
Accelerating Recommendation System Training by
Leveraging Popular Choices

by

Yassaman Ebrahimzadeh Maboud

B.A.Sc, Shahid Beheshti University (IRAN), 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

October 2021

© Yassaman Ebrahimzadeh Maboud, 2021

The following individuals certify that they have read, and recommend to the

Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

“Accelerating Recommendation System Training by Leveraging Popular Choices”

submitted by Yassaman Ebrahimzadeh Maboud in partial fulfillment of the require-

ments for the degree of Master of Applied Science in Electrical and Computer En-

gineering.

Examining Committee:
Prashant J.Nair, Assistant Professor, Electrical and Computer Engineering Depart-

ment, UBC

Supervisor

Alexandra Fedorova, Professor, Electrical and Computer Engineering Department,

UBC

Supervisory Committee Member

Satish Gopalakrishnan, Associate Professor, Electrical and Computer Engineering

Department, UBC

Supervisory Committee Member

ii

Abstract

Recommendation systems have been deployed in e-commerce and online adver-

tising to expose desired items from the user’s perspective. To meet this end, vari-

ous deep learning-based recommendation models have been employed such as the

Deep learning recommendation model or DLRM at Facebook.

The input of such a model can be categorized as dense and sparse represen-

tations. The former demonstrates the numerical representation of items and users

with discrete parameters. On the other hand, the latter refers to continuous in-

put such as time or age. Such models are comprised of two main components:

computation-intensive components like multilayer perceptron or MLP and memory-

intensive like embedding tables which save the numerical representation of sparse.

Training these large-scale recommendation models is evolving to require increas-

ing data and compute resources.

The highly parallel neural networks portion of these models can benefit from

GPU acceleration, however, large embedding tables often cannot fit in the limited-

capacity GPU device memory. Hence, this thesis deep dives into the semantics of

training data and feature access, transfer, and usage patterns of these models. We

observe that, due to the popularity of certain inputs, the accesses to the embeddings

are highly skewed. Only a few embedding entries are accessed up to 10000× more.

In this thesis, we focus on improving the end-to-end training performance us-

ing this insight and offer a framework, called Frequently Accessed Embeddings

or FAE. we propose a hot-embedding-aware data layout for training recommender

models. This layout utilizes the scarce GPU memory for storing the highly ac-

cessed embeddings, thus reducing the data transfers from CPU to GPU. We choose

DLRM [41] and XDL [30] as the baseline. Both of these models have been com-

iii

mercialized and are well-established in the industry. DLRM has been deployed by

Facebook as well as XDL by Alibaba. We choose XDL as of its high utilization of

CPU and a notably scalable solution for training recommendation models.

Experiments on production-scale recommendation models with datasets from

real work show that FAE reduces the overall training time by 2.3× and 1.52× in

comparison to XDL CPU-only and XDL CPU-GPU execution while maintaining

baseline accuracy.

iv

Lay Summary

The recent trend for recommendation model shows that training these model de-

mands higher computation power and memory capacity. One approach to tackle

this is distributed training by deploying CPU along with GPU. The baseline, de-

ployed in corporations such as Facebook, handles the issue by exploiting data par-

allelism and model parallelism. This approach incurs a significant overhead of

CPU-GPU communication for each iteration. To overcome the issue, a more en-

hanced way has been suggested by XDL. It has been used as our second baseline.

In this thesis, we propose a framework, Frequently Accessed Embeddings or

FAE to mitigate the GPU-CPU communication overhead by leveraging the fact

that entries in the embedding tables are not accessed evenly. We demonstrate our

results acquiring 4.76 × and 1.80× against the open-source DLRM and TBSM on

CPU and CPU-GPU, and 2.3× and 1.52× in comparison to XDL CPU-only and

XDL CPU-GPU execution while maintaining baseline accuracy.

v

Preface

This thesis is the result of work carried out by me, under supervision of my advi-

sor, Dr. Prashant Nair, and Dr. Divya Mahajan (Microsoft Research). All chapters

are based on paper published in the 2022 International Conference on Very Large

Data Bases (VLDB). I was responsible for conceiving the ideas. My colleague

Muhammad Adnan and I were responsible for designing and conducting the exper-

iments and writing the paper. Dr. Nair was responsible for overseeing the project,

providing guidance and feedback, and editing and writing parts of the paper.

Dr. Mahajan contributed her knowledge and expertise due to her closely re-

lated prior work. She provided insights into the problems, helped in designing

experiments, and assisted with the tools used for these experiments.

Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, Prashant

Nair. ”Accelerating Recommendation System Trainingby Leveraging Popular Choices”.

In International Conference on Very Large Data Bases (VLDB), 2022.

vi

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . vii

List of Tables . x

List of Figures . xi

List of Abbreviations . xiv

Acknowledgments . xv

1 Introduction . 1
1.1 Recommendation Model overview 1

1.2 Motivation . 2

1.3 Approach and Contributions . 3

2 Background . 6
2.1 Recommendation models and their training inputs 6

2.2 State-of-the-art mode of execution for training 6

2.3 Leveraging training input and embedding access patterns 8

3 Related Work . 9

vii

3.1 Optimizations data layout through caching 10

3.1.1 Cache-based Optimization 10

3.1.2 Tensorization . 11

3.1.3 Reinforcement Learning based 12

3.1.4 Web-scale Recommendation Model 14

3.1.5 Sequential Recommendation Model 15

3.1.6 Hardware Optimization 15

3.1.7 Near-memory Processing 17

3.2 Efficient execution of tasks on GPUs 19

3.3 Embedding parameter placement 20

3.4 Mitigating memory intensive training through compression, spar-

sity, and quantization . 22

3.5 Distributed deep learning training 23

3.6 Summary . 24

4 Challenges . 25
4.1 Maintain Accuracy While Moving Hot Data to GPU 25

4.2 Cold and hot embedding table entries segregation 26

4.3 Scheduling hot and cold minibatches 27

4.4 Maintain consistency between the embedding tables that are scat-

tered across devices . 28

4.5 Summary . 28

5 Approach . 29
5.1 FAE overview . 29

5.1.1 Calibrating the Access Threshold 30

5.1.2 Mitigating Read Overheads with Sparse Input Sampler . . 32

5.1.3 Categorize and determine hot embedding size with the Pro-

filer . 33

5.2 Confidence in the estimated embedding table size. 34

5.3 Input and Embedding Classifier 36

5.4 Scheduler for Dynamic Hot-Cold Swaps 38

5.5 Communication Overheads . 38

viii

5.6 Summary . 39

6 Evaluation . 40
6.1 Experimental Setup . 41

6.1.1 Software libraries and setup 41

6.1.2 Server Architecture . 42

6.1.3 Baselines and terminology 43

6.2 Accuracy . 44

6.2.1 Accuracy Results . 44

6.2.2 Data transfer between CPU and GPU 48

6.3 Summary . 50

7 Conclusion and Future Work . 51
7.1 Summary . 51

7.2 Future Work . 52

Bibliography . 53

ix

List of Tables

Table 5.1 List of Notations . 30

Table 6.1 Model Architecture Parameters and Characteristics of the Datasets

for our Workloads . 41

Table 6.2 System Specifications . 42

Table 6.3 Accuracy Metric Comparisons 44

Table 6.4 Absolute Training Time for 10 Epochs (mins) 45

Table 6.5 CPU-GPU data transfer time for 10 Epochs (mins) 47

Table 6.6 Amount of Data Transferred over 10 Epochs 48

Table 6.7 Synthetic Models’ Configuration 49

Table 6.8 GPU Power Consumption Comparison 50

x

List of Figures

Figure 1.1 A) Typical recommender mode [23, 26, 41]. They comprise

compute-intensive neural networks like DNNs and MLPs in

tandem with the memory-intensive embedding tables. B) shows

embedding table sizes for four real world datasets and the pro-

portion of the embedding table that is frequently accessed (hot).

The graph also shows the % of training inputs that only access

the hot embeddings. C) shows the baseline embedding data

layout, i.e., storing entirely in the main memory. D) shows the

proposed layout where hot embeddings that cater to over 70%

of the training inputs, are stored locally on GPUs. 3

Figure 2.1 Execution graph of deep learning based recommender model.

In this graph we show the forward graph in detail, the back-

ward pass is a mirror of forward and executes on CPU and

GPU according to its forward counterpart. The current mode

of training for DLRM and TBSM requires embedding storage,

reading, and processing, on CPU. 7

Figure 4.1 Probability of creating a mini-batch with all popular inputs

when the number of hot-inputs are 99% or lower. This reduces

drastically as the mini-batch size increases. 26

xi

Figure 4.2 The FAE framework. The preprocessing phase calculates the

threshold for classifying hot embeddings. This phase uses

random-sampling of input datasets and embedding tables to

determine the best threshold for hot embeddings. This thresh-

old is also used to classify inputs into hot and cold minibatches.

At runtime, GPUs execute the hot input mini-batch while cold

inputs execute in a CPU-GPU hybrid mode. The scheduler

uses feedback from the Pytorch modules to determine the rate

of hot and cold mini-batches swap. 27

Figure 5.1 (a) Size of hot embedding entries and (b) Percentage of hot

inputs with varying access threshold values. As we vary the

threshold, the size of the embedding entries increases more

rapidly compared to the percent of hot inputs 31

Figure 5.2 Reduction in the profiling latency when input dataset is sam-

pled for embedding table access pattern. 32

Figure 5.3 Reduction in the latency per iteration by using to estimate the

hot embedding size per threshold. The total latency to scan all

embedding tables is under 25 seconds per threshold iteration. . 34

Figure 5.4 The flow of events in Input Sampler and Profiler. The origi-

nal input 1 is sampled 2 at 5%. This sample is used by the

profiler to create an access profile across embedding entries in

the logger 3. For each threshold, A few chunks from the em-

bedding logger is randomly sampled 4 to estimate the count of

hot entries 5. The mean and standard deviation of this count

determines the size of hot embedding tables per threshold 6. . 35

Figure 5.5 Estimated sizes of hot embedding tables with . For a confi-

dence interval of 99.9%, the estimation is within 10% (upper

bound) of the actual size. 35

Figure 5.6 The latency of the input processor from dataset to classify

sparse-feature inputs (as hot or cold) as we vary the access

threshold. Overall, even for very low access thresholds, we

only require only a maximum of 110 seconds. 37

xii

Figure 5.7 Embedding table access profile from the original inputs (D)

and the sampled inputs (D̂) – sampling rate (x) = 5%. We

observe that D̂ has a similar access signature to D. 37

Figure 6.1 Increasing Accuracy with training iterations when optimized

with FAE framework. As we see, all the datasets and corre-

sponding recommender models achieve the XDL accuracy for

both training and test or validation sets. 41

Figure 6.2 The performance of Criteo Kaggle, Taobao Alibaba, Criteo

Terabyte, and Avazu training with the vs XDL and DLRM.

All values are normalized to XDL 1-GPU. 43

Figure 6.3 Latency breakdown for the 1, 2, and 4 GPU executions. The

framework adds the overhead of embedding synchronization

across CPUs and GPUs, not present in XDL and DLRM. . . . 43

Figure 6.4 Speedup of with varying mini-batch sizes for a 4-GPU system,

compared to a 4-GPU XDL. 49

Figure 6.5 Performance comparison of with XDL 4-GPU across various

synthetic models. 49

xiii

List of Abbreviations

CPU Central Processing Unit

DLRM Deep Learning Recommendation Model

FAE Frequently Accessed Embeddings

GPU Graphics Processing Unit

MLP Multilayer Perceptron

xiv

Acknowledgments

I would like to express my sincere gratitude to my advisor Dr. Prashant Nair for

his perpetual support during my Masters. His patience, invaluable guidance, and

in-depth knowledge made my stay UBC extremely rewarding and helped me grow

personally as well as professionally. His enthusiasm and an optimistic outlook and

patience are quite inspiring for young researchers like me.

I would like to mention and Thank my mentor Dr. Divya Mahajan for her

insightful comments and never-ending support throughout the whole process.

I would like to thank my colleague Muhammad Adnan and many other col-

leagues in the Gattaca Lab at UBC for their support and stimulating discussions

throughout my research endeavors.

Finally, I would like to thank my family, for providing me with constant en-

couragement and having my back throughout my study. This degree would not

have been possible without the zealousness and sincere support from them.

xv

Chapter 1

Introduction

1.1 Recommendation Model overview
Recommendation models are an important class of machine learning algorithms

that enable the industry (Netflix [18], Facebook [41],Amazon [53], etc.) to offer

a targeted user experience through personalized recommendations. Deep learning

based recommendation models [26, 41] are at the core of a wide variety of internet

services and consume significant infrastructure capacity and compute cycles in data

centers [42]. Training such at-scale models observes a conflation of challenges

arising from high compute and data storage/transfer requirements.

On the compute side, hardware accelerators notably GPUs and other hetero-

geneous architectures [7, 8, 10, 31, 37], provide a robust mechanism to increase

performance and energy efficiency. To mitigate the large memory requirement,

distributing training load through model parallel training or reducing the overall

memory requirement through sparsity and compression can be used. However,

such techniques either require a pool of hardware accelerators that cumulatively

provide enough memory to store these large models or trade off accuracy from the

reduced precision for model footprint.

1

1.2 Motivation
Recommender models, as shown in Figure 1.1, use embedding tables that con-

tribute heavily towards the memory capacity requirement and neural networks that

exhibit compute intensity. While neural networks can benefit from GPUs, embed-

ding tables (10s of GBs) often cannot fit within GPU memories [24, 42]. Naively

using model parallelism just to store the large embedding data across multiple

GPUs is sub-optimal, as the number of GPU devices per compute node are not only

fixed, but also scarce and expensive. Figure 1.1 shows the size of the embedding

tables for four real-world datasets across two open-source recommender models,

“Deep Learning Recommendation Model for Personalization and Recommenda-

tion Systems” (DLRM) and “Time-based Sequence Model for Personalization and

Recommendation Systems”(TBSM).

As user-targeted applications evolve, the size of these embedding tables is ex-

pected to increase at a rate faster than the anticipated increase in the memory capac-

ity. This is because larger embedding tables can track a greater and more diverse

degree of user preferences. Therefore, in practice, it is common to train recommen-

dation models either solely on CPUs or use the CPUs for handling the embedding

data with GPUs executing data-parallel neural networks. In the latter case, embed-

dings are stored in CPU memories as shown in Figure 1.1 and require embedding

data to be transferred between CPU and GPUs.

