially significant given the sufficient evidence of 
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anthropogenic climate change making weather more unpredictable and increasing the frequency 

and intensity of extreme events in this region. Murari, Ghosh, Patwardhan, Daly, & Salvi (2015) 

and Rohini, Rajeevan, & Mukhopadhay (2019) independently analyzed Coupled Model 

Intercomparison Project Phase 5 (CMIP5) future climate projections and report an increase in 

intensity, duration, and frequency of heat waves across India in the near future; Das & 

Umamahesh (2021) found similar results using CMIP6 data. Simultaneously, there has already 

been a significant increase in frequency of dry spells and intensity of wet spells during the 

monsoon season (D. Singh, Tsiang, Rajaratnam, & Diffenbaugh, 2014), and future predictions 

estimate a further increase in the frequency and magnitude of hot and dry extreme events 

(Mishra, Thirumalai, Singh, & Aadhar, 2020). 

 

This study is also important because geography and time are not the only variables that can 

subsume climate signal; it is possible that some other non-climatic variables which vary across 

time or space, for example chemical inputs, mechanization, development of roads, atmospheric 

carbon dioxide concentration and so on, may have correlation with climate leading to subsequent 

conflation of the non-climatic and climatic signals. This nuance needs to be paid attention to 

when including such variables in crop models. Our study presents an analytical framework that 

can be used in such scenarios. 

 

2.4.4 Limitations and future work 

There are some caveats and limitations in our study that warrant discussion. One, we only report 

results for three crops. We did this to focus the discussion on the mechanics of statistical models 

with three representative crops from the two major growing seasons. With their contrasting 
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results, these three crops serve as examples of different crop-dependent outcomes of our 

analysis. Nonetheless, the analysis can be easily extended to other crops. Two, as discussed and 

rationalized earlier, we excluded irrigation in our analysis, even though it is a big determinant of 

crop yields. So, the absolute values of R2 and RMSE results have to be interpreted within the 

context of this limitation. Three, India is a large country, and national level studies like ours may 

ignore important trends and patterns that have been reported in more granular studies (Zachariah 

et al., 2020). This limitation applies to all studies conducted over a large but heterogeneous 

nation state. A case can therefore be made for building more local models, and assessing variable 

relative importances in those models. 

 

Some salient questions arose from our study that warrant further research. We observed that in 

anomalous weather years, our complex models (with most climate variables) had significantly 

lower RMSE than the simpler models (Figure 2.3). Simultaneously, the overall RMSE analysis 

shows little difference in model performance over the full time period (Figure 2.1). It is worth 

investigating if the improvement in model performance is minimal (or zero) in normal years and 

just amplified during periods of anomalous weather, or if the simple model performs better than 

the more complex models in normal years and this trend flips in anomalous years. We saw 

evidence supporting both these possibilities: in 1996, simple rice models outperformed complex 

ones but all wheat models exhibited similar performance (Figure 2.3), while 2002 saw the 

complex models perform better than simple ones for both these crops. It may be worthwhile to 

look into hybrid models that are trained on two distinct datasets: the normal weather years, and 

anomalous weather years. The predictions from both these models may then be combined with 

pre-determined probabilities to arrive at more accurate predictions. 
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2.5 Conclusion 

Researchers using crop yield models have a vast array of climate variables to choose from for 

inclusion in their models. Without adequate domain knowledge about plant physiology or critical 

climate factors, climate variables are sometimes chosen based solely on overall model 

performance using common statistical techniques like R2, adjusted R2, or RMSE. However, this 

study demonstrates that obfuscation of the signal between non-climatic and climatic variables 

may cause the performance thus measured to improve only marginally with the inclusion of new 

climate variables, even though those omitted climate variables may be explaining important 

climate-yield relationships. This was seen for the state of Rajasthan in our study, where the 

seasonal model failed to capture the impact of exceptionally dry or hot weather on pearl millet 

yield. In contrast the subseasonal model, even though its overall accuracy was similar to the 

subseasonal model, performed significantly better at capturing yield losses in those anomalous 

years. 

 

Automatic model selection based on parsimony criteria can seriously fail to parametrize 

important climate effects and lead to poor predictions of the impact of extreme weather events 

and long-term climate change. For example, our results showed that the assessment of historical 

impact of climate change, as measured by the model containing only seasonal variables, may not 

capture the more drastic impacts predicted at a subnational level by the more complex 

subseasonal models, as was seen in the case of wheat or pearl millet. Researchers are advised to 

use statistical metrics in combination with theoretical or process-based knowledge for choosing 

variables to include in their crop models. 
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Chapter 3: Statistical versus machine learning methods for estimating the 

impact of climate variability on Indian crop yields 

 

3.1 Introduction 

Statistical models are a popular method for studying the influence of climate variability and 

climate change on crop yields. These models establish relationships between observed historical 

weather and crop yield data, and can be used for impact assessment of short-term and long-term 

climate variability on crop yields. The data used in these models often varies across both time 

and space, although time series analysis of a single geographical unit and longitudinal analysis of 

a single time frame over a wider region are also common. The choice of statistical technique(s) is 

primarily dictated by factors including but not limited to research questions, data and 

computational resources availability, or statistical expertise. Given the increasing availability of 

high-quality data and advanced computational facilities, this choice continues to expand, and 

researchers now have a whole arsenal of techniques and tools to choose from. Consequently, 

understanding the advantages and disadvantages of these statistical tools, and factors that can 

assist in identifying the most appropriate technique, is of utmost importance. Our study adds to 

this field of research by assessing and contrasting two popular statistical techniques for crop 

yield analysis. 

 

Among the most common techniques in the field of statistical crop yield modeling is ordinary 

least squares linear regression (LR hereafter) which minimizes the sum of squares in the 

differences between observed and predicted values. It models the dependent variable (DV) using 
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linear predictor functions for various terms comprised of relevant independent variables(s) (IV). 

This popular method has been used by numerous studies modeling crop yields as a function of 

climate variability (Butler & Huybers, 2013; Davis, Chhatre, Rao, Singh, & Defries, 2019; 

Lobell & Field, 2007). LR models, due to their relative simplicity and explicitly-specified 

relationships between variables, are easy to interpret for understanding the role of each IV in 

explaining the DV3. The mathematical equations are easily understood, and the model fitting 

process is faster and often less computationally-intensive compared to more advanced algorithms 

(James, Witten, Hastie, & Tibshirani, 2013). Because they have been used so extensively, 

conditions which influence their performance are also well understood by the greater scientific 

community. All these reasons place LR among the oldest and most popular algorithms for crop 

yield analysis. 

 

Conversely, LR has certain shortcomings which require appropriate consideration. One, LR 

models are prone to oversimplifying relationships that may not always be linear, which penalizes 

model accuracy and can result in erroneous predictions. This drawback can be especially 

problematic in crop yield models, where climate and crop yield may not always have a linear 

relationship. For instance, past research has shown non-linear influences on crop yields of rising 

seasonal temperature through a disproportionate increase in excess heat days (Schlenker & 

Roberts, 2009). To account for potential non-linear relationships between crop yield and various 

climate variables, researchers include polynomial forms of said climate variables, which can 

 

3 There are certain conditions that need to be met for this to be valid, the most important being that the IVs should 

not have a strong correlation, because interpretation of a specific IV’s regression coefficient assumes all other IVs 

are held constant. This assumption may be invalid if two or more correlated IVs vary together. 
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improve model performance compared to a model with only monomials of the climate variables 

(Fishman, 2016). This technique, however, still relies on the modeler making a priori 

assumptions about the functional form of each climate variable: while some variables like 

temperature or rainfall may have physiological justification for including polynomials of higher 

order, it may be hard to find empirical evidence for all climate variables. Some studies resolve 

potential non-linearity in crop response to climate by including variables such as growing degree 

days or moisture stress defined specifically to account for such phenomena (Butler & Huybers, 

2013). This approach does require continuous, daily or at least some level of subseasonal 

weather data, which may not always be available. 

 

A second shortcoming is that LR in its most basic form assumes the same relationship between 

an IV and DV throughout the data range, which may not always hold true. Segmented LR, which 

allows independent and piecewise linear relationships between the DV and IV across the data 

range, is more suitable in such cases. Schlenker & Roberts (2009) used a modified version of this 

segmented (or piecewise linear) model and reported critical temperature thresholds where the 

impact of temperature increase on crop yields switched from positive to negative. Segmented LR 

may, however, need manual specification of the expected number and/or locations of the 

breakpoint(s) when automatic breakpoint selection fails; this again relies on the modeler making 

a priori assumptions about the true functional form. Three, LR can be highly sensitive to outliers 

in data. With crop models built on observational data, this can be a cause of concern because of 

errors during data collection and reporting. Modified forms of LR such as robust regression is 

advisable in such cases, although they do have higher computational requirements (Faraway, 

2015). Four, climate variables seldom affect crop yield in isolation of each other. LR allows the 
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specification of interaction between variables of interest, but it has to be specified individually, 

which leaves room for missing important interactions. 

 

Many of the above-discussed limitations of LR can potentially be addressed using more flexible 

algorithms that do not need a priori specification of the functional forms and start with fewer 

assumptions about the relationship between DV and IVs. Machine learning (ML) offers many 

options to accomplish this, and it is a topic of immediate interest in this field. For instance, Vogel 

et al. (2019) used “random forests”, a popular ML technique, for analyzing the impact of extreme 

climate on crop yields at a global scale. They found that temperature-related extremes were the 

biggest determinant of crop yield anomalies. 

 

Here we would like to clarify some terminology used in our study. There is an active debate on 

the distinction between traditional statistical methods and ML, which has spawned peer-reviewed 

literature (Breiman, 2001; Bzdok, Altman, & Krzywinski, 2018), blogs, jokes by prominent 

statisticians, lengthy discussions on popular question and answer websites like 

stackexchange.com, and even an xkcd comic. The separation between so-called traditional 

statistical methods and ML is blurry and subjective. Purely for clarity in discussion, this study 

classifies LR as a standard statistical method, and uses boosted regression trees (BRTs) as an 

illustration of advanced ML techniques.  

 

BRTs are a form of tree-based regression procedure that create partitions in the predictor space 

using nested if-else conditions, with the ultimate goal of attaining highest possible prediction 

accuracy. Tree-based methods are a popular constituent of the ML toolbox and have multiple 

http://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
http://statweb.stanford.edu/~tibs/stat315a/glossary.pdf
https://stats.stackexchange.com/questions/268755/when-should-linear-regression-be-called-machine-learning
https://xkcd.com/1838/
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advantages: they can handle complex non-linear relationships, require no user input about 

expected DV-IV relationships, and easily accommodate missing data. Because single-tree 

models are prone to overfitting and exhibit poor predictive performance (Elith, Leathwick, & 

Hastie, 2008), BRTs combine multiple regression trees using a popular ensemble method called 

boosting, wherein a number of weak trees are sequentially trained to improve the performance of 

the full model with the goal of improving predictive power without overfitting. Compared to LR, 

the BRT algorithm makes no prior assumptions about the model’s functional form, and 

predictions from tree-based models are comparatively immune to outliers and correlated IVs 

(James, Witten, Hastie, & Tibshirani, 2013). It can also detect non-linearity and important 

interactions between IVs without them being explicitly specified by the user, and can handle 

sharp discontinuities in DV-IV relationships.  

 

On the flipside, like most ML techniques, BRTs are less interpretable, since the output contains 

no explicit coefficients for each IV that LR models provide. Nonetheless, BRTs can be used to 

rank IVs in order of their relative contribution to predicting the DV (Elith et al., 2008), making 

them somewhat interpretable. It would not be wrong to say that many researchers have used LR 

for years, and are more comfortable interpreting their results; ML methods like BRTs are 

comparatively novel and therefore not widely understood or used. As with all statistical methods, 

BRTs can be used for predictions and conditional inference from partial dependence plots 

(discussed in the next section). BRTs are computationally expensive and working with even 

medium-sized datasets as ours may need access to high performance computing facilities for 

tasks like fitting and comparing multiple BRTs, and bootstrapping these models. Nonetheless, 
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this has become less of an issue in recent years with research institutes and public agencies 

setting up dedicated high performance computing (HPC) facilities for advanced research. 

 

The primary objective of this study is to compare these two popular techniques, LR and BRT, in 

terms of their advantages and disadvantages for eliciting the relationship between climate 

variability and crop yields. To our knowledge, this is among the first studies to explicitly conduct 

this analysis using identical crop yield and climate data to facilitate a valid comparison. We use 

India as a case study, and focus on three major crops (rice, wheat, and pearl millet). The article is 

divided into three major sections. We first analyze model performance in terms of out-of-sample 

prediction accuracy, interpret the models with reference to various climate variables using partial 

dependence analysis, and then conduct some historical climate change simulations using both LR 

and ML models. We conclude by summarizing the pros and cons of both from a crop yield 

analysis perspective. 

 

3.2 Data and methods 

3.2.1 Climate and crop production data 

We used the same data as chapter 2, a detailed description of which has already been provided in 

that chapter. 

 

3.2.2 Statistical software and methods 

We conducted our analysis in R (R core team, 2020); R packages used include tidymodels 

(Wickham et al., 2019), data.table (Dowle & Srinivasan, 2021), ggthemes (Arnold, 2021), 

RColorBrewer (Neuwirth, 2014), wesanderson (Ram & Wickham, 2018), gridExtra (Auguie, 
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2017), doParallel (Microsoft & Weston, 2020a), foreach (Microsoft & Weston, 2020b), dismo 

(Hijmans, Phillips, Leathwick, & Elith, 2020), gbm (B. Greenwell, Boehmke, & Cunningham, 

2020), segmented (Muggeo, 2008), and pdp (B. M. Greenwell, 2017).  

 

BRTs were constructed with the gbm.step function in the gbm R package. It allows automated 

detection of optimum number of trees using k-fold cross-validation. The function needs two 

user-defined parameters: (i) the learning rate or shrinkage, which determines the contribution of 

each tree as the model grows, and (ii) the tree complexity, which controls the number of 

interactions between IVs. Following the recommendations of Elith, Leathwick, & Hastie (2008), 

we selected five learning rates (0.1, 0.03, 0.01, 0.003, 0.001) and five tree complexity values (2, 

4, 6, 8, 10) as possible candidates for our BRT models. We randomly sampled 80 percent of our 

data (stratified over years), used that to construct a BRT model for each shrinkage/tree 

complexity/crop/model permutation, and tested on the 20 percent data held out earlier. The 

shrinkage and tree complexity pair that gave the most accurate results in terms of root mean 

squared error (RMSE) for the highest number of crop/model combinations was then chosen for 

all further analysis. In our case, this turned out to be a learning rate of 0.01 and a tree complexity 

of 6. 

 

3.2.3 Models and climate variables 

This study examined three different sets of climate variables as input to the models: 

1. noclim: no climate variables, 
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2. Tavg_Psum: average seasonal temperature and total seasonal precipitation4, and 

3. Tavg_Psumday: average seasonal temperature, total seasonal precipitation and total 

precipitation days over the growing season. 

 

All three variable sets contained identical geography and time variables to account for non-

climatic determinants of crop yield. Detailed description of the process is provided in chapter 2. 

 

Each of the three variable sets were then paired with four different modeling algorithms: 

1. lr_mono: LR with only monomial terms of time and climate, 

2. lr_quad: LR containing quadratic forms of time and climate, 

3. lr_sgm: segmented LR with one knot5 for year and each climate term, and 

4. brt: BRT with the same variables used in the LR models6. 

 

All combinations of the three variable sets and four models were executed for three crops (rice, 

wheat, and pearl millet). To summarize, we analyzed three climate variable sets, using four 

different modeling techniques each, for three separate crops, making a total of 36 models. The 

variable set names, model names, and climate variables included in each run are presented in 

Table 3.1. Henceforth, for clarity and conciseness, we italicize variable set and model names and 

use the naming convention of model:variable set (e.g., lr_sgm:Tavg_Psum) when referring to a 

 

4 Precipitation as a variable ignores the initial conditions. For example, soil moisture could be low, medium, or high 

at the start of the season, which is not captured by seasonal precipitation. We address this limitation using a soil 

moisture model in chapter 4. 
5 The knot determination process is explained in greater detail in a later section. 
6 Note that the brt model does not need any functional form as input. Only names of relevant IVs and DV are input 

into the algorithm. 
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particular instance of our 36 models. We use the non-italicized capitalized format when referring 

to LR and BRT in general. 

