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Abstract

RATIONALE : People living with HIV (PLWH) appear to have increased proneness to
chronic obstructive pulmonary disease (COPD) independent of their cigarette smoke ex-
posure. Previous studies have shown that HIV infection is associated with changes in the
airway microbiome and host response, however the exact mechanism of disease progression
is still unknown. We hypothesize that airway epithelial dysbiosis in PLWH increases the
susceptibility to COPD in this group.

METHODS : Airway epithelial cell brushings were obtained from 18 COPD+HIV+,
16 COPD-HIV+, 22 COPD+HIV- and 20 COPD-HIV- subjects. Microbiome, methy-
lation and transcriptome profiles were measured using 16s amplicon sequencing (Illumina
Miseq®), Illumina Infinium Methylation EPIC chip®, and RNA sequencing (NovaSeq
6000®), respectively. Microbiome analysis was performed using QIIME 2™, and transcrip-
tome and methylation analyses were performed using R language. The three datasets were
integrated using Data Integration Analysis for Biomarker discovery using Latent cOm-
ponents (DIABLO) implemented in the mixOmics R package. Fifty repeats of 10-fold
cross-validations and a correlation threshold of 0.7 were set to determine key interactions
between bacterial ASVs, CpG methylation sites, and gene transcripts amongst the subjects
based on their COPD, HIV and combined COPD and HIV statuses.

RESULTS : The microbiome analysis identified that the groups most associated with dis-
ease (COPD+, HIV+ and COPD+HIV+ groups) had reduced alpha diversity (Shannon
Diversity Index p=0.0013, p=0023 and p=0.0002, respectively), and significantly disrupted
microbial communities (Bray Curtis PERMANOVA p=0.001, p=0.007 and p=0.001, re-
spectively) compared to their relatively ”healthy” counterparts. This was accompanied
by changes in the host transcriptome and epigenome, our analysis of which identified top
genes and CpG sites that were differentially regulated in patients with COPD and/or HIV.
Integration of the three -omes identified features that were correlated with one another at
a threshold >0.70. On combining the COPD and HIV statuses of subjects, the multiomic
integration identified correlations between the bacterial ASV Bacteroidetes Prevotella and
transcriptomic features FUZ, FASTKD3 and ACVR1B, and epigenetic features CpG-FUZ
and CpG-PHLDB3. It may be that these features together influence host pathways regu-
lating mucociliary clearance, respiration and energy, cell cycle, and immunity.
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Lay Summary

People living with HIV are increasingly susceptible to COPD independent of well-known
risk factors like tobacco smoking. This increased respiratory burden has been attributed
partly to lung microbiome alterations, which may be linked to changes in host response.
Our microbiome analyses validated previous reports that there is reduced microbial diver-
sity and community structures changes in COPD and/or HIV patients compared to healthy
individuals. This may be accompanied by changes in host processes such as gene expres-
sion and methylation, our analysis of which identified top were differentially regulated genes
and methylation sites, respectively, in patients with COPD and/or HIV. On integrating
the microbiome, transcriptome and methylome, we identified highly correlated features
that may be targets against HIV-associated COPD. We especially highlight the microbial
feature Bacteroidetes Prevotella which was highly correlated with genes and methylation
sites related to host pathways such as cilium assembly, mitochondrial respiration, cell cycle
regulation and inflammation.
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Chapter 1

Introduction

1.1 Chronic Obstructive Pulmonary Disease (COPD)

1.1.1 Background and Significance

The World Health Organization projects COPD to become the third leading cause of death
by 2030 [151]. COPD is a major public health problem, with morbidity and mortality rates
on the rise. The lack of consensus on aspects like screening, staging, assessment and treat-
ment of the disease deem it a formidable challenge for healthcare systems worldwide[193].

COPD is defined by the Global Initiative for Obstructive Lung Disease (GOLD) as “a
common, preventable and treatable disease that is characterized by persistent respiratory
symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usu-
ally caused by significant exposure to noxious particles or gases”[69]. It is denoted by two
frequently coexisting conditions: small airways disease and emphysema. Small airways
disease is marked by inflammation and destruction of the terminal bronchioles, resulting in
mucus hypersecretion by goblet cells and airway obstruction[96]. In emphysema, alveolar
walls are damaged leading to loss of elasticity of air sacs, making it difficult for people with
the disease to fully expel air out of their lungs. Additionally, emphysema can cause the
alveoli to rupture reducing the surface area available for gas exchange[70].

1.1.2 Risk Factors

There are a number of factors that play a role in COPD, with tobacco smoking being the
most commonly encountered risk factor. Tobacco contains a number of noxious components
that can cause abnormal pulmonary inflammation and the release of pro-inflammatory me-
diators by inviting the host’s immune system to attack the lung tissue. This causes severe
oxidant/antioxidant imbalance, protease/anti-protease imbalance, dysfunction of the auto-
nomic nervous system, and changes in cholinergic nerves that further aggravate pulmonary
inflammation, all resulting in extensive lung tissue destruction[7]. The pivotal role of
smoking as a risk factor can also be explained by the fact that smoking cessation has been
shown to delay the onset of COPD symptoms and improve quality of life in patients[106].
However, only a small percentage of chronic heavy smokers show decline in lung function
and develop COPD, which highlights the contribution of other risk factors to the disease
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[174]. These include environmental and occupational exposures to dusts, fumes and indoor
biomass fuel burning, and repeated respiratory infections. There are also known genetic
risk factors such as alpha 1-antitrypsin deficiency that can contribute to the development
of COPD [175].

Recently, patients living with human immunodeficiency virus (HIV) have also been shown
to have an elevated risk for COPD [49]. The contribution made by the virus towards the
increased burden of obstructive lung disease is further complicated by higher rates of smok-
ing, illicit drug use, previous pulmonary opportunistic infections and low socioeconomic
status seen in the HIV-infected population [100] [128]. Despite that, a number of studies
suggest that HIV is an independent risk factor for the development of COPD [137] [5].

1.2 Human Immunodeficiency Virus

Human Immunodeficiency Virus (HIV) is a virus that attacks the body’s immune system.
It is a member of the Lentivirus genus of the Retroviridae family. HIV isolates are grouped
into two main types, HIV-1 and HIV-2, of which the most common and infectious strain
is HIV-1. HIV infection is a chronic, potentially life-threatening condition, typically with
a long period of clinical latency and persistent viral replication [58].

1.2.1 Immunopathogenesis of HIV Infection

HIV is transmitted via certain bodily fluids such as blood, semen, vaginal secretions, and
breast milk, when they come in contact with mucous membranes, damaged tissue or via
direct injection into the bloodstream [188]. In fact, HIV cannot survive outside the host’s
bloodstream or lymphatic tissue [150].

A multitude of processes are involved in the establishment and progression of HIV disease.
Upon primary infection, HIV-infected cells can transfer the virus to immune cells such as
T-cells, macrophages,and dendritic cells, as well as cells lining vaginal or anorectal mucosae
[129]. HIV enters dendritic cells, migrates to the lymph nodes and disseminates to its pri-
mary target cells, CD4+ T-cells. Viral entry into T-cells is mediated by the interactions
between the envelope glycoprotein gp120 and the CD4 receptor and a co-receptor (mainly
the chemokine receptors CCR5 and CXCR4) [115]. Infected cells, especially macrophages
and resting CD4+ T-cells, can act as viral reservoirs and establish latent infection by es-
caping the viral immune response and effective regimens of antiretroviral therapy. Given
appropriate stimulus, they can reactivate and start producing infectious virions [2]. In
addition to causing an aberrant activation of the immune system, HIV also increases levels
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of certain proinflammatory cytokines which regulate viral expression in other tissues [208].

In the early stages of infection (often referred to as ”acute infection” and occurring in the
first two weeks), plasma viral levels rise exponentially to reach a peak of over 106 RNA
copies/ml [17] [168]. The symptoms of acute HIV infection that typically first present
during this phase include fever, fatigue, rash, headache, and enlarged lymph nodes. These
symptoms resolve spontaneously after 1 to 2 weeks, following which patients can remain
in a latent asymptomatic state for years [132]. Because the symptoms of HIV are initially
nonspecific, acute HIV infection is often underdiagnosed or misdiagnosed as a variety of
other illnesses, including infectious mononucleosis, secondary syphilis, acute infection with
hepatitis A or B, roseola or other viral infections, and toxoplasmosis [93].

The acute infection stage is characterized by high levels of infectivity, and is normally
short-lived because the host’s immune response responds to and regulates viral replication.
After the initial rise in plasma viremia, the titers decline over a period of months until they
reach a steady-state level of viral replication (viral set-point) or drop below detection level
[93] [120]. The viral set-point may be influenced by factors related to genetic differences in
co-receptors [191] [83], qualitative differences in the immune response [162], or differences
in the virulence of viral strains [99]. Establishing a lower set-point, as a consequence of
lowering the viral load during primary infection, is clinically important as it slows disease
progression.

With the drop of HIV viremia levels and absence of symptoms, most infected persons enter
into a clinical asymptomatic period. During this period, the host’s immune system rec-
ognizes viral antigens present on surfaces of infected cells and promotes their elimination
by antigen-specific cytotoxic mechanisms [9], while the virus continues to replicate at the
reservoir lymph sites. Several factors are implicated in why antiviral immunity is unable
to completely eradicate the infection. These include the persistence of virus in the reser-
voir sites, low expression of viral antigens, and the high rate of mutations within the viral
genome. The resulting dynamic equilibrium between HIV replication and host antiviral
immunity sets the stage for chronic systemic inflammation. Continuous immune activation
may arise due to the presence of HIV, microbial products and co-infections, and other
homeostatic mechanisms [61]. This milieu allows for further viral replication, destruction
of the lymphoid tissue architecture, repeated cycles of T-cell loss and replenishment, even-
tually culminating in the functional exhaustion of T-cells and immunodeficiency [76].

The further progression of the disease to AIDS is dependent on the capacity of the host to
contain viral replication and to reconstitute the pool of memory T-cells. However, as the
disease advances, CD4 T-cell numbers decline gradually (< 200 cells/µl) and the immune
system is impaired, creating permissive conditions for various parasitic [19], bacterial, viral
and fungal co-infections [60], tumours, and other complications. Infected individuals expe-
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rience severe reduction of body weight, fever, respiratory and gastrointestinal symptoms,
night sweats, and oral or genital ulcers. During the AIDS phase, encephalopathy [30],
anaemia and marked lymphopenia [159], neoplastic diseases such as Kaposi’s sarcoma and
lymphomas [177] are frequently detected. The progression of the HIV disease is extremely
variable, depending on viral control and the antiviral response of the host. Most patients
diagnosed with HIV are likely to develop AIDS within ten years if left untreated [212].
However, if antiretroviral therapy is initiated, the individual may achieve lifespans compa-
rable to the general population [127].

Antiretroviral therapy (ART), consisting of a combination of antiretroviral drugs, is now
the standard-of-care therapy for people living with HIV (PLWH) [152]. Although it is
not curative, ART can provide longer lives for patients and reduce HIV transmission by
suppressing HIV replication in infected cells and lowering the plasma viral load [95] [153].

1.3 HIV and Lung Function

Studies conducted in the pre-ART era first noted the association between respiratory func-
tion abnormalities and HIV infection [167]. During this era, the pulmonary manifestations
of HIV were dominated by infectious complications [85]. PLWH exhibited reduced diffusing
capacity for carbon monoxide (DLCO), increased emphysema, increased airway obstruc-
tion and small airways disease, and increased prevalence of dyspnea, cough and sputum
production than HIV-negative subjects. Risk factors for respiratory symptoms and pul-
monary function abnormalities in the pre-ART era included smoking, illicit drug use, low
CD4 counts and pulmonary infections. [167] [68] [41][134][43].

In the ART-era, pulmonary complications, especially COPD and asthma, are common in
PLWH, particularly in those who smoke [205][79]. In cohort studies of PLWH, it was noted
that 16–20% have asthma or COPD, 21% have obstructive ventilatory defects, and more
than 50% have reduced diffusing capacity measurements [49]. Another study by Drum-
mond et al on PLWH who concurrently inject drugs showed that with poorly controlled
HIV infection (CD4 cell count < 100/uL), FEV1 decline is accelerated by 57 mL/year
compared to HIV-uninfected patients [51]. Crothers et al, in a prospective observational
study of HIV-infected and uninfected men enrolled in the Veterans Aging Cohort 5 Site
Study identified that HIV infection was an independent risk factor for COPD [34]. In a
later study, they analyzed data from age, sex, ethnicity and site-matched HIV-infected
and uninfected veterans, and observed that the HIV-infected were more likely to develop
COPD, asthma, as well as pulmonary infections, when compared to the uninfected group.
This greater burden of pulmonary complications in HIV-infected patients was attributed
to aging-related changes in lung health [35] .
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1.3.1 Mechanisms of COPD in HIV

The unique mechanisms for the increased incidence of non-opportunistic chronic lung dis-
eases in the milieu of a viral infection are poorly understood. However, there are a number
of hypotheses proposed to understand the pathogenesis of COPD in HIV [105]. The preva-
lence of low socioeconomic conditions and risky behaviors like injection/inhalational drug
use and tobacco smoking, particularly high in PLWH, are factors that may be responsible
for the increased risk of COPD observed in this population [72] [148]

Some studies conducted in the ART-era have also reported ART to be an independent
predictor of increased airway obstruction [64] [68]. The exact mechanism of how this hap-
pens is unknown, but potential explanations include: 1) the direct effects of ART - it is
proposed that antiretroviral agents, particularly protease inhibitors, may cause endothelial
damage to the pulmonary capillary bed resulting in the reduced effective blood volume for
gas exchange (reduced DLCO) [42]; 2) immune reconstitution inflammatory syndrome -
restoration of the immune system after ART is initiated might result in a state of chronic
inflammation propagated by colonizing organisms, autoantigens, or by HIV itself [138][74];
3) possible development of auto-immunity - which may occur as a side effect of restor-
ing immunocompetence in previously immunocompromised individuals after the successful
introduction of ART [169]. Nonetheless, a recent randomized substudy in the Strategic
Timing of Antiretroviral Treatment (START) cohort identified no significant difference in
lung function decline between those that started ART immediately vs. those that deferred
until CD4+ T-cell counts were 350 cells/mm3 or AIDS developed [104].

Inflammation associated with sub-clinical infections has also been proposed as a risk factor
for the development of COPD. Pneumocystis pneumonia (PCP), a cause of pneumonia in
immunocompromised hosts, is a leading cause of death in HIV-infected individuals. Al-
though, with the development of ART, the incidence of PCP has reduced, it is still a cause
for concern in individuals with no access or poor response to ART [139]. Pneumocystis
has been implicated in the ”vicious circle” hypothesis where colonization by the organism
particularly in the lower airways perpetuates a state of inflammation and lung tissue re-
modelling [183]. Evidence has also linked Pneumocystis jirovecii, a fungal opportunistic
pathogen, to COPD development and severity in HIV-infected and uninfected individu-
als [142] [141] [24] [81]. Shipley et al used cynomolgus macaques infected with chimeric
simian-human immunodeficiency virus (SHIV) as an AIDS model to study Pneumocystis
colonization in HIV-associated COPD. They recorded significant emphysematous tissue
damage and elevated levels of pro-inflammatory mediators in the BAL of SHIV-infected
macaques with Pneumocystis colonization, and minimal effects in macaques without Pneu-
mocystis [186].