Past work has shown that data transfers are not only performance degrading but

also consume significantly higher energy compared to accessing memories on the

device. To address this, we leverage the observation that certain embedding entries

and inputs to recommendation models are significantly more popular than the oth-

ers. For instance, blockbuster movies tends to be significantly more popular than

other movies. Each of these items or users are translated to an entry to the embed-

ding table. Therefore, when an item is popular, the associated entry is used more

in the model as well. Below, we discuss how popular inputs and embeddings can

be delegated to a faster and compute-proximate device memory while maintaining

the training fidelity.

2

GPUsA

Neural
Networks

Feature Interaction

Layer N

Embedding
Lookup

Embedding
Lookup

Dense Feature
Inputs

Sparse Feature
Inputs

Sparse Feature
Inputs

Layer 2

Layer 1

Compute Intensive

Memory Intensive

Neural
Networks

Neural
Networks

CPU

Embedding Entries

Main Memory

CPU

Main Memory Hot
Embeddings

6.8%
76%

75.8%

92.4%
81.6%

B

C

D

0.7%
17%

74.6%

GPUs

Figure 1.1: A) Typical recommender mode [23, 26, 41]. They comprise
compute-intensive neural networks like DNNs and MLPs in tandem
with the memory-intensive embedding tables. B) shows embedding ta-
ble sizes for four real world datasets and the proportion of the embed-
ding table that is frequently accessed (hot). The graph also shows the
% of training inputs that only access the hot embeddings. C) shows the
baseline embedding data layout, i.e., storing entirely in the main mem-
ory. D) shows the proposed layout where hot embeddings that cater to
over 70% of the training inputs, are stored locally on GPUs.

1.3 Approach and Contributions
This thesis focuses on developing a framework to train deep learning recommen-

dation models (DLRM) by proposing the Frequently Accessed Embeddings (FAE)

framework that efficiently places embedding data across CPUs and GPUs. while

maintaining baseline accuracy.

Contributions: This paper makes the following contributions:

• We find that embedding table accesses in real world recommender models is

heavily skewed, thus allocating equal compute resources to all the entries is

sub-optimal.

• We intelligently place hot embeddings on every GPU device involved in

training while retaining cold entries on CPUs. Placing only hot embeddings

on GPUs reduces its memory requirement and improves performance. This

is because FAE eliminates CPU-GPU communication for inputs that access

hot embeddings and enables accelerating the computation of the model for

frequently accessed embedding entries.

3

• To optimize training, FAE performs sampling of the input dataset to deter-

mine the access pattern of embedding tables. Thereafter, FAE classifies the

input data into hot and cold categories. FAE ensures that a minibatch ei-

ther accesses only hot or only cold embeddings to avoid communication

overheads. At runtime, FAE intertwines executions of hot and cold input

mini-batches to ensure the baseline accuracy.

• FAE employs statistical techniques to avoid traversing through the entire

input dataset and embedding tables to determine the hot embedding access

threshold and the size of the hot embedding table while incurring negligible

overhead.

We prototype FAE on well established open-source deep learning-based rec-

ommender system training models DLRM [41] and TBSM [26]. These models

are adopted by both academia [11] and industry [19, 44, 60]. We compare our

FAE optimized training with two implementations. First, the open-source imple-

mentations of DLRM and TBSM. Second, a highly optimized implementation of

these models using the XDL framework [30]. We choose the commercialized in-

dustrial deep learning framework, XDL as of high utilization of CPU. This deep

learning framework for high-dimensional sparse data, utilizes CPUs and offers a

notably scalable solution for training recommendation models. Hence, it’s been

chosen as well-established state-out-the-art baseline to compare our model with.

We evaluate FAE for a wide variety of real-world and synthetic deep learn-

ing based recommender models. For real-world model architectures, our experi-

ments show that FAE achieves, on average, a performance improvement of 2.3×

and 1.52× in comparison to XDL enhanced CPU and CPU-GPU baseline, respec-

tively. Furthermore, FAE achieves 4.76× and 1.80× against the open-source im-

plementation of DLRM and TBSM on CPU and CPU-GPU, respectively. Both

baselines execute in a hybrid mode that uses a CPU with 4 GPUs. FAE reduces

the amount of data transferred from CPU to GPU by 1.54× in comparison to XDL-

based baseline. For synthetic model architectures, FAE achieves 2.94× speedup

over XDL-based baseline.

The rest of the thesis is organized as follows. We first give a brief background

identifying the problem in Chapter 2, then we provide a brief overview of related

4

work in Chapter 3. We identify the main challenges we overcame in Chapter 4 and

present our approach for handling them in Chapter 5. We evaluate our proposed

techniques in Chapter 6. Finally, we conclude the thesis and discuss avenues of

future research in Chapter 7.

5

Chapter 2

Background

In this section, we first present a brief primer on architecture of recommendation

systems and some industrial approaches to train them, then define the terms we

use, followed by our training process.

2.1 Recommendation models and their training inputs
2.1 shows the flow of a recommendation model which comprises embedding lookup

and neural network layers. The recommendation model has two types of inputs,

sparse and dense feature inputs. Sparse inputs typically denote specific prefer-

ences of the user (like the movie genre, choice of music, etc.) and are used by the

embedding layers. Dense inputs are representation of continuous properties of user

or item such as time of day, location of users, etc. that feed directly into the neural

network layers.

The embedding phase uses large tables containing data that reduces the sparse

input feature space into a vector. These inputs are used by the deep neural network

(DNN) and multilayer perceptron (MLP) components to classify and determine the

final recommendation.

2.2 State-of-the-art mode of execution for training
Machine learning techniques generally employ data-parallel training to reduce the

overall execution time. This mode of training requires model replication across all

6

Time

Read Dense
Inputs

Receive
Dense Inputs

Read Sparse
Inputs

Scatter
Dense Inputs Bottom Neural Network

Read Embedding
Entries

Process embedding
entries

Scatter Embedding
Entries

Top Neural Network Backward PassFeature
Interaction

Executed on CPU Executed on GPU CPU-GPU
Communication

Forward Path

Optimizer Neural
Networks

Optimizer
Embedding

Figure 2.1: Execution graph of deep learning based recommender model. In
this graph we show the forward graph in detail, the backward pass is a
mirror of forward and executes on CPU and GPU according to its for-
ward counterpart. The current mode of training for DLRM and TBSM
requires embedding storage, reading, and processing, on CPU.

the GPU devices, where each device executes on different inputs in a mini-batch.

Thereafter, a post-execution synchronization is performed to update the weight-

s/parameters using the aggregated gradient values. For recommendation models,

this training mode tends to be infeasible as embedding tables cannot fit even on

high-end GPUs such as Nvidia-V100.

To overcome this issue, as shown in the 2.1, past work either executes the

whole graph on the CPU or uses the CPU to handle the memory-intensive embed-

ding layer with the GPUs executing the compute-intensive DNN layers. The first

case is inefficient as CPUs are not optimized for neural network training as they

can not optimally process large tensor operations. On the other hand, the hybrid

CPU-GPU mode incurs CPU-GPU communication overheads for intermediate re-

sults and gradients. This is shown in the forward pass by the bold dotted lines in

the 2.1. The backward pass also executes in a CPU-GPU mode, with CPU execut-

ing the backward computation for embeddings and GPU executing the backward

propagation of neural layers. Thereafter, the gradients are generated on CPU for

embeddings and on GPU for neural layers. Our experiments show that CPU-GPU

communication can take up significant percentage of the total training time. Addi-

tionally, any computation involving embedding data, such as the massively-parallel

stochastic gradient descent (SGD) optimization, also then executes on the CPU.

7

2.3 Leveraging training input and embedding access
patterns

Data accesses can exhibit certain locality that can be exploited either at software,

system, or hardware level. For recommender models trained on real-world data,

some sparse inputs are significantly more popular than others. Therefore, in such

real-world applications, accesses into embedding tables are also heavily skewed.

For instance, for the Criteo Kaggle dataset on DLRM, the top 6.8% of the embed-

ding table entries observe at least 76% of the total accesses.

It is important to note that the cold portion of the embedding data is critical

from a learning perspective as it contributes towards the overall efficacy of the

model. This is because cold embeddings help cater the model to a wider user base.

Thus, training only on popular inputs would make the targeted user experience

futile as it would lead to certain items being always recommended. Nevertheless,

from a memory and infrastructure perspective, as shown in Figure 1.1, hot entries

are more important as they from 75% to 92% of the total training input accesses.

In this thesis, the proposed framework leverages the popularity semantics of

training input to mitigate the bottlenecks of the above mentioned CPU-GPU execu-

tion by optimizing the embedding data layout in the memory hierarchy. Intuitively,

highly accessed embeddings are kept in close proximity to the compute, i.e. GPU,

whereas the cold embedding entries are stored in relatively larger but slower CPU

memories. This allows us to execute the entire training graph, shown in 2.1, on the

GPU in a data-parallel fashion for the popular inputs. This data layout overcomes

limitations of the baseline by:

• Accelerating embedding compute through GPUs whilst being within the

memory capacity of the devices like CPU.

• Eliminating the communication overheads (gradients and activations) be-

tween CPU and GPU.

8

Chapter 3

Related Work

Training machine learning models is an important and heavily developed area of

research. Optimizing training for deep neural networks [7, 25, 28, 40, 47] has

garnered most of the attention, whereas recommender models have been under-

investigated. We classify related works into four broad categories, delving into

motivations and prospective benefits for each. The first category includes works

related to optimizing data through caching using reinforcement learning, ensem-

bling of multilayer perceptrons, sequential recommendation system, and hardware

optimizations. In one of the subsections, we discuss a paper that proposes com-

pression techniques for web-scale recommendation system in order to improve the

scalability and reduce memory footprint. Then, we go over the optimization to re-

duce the memory for sequential recommendation model. At the end, we go through

the papers regarding near-memory processing. The second category summarizes

approaches that exploit GPUs to run the model by tweaking and training the DNN

on GPU. these category of approaches unleashes the potential parallelization with

faster weight updating. Getting into more details, the main problem is that with

respect to DLRM memory footprints, they are too large to fit on devices like GPU.

Hence, scalability is the major issue for these class of solutions. In this section we

go over papers proposing an approach to improve scalability. The third category

goes over the fact that compressing the whole model can eliminate such as commu-

nication and bandwidth overheads. The main issue is embedding table placement

as of large size of embedding tables. In this section we through works done to

9

overcome this issue by various solutions such as hierarchical memory storage to

eliminate or mitigate the CPU-GPU communication overhead.Finally, the fourth

category goes over distributed training for recommendation models.

3.1 Optimizations data layout through caching
Works in the past [54, 57] have delved into informed and domain-aware caching

with their ever increasing requirement for compute and memory. In the deep learn-

ing realm, some of the prior works like Quiver [35] cache data on local SSDs to

eliminate slow reads from remote storage. Furthermore, they employs hashing

based techniques to incorporate thrashing-free strategies across jobs to efficiently

utilize the shared cache.

Instead, this work dives into the semantics of the training inputs observed by

recommender models and offers compile time strategies to statistically ensure hot

data is placed close to compute. Generally speaking, using conventional caching

technique will not give the model any significant benefit as twofold that they func-

tion based on. Temporal and Spatial locality.

3.1.1 Cache-based Optimization

Works on caching mostly have been focused on caching the embedding table en-

tries. The issue arises as of random access pattern. At the stage of embedding

lookup, we fetch the required entries based on the input and the model and do op-

erations such as aggregation. We then, come up with a embedding table vector

as a result send to the next stage or feature interaction. As of this unpredictable

and random access of embedding entries, it might not be feasible to effectively

cache. Hence, it leaves the possibility of effective caching to the dataset instead of

the scheme and model. This behavior depends on entity’s property (item or user)

and makes it an unappealing approach to optimizing the data layout if all inputs

are treated the same during caching. Due to aforementioned factor, an intelligent

mechanism for caching is required which can be carries out by extracting data pat-

tern. The more popular and more frequent the embedding entry is, the higher the

odds of storing it in the cache should be.

Our offline techniques enable FAE to fully exploit coarse grained GPU based

10

compute throughput, without employing any dynamic hashing. The prior work

ATML [22] has been exploiting the fact that not all the embedding entries are

accessed equally. Some are requested to get fetched more frequent than other ones

depending on the input. This pattern can be significantly beneficial for compressing

the model. Hence, caching will more effective by fitting more embedding entries.

Moreover, it reduces the amount of bandwidth required.

An embedding table entry is comprised of multiple dimension. ATML exploits

the insight that not all the sparse dimension are effecting the performance of the

model the same, thus some can be masked off. It proposes a twined-based layer

scheme called Adaptively-Masked Twins-based Layer (AMTL). ATML uses two

branches of most frequently used sparse dimension and the least frequently used

embedding entries to train a neural network model. The neural network deter-

mines which sparse dimensions should be masked off. The insight behind this

scheme is that is least frequent dimension will have their parameters less updated

and overshadowed by more frequent dimensions if parameters are not separated.

This flexible method of determining the entry size has been proposed to improve

the fixed size embedding table to unleash higher degree of compression and cache

improvement. As by profiling the input, more frequent embedding entries will be

determined and cache replacement policies can perform more efficiently.

3.1.2 Tensorization

Based on experiments, more than 99% of memory footprint of DRLM model be-

longs to the extremely large embedding tables which are in order of GB or even

TB. The trend of large memory size is expected to get exacerbated in the future.

The underlying logic is that with items and users are added to the model, the ca-

pability of model to suggest more fine-tuned recommendation increases and that

requires higher cardinality and higher embedding dimension for embedding tables.

On the other hand, this aggravates the memory-intensity problem in addition to

higher bandwidth required to train the model.

Work in [4], for instance, assumes that the major part of memory footprint for

a neural network comes from the weights of fully connected layers and that can

be transformed into Tensor Train or TT-format using an algorithm called tensor

11

value decomposition using a format called TT-layer. Tensor value decomposition

represents the same network with less number of parameters using TT-format. This

work doesn’t require any change of training algorithm while being able to maintain

the baseline accuracy.

Work in [46] on the other hand, uses the same representation for a different

context. It applies the same approach to reduce the size of embedding layer al-

though this comes at the cost of negligible drop of accuracy. In this approach,

first a tensor has been reshaped and then, it will be decomposed to multiple lower-

ranked tensors called TT-Cores. These cores are the same as trainable parameters

for the embedding layer and multiplication of them all results in the original tensor.

