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Abstract 

Previous work leveraged eye-tracking to predict a user’s levels of cognitive abilities and performance 
while reading magazine style narrative visualizations (MSNV), a common type of multimodal document 
which combines text and visualization to narrate a story. The eye-tracking data, used for training the 
classifiers, came from a user study, called control, where subjects simply read through MSNVs without 
receiving any type of adaptive guidance, otherwise known as the control condition. The goal was to 
capture the relationship between users’ normal MSNV processing and their levels of cognitive abilities 
and performance and use that to drive personalization. In addition to the control study, two other user 
studies were also previously conducted to investigate the benefits of adaptive support, also known as 
adaptive studies. In these studies, subjects were provided with gaze-based interventions to facilitate their 
processing of the MSNVs. 

In the control study, there was no intervention, and the MSNVs did not adapt to the users in any way 
because the idea was to make the predictions based on users normal, unguided MSNV processing and 
then use those predictions to deliver the appropriate adaptations. In the adaptive studies, however, 
interventions influenced the way subjects processed the MSNVs. As a result, their gaze behavior did not 
represent how they would have behaved in the intended control condition, and a classifier merely trained 
on the eye-tracking data from these studies would not learn the proper relationship. 

In this thesis, we propose different strategies for combining the additional eye-tracking data from the 
adaptive studies with our original data from the control study to mitigate the potential differences and to 
form more consistent combinations conducive to improved performance. Our results show that the 
additional eye-tracking data can significantly improve the accuracy of our classifiers. 
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Lay Summary 

Eye-tracking has been utilized for predicting users’ long-term characteristics as well as their transient 
states in order to drive personalization. Processing information visualization, due to its perceptual nature, 
is another task where eye-tracking has proven to be useful for inferring user characteristics to support 
AI-driven personalization. Particularly, in the context of processing magazine style narrative 
visualizations (MSNV), a common type of multimodal documents which combines text and visualization, 
eye-tracking has been used to predict users’ cognitive abilities and performance. This work strives to 
improve the accuracy of these predictions by taking advantage of additional eye-tracking data which 
could potentially help model users’ behavior more precisely for more accurate predictions.  
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1. Introduction 

Eye-tracking has been utilized for predicting users’ long-term characteristics as well as their transient 
states in order to drive personalization. Examples include relevance feedback for information retrieval 
[5], cognitive load assessment for emergency situations [6], learning gains with educational software [7], 
and automatic detection of personality traits [8]. Processing Information Visualization (InfoVis), due to 
its perceptual nature, is another task where eye-tracking has proven to be useful for inferring user 
characteristics to support AI-driven personalization. Particularly, in the context of processing magazine 
style narrative visualizations (MSNV), a common type of multimodal documents which combines text 
and visualization (e.g., Figure 1), eye-tracking has been used to make real-time predictions for three user 
cognitive abilities, namely reading proficiency, visualization literacy, and verbal working memory, all 
relevant to decide what to adapt to, and two measures of task performance, namely task comprehension 
and task completion time, relevant to decide the triggering of adaptations (i.e., when to adapt) [1]. 

 

 

Figure 1: Sample MSNV 

 

MSNVs convey information in two different modalities. As a result, processing such documents can be 
challenging due the need to split attention among two sources of information, a phenomenon known as 
the split-attention effect which can increase cognitive load [9] and cause difficulties for users with lower 
levels of cognitive abilities. Hence, accurate prediction of user states and characteristics is necessary for 
an effective personalization where the system delivers the right adaptation to the users who need help 
without distracting or overwhelming those who do not require these types of support. 

Previous work [1], leveraged eye-tracking to predict a user’s levels of cognitive abilities and performance 
while reading MSNVs. The eye-tracking data, used for training the classifiers, came from a user study 
where subjects simply read through MSNVs without receiving any type of adaptive guidance, otherwise 
known as the control condition (control study). The goal was to capture the relationship between users’ 
normal MSNV processing and their levels of cognitive abilities and performance and use that to drive 
subsequent personalization. 

Nevertheless, in addition to the control study, two other user studies were also conducted to investigate 
the benefits of adaptive support (adaptive studies). In these studies, subjects were provided with gaze-
based interventions to facilitate their processing of the MSNVs. Specifically, one study [2], used 
highlighting intervention to dynamically emphasize relevant data points in the MSNV chart (bars) as 
users read through their corresponding references in the narrative text. The other study [3], augmented 
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the bar highlighting interventions from [2] by underlining the reference sentence of the currently 
highlighted bars and connecting them with a set of lines (links). 

The interventions delivered in the adaptive studies influenced the way subjects processed the MSNVs. As 
a result, their normal gaze behavior was affected and rendered inconsistent with that of the control group. 
For that reason, these eye-tracking data might not help our classifiers learn the desired relationship 
between users’ normal unguided gaze behavior and their levels of cognitive abilities and performance 
more effectively.  

In this thesis, we propose different strategies for combining the additional eye-tracking data with our 
original data, intended to mitigate the potential differences and to form a more consistent combination 
conducive to improved performance. Our results show that our winning strategy can increase the efficacy 
of our combined data and significantly improve accuracy for most of our target measures. In particular, 
we show that for VerbalWM, our combined data achieve a significantly higher accuracy of 0.64 than the 
baseline of 0.51 which was previously the best performance possible for this cognitive ability within-task. 
We also show that for ReadP and Task Time, our combined data enable more accurate predictions earlier 
allowing for timelier adaptations. Specifically, we achieve peak accuracies of 0.75 and 0.73, respectively, 
which are significantly higher than their previous peak of 0.68. For VisLit too, we show that an early 
prediction can be significantly improved from 0.58 to 0.64 with the combined data, thus demonstrating 
the effectiveness of the additional eye-tracking data in improving our prediction performance. 
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2. Related Work 

2.1. Eye-Tracking for User Modelling and Adaptation 

Eye-tracking for gaze driven adaptation (i.e., adaptation which reacts to specific user gaze patterns) has 
been investigated in several domains (see [4] for an overview). In educational settings, D'Mello et al. [10] 
used gaze-sensitive prompts to promote student engagement by reorienting their attention when they 
looked away from the screen. Alt et al. [11] customized web contents based on what information users 
looked at while browsing e-commerce web pages. In information visualization, gaze-based adaptation 
was used to support map reading by dynamically adapting both the placement and the content of the 
legend [12] or de-emphasizing parts of the map which were not within the user’s focus of attention [13]. 
Lallé et al. provided dynamic gaze driven interventions in the context of narrative visualizations by 
highlighting relevant data points in the visualization [14] and displaying links between sentences and 
their corresponding data points as users read through the text component [3]. Research has shown that 
eye-tracking can reveal more about users than simply where they look. In particular, eye-tracking has 
been used for user modeling in real-time by predicting a user’s task performance, as well as their short-
term states and long-term characteristics which can drive adaptive support. 

 

Predicting task performance 

Eye-tracking has been utilized for predicting different measures of task performance useful for deciding 
when to adapt (i.e., when the user is predicted to have a low performance on the task). Examples include 
predicting a user’s task speed in performing visual search tasks [15] and processing bar and radar charts 
[16]. Prediction of task speed alone, however, is not adequate for driving adaptations as there is usually 
a trade-off between speed and accuracy. For instance, a user may be slower but more accurate. Other 
work predicted task comprehension when reading plain texts with no visualizations using a combination 
of gaze and speech data [17]. Barral et al. successfully predicted task time, as well as task comprehension, 
from eye-tracking data in multimodal documents that combine text and visualizations [1]. There also 
exists work on predicting domain specific measures of performance such as learning gains with tutoring 
systems [18][19] and problem-solving performance in puzzle games [20]. 

 

Predicting user states and characteristics  

Eye tracking has also been used for predicting various short-term affective and cognitive states. Examples 
include predicting emotions [21][22] and mind wandering [23][24] while performing educational tasks 
and watching videos, intention in multiplayer games [25], interest when viewing web documents [26], 
and mental workload while performing document editing and rout planning tasks [27]. In information 
visualization (InfoVis), user confusion [28], interest [29], and familiarity with visualizations [30] have 
also been predicted using eye-tracking.  

In addition to short-term states, long-term cognitive abilities and personality traits have also been 
predicted from eye-tracking. These characteristics can determine the type of adaptation. In particular, 
previous work predicted cognitive abilities, which influence visual processing, such as perceptual speed, 
verbal working memory (Verbal WM from now on), visual working memory, and visual scanning 
[31][32][33]. These cognitive abilities were predicted while users processed simple bar and radar charts 
[32][34], as well as a decision-making interface featuring a map and a deviation chart [31]. Eye-tracking 



4 
 

has also been used to predict reading ability when reading text [35], an ability which influences user 
comprehension [36]. Other works predicted personality traits while watching videos [37]. Song et al. [38] 
inferred user preferences for improving recommendations. Barral et al. [1] used eye-tracking to predict 
two long-term cognitive abilities shown to influence the processing of MSNVs [39], namely visualization 
literacy (i.e., the ability to use common data visualizations in an efficient and confident manner [40]), and 
reading proficiency (i.e., the vocabulary size and reading comprehension ability in English [41]), as well 
as verbal working memory (i.e., amount of verbal information (e.g., words) that can be temporarily 
maintained and manipulated in the working memory [42]). 

 

2.2. Eye-tracking in Multimodal Documents 

There has been little work on eye-tracking for user modeling and adaptation in the context of multimodal 
documents. Previous work used instructional material which contained text and pictures (not 
visualizations) [21][43][44]. Specifically, these works used eye-tracking for predicting students’ learning 
outcome [44], emotions [21], and motivational goals [43]. Other works used eye-tracking for evaluation 
of how users process multimodal webpages containing text and pictures [45][46]. 

Despite the commonness of multimodal documents with embedded visualizations, such as narrative 
visualizations, only a few works have studied gaze-driven adaptation in this context. Lallé et al. used 
users’ reading patterns, as captured by an eye-tracker, to deliver highlighting [2], as well as link [3] 
interventions in MSNV documents. They found that while highlighting interventions can improve 
comprehension of MSNV documents in users with lower levels of visual literacy, users with higher levels 
of this cognitive ability experienced a drop in comprehension [2]. Link interventions, on the other hand, 
improved comprehension in both groups [3]. 