 

The lr_mono model used the following equation: 

𝑦𝑖𝑡  =  𝛼𝑖  +  𝛽(𝑡)  + 𝛾1(𝑐𝑙𝑖𝑚_𝑣𝑎𝑟1)  + … +  𝛾𝑛(𝑐𝑙𝑖𝑚_𝑣𝑎𝑟𝑛)  + 휀𝑖𝑡  , (3.1) 

 

where yit is crop yield in district i and year t; αi is district specific intercept; β is parameter for 

time (harvest year) trend; γn is parameter for the nth climate variable (clim_var) included in the 

model; εit is the standard error. For lr_quad, equation (3.1) was modified to include quadratic 

terms for time and all climate terms. lr_sgm again used equation (3.1) as functional form, but 

with a single knot for each variable (including time), allowing for a more flexible fit. brt does not 

need any formula as input. 

 

Table 3.1 Model specifications. This analysis was conducted separately for three crops (rice, wheat, and pearl 

millet). 

Model 

type 

Climate 

variable type 

Non-climatic 

variables 

Climatic variables 

lr_mono noclim district 

dummy, 

year 

-- 

lr_mono Tavg_Psum district 

dummy, 

year 

Mean daily temperature during the growing season, 

Total seasonal precipitation 

lr_mono Tavg_ 

Psumday 

district 

dummy, 

year 

Mean daily temperature during the growing season, 

Total seasonal precipitation, 
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Model 

type 

Climate 

variable type 

Non-climatic 

variables 

Climatic variables 

Total seasonal precipitation days (precipitation > 

0.1 mm) (May, 2004) 

lr_quad noclim district 

dummy, 

year, 

year2 

-- 

lr_quad Tavg_Psum district 

dummy, 

year, 

year2 

Mean daily temperature during the growing season, 

(Mean daily temperature during the growing 

season)2, 

Total seasonal precipitation, 

(Total seasonal precipitation)2 

lr_quad Tavg_ 

Psumday 

district 

dummy, 

year, 

year2 

Mean daily temperature during the growing season, 

(Mean daily temperature during the growing 

season)2, 

Total seasonal precipitation, 

(Total seasonal precipitation)2, 

Total seasonal precipitation days, 

(Total seasonal precipitation days)2 

lr_sgm noclim district 

dummy, 

year (1 knot) 

-- 

lr_sgm Tavg_Psum district 

dummy, 

year (1 knot) 

Mean daily temperature during the growing season 

(1 knot), 

Total seasonal precipitation (1 knot) 

lr_sgm Tavg_ 

Psumday 

district 

dummy, 

year (1 knot) 

Mean daily temperature during the growing season 

(1 knot), 

Total seasonal precipitation (1 knot), 

Total seasonal precipitation days (1 knot) 

brt noclim district 

dummy, 

year 

-- 
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Model 

type 

Climate 

variable type 

Non-climatic 

variables 

Climatic variables 

brt Tavg_Psum district 

dummy, 

year 

Mean daily temperature during the growing season, 

Total seasonal precipitation 

brt Tavg_ 

Psumday 

district 

dummy, 

year 

Mean daily temperature during the growing season, 

Total seasonal precipitation, 

Total seasonal precipitation days 

 

Similar to chapter 2, we measured model performance in terms of RMSE, the square root of the 

mean of the squared differences between observed and predicted values. We conducted RMSE 

analysis using out-of-sample 10-fold cross-validation with random samples stratified over years, 

a technique commonly used in model comparison and selection studies (Ortiz-Bobea et al., 

2019). The exact same procedure was followed for all models. Out-of-sample predictions prevent 

overfitting by keeping the model’s training and testing datasets separate. 

 

3.2.4 Model inference 

3.2.4.1 Partial dependence plot 

lr_mono outputs regression coefficients for each IV, which can be interpreted as the marginal 

effect of each IV on the DV. This is true for lr_quad and lr_sgm as well, although the 

interpretation is not as straightforward as lr_mono because of multiple coefficients for each IV in 

model output. Meanwhile the brt does not fit any functional form to the data. To examine the 

marginal effect of changes in each IV on the DV for all four model types, we plotted partial 

dependence plots (PDPs) for each IV. PDPs depict the DV as a function of an IV, holding all 

other IVs constant at their mean values. Interpretation of partial dependence plots for a specific 
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IV assumes average value for all other IVs (Hastie, Tibshirani, & Friedman, 2017), so it is 

conditional on there being low correlation between IVs in the model. There is a high correlation 

between total seasonal precipitation and number of precipitation days in the season (R2 of 0.27, 

0.68, 0.24 for rice, wheat, pearl millet), compared to a lower correlation (0.07, 0.04, 0.11) 

between mean seasonal temperature and total seasonal precipitation. Hence, we present and 

discuss partial dependence plots from only the Tavg_Psum models for all three crops. 

 

A limitation of using observational data for model inference is that the true relationship is 

unknown. So, it is impossible to assess if a statistical model is able to fully unmask the true 

relationship (unless there is an accompanying controlled experiment for calibration). To extend 

the ideas from chapter 2 of possible conflation between climatic and non-climatic variables to 

current analysis, we created synthetic crop yield and climate data with manually specified DV-IV 

relationships. LR and BRT models were constructed using this data, and their PDPs were 

examined to assess the model’s accuracy with respect to the true relationship. More details about 

the synthetic data creation and model fitting process, along with the results, are provided in a 

later section. 

 

3.2.4.2 Specification of segmented LR using BRT partial dependence plots 

In addition to interpretation of DV-IV relationships, we also used partial dependence plots for 

fitting some segmented LR models. The “segmented” R function (Muggeo, 2008) that we used 

for our lr_sgm model, requires an input of either the number of knots for each IV, or the initial 

location of the knots from where the function can start estimating the breakpoint locations. We 

first ran the function in the automated knot search mode, and observed that the function failed to 
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find breakpoints for some crop-model combinations. For example, the lr_sgm:Tavg_Psum model 

for wheat failed for 38 percent of our repeated runs. In such cases, we needed to manually 

specify the location for the function to start knot search from, for which the partial dependence 

plots from brt were useful. The latter does not require any predetermined functional form 

specification, so it could identify knots automatically. We used the brt partial dependence plots 

as a diagnostic tool, identified the most probable location of breakpoints visually, and input those 

as starting location of knots for the “segmented” function. By entering knot locations manually, 

the proportion of failed runs dropped to 14 percent for lr_sgm:Tavg_Psum. 

 

3.2.5 Simulations of climate change impacts 

We used the same methodology as described in chapter 2 to estimate the historical impacts of 

climate change on rice, wheat, and pearl millet yield across India. Predictions from all four 

modeling procedures (lr_mono, lr_quad, lr_sgm, and brt) for the two non-null climate variable 

sets (Tavg_Psum, and Tavg_Psumday) were then compared and contrasted. 

 

3.3 Results and discussion 

3.3.1 Model accuracy 

The models’ yield prediction accuracy differs significantly between LR and BRT (Figure B.1). 

In terms of absolute RMSE values, the accuracy of the three LR models (lr_mono, lr_quad, 

lr_sgm) is in a similar range, while brt outperforms all three LR methods by a substantial margin. 

For each crop, even the best performing LR models have higher RMSE than the corresponding 

noclim BRT model. So, if our crop models were to be compared solely in terms of their ability to 

predict absolute yield numbers in the near-term, our results strengthen the case for using ML 
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models. This is because a BRT is able to fit complex and flexible relationships between yield and 

geography/time in the noclim model, while the LR, even with climate variables, is restricted by 

the functional form selected by the modeler. 

 

This study, however, primarily focuses on using these statistical techniques for inferring the role 

of climate variability in determining crop yields. For that, the contribution of climate variables in 

improving models, over and above geography and time, is of critical importance. Therefore, we 

also quantified the performance of each model for each crop in terms of percent reduction in 

RMSE compared to the corresponding model type with no climate variables (noclim model) 

(Figure 3.1). Adding climate variables significantly improved model performance for rice and 

pearl millet, unlike wheat where climate variables did not add to the model’s RMSE reduction 

capability (both LR and BRT). This pattern was consistently observed for all four model types.  

Note that the absence of change in RMSE does not necessarily mean that climate does not 

explain any wheat yield signal: our findings from chapter 2 show that there may be 

compensatory effects occurring between yield signal attributable to climatic and non-climatic 

variables, with the result that overall model accuracy stays the same between noclim, 

Tavg_Psum, and Tavg_Psumday wheat models. Reiterating chapter 2’s main conclusion, lack of 

RMSE reduction does not necessarily nullify the utility of including climate variables in a crop 

model. 

 

For rice and pearl millet, the percent increase in performance with addition of climate variables 

was the highest for brt. Among all three LR models, the maximum decrease in RMSE compared 

to the respective noclim models was around two percent, while the same metric for BRT models 
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was over six and five percent for rice and pearl millet, respectively. Interestingly, not only was 

the performance of brt:noclim significantly better than all LR models (Figure B.1), but the jump 

in yield prediction accuracy with the addition of climate variables too was maximum for the 

BRT models. This is potential evidence of yield signal attributable to climate that all three LR 

algorithms are unable to explain with just mean seasonal temperature and total precipitation; the 

BRT model possibly fits a better function between the same DV and IVs. 

 

Figure 3.1 Model performance measured in terms of percent decrease in RMSE, compared to the 

corresponding null model (with no climate data). The three crops are rice (top), wheat (middle), and pearl 

millet (bottom). Within each panel, the bars are color-coded by climate variables included (red: mean 

seasonal temperature and total seasonal precipitation; cyan: mean seasonal temperature, total seasonal 

precipitation and total precipitation days over growing season). From left to right, the various model types 
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depicted are: (1) lr_mono: LR with linear terms; (2) lr_quad: LR with quadratic terms for time and all 

climate variables; (3) lr_sgm: LR with single-knot segmented analysis; (4) brt: BRT. 

 

The inclusion of precipitation days did not improve model performance significantly in any case 

except lr_mono for pearl millet; this is evident from the overlap in error bars between each red 

and cyan bar pair in Figure 3.1. We again underscore the possibility that the number of 

precipitation days, although apparently not important in Figure 3.1, could still be an important 

variable for explaining crop yield during extreme weather events. Results from chapter 2 also 

show an increase in “relative importance” of climate with respect to geography and time when 

adding precipitation days as a variable, so we decided to keep Tavg_Psumday models as well. 

 

3.3.2 Partial dependence plots 

Partial dependence of pearl millet yield on time is consistent across all four model types (Figure 

3.2); a linear approximation seems valid for estimating the increase in pearl millet yield over 

time due to factors such as advancement in agricultural practices, better technology, 

mechanization, or availability of improved cultivars (Lobell & Burke, 2009). The climate panels, 

however, depict a departure from linearity for the response of pearl millet yields to average 

seasonal temperature (middle) and total seasonal precipitation (right). lr_quad, lr_sgm, and brt 

predict a decrease in marginal yield benefits with increasing precipitation, before yield reaches a 

maxima and is predicted to decline with any further increase in precipitation. lr_mono, 

meanwhile, predicts continuously increasing yield as precipitation increases, an artifact of the 

algorithm forcing a linear relationship between DV and IVs. This obvious flaw shows the 

necessity of accounting for potential non-linearity in yield-climate response.  
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Figure 3.2 Partial dependence plots of the Tavg_Psum variable set models for pearl millet (top row), and 

distribution density of corresponding IV in training data (bottom row). The four model types are color-coded 

in each panel. Data density plots at the bottom provide an idea of where most of the training data lies for a 

particular IV. For example, for the temperature partial dependence plot (middle panel), data is heavily 

concentrated at the higher end of the temperature range, hence the wide confidence intervals towards the left 

side of the partial dependence plot in that panel. 

 

Some striking patterns are observed in the middle temperature panel. As expected, lr_mono fits 

pearl millet yield as a monotonically decreasing function of average seasonal temperature. brt, 

however, predicts a non-significant impact of temperature rise till around 28 degrees Celsius, 

beyond which there is a significant drop in yield with rise in temperature. Fitting such non-linear 

relationships is a strength of ML algorithms like BRTs; this has also been documented in 

previous studies for similar algorithms like “random forests” (Vogel et al., 2019). Running 
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lr_sgm in automatic knot-identification mode sometimes failed to identify any breakpoints. But 

when 28 degrees Celsius (as identified by brt) was input as a starting point for knot estimation, 

lr_sgm ran to completion and identified a breakpoint close to the turning point detected by brt. In 

other words, brt acted as a diagnostic tool and helped in detecting the breakpoint for lr_sgm. 

lr_quad too predicts an increasingly detrimental effect increase in temperature. 

 

Similar to pearl millet, there is agreement between the partial dependence estimates for 

precipitation on rice yield as estimated by lr_sgm, and brt: yield rises with increase in 

precipitation, before it reaches a threshold beyond 1200 mm (Figure B.2); lr_mono’s linear fit 

deviates a bit, but the difference is not as stark as pearl millet. All four model types estimate no 

significant impact of precipitation on wheat yield. This may be due to the fact that wheat is the 

most heavily irrigated crop out of the three analyzed in this study: during the last five year of this 

study’s timeframe, 93 percent of the national area under wheat cultivation had access to 

irrigation; the corresponding numbers for rice and pearl millet are 64 and 9 percent, respectively. 

The temperature panels for both rice and wheat present a more interesting trend: all three LR 

specifications predict a strong and significant negative influence on yield of temperature 

increase, but the effect size estimates from the brt are comparatively small. There are 

temperature ranges where some LR and ML estimates concur (all four have similar slopes in the 

high temperature range for rice; lr_sgm and brt estimate no significant impact of temperature 

change in the less than 22.5 degrees Celsius region for wheat). However, in general, brt predicts 

a lower sensitivity to temperature compared to the three LR models, and this difference is most 

stark for rice. 

 



65 

 

3.3.3 Inference from synthetic data 

Here we present a hypothesis and supporting evidence to potentially explain the apparent 

difference between LR and BRT in terms of rice and wheat sensitivity to climate variability 

described above. We created three sets of synthetic mean seasonal temperature data for 45 years 

and 300 districts (to match the size of real data): A) no time trend in temperature (no climate 

change scenario); B) temperature increasing linearly over time; C) temperature increasing 

quadratically over time. Random noise was added to these data sets to emulate real conditions 

and to prevent a perfect fit. The mean and standard deviation of this data matched that of the 

actual mean seasonal temperature data from our observed climate data. 

 

For each of the three temperature datasets, synthetic crop yield was then calculated, using 

equation 3.1, as a linear function of temperature with the same coefficient for yield versus 

temperature, in addition to time and geography as fixed effects. The data thus created was fed 

back into an LR model with yield as the DV and a monomial term of temperature as the only IV 

besides geography and time. Exact same process was also repeated with a BRT. Results show 

that the LR model (red plots in Figure 3.3) is able to fit the expected functions (black dotted line) 

in all three cases. This is expected since yield was explicitly modelled as a linear function of 

temperature, and the LR is simply re-discovering that linear relationship. Conversely, as we 

move from a time-independent to linearly and then quadratically varying temperature data (or, 

when temperature contains a stronger time trend), the BRT model (blue plot in Figure 3.3) 

predicts a progressively lower sensitivity of crop yields to temperature, even though yield data 

was created from temperature using the same coefficient in all three cases. In this case, the BRT, 

because of how it builds a flexible model with no user-defined restrictions, is prone to conflating 
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time and temperature when there is correlation between them. Additional tests with synthetic 

data are available in Appendix B section B.3. 

 

Figure 3.3 Partial dependence plots for LR (red) and BRT (cyan) models fitted on synthetic data using user-

defined coefficient for temperature. The LR is able to accurately model the relationship (expected because the 

underlying data creation used a linear function), but the BRT sensitivity to temperature change goes down 

(the blue plot becomes flatter) as temperature gets more correlated with time (top to bottom, right column). 

 

Based on these results using synthetic data, we can now better interpret our previous results that 

showed BRTs having a lower yield sensitivity to temperature. Climate change has introduced a 

significant time trend in temperature over the period of this study. While rice and wheat yield 

may have been negatively influenced by rising temperature (Davis et al., 2019; Lobell, Sibley, & 
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Ivan Ortiz-Monasterio, 2012), it is possible that the brt model in our analysis with actual data 

used the time variable to account for that yield decrease. In other words, the brt may be 

conflating changing climate’s impact on rice and wheat yield with the time variable; this could 

explain the lower yield predictions in later years by brt compared to the other three LR model. 