Work in [11] takes one step further and applies the tensor decomposition

method to the memory and bandwidth-intensive part of DRLM or embedding ta-

bles. TT-rec decomposes some of embedding tables into lower rank tables called

TT-core. Product of multiplication of TT-cores results in the original embedding ta-

ble. Without any further optimization, TT-rec loses some accuracy. To compensate

for that, it deploys a method to initialize the weights of embedding tables. Another

overhead incur by this approach is increase in training time as of decompression.

To mitigate it, TT-rec saves the more popular and frequently used embedding table

entries closer to the computation so it will take less time to access them. It does so

by storing them in a cache in a uncompressed manner. This also helps to revive the

lost accuracy as well and reach the baseline.

TT-Rec is suitable for devices with high computation-to-communication ratio

like GPU. As large embedding tables are the major part of memory footprints of

DLRM, TT-Rec decomposes this component to first incur the least overhead sec-

ond gets the most of memory footprint reduction.

3.1.3 Reinforcement Learning based

Similar to ATML [22], The paper ESPAN [21] follows the same incentive but with

a different scheme and approach. This work deploys reinforcement learning tech-

niques to figure out the the best size for each embedding table entry in an automa-

tive manner. ESPAN uses the insight that low-dimensional embedding entries can

get trained swiftly with less frequent data in contrary to the more frequent ones.

12

It is probable that they overfit if we shrink the feature size the same. Therefore,

the cardinality of the embedding entry should be proportional to their frequency

of use. Hence a unified length for embedding entries limits the recommendation

model performance. In addition to that, The frequency of both user and item em-

bedding table entries change during runtime. This necessitate a dynamic scheme

to figure out the proper dimension size with respect to time accordingly.

ESPAN exploits The aforementioned twofold insights to compress the memory

using an automated reinforcement learning agent. It picks a discreet search space

of acceptable integer numbers for the length of a embedding vector. These number

are usually a power of two.

The scheme uses streamed processing of embedding table entries either for

user or item. ESPAN is comprised of two main components. The first part is the

Deep recommendation model and the second one is policy network that operates

as a reinforcement learning agent that determines the length of embedding table

entries. This network exploits frequency and current length of the input feature

vector, maps the integer frequency to a numerical embedding representation. It

then, glues them to each other, passes them through a multilayer perceptron to

decide the prospective size. The intermediate product is consumed by a softmax

function to make a binary classification.

After whole process, a feature vector either increase in size or remains the

same. The reason is that that using streaming input, the popularity of an feature

vector increases or stays the same. Hence, there are two classes associated with

class prediction.

After applying the policy network, if the decision is enlarging the vector, it uses

a linear transformation to fetch the larger chosen feature vector from the embed-

ding. In this way, we don’t have to initialize the embedding tables from scratch and

can use the updated embedding table up to the point. At this point, both vectors are

consumed by the Deep recommendation model to make a prediction and it will be

passed to the Reward function. The reward function then calculates the loss and do

backpropagation for the weights of multilayer perceptron in the policy network.

13

3.1.4 Web-scale Recommendation Model

Some orthogonal research has been conducted regarding the scalability of com-

pression schemes for specific application for instance web-scale recommendation.

For these variation of applications, the deployed compression scheme should be

scalable yet timing needs to be taken care of. In general, timing, each work incurs

should not be extensively significant. The overhead of aforementioned schemes

for instance [21, 22] so far is correlated with the number of rows in the uncom-

pressed embedding table entry. This makes these scheme undesirable to be used

for web-scale recommendations as of lack of sufficient scalability.

The paper Binary Hash [6] addresses this issue by proposing a novel binary

code based hashing scheme to compress the embedding tables as the memory-

intensive component of the recommendation system, without jeopardizing the per-

formance of the model significantly. This paper achieves 1000x reduction in model

size yet preserving 99% of the baseline performance. Binary Hash stays away from

deploying the conventional modulo-based hashing function. As they comes at the

cost of high rate of collision. Using these hashing functions, many rows in the

embedding tables are mapped to the same place and that makes the compression

lossy and higher overhead in comparison to the cases without collision.

Binary Hash is comprised of mainly three steps. Given that input data for

recommendation models (categorical feature values) can be including both integer

and string, the proposed framework starts off with feature mapping of both of these

data types. In the beginning, the raw features would be mapped to unique 64-bit

integer called Hash-id using hash functions like Murmur Hash [16]. In the next

stage we convert the Hash-id into binary. Then, we divide the final results into

separate blocks. This is what we refer to as binary code hashing. Each of those

blocks represent an unique index to an embedding table entry. To reach an efficient

code blocking, Binary Hash proposes two chief strategies, succession and skip.

The former pairs up the successive bits in the same block. On the contrary, the

skip strategy, puts the bits that are some interval apart depending on the degree of

skipping. For the further stages in the recommendation like embedding lookup, the

paper uses fusion to append the embedding table entries out of the code blocks.

The appending function varies from LSTM, concatination or pooling.

14

3.1.5 Sequential Recommendation Model

Recommendation systems can fit into two categories. The first one uses the matrix

factorization approach to extract the pattern of items each user has selected based

on previous interactions. On the other hand, Markov chain-based or sequential

models, maps the previous interactions to a graph trying to model the sequential

behavior. This aforementioned type of recommendation system can be used in

online advertising or e-commerce. The paper [62] bridges the gap between Deep

neural network and their application in recommendation systems. It addresses the

issue of large memory overhead by proposing a temporal context aware embedding

composition using light-weight attention network called LSAN. LSAN aims to

learn the short-term and long-term pattern of users behavior.

LSAN comes up with a couple of base embedding vectors and then tends to

form other ones based on the fusion of the base vectors using quotient remainder

strategy. The reason is that this strategy doesn’t incur any more learnable parameter

hence significant overhead to the framework. The main novelty of this papers lies

in the fact that using multi-head attention, layers can actually improve figuring out

the local and general signal for user preference. To obtain the local signal, LSAN

exploit convolution. On the other hand, for the global signal, it uses multi-head

attention layers.

3.1.6 Hardware Optimization

Papers such as [38, 64] employ runtime techniques to improve memory, commu-

nication, and I/O resources for training and reduce data stall time, respectively.

The framework proposed [64] is called DeepIO. DeepIO has been proposed to find

a reasonable balance between IO, memory and communication resources to train

the large deep neural network efficiently. Recently, as neural networks are get-

ting deeper we need larger datasets to train them. These datasets should be loaded

from a memory to form different batches. The batches should be shuffled to avoid

overfitting and this shuffling incurs a lot of random accesses to the memory and

that hinders the training overall. Likewise, the embedding training component of

DLRM model exhibits the same issue. Due random access pattern of embedding

table entries, the same insight from the paper can be exploited. As training this

15

large models can be challenging due to low reading speed and being memory in-

tensive. DeepIO resolves this issue by techniques such as input pipelining and

entropy-aware opportunistic ordering.

Input pipelining technique has been implemented at two different levels. One is

associated with reading the dataset from the disk and has been designed to mitigate

the significant overhead of it. After that, data has been transferred from disk to

another buffer as part of DeepIO as an intermediate level of memory. This hybrid

backend-memory pipeling amortizes the effect of random access pattern to form

a minibatch and the high latency to fetch data from disk. Likewise in DLRM,

DeepIO can be used to mitigate the memory-intensity of embedding table as first

they are large in size (recent estimation based on Facebook models is 100s of GB)

so they have to be originally stored on the disk.

Secondly, due to random access pattern of embedding tables entries, there is

significant overhead of fetching required entries as it hinders exploiting spatial and

temporal locality. Making the best of locality is conventional approach to mitigate

the memory overhead by taking the reusability into account.

On the hardware side, prior work [14] proposes an technique called Bandana

to store embedding tables in non-volatile memories and allocate a certain portion

of DRAM for caching. Unlike DRAM with lower capacity but higher bandwidth,

non-volatile memory (NVM) benefits from large size. On the other hand embed-

ding table component of recommendation model is so large that makes the opera-

tions infeasible. That can make NVM a likely option to store the whole embedding

tables and use DRAM as last-level cache (LLC). However, NVM suffers from low

bandwidth. Bandana’s main goal is to exploit the DRAM’s bandwidth as much as

possible by placing the embedding table entries that are most likely to be fetched

together. Besides, it determines which embedding table entries should be cached

and stored there.

This work, however, does not support GPU based training executions with

replicated hot embeddings and does not deal with perceptive input preprocessing

to reduce the overhead of communication between devices.

16

3.1.7 Near-memory Processing

Recent works [17, 33, 51] have also proposed solutions to accelerate near-memory

processing for embedding tables, but do not facilitate distributed training of entire

recommender models using GPUs.

Mixed Dimension [17] aims to exploit the skew within input dataset for rec-

ommender systems as there are based on human’s choice. For instance, intuitively,

if 100 movies rolled out at the same time, a few will be are more likely to become

blockbuster. Therefore, skew is pretty much likely to exist in all the recommedna-

tion systems dataset. Given this intuition, Mixed Dimension, modifies the length

of popular embedding entries. The popular ones become larger whereas the rest

shrink in size so that the total memory budget stays the same.

On the other note, RecNMP [33] aims to speed up the performance of recom-

mendation system by exploiting the insight that production-scale recommendation

model are restricted by memory bandwidth for inference mostly as of large embed-

ding tables. In this regard, the paper proposes RecNMP to place the data closer to

the memory using a DRAM compliant. RecNMP operates based on near memory

processing to reduce the amount of bandwidth required.

It designs targets the fact that different rank of the memory can fetch the data in

parallel. Benefiting from this, it designs a few intermediate modules between the

memory and the memory controller. These modules are comprised of light-weight

computation units for lookup operation, which is the main bottleneck here, and a

cache structure. Based on the close analysis of the RecNMP, Although embedding

table entries doesn’t follow pattern in term of spatial locality, exploiting temporal

locality is completely feasible. This is exactly equivalent to the observation for the

popularity and means that some embedding table entries or mapping of some items

or users, are more likely to be accessed in comparison to the rest.

The cache employed in the intermediate memory module is responsible to cap-

ture those popular entries so that bandwidth can be efficiently exploited and that

reduces the congestion arised from inserting the embedding table entries closer

to the CPU cache along with other data. Although, the paper achieves a accept-

able speedup for inference but our paper aims to improve the training performance

which has different bottleneck rather than the one targeted by RecNMP.

17

[51] takes a different approach. This paper tackles the memory capacity prob-

lem. As we mentioned the capacity bottleneck stems from the large size of em-

bedding tables. This paper claims to overcome this issue by reducing the size of

embedding tables using hashing. Conventional hashing proved to be not efficient

enough to reduce the size of embedding tables as of significant rate of collision.

Hence, CompEMB [51] shrinks the size of the embedding tables by dividing them

with various methods such as quotient-remainder. The size of both combined will

be significantly less than the original embedding tables. Moreover, this method can

be done recursively meaning the quotient matrix can be broken down into smaller

embedding tables and so on.

This partitioning will be complementary meaning that not even a single embed-

ding table entry will be replicated in two different partitions. This approach incurs

extra memory needed to store the metadata given that the same index can refer to

different embedding table entries in different partitions. On that note, after acquir-

ing the entries required to perform the embedding table lookup, the paper proposes

to use non-conventional operations such as MLP or element-wise multiplication as

a substitution of the aggregation for baseline.

This can result into representing different various combination of embedding

entries swiftly but the drawback is that it eliminates the intrinsic aggregation prop-

erties such as associative and commutative. For instance, let’s say after getting

all the entries required, the model has been designed in such a way that a MLP

produces the output.

We know for a fact that MLP does not exhibit the aforementioned properties of

aggregation as of non-linearity. Generally, CompEMB aims to reduce the number

of parameters and maintain the baseline accuracy. On the other hand, [51] does

this by dividing the model into complementary components but this might backfire

if the intrinsic characteristics are not captured in the produced components. Ad-

ditionally, this arises some additional challenges depending on the dataset. If not

captured properly, this approach can result in performance reduction.

18

3.2 Efficient execution of tasks on GPUs
There has been a wide variety [36, 59] of works across domain of optimizing

GPU execution by improving throughput and utilization. HippogriffDB [36] for

instance, addresses the contrast between the fact that embedding tables are becom-

ing larger every year. In addition to that memory on GPU is limited. Therefore,

we can not fit the whole model on one GPU to accelerate the training or inference

process to properly scale the model.

Given that, this paper proposes HippogriffDB an efficient and scalable system

that comes up with a datapath by compressing the model and aiming for more

compression. It stores the model in the compressed fashion on the memory and

decompresses it on the GPU to save the bandwidth and improves the scalability.

Also, it benefits from a novel data transfer that directly sends the data from SSD

to GPU using NVM (non-volatile memory). This can be significantly beneficial

for storing embedding tables in the case that system uses any NVM as a larger

memory hierarchy. These type of memories can be used as an alternative instead

of distributed training. In general model is too large to be stored on a central server

to be dealt with given that these large models needs to be stored in databases.

HippogriffDB performs query-over-block execution to unleash the GPU com-

putation power and deal with the data that is larger than the size of the GPU mem-

ory. In this regard, it uses two buffers to accelerate the operating in addition to

operation fusion mechanism.

As mentioned, as of the large size of embedding tables, they can be stored in

larger memories such as NVM or DRAM. These memory hierarchies can play the

role of database that store the memory-intensive component of recommendation

models. Hence, we need to fetch the required entries as queries to send them to

GPU to be handled. Based on Concurrent Queries [59] observation, GPUs can not

be shared while taking care of concurrent queries. This results in underutilization

of these computation resources.

Concurrent Queries targets this problem by running queries concurrently on

GPU to improve the system throughput. This paper introduces MultiQx-GPU as

the framework to run multiple queries at the same time on GPUs. MultiQx-GPU

aims to follow two main points. First versatility meaning that it attempts to GPU

19

model-agnostic approach so that regardless of the model, the implementation will

be feasible. Second is high efficiency. GPUs have vast applications such as gaming

etc. Therefore, the idea of execution of multiple queries at the same time aligns

with the purpose of using GPU in the first place.

The major problem comes from the fact the GPUs don’t have the software layer

to context switch or deal with resource contention. Currently, unlike CPU, there is

no such concept or design that handles fine-grain context or abstraction of virtual

memory on GPUs. In this way Concurrent Queries designs a scheduler and a novel

scheme to swap the contexts from the memory.

MultiQx-GPU provides the solution in three different layers. First, exploiting

a query scheduler similar to the one that operating system grants CPU along with

device memory manager same as the virtual memory table. In the layer of interfac-

ing with GPU, MultiQx-GPU uses libraries like CUDA or OpenCL. MultiQx-GPU

perform query executions by more efficiently by merging jobs into groups, thus

reducing the setup overheads and increasing the throughput.