Toker et al. [39] further studied the impact of cognitive abilities on task performance and gaze behaviors 
in non-adaptive MSNVs. They found that verbal WM affects overall reading time and processing of the 
text, with low verbal WM users taking significantly more time and looking significantly longer at the 
MSNV text than their counterparts. They also found that reading proficiency affects task speed and 
processing of the key components of the MSNV visualization, with low reading proficiency users being 
significantly slower due to more transitions to and from the labels and data points in the visualization. 
These findings show that users may benefit from adaptive support tailored to their levels of cognitive 
abilities and expected performance when reading MSNVs. Barral et al. [1] provided a successful first 
attempt at predicting these cognitive abilities and performance measures in MSNVs to drive adaptive 
support. In this work, we will improve the accuracy of these predictions by leveraging the additional eye-
tracking data from the adaptive MSNV studies [2][3] which used the exact same documents. 

 

 

 

 



5 
 

3. Datasets 

The datasets, used in this thesis, were generated in three different user studies from previous works. One 
study with non-adaptive MSNVs, also known as control [39], and two others with adaptive MSNVs (also 
known as bar [2], and link [3]). The data collection procedure was similar for all three studies. 

 

Table 1: Summary statistics of study groups 

 Ctrl Bar Link 
Size 56 50 30 

Age 
Mean= 28, SD= 11 

Range= (19-69) 
Mean= 26, SD= 8 
Range= (18-59) 

Mean= 27, SD= 10 
Range= (18-57) 

Gender 57% female 60% female 57% female 
 

During each of the user studies, the raw gaze data of the participants were captured using a Tobii T-120 
eye-tracker with a sampling rate of 120 Hz on a screen display of 1280 × 1024 pixels. At the beginning of 
the session, the tracker was calibrated for each participant and the baseline pupil size was collected. 
Subjects were then given the task of reading an MSNV document on the screen and would signal, upon 
completion, by clicking “next” at the bottom of the MSNV. After that, they were presented with a set of 
questions intended to elicit their opinion of the document and to evaluate their comprehension of the 
relevant concepts discussed in it. Participants repeated this task with different MSNVs (15 times in the 
control study and 14 times in the adaptive ones) in a fully randomized order with no time constraint. 
Each MSNV consisted of a self-contained excerpt of a real-world document and one accompanying bar 
chart (see Figure 1). Next, each participant took a set of standard psychological tests to assess their 
cognitive abilities (long-term characteristics which would not vary over the course of the study). These 
tests included the Bar Chart Test for visualization literacy [40], the X_Lex Test for reading proficiency 
[41], and the OSPAN Test for verbal WM [50]. Table 1 reports the size and demographics of each study 
group. 

The control study did not involve any type of intervention (Figure 2). The adaptive studies, on the other 
hand, provided users with adaptive guidance to facilitate processing of the MSNVs. Below we describe 
the type of intervention used in each adaptive study. 
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Figure 2: Sample MSNV with no intervention 

 

Bar Highlighting Intervention 

The highlighting intervention used in [2] was designed to dynamically emphasize relevant data points in 
the MSNV chart (bars) as users read through their corresponding references in the narrative text. The 
objective was to drive the user’s attention to the appropriate data points in the visualization when it was 
most relevant (i.e., when the user was attending to the reference sentence in the text). Bars were 
highlighted by having their borders thickened in black. Figure 3 shows an example, where the two bars 
at the bottom of the chart are highlighted as the user reads the last sentence in the text that references 
them. There was no highlighting of the references in the text. Highlights were accumulated as users read 
through new references in the text with the previous ones having their outlines desaturated to help 
distinguish between those and the most recent ones (see top two bars in Figure 3). 

 

 

Figure 3: Sample MSNV with the bar intervention  
(The red box indicates the paragraph to which the highlighted bars correspond. The box was not part of the 

intervention) 
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Link Intervention 

The link intervention (Figure 4) used in [3] augmented the bar highlighting interventions from [2] with 
two additional components: 

1. Underlining the reference sentence of the currently highlighted bars 
2. A set of lines connecting the underlined reference to the highlighted bars (links) 

The link intervention was designed to address some of the usability issues associated with the bar 
intervention as identified in [2]. In particular, underlining of the references was meant to address the 
reported difficulty of retrieving a sentence to resume reading after a switch of attention to the chart, and 
the links addressed the reported lack of noticeability of the highlighted bars. 

 

 

Figure 4: Sample MSNV with the link intervention 
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4. Classification Experiments 

We leveraged users’ eye-tracking data as they processed MSNV documents to build classifiers for 
predicting binary labels of three cognitive abilities, namely visualization literacy (VisLit), reading 
proficiency (ReadP), and verbal working memory (VerbalWM), which have been known to impact MSNV 
processing, as well as two measures of task performance, namely task completion time in seconds (Task 
Time), and task accuracy (proportion of comprehension questions answered correctly). The binary labels 
were generated by splitting participants into two classes of high and low. We are interested to find out 
whether the additional eye-tracking data from [2] and [3] can improve our classification accuracy in the 
control condition from [1]. For that reason, we will evaluate the performance of our classifiers only on 
the control data which represent users’ gaze behavior in that condition. 

 

4.1. Score Statistics 

In this section, for each of the three cognitive abilities and the two task performance measures, we will 
provide and discuss summary statistics of the test scores used for splitting the participants. We followed 
a median split approach as used in [1]. In this approach, samples that fall above the median are assigned 
to the high class and those below to the low class. Samples that end up on the median are moved to either 
the high or the low class. For each measure, we will discuss how these samples were assigned. 

 

Visualization Literacy (VisLit) 

 

 

Figure 5: VisLit score box plots 
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Table 2: VisLit score stats 

 Ctrl  
(54) 

Bar  
(49) 

Link  
(26) 

Ctrl+Bar 
(103) 

Ctrl+Link 
(80) 

Ctrl+Link+Bar 
(129) 

Mean (SD) 36.1 (6.7) 36.8 (5.8) 37.0 (4.6) 36.4 (6.3) 36.4 (6.1) 36.3 (6.2) 
Median (M) 37 38 36 37 37 37 
<M | = | >M 23 | 6 | 25 23 | 5 | 21 12 | 2 | 12 45 | 7 | 51 37 | 6 | 37 59 | 7 | 63 

 

In terms of VisLit, the Ctrl dataset has 6 participants with the median score. In the previous work [1], 
these samples were assigned to the smaller group (i.e., the low class) as this would result in a more 
balanced distribution. Since we would be evaluating our models on the control data points, for 
consistency, we handled the median samples of all other datasets based on the median of the Ctrl. That 
is, for Bar, which has a larger median than Ctrl, we assigned the median samples to the high class, and 
for all other datasets, we assigned them to the low class. 

 

Reading Proficiency (ReadP) 

 

 

Figure 6: ReadP score box plots 

 

Table 3: ReadP score stats 

 Ctrl  
(54) 

Bar  
(49) 

Link  
(26) 

Ctrl+Bar 
(103) 

Ctrl+Link 
(80) 

Ctrl+Link+Bar 
(129) 

Mean (SD) 83 (10.2) 88.8 (9.3) 85.0 (8.4) 85.8 (10.2) 83.7 (9.6) 84.6 (9.8) 
Median (M) 84.9 91 85 88.3 85 86.5 
<M | = | >M 27 | 0 | 27 24 | 2 | 23 12 | 2 | 12 49 | 4 | 50 39 | 3 | 38 63 | 2 | 64 

 

In terms of ReadP, performing the median split on the Ctrl dataset resulted in a perfect class balance with 
no samples on the median. As a result, given that the median scores of all other datasets are greater than 
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that of Ctrl, we assigned their median samples to the high class. In other words, based on how the Ctrl 
data points have been split, the median samples of the other datasets would be considered as high. 

 

Verbal Working Memory (VerbalWM) 

For VerbalWM, we use two different measures that come from the OSPAN test (VerbalWM_longest and 
VerbalWM_word). The first measure (VerbalWM_longest) is the maximum verbal working memory 
capacity, and we use that to split our samples into two groups. This criterion measures the maximum 
number of words that one can hold in their working memory which ranges from 2 to 6 (6 being the best) 
[50]. To fine-tune our split, we use the second measure from the OSPAN test, called VerbalWM_word, 
which measures the total number of words that one gets correct in the test. VerbalWM_word is not a 
measure of capacity, but rather the overall levels of success in leveraging the VerbalWM [50]. The online 
test can be found at [54]. 

 

VerbalWM_longest 

 

 

Figure 7: VerbalWM_longest score box plots 

 

Table 4: VerbalWM_longest score stats 

 Ctrl  
(54) 

Bar  
(49) 

Link  
(26) 

Ctrl+Bar 
(103) 

Ctrl+Link 
(80) 

Ctrl+Link+Bar 
(129) 

Mean (SD) 4.98 (1.1) 5.3 (0.8) 5.2 (0.8) 5.1 (0.97) 5.1 (1.0) 5.1 (0.97) 
Median (M) 5 5 5 5 5 5 
<M | = | >M 15 | 17 | 22 7 | 20 | 22 4 | 12 | 10 22 | 37 | 44 19 | 29 | 32 26 | 49 | 54 
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VerbalWM_word 

 

 

Figure 8: VerbalWM_word score box plots 

 

Table 5: VerbalWM_word score stats 

 Ctrl  
(54) 

Bar  
(49) 

Link  
(26) 

Ctrl+Bar 
(103) 

Ctrl+Link 
(80) 

Ctrl+Link+Bar 
(129) 

Mean (SD) 43.7 (10.3) 47.4 (8.5) 44.2 (7.8) 45.5 (9.6) 43.9 (9.5) 44.7 (9.2) 
Median (M) 43.5 48 48 47 43.5 45 
<M | = | >M 27 | 0 | 27 23 | 2 | 24 13 | 0 | 13 50 | 5 | 48 40 | 0 | 40 62 | 3 | 64 

 

VerbalWM fine-tuned split: 

Table 6: VerbalWM split 

 Ctrl  
(54) 

Bar  
(49) 

Link  
(26) 

Ctrl+Bar  
(103) 

Ctrl+Link 
(80) 

Ctrl+Link+Bar 
(129) 