Indeed, for rice and wheat, the year partial dependence plots (Figures B.2 and B.3) show 

increasingly declining yield predictions over time by brt, in comparison to the three LR models; 

this is also evident in synthetic data results in Figure 3.3. This is a potential drawback of ML 

methods that fit non-parametric models without requiring any functional input or a priori 

information from the user. 

 

Above results notwithstanding, there are cases where the flexible nature of non-parametric 

models like BRT can lead to better insights, compared to LR with user-specified functional 

forms. For instance, dataset A from the analysis above was constructed assuming the same 

relationship between crop yield and temperature across districts (same temperature coefficient 

was used for calculating yield in each district). At the other end of the spectrum lies the case 

where crop yield’s dependence on temperature (or any other climate variable) varies across 

regions: for example, a sub-national multi-crop analysis in the Great Plains region of the US 

reported both positive and negative impacts of temperature increase on crop yields across 

different counties of the larger region (Kukal & Irmak, 2018). To test LR and BRT in such a 

scenario, we created another synthetic dataset, with no climate trend in temperature (similar to 

dataset A above), but a different yield versus climate coefficient for each district. We call it 

dataset D. This represents a spatially-varying relationship between yield and climate; similar 

analysis could also be conducted for a temporally-varying relationship, but we skip that for 
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conciseness. LR and BRT models were then built using dataset D using the exact same procedure 

as above. 

 

As expected, both LR and BRT are able to elicit the correct relationship for dataset A (Figure 

3.4; top row). Since the slope of yield versus temperature is geography-independent, which 

matches the LR model specification, BRT offers no advantage in terms of accuracy. However, 

for dataset D, because of contradiction in the way the LR model was specified (with a single 

coefficient for yield versus temperature in all districts) and the actual geography-dependent 

relationship between yield and temperature, the BRT model outperforms LR by a big margin 

(Figure 3.4; bottom row). While it is true that a more flexible LR with district-specific 

coefficients would have been a better choice here, that needs manual tweaking of the functional 

form which may not always be possible if there are multiple climate variables. Also, highly 

parameterized LR models are prone to overfitting and can have detrimental effects on statistical 

power. BRT, on the other hand, did not need any extra input from the user, and was able to elicit 

the relationship on its own. In other words, dataset D demonstrates the utility of fitting a more 

flexible ML technique compared to a more biased LR. To summarize, the advantages and 

disadvantages of using LR versus BRT are highly context-dependent (Table 3.2). 
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Figure 3.4 Predictions of LR (red) and BRT (cyan) models of crop yield as a function of temperature (proxy 

for climate) versus actual crop yields in the training data (black). For data A (top row) with the same yield-

temperature coefficient in all districts, LR and BRT performance is similar. But when yield-temperature 

relationship varies across districts (data D; bottom row), BRT predictions match the actual yield data a lot 

more than LR. For illustration purposes, we show plots for only five districts chosen randomly out of the 300 

in the training data. 

 

Table 3.2 Context-dependent advantages and disadvantages of BRT compared to LR. The more 

advantageous technique for each criterion is italicized. 

LR BRT 

LR models have been studied, used, and 

reported extensively; they are relatively 

simple and easy to interpret. 

ML methods like BRTs are comparatively 

less widely used in the field of crop yield 

modeling. As opposed to LR, they are also 

more difficult to make inferences from. 
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LR BRT 

LR needs manual specification of expected 

functional form, which can get unwieldy 

when there are multiple DVs. It is also prone 

to mis-specification in the absence of 

complete domain knowledge and information 

about possible limitations to the suggested 

functional form. 

BRT is able to elicit the relationship between 

the DV and IVs without any a priori 

assumption or input from the user. 

  

This can be especially critical in cases like 

the one demonstrated in section 3.3, where 

the relationship between yield and climate 

varied across space. 

 

Also, BRTs can account for interactions 

which the user may not have anticipated 

(and therefore not included in the LR 

model). For example, when irrigation is 

included in models, a term denoting its 

interaction with precipitation is often added. 

But studies have shown evidence of 

irrigation reducing yield sensitivity to 

extreme heat as well (Zaveri & Lobell, 

2019). Unless included explicitly, this 

relationship will be missed in an LR, but a 

BRT will be able to include it automatically. 

LR in its most basic form is sensitive to 

outliers. There are statistical ways to make 

the analysis robust to outliers, but those 

again require active intervention by the user. 

BRTs are flexible enough to work with 

missing data or outliers without adversely 

affecting model performance. 

 

However, BRTs, like LR, are prone to 

conflating correlated variables, as shown 

using our synthetic data analysis. 

Simplicity of LR means quicker and less 

computationally-intensive analysis. 

BRTs usually take longer to run, and access 

to high performance computing facilities 

may be needed if running a big array of 

models. 
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3.3.4 Simulations of climate change impacts 

The predicted effects of historical climate change, as predicted by the four model types, vary 

across three crops analyzed in this study. Figure 3.5 shows the simulated impact of climate 

change on pearl millet yield during the last decade of this study (2002-2011). Rows depict the 

results from the four model types (lr_mono, lr_quad, lr_sgm, brt) while the two columns 

correspond to the two climate variable sets discussed in this study (Tavg_Psum, 

T_avg_Psumday). The accompanying map on the right shows the 10-year (2002-2011) average 

of the mean temperature during pearl millet season. For the comparatively cooler regions of the 

country (central and western districts), lr_mono predicts a bigger negative impact of climate 

change compared to the other three (lr_quad, lr_sgm, brt). This is commensurate with the partial 

dependence plots in Figure 3.2 where lr_mono has the biggest effect size per degree Celsius rise 

in temperature of all the model types in the lower temperature range (evident from the sharpest 

negative slope of lr_mono amongst the four). But in the northwest, which is the warmest region 

of India (and Rajasthan being the biggest pearl millet producer in the country), lr_quad and 

lr_sgm estimate a bigger influence of climate change than either lr_mono or brt. This trend too 

matches the patterns seen in the partial dependence plots in Figure 3.2 (high temperature range 

towards the right side of the middle panel). Comparing the three LR outputs to brt, the latter also 

predicts the highest impact in the north-western region, although the magnitude of the predicted 

impact of historical climate change on pearl millet yield is smaller than the LR models. 
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Figure 3.5 Simulated impact of long-term climate change (since 1966) on pearl millet yield (percent change) in 

the last decade (2002-2011) of the study time period (left); 10-year (2002-2011) average of the mean 

temperature during pearl millet season (right). The climate data was linearly detrended to remove time trend 

at district-scale. District-level estimates of median value and 95 percent confidence intervals of climate change 

impact on yield were obtained through residual bootstrapping (n = 500). The average district-level yield loss 

during the last decade in the dataset (2002-2011) is presented here as the expected impact of climate change 
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that has occurred since 1966. Only results with 95 percent significance of the confidence intervals are shown; 

insignificant results are shown in gray. 

 

For rice (Figure B.5), the climate change impact estimates are similar for all three LR models: 

rice yield in most regions, except some parts of south-east India, has been negatively influenced 

by climate change. Some climate change impact hotspots show up in all six LR plots, the biggest 

of which is the central India region comprising mainly the state of Madhya Pradesh (an 

important rice producer). The hottest districts in the south show a smaller effect of climate 

change in lr_quad and lr_sgm compared to the predictions made by lr_mono. This matches the 

shallower slopes observed for lr_quad and lr_sgm (compared to lr_mono) on the extreme right 

side of rice partial dependence plots (Figure B.2). However, these differences are not as stark as 

with pearl millet. Overall, the biggest contrast is between the LR and ML predictions; the latter 

shows little to no impact of historical climate change across most parts of India. Wheat (Figure 

B.6) shows similar patterns as rice: all three LR exhibit similar effects of climate change. While 

lr_mono predicts a more consistent impact throughout the country, more variation is observed in 

lr_quad and lr_sgm models. There are some districts in the southern state of Karnataka that are 

predicted to have experienced larger yield losses due to climate change in the T_avg_Psumday: 

lr_sgm panel compared to the corresponding predictions in the T_avg_Psumday:lr_mono panel. 

Regardless, the trends are more or less similar across the three LR methods, and the biggest 

difference is observed between LR and ML panels. Just like for rice, brt predicts that there has 

been no wheat yield loss due to climate change in India. 

 



74 

 

The most important takeaway from this climate change analysis concerns the range of 

predictions models can make depending on the statistical technique used. Although BRTs have 

distinctly better accuracy compared to the LR models (in terms of RMSE reduction, Figure 3.1), 

their predictions of historical climate change on yields of all three crops is considerably smaller. 

But this lower yield sensitivity shown by BRTs to climate change could be explained by their 

potential conflation of time with climate change as shown previously. 

 

We therefore caution against using only the most accurate modeling techniques (brt in our case) 

to analyze and predict climate change impacts. That would ignore the significantly higher 

impacts being predicted by the more sensitive albeit less accurate algorithms. Rather, researchers 

should consider an ensemble of climate variable sets and models to get a range of predictions 

that does not ignore any possible outcome. This is even more important considering potential 

pitfalls in what might otherwise seem like the most appropriate or accurate technique. 

 

3.3.5 Limitations 

Some limitations of this study and important considerations while using the described statistical 

techniques warrant discussion here. Like chapter 2, this analysis too was conducted at a national 

scale. Trends reported in more granular studies are potentially missed, and the next steps could 

be replication of this analysis at a more local scale. A very critical point that is sometimes missed 

in crop yield model studies is the problem with using any statistical method for prediction 

purposes with new data outside the range of training data. Pushed too far, this can lead to 

unrealistic predictions. For example, a quadratic functional form for temperature may predict 

negative yield values when extrapolated to temperatures well beyond the training data range. 



75 

 

Tree-based methods like BRTs are arguably worse than LR at predicting outside the training data 

range. As a consequence of their core algorithm, BRTs fit a constant value to the DV when 

predicting for IVs outside the range of the training dataset (as opposed to LR algorithms that just 

continue to use the modeled function with new data). This may have serious implications for 

analyzing climate change impact on crop yields since temperatures in some regions are expected 

to cross the highest temperatures ever recorded. 

 

3.4 Conclusion 

The past few years have witnessed a rapid rise in the availability of high quality open-source 

climate and crop yield data, advanced computational facilities, and increasingly accessible 

statistical software. The field of crop yield research has benefited a lot from this trend; 

researchers are using high spatial and/or temporal resolution data with advanced statistical 

techniques for answering questions and gathering insights that would have been impossible a few 

years ago. Given the wide range of tools available for current researchers, it is imperative to 

understand the advantages and disadvantages of each.  

 

This study compared a traditional statistical technique to an advanced machine learning method 

with the aim of advancing our understanding of the link between climate variability and crop 

yields. Our analysis found that both methods have their pros and cons, and combining both 

methods in an ensemble seems like the most optimal choice. While the simpler LR models are 

faster to fit and simpler to interpret, their accuracy in predicting yields is bested by BRTs by a 

big margin. In this study, BRTs also helped identify breakpoints in IV-DV relationships that 

were then used in fitting the segmented LR models.  
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Conversely, BRTs are comparatively hard to interpret, and users have less control on the 

functional form fit by the model.  We show through an example that ML algorithms like BRTs 

can conflate two correlated IVs and lead to potentially erroneous results. Nevertheless, as shown 

using the synthetic data, BRTs can be really powerful at fitting flexible functions where the 

relationship between yields and climate variables is suspected to change widely over geography 

and/or time. Also, BRTs can include obscure interactions between IVs that may otherwise be 

missed if the user employing LR models does not expect them. All benefits that BRTs provide 

automatically, can also be derived using LR, but it needs manual tweaking of the model which 

requires a priori knowledge and assumptions about functional form. Even if the latter is 

available, adding unnecessary complexity to LR may reduce statistical power when there are 

multiple climate variables being analyzed simultaneously, and the output of such a model gets 

unwieldy. At the same time, the advantages of the LR family discussed above continue to keep 

them relevant in this field. Used in conjunction, the two major statistical techniques analyzed in 

this study can lead to a better understanding of climate-yield relationship and more accurate 

future yield predictions in the context of a changing climate. 
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Chapter 4: Indian agriculture in a changing climate: using CMIP6 projections 

for short-term and long-term crop yield predictions 

 

4.1 Introduction 

India is primarily an agrarian society. While the contribution of agriculture to India’s economy 

has gone down over the past many years7, it continues to be the biggest employment provider: 

over 42 percent of the national workforce is currently employed in agriculture (World Bank, 

2021b). In addition to its importance for the country’s economy, India’s agricultural sector 

contributes significantly to global food production as well. For example, India produces 70 

percent of the world's chickpeas (16 times more than the second largest producer, Turkey), and 

over one-third of the world’s millets and a quarter of the world’s rice are grown in India 

(FAOSTAT, 2021). Indian agriculture plays a prominent role in ensuring food security (both 

within the country and globally) and providing livelihood to millions of households. 

 

Agriculture is heavily affected by short-term and long-term climate variability, and Indian 

agriculture is no exception. The Sixth Assessment Report (AR6) of the Intergovernmental Panel 

on Climate Change (IPCC) has once again underscored the reality of climate change (IPCC, 

2021). The global climate research community has never been more unambiguous that 

temperatures will continue to rise under every scenario deemed plausible, bringing with them a 

host of other changes including shifts in intensity and distribution of precipitation, extreme 

 

7 Agriculture, forestry, and fisheries together accounted for a little over 18 percent of the country’s Gross Domestic 

Product in 2020 (World Bank, 2021a). 
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weather events like droughts and storms. Heat waves too are projected to increase in intensity, 

frequency, and duration across India over time (Das & Umamahesh, 2021). Indian agriculture is 

primarily dependent on monsoon rains for water (Sharma, Rao, Vittal, Ramakrishna, & 

Amarasinghe, 2010), which makes it extremely vulnerable to dry spells and short-duration rains 

which have (and will continue to) become increasingly frequent with the changing climate 

(Annamalai, Hafner, Sooraj, & Pillai, 2013; V. Gupta, Singh, & Jain, 2020). This vulnerability is 

amplified in the rainfed regions which account for approximately half of the net sown area in 

India (Ministry of Agriculture and Farmers Welfare, 2018). Working group II’s (WG II) 

contribution to the IPCC Fifth Assessment Report (AR5)8 has ranked Indian agriculture among 

those most vulnerable to climate change (IPCC, 2014).  

 

Given the certainty and rapid pace of climate change, it is of utmost importance to build robust 

crop models for India that operate at subseasonal scale to not only identify crops and regions 

most at risk across the country, but also estimate the losses under different possible climate 

change scenarios. This study aims to accomplish this task by using the latest climate change 

projections, in conjunction with statistical and machine learning (ML) methods. In these models, 

we use a variety of climate variables including mean seasonal temperature, total seasonal 

precipitation, subseasonal temperature patterns, number of precipitation days among others. 

Additionally, we build and run a simplified soil moisture model, whose output serves as input to 

our crop yield models to help analyze potential benefits of soil moisture models over those with 

precipitation-based variables. 

 

8 WG II’s contribution to the IPCC Assessment Report 6 will be published in 2022. 
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For our analysis, we use future climate data projections from Coupled Model Intercomparison 

Project Phase 6 (CMIP6), the latest framework of climate model experiments which improve 

over the previous versions by including better representation of global physical, chemical, and 

biological processes, and running them at higher resolution than in the past (IPCC, 2021). 

Compared to CMIP5, the CMIP6 framework offers certain advantages: it is less biased, has 

lower uncertainties, and can better simulate the expected precipitation and temperature patterns 

over South Asia (Gusain, Ghosh, & Karmakar, 2020; Katzenberger, Schewe, Pongratz, & 

Levermann, 2020; Zhai et al., 2020).  