Increased oxidative stress is another potential mechanism linking HIV and COPD. COPD,
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largely being a disease of the elderly, is associated with accelerated ageing and oxidative
stress [10]. This may occur in part, as a result of exposure to cigarette smoking and
other pollutants, but also from the activation of inflammatory cells, particularly during
HIV infection, which produce reactive oxygen species (ROS) [138]. This could explain
the characteristic signs of accelerated ageing such as telomere shortening, DNA damage,
mitochondrial dysfunction, reduced autophagy, accelerated cellular senescence and death,
seen in these patients [214].

Epidemiological data suggest that HIV itself may be an independent risk factor for COPD,
after adjusting for age, ethnicity and pack-years of smoking [34]. Uncontrolled HIV infec-
tion, with lower nadir CD4 cell count and higher viral load, may be associated with an
increased risk for obstructive lung diseases, including COPD and asthma [50] [173] [49].
HIV-infected individuals also have an increased susceptibility to bacterial colonization,
aberrant inflammatory responses, altered oxidant–antioxidant balance, increased apopto-
sis, decreased respiratory muscle function, systemic effects of HIV-related viral proteins,
and a host of other factors that may play a role in the accelerated lung function decline
[194][105]. Many of these factors may act together and result in the many manifestations
seen in the HIV lung [138].
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Chapter 2

HIV and the Lung Microbiome

2.1 Introduction

2.1.1 What is the Microbiome?

The term ’microbiome’ refers to a specific biological niche, including the assemblage of
microorganisms (also called ’microbiota’), their genomic content and metabolic products,
and the surrounding environmental conditions [126]. The microbiome is a living ecosys-
tem, including, but not limited to, a collection of microorganisms such as bacteria, archaea,
viruses and fungi, which form a highly complex network of interactions between each other
and the host. The composition of the microbiome is unique in each individual, and is
influenced by factors such as body site, diet, antibiotics, lifestyle, socioeconomic status,
pollution and other environmental factors [67]. Most elements of these microorganisms in-
habit the human skin, nails, eyes, genitalia, oral and upper respiratory and gastrointestinal
tracts, and are harmless in healthy individuals [121].

Due to its influence on human health and disease, the microbiome has especially been of
research interest recently. A review conducted by Petersen et.al. characterized changes in
the microbiome (or dysbiosis) as the (i) loss of beneficial microbial organisms, (ii) expansion
of potentially harmful microorganisms and/or (iii) loss of overall microbial diversity. Mi-
crobial dysbiosis has been shown to have overall effects on health, immunity, development,
and disease progression [156]. In recent years, microbial dysbiosis has been implicated in
numerous diseases, including inflammatory bowel disease [65] [62], multiple sclerosis, type-
1 diabetes [221] [222], allergies [206], asthma [78], autism [59] [80], and cancer [102] [63].

2.1.2 The Respiratory Microbiome, COPD and HIV

The lung microbiome differs between individuals with and without COPD [84] [37]. Studies
by Hilty et al with bronchial brushings found increased levels of Proteobacteria (particu-
larly Haemophilus spp.) and reduced levels of Bacteroidetes (particularly Prevotella spp.)
in asthma and COPD patients compared to controls [78]. Extending these findings in lung
tissue samples, Sze and colleagues observed that the genus Lactobacillus increases signif-
icantly in patients with severe COPD [195]. In another paper, Sze and group observed
reduced microbial diversity in COPD subjects, which was associated with emphysematous
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destruction, remodeling of the bronchiolar and alveolar tissue, and immune infiltration. In
line with previous studies, they also found that there was a relative expansion of Proteobac-
teria and Actinobacteria phyla, in contrast to the diminishing Firmicutes and Bacteroidetes
phyla in COPD patients when compared to controls. Furthermore, they identified 10 mi-
crobial features, including Haemophilus influenzae, that could discriminate between control
and very severe COPD lung tissue [196].

The microbiome of the upper and lower respiratory tracts in PLWH and HIV-uninfected
individuals have been investigated in several studies [87] [112]. In examining the upper res-
piratory tract, Li et al identified that the composition of the oral microbiome was changed
in HIV-infected subjects compared to the uninfected subjects, both before and after ART.
They observed that PLWH had higher levels of certain microbes including Streptococci and
Lactobacilli in saliva compared to HIV-negative subjects. They also proposed that ART
may be able to directly or indirectly reverse these changes to the salivary microbiome,
allowing reconstitution of the oral microbiota [119]. In a study by Dang et al, tongue
scrapings were sampled in people with untreated HIV infection. They observed higher pro-
portions of pathogenic Veillonella, Prevotella, Megasphaera, and Campylobacter species,
and reduced commensal Streptococcus and Veillonella species in PLWH relative to healthy
controls [39]. A Lung HIV Microbiome Project study by Beck et al used oral washes and
BALs to compare the oral and lung microbiomes respectively, in PLWH with and without
ART, and HIV-uninfected subjects. They saw that the oral microbiome differed based on
HIV status, whereas lung communities sampled by BAL were similar between the groups.
Additionally, they found Streptococcus and Actinomyces to be more prevalent in the ART-
näıve PLWH, while Rothia to be more abundant in the ART-treated PLWH [14].

On examining the lower respiratory tract, Lozupone et al identified an increased colo-
nization of the lungs with Tropheryma whipplei in BAL of PLWH compared to the HIV-
uninfected population, and that the relative abundance of T. whipplei significantly declined
with ART [122]. Xu et al observed a decrease in microbial diversity in the HIV small airway
epithelium, and this was correlated with reduced FEV1/FVC, but only in HIV-negative
individuals. They also observed that PLWH had increased Proteobacteria levels and de-
creased Bacteroidetes and Firmicutes levels compared with HIV-negative controls [214].
Twigg et al examined the BAL of subjects infected with HIV with advanced disease and
uninfected controls. In contrast to the findings of Beck et al, this group demonstrated
decreased alpha diversity (measure of richness and evenness) and greater beta diversity in
the BAL of the HIV-infected population. They also observed increased levels of Prevotella
and Veillonella in HIV BAL after 1 year of ART [207]. Other groups have shown that the
increased abundance of fungal species such as Pneumocystis in the HIV lung can cause
airway inflammation and pulmonary function decline [149][143][48]. Together, these re-
ports suggest that HIV infection alters the lung microbiome. Antibiotic exposures, cycles
of inflammation and immunosuppression, ART, and repeated pulmonary infections may be
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other important predictors of microbial dysbiosis in the HIV lung.

2.2 Overarching Hypothesis

From review of literature, we know that integrative studies of multi-dimensional high
throughput “-omics” measurements in the context of HIV-associated COPD are limited.
We hypothesize that microbial dysbiosis increases COPD susceptibility in people living
with HIV.

2.3 Aim 1

Analyze the airway microbiome of subjects with COPD and/or HIV, with further charac-
terization of alpha and beta diversities.

2.4 Methods

2.4.1 Study Population and Design

Cytological brushings of airway epithelial cells were obtained during bronchoscopy from
76 (18 COPD+HIV+, 16 COPD-HIV+, 22 COPD+HIV- and 20 COPD-HIV-) patients
at St. Paul’s Hospital, Vancouver, BC. Participants could either volunteer for a research
bronchoscopy or be enrolled while undergoing bronchoscopy for various clinical indica-
tions (the most common being small pulmonary nodules and idiopathic chronic cough).
Bronchoscopy was performed under conscious sedation, where 6 to 8 bronchial epithelial
brushings were obtained from the right or left upper lobe in the small airways (diameter ≤
2mm), avoiding areas of disease (i.e. pulmonary nodules). Bronchial epithelial brushings
were preserved using DNA/RNA shield from Zymo Research (CA, USA) for preservation
of genetic material. All patients underwent spirometry testing according to American Tho-
racic Society/European Respiratory Society guidelines. This study took place between 2015
and 2019 at the University of British Columbia Centre for Heart Lung Innovation (HLI)
at St. Paul’s Hospital and is approved by the Providence Health Care Research Institute
ethics committee (Certificate H15-02166). COPD was defined as either a respirologist di-
agnosis of COPD or a pre-bronchodilator forced expiratory volume in 1s (FEV1)/forced
vital capacity (FVC) ratio < 70% at screening, and a smoking history of greater than 10
pack-years without an alternative diagnosis to explain airflow obstruction. PLWH were
defined as subjects with documented positive HIV-1 infection.
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2.4.2 Microbiome Sequencing and Analysis

Microbiome amplicon sequence variants (ASVs), CpG (region of DNA where a cytosine
nucleotide is followed by a guanine nucleotide in the 5’→ 3’ direction) methylation (Chap-
ter 3), and gene expression (Chapter 3) were measured on the same 76 subjects. Further
steps were carried out in triplicate for the independent analysis of (1) the COPD effect
by comparing COPD- vs COPD+ subjects, (2) the HIV effect by comparing HIV- vs
HIV+ subjects, and (3) the combined COPD & HIV effect by comparing the 4 groups -
COPD+HIV+, COPD-HIV+, COPD+HIV- and COPD-HIV-.

The microbiome profiles of airway epithelial cells, quantified using the V4 hypervariable re-
gion of the 16s rRNA gene, were obtained using touchdown droplet digital polymerase chain
reaction (ddPCR), followed by 16s amplicon sequencing using the Illumina Miseq® plat-
form. Sequencing data (fastq files) was analyzed using QIIME 2™ (https://qiime2.org/.1),
a microbiome analysis package that is used for taxonomy classification and translating raw
sequence data into useful statistical results. Barcode sequences were assigned to their as-
sociated samples (demultiplexed), and Divisive Amplicon Denoising Algorithm (DADA2)
was used to correct for Illumina amplicon sequence data, and remove low quality sequence
regions. During this step, the sequencing reads were merged and resolved into amplicon
sequence variants (ASVs).

Further filtering was done to remove ASVs observed consistently in the PCR controls, and
other contaminants such as host mitochondrial or chloroplast sequences, ASVs with signifi-
cantly fewer sequences than the majority, and ASVs present only in one sample (singletons).
Following quality filtering steps, sequences were mapped to taxonomy using a pre-trained
näıve Bayes classifier artifact trained against Greengenes (13 8 revision) trimmed to contain
only the V4 hypervariable region and pre-clustered at 99% sequence identity. Using the
MAFFT program in the QIIME 2™ pipeline, a rooted phylogenetic tree was generated and
was consecutively used as input to compute different phylogenetic diversity measures. The
final outputs from QIIME 2™ (feature table, taxonomy file and phylogenetic tree) were
exported for further analysis in R. Alpha diversity differences between (a) the COPD+
and COPD- group, (b) HIV+ and HIV- group, and (c) the COPD+HIV+, COPD-HIV+,
COPD+HIV- and COPD-HIV- groups were measured using the Shannon diversity index
(a metric of both community richness and evenness), and Faith’s phylogenetic diversity
(a measure of biodiversity that incorporates phylogenetic difference between species), and
visualized using box plots. Beta diversity was measured using the Bray-Curtis dissimilarity
index (a metric of differences in richness between two communities), tested with permu-
tational multivariate analysis of variance (PERMANOVA), and visualized using principal
components analysis (PCA).

Average relative taxon abundance comparisons were performed between (a) the COPD+

10



and COPD- group, (b) HIV+ and HIV- group, and (c) the COPD+HIV+, COPD-HIV+,
COPD+HIV- and COPD-HIV- groups at the phylum and genus levels. In the COPD-effect
and HIV-effect analyses, P-values were determined using the Mann-Whitney U test, and
the Benjamini-Hochberg procedure (false discovery rate method correction) was applied
to obtain adjusted P values for multiple comparisons between groups. For the combined
COPD & HIV analysis, the Kruskal-Wallis test was used to know if there is a significant
difference between groups, followed by the Dunn’s test to identify which groups are differ-
ent. Significant taxon differences were identified at adjusted P value < 0.05.

Next, differentially abundant taxonomic features between COPD, HIV and combined COPD
& HIV groups were obtained using Linear discriminant analysis (LDA) Effect Size (LEfSe)
(LDA effect size = 2). The LEfSe algorithm uses the non-parametric Kruskal-Wallis and
Wilcoxon-rank-sum statistical tests to identify features with significant differential abun-
dance between the groups of interest, ranking them according to the effect size (default
LDA threshold = 2). For this analysis, the ASVs were collapsed at the genus level based on
taxonomy names, then the features most likely to explain differences between the different
groups were determined.

The use of culture-independent techniques has led to conflicting opinions about the exis-
tence of a distinct lower respiratory tract microbiome. There are studies, however limited,
in contention that bacteria in the lungs represent microaspiration of oral microbiota, and/or
upper respiratory contamination of lower respiratory tract samples caused by passing a
bronchoscope through the oral cavity to obtain lung samples [28] [56] [86][136]. To address
these concerns, oral washes were collected before bronchoscopy, in addition to other control
specimens such as extraction negatives (which did not contain any samples but only the
reagents that were used for the DNA extraction), no-template controls (which contained
the reagents used for PCR reaction; the DNA sample was replaced with Ultrapure water),
cytolyt controls, bronchoscope channel washes obtained prior to bronchoscopy, and unused
cytologic brush controls (brush water controls).

It is important to note here that the above-mentioned specimens, with the exception of
no-template controls, were collected only for PLWH. A supplemental analysis of these dif-
ferent sample types was performed to examine the presence of contaminating DNA that
was not truly present in the brush samples. In addition, the Decontam R package [40]
(using as input the DNA concentrations measured in AEC brush samples and other spec-
imens, which consisted of extraction negatives, bronchoscope channel washes, oral wash
controls, cytolyt controls and bronchoscope brushing controls) was used to identify ASVs
that were potential contaminants (included in the Appendix).
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2.5 Results

2.5.1 Description of the Study Cohort

Table (2.1) is a summary of demographics in this study. The final dataset included samples
from 76 subjects (18 COPD+HIV+, 16 COPD-HIV+, 22 COPD+HIV- and 20 COPD-
HIV-). Overall, the mean age of subjects was 61.3 ± 11.6 years, with 63.2% male subjects
and mean FEV1 of 79.88 ± 19.00% predicted values. Based on their smoking status,
the subjects were grouped into current (24 ± 31.6), former(31 ± 40.8) and never (18 ±
23.7) smokers. 2.6% were crack cocaine users, 18.4% were marijuana users, and 1.3%
were crystal methamphetamine users. 21.1% of total subjects were on prescription inhaled
corticosteroids, 17.1% on long-acting muscarinic antagonists (LAMAs) and long-acting
beta-agonists (LABAs), and 26.3% on short-acting beta-agonists (SABAs). As measured
in PLWH (n=34), the average CD4 count was 435.29 ± 282.55, 76.47% (26 of 34 subjects)
had an undetectable HIV viral load, and 70.6% (24 of 34 subjects) were on antiretroviral
therapy.