<M | >M 15+10 | 22+7 7+14 | 22+6 4+8 | 10+4 22+26 | 44+11 19+18 | 32+11 26+31 | 54+18 
 

The median split on the VerbalWM_longest scores resulted in a large number of median samples for all 
datasets (Table 4). Hence, the simple strategy of assigning these people to either the low or the high class 
would not yield a good balance. To achieve a more balanced distribution, we used a secondary measure 
called VerbalWM_word (Table 5) to further split these median samples [1]. Table 6 shows how the median 
samples from Table 4 were split and assigned to each class based on the VerbalWM_word measure.  
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Task Time 

 

Figure 9: Task Time score box plots 

 

 

Table 7: Task Time score stats 

 Ctrl  
(756) 

Bar  
(686) 

Link  
(350) 

Ctrl+Bar 
(1442) 

Ctrl+Link 
(1106) 

Ctrl+Link+Bar 
(1792) 

Mean (SD) 55.6 (32.1) 60.1 (32.9) 59.6 (29.8) 57.8 (32.6) 56.9 (31.4) 58.1 (32.0) 
Median (M) 47.9 51.95 53.1 49.7 50 50.6 
<M | = | >M 378 | 0 | 378 343 | 0 | 343 175 | 0 | 175 720 | 2 | 720 552 | 4 | 550 894 | 4 | 894 

 

For task time, the median split provided a perfect class balance for each of the three study datasets. In the 
combined datasets, we ended up with only a few median samples that, based on the median of the Ctrl 
dataset, we assigned to the high class. 
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Task Accuracy 

 

Figure 10: Task Accuracy score box plots 

 

Table 8: Task Accuracy score stats 

 Ctrl  
(756) 

Bar  
(686) 

Link  
(350) 

Ctrl+Bar 
(1442) 

Ctrl+Link 
(1106) 

Ctrl+Link+Bar  
(1792) 

Mean (SD) 0.69 (0.30) 0.74 (0.30) 0.76 (0.29) 0.72 (0.30) 0.71 (0.30) 0.73 (0.30) 
Median (M) 0.67 1 1 0.67 0.67 0.67 
<M | = | >M 283 | 161 | 

312 
335 | 351 | 0 159 | 191 | 0 507 | 272 | 663 383 | 220 | 503 607 | 331 | 854 

 

Table 9: Task Accuracy split 

 Ctrl  
(756) 

Bar  
(686) 

Link  
(350) 

Ctrl+Bar 
(1442) 

Ctrl+Link 
(1106) 

Ctrl+Link+Bar 
(1792) 

< 1 | = 1 444 | 312 335 | 351 159 | 191 779 | 663 603 | 503 938 | 854 
 

In all three studies, participants were asked three comprehension questions at the end of each task. The 
proportion of questions answered correctly was used as their task accuracy score. In the Ctrl dataset, the 
median accuracy was 0.67 (i.e., getting two out of three questions right). In the adaptive datasets, however, 
more than half of the participants were able to get all three questions right. As a result, the median score 
for these datasets was 1 (Table 8). Due to the special distribution of task accuracy scores, instead of taking 
the median split approach, we decided to assign all participants who scored 1 to the high class and 
everyone else, who scored less than that, to the low class (Table 9). 

Table 10 summarizes the resulting class distributions for each target measure after performing the splits 
on each dataset. 
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Table 10: Class distributions 

  Ctrl Bar Link Ctrl+Bar Ctrl+Link Ctrl+Link+Bar 

VisLit 
low 0.54 0.57 0.54 0.50 0.54 0.51 
high 0.46 0.43 0.46 0.50 0.46 0.49 

ReadP 
low 0.50 0.49 0.46 0.48 0.49 0.50 
high 0.50 0.51 0.54 0.52 0.51 0.50 

VerbalWM 
low 0.46 0.43 0.46 0.47 0.46 0.44 
high 0.54 0.57 0.54 0.53 0.54 0.56 

Task Time 
low 0.50 0.50 0.50 0.50 0.50 0.50 
high 0.50 0.50 0.50 0.50 0.50 0.50 

Task 
Accuracy 

low 0.59 0.51 0.45 0.54 0.54 0.52 
high 0.41 0.49 0.55 0.46 0.46 0.48 

 

4.2. Eye-Tracking Features for Prediction 

Table 11: Summary of eye tracking features [1] 

a) Overall Gaze Features (21) 
- Fixation rate & Fixation duration (mean, SD, Max)  
- Saccade Duration, Distance, & Velocity (mean, SD, max)  
- Absolute and Relative saccade angles (mean, SD, rate) 
b) Pupil width and Head distance Features (14) 
- Pupil width / head distance (mean, SD, min, max)  
- Pupil width / head distance at first and last recorded fixation  
- Pupil dilation velocity (mean, SD, min, max) 
c) AOI Features (34 x 7 AOI = 238) 
- Fixation Rate, Fixation duration in AOI (mean, SD, max)  
- Time to first fixation in AOI - Proportion of time, Proportion of fixations in AOI  
- Number, Prop. of transitions from this AOI to every AOI  
- Pupil width, pupil change velocity, and head distance when looking at AOI (mean, SD, min, max) 

 

 

Figure 11: Set of AOIs defined over a sample MSNV [1] 
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The EMDAT1 Python library was used for processing the raw eye-tracking data. EMDAT generates a set 
of eye-tracking features based on the gaze captured over the entire display, as well as over specific regions 
known as Areas of Interest (AOIs). As shown in Figure 11, we broke our MSNVs into 7 AOIs to encompass 
the main elements in the text component (i.e., reference sentences, and remaining text), and in the 
visualization (i.e., relevant bars, non-relevant bars, legends, labels, and all of the vis). These AOIs enabled 
capturing the gaze processing generated by each modality, as well as gaze transitions among the 
modalities and the main elements within each. 

• Gaze features (Table 11.a) were computed using the fixations (gaze maintained at one point on 
the screen) and saccades (quick eye movement between two fixations).  

• Pupil and head distance features (Table 11.b) were computed using the pupil size (baseline-
adjusted; Iqbal et al. 2005) and distance from both eyes to the screen.  

• Areas of interest (AOI) features (Table 11.c) were computed using the gaze, pupil and head 
distance features over each of the salient regions (AOIs) in the MSNV, as well as transitions 
between them.  

These features are similar to the ones used in related user modeling work in InfoVis [31][16] and HCI 
[15][51][52][53]. We also consider AOI specific pupil dilation and head distance to the screen features 
(last row in Table 11.c) as used in [1].  

 

4.3. Machine Learning Setup 

Within-task prediction  

Following [31][16], we investigate at which point within a task, in the control condition, we can best 
predict our users’ cognitive abilities and task performance (target measures from now on) to gauge how 
early adaptive interventions could be triggered based on these predictions. We consider each task as an 
independent data point. We evaluate prediction accuracy after each second of interaction within a given 
task, by feeding to the classifiers the corresponding eye tracking data, up to 29 seconds. We stop at 29 
seconds because this represents half of the average task time in our control dataset, and making 
predictions to trigger adaptive support beyond this point would not be very timely in an online scenario. 
For within task predictions, the classifiers are trained on data from all the individual tasks in the training 
set, regardless of the order in which they were performed. To make predictions at each time 𝑡 (from 1 to 
29 seconds) for task 𝑛, a classifier is trained on feature vectors built from user gaze data from the 
beginning up to time 𝑡, for all the other tasks in the training set, and prediction for task 𝑛 is made by 
feeding to the classifier the feature vector built from the corresponding gaze data from 0 to 𝑡. [1] 

 

Across-tasks prediction 

Predictions within-task are relevant to predict task performance for that task, as well as cognitive abilities 
in a situation when a user is just performing that one task. However, cognitive abilities usually do not 

 
1 Eye Movement Data Analysis Toolkit (EMDAT) is a library for processing eye gaze data, developed in 
the University of British Columbia (github.com/ATUAV/EMDAT) 
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change in the short term. In our case, a given user has the same level of reading ability, vis literacy and 
verbal WM across all tasks. Thus, we also explore how accuracy in predicting these user characteristics 
evolves over time across tasks, namely as users work through a sequence of 14 tasks, as they did in the 
original control user study [39]. For the across tasks prediction, we evaluate prediction accuracy at the 
end of each task within a sequence. For making across tasks predictions at the end of the 𝑛th task in 
sequences, the feature vector is built from user gaze data during this task and all its preceding tasks in 
the sequence. The classifiers are trained on eye-tracking data from the task sequences in the training set, 
looking at data from the beginning of the first task to the end of 𝑛th task in each sequence. [1] 

 

For both within task and across tasks classification, we use the best performing models reported in [1]. 
That is, we use Logistic Regression (LR) for predicting all target labels within-task, Random Forest (RF) 
for predicting VisLit and ReadP across tasks and eXtreme Gradient Boosting (XGB) for VerbalWM across 
tasks. In  [1], we used the classification algorithms available in the Caret package [48] in R. However, in 
this work, we will use the scikit-learn package [49] in Python as this is a more versatile library for training 
machine learning models. For a consistent comparison, we reproduce the control results from [1] using 
this library (more details in the appendix). 

To train the classifiers for each time-step (29 time-steps within-task, and [14] time-steps across-tasks), 
we perform 10-fold cross-validation over users, so that users in the test fold never appear in the training 
fold. Predictions for users in the test fold at a given time step are solely made based on classifiers trained 
on users in the train fold at the exact same time step, so as to use eye-tracking features built over the 
same amount of interaction [1]. Highly correlated features (above 0.85) were removed based on the train 
folds in each iteration [1]. The cross-validation process is repeated 10 times (runs) for reproducibility 
purposes. We report classification performance in terms of accuracy averaged over the 10 folds and the 
10 runs, and use a majority class classifier as a baseline. [1] 

 

4.4. Combination Strategies and Evaluation 

In this section, we will describe the different strategies used for combining the additional gaze data from 
the adaptive studies (Bar and Link) with our control data (Ctrl). In all of our combination strategies, we 
evaluate the models only on the control data. We do this because we are primarily interested in the 
performance of the models in the control condition with no interventions used as this will be the 
condition in which the models would ultimately be deployed to make predictions that guide provision of 
help. In the combination of each adaptive dataset with our control data for training, for consistency, 
labeling of the data points is accomplished by performing the median split on the union of all participants 
from both the control and the designated adaptive study because we want the same score to represent 
the same label in both studies (e.g., a VisLit score of 37 would be considered low in both studies). For 
testing, we split the control data using the labels generated by the median split on the combination and 
use the majority-class thus obtained as our baseline accuracy. 