 

CMIP6 builds upon the four representative concentration pathways (RCPs) featured in IPCC 

AR5 by including pathways for them (SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5 to match 

RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively). In addition, CMIP6 also contains new 

scenarios to provide a wider range of possible futures; these include SSP1-1.9, SSP4-3.4, SSP5-

3.4OS, and SSP3-7.0. We follow the IPCC AR6 naming convention of referring to these 

scenarios as SSPx-y, where “SSPx” refers to the Shared Socio-economic Pathway (SSP) 

denoting the socio-economic trends underlying the particular scenario, and “y” signifies the level 

of radiative forcing (W/m2) expected to result from the scenario in 2100 (IPCC, 2021). IPCC 

AR6 includes five scenarios: SSP1-1.9 and SSP1-2.6 to illustrate a future with low GHG 

emissions declining to net zero by 2050 followed by negative emissions up to 2100, SSP2-4.5 

with intermediate GHG emissions, and SSP3-7.0 and SSP5-8.5 as examples of high emission 

scenarios. Here we analyze four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) to 

cover the range of possible future outcomes. RCP8.5 and the resultant SSP5-8.5 has been 
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criticized and termed extremely unlikely by some researchers because of its arguably unrealistic 

assumptions about coal use over this century (Ritchie & Dowlatabadi, 2017a, 2017b). At the 

same time, others have also suggested a greater than 35 percent chance of global emissions 

exceeding those assumed in RCP8.5 (Christensen, Gillingham, & Nordhaus, 2018). Regardless, 

we primarily focus on the “middle of the road” SSP2-4.5, as being arguably closest to the current 

trends (Hausfather, 2018). 

 

4.2 Data and methods 

4.2.1 Historical climate and crop production data 

We used the same historical ICRISAT crop dataset as the previous two chapters, a detailed 

description of which has already been provided in chapter 2. An additional layer in the current 

analysis is that of irrigation. Access to irrigation influences crop yield sensitivity to short-term as 

well as long-term climate variability. The ICRISAT dataset contains irrigated area (ha) 

disaggregated by year, crop, and district (in addition to previously described crop production and 

harvested area data). We used the proportion of area irrigated (ratio of irrigated area to harvested 

area) for each crop-year-district combination as a proxy for irrigation availability in the current 

analysis; this was necessitated by the lack of historical irrigation water amount data at district-

scale. 

 

4.2.2 Soil moisture model 

Statistical models discussed so far have one critical weakness. The mathematical relationships 

they estimate climate and crop yield might not necessarily be grounded in crop physiology 

(Roberts, Braun, Sinclair, Lobell, & Schlenker, 2017). Hence, statistical models are prone to 
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errors ranging from unrealistically simplistic relationships, to predicting relationships where 

none exist. The other family of crop models, called process-based models, incorporate 

experimentally-determined plant responses to various factors (temperature, water availability, 

soil moisture, radiation, carbon dioxide concentration ampng others) and build empirical 

mathematical relationships between them (Roberts et al., 2017). The advantage of such models is 

that the relationships and equations used for building them are based on plant physiology and 

backed by clear mechanisms linking weather and crop growth. However, these models rely on 

lab-controlled experiments and do not necessarily reflect real-life outcomes in farmers’ fields 

because of their inability to include factors external to the experimental setting like farmer 

behavior, pest infestation among others. So, a good compromise might be to build statistical 

models driven using physiologically-appropriate variables. This also matches our findings from 

chapter 2 which recommended using physiologically important climate variables. Specifically, 

we ran a soil moisture model which incorporated crop-specific water demand across various 

growing stages as defined as FAO (Allen, Pereira, Raes, & Smith, 1998). The moisture 

availability factor as derived from this soil moisture model was then used as an input variable in 

our yield models. Past research too has shown soil moisture to be an important determinant of 

crop yields (Ortiz-Bobea, Wang, Carrillo, & Ault, 2019). More details about our soil moisture 

model methodology are available in Appendix C section C.1.  

 

We used our chapter 2 methods to calculate relative importance of climate (as opposed to 

geography and time) in explaining crop yields for the three models under investigation in the 

current chapter. Results show crop-specific patterns: for pearl millet, and rice to a smaller extent, 

the sub_soil_moisture model gives equal weightage to climate as the sub_prec model (Figure 
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C.1). For wheat, the relative importance of climate in the sub_soil_moisture model lies in 

between that seen in the seasonal and sub_prec models. In summary, the similarity between 

climate’s relative importance in the two subseasonal models, coupled with soil moisture’s close 

link to actual crop physiology, makes the moisture model a worthy candidate for further analysis 

in the rest of this chapter. 

 

4.2.3 Statistical techniques 

We conducted our analysis in R (R core team, 2020); R packages used include tidymodels 

(Wickham et al., 2019), data.table (Dowle & Srinivasan, 2021), ggthemes (Arnold, 2021), 

RColorBrewer (Neuwirth, 2014), wesanderson (Ram & Wickham, 2018), gridExtra (Auguie, 

2017), doParallel (Microsoft & Weston, 2020a), foreach (Microsoft & Weston, 2020b), dismo 

(Hijmans, Phillips, Leathwick, & Elith, 2020), gbm (B. Greenwell, Boehmke, & Cunningham, 

2020), segmented (Muggeo, 2008), and pdp (B. M. Greenwell, 2017). 

 

4.2.3.1 Climate variables 

Results from chapter 2 showed that while progressively adding climate variables may not always 

translate into an increase in model prediction accuracy (measured in terms of common statistical 

metrics like R2 or RMSE), the added climate variables may still be important for explaining 

observed variability in crop yield. Consequently, we ran our models across a range of climate 

variable sets; summary of results is presented in Appendix C section C.6. For clarity and 

comprehensibility, we discuss three climate variable sets hereafter: set 1 is the most 

parsimonious with only mean seasonal temperature, total seasonal precipitation, and total 

precipitation days, while sets 2 and 3 include more variables to account for potential subseasonal 
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trends (either through subseasonal precipitation variability, or soil moisture) in climate-crop 

relationship (Table 4.1). Hereafter, we call them seasonal, sub_prec, and sub_soil_moisture, 

respectively. 

 

Table 4.1 Climate variable sets analyzed in this study. Details about each variable are available in Table 2.1 

of chapter 2. 

Climate variable 

set name 

Climate variables included 

seasonal  ● Mean daily average temperature during the growing season 

● Total seasonal precipitation 

● Total seasonal precipitation days (precipitation > 0.1 mm) (May, 

2004) 

sub_prec ● Mean daily minimum temperature during the growing season  

● Mean daily maximum temperature during the growing season 

● Degree day bins, at 10-degree Celsius intervals (<0, 0-10, 10-20, 

20-30, >30 degrees Celsius) 

● Subseasonal precipitation over four crop growing stages (Allen et 

al., 1998)  

● Subseasonal precipitation days over four crop growing stages 

sub_soil_moisture ● Mean daily minimum temperature during the growing season  

● Mean daily maximum temperature during the growing season 

● Degree day bins, at 10-degree Celsius intervals (<0, 0-10, 10-20, 

20-30, >30 degrees Celsius) 

● Soil moisture availability bins: proportion of days spent in 

particular ɑ bins (=1, 1-0.75, 0.75-0.50, 0.50-0.25, < 0.25) 

 

4.2.3.2 Statistical models 

As in chapter 3, we used each variable set (Table 4.1) to build four different types of statistical 

models: three linear regression (LR) models and one boosted regression trees (BRT) model. The 

four models have been described in greater detail in chapter 3. We continue to use the naming 
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convention of model:variable set (e.g., lr_sgm:seasonal) when referring to any model. All 

analysis was conducted for three major Indian crops: rice, wheat, and pearl millet. In total, we 

analyzed three variable sets, four models, and three crops, for a total of 36 model combinations. 

 

District dummies and harvest year accounted for the non-climatic signal in all models. The first 

LR model, lr_mono contained monomial terms of all climate variables. To account for the effects 

of irrigation, lr_mono also contained an interaction between proportion of crop area irrigated and 

each climate variable related to water (precipitation, precipitation days, or soil moisture bins). 

For example, the lr_mono:seasonal model used the following equation: 

 

𝑦𝑖𝑡  =  𝛼𝑖  +  𝛽(𝑡) +   𝛾(𝑖𝑟𝑟𝑖_𝑎𝑟𝑒𝑎) + 𝛿1(𝑇_𝑎𝑣𝑔_𝑚𝑒𝑎𝑛) + 𝛿2(𝑃_𝑠𝑢𝑚) 

+ 𝛿3(𝑃_𝑑𝑎𝑦𝑠)  + 𝛿4(𝑖𝑟𝑟𝑖_𝑎𝑟𝑒𝑎: 𝑃_𝑠𝑢𝑚) + 𝛿5(𝑖𝑟𝑟𝑖_𝑎𝑟𝑒𝑎: 𝑃_𝑑𝑎𝑦𝑠)  + 휀𝑖𝑡   , 
(4.1) 

 

where yit is crop yield in district i and year t; αi is district specific intercept; β is parameter for 

time (harvest year) trend; γ is irrigation area parameter; δ1 is temperature parameter; δ2 is 

precipitation parameter; δ3 is precipitation days parameter; δ4 is parameter for interaction 

between irrigation and precipitation; δ5 is parameter for interaction between irrigation and 

precipitation days; εit is the standard error. Accordingly, models for the other two climate 

variable sets (sub_prec and sub_soil_moisture) were built using a modified form of equation 

(4.1). 

 

With respect to the other two LR model types, lr_quad contained quadratic terms for time, 

irrigation, and climate variables, and lr_sgm was the segmented form of equation (4.1) with 
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knots created as explained in chapter 3. The brt models used the same variables as their LR 

counterparts, including irrigation. 

 

4.2.4 CMIP6 climate projections for future yield prediction 

Future climate projections, including those from the CMIP6, are prone to bias errors due to 

coarse resolution or parametrization (Mishra, Bhatia, & Tiwari, 2020). So, bias correction is 

critical, especially when using them for local or regional analysis. We used the data product 

created by Mishra et al. (2020). It contains bias-corrected projections from 2015-2100 of daily 

precipitation, minimum temperature, and maximum temperature at 0.25o spatial resolution from 

13 different General Circulation Models (GCMs) for the four SSP scenarios chosen for our 

study. It also includes historical climate simulations for 1950-2015. This dataset covers six South 

Asian nations; we only used the data for India. More details about the bias correction in the final 

product are available in Mishra et al. (2020). 

 

Since the CMIP6 climate dataset was in gridded format (0.25o spatial resolution), and the 

ICRISAT crop production data uses political (district) boundaries, we harmonized the gridded 

CMIP6 historical and future data to ICRISAT district boundaries by apportioning each cell to the 

district polygon covering it (the polygon in which the centre of the cell lies). Partially covered 

cells’ contribution to a polygon was weighted by area of cells in that polygon. For future crop 

yield predictions under different climate change scenarios, we divided the CMIP6 climate 

projections into four 20-year periods: 2021-2040, 2041-2060, 2061-2080, and 2081-2100. We 

then calculated the median value of each climate variable used in our models for each period, 

GCM, and SSP. For our study, we designated 2041-2060 as the short-term, and 2081-2100 as the 
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long-term future climatology. We followed the exact same procedure for the 1951-2000 

historical simulation data to compute “reference climatology” (Ortiz-Bobea et al., 2019). We 

then ran our crop yield models with the short-term and long-term future climatologies and 

estimated the impact of climate change on crop yields by comparing these future yield 

predictions to yield estimates from models run using the 1951-2000 reference climatology. 

 

4.3 Results 

4.3.1 CMIP6 climate projections 

In this section, we present and discuss the modeled trends of climatic variables under the 

different climate change scenarios to 2100. While we analyzed three crops in this study, we 

discuss future climate projections for only two in this section for simplicity: rice as a 

representative of the kharif season, and wheat from the rabi season. For illustration, cumulative 

plots depicting temporal trends of each climatic variable analyzed in this study, for a single 

example district, are available in Appendix C section C.2. In the next subsections, we discuss 

some salient climate parameters in more detail. 

 

4.3.1.1 Temperature and growing degree days 

Compared to reference climatology values, the seasonal mean of daily average temperature is 

expected to increase under all future SSP scenarios, with the degree of increase getting 

progressively higher for high emission scenarios (Figure 4.1). In the long-term (2081-2100) 

under SSP5-8.5, seasonal temperature in some parts of the country may increase by almost four 

and six degrees Celsius during the kharif and rabi season, respectively. Even with strict 

emissions reduction and carbon capture in SSP1-2.6, some regions will experience a warming of 
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up to two degrees by 2100. All these estimates are for the district-level median values of all 13 

GCMs used in this study; some GCMs predict even higher impacts of climate change on growing 

season temperature in some areas by the end of this century (outside the range of Figure 4.1). 

 

Figure 4.1 Distribution of district-wise increase in mean growing season temperature for representative 

kharif (rice; columns 1 and 2) and rabi (wheat; columns 3 and 4) crops, both for the short-term (2041-2060; 

columns 1 and 3) and long-term (2081-2100; columns 2 and 4). Different SSPs are depicted on the y-axis, 

ordered by intensity of emissions from bottom to top. The semi-transparent density plots depict distributions 

from each of the 13 GCMs analyzed in this study; the bold black line is the distribution of the median 

projection of the 13 GCMs for each district. 

 

Along with daily average temperature, we also investigated projected changes in seasonal mean 

values of daily minimum and daily maximum temperatures (Figure 4.2 and Figure 4.3). The 

density distributions of the district-level increase in these two parameters show a bigger increase 
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in daily minimum temperatures compared to daily maximum, a trend seen consistently across 

time (near-term vs long-term), all CMIP6 scenarios, and the two primary crop seasons (Figure 

4.2): the modes of the daily minimum temperature increase plots are always greater than those of 

the daily maximum temperature increase. Additionally, this relationship is also more or less 

maintained across the whole country as evident from the SSP2-4.5 and near-term maps in Figure 

4.3: all regions in the daily minimum plots (left panels) are darker than their counterparts in the 

daily maximum plots (middle panels) for both rice (kharif; top) and wheat (rabi; bottom). On a 

similar note, the increase in seasonal temperature is higher during the winter rabi season (bottom 

right), compared to the summer kharif season (top right), especially in north and west India 

(Figure 4.3), a trend reported in past literature too (Almazroui, Saeed, Saeed, Islam, & Ismail, 

2020). So not only is the diurnal temperature range (DTR) decreasing, but the temperature range 

between the two major crop seasons is also getting reduced in a changing climate. Nevertheless, 

this reduction in seasonal temperature range is less pronounced than the reduction in DTR. 
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Figure 4.2 Distribution of district-wise increase in mean growing season daily minimum (blue) and daily 

maximum temperature (red) for representative kharif (rice; columns 1 and 2) and rabi (wheat; columns 3 

and 4) crops, both for the short-term (2041-2060; columns 1 and 3) and long-term (2081-2100; columns 2 and 

4). Different SSPs are depicted on the y-axis, ordered by intensity of emissions from bottom to top. The semi-

transparent density plots depict distributions from each of the 13 GCMs analyzed in this study; the bold line 

is the distribution of the median projection of the 13 GCMs for each district. 
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Figure 4.3 Increase (degrees Celsius) in mean growing season minimum daily temperature (left), maximum 

daily temperature (middle), and average daily temperature (right) for representative kharif (rice; top) and 

rabi (wheat; bottom) crops. Plots show results for near-term (2041-2060) changes relative to reference 

climatology for the SSP2-4.5 scenario. Median values of district-wise projections from the 13 GCMs were 

used to produce these plots. 

 

4.3.1.2 Precipitation amount and variability 

The future projections of precipitation amount and frequency (measured in terms of rain days) 

under various CMIP6 scenarios are less unequivocal compared to the consistent temperature 

trends discussed in the previous subsection. When measured in terms of the median predictions 

from all 13 GCMs, climate change is expected to increase the amount and frequency of summer 
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monsoon precipitation in all SSP scenarios, both in the short and long term (Figures 4.4 and C.6). 

However, there are some GCMs which predict a decrease in both these variables for some parts 

of the country in the summer (evident from the density plots lying on the left side of the vertical 

line in Figures C.6 and C.7). The median values, nonetheless, consistently predict an increase for 

all parts of the country (Figure 4.4). The trend in winter precipitation is more granular: while an 

increase in both the amount and frequency is expected in the western and central parts of the 

country, there are some districts in the eastern half which are expected to experience drier 

winters with reduced precipitation and fewer rain days over the rabi growing season (bottom row 

in Figure 4.4; columns 3 and 4 in Figures C.6 and C.7). 

 

Figure 4.4 Total seasonal precipitation (left) and number of precipitation days (right) for representative 

kharif (rice; top) and rabi (wheat; bottom) crops. Plots depict the ratio of near-term (2041-2060) values under 
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SSP2-4.5 scenario to reference climatology. Median values of district-wise projections from the 13 GCMs 

were used to produce these plots. While there is consistent increase observed for summer monsoon 

precipitation (both in terms of amount and days), winter precipitation distribution shows both increases and 

decreases across different parts of the country. 