3.3 Embedding parameter placement
Works in [63] offers a hierarchical parameter server that builds a distributed hash

table across multiple GPUs. This work stores the working parameters close to

computation, i.e, GPU, at runtime, albeit treats all embedding entries equally. In-

stead, FAE delves into the access pattern of each dataset and uses this information

to store the highly accessed embedding entries in the GPU for the entirety of the

training job.

As baseline Distributed hierarchical parameter server [63] uses the MPI-cluster

model. In this approach the entire model and the batches are distributed across all

nodes to get fully parallel. During backward propagation for training phase, the

nodes pull the data required from other nodes using MPI primitives. The draw-

back of this approach is the high cost of communication for transferring all the

data required. In this work, the paper eliminates the CPU-GPU communication as

much as possible by proposing the hierarchical memories for storing the parame-

ters. Also, it uses hashing method to reduce the model footprint.

Distributed hierarchical parameter server comes up with a pipeline all the way

20

from SSD to GPU. As of the large size of the target model (10 TB), it uses SSD

to store the entire model. At each stage of the pipeline model will be sharded

on parameter servers. Each of these servers are responsible for distributing the

model and batch on a set of workers or GPUs. After the GPUs are done with the

back propagation, then the updated parameters will be send to the second stage or

memory parameter server and then to the SSD where we store the entire model.

Prior work in [3] aims to address intricacies of using GPU to train recommen-

dation models. The main problem arises as the critical path of deep learning based

recommendation system is comprised of two major components of deep neural net-

work which are light-weighted and computation-intensive in contradiction to large

memory-intensive embedding tables. It aims to understand the implications of dif-

ferent embedding table placements within an heterogeneous data-centre. However,

none of the techniques leverage runtime access skew for their embedding table

placement that can improve the overall training performance.

Work in XDL [30], targets training of recommendation models with high-

dimensional sparse inputs. This Framework is comprised of two main components

of SparseNet and DenseNet. The latter is composed of multiple dense layers and

is notably computation-intensive. The SparseNet, on the other hand, is composed

of millions of features out of raw input samples. XDL exploits approach of dis-

tributed training of deep learning based models. Each worker can only be CPU,

whereas, AMS can be composed of both CPU or GPU. XDL deploys a server

called Advanced model server (AMS) to save the model on. Another component

is Back-end worker that can store any deep learning model such as Deep Neural

Network (DNN), attention mechanisms, etc.

During forward path, each back-end worker acquires the inputs from I.O. stream.

In the next step, each of these back-end workers send the feature ID to the AMS.

AMS performs the lookup operation and send the results back to each worker as

well as the last updated version of the model. Workers move on with passing the

dense input that has been received from the AMS. Passing through the DenseNet,

it outputs the result. The reverse sequence will be taken during backward path and

gradients will be computed by workers. AMS will gather all the gradients both

for SparseNet and DenseNet. Parameter updating and optimizer operation will be

done on the server side and the lastest version will be kept there.

21

3.4 Mitigating memory intensive training through
compression, sparsity, and quantization

Past works have used compression [27, 55, 61], sparsity [15], and quantization [20]

to reduce memory footprint of machine learning models. For instance, prior work

Gist [27] has been exploring ways to compress deep neural network models. The

problem arises as with more complicated applications the need to have deeper neu-

ral network to overcome overfitting. However, these deep models can not fit into

the current conventional GPU memories. This results in numerous challenges.

First, we need to distribute the model on multiple GPUs and that essentially in-

curs higher overhead in comparison to the uni-GPU approach hence, limits the size

of the neural network that can be trained. It exploits from insight that the main

memory footprint comes from the intermediate feature maps and these layers will

be accessed twice during training. Once during forward and the backward. This

shows that feature maps can be reused as of the temporal reusability. Gist comes

up with layer-specific encoding scheme in two forms of lossy and lossless. In ad-

dition to that, Gist delves into the characteristics of neural network to compress

the values. Having said that, in DLRM, the same problem arises from the capacity

and bandwidth-intensive component or embedding table. This makes a significant

difference as first random access pattern dominates the indices accessing the em-

bedding table entries. On the other hand, temporal reusability is guaranteed for the

neural network weights. Whereas for embedding table lookup operation, mostly

aggregation will be applied and no spatial locality can be assumed along with fact

that even temporal locality might not be guaranteed.

Prior work in[45], optimizes training by modifying the model either through

mixed-precision training or eliminating rare categorical variables to reduce the em-

bedding table size. This reduction can help fit the model on devices like GPU with

a fairly low memory budget in comparison to CPU but efficient in terms of reach-

ing a higher throughput for deep neural network. Therefore, aiming for reducing

the size, not only do we overcome the capacity problem but also we tackled the

communication and bandwidth problem.

Originally in the DRLM model by Facebook, the bottleneck for forward path

was the capacity as of large embedding tables. This problem can be mitigated once

22

the model has been reduced. In addition, one of the bottleneck is butterfly shuffle

during backward path, embedding tables are sharded and then placed on GPUs.

Hence, to operate the embedding lookup stage, GPUs need to send and receive the

associated entries that might be present on other GPUs. Other GPUs do the same

thing. This operation requires quite a robust and a fast link between GPUs like

NVL to mitigate the send and receive requests. The same goes for pipelining. As of

implemention, sending and receiving during the backward path can be interleaved.

None of these arises if the entire model can fit on just one device.

But even with these optimizations real dataset’s entire embedding table can-

not fit on a GPU. Moreover, approaches that change the data representation and/or

embedding tables, require accuracy re-validation across a variety of models and

datasets. enables apropos utilization of memory hierarchy without employing over-

heads such as compression/decompression in HippogriffDB [36] and sparse opera-

tions. moreover, performs full-precision training of the baseline model by leverag-

ing the highly skewed access pattern for embedded tables and increase the through-

put for hot embedding entries. Nevertheless, our framework is orthogonal to the

prior techniques and can be used in tandem with them to improve the memory

efficiency even further.

3.5 Distributed deep learning training
Data parallel training [34] forms the most common form of distributed training as

it only requires synchronization after the gradients generated in backward pass of

training. As models become significantly larger [50, 52], model parallelism [9, 25]

and pipeline parallelism [40] are becoming common as they split a single model

onto multiple devices. The same goes for DLRM as well. Not only is this model

large enough that not all components can be fit on the GPU memory entirely but

also the critical path is comprised of both computation-intensive such as neural

networks and memory-intensive part such as embedding table. Hence, to tackle

this challenge, we deploy both model and data parallel technique to train the model

in the distributed fashion.

Work in Pipedream [40] is taking it one step further. Conventionally to train

DNNs, intra-batch pipelining is performed meaning that worker trains the model

23

using its portion of data and then synchronizes the weights of the model with other

workers using primitives like AllReduce. Not only is this time-consuming but also

communication might exceed computation time. In order to mitigate it, PipeDream

interleaves backward path of batches been taken care of prior in time with forward

path of latter batches. It also does the model partitioning on various workers based

on layers. During backward for training DNNs, layers have been dispatched off

to different worker. For instance, it’s determined that input layer has been placed

on worker number one and first feature map layer has been placed on device two.

Therefore, during forward,device one sends information to device two. On the

other hand, on backward path device two will send information to device one. In

DLRM, on the contrary, every worker needs to not only distribute the part of model

present on the device to all the other devices but also during backpropagation.

PipeDream does the pipeling to not only reduce the number of times commu-

nication occurs but also reducing each communication by overlapping it with com-

putation. Nonetheless, the techniques employed to automatically split the mod-

els [29, 56], offer model parallelism solutions to enable training of large model

with size constrained by the accelerator memory capacity. However, none of these

techniques dive into the semantics of input data to perform an optimal split. This

is because they are mainly suitable for DNNs.

3.6 Summary
In this section we covered the prior works regarding training recommendation mod-

els and how thye target an efficient end-to-end model training. In the first section,

we delve into approaches to optimize the data layout such as cache based optimiza-

tion, reinforcement learning based, web-scale recommendation model, sequen-

tial recommendation model, hardware optimization and near-memory processing.

Next, we go through prior works regarding the efficient execution of tasks on GPU.

In the next section, different strategies for embedding parameter placement has

been added. In the next subsection, strategies to reduce the footprint of the model

such as compression, sparsity and quantization has been discussed. In the end,

prior works regarding the distributed training has been discussed.

24

Chapter 4

Challenges

To perform efficient end-to-end training with the optimized embedding layout while

maintaining baseline accuracy, we require a comprehensive framework that has

both static and runtime components. Next we analyze the challenges of such a

training execution. Overall, there are four challenges being discussed in this chap-

ter. First, how to maintain the baseline accuracy while changing the data layout.

Second, how to efficiently segregate both both hot embeddings from cold one as

well as segregating hot inputs from cold inputs and store them in different FAE

format to form the cold and hot minibatch from respectively. Third, we uproot the

necessity for scheduling hot and cold minibatches and the proper rate. Finally, we

discuss the mechanism to maintain the consistency between the embedding copies

between devices.

4.1 Maintain Accuracy While Moving Hot Data to GPU
As shown below 4.1, even if 99% of the inputs are popular, i.e., access hot em-

beddings, the probability that the entire mini-batch accesses only hot embeddings

decreases dramatically as the minibatch size increases. Hence, it is likely that at

least one input within a large minibatch requires accessing cold embedding entries.

To obtain benefits from embedding data layout, we require the entire minibatch to

only access hot embedding entries. Even a single input accessing cold embedding

entries can stall GPU execution as it incurs CPU-GPU communication.

25

0.0

0.2

0.4

0.6

0.8

1.0

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

P
ro

b
ab

il
it

y
 o

f
H

o
t

M
in

ib
at

ch

Minibatch Size

99% inputs being hot

< 99% inputs being hot
~ 0% probability of finding a

minibatch with entirely hot inputs

Figure 4.1: Probability of creating a mini-batch with all popular inputs when
the number of hot-inputs are 99% or lower. This reduces drastically as
the mini-batch size increases.

To overcome this challenge, our framework comprises a static component that

performs input-dataset preprocessing and organizes mini-batches such that they

completely contain only hot or cold inputs. Each input is consist of indices each

embedding table in the model. We define an input hot if and only if for all embed-

ding tables, it accesses hot embedding entries otherwise we consider the input as

cold. It is probable for some cold inputs, some of the accesses to some embedding

tables are to hot embedding table entries. An hot embedding entry is considered

hot if and only if the total number of accesses to it surpasses a certain limit This

preprocessing needs to be performed only once per dataset and is stored in a pre-

processed format for subsequent executions.

The size of the final format depends on the size of the original dataset. The

whole preprocessed FAE-formatted dataset will be stored on CPU memory as well

as the cold and hot minibatches. For hot mini-batches, the framework performs

GPU-only data-parallel execution and for cold mini-batches the framework falls

back onto the CPU-GPU hybrid execution mode.

4.2 Cold and hot embedding table entries segregation
The classification of an embedding entry as hot or cold is based on the access

threshold. Any entry that is accessed more than a threshold is classified as hot. We

expose this threshold as a knob to FAE to adjust the amount of hot embeddings

that can be managed by GPUs, based on both the model and system specifications.

To minimize performance overhead, we devise statistical techniques that use input

26

Training Data

Profiler

t: thresholds (vector)
L: Allocated GPU Size
CI: Confidence Interval

Final
Threshold

Input &
Embedding
Classifier

Training Minibatches
Embedding
Replicator

Shuffle
Scheduler

Pytorch
Module

Pre-processing

Popular Inputs
Cold Inputs

Statistical
Optimizer

Interim Threshold

Hot Emb Size
(Predicted)

Training

Classified Embeddings

Swap boundary Test
Loss

FAE Data Layout

Input
Sampler

Figure 4.2: The FAE framework. The preprocessing phase calculates the
threshold for classifying hot embeddings. This phase uses random-
sampling of input datasets and embedding tables to determine the best
threshold for hot embeddings. This threshold is also used to classify
inputs into hot and cold minibatches. At runtime, GPUs execute the hot
input mini-batch while cold inputs execute in a CPU-GPU hybrid mode.
The scheduler uses feedback from the Pytorch modules to determine the
rate of hot and cold mini-batches swap.

dataset sampling to determine the access threshold. This enables FAE to deter-

mine the optimal threshold without scanning the entire training data. FAE selects

a threshold that classifies enough embedding entries as hot so that they fits in allo-

cated GPU device memory.

4.3 Scheduling hot and cold minibatches
FAE processed data contains minibatches that are either entirely hot or cold. Schedul-

ing all the hot minibatches followed by cold minibatches incurs the least embed-

ding update overhead as the embeddings only have to synchronized between GPU

and CPU once after the swap. However, such a technique can can have an non-

negligible impact on the accuracy. This is because the hot minibatches only update

the hot embedding entries whereas the cold minibatches cover more embedding

entries (both hot and cold), albeit sparsely. To tackle this issue, our framework,

offers a runtime solution that dynamically tunes the rate of issuing hot and cold

mini-batches to ensure that the accuracy metrics are met.

27

4.4 Maintain consistency between the embedding tables
that are scattered across devices

FAE replicates hot embedding tables across all the GPU devices and CPU contains

all the embeddings (including hot embeddings). Thus, we need to perform two

forms of synchronization during the training - one across all the GPUs after each

mini-batch of data parallel execution and once between the cold and hot swap be-

tween CPU and GPU. In the former case, hot embeddings are synchronized using

the AllReduce collectives over the fast NVlink GPU to GPU interconnect [2]. In

the latter case, the synchronization across GPU and CPU between hot and cold

minibatches is performed through PCIe transfer between the GPU-CPU devices.

This communication overhead incurred by FAE is accounted for in the final ex-

ecution latencies. To reduce this overhead, FAE minimizes the transitions between

hot and cold minibatches, without compromising baseline accuracy.

4.5 Summary
In this chapter, we analyze the challenges we overcome. we make sure that moving

the hot embedding inputs to GPU guarantees the baseline accuracy. As the second

challenge, we clarified the criteria based on which we segregate hot input from the

cold counterparts. FAE makes sure that threshold for this has been chosen wisely

for instance based on memory budget, etc. Another challenge arised from cold

and hot input segregation is what scheduling policy to apply for these two types of

input. The last challenge that we overcame is how to maintain accuracy while all

embedding tables are distributed across multiple devices.