In our naming convention, we identify our models by the data on which they were trained and the 
combination strategy used. For instance, Bar refers to the model trained on the Bar data only and tested 
on control, Ctrl+Bar refers to the model trained on the combination of control and bar data and tested on 
control, etc. 
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4.4.1. Training on Each Adaptive Dataset Alone: Bar, Link 

First, in order to evaluate the predictive knowledge that our model could gain from each adaptive dataset 
alone for making predictions in the control condition, we train the model on each of the Bar and the Link 
dataset, separately, and evaluate their performance on the control data. Bar refers to the model trained 
on the Bar dataset, and Link refers to the model trained on the Link dataset. For each adaptive dataset, 
after performing the median split on its combination with Ctrl, the control data points are separated from 
the adaptive ones and the model is trained only on the adaptive data points. 

 

4.4.2. Naïve Combination of Adaptive and Control Datasets: Ctrl+Bar, Ctrl+Link  

In this strategy, for each adaptive dataset, we simply combine the entirety of the adaptive dataset, 
including all participants and all feature values, with the Ctrl dataset, and evaluate the performance of 
our model when trained on this combination. 

For this purpose, we perform a 10-fold cross-validation on the Ctrl dataset. In each iteration of the cross-
validation, all of the examples from the adaptive dataset will be added to the train fold. The model is 
trained on the combined data and then evaluated on the Ctrl examples in the test fold. The cross-
validation is not performed on the combination of the two datasets because we do not want any of the 
adaptive examples to end up in the test folds. 

4.4.3. Other Combination Strategies 

In machine learning, we always assume that our training set is comprised of data points (𝑋,𝑦) that are 
independently drawn from the same distribution 𝑝(𝑋, 𝑦) with 𝑝(𝑋,𝑦) = 𝑝(𝑦|𝑋)𝑝(𝑋), and 𝑝(𝑦|𝑋) being 
the relationship that we want the model to learn. This is known as the IID assumption (independent and 
identically distributed). If our training data do not come from the same distribution as our test data, our 
model will not be able to capture, from the training data, the desired relationship that describes the test 
data and, therefore, would not perform well. Since the normal gaze behavior of the participants, in the 
adaptive studies, were impacted by the presence of interventions, we cannot safely assume that the 
adaptive data come from the same distribution as our control data. That is, 𝑝(𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ,𝑦) ≠
 𝑝(𝑋𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒,𝑦) where 𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the normal gaze behavior in the control condition, and 𝑋𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 is the 
influenced gaze behavior as a result of interventions. For that reason, a naïve combination would likely 
violate the IID assumption. 

In hopes of a more effective learning from the combined data, in the following strategies2, we attempt to 
mitigate the impact of interventions to make the adaptive datasets more similar to the control. By doing 
this, we intend to take advantage of those aspects of the adaptive dataset that are already similar to the 
Ctrl, which can help us, and avoid those affected by the interventions, which could potentially confuse 
the model and work to our disadvantage. 

 

 
2 For each measure, we also tried combining with Ctrl, only the high group from the Bar dataset as this group did 
not benefit from the interventions as much as the low group did. However, this strategy did not yield satisfying 
results. For that reason, we will not cover this approach. 
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4.4.3.1 Excluding the Affected Features (EAF): Ctrl+Bar (EAF), Ctrl+Link (EAF) 

A basic way to make the adaptive datasets more similar to Ctrl is to remove all the features whose values 
were affected due to the interventions. We consider a feature to be affected if the mean difference between 
its control and adaptive values is significant. Conversely, a feature with an insignificant mean difference 
across the two studies is considered to have remained unaffected (i.e., interventions had very little or no 
influence on that feature). Essentially, our goal, in this strategy, is to train the model on the entire 
combined data using only the unaffected features. For this purpose, in each iteration of the cross-
validation, for each individual feature, we conduct an independent t-test between the control and the 
adaptive samples in the train set. We do this for each class separately because class, itself, is a confounding 
factor and also interventions could have affected different features in each class. We use a significance 
threshold of 0.05. After running the tests, for each class, we might end up with a different set of affected 
features. We exclude the features in the union of these two sets from our train and test sets and 
train/evaluate our model based only on the remaining features (i.e., the so-called unaffected features). 

We acknowledge that this strategy, for the sheer purpose of mitigating the impact of interventions, could 
potentially deprive the model of some highly predictive features. However, it could also serve as a feature 
selection mechanism. As a result, depending on whether the affected features were useful or not, this 
approach could either help or severely hurt our performance. 

 

4.4.3.2 Imputing the Affected Features (IAF): Ctrl+Bar (IAF), Ctrl+Link (IAF) 

In the previous strategy, in an attempt to mitigate the differences between the Ctrl and the adaptive 
datasets, the affected features were completely excluded from the training process. This would yield a 
consistent combination. However, it could also sacrifice potentially useful features whose control values 
would have benefitted the training of our model. Therefore, in order to take advantage of the entire 
features and, at the same time, reduce the mentioned differences, we came up with a more forgiving 
combination strategy. In this approach, instead of removing the affected features from the Ctrl and the 
adaptive datasets, we would eliminate the impact of interventions by imputing (replacing) their adaptive 
values with their mean control values (from Ctrl). For this purpose, similar to the previous strategy, in 
each iteration of the cross-validation, we use independent t-tests to identify the significantly affected 
features in each class. After that, for each class separately, using only the training samples, we substitute 
the values of those features in the adaptive dataset with their mean control values from Ctrl. 

The advantage of this approach is that while neutralizing the negative impact of the features whose values 
were significantly affected by the interventions in the adaptive datasets, it still allows the entire feature 
values from Ctrl to influence the training. 
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5. Results 

In this section, we will first report our results on the within-task predictions for the cognitive abilities 
and task performance measures (section 5.1), followed by results on across-tasks predictions (section 5.2) 

For each target measure, we first provide performance results of each of the datasets alone (4.4.1). We 
then report the results of combining each of the adaptive datasets with the control dataset using our 
combination strategies (section 4.4.2, 4.4.3). 

 

5.1. Within Task Prediction Results 

We evaluate the performance of our strategies by running a one-way repeated measures ANOVA with 
accuracy as the dependent variable, strategy type as the factor, and time step (29) as the repeated measure. 
To account for running multiple ANOVAs, we adjust all obtained p values using the Benjamini Hochberg 
[47] method to control for the false discovery rate (FDR). Statistical significance is reported at 𝑝 <  0.0  
after adjustment. 

 

5.1.1. VisLit 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 12: Results for VisLit LR over different windows within-task when trained on each dataset alone 
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Figure 13: Average performance over all windows within-task for VisLit LR when trained on each dataset alone 

 

Table 12: VisLit LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.52 (0.006) - - 
Ctrl 0.54 (0.015) 0.59 (0.018) 0.53 (0.020) 
Bar 0.43 (0.014) 0.41 (0.035) 0.45 (0.023) 
Link 0.50 (0.017) 0.45 (0.031) 0.54 (0.036) 

 

Figure 13 shows the performance of the LR classifier at predicting VisLit when trained on each dataset 
alone. We compare these results by running post-hoc pairwise comparisons (t-tests adjusted for FDR) on 
overall performance. The results of the comparisons show: Ctrl > Baseline > Link > Bar (“>” indicates 
statistically significant difference). Both the Bar (𝑝 < 0.0001, 𝜂2 =  0.  )3 and the Link dataset (𝑝 < 0.0001,
𝜂2 = 0.  ) provide lower performance than Ctrl and the baseline. 

 

 

 

 

 

 

 

 
3 𝜂2 ≤ 0.0  indicates a small effect; 0.0 < 𝜂2 < 0.14 indicates a medium effect; 0.14 ≤ 𝜂2 indicates a large effect 
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b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl 

 

Figure 14: Results for VisLit LR over different windows within-task when trained on the combination of Ctrl and 
Bar 

 

 

Figure 15: Average performance over all windows within-task for VisLit LR when trained on the combination of 
Ctrl and Bar  

 

Table 13: VisLit LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.52 (0.006) - - 
Ctrl 0.54 (0.015) 0.59 (0.018) 0.53 (0.020) 
Ctrl+Bar 0.59 (0.015) 0.64 (0.019) 0.55 (0.017) 
Ctrl+Bar (EAF) 0.54 (0.017) 0.58 (0.030) 0.51 (0.029)  
Ctrl+Bar (IAF) 0.62 (0.027) 0.65 (0.033) 0.59 (0.023) 
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Figure 15 shows the performance of the LR classifier at predicting VisLit when trained on the combination 
of Ctrl and Bar. We compare overall results by running post-hoc pairwise comparisons. The results of the 
comparisons show: Ctrl+Bar (IAF) > Ctrl+Bar > Ctrl+Bar (EAF) = Ctrl > Baseline (“>” indicates statistically 
significant difference, while “=” indicates statistical equivalence). The naïve combination of Ctrl and Bar 
(Ctrl+Bar) outperforms the control dataset alone (Ctrl) (𝑝 < 0.0001, 𝜂2 =  0. 8). The EAF strategy was 
intended to mitigate the differences between the two datasets. However, not only did it not provide any 
improvement over the naïve combination, but it also performed worse (𝑝 < 0.0001, 𝜂2 =  0. 2). This 
suggests that gaze features, which were significantly affected due to the bar interventions, were highly 
predictive of VisLit, for their exclusion resulted in a drop in performance despite making the combination 
more consistent. The IAF strategy, on the other hand, proved effective in maximizing the gain from the 
combined dataset with a significant improvement over the naïve combination (𝑝 < 0.0001, 𝜂2 =  0.24). 
Inspection of class performance reveals that this improvement is mostly due to an increase in the accuracy 
of the high-class. IAF reached its peak at window 17 with an overall accuracy of 0.66. 