COPD+HIV+ COPD-HIV+ COPD+HIV- COPD-HIV-

(n=18) (n=16) (n=22) (n=20)

Sex
Male 14(77.8) 14(87.5) 12(54.5) 8(40.0)

Female 4(22.2) 2(12.5) 10(45.5) 12(60.0)

Age(years)∗ 58.11(9.50) 56.00(10.11) 67.95(7.17) 60.70(14.82)

BMI∗ 23.08 (4.76) 27.12 (2.91) 26.43 (5.96) 25.89 (5.41)

Smoking Status

Current 11(61.1) 3(18.8) 9(40.9) 1(5.0)

Former 5(27.8) 8(50.0) 12(54.5) 7(35.0)

Never 1(5.6) 4(25.0) 1(4.5) 12(60.0)

Pre FEV1 (% predicted)∗ 76.07(23.38) 87.98(15.85) 69.25(17.31) 88.47(14.23)

Pre FEV1/ FVC (%)∗ 64.30 (12.78) 76.41 (5.35) 62.53 (9.54) 76.64 (6.19)

CD4 Count∗ 437.78 (239.94) 432.50(332.21)

Undetectable HIV Viral Load Yes 16 (88.9) 10 (62.5)

Table 2.1: Demographics and Clinical Features. ∗Continuous data expressed as
Mean(SD). Categorical data expressed as number(% of column totals). Definition of ab-
breviations: BMI - Body Mass Index; FEV1 - forced expiratory volume in one second;
FVC - forced vital capacity; ”Pre” refers to spirometry tests before bronchodilator use.
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2.5.2 Results from 16s rRNA Quantification

Fig. 2.1 provides the 16s rRNA gene copies/ng of specimen for the 76 brush samples
included in the final dataset. There were no significant differences in 16s rRNA levels
between the COPD+HIV+, COPD+HIV-, COPD-HIV+ and COPD-HIV- groups (overall
Kruskal-Wallis P = 0.3).

Figure 2.1: 16s RNA gene copies/µL measured in airway epithelial cells. Number
of 16s RNA gene copies/µL observed in AEC brush samples grouped by their combined
COPD+HIV status. Definition of abbreviations: AEC – Airway Epithelial Cells.
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2.5.3 Results from QIIME 2™

Based on the 76 brush samples input into the QIIME 2™ pipeline, the total number of
merged reads obtained was 2,005,148 and, after filtering steps (removal of host mitochon-
drial or chloroplast sequences, ASVs with abundance frequency < 10, singletons, ASVs
observed in the controls, and ASVs with no taxonomic annotation at the phylum level)
1,402,568 reads (376 different ASVs) were considered for analysis.

2.5.4 Diversity Metrics

Alpha diversity analysis, measured using the Shannon diversity index as shown in Fig. 2.2,
revealed significant differences (expressed as median [interquartile range (IQR)]; Kruskal-
Wallis P-value) between the COPD+ and COPD- (2.79[1.73] vs. 3.99[1.28]; P = 0.0013)
groups, HIV+ and HIV- (2.66[1.73] vs. 3.83[1.15]; P = 0.0023) groups, and the com-
bined COPD & HIV groups: COPD+HIV+, COPD+HIV-, COPD-HIV+ and COPD-
HIV- (2.55[1.60] vs. 3.18[1.32] vs. 3.47[1.93] vs. 4.12[0.91]; P = 0.0002). In all three
analyses, the groups associated with disease (COPD+, HIV+ and COPD+HIV+ groups)
were found to have lower alpha diversity.

Similarly, Faith’s phylogenetic diversity, as shown in Fig. 2.3, also revealed significant dif-
ferences (expressed as median [interquartile range (IQR)]; Kruskal-Wallis P-value) between
the COPD+ and COPD- (2.58[1.73] vs. 3.99[2.31]; P = 0.0004) groups, HIV+ and HIV-
(2.56[1.93] vs. 3.87[2.31]; P = 0.0036) groups, and the combined COPD & HIV groups:
COPD+HIV+, COPD+HIV-, COPD-HIV+ and COPD-HIV- (2.13[0.98] vs. 2.82[2.05] vs.
3.60[1.85] vs. 4.72[1.99]; P = 0.0001). Pairwise Kruskal-Wallis results are in Table (A.1)
in the Appendix.
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Figure 2.2: Alpha diversity measured using Shannon Diversity Index Alpha
diversity differences between (a) COPD+ and COPD- groups (P = 0.0013), (b) HIV+
and HIV- groups (P = 0.0023), and (c) COPD+HIV+, COPD+HIV-, COPD-HIV+ and
COPD-HIV- groups (P = 0.0002).
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(c)

Figure 2.3: Alpha diversity measured using Faith Phylogenetic Diversity. Alpha
diversity differences between (a) COPD+ and COPD- groups (P = 0.004), (b) HIV+
and HIV- groups (P = 0.0036), and (c) COPD+HIV+, COPD+HIV-, COPD-HIV+ and
COPD-HIV- groups (P = 0.0001).
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Beta diversity, measured using Bray-Curtis metrics, was used to evaluate the differences
in microbial communities between groups. As shown in the principal component analysis
plots in Fig. 2.4 and PERMANOVA analysis, there were significant differences between
microbiome structures of the COPD+ and COPD- groups (P = 0.001), HIV+ and HIV-
groups (P = 0.007), and the combined COPD & HIV groups (p = 0.001). Pairwise PER-
MANOVA results are included in Table (A.2) in the Appendix.
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(c)

Figure 2.4: Principal component plot showing microbial community structures
among subjects based on the Bray-Curtis metric. Microbial community structures
in AECs according to (a) COPD status (COPD- subjects (N) – red points; COPD+ subjects
(Y) – blue points), (b) HIV status (HIV- subjects (Negative) – red points; HIV+ subjects
(Positive) – blue points), and (c) combined COPD & HIV status (COPD+HIV+ – purple
points; COPD+HIV- – blue points; COPD-HIV+ – green points; COPD-HIV- – red points)
based on Bray-Curtis distances; the centroids for each group are also shown. Definition of
abbreviations: PC - principal component.
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2.5.5 Taxa abundance

Tables (A.5) and (A.6) in the Appendix show the relative abundance of most abundant
phyla and genera in AECs. Firmicutes was found to be the most abundant phyla in AECs,
followed by Bacteroidetes, Proteobacteria and others in decreasing order. Similarly, at the
genus level, Prevotella [f-Prevotellaceae], Veillonella and Streptococcus were identified as
the top three most abundant genera, followed by others.

Relative taxa abundance comparisons at the phylum level between the COPD- and COPD+
groups showed higher relative abundance of Bacteroidetes and Fusobacteria in the COPD-
group (Fig.2.5.a. and Table A.3 in the Appendix). At the genus level, there was a higher
relative abundance of Prevotella [f-Prevotellaceae], Veillonella, Megasphaera, Prevotella [f-
Paraprevotellaceae], Neisseria, Selenomonas and Fusobacterium in the COPD- group, and
conversely, a higher relative abundance of Streptococcus and Paenibacillus in the COPD+
group (Fig.2.6.a. and Table A.4 in the Appendix).

Between the HIV- and HIV+ groups, higher relative abundance of phyla Fusobacteria
(Fig. 2.5.b. and Table A.7 in the Appendix) and genera Prevotella[f-Prevotellaceae], Pre-
votella[f-Paraprevotellaceae], Neisseria, Selenomonas and Fusobacterium were observed in
the HIV- group (Fig.2.6.b. and Table A.8 in the Appendix).

When comparing the COPD-HIV-, COPD-HIV+. COPD+HIV- and COPD+HIV+ groups,
phyla Fusobacteria and Bacteroidetes (Fig. 2.5.c. and Table A.9 in the Appendix), and
genera Prevotella[f-Prevotellaceae] , Megasphaera, Prevotella[f-Paraprevotellaceae], Neisse-
ria, Selenomonas and Fusobacterium showed a significant differences between the 4 groups,
with a higher relative abundance in the COPD-HIV- group (Fig.2.6.c. and Table A.10 in
the Appendix).

Further pairwise comparisons between groups with corrections for multiple testing (dis-
played as Dunn’s test adjusted P-values) showed that phyla Fusobacteria and Bacteroidetes,
and genera Prevotella[f-Paraprevotellaceae], Prevotella[f-Prevotellaceae], Fusobacterium,
Selenomonas, Neisseria and Megasphaera significantly differed between the COPD-HIV-
and COPD+HIV+ groups. Other significant genera include - Prevotella[f-Prevotellaceae]
(between the COPD-HIV- and COPD+HIV- groups), Prevotella[f-Paraprevotellaceae] (be-
tween the COPD-HIV- and COPD-HIV+ groups), and Paenibacillus (between the COPD-
HIV+ and COPD+HIV+ groups) (Tables A.11) and Table A.12 in the Appendix).
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Figure 2.5: Average relative taxa abundance comparisons between (a) COPD+
and COPD- groups, (b) HIV+ and HIV- groups, and (c) COPD+HIV+,
COPD+HIV-, COPD-HIV+ and COPD-HIV- groups at the phylum level.
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(c)

Figure 2.6: Average relative taxa abundance comparisons between (a) COPD+
and COPD- groups, (b) HIV+ and HIV- groups, and (c) COPD+HIV+,
COPD+HIV-, COPD-HIV+ and COPD-HIV- groups at the genus level.
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2.5.6 LEfSe

LEfSe analysis was performed on 126 ASVs, obtained after collapsing features at the genus
level based on taxonomy. As seen in Fig.2.7, this analysis identified 57, 69 and 45 dis-
criminating taxon features between the COPD groups, HIV groups, and combined COPD
& HIV groups, respectively, across different taxonomic levels. No unique features were
identified in the COPD+HIV- group.
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Figure 2.7: Differential taxa features identified by LEfSe (LDA effect size = 2)
(a) COPD (COPD- group – green bars; COPD+ group – red bars), (b) HIV (HIV- group –
green bars; HIV+ group – red bars) and (c) combined COPD & HIV status (COPD+HIV+
group - red bars, COPD-HIV- group - blue bars, and COPD-HIV+ group - green bars);
The length of the bar represents a log10 transformed LDA score.
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2.6 Supplemental Analyses Comparing Different Specimen
Types

In the supplemental analysis of different specimen types obtained from only HIV+ subjects,
pairwise comparisons showed that bronchial brushings had significantly different 16s rRNA
counts from bronchoscope channel washes (P = 4.1e-11), bronchoscope brushing controls
(P = 0.00022), cytolyt controls (P = 4.2e-11) and extraction negative specimens (P =
0.0048); no such difference was found between brushings and oral wash control samples
(overall Kruskal-Wallis P < 2.2e-16) (Fig. 2.8). Fig. 2.9 showed the difference of microbial
community structures among the different specimen types based on Bray-Curtis distance.
Bronchial brushings were significantly different from control specimens in HIV+ subjects
(PERMANOVA P = 0.001). Pairwise PERMANOVA comparisons between the different
sample types are shown in Table (A.13) in the Appendix.
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Figure 2.8: 16s RNA gene copies/µL in bronchial brushings and control speci-
mens, consisting of bronchoscope channel washes, brush water controls, cytolyt
controls, extraction negatives, and oral wash controls. Only significant Kruskal-
Wallis pairwise comparison values are shown.
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Figure 2.9: Principal component plot showing microbial community structures
among specimen types in HIV+ subjects based on the Bray-Curtis metric.
The centroids for each group are also shown. Definition of abbreviations: PC - principal
component; BCW - bronchoscope channel wash; BW - brush water control; CC - cytolyt
control; EN - extraction negative; OWC - oral wash control.
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2.7 Discussion

The mechanism of HIV-associated COPD is not fully understood, with many factors - in-
creased risk factor behaviors, apoptosis, microbial colonization, and altered inflammatory
and oxidant–antioxidant responses, among others - playing a possible role in disease patho-
genesis. Together, these factors alter the lung microbiome, which is critical in performing
a wide range of metabolic activities that benefit the host.

From our analysis of the small airway microbiome, we found that the subject groups most
associated with disease (COPD+, HIV+ and COPD+HIV+ groups) had reduced average
species diversity, and significantly disrupted microbial communities from their relatively
”healthy” counterparts (COPD-, HIV- and COPD-HIV- groups). This is in consensus with
the idea that composition and diversity are important components of a “healthy” micro-
biome [121].

Consistent with previous 16s rRNA studies, we also identified that the ”healthy” groups
were enriched in characteristic phyla Fusobacteria (in COPD-, HIV- and COPD-HIV-
groups) and Bacteroidetes (only in COPD- and COPD-HIV- groups). The decrease in
levels of these microbes may be associated with obstructive lung disease in PLWH. Sze
et al, Xu et al and Ramsheh et al observed a similar decrease in Bacteroidetes levels, in
addition to increased Proteobacteria and decreased Firmicutes levels, in GOLD Stage 4
COPD patients, PLWH, and COPD patients with or without ICS, respectively, when com-
pared with healthy controls [196] [214] [160]. In our analyses however, we did not observe
significant differences in abundance levels of Proteobacteria and Firmicutes between the
different groups.

At the genus level, Prevotella, Selenomonas, Neisseria and Fusobacterium were more abun-
dant in the ”healthy” groups, and these results are similar to those of many previous studies
[179] [28] [45] [25] [114] [13]. Prevotella is a widely studied genus, however its exact role
in the respiratory system still remains unknown. These microbes are enriched in the oral
cavity, and their colonization of lower airways most likely results from microaspiration
[179]. Prevotella has been described both in the context of health and disease. On one
hand, Prevotella abundance has been described in association with better lung function,
and reduced dyspnea scores and inflammation [179] [181] [160]. Many of these properties
of Prevotella are through its interactions with other members of the microbiota, indicating
that dynamics of this genera might be important in regulating inflammation and dysbiosis
[109]. On the other hand, certain strains that exhibit pathobiontic properties have been
implicated as promoters of subclinical inflammation, particularly Th-17 inflammation [179]
[107] [108]. Twigg et al, in a small cohort of nine subjects infected with HIV, observed that
long-term (3 years) ART use, which would normally be associated with a more “healthier”
phenotype, was associated with decreased Prevotella abundance [207]. On the contrary, our
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findings demonstrate that ”disease” groups (COPD and/or HIV subjects) are associated
with increased Prevotella when compared to the healthy groups. However, it is possible
that this observed decrease in Prevotella in our cohort could be confounded by duration of
ART usage, which we were unable to capture.

Other important genera included Veillonella and Streptococcus, which have been associ-
ated with pro-inflammatory cytokine production and promoting vascular injury. These
microbes, along with Neisseria were found to be increased in PLWH with abnormal lung
function [219]. Furthermore, it has been shown that microaspiration of these anaerobic
commensals from the oral cavity seeds the lower airways, and drives clinical presentation
of lung injury [11] [140] [185]. Our results echoed these studies for genera Streptococcus and
Neisseria. We however observed higher relative abundance of Veillonella in the COPD-
group (no significant results in the HIV effect and combined COPD+HIV effect analyses).

Among other major genera in the HIV lung is Fusobacterium. Many species of this genera
have been described as part of the healthy core lung microbiome, and have been indicated
as interconnectors between human and bacterial cells [55]. Fusobacterium also supports
the growth of anaerobic organisms in oxygenated environments [22]. We hypothesize that
this may be crucial in the early stages of disease when the lung is colonized by anaerobic
oral commensals. In the aforementioned study by Engel et al, Fusobacterium was also
found to cluster with other genera such as Megasphaera, a member of the healthy lung
microbiome. This genus can beneficially affect the host by modulating short chain fatty
acid production, reducing airway inflammatory responses, and preventing colonization of
respiratory pathogens [210].