 

4.3.1.3 Soil moisture variability 

Of the five soil moisture availability bins analyzed (Appendix C section C.1), we compared the 

temporal and spatial trends of the two extremes: days when the crop’s water demand is fully met 

(ɑ = 1.00), and days when less than 25 percent of the water demand is met (ɑ < 0.25). For the 

kharif crop season, soil moisture availability for crops is projected to increase with climate 

change, both in the short and long term for all SSP scenarios (columns 1 and 2 in Figure 4.5): the 

fraction of days under moisture stress decreases while there is a corresponding increase in 

fraction spent under sufficient moisture conditions. Rabi season depicts a similar trend, although 

the mutual proximity of the red and blue plots and their overlap with the zero line in Figure 4.5 

shows that the reduction in soil moisture stress will not be as strong as in the summer season. We 

also analyzed this at a more local scale by picking Patiala, a district in north-west India, as an 

example, and plotting the change in the above-discussed fractions across the 13 GCMs and four 

SSP scenarios (Figure C.4). A majority of the 13 GCMs predict a decrease in water-stressed days 

and an increase in water-sufficient days over the kharif season. 
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Figure 4.5 Distribution of change in district-wise fraction of growing season days spent at moisture 

availability (ɑ) of 25 percent or less of actual crop water requirement (red) and at full moisture availability 

(blue) for representative kharif (rice; columns 1 and 2) and rabi (wheat; columns 3 and 4) crops, both for the 

short-term (2041-2060; columns 1 and 3) and long-term (2081-2100; columns 2 and 4). Different SSPs are 

depicted on the y-axis, ordered by intensity of emissions from bottom to top. The semi-transparent density 

plots depict distributions from each of the 13 GCMs analyzed in this study; the bold line is the distribution of 

the median projection of the 13 GCMs for each district. 

 

In terms of spatial patterns, kharif crops are slated to benefit in almost all parts of the country 

from fewer days in the 25 percent bin and more time spent in the full water demand met bin 

(Figure 4.6). However, rabi crops in eastern parts of the country will witness more days of 

extreme soil moisture stress. In these regions, both the fraction of growing season spent at 25 

percent soil moisture availability and duration spent under sufficient water availability is 
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expected to increase; the availability of water is expected to get more erratic, with a 

corresponding reduction in days spent under moderate soil moisture availability. 

 

Figure 4.6 Fraction of growing season spent at moisture availability (ɑ) of 25 percent or less of actual crop 

water requirement (left) and at full moisture availability (right) for representative kharif (rice; top) and rabi 

(wheat; bottom) crops. Plots depict the increase of near-term (2041-2060) values under SSP2-4.5 scenario to 

reference climatology. Median values of district-wise projections from the 13 GCMs were used to produce 

these plots. Note that increase in water availability is depicted by more intense reds in the left column and 

more intense blues in the right column. 
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4.3.2 Future crop yield predictions 

4.3.2.1 Nationally aggregated results 

We ran our statistical models for a range of different climate variable sets, of which we discuss 

only three here for clarity and comprehensibility: seasonal, sub_prec, and sub_soil_moisture 

(details available in section 4.2). Nationally aggregated impact of climate change on yield under 

different SSP scenarios is expected to be negative for almost all combinations of crops, statistical 

techniques, and climate variable sets (Figure 4.7). Only sub_soil_moisture LR models for pearl 

millet predict a net national positive impact of climate change; nevertheless, the magnitude of 

that is a lot smaller compared to the drop in pearl millet yield predicted by other models and 

climate variable sets. As climate continues to change in this century, its negative influence on 

crop yield is expected to grow continuously, with the biggest yield reductions predicted for the 

long term under the high emission SSP5-8.5 scenario. Comparing LR to BRT gives interesting 

results for pearl millet: while adding subseasonal climate variables reduces the predicted crop 

yield losses for LR models, BRT model predicts higher yield losses with subseasonal climate 

variables than the seasonal counterpart. 

 

Within each subpanel in Figure 4.7, predicted climate change impacts vary considerably 

depending on the type of statistical technique or climate variables used. For example, under the 

moderate emissions SSP2-4.5 scenario in the near term (column 1 in Figure 4.7), the median 

impact on national pearl millet yield varies from -5.5 to +2.1 percent. Similarly, the variation of 

yield predictions across the 13 GCMs (depicted by the size of each boxplot in Figure 4.7) shows 

the utility of using multiple climate prediction datasets in order to cover a wider range of 

possible future scenarios. For instance, the long whiskers of the seasonal model (red) using 
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quadratic IV terms for pearl millet shows a yield change range of -16.3 to +0.1 percent, 

depending on the GCM used. This is even more prominent in the long-term predictions, where 

some boxplots have outliers quite far off from the median values. Consequently, all results and 

discussions about projected crop yields hereafter refer to the median from all GCMs’ predictions 

of percent yield changes compared to reference climatology, unless otherwise stated. 

 

 

Figure 4.7 Nationally-averaged percent change in yield for rice (top), wheat (middle), and pearl millet 

(bottom). Columns 1-4 depict SSP2-4.5 near-term, SSP2-4.5 long-term, SSP5-8.5 near-term, and SSP5-8.5 

long-term. The plots are color coded by climate variable set: seasonal (red), sub_prec (green), and 

sub_soil_moisture (blue). Within each panel, boxplots are grouped by model types from left to right: lr_mono, 

lr_quad, lr_sgm, and brt. Boxplots show median values of estimates from 13 GCMs. 
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In Figure 4.7, future yield change predictions are dependent on crop model decisions (climate 

variable sets and statistical technique used) as well as future climate projections (denoted by the 

13 GCMs and four CMIP6 scenarios). To compare these drivers in terms of their influence on 

yield change predictions, we extracted Figure 4.7 data for SSP2-4.5 and ran a relative importance 

analysis using our chapter 2 methods, separately for the short-term and long-term (Table 4.2). 

This analysis of relative importance provides useful insights by ranking various factors by their 

capacity to explain the predicted crop yield changes. Since comparing all four model types 

would bias results towards LR, we picked segmented LR as a representative of LR models, and 

combined it with BRT results in this analysis. 

 

For all three crops in the short-term, variability between GCMs is a significantly bigger driver of 

yield change, compared to the four CMIP6 scenarios; by 2100, this relationship inverts for rice 

and wheat while the gap narrows for pearl millet (rows 6 and 7 in Table 4.2). This shows that 

although the short-term effects of climate change on crop yields may be highly uncertain because 

of inherent variability in climate predictions from multiple GCMs, over time, the climate 

projections for various scenarios diverge and begin to play a bigger role in determining crop 

yields. The choice of variable set plays a substantial role in determining wheat yield change, 

while rice and pearl millet yield changes are less driven by variable choice. When comparing 

variability due to crop model choices (adding value pairs in rows 4 and 5 in Table 4.2) to that 

due to climate predictions (adding rows 6 and 7 in Table 4.2), all mid-century yield changes are 

more dependent on climate projections, than the crop model setup. One important result from 

Table 4.2 is that in the short-term, impact of CMIP6 scenarios is less prominent than the 

combined effect of climate variable or statistical technique choices. In other words, mid-century 
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yield predictions are more dependent on the model assumptions, than the CMIP6 scenario as 

realized by future emission trajectory. 

 

Table 4.2 Relative importance of crop model choices (climate variable set and model type) and future climate 

projections (GCMs and CMIP6 scenarios) in determining percent yield changes in the future. Relative 

importance is measured in terms of percent of variance explained attributable to a particular variable of 

interest. Sample size of factors is provided in brackets. For model type, we chose segmented LR as a 

representative of LR models. 

Factor of interest 

Relative importance (percent of yield change variance explained) 

Short-term (2041-2060) Long-term (2081-2100) 

Rice Wheat Pearl 

millet 

Rice Wheat Pearl 

millet 

Climate variable set 

(n = 3) 

2 32 7 9 34 5 

Model type 

(n = 2) 

33 15 3 15 20 9 

GCM 

(n = 13) 

57 47 88 37 13 70 

CMIP6 scenario 

(n = 4) 

8 6 2 40 33 16 

Total 100 100 100 100 100 100 

 

4.3.2.2 Spatial patterns of climate change impacts on yields 

With respect to the district-level rice yield predictions, the contrast between LR and BRT 

algorithms is interesting: while all three LR models predict a detrimental effect of climate change 

in most districts, the percent yield change estimates from BRT are more evenly distributed about 
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the zero line (Figure 4.8). This result holds for all three climate variable sets, although there is 

more spatial variability in LR predictions with the addition of subseasonal climate variables in 

sub_prec or sub_soil_moisture (Figure 4.9). In contrast to LR, the BRT models predict a boost to 

rice yield from climate change in some districts of India. These regions are mostly located in 

western and central India, covering large parts of the top five rice producing states (bold outline 

in Figure 4.9). 

 

 

Figure 4.8 Distribution of district-level percent change in yield for rice in the short-term (2041-2060). Rows 1-

4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-3 depict the climate variable sets: 

seasonal, sub_prec, and sub_soil_moisture. SSP scenarios are color-coded within each panel. Plots show 

median values of estimates from 13 GCMs. 

 



100 

 

 

Figure 4.9 District-level percent change in yield for rice in the short-term (2041-2060) for the SSP2-4.5 

scenario. Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-3 depict the 
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climate variable sets: seasonal, sub_prec, and sub_soil_moisture. Plots show median values of estimates from 

13 GCMs. Five biggest rice-producing states are labelled and outlined in black. 

 

Predicted changes in wheat yield are heavily influenced by climate variables included in the 

statistical model (Figure 4.10). All three seasonal LR specifications’ forecasts are heavily biased 

towards predicting yield losses, except a few districts in north India where lr_sgm predicts 

marginally higher yields due to climate change (left column in Figure 4.11). Within these three, 

lr_quad and lr_sgm estimate yield losses of more than 10 percent in some districts of central 

India, including parts of Madhya Pradesh (an important wheat producer). However, LR models 

containing subseasonal climate variables (middle and right columns in Figures 4.10 and 4.11) 

estimate a more tempered influence of climate change, with some important wheat-growing 

regions expected to have comparatively higher yields according to the sub_soil_moisture LR 

model. On the other hand, the BRT model predictions are more agnostic to the choice of climate 

variables: all three BRT models estimate that most regions will face moderate (compared to LR 

predictions) wheat yield losses of not more than 5 percent. 
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Figure 4.10 Distribution of district-level percent change in yield for wheat in the short-term (2041-2060). 

Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-3 depict the climate 

variable sets: seasonal, sub_prec, and sub_soil_moisture. SSP scenarios are color-coded within each panel. 

Plots show median values of estimates from 13 GCMs. 
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Figure 4.11 District-level percent change in yield for wheat in the short-term (2041-2060) for the SSP2-4.5 

scenario. Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-3 depict the 
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climate variable sets: seasonal, sub_prec, and sub_soil_moisture. Plots show median values of estimates from 

13 GCMs. Five biggest wheat-producing states are labelled and outlined in black. 

 

Like wheat and rice, pearl millet also exhibits higher yield losses in the seasonal LR models 

compared to their subseasonal counterparts, sub_prec or sub_soil_moisture (Figure 4.12). 

Barring the largest producer state Rajasthan, the other four major pearl millet states are all 

expected to benefit from climate change under the SSP2-4.5 scenario in the short-term, 

according to all LR model estimates (Figure 4.13). However, the BRT model predicts heavy 

yield losses, over 20 percent in some regions under SSP2-4.5 by 2050. Geographically, the yield 

loss hotspot covers large parts of the top five pearl millet-producer states, thereby explaining the 

potentially catastrophic impact on national pearl millet production (Figure 4.7). It is worth noting 

that the sub_prec and sub_soil_moisture BRT models predict higher yield losses than seasonal 

BRT in parts of Rajasthan, Madhya Pradesh, and Uttar Pradesh (last row in Figure 4.13). This 

underscores the importance of accounting for subseasonal climate variability that may be missed 

if model selection is based on generic statistical metrics (refer to chapter 2 for more details). 
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Figure 4.12 Distribution of district-level percent change in yield for pearl millet in the short-term (2041-2060). 

Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-3 depict the climate 

variable sets: seasonal, sub_prec, and sub_soil_moisture. SSP scenarios are color-coded within each panel. 

Plots show median values of estimates from 13 GCMs. 
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Figure 4.13 District-level percent change in yield for pearl millet in the short-term (2041-2060) for the SSP2-

4.5 scenario. Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-3 depict the 
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climate variable sets: seasonal, sub_prec, and sub_soil_moisture. Plots show median values of estimates from 

13 GCMs. Five biggest pearl millet-producing states are labelled and outlined in black. 

 

4.4 Discussion 

4.4.1 CMIP6 climate projections 

In agreement with the vast climate change literature, our analysis of CMIP6 climate projections 

reconfirms a consistent and widespread impact of anthropogenic emissions on all climate 

parameters which have been repeatedly shown to influence crop yields. Compared to the 

reference climatology, every region of India is expected to get warmer under all four emission 

scenarios. Numerous studies have found a causal relationship between mean seasonal 

temperature rise and reduction in crop yields (Asseng et al., 2017; R. Gupta, Somanathan, & 

Dey, 2017; Lobell & Field, 2007). Simultaneously, the reduction in DTR due to faster rise in 

nighttime temperature as observed in our analysis has been studied and reported using past 

climate data at both global (Davy, Esau, Chernokulsky, Outten, & Zilitinkevich, 2017; Sun et al., 

2019) and regional scales (Mall et al., 2021); while the latter study claims that DTR reduction 

across India started in the late 20th century, our results shows that it is expected to continue into 

the future. A topic of active current research, uneven warming between days and nights has been 

reported to have potential consequences for vegetation growth and crop yields. For example, 

Peng et al. (2013) observed a positive (negative) correlation between maximum (minimum) daily 

temperature and normalized difference vegetation index (NDVI, a vegetation greenness 

indicator) in most boreal and wet temperate regions; the relationship reversed in the drier 

temperate regions. Also, field experiments have shown up to 10 percent reduction in rice yields 
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for every 1oC rise in nighttime temperature while daytime warming had no significant effect 

(Peng et al., 2004). 

 

Climate change induced temperature rise will also lead to disproportionate changes in the 

amount of growing degree days accumulated in various bins discussed in this manuscript. For 

instance, a simple linear regression with mean temperature during rabi season as the IV, and the 

growing degrees accumulated in the 20-30 oC bin as the DV, shows that the DV increases by 

around 14 percent for every 1 oC rise in IV. The same analysis conducted with the >30 oC bin 

exhibits a 63 percent increase with each 1 oC increase in mean temperature. This can be 

extremely critical for crops with temperature thresholds during various growth stages that will 

begin to get crossed more frequently and for longer durations. For instance, the upper 

temperature threshold for wheat’s anthesis stage has been reported to be 31 oC (Porter & Gawith, 

1999), and excess heat during that stage can reduce grain count leading to lower yields (Wheeler, 

Craufurd, Ellis, Porter, & Vara Prasad, 2000). 

 

The median of all 13 GCMs’ estimates depict an increase in kharif season precipitation (amount 

as well as precipitation days) in almost every part of India, although there is considerable 

variation among individual GCM predictions. This pattern has been reported by another study 

from India which assessed four separate CMIP6 GCMs and found contrasting impacts of climate 

change (on number of annual rain days) across most of India (V. Gupta et al., 2020). Aadhar & 

Mishra (2020b) also found high bias while simulating monsoon precipitation in many of the 16 

GCMs they used, so we use the median (instead of mean) values of the projections from the 13 

GCMs we used in this study. Nevertheless, our results are in agreement with previous studies 
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that also predict an increase in summer monsoon rainfall with rise in temperature (Almazroui et 

al., 2020; Katzenberger et al., 2020; Moon & Ha, 2020; Wang, Jin, & Liu, 2020). Winter season 

precipitation trends are more variable: while most areas are expected to witness more rain as well 

as rainy days, east Indian regions like the state of Bihar9 will face precipitation decrease in the 

future. This can have huge implications for agriculture in this region, as we discuss in section 

4.2. 