 

c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

 

Figure 16: Results for VisLit LR over different windows within-task when trained on the combination of Ctrl and 
Link 
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Figure 17: Average performance over all windows within-task for VisLit LR when trained on the combination of 
Ctrl and Link  

 

Table 14: VisLit LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.52 (0.006) - - 
Ctrl 0.54 (0.015) 0.59 (0.018) 0.53 (0.020) 
Ctrl+Link 0.63 (0.019) 0.64 (0.022) 0.63 (0.021) 
Ctrl+Link (EAF) 0.55 (0.020) 0.57 (0.029) 0.53 (0.035) 
Ctrl+Link (IAF) 0.63 (0.013) 0.66 (0.023) 0.60 (0.015) 

 

Figure 17 shows the performance of the LR classifier at predicting VisLit when trained on the combination 
of Ctrl and Link. We compare overall results by running post-hoc pairwise comparisons. The results of 
the comparisons show: Ctrl+Link = Ctrl+Link (IAF) > Ctrl+Link (EAF) = Ctrl > Baseline. The naïve 
combination of Ctrl and Link (Ctrl+Link) outperforms Ctrl (𝑝 < 0.0001, 𝜂2 =  0.8 ). The EAF strategy 
resulted in a lower performance than the naïve combination (𝑝 < 0.0001, 𝜂2 =  0.8 ). It appears that link 
interventions, similar to the bar interventions, affected features useful for predicting VisLit. The IAF 
strategy did not help either and yielded statistically similar results to the naïve combination (𝑝 = 0.40,
𝜂2 =  0.01). In fact, IAF increased the gap between class accuracies. This indicates that there was a degree 
of knowledge to be gained from the affected link features, for imputing their values hampered this 
however small gain. 
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Table 15: VisLit LR Best performing windows (within-task) 

Strategy Window Type Overall 
Acc 

Low 
Acc 

High 
Acc 

Ctrl 2 sec Window with highest overall acc 0.58 0.61 0.57 
Ctrl+Link (IAF) 2 sec Window with highest overall acc 0.64 0.67 0.62 
Ctrl+Link 12 sec Window with highest overall acc 0.66 0.66 0.66 
Ctrl+Bar (IAF) 17 sec Window with highest overall acc 0.66 0.70 0.62 

 

Table 13Table 15 reports the accuracy of our best performing strategies, namely strategies that performed 
better than Ctrl, either by having higher overall accuracy over time or having more balanced class 
accuracies at their viable window(s). For each strategy, we report the window with the highest accuracy. 
If this comes quite late in our 29 second interval, we look to see if there is an earlier window with 
acceptable accuracy and report that as well (this does not apply for Table 15 because all best windows 
came early enough in the interaction). The peak performance of Ctrl was attained at window 2 with an 
overall accuracy of 0.58 (see Figure 12). However, at that same window, Ctrl+Link (IAF) achieves an 
accuracy of 0.64. Ctrl+Link yields the highest accuracy of 0.66 at window 12 with perfectly balanced class 
performance (see Figure 16). We leave it to the researchers to decide whether a 2% increase in accuracy 
justifies the longer wait.  

In terms of VisLit, the EAF strategy proved ineffective for both adaptive datasets. The IAF strategy 
improved performance for the combination of Ctrl and Bar, but it did not help with the combination of 
Ctrl and Link. This is because the original feature values of the Link were more beneficial than those of 
the Bar which is also consistent with the higher performance of Link compared to Bar when used alone 
(section 5.1.1.a).  

 

5.1.2. ReadP 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 18: Results for ReadP LR over different windows within-task when trained on each dataset alone 
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Figure 19: Average performance over all windows within-task for ReadP LR when trained on each dataset alone  

 

Table 16: ReadP LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.52 (0.008) - - 
Ctrl 0.64 (0.036) 0.66 (0.043) 0.62 (0.028) 
Bar 0.53 (0.029) 0.51 (0.041) 0.57 (0.042) 
Link 0.41 (0.022) 0.50 (0.033) 0.33 (0.036) 

 

Figure 19 shows the performance of the LR classifier at predicting ReadP when trained on each dataset 
alone. We compare overall results by running post-hoc pairwise comparisons. The results of the 
comparisons show:  Ctrl > Bar > Baseline > Link. Both the Bar (𝑝 < 0.0001, 𝜂2 =  0. 2) and the Link dataset 
(𝑝 < 0.0001, 𝜂2 = 0. 4) yield lower performance than Ctrl. 
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b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl  

 

Figure 20: Results for ReadP LR over different windows within-task when trained on the combination of Ctrl and 
Bar 

 

 

Figure 21: Average performance over all windows within-task for ReadP LR when trained on the combination of 
Ctrl and Bar  

 

 

 

 

 

 

1 2  4    8  10 11 12 1 14 1 1 1 18 1 20 21 22 2 24 2 2 2 28 2 

 2.0

 4.0

  .0

 8.0

 .0

 2.0

 4.0

  .0

 8.0

 .0

 2.0

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

1 2  4    8  10 11 12 1 14 1 1 1 18 1 20 21 22 2 24 2 2 2 28 2 

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

Ctrl Ctrl Bar Ctrl Bar (   ) Ctrl Bar (I  ) Baseline

Seconds Seconds

 
ve
ra
ll 
 
cc
ur
ac
y 
( 
R
) hi
gh

  
cc

 o
w
  
cc

 verall  ow class High class
0

1.0

2.0

 .0

4.0

 .0

 .0

 .0

Ctrl Bar (   ) Ctrl Ctrl Bar Ctrl Bar (I  )

M
ea
n 
 
cc
ur
ac
y 
 
ve
r 
 
in
do

w
s 
( 
  

 C
I)

Baseline



27 
 

Table 17: ReadP LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.64 (0.004)4 - - 
Ctrl 0.64 (0.036) 0.66 (0.043) 0.62 (0.028) 
Ctrl+Bar 0.68 (0.045) 0.67 (0.057) 0.70 (0.036) 
Ctrl+Bar (EAF) 0.59 (0.020) 0.56 (0.029) 0.65 (0.014) 
Ctrl+Bar (IAF) 0.68 (0.020) 0.69 (0.018) 0.67 (0.031) 

 

Figure 21 shows the performance of the LR classifier at predicting ReadP when trained on the combination 
of Ctrl and Bar. We compare overall results by running post-hoc pairwise comparisons. The results of the 
comparisons show: Ctrl+Bar (IAF) = Ctrl+Bar > Ctrl = Baseline > Ctrl+Bar (EAF). Ctrl+Bar outperforms 
Ctrl (𝑝 = 0.000 , 𝜂2 =  0.1 ). The EAF strategy did not provide any improvement over the naïve 
combination and performed even worse (𝑝 < 0.0001, 𝜂2 =  0. 1). This indicates the importance of the eye-
tracking features, affected by the bar interventions, for predicting ReadP. The IAF strategy did not 
improve the overall performance either and yielded statistically similar results to the naïve combination 
(𝑝 = 0.  , 𝜂2 =  0.001). Nevertheless, it provided a steadier performance over the windows with a higher 
accuracy for the low-class which is the group that benefits from adaptive support the most. The IAF 
strategy was also more accurate at earlier windows (higher accuracy than all other strategies until 
window 14, see Figure 20). After window 14, the performance of the naïve combination kept increasing 
and reached its peak accuracy of 0.72 at the last window (window 29). This suggests that the original 
feature values from the Bar dataset, accumulated past window 14, were quite useful for predicting ReadP 
when combined with Ctrl. 

 

 

 

 

 

 

 

 

 

 

 

 
4 Combination of Bar and Ctrl yields a relatively high baseline accuracy for ReadP. This is because, as mentioned in 
section 4.4, for testing we split the control data using the labels generated by the median split on the combination 
and use the majority-class thus obtained as our baseline accuracy. The median of the combination dataset is higher 
than that of Ctrl because the median ReadP score for Bar was higher than Ctrl (see Table 3). As a result, after the 
split, more than half of the Ctrl data points ended up being labelled as low which led to a higher baseline (majority 
class) accuracy. 
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c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 22: Results for ReadP LR over different windows within-task when trained on the combination of Ctrl and 
Link 

 

 

Figure 23: Average performance over all windows within-task for ReadP LR when trained on the combination of 
Ctrl and Link 

 

Table 18: ReadP LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.52 (0.008) - - 
Ctrl 0.64 (0.036) 0.66 (0.043) 0.62 (0.028) 
Ctrl+Link 0.67 (0.031) 0.66 (0.038) 0.67 (0.033) 
Ctrl+Link (EAF) 0.59 (0.023) 0.56 (0.033) 0.61 (0.026) 
Ctrl+Link (IAF) 0.72 (0.032) 0.73 (0.029) 0.70 (0.039) 
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Figure 23 shows the performance of the LR classifier at predicting ReadP when trained on the combination 
of Ctrl and Link. We compare overall results by running post-hoc pairwise comparisons. The results of 
the comparisons show: Ctrl+Link (IAF) > Ctrl+Link > Ctrl > Ctrl+Link (EAF) > Baseline. Ctrl+Link 
outperforms Ctrl (𝑝 = 0.002, 𝜂2 =  0.1 ). The EAF strategy resulted in a lower performance than the naïve 
combination (𝑝 < 0.0001, 𝜂2 =  0. 0). It appears that link interventions, similar to the bar interventions, 
affected features useful for predicting ReadP. The IAF strategy, on the other hand, proved quite effective 
with a significant increase in performance over to the naïve combination (𝑝 < 0.0001, 𝜂2 =  0. 8). 

 

Table 19: ReadP LR Best performing windows (within-task) 

Strategy Window Type Overall 
Acc 

Low 
Acc 

High 
Acc 

Ctrl 
22 sec Window with highest overall acc 0.68 0.70 0.64 

9 sec Earliest window with acceptable 
overall acc 0.65 0.66 0.65 

Ctrl+Bar (IAF) 9 sec Highest peak in overall acc 0.70 0.69 0.72 

Ctrl+Link (IAF) 
26 sec Highest peak in overall acc 0.75 0.76 0.74 

10 sec 
Earliest window with acceptable 

overall acc 0.74 0.73 0.75 

 

Table 19 reports the accuracy of our best performing strategies, namely strategies that performed better 
than Ctrl, either by having higher overall accuracy over time or having more balanced class accuracies at 
their viable window(s). For each strategy, we report the window with the highest accuracy. If this comes 
quite late in our 29 second interval (as it happens for Ctrl and Ctrl+Link (IAF)), we look to see if there is 
an earlier window with acceptable accuracy and report that as well. The peak performance of Ctrl was 
attained at window 22 with an overall accuracy of 0.68 (see Figure 18). Ctrl+Link (IAF), however, achieved 
a higher accuracy of 0.74 at an even earlier window (window 10). The highest accuracy was reached at 
window 26 by the same model, but this slightly better performance may not justify the longer wait (see 
Figure 22). 