In summary, the relative abundance of phyla Fusobacteria and Bacteroidetes change sig-
nificantly with disease, and these changes were noted down to the level of genera such as
Prevotella, Streptococcus, Veillonella, Selenomonas, Neisseria, and Fusobacterium. Thus
the depletion of taxa that typically constitute a ”healthy” microbiome, with the concur-
rent establishment of potentially harmful taxa may be correlated with host physiological
parameters in disease, and might be responsible for driving HIV-associated COPD disease
pathology. It also underscores the potential pathogenicity of oral commensal microbes and
their proliferation in the lungs of HIV-infected patients. Overall, alterations in the respira-
tory microbiome may be at least partially responsible for injury seen in PLWH, although
we did not prove causation in this study.
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Chapter 3

The Microbiome and Other -Omes

3.1 Introduction

Prior work and our results show that significant differences in the respiratory microbiome
may be linked to COPD pathogenesis in PLWH. In may also be that microbiome-host in-
teractions play a vital role in determining disease severity and symptoms. In this chapter,
we describe the analysis of the host methylome and transcriptome in subjects with COPD
and/or HIV.

3.1.1 Methylome

The ’methylome’ denotes the nucleic acid methylation modifications in an organism’s
genome or in a particular cell. DNA methylation is an epigenetic mechanism, where a
methyl group is added to the C5 position of cytosine residues in CpG dinucleotide se-
quences. Regulated by a family of DNA methyltransferase enzymes, DNA methylation
contributes to the transcriptional on/off state of genes, and can thereby affect its expres-
sion and/or its function [90]. Methylation patterns are heritable, but a growing body
of evidence indicates that environmental exposures may influence epigenetic regulation of
gene expression, and thereby determine phenotype. [161] [111].

DNA methylation takes place both at the promoters and within the gene body (intra-
genic). It is well-known that transcriptional silencing is caused by the hypermethylation
of promoter regions of CpG islands (CpGIs), which are regions of DNA that contain an
increased frequency of CpG dinucleotides (CG content > 50% and observed/expected CpG
ratio > 60%) [6]. This transcriptional repression of the viral promoter is a prevailing reg-
ulatory mechanism in the HIV provirus, and is the major cause of HIV-1 latency [29]. A
recent study by Kint et al conducted on peripheral blood mononuclear cells evaluated the
lesser-known role of intragenic methylation, and found a general pattern of low promoter
methylation and higher intragenic methylation. In addition, they observed that ART-näıve
seroconverters showed increased promoter methylation and decreased intragenic methyla-
tion compared with long-term ART-treated individuals, individuals in the chronic phase
of the infection, and ART-näıve long-term non-progressors [98]. This data suggests that
intragenic DNA methylation could be a late event during infection, and may be involved in
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the regulation of intragenic promoters, alternative splicing, and in the activation of retro-
viruses, repetitive elements, and prevention of aberrant transcript production [146] [92].

Epigenetic patterns in PLWH are distinctly different from the normal population. Leung
et al observed telomere shortening and methylation changes in peripheral blood during the
short period immediately following HIV seroconversion but not between post-HIV serocon-
version and a later follow-up time point [117]. This is consistent with other studies also
conducted on blood samples, which showed results of accelerated ageing in PLWH [145]
[73]. More recently, members of our group identified that ART-naive PLWH with CD4
T-cell counts > 500/µL show evidence of advanced methylation ageing. They also found
differentially methylated positions (DMPs) that corresponded to genes highly enriched for
cancer-related pathways [217].

Only a few studies have examined methylation changes in the HIV lung. A recent report by
our group, based on methylation at CpG-rich genomic sequences Alu and LINE-1, found
that PLWH with airflow obstruction have greater hypomethylation and accelerated ageing
in comparison to those with normal lung function. The identified DMPs were enriched
for biological pathways related to chronic viral infections and small airway remodelling in
COPD [32]. In examining the relation between the microbiome and methylome, Xu identi-
fied distinct microbiome and methylation profiles between the small airway epithelial cells
of PLWH and uninfected subjects. The two groups also had different methylation patterns
in genes involved in cell differentiation, biological processes such as cell-cell adhesion and
cell surface receptor signaling pathways, and cellular components such as microtubule cy-
toskeleton and nucleoplasm [216]. In a similar work, Yang examined lung tissue samples
between the HIV+ and HIV- groups and found that the former group had significantly
shorter absolute telomere length (aTL). However, a microbiome analysis conducted con-
currently showed that there was no correlation between bacterial load and aTL between
the two groups [220].

3.1.2 Transcriptome

The ’transcriptome’ refers to the set of all RNA molecules, such as messenger RNA
(mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and other non-coding RNA
molecules that are present in cells [199]. The integrity of gene and subsequent protein
expression are primarily maintained by epigenetic processes such as histone modification
and DNA methylation–mediated transcriptional regulation, among other kinds of chem-
ical modifications [66]. The crosstalk between these epigenetic processes, especially, can
activate or silence gene expression by influencing transcriptional activity and how DNA
strands are packaged [135].

HIV infection causes changes in gene expression profiles in the lungs of PLWH. A recent
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study by Chung et al, conducted on small airway epithelial cells exposed to in vitro HIV,
showed that HIV upregulates the expression of inflammatory genes in a dose-dependent
manner. The subsequently released infammatory mediators IL-8, IL-1β, ICAM-1 and GM-
CSF also induced the migration of alveolar macrophages and neutrophils [31]. In evaluating
the relationship between the microbiome and transcriptome, Sze et al examined the gene
expression patterns of the host in response to the bacterial microbiome using bronchial
epithelial cells obtained from 21 PLWH. They identified that measures of the airway mi-
crobiome including alpha diversity measures, phyla, and OTUs, had strong associations
with gene modules enriched for immune and inflammatory responses, cell signaling, and
cilia pathways. In particular, they observed that Firmicutes and Proteobacteria phyla
antagonistically regulated gene expression pathways related to oxidation/reduction and
intracellular organelles [197]. A recent report by Bhadriraju et al looked into the microbe-
mediated modulation of epithelial gene expression in sputum of HIV-positive children with
clinical indicators of chronic lung disease. They found that children with Haemophilus-,
Moraxella-, or Neisseria-dominated sputum microbiota had increased expression of pro-
inflammatory cytokines such as IL-1β, IL-33 and E-cadherin, and decreased expression of
anti-inflammatory Muc5AC [15].

3.2 Hypothesis

Microbial dysbiosis in the airway epithelium of PLWH is accompanied by changes in host
response. We hypothesize that differential DNA methylation and gene expression are as-
sociated with heightened COPD susceptibility in PLWH.

3.3 Aim 2

Analyze the airway methylome and transcriptome of subjects with COPD and/or HIV to
identify top differentially regulated CpGs and genes, respectively, and evaluate their cor-
responding biological roles.

3.4 Methods

3.4.1 Study Population and Design

Cytological brushings of airway epithelial cells obtained from the same 76 subjects with
COPD and/or HIV were used to quantify gene expression and CpG methylation. Further
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steps in the transcriptome and methylome analyses were carried out in triplicate for the in-
dependent analyses of - (1) the COPD effect by comparing COPD- vs COPD+ subjects, (2)
the HIV effect by comparing HIV- vs HIV+ subjects, and (3) the interactive COPD*HIV ef-
fect by comparing the 4 groups : COPD+HIV+, COPD-HIV+, COPD+HIV- and COPD-
HIV-.

3.4.2 Methylome Analysis

DNA Methylation Profiling and Data Analysis

DNA was extracted from airway epithelial cells, followed by sodium bisulphite conversion
of unmethylated cytosines to uracils. Subsequently, methylation profiles were obtained us-
ing the Illumina Infinium Methylation EPIC BeadChip®, which covers over 850,000 CpG
sites across the genome [158]. CpG methylation was measured as methylation beta-values
(β), defined as the ratio of the methylated probe signal to the overall signal, ranging from
0 (completely unmethylated) to 1 (fully methylated), and logit-transformed into M-values
(log2 ratio of the intensities of methylated probe versus unmethylated probe) for statisti-
cal analyses [52]. In filtering for quality, probes were removed from downstream analyses
based on detection P-values (< 1e-10), chromosomal location (XY chromosome-linked and
non-CpG), presence of single nucleotide polymorphisms in the probe sequence, and cross-
hybridization [203]. Further processing included normal-exponential out-of-band (noob)
background correction of probe intensity data [204], beta-mixture quantile normalization
[201], batch effect correction using ComBat (sva 3.30.1) [91], and removal of outlier CpG
probes using Gaphunter (R package “minfi” 1.28.4) [4].

Identifying Differentially Methylated Probes and Regions

Covariate selection was performed to identify any confounding variables. No covariates were
found to have a significant influence of CpG methylation. To identify significantly differ-
entially methylated probes (DMPs) or CpG sites in (1) COPD- vs COPD+ patients, (2)
HIV- vs HIV+ patients, and (3) COPD+HIV+, COPD-HIV+, COPD+HIV- and COPD-
HIV- patient groups, respectively, the following robust linear models (not adjusted for any
covariates) were used:

(1) Methylation (M value) ∼ COPD status + EPISTRUCTURE PC1–PC5
(2) Methylation (M value) ∼ HIV status + EPISTRUCTURE PC1–PC5
(3) Methylation (M value) ∼ COPD*HIV status + EPISTRUCTURE PC1–PC5

DMPs were identified at a false discovery rate (FDR) < 0.10. DNA methylation changes
often occur in contiguous genomic regions called differentially methylated regions (DMRs).
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DMRs, defined as ≥ 3 contiguous CpG probes, were identified using DMRcate (R, Biocon-
ductor 1.18.0) at a significance threshold of FDR < 0.10.

Volcano plots displaying unstandardized signal (beta difference) against noise-adjusted/standardized
signal (-log(10)(p-value) were used to visualize genes associated with top CpGs that were
differentially methylated between the COPD and HIV groups. Candidate genes were
applied to annotation databases Kyoto Encyclopedia of Genes and Genomes (KEGG;
https://www.genome.jp/kegg/) and Gene Ontology (GO; http://geneontology.org/) to iden-
tify significant pathways at an FDR < 0.10.

3.4.3 Transcriptome Analysis

Gene Expression Profiling and Data Analysis

Total RNA was extracted from cytological brushings, and whole-transcriptome sequenc-
ing was carried out using the Illumina NovaSeq 6000® RNA sequencing system. Raw
sequence data was controlled for quality using FastQC [172]. STAR (Spliced Transcripts
Alignment to a Reference), an ultra-fast RNA-seq quasi-alignment software package [47],
was used to align the paired end reads to the GRCh37 reference genome in GENCODE
(version 31), which contains 20,687 protein-coding and 9640 long non-coding RNA loci
[75]. Transcript-level quantifications were aggregated to obtain gene-level counts using the
R package tximport [192]. Principal component analysis (PCA) was used as a visual tool to
evaluate batch effects. Count data was normalized to log2-counts per million (log2-CPM)
reads using limma voom [163], and genes with low expression were filtered out, such that
log2-CPM is > 1 in at least a fourth of the total samples.

Identifying Differentially Expressed Genes

One variable was found to have a significant effect on gene expression - Sex. To identify
differential gene expression in the analysis of (i) independent COPD effect (using only
HIV- subjects, n = 42), (ii) independent HIV effect (using only COPD- subjects, n = 36),
and (iii) the interactive COPD*HIV effect (using all subjects, n = 76), respectively, the
following robust linear models were used after adjusting for significant covariate ”Sex”:

(1) Gene expression ∼ COPD status + Sex
(2) Gene expression ∼ HIV status + Sex
(3) Gene expression ∼ COPD*HIV status + Sex

Volcano plots were used to visualize top genes that were differentially expressed between
the COPD and HIV groups. Further, top genes were enriched onto annotation databases
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Kyoto Encyclopedia of Genes and Genomes and Gene Ontology, to generate a list of sig-
nificant pathways at an FDR < 0.10.

3.5 Results

3.5.1 Methylome Analyses

PCA was used to compare distances between the respective groups in the independent
COPD, HIV, and COPD*HIV effect analyses (Fig. B.1 in the Appendix). Covariate selec-
tion analysis identified no significant confounders (Fig. 3.1). Robust linear regression was
applied, and differentially methylated positions (DMPs) and regions (DMRs) were identi-
fied at FDR < 0.05: 8,736 DMPs and 1,110 DMRs in the COPD analysis, 61,536 DMPs
and 6,417 DMRs in the HIV analysis, and 1,755 DMPs and 211 DMRs in the COPD*HIV
analysis.

As seen in Fig. 3.2, volcano plots identified the following to be the genes associated with the
three most significant DMPs at FDR < 0.10 : genes MAP7D1 (MAP7 Domain Contain-
ing 1), SMARCD3 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of
Chromatin, Subfamily D, Member 3) and TCF7L2 (Transcription Factor 7 Like 2) between
the COPD- and COPD+ (reference) groups, and genes MUC5B (Mucin 5B, Oligomeric
Mucus/Gel-Forming), DDX39A (DExD-Box Helicase 39A) and CCDC150 (Coiled-coil
domain-containing protein 150) between the HIV- and HIV+ (reference) groups. The
identified DMPs appear to have significant p-values but very small effect sizes in methy-
lation beta change, indicating a minimal disease effect. The question of whether these
very small effect sizes are true methylation differences or mere aberrations within the error
range of the methylation array raises the possibility that they could imply false signals.

Top CpG-associated genes that were significant in the COPD*HIV analyses FDR <0.10
are in Table. 3.1. Of the 5 CpG sites, COPD has a positive effect on the methylation (or
hypermethylation) on cg13855288 and cg19542310 (LDLRAD3 : Low Density Lipoprotein
Receptor Class A Domain Containing 3) in the HIV+ cohort, and a negative effect (or
hypomethylation) in the HIV- cohort. On the other hand, in cg14405266 (ZNF771 : Zinc
Finger Protein 771), cg14313569 and cg18609578 (SPATS2L: Spermatogenesis Associated
Serine Rich 2 Like), COPD has a hypomethylation effect in the HIV+ cohort and a hyper-
methylation effect in the HIV- cohort.
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Figure 3.1: Covariate selection for methylome analysis. Heatmap of principal
components (PCs) vs. covariates of interest (ethnicity, sex, age, body-mass index (BMI),
pre-bronchodilator FEV1%, drug use, smoking status, smoking pack years, inhaled corti-
costeroid (ICS), long-acting muscarinic antagonists (LAMA), long-acting beta antagonists
(LABA) and short-acting beta antagonists (SABA) use, COPD and HIV status). The
color scale represents p-values, grey indicating low level and navy indicating high level of
significance.
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(a)

(b)

Figure 3.2: Volcano plot of the distribution of genes associated with top dif-
ferentially methylated positions (DMPs) due to (a) the COPD effect, between
COPD- and COPD+ (reference) groups, (b) the HIV effect, between HIV- and
HIV+ (reference) groups. The x-axes in (a) and (b) represent the effect size differ-
ence of the DMPs between subjects with and without COPD and HIV, respectively. The
blue and red colours represent hypomethylation and hypermethylation, respectively. The
dashed horizontal line represents the -log10 p value that corresponds to the false discovery
rate (FDR) < 0.10. The vertical dashed line indicates an absolute beta difference of 0.