28

Chapter 5

Approach

In Chapter 4, we delve deep into the architecture of our proposed framework, Fre-

quently accessed Embedding or FAE. This framework accelerates the process of

recommender system training. FAE efficiently utilizes the GPU memory and com-

putation to reduce the communication cost of obtaining embedding data.

5.1 FAE overview
5.4 illustrates the flow of the framework; FAE consists of the input and embedding

preprocessing stage that determines the hotness of embeddings by sampling the

input training data and the training stage that replicates hot embeddings on all the

GPUs and schedules hot/cold minibatches to ensure baseline accuracy. The pre-

processing phase converges on an access threshold to classify an embedding entry

as hot. If overall number of accesses to an embedding table entry exceeds the

threshold then that entry is called hot otherwise cold.

This threshold is based on the allocated GPU memory size, confidence interval,

and the CPU-GPU bandwidth. Thereafter, based on the final threshold, the Embed-

ding Classifier and Input Classifier categorize both embedding entries and sparse

inputs into hot and cold portions. The preprocessing phase executes statically once

per training dataset, and stores the preprocessed data in the FAE format for subse-

quent training runs. At runtime, the Embedding Replicator extracts hot embedding

entries and creates embedding bags that are replicated across GPUs. The overall

29

timing depends on the dataset but is negligible with respect to the baseline baseline

training time of the model.

The Shuffle Scheduler dynamically determines the execution order of hot and

cold sparse input minibatches across the CPU and GPUs at runtime. Based on

accuracy goals, the Shuffle Scheduler interleaves hot and cold minibatch queues

to capture the updates to all embedding table entries. More information will be

provided in the following section and to help understand the next few subsections,

Table 5.1 provides description of the notations for the design variables in FAE.

Table 5.1: List of Notations
Notation Description

D Training input dataset
t Minimum number of access to classify an entry as hot
T Total number of accesses into an embedding table
L User-specified allocation of GPU memory for hot embeddings
h Maximum number of hot embeddings that fit in L
Ez Size of embedding table number z
x Sampling rate for inputs (%)
D̂ Sampled training input dataset entries
n Number of Sample Chunks from the embedding logger
m Number of entries in each embedding logger chunk (n)
N Total m-sized entries in the embedding logger
k For any t −→ Total accesses into any embedding entry

Hzt For any t −→ Sample adjusted t per (z); minimum accesses to classify hot entries
Ci For any t −→ Number of entries in the m chunk with accesses more than Hzt

ȳ For any t −→Mean of C
s For any t −→ Standard deviation of C

CIβ Confidence Interval of β%

5.1.1 Calibrating the Access Threshold

The first goal of the preprocessing phase is to pick an access threshold (t) for the

embedding entries. We denote T the total number of accesses into an embedding

table. The accesses per entry for hot embeddings is ≥ t×T.

Any input that accesses only hot embeddings is also categorized as hot. Pick-

ing a larger t would imply that only a few embedding entries would have enough

accesses to be classified as hot. It would lead to only a small percentage of sparse

inputs that would execute completely in a GPU execution mode and thus reduce

the overall performance benefits.

30

Threshold to Classify Embedding Entries as Hot (% of Total Accesses)

(a) (b)

Criteo Terabyte Criteo Kaggle Taobao Alibaba

Figure 5.1: (a) Size of hot embedding entries and (b) Percentage of hot inputs
with varying access threshold values. As we vary the threshold, the size
of the embedding entries increases more rapidly compared to the percent
of hot inputs

.

Conversely, picking a small threshold will categorize embedding entries with

very few accesses as hot, which would increase the hot embedding table size, of-

ten beyond the GPU device memory capacity. Figure 5.1 shows that we observe

diminishing returns by reducing the threshold, as the number of hot embedding en-

tries increases more steeply as compared to hot inputs. Thus, we need to efficiently

tune t based on the system configuration parameters.

One of the system configuration parameters is the GPU memory allocated for

hot embeddings – denoted by L. Notation h constitutes the maximum number of

hot entries that fit within L. A naive mechanism to determine t will profile the entire

training dataset and analyze the accesses of all the embedding entries. This requires

sorting all embedding entries based on their access frequencies and classifying the

top h entries as hot.

This implementation will incur a high preprocessing overhead as it could imply

processing several terabytes of data – even though profiling is performed only once

31

per dataset.

Instead, we propose a novel input sampler and Statistical Optimizer that en-

sures a low static compilation overhead for finding optimal t such that L is used

effectively. Figure 5.4 describes the flow of events to determine the optimal value

of t.

5.1.2 Mitigating Read Overheads with Sparse Input Sampler

As size of the training input dataset is typically very large, we sample x% of the

input dataset (D). The value of x is specified as a hyper-parameter. Our implemen-

tation uses x = 5% and obtains D̂ sampled sparse-input entries. Figure 5.7 shows

the access profile for one large embedding table each for Criteo Kaggle, Taobao

Alibaba, Criteo Terabyte, and Avazu datasets with and without input sampling.

Empirically, we observe with a sampling rate of 5%, D̂ maintains a similar access

signature as D. We scale down the hotness threshold by the sampling rate. Yet, we

observe that even with the new scaled-down threshold, hot embedding entries with

original threshold, will still be considered hot. Hence, even with scaling down, the

access pattern of each embedding table remains the same.

As shown in 5.2, FAE obtains 19× to 55× reduction in latency by input sam-

pling. For the Taobao Alibaba dataset, each input consists of a stream of up to 21

sub-inputs, therefore sees a larger reduction in latency. For the Taobao Alibaba

dataset, each input consists of a stream of up to 21 sub-inputs, therefore sees a

larger reduction in latency [5].

19x

55x

20x

Figure 5.2: Reduction in the profiling latency when input dataset is sampled
for embedding table access pattern.

32

5.1.3 Categorize and determine hot embedding size with the Profiler

We perform profiling before the training begins. The goal of the profiler is twofold

- (1) for the sampled input dataset D̂ it creates an access profile of each embedding

table (Ez), where z is the table number and (2) it further samples this access profile

to determine what the size of the hot embedding table.

Embedding Logger: The profiler uses an embedding logger for each table to

keep track of access counts (denoted as k) of D̂ into each entry in Ez. As each

model can access multiple embedding tables, our implementation assumes any ta-

ble that is greater than or equal to 1 MB to be large. Embedding tables smaller than

1MB are de facto considered “hot” as they can easily fit even on low-end GPUs.

Thereafter, the profiler would still need to estimate the hot embedding table sizes,

without traversing all the embeddings.

Estimating the hot embedding table sizes per threshold: Profiler creates

a sampled access profile for each embedding table entry across all the tables by

selecting random chunks of embedding entries and their observed access pattern

from the logger. This enables estimating the size of the hot embeddings without

traversing all the tables in their entirety. As the embedding logger observes only x%

of the actual inputs, we need to scale down the required access counts to classify

hot data. For embedding table number z and a threshold t, the new hot embedding

cutoff for each sampled entry is denoted by Hzt , described in Equation 5.1:

Hzt = t×T × x
100

(5.1)

We then pick n random samples, each consisting of m = 1024 entries entries from

embedding logger for table z. Our implementation uses n = 35 and each sample

consists of m = 1024 embedding entries.

This chunk based sampling allows us to create a distribution of the access pat-

tern. Our work uses Central Limit Theorem (CLT) to estimate the mean of the

parent distribution. CLT has the property that, irrespective of the parent distribu-

tion, the mean of the sampled distribution will always approach the mean of the

parent distribution. This is because, when the sample size n ≥ 30, CLT considers

the sample size to be large and the sampled mean will be normal even if the sample

does not originate from a Normal Distribution [39]. As each embedding sample

33

chunk consists m = 1024 entries, we can estimate the actual embedding table size

with a precision of 1
1024 . For each chunk, we count (C) the number of entries with

access counts (k) greater than or equal to Hzt . This is represented by Equation 5.2:

Ci =
m

∑
j=1

(k j > Hzt) (5.2)

For n chunks, the standard deviation is s and the mean is ȳ, shown by Equa-

tion 5.3:

ȳ =
∑

n
i=1Ci

n
(5.3)

Figure 5.3 shows the latency savings from sampling embedding table instead

of iterating through all the embedding access content.

As the profiler scans 14x fewer embedding entries for each t it reduces latency

of each scan by 14.5×-61×.

14.5x 61x 16x

Figure 5.3: Reduction in the latency per iteration by using to estimate the hot
embedding size per threshold. The total latency to scan all embedding
tables is under 25 seconds per threshold iteration.

5.2 Confidence in the estimated embedding table size.
The goal of the profiler is to establish confidence in the estimated embedding size.

A confidence interval, in statistics, refers to the probability (1−α) that a population

parameter will fall between a set of values. To compute the confidence interval for

the profiler’s estimated embedding table size, FAE uses the standard ‘Student’s t-

34

Count (C)
of entries
that have
 k >= Hzt

Entire Input Dataset (D)

x = 5% (sampling rate)

1

2 Sampled Input Dataset (D)

30 1 Embedding Logger
for Table #z2

Accesses
(k)

Samples from Embedding Logger

 minimum accesses to
classify entry as hot
Hzt = t*T*(x/100)

4

C = 2

C = 1

C = 2
t = Interim threshold
T = Total accesses

5

y = mean hot entry count (C)
s = standard deviation of hot
entry counts (C) 6

m-sized chunks

Per interim t, estimate size of
hot embeddings

Figure 5.4: The flow of events in Input Sampler and Profiler. The original in-
put 1 is sampled 2 at 5%. This sample is used by the profiler to create an
access profile across embedding entries in the logger 3. For each thresh-
old, A few chunks from the embedding logger is randomly sampled 4 to
estimate the count of hot entries 5. The mean and standard deviation of
this count determines the size of hot embedding tables per threshold 6.

interval’. As ȳ follows a t-distribution, the 100×(1-α) confidence interval (CI) for

ȳ is represented by Equation 5.4:

CI100×(1−α) = ȳ± t α

2
×
√
(
N−n

N
)× (

s2

n
) (5.4)

Measured Size
Estimated Size

with Confidence
Interval (99.9%)

31.5 MB

26.1 MB

235 MB

232 MB
81 MB

62.9 MB

Figure 5.5: Estimated sizes of hot embedding tables with . For a confidence
interval of 99.9%, the estimation is within 10% (upper bound) of the
actual size.

Figure 5.5 shows the estimation variability compared to the actual values for

a confidence interval of 99.9%. Actual value of the hot embedding size is exact

size the profiler would have obtained if it had processed the entire access pattern

for each embedding table. This variability can be reduced if we specify a smaller

confidence interval. We observe that the estimated values are within 10% of the

35

actual values. As such, for every threshold, the profiler process described above is

executed to determine the size of the hot embeddings.

The Statistical Optimizer, based on this size and user requirements, either ac-

cepts the threshold or tunes it further as described below. Our experiments show

that allocated memory of L = 512MB suffices for most GPUs (including low-end

GPUs).

Converging on a Threshold using Statistical Optimizer

The Statistical Optimizer invokes the profiler with varying t (interim thresholds)

and a desired confidence interval to determine the final t. Based on the embedding

size estimated for an interim threshold, the optimizer tunes the threshold to be

higher or lower than the previous.

This ensures that the threshold is tuned appropriately based on the available

GPU memory for each model architecture. The Statistical Optimizer then provides

the final threshold as output to the next blocks in the FAE.

5.3 Input and Embedding Classifier
The embedding classifier uses the output of the Embedding Logger and the final

threshold from Statistical optimizer to tag (hot or cold) the embedding table en-

tries. This requires only one pass of each embedding table. Additionally, the input

classifier uses the final access threshold value and accesses to the already classi-

fied embedding table to identify hot sparse-feature inputs. Typically, there are 10s

of embedding tables in a recommender model. A sparse-feature input typically

accesses one or more entries in each of these embedding tables. A sparse-feature

input is classified as hot only if all its embedding table accesses are to hot entries.

This component typically requires only one pass of the entire sparse-feature

input (SI) and just checks if the embedding entry indices are present in the hot-

embedding bags. Hot-embedding bag is composed of all index of all hot embed-

ding table entries across all embedding tables in the model. As this is completely

parallelizable operation across both inputs and embedding indices, we divide this

task across multiple cores in the CPU. For a 16 core machine (32 hardware threads),

the total time for this phase for different access thresholds is given by Figure 5.6.

36

0.001% 0.0001% 0.00001% 0.000001%
Access Threshold to Classify Hot Embeddings

0
25
50
75

100
125
150
175
200

La
te

nc
y

(s
ec

on
ds

) Criteo Kaggle
Taobao Alibaba
Criteo Terabyte

Figure 5.6: The latency of the input processor from dataset to classify sparse-
feature inputs (as hot or cold) as we vary the access threshold. Overall,
even for very low access thresholds, we only require only a maximum
of 110 seconds.

Original Data Sampled Data

Figure 5.7: Embedding table access profile from the original inputs (D) and
the sampled inputs (D̂) – sampling rate (x) = 5%. We observe that D̂ has
a similar access signature to D.

The input classifier also bundles hot and cold inputs together into minibatches.

As aforementioned, we require the entire minibatch to be hot to avoid the data

shuffling between CPU and GPU. If an minibatch of inputs is entirely hot, the entire

execution can happen in a data-parallel mode on the GPU without any interference

from the CPU. Once we have preprocessed the sparse-input data into hot and cold

minibatches, we store this in the FAE format for any subsequent training runs.

37

5.4 Scheduler for Dynamic Hot-Cold Swaps
FAE’s preprocessing provides a dataset that is distributed into hot and cold mini-

batches and a set of hot embeddings. The embedding replicator replicates the hot

embedding across all GPUs. In addition to that, hot embeddings also are avail-

able on CPU for baseline model execution using cold input. Next, we discuss the

runtime scheduling of hot and cold mini-batches to ensure the baseline accuracy

metrics whilst providing accelerated performance.

In the most basic form, FAE can schedule the entire collection of minibatches

comprising hot inputs followed by cold inputs, or vice versa, but such a schedule

can have potential impact on training accuracy. This is because the hot inputs only

access and update the hot embedding entries, and training using only hot inputs for

a long time can potentially reduce the randomness in training.

For non-convexity loss optimization problems, this makes gradient descent

based algorithms susceptible to local minima. To mitigate this, machine learning

community has often deployed data shuffling. Next, we discuss how we uniquely

attenuate this issue for our framework.