In terms of ReadP, the EAF strategy proved ineffective for both adaptive datasets. The IAF strategy 
improved performance for the combination of Ctrl and Link. This was also true for the combination of 
Ctrl and Bar, but only at earlier windows. Due to decreased performance at later windows, IAF was not 
consistently effective for this combination overall. This strategy was more effective for the Link dataset 
suggesting that the original feature values of the Link were not as helpful as those of the Bar for predicting 
ReadP as shown in section 5.1.2.a 
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5.1.3. VerbalWM 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 24: Results for VerbalWM LR over different windows within-task when trained on each dataset alone 

 

 

Figure 25: Average performance over all windows within-task for VerbalWM LR when trained on each dataset 
alone 

 

Table 20: VerbalWM LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.006) - - 
Ctrl 0.45 (0.029) 0.40 (0.019) 0.53 (0.039) 
Bar 0.53 (0.010) 0.40 (0.038) 0.66 (0.039) 
Link 0.53 (0.017) 0.46 (0.035) 0.59 (0.034) 
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Figure 25 shows the performance of the LR classifier at predicting VerbalWM when trained on each 
dataset alone. We compare overall results by running post-hoc pairwise comparisons. The results of the 
comparisons show: Baseline = Bar = Link > Ctrl. Ctrl performs significantly lower than the baseline (𝑝 <
0.0001, 𝜂2 = 0.  ) which was also the case in [1]. Interestingly, both the Bar (𝑝 < 0.0001, 𝜂2 =  0.  ) and 
the Link dataset (𝑝 < 0.0001, 𝜂2 = 0.  ) yield significantly higher performance than Ctrl. Apparently, the 
classifier learned more from the adaptive datasets than it did from the Ctrl itself in terms of VerbalWM. 
Notwithstanding, they were not able to beat the baseline either. 

 

b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl  

 

Figure 26: Results for VerbalWM LR over different windows within-task when trained on the combination of Ctrl 
and Bar 
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Figure 27: Average performance over all windows within-task for VerbalWM LR when trained on the combination 
of Ctrl and Bar  

 

Table 21: VerbalWM LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.51 (0.007) - - 
Ctrl 0.45 (0.029) 0.40 (0.019) 0.53 (0.039) 
Ctrl+Bar 0.58 (0.013) 0.55 (0.017) 0.62 (0.020) 
Ctrl+Bar (EAF) 0.57 (0.013) 0.56 (0.018) 0.58 (0.018) 
Ctrl+Bar (IAF) 0.59 (0.018) 0.58 (0.024) 0.59 (0.029) 

 

Figure 27 shows the performance of the LR classifier at predicting VerbalWM when trained on the 
combination of Ctrl and Bar. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl+Bar (IAF) = Ctrl+Bar > Ctrl+Bar (EAF) > Baseline > Ctrl. Ctrl+Bar 
outperforms Ctrl (𝑝 < 0.0001, 𝜂2 =  0.8 ). More importantly, it outperforms the previously unbeaten 
baseline (𝑝 < 0.0001, 𝜂2 =  0.  ). The EAF strategy did not provide any improvement over the naïve 
combination and performed worse (𝑝 = 0.0002, 𝜂2 =  0.22). The IAF strategy did not improve the overall 
performance either and yielded statistically similar results to the naïve combination (𝑝 = 0. 4, 𝜂2 =
 0.01 ). Nevertheless, by improving the accuracy of the low group, it provided more balanced class 
accuracies. 
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c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 28: Results for VerbalWM LR over different windows within-task when trained on the combination of Ctrl 
and Link 

 

 

Figure 29: Average performance over all windows within-task for VerbalWM LR when trained on the combination 
of Ctrl and Link 

 

Table 22: VerbalWM LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.006) - - 
Ctrl 0.45 (0.029) 0.40 (0.019) 0.53 (0.039) 
Ctrl+Link 0.59 (0.019) 0.58 (0.025) 0.60 (0.022) 
Ctrl+Link (EAF) 0.55 (0.024) 0.57 (0.024) 0.53 (0.033) 
Ctrl+Link (IAF) 0.60 (0.025) 0.59 (0.021) 0.61 (0.034) 
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Figure 29 shows the performance of the LR classifier at predicting VerbalWM when trained on the 
combination of Ctrl and Link. We compare overall results by running post-hoc pairwise comparisons. 
The results of the comparisons show: Ctrl+Link (IAF) = Ctrl+Link > Ctrl+Link (EAF) > Baseline > Ctrl. 
Ctrl+Link outperforms Ctrl (𝑝 < 0.0001, 𝜂2 =  0.8 ) and the unbeaten baseline (𝑝 < 0.0001, 𝜂2 =  0.80). 
The EAF strategy resulted in a lower performance than the naïve combination (𝑝 < 0.0001, 𝜂2 =  0.4 ). 
The IAF strategy, on the other hand, was more effective and slightly improved performance, though not 
significantly, (𝑝 = 0.0 , 𝜂2 =  0.0 ). The performance of IAF kept increasing and reached a peak accuracy 
of 0.64 at the last window (window 29). 

 

Table 23: VerbalWM LR Best performing windows (within-task) 

Strategy Window Type Overall 
Acc 

Low 
Acc 

High 
Acc 

Ctrl 25 sec Window with highest overall acc 0.51 0.44 0.60 

Ctrl+Bar (IAF) 
27 sec Window with highest overall acc 0.63 0.62 0.63 

7 sec Earliest window with acceptable 
overall acc 

0.60 0.61 0.58 

Ctrl+Link (IAF) 
29 sec Window with highest overall acc 0.64 0.61 0.66 

14 sec Earliest window with acceptable 
overall acc 

0.61 0.60 0.63 

 

Table 23 reports the accuracy of our best performing strategies at their viable window(s) at predicting 
VerbalWM. The peak performance of Ctrl was attained at window 25 with an overall accuracy of 0.51 
which was still lower than the baseline (see Figure 24). Combination of the adaptive studies provided 
encouraging results and improved our performance significantly beyond the baseline.  

The EAF strategy was not beneficial for either of the adaptive datasets. However, it was less adverse for 
VerbalWM than it was for the other cognitive abilities. This indicates that the affected gaze features, 
which were influenced by the adaptive interventions, were, perhaps, not as highly predictive of 
VerbalWM as they were of the other two cognitive abilities. It also explains why Bar and Link had such 
high performance on their own (section 5.1.3.a). The insignificant improvement of IAF over the naïve 
combination can be justified with the same rationale as changing the values of unimportant features 
should not have a meaningful impact on performance.  
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5.1.3. Task Time (Speed) 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 30: Results for Task Time LR over different windows within-task when trained on each dataset alone 

 

 

Figure 31: Average performance over all windows within-task for Task Time LR when trained on each dataset 
alone 

 

Table 24: Task Time LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.50 (0.001) - - 
Ctrl 0.63 (0.044) 0.59 (0.033) 0.67 (0.049) 
Bar 0.63 (0.043) 0.61 (0.044) 0.66 (0.066) 
Link 0.60 (0.039) 0.44 (0.070) 0.79 (0.020) 
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Figure 31 shows the performance of the LR classifier at predicting Task Time when trained on each 
dataset alone. We compare overall results by running post-hoc pairwise comparisons. The results of the 
comparisons show: Bar = Ctrl > Link > Baseline. Bar is as predictive as Ctrl with statistically similar results 
(𝑝 = 0. 2, 𝜂2 = 0.002). It even provides slightly more balanced class accuracies than Ctrl. Link, on the 
other hand, was not as predictive as Bar and performed lower than Ctrl (𝑝 = 0.02, 𝜂2 = 0.0 ) with a huge 
class accuracy gap.  

 

b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl  

 

Figure 32: Results for Task Time LR over different windows within-task when trained on the combination of Ctrl 
and Bar 

 

 

Figure 33: Average performance over all windows within-task for Task Time LR when trained on the combination 
of Ctrl and Bar  
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Table 25: Task Time LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.52 (0.005) - - 
Ctrl 0.63 (0.044) 0.59 (0.033) 0.67 (0.049) 
Ctrl+Bar 0.67 (0.048) 0.67 (0.039) 0.68 (0.067) 
Ctrl+Bar (EAF) 0.65 (0.034) 0.64 (0.035) 0.65 (0.045) 
Ctrl+Bar (IAF) 0.64 (0.039) 0.64 (0.041) 0.64 (0.045) 

 

Figure 33 shows the performance of the LR classifier at predicting Task Time when trained on the 
combination of Ctrl and Bar. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl+Bar > Ctrl+Bar (EAF) = Ctrl+Bar (IAF) = Ctrl > Baseline. Ctrl+Bar 
outperforms Ctrl (𝑝 = 0.000 , 𝜂2 =  0.20). This combination also provides more balanced class 
performance. The EAF strategy did not provide any improvement over the naïve combination and 
performed worse (𝑝 = 0.01, 𝜂2 =  0.11). The IAF strategy was not beneficial either and performed lower 
than Ctrl (𝑝 = 0.00 , 𝜂2 =  0.1 ), almost as badly as EAF. This is because the Bar dataset alone was already 
as predictive of Task Time as the Ctrl itself (section 5.1.3.a); therefore, exclusion or imputation of its 
features deprived the model of potentially useful data. 