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses identified 41,
106 and 2 pathways, and Gene Ontology (GO) identified 208, 729 and 0 pathways, re-
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spectively, that corresponded to the COPD, HIV and COPD*HIV effects (Fig. 3.3). In
the COPD-effect analysis, the DMPs were primarily enriched for pathways associated with
neurophysiological processes and cell signalling; in the HIV-effect analysis, the most com-
mon GO biological pathways were protein metabolism- and cell cycle regulation-related,
and KEGG pathways were related to cell signalling, bacterial invasion of cells, and neuro-
physiological processes; in the COPD*HIV analysis, only two significant KEGG pathways
were identified - ’Lysine degradation’ and ’Fatty acid biosynthesis’.

Top differentially methylated CpGs at FDR < 0.1

Interaction Effect HIV+ HIV-

Probe BetaDiff P FDR COPD P COPD P Relation to Island Gene Symbol

BetaDiff BetaDiff

cg13855288 0.043 3.27E-10 6.41E-05 0.022 3.45E-06 -0.016 1.404E-04 OpenSea

cg14405266 -0.019 9.30E-10 1.104E-04 -0.012 1.96E-08 0.008 3.71E-04 SouthShore ZNF771

cg14313569 -0.058 1.13E-09 1.104E-04 -0.028 3.20E-07 0.033 1.39E-07 OpenSea

cg19542310 0.025 2.20E-09 1.845E-04 0.014 2.39E-05 -0.013 2.40E-06 OpenSea LDLRAD3

cg18609578 -0.011 2.35E-09 1.845E-04 -0.006 3.41E-06 0.007 1.42E-05 NorthShore SPATS2L

Table 3.1: Top 5 CpG sites which have interaction between COPD and HIV
and their main effects stratified by HIV. Abbreviations: BetaDiff - Beta Difference.
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(a) (b)

(c) (d)

(e)

Figure 3.3: Top 20 most significantly enriched KEGG and GO pathways of
DMPs associated with the COPD (a, b), HIV (c, d) and COPD*HIV (e) effects;
KEGG - column 1 and GO - column 2. (No GO pathways were identified for the
COPD*HIV analysis). The size of the circles inside the figure represents the number
of overlapping genes characterised by DMPs in the pathways. The colour scale represents
level of significance based on p-value. FDR was set to <0.05. Abbreviations: KEGG -
Kyoto Encyclopedia of Genes and Genomes; GO - Gene Ontology.
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3.5.2 Transcriptome Analyses

PCA used to visualize gene expression patterns among the COPD, HIV and COPD*HIV
groups is included in the Appendix (Fig. C.1). Covariate selection analysis identified one
variable that may have a significant effect on gene expression - Sex (Fig. 3.4). Robust
linear regression was applied (correcting for confounder ”Sex”) and 6,033, 274 and 28 dif-
ferentially expressed genes (DEGs) with false discovery rate (FDR) < 0.1 were identified
in the COPD, HIV, and COPD*HIV analysis, respectively.

As seen in Fig. 3.5, volcano plots showed that genes AC074143.1, SHROOM1 (Shroom
Family Member 1) and PUS3 (Pseudouridine Synthase 3) between the COPD- and COPD+
(reference) groups, and genes AK1 (Adenylate Kinase 1), PITX1 (Paired Like Home-
odomain 1) and SAMD15 (Sterile Alpha Motif Domain Containing 15) between the HIV-
and HIV+ (reference) groups were identified as the top three DEGs. The top genes identi-
fied as significant in the COPD*HIV analyses are in Table. 3.2. COPD has a positive effect
on (or upregulates) the expression of genes CNPY4 (Canopy FGF Signaling Regulator 4)
and AC107021.1 in the HIV+ cohort and a negative effect on (or downregulates)the expres-
sion of the same genes in the HIV- cohort. In the opposite direction, COPD has a negative
effect on gene expression in the HIV+ cohort and a positive effect on gene expression in the
HIV- cohort in the genes NOP2 (Nucleolar Protein), KCNE4 (Potassium Voltage-Gated
Channel Subfamily E Regulatory Subunit 4) and RBM17 (RNA Binding Motif Protein 17).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene en-
richment analyses identified 17 and 59 pathways, respectively, associated with the COPD
effect. Of these, the top GO Biological Processes included protein localization, energy-
and metabolism-related processes, and top KEGG pathways included neurological disease-
related pathways, set at FDR < 0.05. No significant pathways were identified in the
independent HIV and COPD*HIV analyses (Fig. 3.6).
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Figure 3.4: Covariate selection for transcriptome analysis. Heatmap of principal
components (PCs) vs. covariates of interest (ethnicity, sex, age, body-mass index (BMI),
pre-bronchodilator FEV1%, drug use, smoking status, smoking pack years, inhaled corti-
costeroid (ICS), long-acting muscarinic antagonists (LAMA), long-acting beta antagonists
(LABA) and short-acting beta antagonists (SABA) use, COPD and HIV status). The
color scale represents p-values, grey indicating low level and navy indicating high level of
significance.
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(a)

(b)

Figure 3.5: Volcano plot of the distribution of top differentially expressed genes
(DEGs) due to (a) the COPD effect, between COPD- and COPD+ (reference)
groups, (b) the HIV effect, between HIV- and HIV+ (reference) groups. The
x-axes in (a) and (b) represent the effect size difference of the DEGs between subjects with
and without COPD and HIV, respectively. The blue and red colours represent downregu-
lated and upregulated genes, respectively. The dashed horizontal line represents the -log10
p value that corresponds to the false discovery rate (FDR)<0.10. The vertical dashed line
indicates a log2 fold change of 0.
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Top differentially expressed genes at FDR < 0.1

Interaction Effect HIV+ HIV-

Probe BetaFC P FDR COPD P COPD P Gene

BetaFC BetaFC

ENSG00000166997.8 4 0.536 1.37E-05 0.074 0.374 4.79E-05 -0.162 0.035 CNPY4

ENSG00000243415.2 6 0.448 6.28E-05 0.082 0.286 2.349E-04 -0.144 0.030 AC107021.1

ENSG00000111641.11 4 -0.304 1.429E-04 0.093 -0.186 3.996E-03 0.124 0.018 NOP2

ENSG00000152049.6 2 -1.184 1.537E-04 0.093 -0.705 3.156E-03 0.513 0.009 KCNE4

ENSG00000134453.16 4 -0.176 1.640E-04 0.095 -0.129 2.100E-03 0.043 0.039 RBM17

Table 3.2: Top 5 genes which have interaction between COPD and HIV and
their main effects stratified by HIV (adjusted for sex). Abbreviations: FC - Fold
Change.

Figure 3.6: Top 20 most significantly enriched KEGG and GO pathways of
DEGs associated with the COPD effect. (No GO pathways were identified
for the HIV effect and COPD*HIV effect analysis). The size of the circles inside
the figure represents the number of overlapping DEGs in the pathways. The colour scale
represents level of significance based on p-value. FDR was set to <0.05. Abbreviations:
KEGG - Kyoto Encyclopedia of Genes and Genomes, GO - Gene Ontology.
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3.6 Discussion

From review of literature, we know that alterations in the composition of the HIV airway
microbiome may be accompanied by robust changes in host responses such as gene expres-
sion as well as regulatory mechanisms such as DNA methylation.

Methylome profiling: We identified top differentially methylated CpG-associated genes
like MAP7D1 (associated with signal transduction) [171] and SMARCD3 (regulates tran-
scription by altering chromatin structure) [176] between the COPD- and COPD+ groups ,
and CpG-associated genes MUC5B (protects respiratory mucosa from infection and chem-
ical damage by binding to inhaled microorganisms and particles; inhibits HIV-1 entry into
target cells by aggregating or trapping the viral particles) [155] [131] and DDX39A (in-
volved in RNA metabolic processes such as transcription and translation initiation, splicing
and degradation; role in HIV infection cycle by exporting unspliced HIV RNAs from the
nucleus) [38] between the HIV- and HIV+ groups.

Our COPD*HIV methylome analysis identified CpG-associated genes such as LDLRAD3,
which was previously shown to be correlated with bacterial phyla Proteobacteria and Fir-
micutes [198]. In previous studies, this gene was found to be down-regulated in COPD
[82], and the expressed membrane protein was also important in the characterization of
pulmonary-venous endothelial cells localized to the lung parenchyma [178]. In this study,
we found that COPD may have a hypermethylating effect on the CpG site of gene LDL-
RAD3 in PLWH, thereby potentially downregulating its expression. On the other hand,
we also identified the CpG-associated gene ZNF771, which regulates transcription by RNA
polymerase II, and this gene was also identified to be important in asthma-COPD [123].
In our analysis, we found that COPD had an opposite effect on the methylation of this
CpG in PLWH when compared to the HIV-uninfected population.

The top CpG-associated genes in all three analysis were enriched to various KEGG and GO
pathways. Most interestingly, the HIV-effect analysis identified DMPs related to pathways
related to metabolism and cell cycle regulation and signalling, and the COPD*HIV analy-
sis identified DMPs related to two KEGG pathways - ’Lysine degradation’ and ’Fatty acid
biosynthesis’. In a recent study by Bowerman et al analyzing the fecal microbiome and
metabolome of COPD and healthy subjects, amino acid- and lipid-related metabolites were
found to be associated with a COPD signature. Although, lysine degradation products,
specifically levels of N-acetylcadaverine and its precursor cadaverine, were not significantly
different between COPD and healthy samples, they highlighted that a Rothia species may
be important in N-acetylcadaverine production [21].

On the other hand, impaired fatty acid metabolism has also been implicated in the HIV
lung. Cribbs et al using BAL samples demonstrated that HIV infection and CD4 count
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were related to certain lipid and fatty acid metabolic pathways, which were also linked
to microbial families such as Caulobacteraceae, Staphylococcaceae, Nocardioidaceae, and
Streptococcus [33]. Segal et al identified that pulmonary short-chain fatty acids (SCFAs),
products of bacterial fermentation, correlated with increased oral anaerobes such as Pre-
votella in the lungs of ART-treated HIV-infected individuals. These SCFAs were also
implicated in activating viral replication and inducing persistent Th-17 dysfunction in the
host [180]. These results accentuate the connection between microbial colonization and
epigenetic changes in the host, and the resultant metabolic and immune outcomes.

Transcriptome profiling: In the COPD-effect analysis, we identified SHROOM1 (may be
linked to actin filament binding; upregulated in COPD+ individuals) [20], and in the HIV-
effect analysis, we identified AK1 (related to HIV-1 replication) [89] to be the top DEGs
between the respective groups. Our transcriptomics data looking at the COPD*HIV effect
identified the gene CNPY4, which was upregulated in PLWH and downregulated in HIV-
uninfected individuals as a consequence of the COPD effect. Takahashi et al found this
gene to be differentially expressed in brushings between current-smokers and non-smokers
with severe asthma [200]. The same group also identified the gene RBM17, which was up-
regulated in the HIV-uninfected population and downregulated in PLWH in our analysis.
Other top hits included KCNE4 and NOP2 an RNA-binding protein. The latter gene has
a role in cell cycle progression and chromatin modification, in addition to repressing HIV-1
replication and promoting viral latency [101].

The top genes in the COPD-effect analysis were enriched for biological pathways mainly
comprising of protein transport to the endoplasmic reticulum (ER), nucleoside triphos-
phate metabolic processes, and respiration- and energy-related processes. As the focal hub
of cellular metabolism and energetics, the mitochondria consolidates cellular responses and
signalling pathways between different organelles, and governs oxidative stress and several
age-related processes [116] [36]. At the same time, the ER is crucial for protein processing
and transport, regulating cellular redox state, maintaining calcium balance, and the syn-
thesis of lipids, cholesterol, and steroids [53]. During stressful conditions, signals emerging
from the ER reach the mitochondria, and subsequently lead to the activation of cell death
pathways. In COPD, this mitochondria-ER crosstalk is disrupted by virtue of inhaled
toxins [125], indicating its importance in maintaining cellular homeostasis. Our results,
which are in line with previous studies, further validate the role of these mitochondria-ER
communications.

In summary, the single -omic analyses revealed key ASVs, CpG sites and genes belonging to
the microbiome, methylome and the transcriptome, respectively, which may have indepen-
dent and/or interconnected roles. These results also potentially link the host epigenome,
genome to the proteome and metabolome, and set the premise for integrative studies.
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Chapter 4

Multiomic Integration

4.1 Introduction

4.1.1 Integrative -omics Approach to Disease

With extensive volumes of microbiome data being generated in recent years, efforts are
being taken to recognize how microbial systems interact with each other, their hosts, and
features of their environment [3] [16] [88]. However, there are only a limited number of
studies that take a ’systems biology’ or ‘omics’ approach in examining how perturbations
in the microbiome correlate to distinct aspects of the host biology (e.g., transcriptome,
proteome, metabolome, interactome or phenome) [97] [130] [77] [202] [124] [164] [209].

Such studies, simultaneously characterizing the lung microbiome and other -omic profiles in
COPD, and in other respiratory diseases in general, are lacking. Most recently, Ramsheh
et al examined the relationship between the microbiome and transcriptome of mild-to-
moderate COPD patients either receiving or not receiving inhaled corticosteroids (ICS)
and healthy controls using bronchial brushings. They found that decreased Prevotella and
increased Moraxella levels in COPD were associated with downregulating epithelial defence
genes and upregulating pro-inflammatory genes associated with ICS use [160]. Wang et
al examined the sputum microbiome, transcriptome and proteome in patients with stable
COPD and during exacerbations. They found that Moraxella and Haemophilus had signif-
icant associations with interferon and pro-inflammatory signaling pathways in COPD, and
that the former was especially important during exacerbations [211]. Sze et al analyzed
the lung microbiome and host transcriptome in COPD patients and found that Firmicutes
and Proteobacteria were associated with gene expression changes in the host [196]. Cribbs
et al evaluated the respiratory microbiome-metabolome interaction in PLWH and HIV-
uninfected individuals using BAL samples. They identified that specific inflammatory and
oxidant metabolic pathways were altered in PLWH with respect to specific lung microbial
communities [33]. Such studies further emphasize the need for the comprehensive under-
standing of the collective host response to the lung microbiome profile, and set the premise
for multiomics studies. In this chapter, we performed an integrative analysis by consoli-
dating information from the microbiome with other host -omes such as the methylome and
transcriptome.
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4.1.2 What is Multiomics?

Multiomics, also called integrated omics, pan-omics, and trans-omics, is the integration of
different individual ’omic layers (e.g., genomics, epigenomics, transcriptomics, proteomics),
in order to discover novel relationships between the different biological data types, gain
insight into mechanisms underlying cellular processes and molecular phenotypes, and ob-
tain a more holistic view of a biological system [54] [103] [94] . Conventionally, individual
’omic layers are analysed independently through univariate statistical methods. However,
they fail to capture the crucial relationships between different ’omic features which may
influence biological mechanisms and signalling pathways. This can be overcome to a large
extent by using multivariate techniques, which can supplement the information obtained
from univariate analyses.

Integration of multiomics data has certain limitations. Multiomics studies often carry
forward challenges from the individual ’omics datasets, which could undermine further
analyses. Individual ’omics data are most commonly generated via different technological
platforms, and there is no ”gold-standard” workflow addressing issues of data filtering,
transformation, normalization and scaling in the individual datasets [133]. This ”heteroge-
neous data” bottleneck may account for major sources of variation in multiomics studies.
Another caveat with multiomics is that due to the large volumes of data generated and the
use of several complex analytic and statistical tools the results are seldom reproducible.
By virtue of that, these studies are computationally expensive and demand high storage
space for downloaded files [103].