 

Our soil moisture model uses daily evapotranspiration (ET) (calculated using temperature data) 

and precipitation as input. With climate change slated to increase both ET and precipitation in 

almost every part of the country, soil moisture's future trend would depend on which parameter 

is dominant. Our results show that in general most parts of the country will witness a reduction in 

the number of days during the growing season that kharif crops spend under critical soil moisture 

deficient conditions (Figure 4.6), along with an increase in duration of sufficient moisture 

conditions. Western regions will witness a bigger increase in soil moisture availability than the 

eastern districts. For the rabi season, on the other hand, there is a contrasting pattern of western 

India facing fewer soil moisture stress days, and parts of east India including Bihar, southern 

Uttar Pradesh, and the Himalayan region experiencing increased soil moisture stress. Our 

patterns for kharif and rabi seasons match the west to east reduction in soil moisture increase 

estimated in the future in other studies (Aadhar & Mishra, 2020b). This is in contrast to 

predictions for other regions of the world like southwestern US, eastern Europe, Mediterranean, 

 

9 We use 1966 state boundaries in our analysis. The state of Bihar, as referred to in this study, was bifurcated into 

Bihar and Jharkhand in 2000. 
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and southern Africa where soils are expected to get drier in the future (Green et al., 2019; 

Grillakis, 2019). 

 

4.4.2 Crop yields in a changing climate 

When using models to estimate the impact of climate variability on agricultural production, there 

are two major processes that need to be analyzed and quantified: the variability and long-term 

changes expected in certain climatic parameters, and the sensitivity of a crop to those changes. 

Relying on CMIP6 projections for the first part, this chapter built and ran an array of statistical 

models to uncover the second process and predict the influence of climate change on future crop 

yields.   

 

Our results show that future changes in crop yields are dependent more on the type of statistical 

techniques or the set of climate variables used in the analysis, and less on the future climate 

scenarios, especially in the short-term (Table 4.2). For example, for pearl millet, the seasonal LR 

models predict a net drop in nationally aggregated yield, but the sub_soil_moisture LR models 

estimate a net gain (Figure 4.7), for both the SSP2-4.5 and SSP5-4.5 in the short as well as long 

term. When comparing the variability in yield loss prediction between different climate scenarios 

(the four density plots in each panel of Figures 4.8, 4.10, or 4.12) to variability in yield loss 

prediction across different statistical models (assessing a particular SSP scenario in panels of 

Figures 4.8, 4.10, or 4.12), it is again evident that yield predictions are highly sensitive to the 

statistical method or climate variables of the underlying model, in comparison to the climate 

scenarios. This bias in sensitivity of yield to crop models has been documented in previous 

studies too: The Agricultural Model Intercomparison and Improvement Project (AgMIP) 
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simulated wheat yield using various combinations of five GCMs and five crop models, and 

attributed 88 percent of variance in simulated yield values to variability between crop models, 

and only 10 percent to variability in the GCMs (remaining two percent was explained by 

interaction between crop models and GCMs) (Rosenzweig et al., 2013). In comparison, our 

results in Table 4.2 are less extreme because they relate to percent changes in yield, instead of 

actual yield values. When we conducted a similar analysis to Table 4.2 but with actual yield 

values, our relative importance results too apportioned over 90 percent of the variance in 

predicted yield values to crop model choices (climate variables and statistical methods), with 

only a minimal amount going to the climate projections (both inter-GCM variability and CMIP6 

variability). 

 

For LR models, accounting for subseasonal climate variability, either through subseasonal 

precipitation variables or the soil moisture model, predicts smaller reductions in nationally-

averaged yields of wheat and pearl millet, compared to the simplest seasonal model (Figure 4.7). 

Limiting the model choice to a simple seasonal model, a convention still popular in literature, 

may thus lead to possibly erroneous estimates of climate change impacts. We also know from 

chapter 2 that subseasonal variables can be important for explaining crop yield models. This, 

coupled with the highly variable spatial results with subseasonal models discussed below, 

emphasizes the importance of building and intensively analyzing a suite of models before using 

them for future yield predictions. 

 

There is a stark difference between the geospatial patterns of yield loss predictions from LR 

versus those from BRT models. The LR models for rice, for instance, predict a negative impact 
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of climate change in almost all parts of the country, while BRT predictions are distinctly positive 

in many parts, especially west India. Here, it is worth reiterating results from chapter 3 where LR 

models showed a high sensitivity of rice yield to temperature, while the BRT models’ partial 

dependence plots depicted a lower sensitivity to temperature (Figure 4.14). Moreover, the 

proportional increase in summer precipitation is expected to be the highest in the western regions 

(Figure 4.4). This potentially explains why the BRT model predicts rice yield increases in west 

India, unlike the LR models. In other words, while one model (LR) may conclude temperature to 

be the primary driver of crop yield, the other (BRT) may predict that crop yields are most 

sensitive to changes in precipitation. The underlying model structure can then lead to different 

crop yield predictions for the same projected climate data. Spatially disaggregated results show 

an even greater sensitivity of yield outcomes to modeling choices. For all three crops, the 

simplest seasonal lr_mono model predicts a fairly uniform loss across all parts of the country. 

Because it contains seasonal variables in a monomial linear formula, the non-linear climate-yield 

response or subseasonal climate variability that can potentially influence yields is not accounted 

for. Hence the difference between the first panel and the rest in Figures 4.9, 4.11, and 4.13. 
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Figure 4.14 Partial dependence plots of the seasonal variable set models for rice (top row), and distribution 

density of corresponding IV in training data (bottom row). The four model types are color-coded in each 

panel. Data density plots at the bottom provide an idea of where most of the training data lies for a particular 

IV. For example, for the temperature partial dependence plot (panel 3), data is mostly concentrated at the 

higher end of the temperature range, hence the wide confidence intervals towards the left side of the partial 

dependence plot in that panel. 

 

Overall, our results tell a cautionary tale for Indian agriculture. The nationally-average rice, 

wheat, and pearl millet yield could decrease by up to 3.4, 4.3, and 5.5 percent under SSP2-4.5 by 

205010, and up to 5.3, 9.3, and 6.6 percent by 2100. At the local scale, there are hotspots that 

deserve immediate attention. Consider Rajasthan, the largest pearl millet producer state in India: 

 

10 These are the median of the estimates from all 13 GCMs. When assessing each GCM separately, the highest 

predicted yield reductions are 7.0, 10.2, and 16.3 percent for rice, wheat, and pearl millet. 
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all models, regardless of the statistical technique or underlying climate variables, predict reduced 

yields of the crop; losses could be over 20 percent in some districts by 2050 in the intermediate 

SSP scenario SSP2-4.5 (Figure 4.13). Similarly, wheat production in Rajasthan and Madhya 

Pradesh is expected to suffer as climate changes (Figure 4.11). Instead of exact yield predictions, 

our methodology and results can thus be thought of as a range of possible scenarios that highlight 

the risk, and which can then be used for formulating interventions.  

 

4.4.3 Limitations and future work 

Like all empirical model-based analyses, our study has some limitations that are worth 

mentioning explicitly. First, our models can only account for variation in IVs that we included. 

There are many other factors that may affect crop yield, including changes in CO2 concentration, 

nutrient availability, farming practices (for example, tillage techniques and mulching), access to 

technology, among others. Second, we keep crop choices, geographical regions, and crop 

calendars constant over time. This may not always be true as farmers react to a changing climate 

or availability of resources like water (Jain et al., 2021). Using models built on historical data for 

making future predictions also ignores the adoption of improved cultivar varieties better-suited 

for the changing climate. Finally, a key assumption of our analysis for rice is the exclusion of the 

state of West Bengal, an important rice producer in India. Lack of irrigation data for the state in 

the ICRISAT dataset necessitated this.  

 

In the future, within the realm of data availability, it may be worthwhile to extend our analysis to 

more crops, especially non-grains which have historically not been studied as much. While this 

study focused exclusively on the influence of long-term climate change on crop yield, the 
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vulnerability of agriculture to short-term anomalous events like droughts, extreme rainfall, or 

extreme heat events is an equally important topic because the frequency, intensity, and duration 

of such events is expected to change in the future (Aadhar & Mishra, 2020b; Das & Umamahesh, 

2021; V. Gupta et al., 2020; Ha, Moon, Timmermann, & Kim, 2020). That would be a valuable 

complementary addition to this analysis. 

 

4.5 Conclusion 

Anthropogenic emissions are expected to continue to change global climate through this century. 

Our analysis of the latest CMIP6 climate projections shows that every region of India will 

experience a rise in temperature, with faster night-time warming reducing diurnal temperature 

range. Simultaneously, crops will experience progressively more degree days above threshold 

temperatures beyond which crop growth is adversely impacted. Precipitation patterns too exhibit 

important changes; while monsoons are expected to get wetter over time, some parts in eastern 

India may have to tackle drier rabi seasons in the future. All these changes in climate patterns are 

expected to have significant impacts on crop yields. Analyzing three major crops (rice, wheat, 

and pearl millet) from India, we found that nationally-averaged yields could reduce by up to 3.4, 

4.3, and 5.5 percent (respectively) by the middle of this century, and by up to 5.3, 9.3, and 6.6 

percent by 2100, under the intermediate SSP2-4.5 scenario. These nationally-averaged values 

hide much stronger spatial patterns; for example, some districts in the biggest pearl millet-

producing state Rajasthan could experience up to 20 percent yield losses in the same time period. 

These estimates pertain to the intermediate “middle of the road” SSP2-4.5 scenario; the losses 

could be even higher if the higher emission scenarios become a reality. 
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Importantly, the impact of climate change on agricultural yield depends not only on the degree of 

change predicted in various climate parameters, but also the influence that climatic shift is 

expected to have on various crops. Given the complex processes and uncertainty involved in 

both these components, it is no surprise that predicting crop yields into the future is uncertain. 

An appropriate way to examine this ambiguity is to build multiple models, using different 

statistical techniques and assumptions about climate-crop relationships. For example, we found 

that the seasonal LR model predicts bigger reductions in nationally-averaged yields of wheat and 

pearl millet (and rice to a smaller extent), compared to the subseasonal precipitation and soil 

moisture counterpart. When combined with results from chapter 2 that show the value of 

including subseasonal variables, these patterns show that yield losses may be overestimated in 

some regions if subseasonal conditions are ignored. 

 

Spatially, climate change influence on crop yields is expected to have high variation. For 

example, rice LR models predict negative impacts in almost all regions of the country, while 

BRT predictions are distinctly positive in parts of west India. This is primarily driven by the 

underlying functions fitted by the models: while LR attaches high sensitivity to rising 

temperature, the BRT algorithm fits a model that is more sensitive to increasing precipitation 

(and not temperature) resulting in diverging model predictions. Individually, each model has its 

unique weaknesses. Unique insights may thus be gained from combining yield predictions from 

multiple models with their individual strengths and weaknesses for estimating climate change 

impact on crop yields. While it was outside the scope of our study, complimenting statistical 

model predictions with results from process-based models or controlled experiments could be 
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extremely valuable. It is possible that most statistical models misinterpret or discount the impact 

of a certain climate variable that such an endeavor could help uncover. 
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Chapter 5: Conclusion 

 

This dissertation is an in-depth examination of the under-the-hood workings of statistical crop 

models. Statistical models have gained increasing prominence over the past few decades as a tool 

for detecting and quantifying the response of agricultural productivity to climatic change. 

Researchers and stakeholders around the world rely heavily on these models for predicting the 

impact of climate change on crop yields into the future. Predicted crop sensitivity to various 

environmental factors (e.g., temperature, or water availability) may also be used in the selection 

of more suitable cultivars for particular growing conditions in specific places. Consequently, 

improving the accuracy and reliability of these models remains important. 

 

In building statistical models, the researcher has many decisions to make, including the 

explanatory variables to include and their functional forms, or the structure of the models. In this 

dissertation, I examined how such modeler choices influence model predictions. The choices are 

getting wider daily with rapid advancement in modeling tools and the vastly increased 

availability of data for analysis. I hope my work will provide lessons that can help better inform 

model choices, instead of simply relying on intuition or adopting commonly used methods or 

variables. 

 

I chose two major themes for cross-model comparison. In chapter 2, I examined the role various 

climate variables can play in outcomes of agricultural yield models. I found that the dummy 

variables that account for spatially-variable but time-invariant yield drivers such as soil quality, 

or the harvest year added as a proxy temporal yield variability, can capture part of the signal in 
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yield variability that would otherwise be explained by an omitted climate variable. On the 

surface, this may not seem like a cause for concern because the accuracy of the two models, 

measured using standard and popular statistical metrics like R2 or RMSE, may not be 

significantly different. However, automatic model selection based on parsimony criteria may 

exclude important climate variables from the model, leading to poor predictions of the impact of 

climate change. I demonstrated this result using actual historical crop and climate data from 

India. I also proposed another statistical metric, relative importance, that has hitherto not been 

used widely in the crop modeling field, and demonstrated its utility in identifying important 

climate variables that may otherwise be missed had I solely relied on the standard model 

performance metrics. The chapter’s most important recommendation for researchers was to use 

statistical metrics in combination with theoretical or process-based knowledge for choosing 

climate variables to include in their crop models; a variable may warrant inclusion even if it 

exhibits no apparent improvement in model accuracy. 

 

In chapter 3, I conducted a detailed comparison of two distinct statistical techniques for building 

the aforementioned crop yield models. OLS linear regression, or LR, has the advantage of 

simplicity and being the most commonly used method in this field. Because they have been used 

so extensively, conditions which influence LR models’ performance are well understood by the 

greater scientific community. Nevertheless, machine learning (ML) algorithms have some clear 

advantages; they are often more flexible and make fewer or no prior assumptions about the 

functional form of the model. The past few years have witnessed a rapid rise in the availability of 

high quality open-source climate and crop yield data, advanced computational facilities, and 
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easy-to-use statistical software. The analysis of climate-crop relationships can benefit immensely 

from ML tools.  

 

In this dissertation, I chose boosted regression trees (BRTs) as an example of ML (James, 

Witten, Hastie, & Tibshirani, 2013). The results from chapter 3 presented context-dependent 

advantages and disadvantages of LR and BRT approaches. The mathematical equations of LR 

are easily understood, and the model fitting process is faster and less computationally-intensive 

compared to more advanced algorithms. BRTs are significantly more accurate in terms of yield 

predictions, and can be really powerful at fitting flexible functions where the relationship 

between yields and climate variables is suspected to vary widely over geography and/or time. 

BRTs can also capture obscure interactions between IVs that may otherwise be missed by LR 

model specifications. Some of the benefits that BRTs provide automatically, can also be derived 

using LR, though this needs manual tweaking of the model, and a priori knowledge of, and 

assumptions about, functional forms. Even if the latter is available, adding complexity to LR 

may reduce statistical power when there are multiple climate variables being analyzed 

simultaneously, and the output of such a model gets unwieldy. However, BRTs too have their 

Achilles’ heel: I show through an example that they may conflate the effect of two correlated 

variables and can lead to potentially erroneous interpretations. 

 

Chapter 4 built on the findings of chapters 2 and 3. I developed an array of models for three 

major crops in India (rice, wheat, and pearl millet), and applied them to CMIP6 climate 

projections for predicting climate change impact on crop yields till 2100. I found that nationally-

averaged yields of rice, wheat, and pearl millet could reduce by up to 3.4, 4.3, and 5.5 percent 



121 

 

(respectively) by the middle of this century, and by up to 5.3, 9.3, and 6.6 percent by 2100, under 

the intermediate SSP2-4.5 scenario. These nationally-averaged values hide much stronger spatial 

patterns; for example, some districts in the biggest pearl millet-producing state Rajasthan could 

experience up to 20 percent yield losses in the same time period. The processes governing both 

the future climate trajectories and their influence on various crops, are complex and fraught with 

uncertainty. My results show that future changes in crop yields are dependent more on the type 

of statistical techniques or the set of climate variables used in the analysis, and less on which of 

the CMIP6 climate scenarios is realized. Therefore, I discourage researchers from trying to 

predict absolute yield values with a single mechanism (or model). Instead, a more appropriate 

way is to build multiple models, using different statistical techniques and assumptions about 

climate-crop relationships. I suggest combining yield predictions from these models using a 

probabilistic, rather than a deterministic, approach for estimating climate change impact on crop 

yields. 