 

c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 34: Results for Task Time LR over different windows within-task when trained on the combination of Ctrl 
and Link 
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Figure 35: Average performance over all windows within-task for Task Time LR when trained on the combination 
of Ctrl and Link 

 

Table 26: Task Time LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.007) - - 
Ctrl 0.63 (0.044) 0.59 (0.033) 0.67 (0.049) 
Ctrl+Link 0.68 (0.029) 0.66 (0.028) 0.71 (0.031) 
Ctrl+Link (EAF) 0.67 (0.029) 0.65 (0.027) 0.69 (0.040) 
Ctrl+Link (IAF) 0.69 (0.029) 0.71 (0.013) 0.66 (0.050) 

 

Figure 35 shows the performance of the LR classifier at predicting Task Time when trained on the 
combination of Ctrl and Link. We compare overall results by running post-hoc pairwise comparisons. 
The results of the comparisons show: Ctrl+Link (IAF) = Ctrl+Link = Ctrl+Link (EAF) > Ctrl > Baseline. 
Ctrl+Link outperforms Ctrl (𝑝 < 0.0001, 𝜂2 =  0.  ). The EAF strategy performed lower than Ctrl+Link, 
but the difference was not significant (𝑝 = 0.0 , 𝜂2 =  0.0 ). The IAF strategy, on the other hand, slightly 
improved performance. Although this improvement was not significant (𝑝 = 0.4, 𝜂2 =  0.01), it provided 
a higher accuracy for the low class as opposed to the naïve combination (and also Ctrl) where it was the 
other way around. This is important as the low group is the primary target for personalization. 
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Table 27: Task Time LR Best performing windows (within-task) 

Strategy Window Type Overall 
Acc 

Low 
Acc 

High 
Acc 

Ctrl 
24 sec Window with highest overall acc 0.68 0.63 0.71 

6 sec Earliest window with acceptable 
overall acc 0.64 0.59 0.70 

Ctrl+Link (IAF) 
28 sec Window with highest overall acc 0.72 0.73 0.71 

6 sec Earliest window with acceptable 
overall acc 0.71 0.74 0.67 

Ctrl+Bar 
29 sec Window with highest overall acc 0.73 0.70 0.77 

11 sec Earliest window with acceptable 
overall acc 0.70 0.71 0.69 

 

Table 27 reports the accuracy of our best performing strategies at their viable window(s) at predicting 
Task Time. The peak performance of Ctrl was attained at window 24 with an overall accuracy of 0.68 (see 
Figure 30). Combination of Ctrl and Link using the IAF strategy provided a higher accuracy of 0.71 at a 
much earlier window (window 6). This model reached its peak performance at window 28 which was also 
more balanced in terms of class accuracy (see Figure 34). Ctrl+Bar had a high performance as well. 
However, it was at the last window and was not as balanced as Ctrl+Link (IAF). 

 

5.1.3. Task Accuracy (Comprehension) 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 36: Results for Task Accuracy LR over different windows within-task when trained on each dataset alone 
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Figure 37: Average performance over all windows within-task for Task Accuracy LR when trained on each dataset 
alone 

 

Table 28: Task Accuracy LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.59 (0.005) - - 
Ctrl 0.63 (0.016) 0.83 (0.013) 0.36 (0.040) 
Bar 0.59 (0.028) 0.63 (0.058) 0.53 (0.028) 
Link 0.56 (0.020) 0.59 (0.062) 0.53 (0.047) 

 

Figure 37 shows the performance of the LR classifier at predicting Task Accuracy when trained on each 
dataset alone. We compare overall results by running post-hoc pairwise comparisons. The results of the 
comparisons show: Ctrl > Bar = Baseline > Link. Both the Bar (𝑝 < 0.0001, 𝜂2 =  0. 0) and the Link dataset 
(𝑝 < 0.0001, 𝜂2 = 0.80) yield lower performance than Ctrl. Ctrl has a fairly high accuracy for the low class 
which comes at the expense of misclassifying a large proportion of the high class. 
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b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl  

 

Figure 38: Results for Task Accuracy LR over different windows within-task when trained on the combination of 
Ctrl and Bar 

 

 

Figure 39: Average performance over all windows within-task for Task Accuracy LR when trained on the 
combination of Ctrl and Bar  

 

Table 29: Task Accuracy LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.59 (0.005) - - 
Ctrl 0.63 (0.016) 0.83 (0.013) 0.36 (0.040) 
Ctrl+Bar 0.60 (0.031) 0.65 (0.045) 0.52 (0.028) 
Ctrl+Bar (EAF) 0.57 (0.028) 0.60 (0.039) 0.53 (0.028) 
Ctrl+Bar (IAF) 0.57 (0.024) 0.60 (0.032) 0.52 (0.030) 
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Figure 39 shows the performance of the LR classifier at predicting Task Accuracy when trained on the 
combination of Ctrl and Bar. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl > Ctrl+Bar > Baseline > Ctrl+Bar (IAF) = Ctrl+Bar (EAF). Combination 
of Ctrl and Bar (Ctrl+Bar) was not fruitful and resulted in a lower performance than Ctrl (𝑝 < 0.0001,
𝜂2 =  0.  ). Nevertheless, it is worth noting that Ctrl+Bar provided a better balance in terms of class 
accuracy than Ctrl. Neither of our strategies were able to make this combination worthwhile and both 
the EAF (𝑝 = 0.002, 𝜂2 =  0.1 ) and the IAF (𝑝 = 0.001, 𝜂2 =  0.18) yielded lower results than Ctrl+Bar. 
The results of EAF and IAF were quite similar (𝑝 = 1, 𝜂2 <  0.001). This suggests that gaze features which 
were not significantly affected by the bar interventions had more relevance for predicting Task Accuracy 
than those which were significantly affected since excluding the affected ones had the same impact as 
imputing them. 

 

c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 40: Results for Task Accuracy LR over different windows within-task when trained on the combination of 
Ctrl and Link 
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Figure 41: Average performance over all windows within-task for Task Accuracy LR when trained on the 
combination of Ctrl and Link 

 

Table 30: Task Accuracy LR within-task results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.59 (0.005) - - 
Ctrl 0.63 (0.016) 0.83 (0.013) 0.36 (0.040) 
Ctrl+Link 0.60 (0.013) 0.71 (0.018) 0.46 (0.031) 
Ctrl+Link (EAF) 0.58 (0.018) 0.67 (0.016) 0.46 (0.033) 
Ctrl+Link (IAF) 0.61 (0.014) 0.78 (0.017) 0.39 (0.031) 

 

Figure 41 shows the performance of the LR classifier at predicting Task Accuracy when trained on the 
combination of Ctrl and Link. We compare overall results by running post-hoc pairwise comparisons. 
The results of the comparisons show: Ctrl > Ctrl+Link (IAF) > Ctrl+Link > Baseline = Ctrl+Link (EAF). 
Combination of Ctrl and Link (Ctrl+Link) was not helpful and resulted in a lower performance than Ctrl 
(𝑝 < 0.0001, 𝜂2 =  0.  ). The EAF strategy made it even worse (𝑝 < 0.0001, 𝜂2 =  0.2 ). The IAF strategy 
was more successful and resulted in a significant improvement (𝑝 = 0.004, 𝜂2 =  0.14). However, this 
improvement was not large enough to beat Ctrl and was still significantly lower (𝑝 < 0.0001, 𝜂2 =  0. 1). 

 

The peak performance of Ctrl was attained at window 26 with an overall accuracy of 0.66 (see Figure 36). 
0.66 remained the best performance for this measure as combining neither of the adaptive datasets could 
offer any improvement. 
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5.2. Across Tasks Prediction Results 

Similar to the previous section, we evaluate the performance of our strategies by running a one-way 
repeated measures ANOVA with accuracy as the dependent variable, strategy type as the factor, and time 
step (14) as the repeated measure. 

 

5.2.1. VisLit 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 42: Results for VisLit RF over different windows across-tasks when trained on each dataset alone 

 

 

Figure 43: Average performance over all windows across-tasks for VisLit RF when trained on each dataset alone 
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Table 31: VisLit RF across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.003) - - 
Ctrl 0.53 (0.045) 0.60 (0.047) 0.47 (0.055) 
Bar 0.47 (0.029) 0.37 (0.086) 0.57 (0.063) 
Link 0.47 (0.030) 0.57 (0.069) 0.36 (0.039) 

 

Figure 43 shows the performance of the RF classifier at predicting VisLit when trained on each dataset 
alone across-tasks. We compare overall results by running post-hoc pairwise comparisons. The results of 
the comparisons show: Ctrl = Baseline > Link = Bar. Similar to the within-task setup, both the Bar (𝑝 =
0.0001, 𝜂2 =  0.4 ) and the Link dataset (𝑝 = 0.000 , 𝜂2 = 0.41) yielded lower performance than Ctrl.  

 

b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl  

 

Figure 44: Results for VisLit RF over different windows across-tasks when trained on the combination of Ctrl and 
Bar 
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Figure 45: Average performance over all windows across-tasks for VisLit RF when trained on the combination of 
Ctrl and Bar  

 

Table 32: VisLit RF across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.003) - - 
Ctrl 0.53 (0.045) 0.60 (0.047) 0.47 (0.055) 
Ctrl+Bar 0.55 (0.021) 0.52 (0.028) 0.59 (0.055) 
Ctrl+Bar (EAF) 0.55 (0.026) 0.54 (0.036) 0.57 (0.047) 
Ctrl+Bar (IAF) 0.58 (0.023) 0.62 (0.025) 0.55 (0.040) 

 

Figure 45 shows the performance of the RF classifier at predicting VisLit when trained on the combination 
of Ctrl and Bar across-tasks. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl+Bar (IAF) > Ctrl+Bar (EAF) = Ctrl+Bar = Ctrl = Baseline. Unlike the 
within-task setup, combination of Ctrl and Bar (Ctrl+Bar) across-tasks did not result in a higher 
performance than Ctrl overall (𝑝 = 0.4, 𝜂2 =  0.04). The EAF strategy reduced the gap in class 
performance, but it could not make this combination any more rewarding (𝑝 = 0. , 𝜂2 =  0.01). The IAF 
strategy, on the other hand, significantly improved performance overall (𝑝 = 0.002, 𝜂2 =  0. 8) with a 
higher accuracy for the low class. This strategy was also successful within-task. 
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c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 46: Results for VisLit RF over different windows across-tasks when trained on the combination of Ctrl and 
Link 

 

 

Figure 47: Average performance over all windows across-tasks for VisLit RF when trained on the combination of 
Ctrl and Link 

 

Table 33: VisLit RF across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.003) - - 
Ctrl 0.53 (0.045) 0.60 (0.047) 0.47 (0.055) 
Ctrl+Link 0.53 (0.036) 0.56 (0.030) 0.49 (0.060) 
Ctrl+Link (EAF) 0.51 (0.037) 0.54 (0.034) 0.48 (0.067) 
Ctrl+Link (IAF) 0.54 (0.036) 0.59 (0.047) 0.50 (0.027) 
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Figure 41 shows the performance of the RF classifier at predicting VisLit when trained on the combination 
of Ctrl and Link across-tasks. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl+Link (IAF) = Ctrl = Baseline = Ctrl+Bar = Ctrl+Bar (EAF). Ctrl+Link, 
which was successful within-task, did not perform any better than Ctrl (𝑝 = 0. , 𝜂2 =  0.01) across-tasks. 
The EAF strategy was not helpful (𝑝 = 0.4, 𝜂2 =  0.0 ) in either setup. The IAF strategy was more 
effective, but the improvement was not significant (𝑝 = 0.4, 𝜂2 =  0.0 ). This strategy, was statistically 
similar to the naïve combination in the within-task setup, as well. 