4.2 Hypothesis

Airway dysbiosis in PLWH with COPD is associated with a host cell injury response.

4.3 Aim 3

Integrate the microbiome, transcriptome and methylome profiles of subjects with COPD
and/or HIV to identify key interactions between bacterial ASVs, gene transcripts, and
CpG methylation.
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4.4 Methods

The microbiome, transcriptome and methylome were statistically integrated using Data
Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO), a mul-
tiomics method that simultaneously identifies key omics features among heterogeneous
datasets. DIABLO was implemented in the mixOmics R Bioconductor package [113] [166].

The multiomics study includes 76 samples from three types of omics data (for the COPD-
effect, HIV-effect and COPD*HIV effect analyses, respectively): microbiome (126 ASVs),
transcriptome (6,031, 274 and 28 genes at FDR < 0.1) and methylome (16,206, 92,302
and 4,404 CpGs at FDR < 0.1). All three datasets were normalized and pre-processed
according to appropriate omics platforms. A 3 × 3 symmetric matrix, with values ranging
between 0 (indicating no correlation between omics datasets) to 1 (indicating maximum
correlation) was used as the design matrix:

Microbiome Transcriptome Methylome
Microbiome 0 0.1 0.1

Transcriptome 0.1 0 0.1
Methylome 0.1 0.1 0

These values were chosen based on a compromise between correlation and discrimination
between the features across the different datasets.

A DIABLO model was first fit without variable selection to assess the global performance
and choose the number of components (ncomp) for the final DIABLO model. Consider-
ing centroids distance measures and the balanced error rates (BER), after 10-fold cross
validation repeated 10 times, an optimal number of 2, 3 and 4 components were chosen
for the final DIABLO models in the COPD, HIV and COPD*HIV effect analyses, re-
spectively. The datasets were then tuned using sparse partial least squares discriminant
analysis (sPLSDA), a component-based integrative approach, to obtain sufficient number
of variables for downstream interpretation. The optimal number of variables selected on
each component, after 10-fold cross validation repeated 50 times, in the three datasets are
given in Table (4.1). Using the chosen parameters, the final DIABLO models were run to
identify key interactions between the microbiome, transcriptome, and methylome.

For the COPD*HIV analysis, we also constructed DIABLO circos plots by integrating
just the (a) microbiome and methylome, and (b) microbiome and transcriptome, using the
same methods as above. These models were run to identify key interactions between just
the microbiome and the epigenome, and microbiome and the transcriptome, respectively
(Included in Appendix).
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ncomp Microbiome Transcriptome Methylome

COPD-effect 2 (20, 5) (5, 5) (25, 10)

HIV-effect 3 (20, 5, 5) (5, 15, 10) (25, 5, 5)

COPD*HIV effect 4 (25, 25, 25, 25) (25, 20, 10, 5) (15, 10, 20, 20)

Table 4.1: Table showing the optimal number of DIABLO variables selected
on each component, after 10-fold cross validation repeated 50 times.

4.5 Results

Integration of the microbiome, transcriptome and methylome was performed to analyze
the independent COPD (Fig. 4.1), HIV (Fig. 4.2), and combined COPD*HIV effects (Fig.
4.3).
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Top ASV-Gene Pairs Correlation

p Bacteroidetes g Prevotella - WDR72 -0.797

p Bacteroidetes g Prevotella - AKR1C2 -0.765

p Bacteroidetes g Prevotella - SETDB1 0.761

Top ASV-CpG Pairs Correlation

p Bacteroidetes g Prevotella - CpG TIMP3;SYN3 0.7993

p Bacteroidetes g Prevotella - CpG UTP11L 0.791

p Bacteroidetes g Prevotella - CpG PHACTR2 -0.760

Top Gene-CpG Pairs Correlation

WDR72 - CpG TIMP3;SYN3 -0.799

WDR72 - CpG UTP11L -0.784

AKR1C2 - CpG UTP11L -0.775

Table 4.2: Table showing top ASV-Gene, ASV-CpG and Gene-CpG pairs and
their respective correlation values corresponding to the COPD effect. Minus
sign indicates negative correlation

The top three ASV-Gene, ASV-CpG and Gene-CpG pairs and their respective correlation
values for the COPD, HIV, and COPD*HIV analysis are shown in Tables (4.2), (4.3) and
(4.4), respectively. In the HIV analysis, no significant ASV-Gene and Gene-CpG correla-
tions were found at correlation cutoff=0.70. The balanced error rate, used as an estimate
of model performance, was ∼30-40% in each component. (Not shown - a secondary DI-
ABLO analysis using a null design (where we assume no correlation between datasets)
was performed to see if the model performance could be improved, however no significant
improvement was noted).
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Top ASV-CpG Pairs Correlation

p Actinobacteria g Scardovia - CpG FGF7 -0.811

p Proteobacteria - CpG ABCF3 -0.706

p Planctomycetes g Planctomyces - CpG ABCF3 -0.706

Table 4.3: Table showing top ASV-CpG pairs and their respective correlation
values corresponding to the HIV effect. No ASV-Gene and Gene-CpG correlations
were found at correlation cutoff=0.07. Minus sign indicates negative correlation.

Top ASV-Gene Pairs Correlation

p Bacteroidetes g Prevotella - FUZ 0.774

p Bacteroidetes g Prevotella - FASTKD3 -0.747

p Bacteroidetes g Prevotella - ACVR1B 0.747

Top ASV-CpG Pairs Correlation

p Bacteroidetes g Prevotella - CpG FUZ -0.785

p Bacteroidetes g Prevotella - CpG RP11-168P8.7 0.715

p Bacteroidetes g Prevotella - CpG PHLDB3 -0.707

Top Gene-CpG Pairs Correlation

FUZ - CpG FUZ -0.819

ACVR1B - CpG FUZ -0.800

PTPRF - CpG FUZ -0.793

Table 4.4: Table showing top ASV-Gene, ASV-CpG and Gene-CpG pairs and
their respective correlation values corresponding to the COPD*HIV effect.
Minus sign indicates negative correlation.
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4.6 Discussion

In disease states, microbial dysbiosis occurs and individual members of the microbiome
may be markedly related to host processes such as gene expression and regulation. In
our COPD*HIV integration analysis, we identified features belonging to the microbiome,
transcriptome and the methylome that may conceivably come together and manifest as
disease outcomes.

Our COPD-effect and COPD*HIV integrative ’omics analyses consistently identified the
single microbiome feature Bacteroidetes Prevotella, whose precise role in lung disease is
still widely debated. A host of studies have related Prevotella abundance to pulmonary
inflammation, especially to the increased expression of Th-17 cytokines [179] [181] [23].
In addition to increased immune stimulation, Prevotellaceae-dominated microbial com-
munities have also been found to be enriched for products of branched-chain amino acid
metabolism [184].

In complete contrast to these studies, Prevotella has also been described in terms of healthy
microbial ecosystems. It has been correlated with lung function, exercise capacity, and ex-
pression of epithelial genes involved in tight junction promotion and reduced inflammation
[160]. This lower immunostimulatory activity of Prevotella may be attributed to its cell
membrane lipopolysaccharide (LPS) structure [107]. Besides that, Prevotella may also
interact with other microbes in the respiratory system to exert its effects. One in vitro
study showed that Prevotella, may exhibit its anti-inflammatory properties, by inhibiting
the ability of other gram negative bacteria like Haemophillus influenza to induce cytokine
production [109]. In another study, it was also found to be associated with Porphyromonas,
with which it can co-aggregate and form heterotrophic biofilms [55]. Many of these prop-
erties of Prevotella are strain-specific and further investigation into its adaptability and
pathogenicity are needed to determine its exact role in health and disease [170].

In our COPD-effect analysis, we found that Prevotella was higher in abundance in the
COPD- group when compared to the COPD+ group; In the COPD*HIV analysis, we
found this ASV to have highest relative abundance in the COPD-HIV- group and lowest
in the COPD+HIV+ group. (Not shown - This ASV was also a top hit when we used the
DIABLO null design model, where we assume no correlation between datasets (this is dif-
ferent from the design matrix described in our analysis where we assume a 0.1 correlation
between datasets)). However, Prevotella was not identified to be a top hit in the HIV-
effect analysis. These observations reinforce the idea that healthier individuals have higher
Prevotella and this may be replaced by other microbes with COPD onset and progression.

In our COPD-effect analysis, we also found that Bacteroidetes Prevotella was highly corre-
lated with genes WDR72, AKR1C2 and SETDB1, and methylation sites CpG-TIMP3;SYN3,
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CpG-UTP11L and CpG-PHACTR2 ; CpG-UTP11L was in turn correlated with gene WDR72
and AKR1C2, and CpG-TIMP3;SYN3 was correlated with gene WDR72. Many of these
features have been linked to host processes, for example, gene AKR1C2 was recently iden-
tified as one of the top members in a gene module associated with metabolic processes,
responses to oxidative stress and homeostasis [218]. CpG-TIMP3;SYN3, associated with
gene Tissue Inhibitor of Metalloproteinase 3 (TIMP3) has been previously linked to ex-
tracellular matrix (ECM)-binding and metalloproteinase-inhibitory properties [57]. In a
molecular context, COPD pathogenesis is reminiscent of degradation of the ECM and up-
regulation of cellular oxidative stress, both of which are accomplished by various matrix
metalloproteinases. These features may thus have an important role to play in regulating
oxidative balance and airway remodelling. Other key features include the gene PHACTR2
(Phosphatase and Actin Regulator 2) related to actin binding and protein phosphatase
inhibitor activity, CpG-UTP11L related to apoptosis-related gene UTP11L (Probable U3
Small Nucleolar RNA-associated Protein 11) [213], and methyltransferase SETDB1, in-
creased expression of which was shown to contribute to lung tumorigenesis [165].

Our HIV-effect analysis however identified only significantly correlated ASV-CpG pairs.
The top microbiome features included phyla Actinobacteria, Proteobacteria and Planto-
mycetes, and methylation sites CpG-ABCF3 (ATP Binding Cassette Subfamily F Member
3) with unknown function, and CpG-FGF7 (Fibroblast Growth Factor-7), which has a
vital role in protecting airway epithelium from oxidant injury that is related to COPD
pathogenesis [18].

In our COPD*HIV effect analysis, top microbiome feature Prevotella was highly corre-
lated with features of the transcriptome (genes FASTKD3, FUZ and ACVR1B) and the
methylome (CpG-FUZ and CpG-PHLDB3 ), of which gene FUZ and CpG-FUZ were also
correlated. The gene FUZ and its associated CpG site have been implicated in cilium
organization and assembly. The expression of this gene has also been associated with the
presence of Firmicutes and Proteobacteria [198]. We found that FUZ was hypomethylated
and had highest gene expression in the ”healthy” COPD-HIV- group, concurrent with its
established role in the human body.

Other features include the gene ACVR1B that has been noted to have possible relevance to
COPD pathogenesis and exacerbations, and may also be related to cGMP-PKG signaling,
bacterial invasion of epithelial cells, and actin and immune system-related pathways [26]
[144]. Of the 4 groups in the COPD*HIV analysis, this gene showed maximum expression
in the COPD-HIV- group, and lowest expression in the COPD+HIV- groups, indicating
that COPD may have a role in further driving expression of this gene.

The gene FASTKD3 and its associated nuclear protein are known to facilitate normal
mitochondrial respiration, and also function as a link between RNA translation and the
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respiratory machinery [187]. The gene was found to be correlated to Prevotella abundance,
and its expression was lowest in the COPD-HIV- group and highest in the COPD-HIV+
group, in line with its known function of regulating the energy balance of mitochondria
under stress.

CpG-associated gene PHLDB3 is a target of the tumor suppressor gene p53, which is
in turn inactivated in a negative feedback fashion. Under stressful conditions, p53 reg-
ulates processes of cell cycle arrest, apoptosis, genomic stability, metabolism and aging
[27]. It may be that in HIV-associated COPD, stress factors such as oxidative stress and
inflammatory mediators lead to p53 activation, and by suppressing it PHLDB3 can allow
uncontrolled cell division and accelerated aging commonly seen in these patients. The gene
PTPRF has a role in regulating the assembly and contraction of actin and actomyosin fil-
aments and formation of tight junctions, however, more studies are needed to see if this
indeed translates into a barrier function against HIV entry into target cells [215].

This illustrates that interactions between –omes may be critical in driving airflow obstruc-
tion seen in PLWH. The microbial feature Bacteroidetes Prevotella may be pivotal in its
association with host processes such as methylation and gene expression, via the identi-
fied candidate transcriptomic and epigenetic features. These features suggest new disease
targets involved in pathways regulating mucocilliary clearance, aging/ apoptosis, cellular
respiration/ mitochondrial dysfunction and inflammation. Further mechanistic studies can
be designed to identify how these targets can be modulated to best improve the clinical
outcomes of HIV-associated COPD.

4.7 Challenges

The human microbiome, aside from the well-characterized bacteria, includes archaea,
viruses, fungi, and other eukaryotes. These organisms, especially their interactions with
one another are critical in disease. We have restricted this study to include only bacteria,
however further work encompassing the entire microbial ecosystem is needed.

Besides this inter-kingdom crosstalk, recent studies have indicated that the lung microbiota
may be influenced by inter-organ interactions as well [71] [46]. In addition to the microbes
entering the lung from the oropharynx and upper respiratory tract through microaspira-
tion, inhalation and mucosal dispersion, there is evidence of inter-compartment crosstalk
between the gut and the lungs [182] [44]. These interactions between the gut and lung
microbes may be vital for the production of antimicrobial agents, immune modulation,
exchange of nutrients, etc. [154]. In this study, we did not analyze gut samples, however,
it may be informative to examine the gut microbiome in tandem with that of the lung,
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so as to establish an association between possible gut contamination of the lung and the
outcomes of disease.

Thirdly, to our knowledge, only few studies have investigated the uniformity of the lung
microbiome, although, given that immune infiltration is varied across different compart-
ments of the lung, it may be true that the lung has different microenvironments at various
sites [195] [12]. We have addressed this issue to a certain extent by obtaining brushings
preferentially from the upper regions of the lung, nevertheless, this could influence our
findings. We also acknowledge that evaluating the contribution made by HIV infection per
se is complicated by other potential confounding factors such as underlying conditions, and
different immune and infiltrating cells in the airways that may affect genomic endpoints.
Radiological measures such as computed tomography (CT), and DLCO which are reflective
of patterns of altered lung structure and other phenotypic abnormalities may in part ac-
count for these changes. Other factors such as sex, age and ART could also have an impact.

Integration of multiomics data also remains a challenging endeavor. Multiomics studies
often carry forward challenges from the individual ’omics datasets, which could invalidate
further analyses. In this study, data was generated via varied technologies, and was mea-
sured on different ‘omics technological platforms (i.e., bacterial 16s rRNA and bulk RNA
sequencing and microarray). This may be further complicated by the lack of a ”gold-
standard” workflow addressing issues of data filtering, transformation, normalization and
scaling in the individual datasets [133]. To avoid this ”heterogeneous data” bottleneck, we
examined the individual datasets to identify any major sources of variation, however, we
acknowledge that this may be a caveat.