 

While chapters 2, 3, and 4 are standalone analyses with independent objectives, methods, and 

results, there is a significant link between their findings. Essentially, my overall inference is that 

the application of statistical models for predictions should be accompanied by a more thorough 

inspection of the assumptions, underlying mechanisms, and possible alternative model 

specifications. Chapter 2 showed that automated model selection based on principles of 

parsimony or standard statistical metrics may discount the contribution of potentially important 

climate variables. Similarly, chapter 3 showed that no one statistical technique can be considered 

the panacea for predicting crop yields as a function of climate. For example, the possible 

conflation between time and climate by BRTs may lead researchers to underestimate the 
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potential losses in crop yields due to climate change. An ensemble of multiple techniques, while 

admittedly adding more uncertainty to the predictions, may be a more realistic representation of 

the inherent complexity of the climatic and agricultural processes. Chapter 4 applies lessons from 

chapters 2 and 3 to develop a more nuanced understanding of Indian agriculture’s vulnerability 

to climate change. 

 

5.1 Application of my models: an irrigation expansion case study 

This dissertation furthers our understanding of statistical models, and the factors or parameters 

that the predictions are contingent on. There are vital lessons to be learnt in terms of not 

accepting model outputs without a thorough examination of the underlying mechanisms. This 

aspect of the dissertation’s contribution has already been discussed in great detail.  

 

A second contribution of the dissertation is the development of models that can be used by 

policymakers and stakeholders for assessing the risk from climate change to various crops in 

their regions of interest, and for designing interventions to reduce the vulnerability of crops to 

climatic variability. I illustrate this using a short case study below. 

 

Irrigation is among the most important enablers of yield growth across the world and numerous 

studies show the benefits of irrigation for crop production (Li & Troy, 2018). The critical role 

irrigation currently plays in agricultural production can be gauged from the fact that while only 

20 percent of global cultivated land is under irrigation (Rockström et al., 2007), it accounts for 

43 percent of the global cereal production (Siebert & Döll, 2010). Neumann, Verburg, Stehfest, 

& Müller (2010) combined econometrics with spatial yield analysis to estimate yield gaps of 
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wheat, maize, and rice. They observed that irrigation intensity not only played a statistically 

significant role in decreasing yield gaps globally, but also explained spatial yield variation in five 

out of six world-regions analyzed in their study. A global yield gap analysis reported that just 

with improved irrigation, 16 percent of the underachieving regions could bring their yields to 

within 75 percent of the attainable yields (Mueller et al., 2012). According to Lobell, Cassman, 

& Field (2009), while yields in most irrigated regions are close to maximum yields observed 

worldwide, rainfed yield gaps are on average 40 percent or higher.  

 

In addition to improving yields, irrigation also plays a key role in building crop resilience to 

climate variability. Li & Troy (2018) reported that irrigated corn yields in the US exhibit lesser 

sensitivity to climate variability compared to rainfed yields. Fishman (2018) observed similar 

results from their regression of India’s rice yields against cumulative precipitation and total 

number of rainy days over the season.  The Economic Survey of India 2017-18 (Ministry of 

Finance, 2018) predicts future declines in crop yields in rainfed regions due to extreme 

temperature (up to 7.6 percent) and drought events (up to 14.7 percent) to be more severe 

compared to irrigated areas (up to 3.0 and 6.2 percent, respectively). Hence, there are good 

reasons to believe that climate change will have drastic consequences for farmers without access 

to irrigation, and that the expansion of irrigation can play a crucial role in increasing agricultural 

resilience to climate change. This is all the more relevant for India where the government 

continues to encourage and invest in the expansion of irrigation facilities to currently rainfed 

regions, most recently as a part of its flagship irrigation scheme called Pradhan Mantri Krishi 

Sinchayee Yojana (PMKSY) which has set an ambitious target of increasing net irrigated crop 

area from the current level of 45 percent to 100 percent (Ministry of Water Resources, 2017). 
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One option for targeted irrigation expansion is to identify the proverbial low-hanging fruit: 

regions or crops most vulnerable to climate change and poised to benefit the most from 

irrigation. These regions or crops could then be prioritized by the decision makers for irrigation 

development. Here I chose pearl millet for my case study because it is the least irrigated crop of 

the three analyzed in this dissertation (Figure 5.1). Note that I used the proportion of area 

irrigated (ratio of irrigated area to harvested area) for each crop-year-district combination as a 

proxy for irrigation availability; this metric varied from 0 (fully rainfed) to 1 (all crop area 

irrigated). 
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Figure 5.1 Frequency distribution (proportion of total districts) of each state in different irrigation categories. 

Red bars denote states where irrigation access is available to more than 50 percent of a crop’s area; blue 

denote states where majority (more than 50 percent) of the area is rainfed. 

 

I focus on just the top five pearl millet producer states, and only discuss results from BRTs here 

for concision. I further filtered districts which met the following criteria: 

1. BRTs predicted yield losses for the 2041-2060 period under the “middle of the road” 

SSP2-4.5 scenario, and 

2. median irrigation access during the last 5 years of my data’s time range was less than 50 

percent. 
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I re-ran my models with irrigation access increased to 50 percent for all districts, and everything 

else (climate, crop area, crop calendar) identical to the “no irrigation expansion” scenario. I 

chose the 50 percent threshold (instead of a higher number like 100 percent irrigation access) to 

keep my analysis more realistic considering 2050 is just 20 years away and irrigation expansion 

has multiple practical constraints like water access, setup and maintenance costs, or 

administrative burden. The latter are obviously extremely important while planning irrigation 

projects, but my case study is a model experiment to gauge the potential benefits of irrigation as 

and when the government brings it to farmers currently practising rainfed agriculture.  

 

In my analysis, the difference between the yield loss predicted under the “no change in 

irrigation” scenario and the “50 percent irrigation access in each district” scenario signifies the 

yield loss that can be avoided by expanding irrigation to currently rainfed pearl millet production 

in these districts (Figure 5.2). Madhya Pradesh and Rajasthan stand out as the two states where 

pearl millet production will gain the most from irrigation expansion. In some districts of these 

two states, the difference between percent yield losses if irrigation remains constant, and if 

irrigation access were to increase to 50 percent, is more than five percentage points (for example, 

the dark blue dot in Rajasthan column in Figure 5.2 denotes a change in yield loss from 30 

percent to 20 percent with irrigation; in other words, yield loss there reduced by 33 percent). It 

can be reasonably argued that within the practical constraints of such an endeavor, providing 

irrigation to pearl millet farmers in the most vulnerable districts of these two states would 

provide the biggest return in terms of reducing yield vulnerability to climate change. The other 

three states of Gujarat, Haryana, and Uttar Pradesh are not expected to benefit as much from 
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irrigation expansion, mostly because many districts in these states already have some irrigation 

facilities (Figure 5.1).  

 

 

Figure 5.2 District-wise yield loss predictions under “no irrigation expansion” scenario versus those under 

“50 percent crop area with irrigation access” scenario. Higher the deviation from the y=x line, the bigger the 

impact of irrigation expansion. 

 

Nevertheless, I reiterate that interventions like the one described above have to be assessed and 

designed within practical constraints and boundaries. For example, irrigation expansion may not 

be possible in areas with already stressed water resources. Expanding irrigation into hitherto 

rainfed regions in India may place additional stress on groundwater reserves of aquifers currently 

facing depletion (Zaveri et al., 2016). Extreme spatial heterogeneity in groundwater access 
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across India has led to the development of regional hotspots which have witnessed undesirable 

outcomes in the form of overexploited aquifers. Currently, annual groundwater extraction 

exceeds natural recharge in 1186 out of 6881 blocks (groundwater observation units) in India 

(Central Ground Water Board, 2020). More importantly, most of these areas are concentrated in 

two regions (Figure 5.2). In the northwestern states of Punjab and Haryana, an epicenter of 

India’s Green Revolution, groundwater use exceeds natural recharge by 66 and 37 percent, 

respectively (Central Ground Water Board, 2020). Recent studies have reported that parts of 

India with critically depleted groundwater resources may lose up to 68 percent of their cropped 

area if they lose access to groundwater; surface irrigation will not be able to fully substitute 

groundwater in these places (Jain et al., 2021). In these cases, other adaptation strategies like 

improving irrigation efficiency, tweaking cultivation practices, or adopting drought-resistant 

varieties may be needed. So, there is a need to understand the socio-economic drivers of 

groundwater exploitation before the government embarks on an ambitious mission to expand 

groundwater access lest it manifests in faster depletion of the already stressed resources. In the 

most critical areas, farmers may even need to be incentivized to shift to less water-intensive 

crops or compensated for reducing their groundwater use (Sidhu, Kandlikar, & Ramankutty, 

2020). 

 

5.2 Limitations and future work 

Like all empirical model-based analyses, my study has limitations that warrant discussion. The 

agricultural data was acquired from ICRISAT, which collected and compiled it from multiple 

sources. This data has been used extensively in literature (Birthal, Khan, Negi, & Agarwal, 2014; 

Davis, Chhatre, Rao, Singh, & Defries, 2019; Zaveri & Lobell, 2019), and I do not doubt its 
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overall quality. Nonetheless, any errors or inconsistencies in the data would affect my results. I 

noticed some oddities that are worth mentioning here. ICRISAT reports district-level crop 

production and area; I took the ratio of those to calculate yield, and use it in all my modeling 

analysis. To investigate yield values for any discrepancies, I binned them at 0.01 t/ha intervals, 

and plotted the number of observations in each bin. Ideally, this plot should have smooth 

transitions from one bin to the next; there is no reason for there to be disproportionately more 

yield values in a certain bin compared to its immediate neighbors. However, I observe spikes at 

certain values, specifically multiples of either 0.10 or 0.25 t/ha (Figure 5.3). This can only occur 

if a disproportionate number of reported production and area values are multiples of each other 

by factors of 0.10 or 0.25. I suspect there is some rounding off and guesstimation occurring when 

district-level numbers are recorded by on-ground officials. I would like to clarify here that these 

sampling or data entry errors are not unique to the ICRISAT dataset; they are bound to creep in 

when real-life data is collected and compiled from multiple sources. 

 



130 

 

 

Figure 5.3 District-level yield values for the full dataset binned at 0.01 t/ha intervals. Spikes at multiples of 

0.10 and 0.25 t/ha are evidence of rounding off or rough estimates in reported production and area values. 

 

Two, the ICRISAT dataset provides annual crop production values. If a certain crop is harvested 

multiple times in a year, that data is provided as a single aggregated value. One example is the 

state of West Bengal where farmers grow rice for two, and sometimes three, seasons in a year 

(Shah, Chowdhury, & Shah, 2017). The yields calculated from total annual production data in 

such cases are hard to relate with the climate data because I conducted my analysis using 

seasonal (as opposed to annual) weather data according to state crop calendars. Also, the 

ICRISAT dataset had some missing values, such as irrigation data for the states of West Bengal 

and Assam; I therefore omitted West Bengal and Assam from my analysis.  
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For future climate change simulations in chapter 4, I assumed that factors like planting dates, 

length of growing season, or crop choices across regions remain constant over time. Commonly 

used adaptations like shifting where and when certain crops are grown cannot be addressed using 

my analysis. My future yield predictions under climate change also ignore the adoption of 

improved cultivar varieties better-suited for the changing climate. Also, C3 crops like rice and 

wheat (unlike C4 crops like millet) may benefit from elevated CO2 concentrations in the future 

(Kukal & Irmak, 2018). CO2 fertilization cannot be included in statistical studies like mine 

because CO2 concentration for observed panel data is a monotonically increasing value and 

impossible to isolate from the technological trend denoted by the time variable (Schlenker & 

Roberts, 2009). Furthermore, the soil moisture model used in chapter 4 was based on some 

assumptions necessitated by (lack of) data availability. I used Hargreaves’ equation for 

calculating daily ET while there are more accurate and physically sound methods such as 

Penman-Monteith; the former only requires temperature data, as opposed to the latter which 

needs temperature, humidity, and wind speed data (Allen et al., 1998). Nevertheless, the 

accuracy of Hargreaves’ method has been deemed decent and acceptable in literature 

(Hargreaves & Allen, 2003; Allen et al., 1998; Aadhar & Mishra, 2020a). 

 

Lastly, India is a large country, and national level studies like mine may ignore important trends 

and patterns that have been reported in more granular studies (Zachariah, Mondal, Das, 

Achutarao, & Ghosh, 2020). This limitation applies to all studies conducted over a large but 

heterogeneous nation state. A case can therefore be made for building more local models, and 

assessing variable relative importances in those models. Also, this dissertation only focused on 
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three major crops in India. In the future, my analysis could be extended to more crops for an 

overall assessment of the impact of climate change on Indian agriculture. Most studies in this 

field focus on food grains; analysis of non-grain crops would be a welcome contribution. My 

study was primarily focused on statistical models. As discussed earlier, there are some distinct 

advantages of process-based models. Future work could include comparisons of my results to 

process-based modeling results like those from AgMIP (Rosenzweig et al., 2013). And finally, 

my work only scratches the surface of the advantages of machine learning. I only showed one 

technique, boosted regression trees, out of numerous popular methods available. The statistical 

tradeoffs between overfitting and fitting flexible functions could be further explored with such 

techniques. 

 

5.3 Open questions and concluding thoughts 

This dissertation has extensively analyzed and dissected statistical models that are often seen as 

objectively true and used for precise yield predictions. Few studies have spent time and effort 

examining the underlying mechanisms. This sometimes, unfortunately, leads to strange results 

that stretch the limits of credibility, examples of which I will refrain from giving here. 

Regardless, I believe this dissertation has just touched the tip of the iceberg. Even something as 

mundane as geography dummy variables and time fixed effects in linear regression turned out to 

be a lot more complex with important consequences for predicting climate change impact on 

crop yields.  

 

At the risk of sounding clichéd, I finish with more questions than I started with. Some immediate 

ones include: 
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1. What is the most appropriate way to delink climatic and non-climatic determinants 

drivers of crop yield? 

2. What are the potential benefits of building a range of models, and then choosing a subset 

for near-term yield predictions based on climatic conditions? For example, in chapter 2, 

there was a noticeable difference between the performance of seasonal and subseasonal 

model during the drought year of 2002, even though their overall accuracy was similar. 

Since model accuracy varies under different climatic conditions, it would be worthwhile 

to understand which models perform best under what conditions, which can then lead to a 

more informed model selection process for making accurate yield predictions. 

3. If the choice of climate variables or statistical techniques has such a significant impact on 

future yield predictions, should the most accurate model be selected for future yield 

predictions? Or should multiple models be combined for ensemble predictions? If so, 

how? Equally weighted? Weighted by prediction accuracy? Based on standard goodness 

of fit metrics? 

4. While combining multiple models, should policymakers remain risk-averse and give 

extra weightage to models predicting yield losses, compared to those predicting yield 

gains from climate change? 

 

In conclusion, if I were to summarize the whole dissertation in one sentence, I would do well to 

borrow the words of the famous statistician, George Edward Pelham Box: 

 

“All models are wrong, but some are useful.” 
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Appendices 

Appendix A  Chapter 2 

A.1 Schematic of degree day bins calculation 

 

Figure A.1 Degree days accumulated on a particular day in different bins were calculated by subtracting 

degree days spent above Tupper (red) from the number of degree days spent above Tlower (green). Appropriate 

adjustments were made for days when the temperature curve did not cross the Tlower and/or Tupper limits. This 

quantity was then summed over the full growing season for each degree day bin and crop-district-year 

combination.0.1 
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A.2 Model performance with irrigation  

 

Figure A.2 Model (with irrigation included) performance measured in terms of adjusted R2 (top row; 

absolute values in red, increase compared to null model in blue) and RMSE (bottom row; absolute values in 

red, percent increase compared to null model in blue). The three crops are rice (left), wheat (center), and 

pearl millet (right). Within each panel, models include varying levels of climate data, with three levels each of 

temperature and precipitation (see Table 2.2 for description of levels). The models are divided into sub-panels 

with dotted lines and arranged in the following order: null model; temperature level 1 and precipitation levels 

1, 2, 3; temperature level 2 and precipitation levels 1, 2, 3; and temperature level 3 and precipitation levels 1, 

2, 3.0.2  
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A.3 State-level model performance in 1993, 1996, 2002, 2009 

 

Figure A.3 Improvement in rice model performance (in terms of RMSE reduction compared to the null 

model with no climate variables), aggregated at state level, for median precipitation (1993), median 

temperature (1996), drought (2002), and hot (2009) years. 0.3  
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Figure A.4 Improvement in wheat model performance (in terms of RMSE reduction compared to the null 

model with no climate variables), aggregated at state level, for median precipitation (1993), median 

temperature (1996), drought (2002), and hot (2009) years. 0.4  
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Figure A.5 Improvement in pearl millet model performance (in terms of RMSE reduction compared to the 

null model with no climate variables), aggregated at state level, for median precipitation (1993), median 

temperature (1996), drought (2002), and hot (2009) years. 0.5  
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A.4 Simulations of climate change impact (wheat and pearl millet) 

 

Figure A.6 Simulated impact of long-term climate change (since 1966) on wheat yield in the last decade (2002-

2011) of the study time period. The climate data was linearly detrended to remove time trend at district-scale. 