5.5 Communication Overheads
To re-introduce randomness in our training while also attaining accelerated perfor-

mance, we intermittently schedule hot and cold minibatches. However, changing

input type (hot vs cold) can degrade performance as each of these events requires

synchronization of hot embedding parameters between CPU and GPU copies. To

balance this trade off, we offer Shuffle Scheduler that dynamically determines the

interleaving of hot and cold mini-batches based on the runtime training metric. The

scheduler always begins with training on cold inputs as they update a wider range

of embedding entries, albeit infrequently per entry. The rate of scheduling hot and

cold minibatches can be tuned dynamically based on Equation 5.5. In the equation,

r(i) is the rate at ith swap. Rate of (R(100)) implies that 100% of the mini-batches

of cold inputs will be completed before the first hot mini-batches is issued. A rate

of (R(1)) implies hot and cold are shuffled after every mini-batch. TestL is the

testing loss and u is a count of swaps.

38

r(i+1) =

min(r(i)∗1/2,R(1)) i f ∆TestL(i)≥ TestL(i−1)

max(r(i)∗2,R(100)) i f ∆TestL(i)≤ TestL(i−u)

r(i) otherwise

(5.5)

Based of the testing loss obtained after each swap, we determine whether the

rate needs to be changed based on the following two conditions.

Testing loss used for the scheduler can use loss functions such as mean squared

loss and cross-entropy logarithmic loss, based on the model requirement. All of

our models and their datasets use the logarithmic loss to establish the efficacy of

training. Nonetheless, as we perform a comparison of loss score between each

subsequent swap, any loss function can be used. If the framework observes an

increase in the test loss from the previous schedule, it immediately reduces the

rate by half. This implies that the remaining minibatches of hot and cold inputs

will be split into an alternate of cold and hot schedules. The rate can be reduced

to a minimum of R(1). If the test loss decreases, rate remains unchanged, as this

is the expected behaviour, unless the loss has been decreasing successively for u

schedules. This is the second case where rate is changed, i.e., increased by 2, up to

a max of R(100). Similar to prior work that offers automatic convergence checks

to avoid over-fitting, the downward trend of test loss curve [49] consecutively for 4

strips shows a balance between redundancy, badness, and slowness; thus we choose

u as 4. Apart from the above two cases, the rate remains unchanged. The Shuffle

Scheduler ensures that accuracy remains the priority of FAE. FAE begins training

with R(50) (alternate cold and hot mini-batches) for a dataset, and tunes the rate

accordingly.

5.6 Summary
In this chapter, we present the flow of Frequently Accessed Embeddings. FAE

comprises of classifier with a threshold to segregate the hot and cold entries. Also,

FAE benefits from scheduler to dynamically swap the hot and cold. Another major

component is a shuffler that dynamically determines the execution order of hot and

cold sparse input mini-batches across the CPU and GPUs at runtime.

39

Chapter 6

Evaluation

In Chapter 5, we introduced FAE to improve the end-to-end training time for Deep

Learning Recommendation Models. In this chapter, we showcase the efficacy of

our FAE framework on 4 real world datasets, using established recommendation

models RMC1, RMC2, RMC3, and RMC4 which represent four classes of at-scale

models [19]. We prototype FAE on top of the widely used open source implemen-

tation of Deep Learning Recommendation System (DLRM) [41] 1 and Time-based

Sequence Model for Personalization and Recommendation Systems(TBSM) [26] 2

frameworks to train recommender models.

Based on the sparse input configuration, there is a model-dataset correspon-

dence, RMC1 model on Taobao Alibaba [5] with TBSM, and RMC2 on Criteo

Kaggle [12], RMC3 on Criteo Terabyte [13], and RMC4 on Avazu [32] set that

provides temporal user behavior data, it is the only dataset that can leverage the

TSL layer in TBSM.

Table 6.1 describes the details of the model architecture for RMC1, RMC2,

RMC3, and RMC4 including their dense and sparse features, embedding table

numbers and size, and neural network configurations. In addition to these real

world datasets and their corresponding models, we also perform evaluation on syn-

thetic models to show case the efficacy of our framework.

1https://github.com/facebookresearch/dlrm
2https://github.com/facebookresearch/tbsm

40

https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/tbsm

Table 6.1: Model Architecture Parameters and Characteristics of the Datasets
for our Workloads

Workload Dataset Training Input Dataset Features Embedding Tables Neural Network Config
Number Size Dense Sparse Rows Rows

Dim
Size Bottom

MLP
Top MLP DNN

RMC1
(TBSM [26])

Taobao (Al-
ibaba) [5]

10 M 1 GB 3 3 5.1M 16 0.3 GB 1-16 & 22-
15-15

30-60-1 Attn.
Layer

RMC2
(DLRM [41])

Criteo Kag-
gle [12]

45 M 2.5 GB 13 26 33.8M 16 2 GB 13-512-
256-64-16

512-256-1 -

RMC3
(DLRM [41])

Criteo Ter-
abyte [13]

80 M 45 GB 13 26 266M 64 63 GB 13-512-
256-64

512-512-
256-1

-

RMC4
(DLRM [41])

Avazu [32] 32.3 M 2.4 GB 1 21 9.3M 16 0.55 GB 1-512-256-
64-16

512-256-1 -

1k 100k 200k 300k
Number of Iterations

74%

75%

76%

77%

78%

79%

80%

Ac
cu

ra
cy

Baseline Training
FAE Training
Baseline Testing
FAE Testing

(a) Criteo Kaggle

1 10k 20k 30k 40k
Number of Iterations

50%

60%

70%

80%

90%

Ac
cu

ra
cy

Baseline Training
FAE Training
Baseline Validation
FAE Validation

(b) Taobao Alibaba

1k 10k 20k 30k 40k 50k 60k
Number of Iterations

77%

78%

79%

80%

81%

82%

83%

Ac
cu

ra
cy

Baseline Training
FAE Training
Baseline Testing
FAE Testing

(c) Criteo Terabyte

1k 100k 200k
Number of Iterations

50%

60%

70%

80%

90%

Ac
cu

ra
cy

XDL Training
FAE Training
XDL Testing
FAE Testing

(d) Avazu

Figure 6.1: Increasing Accuracy with training iterations when optimized with
FAE framework. As we see, all the datasets and corresponding recom-
mender models achieve the XDL accuracy for both training and test or
validation sets.

6.1 Experimental Setup

6.1.1 Software libraries and setup

We showcase the efficacy of our framework on 4 real world datasets, using estab-

lished recommendation models RMC1, RMC2, RMC3, and RMC4 which repre-

sent four classes of at-scale models [19]. We prototype on top of the widely used

open source implementation of Deep Learning Recommendation System [41] 3

and Time-based Sequence Model for Personalization and Recommendation Sys-

tems (TBSM) [26] 4 frameworks to train recommender models.

Based on the sparse input configuration, there is a model-dataset correspon-

dence, RMC1 model on Taobao Alibaba [5] with TBSM, and RMC2 on Criteo
3https://github.com/facebookresearch/dlrm
4https://github.com/facebookresearch/tbsm

41

https://github.com/facebookresearch/dlrm
https://github.com/facebookresearch/tbsm

Kaggle [12], RMC3 on Criteo Terabyte [13], and RMC4 on Avazu [32] all with

DLRM. TBSM consists of embedding layer and time series layer (TSL); the em-

bedding layer is implemented through DLRM. TSL resembles an attention mech-

anism and contains its own MLP network to compute one or more context vectors

between history of items and the last item. As Taobao Alibaba is the only dataset

that provides temporal user behavior data, it is the only dataset that can leverage

the TSL layer in TBSM.

Table 6.1 describes the details of the model architecture for RMC1, RMC2,

RMC3, and RMC4 including their dense and sparse features, embedding table

numbers and size, and neural network configurations.

In addition to these real world datasets and their corresponding models, we also

perform evaluation on synthetic models to show case the efficacy of our framework.

As relies on popularity of certain inputs, we execute these synthetic models on

Criteo Terabyte (largest dataset) to ensure the semantics of the training input.

6.1.2 Server Architecture

The base DLRM and TBSM code is configured using the Pytorch-1.7 and exe-

cuted using Python-3. We use the torch.distributed back end to support scalable

distributed training and performance optimization [48]. NCCL is used [43] for

gather, scatter, and all-reduce collective calls via the backend NVLink [2] intercon-

nect. DLRM and TBSM are also implemented on XDL 1.0 using Tensorflow-1.2

as the computation backend.

Table 6.2: System Specifications
Device Architecture Memory Storage
CPU Intel Xeon 768 GB 1.9 TB

Silver 4116 (2.1GHz) DDR4 (2.7GB/s) NVMe SSD
GPU Nvidia Tesla 16 GB -

V100 (1.2GHz) HBM-2.0 (900GB/s)

Table 6.2 describes the configuration of our datacenter servers. These servers

comprise 24-core Intel Xeon Silver 4116 (2.1 GHz) processor with Skylake archi-

tecture. Each server has a DRAM memory capacity of 192 GB. Each DDR4-2666

channel has 8 GB memory. Each server also has a local storage of 1.9 TB NVMe

SSD. Each server offers 4 NVIDIA Tesla-V100 each with 16GB memory capacity

42

Criteo Kaggle Taobao Alibaba Criteo Terabyte Avazu Geomean
0.0

0.5

1.0

1.5

2.0

2.5
Sp

ee
du

p
XDL

CPU
1-GPU
2-GPU
4-GPU

DLRM
CPU
1-GPU
2-GPU
4-GPU

FAE
1-GPU
2-GPU
4-GPU

FAE
1-GPU
2-GPU
4-GPU

Figure 6.2: The performance of Criteo Kaggle, Taobao Alibaba, Criteo Ter-
abyte, and Avazu training with the vs XDL and DLRM. All values are
normalized to XDL 1-GPU.

CPU 2-GPU 4-GPU1-GPUCPU 2-GPU 4-GPU 1-GPUCPU 2-GPU 4-GPU 1-GPUCPU 2-GPU 4-GPU 1-GPUCPU 2-GPU 4-GPU

Figure 6.3: Latency breakdown for the 1, 2, and 4 GPU executions. The
framework adds the overhead of embedding synchronization across
CPUs and GPUs, not present in XDL and DLRM.

as a general purpose GPU. The GPUs are connected using the high speed NVLink-

2.0 interconnect. Every GPU is communicating with the rest of the system via a

16x PCIe Gen3 bus. In this paper, we perform experiments on a single server with

a maximum of 4 GPUs. We expect our insights to hold true even in a multi-server

scenario.

6.1.3 Baselines and terminology

We compare FAE optimized training against two baselines: (1) open sourced im-

plementation of DLRM and TBSM and (2) DLRM and TBSM implementation on

XDL [30]. For both the baselines we execute on CPU only mode and CPU-GPU

hybrid mode with varying number of GPUs. The CPU only mode is referred to

as XDL-CPU and DLRM-CPU. For CPU-GPU hybrid mode, in case of DLRM,

embeddings execute on CPU.

43

6.2 Accuracy
In this section, we evaluate the accuracy of FAE and the end-to-end training time

and comparing it against the two baselines.

Table 6.3: Accuracy Metric Comparisons

2*Dataset XDL FAE

Accuracy (%) AUC Logloss Accuracy (%) AUC Logloss

Criteo Kaggle 78.86 0.802 0.452 78.86 0.802 0.452

Taobao Alibaba 89.21 - 0.269 89.03 - 0.271

Criteo Terabyte 81.07 0.802 0.424 81.06 0.802 0.424

Avazu 83.61 0.758 0.390 83.60 0.758 0.391

6.2.1 Accuracy Results

Figure 6.1 illustrates the accuracy of Criteo Kaggle, Taobao Alibaba, Criteo Ter-

abyte, and Avazu for their RMC2,RMC1, RMC3, and RMC4 models. We use a

full-precision XDL-CPU execution baseline that exactly follows the DLRM and

TBSM executions. 6.3 compares the accuracy metrics for all the work-loads.

We use testing accuracy, Area Under Curve (AUC), and cross-entropy loss

(log loss) as recommendation model performance metric, as established by the

MLPerf [1] community. For Taobao dataset, we use the accuracy and log loss as

performance metric,as AUC is not offered.

FAE training reduces the average execution time (geomean) by 42%, 36%, and

34%, 1-GPU, 2-GPU, and 4-GPU executions, respectively. The GPU comparisons

assume same number of GPUs for XDL and FAE.

FAE observes an initial jump in accuracy for both Criteo and Avazu datasets

after the first swap between cold and hot mini-batch. Once, model is trained on both

the types of mini-batches, we do not observe any more jumps. As we interleave it

with the first hot mini-batch, many of pertinent embedding entries get updated and

we reach the baseline accuracy for both training and testing sets.

As the table shows, each model achieves the corresponding baseline accuracy.

For all the datasets, we observe that when the Shuffle Scheduler alternately issues

cold and hot minibatches at R(50), the models are able to converge to the baseline

accuracy in the same number of baseline training iterations.

44

FAE observes an initial jump in accuracy for both Criteo and Avazu datasets

after the first swap between cold and hot mini-batch. Once, model is trained on both

the types of minibatches, we do not observe any more jumps. As we interleave it

with the first hot mini-batch, many of pertinent embedding entries get updated and

we reach the baseline accuracy for both training and testing sets.

Performance Gains and Absolute Training Times

Figure 6.2 shows the performance improvement of end-to-end training execution

using FAE in comparison to XDL and DLRM/TBSM. The end-to-end training runs

are terminated when the established accuracy metric (cross-entropy loss or area

under the curve) is met. The performance is normalized to XDL 1-GPU execution

For a singled device (CPU or 1-GPU), we use a mini-batch of 1K, 256, 1K and1K

inputs for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte and Avazu, respectively.

FAE training reduces the average execution time (geomean) by 42%, 36%, and

34%, 1-GPU, 2-GPU, and 4-GPU executions, respectively. The GPU comparisons

assume same number of GPUs for XDL and FAE.

We maintain weak scaling across distributed runs where the minibatch size is

scaled with the number of GPUs. For example, 2 GPU execution use 2K, 512, 2K

and 2K mini-batch size for Criteo Kaggle, Taobao Alibaba, Criteo Terabyte and

Avazu, respectively.

For Taobao, 4 GPU execution takes more time than 2 GPU execution because

the dataset is relatively small, thus the cold minibatch executions overshadow bene-

fits of FAE. Overall FAE reduces the training time by 2.3× and 1.52× in comparison

to XDL CPU-only and XDL CPU-GPU with 4-GPUs.