Multiomics integration using DIABLO brings other challenges. The design matrix which
aims to optimise the trade-off between correlation and discrimination to identify biolog-
ically and clinically relevant ’omics features is user-defined and a fundamental challenge.
Striking a balance between leniency and stringency in the choice of design matrix is crucial
in uncovering novel multiomics features that have not previously been identified. Secondly,
as outlined by the authors of DIABLO, this method assumes that the observed phenotypic
response is due to a linear relationship between the ’omics features selected from the indi-
vidual datasets. However, this assumption of linearity may not hold true in all cases [189].
Another challenge with multiomics is ’over-fitting’, which occurs when models are complex
and/or over-interpret patterns in the training set, causing the predictive performance to
suffer with new data [118]. The hyperparameter tuning step in DIABLO, in particular,
runs the risk of over-fitting. We used cross-validation to minimize this, but it does not
entirely overcome the over-fitting problem. Future work using an validation dataset can
improve this, and provide a more honest assessment of the performance of the model [157].
Despite these challenges, multiomics is gaining in popularity due to its ability to investigate
complex mechanisms across molecular layers.
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4.8 Future Directions

It is widely accepted that the lung has microenvironments at various sites [12]. In ad-
dition to performing microbial community analyses at these unique microenvironments,
determining host-derived factors like immune cells/ mediators using single-cell genomic
approaches, can allow conclusions into interactions between two main drivers of injury -
microbial dysbiosis and inflammation - on the lung epithelium. Host immune responses
and disease outcomes may also be manipulated to a large extent by lower airway metabo-
lites, as illustrated by results of our pathway analyses. Hence, including metabolomics data
in future integrative -omics studies could have a two-fold effect - (i) connecting disease-
related changes in gene expression and microbial dysbiosis to metabolic outcomes in the
host, and (ii) settling the ”causality dilemma” of whether these metabolites are released as
microbial products or whether HIV directs the host metabolism to select for these microbes.

Based on just the 16s rRNA sequencing of bacterial genomes, it is not possible to fully as-
certain strain-level resolution, sequence variants, and phenotypes of the different bacterial
genera present in the communities. Therefore, future whole-genome sequencing (WGS) and
metagenome sequencing, that can improve on the limited taxonomic and functional reso-
lution of 16s rRNA sequencing, can be used to supplement 16s sequencing data. Metage-
nomics can be extended to survey the viral and fungal populations as well, giving a more
comprehensive view of the resident microbiome. In order to identify interactions between
these microorganisms, which may work together to facilitate colonization of the lung, mi-
crobial correlation networks can also be constructed.

From our analyses and previous reports, it is possible that the microbiome has a critical
role to play in the increased susceptibility of PLWH to COPD. Therefore, longitudinal
studies evaluating whether the levels of different aerobic and anaerobic microbes change
and prevent complications with rehabilitation or improvement, treatment with antimicro-
bials, ICS, etc., are warranted. We especially highlight Bacteroidetes Prevotella as a top
ASV; future cell culture models can further help determine the phenotypic response of the
microbe in the host.
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Group 1 Group 2 †Adjusted p-values

Shannon Index Faith PD

COPD effect COPD- COPD+ 0.001 0.0004

HIV effect HIV- HIV+ 0.002 0.003

COPD*HIV effect

COPD+HIV+ COPD+HIV- 0.050 0.017

COPD+HIV+ COPD-HIV+ 0.094 0.017

COPD+HIV+ COPD-HIV- 0.0001 0.0001

COPD+HIV- COPD-HIV+ 0.952 0.657

COPD+HIV- COPD-HIV- 0.014 0.017

COPD-HIV+ COPD-HIV- 0.047 0.089

Table A.1: Pairwise Kruskal-Wallis test of alpha diversity measured using the
Shannon Index and Faith PD metrics. †Adjusted p-values for multiple comparisons
between groups was obtained using the Benjamini-Hochberg procedure (false discovery rate
method correction). Definition of abbreviations: PD – Phylogenetic Diversity.

Group 1 Group 2 Sample size p-value †q-value

COPD effect COPD- COPD+ 76 0.001 0.001

HIV effect HIV- HIV+ 76 0.01 0.01

COPD*HIV effect

COPD+HIV+ COPD+HIV- 40 0.081 0.0972

COPD+HIV+ COPD-HIV+ 34 0.012 0.024

COPD+HIV+ COPD-HIV- 38 0.001 0.006

COPD+HIV- COPD-HIV+ 38 0.119 0.119

COPD+HIV- COPD-HIV- 42 0.009 0.024

COPD-HIV+ COPD-HIV- 36 0.019 0.0285

Table A.2: Pairwise PERMANOVA comparisons based on COPD, HIV and
COPD*HIV statuses. †q-values obtained using Benjamini-Hochberg FDR correction.
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Phylum COPD- COPD+ *p-value †Adjusted p-value

(n=36) (n=40)

Firmicutes 0.386[0.221] 0.4[0.342] 0.357 0.536

Bacteroidetes 0.418[0.314] 0.185[0.355] 0.003 0.018

Proteobacteria 0.065[0.098] 0.169[0.246] 0.042 0.084

Actinobacteria 0.031[0.054] 0.037[0.067] 0.815 0.874

Fusobacteria 0.018[0.03] 0[0.025] 0.012 0.036

Verrucomicrobia 0[0.002] 0[0.006] 0.874 0.874

Table A.3: Relative taxa abundance comparisons at the phylum level between
the COPD+ and COPD- groups in AEC samples. Values displayed as median
[interquartile range]. *P-values calculated using the Mann–Whitney U-test; †Adjusted p-
values obtained using the Benjamini-Hochberg procedure (False Discovery Rate method).
Definition of abbreviations: AEC – Airway epithelial cells.
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Genus COPD- COPD+ *p-value †Adjusted p-value

(n=36) (n=40)

Prevotella∗ 0.334[0.302] 0.144[0.271] 0.0008 0.010

Veillonella 0.154[0.178] 0.065[0.156] 0.011 0.027

Streptococcus 0.057[0.060] 0.094[0.196] 0.233 0.028

Haemophilus 0.015[0.049] 0.001[0.068] 0.157 0.209

Paenibacillus 0.000[0.003] 0.005[0.020] 0.028 0.042

Rothia 0.008[0.025] 0.006[0.026] 0.680 0.742

Actinobacillus 0.000[0.000] 0.000[0.000] 0.980 0.980

Megasphaera 0.012[0.046] 0.000[0.008] 0.005 0.024

Prevotella∓ 0.012[0.043] 0.000[0.011] 0.008 0.024

Neisseria 0.002[0.019] 0.000[0.004] 0.158 0.032

Selenomonas 0.002[0.018] 0.000[0.001] 0.020 0.035

Fusobacterium 0.008[0.027] 0.000[0.015] 0.007 0.024

Table A.4: Relative taxa abundance comparisons at the genus level between
the COPD+ and COPD- groups in AEC samples. Values displayed as median
[interquartile range]. *P-values calculated using the Mann–Whitney U-test; †Adjusted p-
values obtained using the Benjamini-Hochberg procedure (False Discovery Rate method).
Prevotella∗ - Prevotella[f-Prevotellaceae], Prevotella∓ - Prevotella[f-Paraprevotellaceae].
Definition of abbreviations: AEC – Airway epithelial cells.
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Phylum Relative Abundance

Median [IQR] Range

Firmicutes 0.398 [0.277] 0.007 - 0.983

Bacteroidetes 0.29 [0.42] 0 - 0.645

Proteobacteria 0.107 [0.206] 0.001 - 0.942

Actinobacteria 0.033 [0.059] 0 - 0.989

Fusobacteria 0.088 [0.034] 0 - 0.173

Verrucomicrobia 0 [0.004] 0 - 0.385

Others 0 [0] 0 - 0.663

Table A.5: Relative abundance of most abundant phyla (average relative abun-
dance ≥ 2%) observed in AEC samples. Definition of abbreviations: AEC – Airway
epithelial cells; IQR - Interquartile range.
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Genus Relative Abundance

Median [IQR] Range

Prevotella∗ 0.244 [0.358] 0 - 0.576

Veillonella 0.122 [0.179] 0 - 0.389

Streptococcus 0.067 [0.139] 0 - 0.728

Haemophilus 0.009 [0.053] 0 - 0.942

Paenibacillus 0.001 [0.013] 0 - 0.814

Rothia 0.008 [0.027] 0 - 0.232

Actinobacillus 0 [0] 0 - 0.646

Megasphaera 0 [0.031] 0 - 0.199

Prevotella∓ 0.001 [0.025] 0 - 0.122

Neisseria 0 [0.008] 0 - 0.306

Selenomonas 0 [0.009] 0 - 0.129

Fusobacterium 0.003 [0.024] 0 - 0.146

Others 0 [0] 0 - 0.989

Table A.6: Relative abundance of most abundant genera (average relative
abundance ≥ 1%) observed in AEC samples. Definition of abbreviations: AEC –
Airway epithelial cells; IQR - Interquartile range. Prevotella∗ - Prevotella[f-Prevotellaceae],
Prevotella∓ - Prevotella[f-Paraprevotellaceae].
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Phylum HIV- HIV+ *p-value †Adjusted p-value

(n=42) (n=34)

Firmicutes 0.362[0.19] 0.458[0.347] 0.123 0.247

Bacteroidetes 0.364[0.361] 0.203[0.365] 0.034 0.103

Proteobacteria 0.11[0.265] 0.08[0.179] 0.605 0.623

Actinobacteria 0.032[0.052] 0.038[0.071] 0.623 0.623

Fusobacteria 0.022[0.043] 0[0.011] 0.001 0.008

Verrucomicrobia 0[0.002] 0[0.016] 0.276 0.414

Table A.7: Relative taxa abundance comparisons at the phylum level between
the HIV+ and HIV- groups in AEC samples. Values displayed as median [interquar-
tile range]. *P-values calculated using the Mann–Whitney U-test; †Adjusted p-values ob-
tained using the Benjamini-Hochberg procedure (False Discovery Rate method). Definition
of abbreviations: AEC – Airway epithelial cells.

92



Genus HIV- HIV+ *p-value †Adjusted p-value

(n=42) (n=34)

Prevotella∗ 0.295[0.305] 0.127[0.315] 0.020 0.048

Veillonella 0.132[0.114] 0.112[0.268] 0.996 0.996

Streptococcus 0.067[0.081] 0.067[0.164] 0.627 0.752

Haemophilus 0.013[0.054] 0.002[0.051] 0.354 0.472

Paenibacillus 0.000[0.012] 0.001[0.020] 0.817 0.892

Rothia 0.010[0.021] 0.002[0.028] 0.105 0.158

Actinobacillus 0.000[0.000] 0.000[0.000] 0.030 0.061

Megasphaera 0.008[0.036] 0.000[0.007] 0.071 0.122

Prevotella∓ 0.012[0.042] 0.000[0.001] 0.0003 0.004

Neisseria 0.002[0.016] 0.000[0.002] 0.017 0.048

Selenomonas 0.001[0.039] 0.000[0.001] 0.014 0.048

Fusobacterium 0.010[0.027] 0.000[0.006] 0.012 0.048

Table A.8: Relative taxa abundance comparisons at the genus level between the
HIV+ and HIV- groups in AEC samples. Values displayed as median [interquartile
range]. *P-values calculated using the Mann–Whitney U-test; †Adjusted p-values obtained
using the Benjamini-Hochberg procedure (False Discovery Rate method). Prevotella∗ -
Prevotella[f-Prevotellaceae], Prevotella∓ - Prevotella[f-Paraprevotellaceae]. Definition of
abbreviations: AEC – Airway epithelial cells.
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Phylum COPD-HIV- COPD-HIV+ COPD+HIV- COPD+HIV+ *p-value †Effect size

(n=20) (n=16) (n=22) (n=18)

Firmicutes 0.375[0.170] 0.386[0.379] 0.362[0.267] 0.541[0.359] 0.090 0.048[small]

Bacteroidetes 0.472[0.183] 0.273[0.352] 0.279[0.349] 0.107[0.333] 0.004 0.143[large]

Proteobacteria 0.067[0.116] 0.061[0.080] 0.232[0.287] 0.155[0.166] 0.198 0.023[small]

Actinobacteria 0.026[0.026] 0.054[0.081] 0.047[0.097] 0.022[0.048] 0.121 0.039[small]

Fusobacteria 0.030[0.044] 0.007[0.015] 0.009[0.044] 0.000[0.003] 0.0007 0.194[large]

Verrucomicrobia 0.000[0.002] 0.000[0.004] 0.000[0.002] 0.000[0.032] 0.523 -0.011[small]

Table A.9: Relative taxa abundance comparisons at the phylum level between
the COPD-HIV-, COPD-HIV+, COPD+HIV- and COPD+HIV+ groups in
AEC samples. Values displayed as median [interquartile range]. *P-values calculated
using the Kruskal-Wallis test; †Effect size calculated based on Kruskal-Wallis H-statistic
[Eta squared method]. Definition of abbreviations: AEC – Airway epithelial cells.
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Genus COPD-HIV- COPD-HIV+ COPD+HIV- COPD+HIV+ *p-value †Effect size

(n=20) (n=16) (n=22) (n=18)

Prevotella∗ 0.414[0.151] 0.228[0.308] 0.214[0.286] 0.024[0.240] 0.0008 0.191[large]

Veillonella 0.157[0.106] 0.149[0.221] 0.073[0.119] 0.040[0.256] 0.077 0.0535[small]

Streptococcus 0.054[0.053] 0.061[0.147] 0.080[0.140] 0.140[0.253] 0.588 -0.0150[small]

Haemophilus 0.015[0.046] 0.014[0.048] 0.005[0.069] 0.000[0.055] 0.331 0.00590[small]

Paenibacillus 0.000[0.005] 0.000[0.001] 0.001[0.014] 0.009[0.064] 0.024 0.0901[moderate]

Rothia 0.008[0.011] 0.004[0.040] 0.012[0.050] 0.001[0.023] 0.401 -0.000852[small]

Actinobacillus 0.000[0.000] 0.000[0.000] 0.000[0.000] 0.000[0.000] 0.100 0.0452[small]

Megasphaera 0.032[0.054] 0.005[0.037] 0.000[0.022] 0.000[0.000] 0.011 0.112[moderate]

Prevotella∓ 0.026[0.041] 0.000[0.016] 0.004[0.021] 0.000[0.000] 0.0002 0.236[large]

Neisseria 0.003[0.027] 0.000[0.009] 0.000[0.007] 0.000[0.000] 0.009 0.119[moderate]

Selenomonas 0.005[0.046] 0.000[0.004] 0.000[0.024] 0.000[0.000] 0.010 0.116[moderate]

Fusobacterium 0.025[0.032] 0.003[0.010] 0.002[0.020] 0.000[0.001] 0.003 0.155[large]

Table A.10: Relative taxa abundance comparisons at the genus level between
the COPD-HIV-, COPD-HIV+, COPD+HIV- and COPD+HIV+ groups in
AEC samples. Values displayed as median [interquartile range]. *P-values calculated us-
ing the Kruskal-Wallis test; †Effect size calculated based on Kruskal-Wallis H-statistic [Eta
squared method]. Prevotella∗ - Prevotella[f-Prevotellaceae], Prevotella∓ - Prevotella[f-
Paraprevotellaceae]. Definition of abbreviations: AEC – Airway epithelial cells.