District-level estimates of median value and 95 percent confidence intervals of climate change impact on yield 

were obtained through residual bootstrapping (n = 500). The average district-level yield loss during the last 
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decade in the dataset (2002-2011) is presented here as the expected impact of climate change that has 

occurred since 1966. Only results with 95 percent significance of the confidence intervals are shown; 

insignificant results are shown in gray. 0.6  
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Figure A.7 Simulated impact of long-term climate change (since 1966) on pearl millet yield in the last decade 

(2002-2011) of the study time period. The climate data was linearly detrended to remove time trend at 

district-scale. District-level estimates of median value and 95 percent confidence intervals of climate change 

impact on yield were obtained through residual bootstrapping (n = 500). The average district-level yield loss 

during the last decade in the dataset (2002-2011) is presented here as the expected impact of climate change 
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that has occurred since 1966. Only results with 95 percent significance of the confidence intervals are shown; 

insignificant results are shown in gray. 0.7  
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Appendix B  Chapter 3 

B.1 Model accuracy for out-of-sample predictions 

 

Figure B.1 Model performance in terms of RMSE of out-of-sample predictions (lower is better). The three 

crops are rice (top), wheat (middle), and pearl millet (bottom). Within each panel, the bars are color-coded by 

climate variables included (red: no climate; green: mean seasonal temperature and total seasonal 

precipitation; blue: mean seasonal temperature, total seasonal precipitation and total precipitation days over 

growing season). From left to right, the various models depicted are: (1) lr_mono: LR with linear terms; (2) 

lr_quad: LR with quadratic terms for time and all climate variables; (3) lr_sgm: LR with single-knot 

segmented analysis; (4) brt: BRT. 0.8  
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B.2 Partial dependence plots for rice and wheat 

 

Figure B.2 Partial dependence plots of the Tavg_Psum variable set models for rice (top row), and distribution 

density of corresponding IV in training data (bottom row). The four model types are color-coded in each 

panel. Data density plots at the bottom provide an idea of where most of the training data lies for a particular 

IV. 0.9  
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Figure B.3 Partial dependence plots of the Tavg_Psum variable set models for wheat (top row), and 

distribution density of corresponding IV in training data (bottom row). The four model types are color-coded 

in each panel. Data density plots at the bottom provide an idea of where most of the training data lies for a 

particular IV. 0.10  

 

B.3 Analysis with synthetic data  

Similar to Chapter 3 section 3.3.3., we created and analyzed synthetic data, but with an 

additional knot in the data at 22 degrees Celsius (Figure B.4). With exponentially changing 

climate, BRT again predicts a smaller impact of temperature on yields and the plot is flatter 

compared to the dotted line depicting the true functional form. 
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Figure B.4 Partial dependence plots for LR (red) and BRT (cyan) models fitted on synthetic data using user-

defined coefficient for temperature. The LR is able to accurately model the relationship when there is no knot 

present (column 1; expected because the underlying data creation used a linear function), but the BRT 

sensitivity to temperature change goes down (the blue plot becomes flatter) as temperature gets more 

correlated with time (top to bottom, columns 2 and 4). 0.11  
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B.4 Climate change simulation for rice and wheat 

 

Figure B.5 Simulated impact of long-term climate change (since 1966) on rice yield in the last decade (2002-

2011) of the study time period (left); 10-year (2002-2011) average of the mean temperature during rice season 

(right). The climate data was linearly detrended to remove time trend at district-scale. District-level estimates 

of median value and 95 percent confidence intervals of climate change impact on yield were obtained through 

residual bootstrapping (n = 500). The average district-level yield loss during the last decade in the dataset 

(2002-2011) is presented here as the expected impact of climate change that has occurred since 1966. Only 
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results with 95 percent significance of the confidence intervals are shown; insignificant results are shown in 

gray. 0.12  

 

 

Figure B.6 Simulated impact of long-term climate change (since 1966) on wheat yield in the last decade (2002-

2011) of the study time period (left); 10-year (2002-2011) average of the mean temperature during wheat 

season (right). The climate data was linearly detrended to remove time trend at district-scale. District-level 

estimates of median value and 95 percent confidence intervals of climate change impact on yield were 
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obtained through residual bootstrapping (n = 500). The average district-level yield loss during the last decade 

in the dataset (2002-2011) is presented here as the expected impact of climate change that has occurred since 

1966. Only results with 95 percent significance of the confidence intervals are shown; insignificant results are 

shown in gray. 0.13  
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Appendix C  Chapter 4 

C.1 Soil moisture model development methodology 

Soil field capacity 

We acquired gridded soil profile data at 1 km x 1 km spatial resolution from SoilGrids (Hengl et 

al., 2017). This data contained soil composition (sand fraction, clay fraction, gravel content, and 

organic matter content) at multiple depths (0, 5, 15, 30, 60, 100, 200 cm). We harmonized this 

gridded data to the ICRISAT district boundaries, and created a district-wise multi-depth soil 

property dataset for India. Then we created soil columns or “buckets” for each crop. Total depth 

of the soil column for calculating field capacity was customized for each crop depending on root 

depth (Brück, Piro, Sattelmacher, & Payne, 2003; Williams et al., 1990); we assumed that any 

soil moisture beyond the root depth is inaccessible to a plant, hence total soil field capacity was 

adjusted accordingly for each crop. This soil column’s maximum moisture content, or field 

capacity, (in mm of water) was calculated by applying the relevant pedotransfer functions 

(Saxton & Rawls, 2006) on soil characteristics at each depth that SoilGrids data is available for. 

 

Evapotranspiration (ET) calculations 

We constructed a simplified water balance model to estimate the influence of soil moisture 

deficit on crop yield. We first calculated reference evapotranspiration (ETo) using Hargreaves 

method (Hargreaves & Allen, 2003). The choice of ETo calculation method was dictated by 

historical data availability for our study’s time period: Hargreaves’ equation only requires 

temperature data, as opposed to the more popular and physically sound Penman-Monteith 

technique which needs temperature, humidity, and wind speed data (Allen et al., 1998). 

Importantly, Hargreaves and Penman-Monteith methods perform similarly for arid and semi-arid 
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unirrigated regions (Hargreaves & Allen, 2003), and Hargreaves’ method is among the few, if 

not the only, temperature methods that have been shown to give globally valid ETo estimates 

without requiring any local calibration (Allen et al., 1998). Even though Hargreaves’ method 

only uses temperature data to calculate ETo, it has been shown to simulate similar ETo patterns 

across South Asia as Penman-Monteith technique (Aadhar & Mishra, 2020a). We calculated ETo 

at daily timescale using equation (C.1): 

 

𝐸𝑇𝑜  =  0.0023 𝑅𝑎 (𝑇𝐶 +  17.8)𝑇𝑅0.5  , (C.1) 

 

where Ra is location-specific daily extraterrestrial radiation; TC is average daily temperature; TR 

is daily temperature range (difference between daily minimum and maximum temperature). Ra 

was calculated using the methodology outlined in (De Gol, Festa, & Ratto, 1987) and also 

recommended by FAO (Allen et al., 1998): 

 

𝑅𝑎  =  24(3600)/𝜋 ⋅  𝐼𝑠𝑐  𝐸𝑜 [𝜔 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝛿)  +  𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜔)  , (C.2) 

𝐸𝑜  =  1 +  0.033/𝑐𝑜𝑠(2𝜋𝑑/365)  , (C.3) 

𝜔 =  𝑐𝑜𝑠−1(−𝑡𝑎𝑛(𝜙) 𝑡𝑎𝑛(𝛿)) , if 𝑡𝑎𝑛(𝜙) 𝑡𝑎𝑛(𝛿)  ∈  [−1, 1]  (C.4) 

𝜔 =  𝜋 ,    if 𝑡𝑎𝑛(𝜙)𝑡𝑎𝑛(𝛿) > 1  (C.5) 

𝜔 =  0 ,    if 𝑡𝑎𝑛(𝜙)𝑡𝑎𝑛(𝛿) <  −1  (C.6) 

𝜙 =  𝜋/180 ⋅  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 (𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠)  , (C.7) 

𝛿 =  0.4093 𝑠𝑖𝑛(2𝜋𝑑/365 −  1.3943) ,  (C.8) 
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where Ra is extraterrestrial radiation (MJ m-2 day-1); Isc is the solar constant (1366 x 10-6 MJ m-2 

sec-1); Eo is eccentricity correction factor (or inverse relative distance Earth-Sun); ω is the sunrise 

hour angle (radians); φ is the latitude (radians); δ is the solar declination; d is the day number of 

the year. Ra was converted to mm/day units using equation (C.9): 

 

𝑅𝑎 (𝑖𝑛 𝑚𝑚 𝑑𝑎𝑦−1)  =  0.40756 𝑅𝑎 (𝑖𝑛 𝑀𝐽 𝑚−2 𝑑𝑎𝑦−1) , (C.9) 

 

ETo thus calculated was subsequently used to calculate crop specific ET (ETc) for each of our 

crops using equation (C.10): 

 

𝐸𝑇𝑐  =  𝑘𝑐  𝐸𝑇𝑜  , (C.10) 

 

where kc refers to individual crop ET coefficients (Allen et al., 1998). For our analysis, we were 

also interested in the subseasonal variation in ETc, so we used subseasonal values of kc for 

various growth stages of each crop. 

 

Water balance model 

Daily ETc is the maximum evapotranspiration possible under water-sufficient conditions. We 

used the technique outlined in Ramankutty, Foley, Norman, & Mcsweeney (2002) to run our 

daily soil moisture model. The actual ET, ETact, was calculated as the minimum of ETc and 

available soil moisture, M: 
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𝐸𝑇𝑎𝑐𝑡  =  𝑚𝑖𝑛(𝐸𝑇𝑐, 𝑀)   , (C.11) 

 

and the daily change in soil moisture amount was calculated using our bucket model: 

 

𝛥𝑀 =  𝑃 − 𝐸𝑇𝑎𝑐𝑡  ,    while  𝑀 ≤ 𝑀𝑚𝑎𝑥     (C.12) 

 

where P is daily precipitation (mm/day); Mmax is soil field capacity, or maximum moisture held 

in soil after excess runoff. If M > Mmax, it was reset to Mmax and all excess water became runoff. 

The daily availability of water to plants, ɑ, was expressed in terms of a moisture index: 

 

𝛼 =  𝐸𝑇𝑎𝑐𝑡 / 𝐸𝑇𝑐 . (C.13) 

 

ɑ varied from 0 (fully dry soil) to 1 (no moisture stress, ETact equals ETc). We started our model 

two years before our study period to allow the soil moisture to come to equilibrium by the first 

year of our study. We then created five moisture availability categories, and binned each day of 

the crop growing season depending on daily moisture availability: 

1. ɑ = 1.00 

2. ɑ < 1.00, ɑ ≥ 0.75 

3. ɑ < 0.75, ɑ ≥ 0.50 

4. ɑ < 0.50, ɑ ≥ 0.25 

5. ɑ < 0.25 

 

Relative importance of soil moisture models versus precipitation-based models 
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Figure C.1 Relative importance of time (blue), geography (green), and climate (red) variables across the no 

climate null model, and the three models analyzed for rice (left), wheat (center), and pearl millet (right). Note 

that the sum of the relative importances of time, geography, and climate variables equals R2, which shows 

minimal improvement in overall model fit compared to the simplest null model on the left for each crop. 0.14  
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C.2 Temporal trend in various climate variables for a sample district 

 

Figure C.2 Temporal trends in various climatic variables from 2020-2100 under different SSP scenarios 

(coded by color) for a sample district (Patiala (Punjab)) and rice (representative kharif crop). The columns 

from left to right show different GCMs analyzed in this study, and rows from top to bottom contain various 

climate variables. 0.15  
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Figure C.3 Temporal trends in various climatic variables from 2020-2100 under different SSP scenarios 

(coded by color) for a sample district (Patiala (Punjab)) and wheat (representative rabi crop). The columns 

from left to right show different GCMs analyzed in this study, and rows from top to bottom contain various 

climate variables. 0.16  
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C.3 Soil moisture trends for a sample district 

 

Figure C.4 Temporal trends in soil moisture amount from 2020-2100 under different SSP scenarios (top to 

bottom) for a sample district (Patiala (Punjab)) and rice (representative kharif crop). The columns from left 

to right relate to different GCMs analyzed in this study. Red plots show the fraction of growing season spent 

by the crop in the lowest water availability bin (days with less than 25 percent of daily evapotranspiration 

demand met), and blue show fraction of growing season spent under zero water stress (sufficient soil moisture 

to meet full crop evapotranspiration demand). The general trend reveals an increase in soil moisture 

availability over time (blue plots going up, red plots going down). 0.17  
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C.4 Growing degree days 

 

Figure C.5 gdd_10 (left), gdd_20 (middle), and gdd_30 (right) as a ratio of the corresponding variable for the 

reference climatology (1951-2000). Plots depict representative kharif (rice; top) and rabi (wheat; bottom) 

crops, for near-term (2041-2060) changes for the SSP2-4.5 scenario. Median values of district-wise 

projections from the 13 GCMs were used to produce these plots. 0.18  
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C.5 Precipitation amount and precipitation days 

 

Figure C.6 Distribution of district-wise ratio of total seasonal precipitation (to reference climatology 

precipitation) for representative kharif (rice; columns 1 and 2) and rabi (wheat; columns 3 and 4) crops, both 

for the short-term (2041-2060; columns 1 and 3) and long-term (2081-2100; columns 2 and 4). Different SSPs 

are depicted on the y-axis, ordered by intensity of emissions from bottom to top. The semi-transparent 

density plots depict distributions from each of the 13 GCMs analyzed in this study; the bold black line is the 

distribution of the median projection of the 13 GCMs for each district. 0.19  
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Figure C.7 Distribution of district-wise ratio of total seasonal precipitation days (to reference climatology 

precipitation days) for representative kharif (rice; columns 1 and 2) and rabi (wheat; columns 3 and 4) crops, 

both for the short-term (2041-2060; columns 1 and 3) and long-term (2081-2100; columns 2 and 4). Different 

SSPs are depicted on the y-axis, ordered by intensity of emissions from bottom to top. The semi-transparent 

density plots depict distributions from each of the 13 GCMs analyzed in this study; the bold black line is the 

distribution of the median projection of the 13 GCMs for each district. 0.20  
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C.6 National percent loss in crop yield 

 

Figure C.8 Nationally-averaged percent change in yield for rice (top), wheat (middle), and pearl millet 

(bottom). Columns 1-4 depict SSP2-4.5 near-term, SSP2-4.5 long-term, SSP5-8.5 near-term, and SSP5-8.5 

long-term. The plots are color coded by climate variable set. Within each panel, boxplots are grouped by 

model types from left to right: lr_mono, lr_quad, lr_sgm, and brt. Boxplots show median values of estimates 

from 13 GCMs. 0.21  
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C.7 Predicted reduction in crop yield (all climate variable sets) 

 

Figure C.9 Distribution of district-level percent change in yield for rice in the short-term (2041-2060). Rows 

1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-6 depict all climate variable 

sets analyzed in this study. SSP scenarios are color-coded within each panel. Plots show median values of 

estimates from 13 GCMs. 0.22  
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Figure C.10 Distribution of district-level percent change in yield for wheat in the short-term (2041-2060). 

Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-6 depict all climate 

variable sets analyzed in this study. SSP scenarios are color-coded within each panel. Plots show median 

values of estimates from 13 GCMs. 0.23  
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Figure C.11 Distribution of district-level percent change in yield for pearl millet in the short-term (2041-

2060). Rows 1-4 show the four model types: lr_mono, lr_quad, lr_sgm, and brt. Columns 1-6 depict all 

climate variable sets analyzed in this study. SSP scenarios are color-coded within each panel. Plots show 

median values of estimates from 13 GCMs. 0.24  
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