Table 6.4: Absolute Training Time for 10 Epochs (mins)

Dataset XDL 1-GPU 2-GPU 4-GPU

CPU XDL FAE XDL FAE XDL FAE

Criteo Kaggle 197.56 196.97 122.71 179.16 116.27 160.65 104.69

Taobao Alibaba 1108.84 813.10 436.58 677.00 387.79 621.96 428.55

Criteo Terabyte 404.25 380.88 189.73 330.06 201.61 309.51 156.45

Avazu 134.28 108.24 72.07 84.04 62.73 74.20 61.15

45

Absolute time: We compare the absolute end-to-end training time, when all

the executions reach their required accuracy metric. These times are shown in

minutes in 6.4. We use minibatch of 1k, 2k,and 4k for Crtieo Kaggle, Terabyte,

and Avazu and 256, 512 and1k for Taobao Alibaba dataset. We observe that the

RMC1 model with Taobao obtains most benefits from general GPU acceleration as

it employs a relatively large deep learning neural network.

FAE can further accelerate the training of this model and reduce the training

time to 428 minutes with 4-GPU FAE compared to 621 minutes with 4-GPU XDL.

With the recent developments in machine learning [58], we expect the neural net-

works to increase inconsiderably in size for recommender models. Results clearly

show that FAE can enable GPU acceleration without incurring large data transfer

overhead between CPU and GPU.

Latency breakdown

Figure 6.3 shows the breakdown of the total runtime for each of the workloads

executing on CPU-only and 1, 2, and 4 GPUs. In the Figure, colors for cold inputs

are consistent across XDL, DLRM, and FAE executions. As the figure shows,the

optimizer constitutes a large portion of the DLRM execution. This is because, a

CPU cannot efficiently execute the massively parallel optimizer operation.

FAE is able to mitigate some of these inefficiencies and reduce the optimizer

time by performing both the neural network and embedding updates on GPUs for

the hot input min-batches. In case of XDL, efficiency of Advanced Model Server

(AMS) is improved using GPU to speed up the massively parallel optimizer and

embedding dictionary lookup. Even XDL is limited by the size of GPU memory,

hence only the index of embedding dictionary is stored in GPU memory.

Due to small size of hot embedding tables, FAE stores the entire table in GPU

memory instead of only the indices. Hence, for FAE the optimizer time for hot

mini-batches is significantly lower than the cold mini-batches, as the of hot inputs

are observed more often but accelerated on GPU.

6.3 also shows the percentage of time spent by XDL,DLRM/TBSM, and FAE

on data transfer to and from the embedding layers. This data transfer is completely

eliminated for FAE for hot mini-batches. For DLRM/TBSM implementations, the

46

data transfer time comprises the time spent on transferring embedding data to the

GPU. For XDL, the time reported is spent on transferring embedding indices and

model dense parameters to the GPU.

Embedding Synchronization

One overhead imposed by FAE is one form of embedding synchronization while

switching between cold and hot minibatches. The embedding tables are updated

across CPU and GPU memories to ensure the training process observes the same

entries. This overhead is shown by the embedding sync on FAE executions and is

highlighted in the Figure 6.3.

Avazu observes a higher percentage of embedding synchronization overhead

because of its comparatively smaller embedding size. Thus the fixed transfer cost

from CPU to GPU, using PCIe, is not amortized over a large data transfer. On

the contrary, Taobao observes the least percentage of synchronization overhead.

This can be attributed to the high percent of forward and backward time of the

Taobao RMC1 recommender model due to its deep attention layer. Thus, as the

recommender models become bigger with larger embedding tables and deeper neu-

ral network layers, FAE can offer higher benefits by reducing the CPU-GPU data

transfer between embedding and DNN layers, whilst observing amortized embed-

ding synchronization overheads. This is because, even though embedding tables

are expected to increase in size, a larger absolute size of embedding a does not

necessarily imply a proportionally large hot embedding table. This is because cer-

tain inputs are always going to be way more popular than the others.

Table 6.5: CPU-GPU data transfer time for 10 Epochs (mins)
Dataset 1-GPU 2-GPU 4-GPU

DLRM XDL FAE DLRM XDL FAE DLRM XDL FAE

Criteo Kaggle 22.09 5.39 4.99 23.12 5.61 4.35 18.00 3.05 4.29

Taobao Alibaba 37.93 24.97 3.24 38.27 12.89 11.11 25.04 6.24 6.04

Criteo Terabyte 76.01 13.46 13.27 92.98 18.94 12.41 48.43 17.49 15.24

Avazu 13.94 6.23 2.97 12.68 3.19 3.17 11.94 2.36 2.79

47

Table 6.6: Amount of Data Transferred over 10 Epochs

Dataset DLRM (GB) XDL (GB) FAE (GB)
Criteo Kaggle 60.89 23.16 14.99

Taobao Alibaba 1.95 0.51 0.61
Criteo Terabyte 375.06 95.60 69.58

Avazu 40.45 30.27 10.45

6.2.2 Data transfer between CPU and GPU

Table 6.5 shows the absolute communication time to transfer the embedding layers

and Table 6.6 shows the amount of data transferred for XDL, DLRM/TBSM and

FAE execution including the embedding synchronization for FAE. On average FAE

reduces the total data transfer from 37 GB with XDL to 24 GB, even including the

embedding synchronization overhead. Which translates to 12% improvement in

CPU-GPU data transfer time. In case of XDL, all dense parameters needs to be

transferred from AMS to backend workers and vice versa pertraining iteration.

FAE only require parameters to be transferred between CPU and GPU across the

hot and cold minibatch swap.

Performance improvement with varying mini-batch size

6.4 shows the performance benefits of FAE training over XDL execution for a

4-GPU system. Speedup is normalized to XDL execution with mini-batch size of

1K, 256, 1K and 1K for Criteo Kaggle,Taobao Alibaba, Criteo Terabyte and Avazu

datasets respectively. As the mini-batch size increases, we observe higher benefits

because the overheads of FAE are amortized over a larger input set. For instance,

now the Embedding Replicator replicates the model fewer times. However, with

XDL, we do not see such an improvement because of extra time being spent on

creating and sending larger minibatches to the backend workers.

Performance improvement for synthetic models

We use real-world training data as FAE utilizes the property that certain inputs are

way more popular than the others. However, to understand the efficacy of FAE on

varying types of model architectures, we create synthetic configurations, shown in

48

mini-batch size mini-batch size mini-batch size mini-batch size

Figure 6.4: Speedup of with varying mini-batch sizes for a 4-GPU system,
compared to a 4-GPU XDL.

Table 6.7, that can be executed on Criteo Terabyte dataset. Figure 6.5 shows the

performance improvements of FAE across various synthetic models over XDL and

DLRM/TBSM. FAE provides on average 2.94× speedup across small and large

synthetic models as compared to XDL.

Table 6.7: Synthetic Models’ Configuration
Dataset Bottom MLP Top MLP

SYN-M1 13-64 512-1
SYN-M2 13-512-64 512-256-1
SYN-M3 13-1024-512-64 512-1024-256-1
SYN-M4 13-1024-512-256-64 512-1024-512-256-1

SYN-M1 SYN-M2 SYN-M3 SYN-M3 Geomean
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

XDL
DLRM
FAE

Figure 6.5: Performance comparison of with XDL 4-GPU across various
synthetic models.

Power Benefits

Table 6.8 shows the per GPU power consumption using the baseline and FAE for

a 1024 mini-batch. FAE reduces GPU power consumption by 9.7% in comparison

49

to XDL. This is primarily due to the reduced communication cost between devices.

Table 6.8: GPU Power Consumption Comparison
Dataset XDL DLRM FAE

Criteo Kaggle 61.83W 58.91W 55.81W
Alibaba 56.39W 60.21W 56.62W

Criteo Terabyte 59.71W 62.47W 57.03W
Avazu 60.2W 58.03W 56.4W

6.3 Summary
In this chapter, we evaluate the accuracy and performance of the proposed frame-

work FAE. In addition, We compare FAE optimized training against two baselines,

open sourced implementation of DLRM and TBSM and (2) DLRM and TBSM

implementationon XDL. For both the baselines we execute on CPU only mode

and CPU-GPU hybrid mode with varying number of GPUs. We do the evalua-

tion in terms of accuracy and absolute timing as well the latency breakdown. FAE

achieves the average speedup across all 2.34x speedup while maintaining the same

accuracy. Overall FAE reduces the training time by 2.3× and 1.52× in comparison

to XDL CPU-only and XDL CPU-GPU with 4-GPUs.

50

Chapter 7

Conclusion and Future Work

7.1 Summary
Recommendation models aim to learn user preferences and provide a targeted user

experience by employing very large embedding tables. Even though these tables

often cannot fit on GPU memory,these models also comprise neural network layers

that are well suited for GPUs. These contrasting requirements splits the training

execution on CPUs (for memory capacity) and GPUs (for compute throughput).

Fortunately, for real-world data, we observe that embedding tables exhibit a skewed

data access pattern. This can be attributed to certain training inputs (users and

items) that are much more popular than the others.

This observation allows us to develop a comprehensive framework, namely

FAE, that uses statistical techniques to quantify the hotness of embedding entries

based on the input dataset. This hotness of embedding tables in turn allows the

framework to optimally layout embedding so that the GPU memory is efficiently

utilized to store highly accessed data close to the compute. To capture most of

the performance benefits, FAE bundle shot inputs and cold inputs in separate mini-

batches. This helps FAE accelerate the hot mini-batch by executing the whole

model on GPU and eliminate any CPU-GPU embedding data transfers.

The training for these hot inputs happens entirely on GPUs, thus reducing any

CPU-GPU communication overhead between CPU-GPU and GPU-GPU from em-

bedding and neural network layers. Our experiments on DLRM and TBSM recom-

51

mender models with real datasets show that FAE reduces the overall training time

by 2.3× and 1.52×in comparison to XDL CPU-only and XDL CPU-GPU execution

while maintaining baseline accuracy.

7.2 Future Work
Future work relies on investigating first new models to this aim second different

representations for the same purpose like graph processing. Using graph repre-

sentation, a whole different class of problems arises. For the same model future

works effort falls into categories such as finding other patterns other than popu-

larity embodies in the recommendation dataset or model. Other orthogonal areas

of research can be investigating new methods of compression to reduce the size of

DRLM further or deploying some federated learning techniques to overcome the

existing issues.

52

Bibliography

[1] Mlperf becnhmarks. https://mlcommons.org/en/training-normal-10/. →
page 44

[2] Nvlink. URL https://developer.nvidia.com/nccl. → pages 28, 42

[3] B. Acun, M. Murphy, X. Wang, J. Nie, C.-J. Wu, and K. Hazelwood.
Understanding training efficiency of deep learning recommendation models
at scale, 2020. → page 21

[4] A. O. D. V. Alexander Novikov, Dmitry Podoprikhin. Tensorizing neural
networks, 2015. URL https://arxiv.org/abs/1509.06569. → page 11

[5] Alibaba. User behavior data from taobao for recommendation.
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1. →
pages 32, 40, 41

[6] J. L. W. L. K.-C. L. J. X. B. Z. Bencheng Yan, Pengjie Wang. Binary code
based hash embedding for web-scale applications, 2021. URL
https://arxiv.org/abs/2109.02471. → page 14

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, et al. Dadiannao: A machine-learning supercomputer. In MICRO,
2014. → pages 1, 9

[8] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks. In ISCA,
2016. → page 1

[9] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 571–582, Broomfield, CO, Oct. 2014. USENIX

53

https://mlcommons.org/en/training-normal-10/
https://developer.nvidia.com/nccl
https://arxiv.org/abs/1509.06569
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
https://arxiv.org/abs/2109.02471

Association. ISBN 978-1-931971-16-4. URL https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/chilimbi. → page 23

[10] E. Chung, J. Fowers, K. Ovtcharov, , A. Caulfield, T. Massengill, M. Liu,
M. Ghandi, D. Lo, S. Reinhardt, S. Alkalay, H. Angepat, D. Chiou, A. Forin,
D. Burger, L. Woods, G. Weisz, M. Haselman, and D. Zhang. Serving dnns
in real time at datacenter scale with project brainwave. IEEE Micro, 38:
8–20, March 2018. URL https://www.microsoft.com/en-us/research/
publication/serving-dnns-real-time-datacenter-scale-project-brainwave/. →
page 1

[11] X. L. C.-J. W. Chunxing Yin, Bilge Acun. Tt-rec: Tensor train compression
for deep learning recommendation models, 2021. URL
https://arxiv.org/abs/2101.11714. → pages 4, 12

[12] CriteoLabs. Criteo display ad challenge, .
https://www.kaggle.com/c/criteo-display-ad-challenge. → pages 40, 41, 42

[13] CriteoLabs. Terabyte click logs, .
https://labs.criteo.com/2013/12/download-terabyte-click-logs. → pages
40, 41, 42

[14] A. Eisenman, M. Naumov, D. Gardner, M. Smelyanskiy, S. Pupyrev,
K. Hazelwood, A. Cidon, and S. Katti. Bandana: Using non-volatile
memory for storing deep learning models. Proceedings of Machine
Learning and Systems, 1:40–52, 2019. → page 16

[15] J. Fowers, K. Ovtcharov, K. Strauss, E. Chung, and G. Stitt. A high memory
bandwidth fpga accelerator for sparse matrix-vector multiplication. In
International Symposium on Field-Programmable Custom Computing
Machines. IEEE, May 2014. URL
http://research.microsoft.com/apps/pubs/default.aspx?id=217166. → page
22

[16] H. N. Fumito Yamaguchi. Hardware-based hash functions for network
applications. 2013 19th IEEE International Conference on Networks
(ICON), Singapore, 2013. IEEE. doi:10.1109/ICON.2013.6781990. URL
https://ieeexplore.ieee.org/document/6781990. → page 14

[17] A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou. Mixed dimension
embeddings with application to memory-efficient recommendation systems.
ArXiv, abs/1909.11810, 2019. → page 17

54

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://arxiv.org/abs/2101.11714
https://www.kaggle.com/c/criteo-display-ad-challenge
https://labs.criteo.com/2013/12/download-terabyte-click-logs
http://research.microsoft.com/apps/pubs/default.aspx?id=217166
http://dx.doi.org/10.1109/ICON.2013.6781990
https://ieeexplore.ieee.org/document/6781990

[18] C. A. Gomez-Uribe and N. Hunt. The netflix recommender system:
Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst.,
6(4), Dec. 2016. ISSN 2158-656X. doi:10.1145/2843948. URL
https://doi.org/10.1145/2843948. → page 1

[19] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel,
K. Hazelwood, M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere,
M. Smelyanskiy, L. Xiong, and X. Zhang. The architectural implications of
facebook’s dnn-based personalized recommendation. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 488–501, 2020. doi:10.1109/HPCA47549.2020.00047. →
pages 4, 40, 41