Group1 Group2 Phylum p-value †Adjusted p-value

COPD-HIV- COPD+HIV+
Fusobacteria 0.00005 0.0003

Bacteroidetes 0.00033 0.0019

Table A.11: Pairwise comparisons at the phylum level between the 4
COPD*HIV groups using Dunn’s test (only significant comparisons displayed).
†Adjusted p-values obtained on applying Bonferroni correction.
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Group1 Group2 Genus p-value †Adjusted p-value

COPD-HIV- COPD+HIV+

Prevotella∓ 0.00001 0.00007

Prevotella∗ 0.00007 0.0004

Fusobacterium 0.0003 0.002

Selenomonas 0.0007 0.004

Neisseria 0.0007 0.004

Megasphaera 0.001 0.007

COPD-HIV- COPD+HIV- Prevotella∗ 0.0052 0.031

COPD-HIV- COPD-HIV+ [Prevotella] 0.006 0.034

COPD-HIV+ COPD+HIV+ Paenibacillus 0.002 0.013

Table A.12: Pairwise comparisons at the genus level between the 4
COPD*HIV groups using Dunn’s test (only significant comparisons displayed).
†Adjusted p-values obtained on applying Bonferroni correction. Prevotella∗ - Prevotella[f-
Prevotellaceae], Prevotella∓ - Prevotella[f-Paraprevotellaceae].
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Group 1 Group 2 Sample size p-value †q-value

BCW

BW 28 0.002 0.0027

Brush 101 0.001 0.0015

CC 49 0.001 0.0015

EN 29 0.044 0.055

OWC 50 0.001 0.0015

BW

Brush 79 0.001 0.0015

CC 27 0.634 0.7315

EN 7 0.767 0.8218

OWC 28 0.001 0.0015

Brush

CC 100 0.001 0.0015

EN 80 0.001 0.0015

OWC 101 0.001 0.0015

CC
EN 28 0.954 0.954

OWC 49 0.001 0.001

EN OWC 29 0.001 0.0015

Table A.13: Pairwise PERMANOVA comparisons between the different spec-
imen types obtained from HIV+ subjects. †q-values obtained using Benjamini-
Hochberg FDR correction. Definition of abbreviations: BCW - bronchoscope channel
wash; BW - brush water control; CC - cytolyt control; EN - extraction negative; OWC -
oral wash control.
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A.1 Interaction Models

We performed a supplementary analysis examining the potential interaction effects be-
tween COPD and HIV on the alpha and beta diversity metrics used to characterize the
microbiome:

Alpha diversity metrics:
(1) Shannon Index ∼ COPD status * HIV status
(2) Faith PD ∼ COPD status * HIV status

(a)
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(b)

Figure A.1: Plot showing potential interactive effects of COPD and HIV status
on Shannon Index and Faith PD. The lines are basically parallel indicating the absence
of an interaction effect. There are no significant P values to report.
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Beta diversity metrics:
(1) Bray Curtis PC1 ∼ COPD status * HIV status
(2) Bray Curtis PC2 ∼ COPD status * HIV status

(a)
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(b)

Figure A.2: Plot showing potential interactive effects of COPD and HIV status
on Bray Curtis PC1 and PC2. The lines in (a) are basically parallel indicating the
absence of an interaction effect. The lines in (b) are intersecting indicating a potential
interaction effect between COPD and HIV. However, there are no significant P values to
report in both cases. This may be because PC1 and PC2 explain only 15.2% and 8.5% of
the total observed variation, respectively.
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A.2 Decontam Analysis of HIV+ Subjects

A.2.1 Introduction

The R package Decontam [40] was used to identify and visualize contaminating DNA
features, and accurately profile sample microbial communities. The interest for decontam-
ination stems from the fact that contaminating DNA not truly present in the sampled
community may be introduced through various external (such as research subjects’ or in-
vestigators’ bodies, sample collection instruments and laboratory reagents, surfaces and
air) [1] [147] and internal (during sample mixing, processing or sequencing) sources [110].
Despite employing best laboratory practices, not all contaminating features are eliminated
from downstream analysis [190].

In silico methods are also commonly employed to remove contaminants. In our own anal-
ysis, we have incorporated some of these methods, however they come with their own
limitations - (1) removing DNA features having relative abundance below a certain thresh-
old value - implies risk of losing rare features truly present in the sample, (2) removing
features already known as contaminants based on data from previous studies or biological
relevance - true sequences may be lost by eliminating features non-specific to the study, and
(3) removing features that are present in negative controls - can be significantly influenced
by cross-contamination [40].

In this analysis, we use Decontam, which primarily uses two contaminant identification
methods: (1) ”frequency”-based, where the frequency of each microbial feature is analyzed
in relation to the input DNA concentration to identify contaminants, and (2) ”prevalence”-
based, where the presence/absence or ”prevalence” of each ASV in true positive samples
is compared to its presence/absence in negative controls to identify contaminants.

A.2.2 Methods

Different sample types including bronchial brushings, bronchoscope channel washes and
oral wash controls were obtained for all HIV+ subjects. Other control specimens consist-
ing of brush water controls, cytolyt controls, extraction negatives and no-template controls
were also obtained. The microbiome in these different sample types was measured using
the 16s rRNA sequencing method and analysed using QIIME 2™. However unlike the main
analysis, no samples or ASVs were filtered here (no-template controls were dropped from
the analysis when removing mitochondrial and chloroplast DNA).

In our analysis, the ”prevalence” contaminant identification method was used, as it is
preferred for low-biomass samples. Low-biomass samples are those with low densities of
bacterial cells and therefore low quantities of bacterial DNA [8].
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A.2.3 Results

The final Decontam analysis included 118 samples of varying specimen types and 3,732
microbial features. Fig. (A.3) indicates the library size (i.e. the number of reads) of each
sample, as a function of whether that sample was a true positive sample (i.e. Brush) or
a control (i.e. bronchoscope channel wash, brush water control, cytolyt control, oral wash
control, and extraction negative). The library sizes of the true positive samples (brush
samples) primarily fall between 5,000 to 30,000 reads. Almost all of the control samples
have library sizes greater than the true positive samples, but there are a couple of low-read
outliers. Contrary to what would be expected, the true positive samples have fewer reads
when compared to the controls. This may be because of the low-biomass quality of AEC
brushings, which leads to a lower signal to noise ratio, making it is harder capture microbial
signals.

The ”prevalence” method identified 137 potential contaminants out of a total 3,732 se-
quence features at the default threshold of 0.1. Fig. (A.4) is a plot shows how the con-
taminants are able to classify samples into controls and true positive samples, based on
the number of times a subset of these taxa were observed in each group. The samples split
pretty cleanly, although by a narrow margin, into a branch that shows up mostly in true
positive samples, and another that shows up mostly in the controls.
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Figure A.3: Number of 16s RNA gene copies/µL observed in control specimens.
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Figure A.4: Frequency of occurrence of taxa in negative controls (consisting of
bronchoscope channel washes, brush water controls, cytolyt controls, extraction
negatives, and oral wash controls) and true positive samples (brushes).

105



The top 5 contaminants identified are given in Table (A.14).

ASV ∗p-value

Proteobacteria Sphingomonas 2.587e-08

Firmicutes Alicyclobacillus 1.360e-07

Proteobacteria Methylobacterium 1.318e-06

Actinobacteria Candidatus Aquiluna 3.081e-06

Bacteroidetes 6.715e-04

Table A.14: Table showing the top 5 contaminants identified using the ”preva-
lence” Decontam method. ∗p-value obtained from Fisher’s exact test. Abbreviations:
ASV - Amplicon Sequence Variants.
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Appendix B

Methylome Analysis
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(a)

(b)
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(c)

Figure B.1: Principal components analysis of methylation profiles according
to (a) COPD, (b) HIV and (c) combined COPD*HIV status. (a) COPD status
(COPD- patients (N) – red points; COPD+ patients (Y) – blue points), (b) HIV status
(HIV- patients (Negative) – red points; HIV+ patients (Positive) – blue points), and (c)
combined COPD*HIV status (COPD+HIV+ – purple points; COPD+HIV- – blue points;
COPD-HIV+ – green points; COPD-HIV- – red points); the ellipses enclosing each group
are also shown. Definition of abbreviations: PC - principal component.
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Appendix C

Transcriptome Analysis
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(a)

(b)
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(c)

Figure C.1: Principal components analysis of gene expression profiles according
to (a) COPD, (b) HIV and (c) combined COPD*HIV status. (a) COPD status
(COPD- patients (N) – red points; COPD+ patients (Y) – blue points), (b) HIV status
(HIV- patients (Negative) – red points; HIV+ patients (Positive) – blue points), and (c)
combined COPD*HIV status (COPD+HIV+ – purple points; COPD+HIV- – blue points;
COPD-HIV+ – green points; COPD-HIV- – red points); the ellipses enclosing each group
are also shown).
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Appendix D

Integration Analysis

For the combined COPD*HIV groups, the two-ome integration analyses identified top fea-
tures between the (a) microbiome and methylome, and (b) microbiome and transcriptome
(Fig. D.1). The top three ASV-Gene and ASV-CpG pairs and their respective correlation
values are shown in Table (D.1).

Top ASV-CpG Pairs Correlation

p Bacteroidetes g Prevotella - CpG FUZ -0.774

p Bacteroidetes - CpG GPR139 -0.763

p Bacteroidetes g Fluviicola - CpG GPR139 -0.762

(a)

Top ASV-Gene Pairs Correlation

p Bacteroidetes g Prevotella - FUZ 0.765

p Bacteroidetes g Prevotella - FASTKD3 -0.742

p Bacteroidetes g Prevotella - TRAPPC6B -0.733

(b)

Table D.1: Table showing top (a) ASV-CpG (microbiome + methylome) and
(b) ASV-Gene (microbiome + transcriptome) pairs obtained and their respec-
tive correlation values corresponding to the combined COPD*HIV effect. (Mi-
nus sign indicates negative correlation)

113



R
P

11
−

10
07

O
24

.2
;R

P
11

−
10

07
O

24
.3

Z
N

F
26

8

IP
O

7
LT

A
4H

O
P

C
M

L

U
7

C
D

27
;L

O
C

67
86

55
S

LC
11

A
1

G
P

R
12

5
EC

I1
PL

SC
R

1
ST

AG
1

AC
00

70
92

.1

PC

Y_R
NA

LIN
C00486

FUZ

NARF

AC009878.2

SDK1

RP11−1A16.1

TMCO4

PRSS30P

RAP1B

SPRYD5

SFTPD

BTNL8

TNS3

C11orf2
PLS1−AS1;PLS1
PHLDB3
B4GALT7
RDBP
MVP

TBRG4;SNORA5A
NRXN1RP11−158L12.5GBP5;RP4−620F22.2

KLF13CABYRSMAP2EIF3DCHMP3;AC015971.2

DNAJC3−AS1;DNAJC3

NDUFAF4

RP11−66B24.4;LRRK1

RP11−168P8.7

TM
EM

50B

C
6orf226

R
R

P15

AC
105399.2

C
Y

B
5R

1

U
S

P
48

P
R

R
16

C
D

C
42E

P
4

C
C

R
6

H
E

S
X

1

R
P

1−
149A

16.3;R
P

1−
149A

16.17

R
G

S
3

R
P

5−
98

3L
19

.2

C
D

H
R

3

B
LC

A
P

C
6o

rf
22

1

H
D

A
C

4

A
C

09
97

54
.1

;L
R

R
C

3B

D
O

T1
L

P
H

F1

N
O

P
58

C
O

L1
A

2

M
YB

PC
3H

K1

CSF
3R

OGN

HEAT
R8KIA

A0240RP5−1129J2
1.3

HOXA11−AS;HOXA11
IDI1;WDR37FOLR2

RP11−236B18.2;RP11−236B18.3

LAMC3WHSC1
SDC2

GPR139

CNNM3

M
et

hy
lom

e

p__Bacteroidetes g__Prevotella

p__Bacteroidetes g__[Prevotella]

p__Proteobacteria __

p__Firmicutes g__Megasphaera

p__Proteobacteria g__Neisseria

p__Proteobacteria g__Methylobacterium

p__Verrucomicrobia g__

p__Proteobacteria g__Actinobacillus

p__Actinobacteria g__

p__Actinobacteria g__Gardnerella

p__Firmicutes g__Catonella

p__Bacteroidetes g__Capnocytophaga

p__Firmicutes g__Bacillus

p__Bacteroidetes g__Flavobacterium

p__Actinobacteria g__Corynebacterium

p__Firmicutes g__Peptostreptococcus

p__Proteobacteria g__Schlegelella

p__Proteobacteria g__

p__Firmicutes g__

p__Proteobacteria g__Tepidimonas

p__Firmicutes g__Lactobacillus

p__Bacteroidetes g__

p__Proteobacteria __

p__Proteobacteria g__Cupriavidus

p__Proteobacteria g__Bosea

p__Proteobacteria g__M
assilia

p__Actinobacteria g__R
othia

p__Actinobacteria g__Scardovia

p__P
roteobacteria g__

p__P
roteobacteria __

p__Firm
icutes g__

p__Firm
icutes g__Leuconostoc

p__G
N

02 g__

p__A
ctinobacteria g__R

hodococcus

p__B
acteroidetes g__C

loacibacterium

p__P
roteobacteria g__O

chrobactrum

p__P
roteobacteria g__S

tenotrophom
onas

p__B
acteroidetes g__F

luviicola
p__A

ctinobacteria g__A
rthrobacter

p__P
roteobacteria g__R

oseom
onas

p__[T
herm

i] g__D
einococcus

M
icr

ob
iom

e

●

●

Correlations

Positive Correlation
Negative Correlation

●

●

●

●

Expression

COPD−HIV−
COPD−HIV+
COPD+HIV−
COPD+HIV+

Correlation cut−off

r=0.7
Comp 1−2−3−4−5

(a)

W
IP

F
3

B
IC

D
1

AT
P

10
D

AC
VR

1B

AL9
28

65
4.

1

RBM17

FASTKD3

RELL2

ITPRID2

BPTF

NAT14

FUZ

AC103957.2

TNRC6B

CNPY4

TR
APPC

6B

N
O

P
2P

T
P

R
F

G
S

T
K

1

P
LC

G
2

S
N

T
B

1

A
C

10
70

21
.1

TM
EM

24
5AC

10
49

58
.2

KCNE4

BACH2

PLPPR3

KAT6B

Tr
an

sc
rip

to
m

e

p__Bacteroidetes g__Prevotella

p__Bacteroidetes g__[Prevotella]

p__Firmicutes g__Mogibacterium

p__Proteobacteria g__Methylobacterium

p__Firmicutes g__Oribacterium

p__Actinobacteria g__

p__Firm
icutes g__C

atonella
p__P

roteobacteria __

p__P
roteobacteria g__

p__F
irm

icutes g__Leuconostoc

M
icr

ob
io

m
e

●

●

Correlations

Positive Correlation
Negative Correlation

●

●

●

●

Expression

COPD−HIV−
COPD−HIV+
COPD+HIV−
COPD+HIV+

Correlation cut−off

r=0.7
Comp 1−2

(b)

Figure D.1: DIABLO circos plot showing the within and between correlations
between the (a) microbiome and methylome, and (b) microbiome and tran-
scriptome. The three -omes are represented on the side quadrants; expression levels of
each variable according to combined COPD*HIV status can be viewed along the circum-
ference. Positive correlation - Green ; Negative correlation - Red; Correlation cutoff =
0.7.
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