[20] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015. → page 22

[21] C. W. X. L. J. T. Haochen Liu, Xiangyu Zhao. Automated embedding size
search in deep recommender systems. SIGIR ’20, New York, NY, USA,
2020. Association for Computing Machinery.
doi:10.1145/3397271.3401436. URL
https://doi.org/10.1145/3397271.3401436. → pages 12, 14

[22] C. W. X. L. J. T. Haochen Liu, Xiangyu Zhao. Automated embedding size
search in deep recommender systems. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, CIKM ’20, page Pages
2307–2316, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3397271.3401436. URL
https://doi.org/10.1145/3397271.3401436. → pages 11, 12, 14

[23] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, page 173–182, Republic and Canton of
Geneva, CHE, 2017. International World Wide Web Conferences Steering
Committee. ISBN 9781450349130. doi:10.1145/3038912.3052569. URL
https://doi.org/10.1145/3038912.3052569. → pages xi, 3

[24] J. Huang, J. Park, P. T. P. Tang, A. Tulloch, et al. Mixed-precision
embedding using a cache. arXiv preprint arXiv:2010.11305, 2020. → page 2

[25] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. X. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen. Gpipe: Efficient training of giant

55

http://dx.doi.org/10.1145/2843948
https://doi.org/10.1145/2843948
http://dx.doi.org/10.1109/HPCA47549.2020.00047
http://dx.doi.org/10.1145/3397271.3401436
https://doi.org/10.1145/3397271.3401436
http://dx.doi.org/10.1145/3397271.3401436
https://doi.org/10.1145/3397271.3401436
http://dx.doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569

neural networks using pipeline parallelism. In H. M. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Van-
couver, BC, Canada, pages 103–112, 2019. URL http://papers.nips.cc/paper/
8305-gpipe-efficient-training-of-giant-neural-networks-using-pipeline-parallelism.
→ pages 9, 23

[26] T. Ishkhanov, M. Naumov, X. Chen, Y. Zhu, Y. Zhong, A. G. Azzolini,
C. Sun, F. Jiang, A. Malevich, and L. Xiong. Time-based sequence model
for personalization and recommendation systems. CoRR, abs/2008.11922,
2020. URL https://arxiv.org/abs/2008.11922. → pages xi, 1, 3, 4, 40, 41

[27] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist:
Efficient data encoding for deep neural network training. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), pages 776–789, 2018. doi:10.1109/ISCA.2018.00070. → page 22

[28] M. Jeon, S. Venkataraman, A. Phanishayee, u. Qian, W. Xiao, and F. Yang.
Analysis of large-scale multi-tenant gpu clusters for dnn training workloads.
In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’19, page 947–960, USA, 2019. USENIX
Association. ISBN 9781939133038. → page 9

[29] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism for
deep neural networks. SysML 2019, 2019. → page 24

[30] B. Jiang, C. Deng, H. Yi, Z. Hu, G. Zhou, Y. Zheng, S. Huang, X. Guo,
D. Wang, Y. Song, L. Zhao, Z. Wang, P. Sun, Y. Zhang, D. Zhang, J. Li,
J. Xu, X. Zhu, and K. Gai. Xdl: An industrial deep learning framework for
high-dimensional sparse data. In Proceedings of the 1st International
Workshop on Deep Learning Practice for High-Dimensional Sparse Data,
DLP-KDD ’19, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450367837. doi:10.1145/3326937.3341255. URL
https://doi.org/10.1145/3326937.3341255. → pages iii, 4, 21, 43

[31] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,

56

http://papers.nips.cc/paper/8305-gpipe-efficient-training-of-giant-neural-networks-using-pipeline-parallelism
http://papers.nips.cc/paper/8305-gpipe-efficient-training-of-giant-neural-networks-using-pipeline-parallelism
https://arxiv.org/abs/2008.11922
http://dx.doi.org/10.1109/ISCA.2018.00070
http://dx.doi.org/10.1145/3326937.3341255
https://doi.org/10.1145/3326937.3341255

A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon. In-datacenter performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, page 1–12, New York, NY, USA, 2017. Association
for Computing Machinery. ISBN 9781450348928.
doi:10.1145/3079856.3080246. URL
https://doi.org/10.1145/3079856.3080246. → page 1

[32] Kaggle. Avazu mobile ads ctr.
https://www.kaggle.com/c/avazu-ctr-prediction. → pages 40, 41, 42

[33] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C. Wu, M. Hempstead, and X. Zhang. Recnmp: Accelerating
personalized recommendation with near-memory processing. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 790–803, 2020. doi:10.1109/ISCA45697.2020.00070. →
page 17

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. Commun. ACM, 60(6):84–90, May
2017. ISSN 0001-0782. doi:10.1145/3065386. URL
https://doi.org/10.1145/3065386. → page 23

[35] A. V. Kumar and M. Sivathanu. Quiver: An informed storage cache for deep
learning. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 283–296, Santa Clara, CA, Feb. 2020. USENIX
Association. ISBN 978-1-939133-12-0. URL
https://www.usenix.org/conference/fast20/presentation/kumar. → page 10

[36] J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson.
Hippogriffdb: Balancing i/o and gpu bandwidth in big data analytics. Proc.
VLDB Endow., 9(14):1647–1658, Oct. 2016. ISSN 2150-8097.
doi:10.14778/3007328.3007331. URL
https://doi.org/10.14778/3007328.3007331. → pages 19, 23

57

http://dx.doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://www.kaggle.com/c/avazu-ctr-prediction
http://dx.doi.org/10.1109/ISCA45697.2020.00070
http://dx.doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://www.usenix.org/conference/fast20/presentation/kumar
http://dx.doi.org/10.14778/3007328.3007331
https://doi.org/10.14778/3007328.3007331

[37] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. Kim, and
Hadi Esmaeilzadeh. TABLA: A unified template-based framework for
accelerating statistical machine learning. Mar. 2016. → page 1

[38] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram. Analyzing
and mitigating data stalls in dnn training. In VLDB 2021, January 2021.
URL https://www.microsoft.com/en-us/research/publication/
analyzing-and-mitigating-data-stalls-in-dnn-training/. → page 15

[39] R. Montgomery. Applied statistics and probability for engineers. → page 33

[40] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R.
Ganger, P. B. Gibbons, and M. Zaharia. Pipedream: Generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 1–15, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450368735.
doi:10.1145/3341301.3359646. URL
https://doi.org/10.1145/3341301.3359646. → pages 9, 23

[41] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Mallevich,
I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyanskiy.
Deep learning recommendation model for personalization and
recommendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091. → pages iii, xi, 1, 3, 4, 40, 41

[42] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B.-Y. Su, J. Yang,
and M. Smelyanskiy. Deep Learning Training in Facebook Data Centers:
Design of Scale-up and Scale-out Systems. arXiv e-prints, art.
arXiv:2003.09518, Mar. 2020. → pages 1, 2

[43] Nvidia. NVIDIA Collective Communications Library (NCCL).
https://docs.nvidia.com/deeplearning/nccl/index.html. → page 42

[44] Nvidia. Accelerating wide deep recommender inference on gpus, 2017.
https://developer.nvidia.com/blog/
accelerating-wide-deep-recommender-inference-on-gpus/. → page 4

[45] M. H. Nvidia Inc. Vinh Nguyen, Tomasz Grel. Optimizing the deep learning
recommendation model on nvidia gpus.

58

https://www.microsoft.com/en-us/research/publication/analyzing-and-mitigating-data-stalls-in-dnn-training/
https://www.microsoft.com/en-us/research/publication/analyzing-and-mitigating-data-stalls-in-dnn-training/
http://dx.doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://arxiv.org/abs/1906.00091
https://docs.nvidia.com/deeplearning/nccl/index.html
https://developer.nvidia.com/blog/accelerating-wide-deep-recommender-inference-on-gpus/
https://developer.nvidia.com/blog/accelerating-wide-deep-recommender-inference-on-gpus/

https://developer.nvidia.com/blog/optimizing-dlrm-on-nvidia-gpus. → page
22

[46] L. M. E. O. I. O. Oleksii Hrinchuk, Valentin Khrulkov. Tensorized
embedding layers for efficient model compression, 2020. URL
https://arxiv.org/abs/1901.10787. → page 12

[47] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and Hadi Esmaeilzadeh.
Scale-out acceleration for machine learnng. Oct. 2017. → page 9

[48] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in
pytorch. 2017. → page 42

[49] L. Prechelt. Early stopping-but when? In Neural Networks: Tricks of the
trade, pages 55–69. Springer, 1998. → page 39

[50] C. Rosset. Turing-nlg: A 17-billion-parameter language model by microsoft.
Microsoft Blog, 2019. → page 23

[51] H.-J. M. Shi, D. Mudigere, M. Naumov, and J. Yang. Compositional
Embeddings Using Complementary Partitions for Memory-Efficient
Recommendation Systems, page 165–175. Association for Computing
Machinery, New York, NY, USA, 2020. ISBN 9781450379984. URL
https://doi.org/10.1145/3394486.3403059. → pages 17, 18

[52] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro.
Megatron-lm: Training multi-billion parameter language models using
model parallelism. ArXiv, abs/1909.08053, 2019. → page 23

[53] B. Smith and G. Linden. Two decades of recommender systems at
amazon.com. IEEE Internet Computing, 21(3):12–18, 2017.
doi:10.1109/MIC.2017.72. → page 1

[54] M. Stonebraker. Operating system support for database management.
Commun. ACM, 24(7):412–418, July 1981. ISSN 0001-0782.
doi:10.1145/358699.358703. URL https://doi.org/10.1145/358699.358703.
→ page 10

[55] Y. Sun, F. Yuan, M. Yang, G. Wei, Z. Zhao, and D. Liu. A generic network
compression framework for sequential recommender systems. In
Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’20, page 1299–1308,

59

https://developer.nvidia.com/blog/optimizing-dlrm-on-nvidia-gpus
https://arxiv.org/abs/1901.10787
https://doi.org/10.1145/3394486.3403059
http://dx.doi.org/10.1109/MIC.2017.72
http://dx.doi.org/10.1145/358699.358703
https://doi.org/10.1145/358699.358703

New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450380164. doi:10.1145/3397271.3401125. URL
https://doi.org/10.1145/3397271.3401125. → page 22

[56] J. M. Tarnawski, A. Phanishayee, N. Devanur, D. Mahajan, and
F. Nina Paravecino. Efficient algorithms for device placement of dnn graph
operators. Advances in Neural Information Processing Systems, 33, 2020.
→ page 24

[57] A. Tomkins, R. H. Patterson, and G. Gibson. Informed multi-process
prefetching and caching. SIGMETRICS Perform. Eval. Rev., 25(1):100–114,
June 1997. ISSN 0163-5999. doi:10.1145/258623.258680. URL
https://doi.org/10.1145/258623.258680. → page 10

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017. →
page 46

[59] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang.
Concurrent analytical query processing with gpus. Proc. VLDB Endow., 7
(11):1011–1022, July 2014. ISSN 2150-8097.
doi:10.14778/2732967.2732976. URL
https://doi.org/10.14778/2732967.2732976. → page 19

[60] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao,
B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine learning at
facebook: Understanding inference at the edge. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
331–344, Feb 2019. doi:10.1109/HPCA.2019.00048. → page 4

[61] X. Wu, H. Xu, H. Zhang, H. Chen, and J. Wang. Saec: similarity-aware
embedding compression in recommendation systems. In Proceedings of the
11th ACM SIGOPS Asia-Pacific Workshop on Systems, pages 82–89, 2020.
→ page 22

[62] P.-F. Z. H. Y. Yang Li, Tong Chen. Lightweight self-attentive sequential
recommendation, 2021. URL https://arxiv.org/abs/2108.11333. → page 15

[63] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li. Distributed
hierarchical gpu parameter server for massive scale deep learning ads
systems, 2020. → page 20

60

http://dx.doi.org/10.1145/3397271.3401125
https://doi.org/10.1145/3397271.3401125
http://dx.doi.org/10.1145/258623.258680
https://doi.org/10.1145/258623.258680
http://dx.doi.org/10.14778/2732967.2732976
https://doi.org/10.14778/2732967.2732976
http://dx.doi.org/10.1109/HPCA.2019.00048
https://arxiv.org/abs/2108.11333

[64] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu.
Entropy-aware i/o pipelining for large-scale deep learning on hpc systems.
In 2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 145–156, 2018. doi:10.1109/MASCOTS.2018.00023. → page 15

61

http://dx.doi.org/10.1109/MASCOTS.2018.00023

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Recommendation Model overview
	1.2 Motivation
	1.3 Approach and Contributions

	2 Background
	2.1 Recommendation models and their training inputs
	2.2 State-of-the-art mode of execution for training
	2.3 Leveraging training input and embedding access patterns

	3 Related Work
	3.1 Optimizations data layout through caching
	3.1.1 Cache-based Optimization
	3.1.2 Tensorization
	3.1.3 Reinforcement Learning based
	3.1.4 Web-scale Recommendation Model
	3.1.5 Sequential Recommendation Model
	3.1.6 Hardware Optimization
	3.1.7 Near-memory Processing

	3.2 Efficient execution of tasks on GPUs
	3.3 Embedding parameter placement
	3.4 Mitigating memory intensive training through compression, sparsity, and quantization
	3.5 Distributed deep learning training
	3.6 Summary

	4 Challenges
	4.1 Maintain Accuracy While Moving Hot Data to GPU
	4.2 Cold and hot embedding table entries segregation
	4.3 Scheduling hot and cold minibatches
	4.4 Maintain consistency between the embedding tables that are scattered across devices
	4.5 Summary

	5 Approach
	5.1 FAE overview
	5.1.1 Calibrating the Access Threshold
	5.1.2 Mitigating Read Overheads with Sparse Input Sampler
	5.1.3 Categorize and determine hot embedding size with the Profiler

	5.2 Confidence in the estimated embedding table size.
	5.3 Input and Embedding Classifier
	5.4 Scheduler for Dynamic Hot-Cold Swaps
	5.5 Communication Overheads
	5.6 Summary

	6 Evaluation
	6.1 Experimental Setup
	6.1.1 Software libraries and setup
	6.1.2 Server Architecture
	6.1.3 Baselines and terminology

	6.2 Accuracy
	6.2.1 Accuracy Results
	6.2.2 Data transfer between CPU and GPU

	6.3 Summary

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Future Work

	Bibliography