 

Table 34: VisLit RF Best performing windows (across-tasks) 

Strategy Window Type Overall 
Acc 

Low 
Acc 

High 
Acc 

Ctrl 3 tasks Window with highest overall acc 0.63 0.71 0.53 
Ctrl+Bar (IAF) 4 tasks Window with highest overall acc 0.63 0.65 0.61 

 

Table 34 reports the accuracy of our best performing strategies at their viable window(s) at predicting 
VisLit across-tasks. The peak performance of Ctrl was attained at window 3 with an overall accuracy of 
0.63 (see Figure 42). Combination of the Bar was more beneficial than Link. Ctrl+Bar (IAF) provided a 
similar accuracy to control a window later (window 4), but the performance was more balanced (see 
Figure 44). Although this improvement could be vluable, we were already able to achieve a peak accuracy 
of 0.66 with perfectly balanced class performance using the Ctrl+Link strategy after 12 seconds into the 
first task in the within-task setup which still remains our highest and earliest peak accuracy for VisLit. 

 

5.2.2. ReadP 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 48: Results for ReadP RF over different windows across-tasks when trained on each dataset alone 

1 2  4    8  10 11 12 1 14

 4.0

  .0

 8.0

4.0

42.0

44.0

4 .0

48.0

 .0

 2.0

 4.0

  .0

 8.0

 .0

 2.0

 4.0

  .0

 8.0

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

1 2  4    8  10 11 12 1 14

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

Ctrl Bar  ink Baseline

Task Task

 
ve
ra
ll 
 
cc
ur
ac
y 
(R
 )

hi
gh

  
cc

 o
w
  
cc



49 
 

 

 

Figure 49: Average performance over all windows across-tasks for ReadP RF when trained on each dataset alone 

 

Table 35: ReadP RF across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.51 (0.003) - - 
Ctrl 0.62 (0.042) 0.59 (0.043) 0.66 (0.053) 
Bar 0.39 (0.014) 0.06 (0.022) 0.96 (0.024) 
Link 0.40 (0.017) 0.53 (0.071) 0.27 (0.050) 

 

Figure 49 shows the performance of the RF classifier at predicting ReadP when trained on each dataset 
alone across-tasks. We compare overall results by running post-hoc pairwise comparisons. The results of 
the comparisons show: Ctrl > Baseline > Link = Bar. Similar to the within-task setup, both the Bar (𝑝 <
0.0001, 𝜂2 =  0.  ) and the Link dataset (𝑝 < 0.0001, 𝜂2 = 0. 2) yielded lower performance than Ctrl. The 
Bar dataset had an exceptionally low performance on the low class which means that the model 
mistakenly predicted most of the low participants in the Ctrl dataset as high. Apparently, the model could 
not learn the behavior of the low ReadP users from the Bar dataset across tasks. This might suggest that 
the bar interventions mostly affected the gaze behavior of the low ReadP group over the entirety of the 
tasks. 
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b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl  

 

Figure 50: Results for ReadP RF over different windows across-tasks when trained on the combination of Ctrl and 
Bar 

 

 

Figure 51: Average performance over all windows across-tasks for ReadP RF when trained on the combination of 
Ctrl and Bar  

 

Table 36: ReadP RF across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.64 (0.002) - - 
Ctrl 0.62 (0.042) 0.59 (0.043) 0.66 (0.053) 
Ctrl+Bar 0.56 (0.060) 0.66 (0.118) 0.38 (0.062) 
Ctrl+Bar (EAF) 0.57 (0.055) 0.63 (0.097) 0.46 (0.050) 
Ctrl+Bar (IAF) 0.57 (0.035) 0.78 (0.089) 0.18 (0.099) 
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Figure 51 shows the performance of the RF classifier at predicting ReadP when trained on the combination 
of Ctrl and Bar across-tasks. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Baseline > Ctrl > Ctrl+Bar (EAF) = Ctrl+Bar (IAF) = Ctrl+Bar. Ctrl+Bar 
performed lower than Ctrl overall (𝑝 = 0.02, 𝜂2 =  0.22). Neither the EAF (𝑝 = 0.8, 𝜂2 =  0.00 ) nor the 
IAF strategy (𝑝 = 0.8, 𝜂2 =  0.00 ) was able to provide a significant improvement. In the within-task 
setup, however, Ctrl+Bar and Ctrl+Bar (IAF) were both successful and yielded higher results than Ctrl. 

 

c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 52: Results for ReadP RF over different windows across-tasks when trained on the combination of Ctrl and 
Link 

 

 

Figure 53: Average performance over all windows across-tasks for ReadP RF when trained on the combination of 
Ctrl and Link 

1 2  4    8  10 11 12 1 14

4.0

42.0

44.0

4 .0

48.0

 .0

 2.0

 4.0

  .0

 8.0

 .0

 2.0

 4.0

  .0

 8.0

 .0

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

1 2  4    8  10 11 12 1 14

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

Ctrl Ctrl  ink Ctrl  ink (   ) Ctrl  ink (I  ) Baseline

Task Task

 
ve
ra
ll 
 
cc
ur
ac
y 
(R
 )

hi
gh

  
cc

 o
w
  
cc

 verall  ow class High class
0

1.0

2.0

 .0

4.0

 .0

 .0

 .0

Ctrl  ink Ctrl  ink (   ) Ctrl Ctrl  ink (I  )

M
ea
n 
 
cc
ur
ac
y 
 
ve
r 
 
in
do

w
s 
( 
  

 C
I)

Baseline



52 
 

 

Table 37: ReadP RF across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.51 (0.003) - - 
Ctrl 0.62 (0.042) 0.59 (0.043) 0.66 (0.053) 
Ctrl+Link 0.54 (0.043) 0.48 (0.050) 0.61 (0.045) 
Ctrl+Link (EAF) 0.55 (0.062) 0.47 (0.064) 0.63 (0.064) 
Ctrl+Link (IAF) 0.64 (0.038) 0.62 (0.056) 0.68 (0.059) 

 

Figure 53 shows the performance of the RF classifier at predicting ReadP when trained on the combination 
of Ctrl and Link across-tasks. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl+Link (IAF) = Ctrl > Ctrl+Bar (EAF) = Ctrl+Link > Baseline. Ctrl+Link, 
despite being successful within-task, performed lower than Ctrl (𝑝 = 0.0004, 𝜂2 =  0.41). The EAF 
strategy did not yield a significant improvement (𝑝 = 0.8, 𝜂2 =  0.00 ). The IAF strategy, on the other 
hand, significantly improved performance (𝑝 < 0.0001, 𝜂2 =  0.  ). However, this improvement, as 
opposed to the within-task setup, was not large enough to outperform Ctrl (𝑝 = 0.1, 𝜂2 =  0.1). 

 

The peak performance of Ctrl was attained at window 4 with an overall accuracy of 0.68 (see Figure 48). 
Combination of the Link was more beneficial than the Bar. However, none of our strategies, across tasks, 
were able to perform better than Ctrl. The accuracy of 0.75, achieved within-task (task 1) using Ctrl+Link 
(IAF), remains our best result for this cognitive ability.  

 

5.2.3. VerbalWM 

a. Training on each dataset alone and evaluating on Ctrl 

 

Figure 54: Results for VerbalWM XGB over different windows across-tasks when trained on each dataset alone 
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Figure 55: Average performance over all windows across-tasks for VerbalWM XGB when trained on each dataset 
alone 

 

Table 38: VerbalWM XGB across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.003) - - 
Ctrl 0.61 (0.067) 0.57 (0.093) 0.64 (0.053) 
Bar 0.51 (0.042) 0.27 (0.146) 0.75 (0.158) 
Link 0.50 (0.045) 0.59 (0.106) 0.43 (0.104) 

 

Figure 55 shows the performance of the XGB classifier at predicting VerbalWM when trained on each 
dataset alone across-tasks. We compare overall results by running post-hoc pairwise comparisons. The 
results of the comparisons show: Ctrl > Baseline = Bar = Link. Both the Bar (𝑝 = 0.0004, 𝜂2 =  0.42) and 
the Link dataset (𝑝 = 0.0004, 𝜂2 = 0.4 ) yielded lower performance than Ctrl. These datasets, however, 
performed higher than Ctrl within-task which was quite interesting. 
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b. Training on different combination strategies of Ctrl and Bar and evaluating on Ctrl 

 

Figure 56: Results for VerbalWM XGB over different windows across-tasks when trained on the combination of 
Ctrl and Bar 

 

 

Figure 57: Average performance over all windows across-tasks for VerbalWM XGB when trained on the combination of 
Ctrl and Bar 

 

Table 39: VerbalWM XGB across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.51 (0.003) - - 
Ctrl 0.61 (0.067) 0.57 (0.093) 0.64 (0.053) 
Ctrl+Bar 0.56 (0.062) 0.53 (0.091) 0.61 (0.047) 
Ctrl+Bar (EAF) 0.60 (0.069) 0.57 (0.082) 0.63 (0.065) 
Ctrl+Bar (IAF) 0.52 (0.081) 0.52 (0.098) 0.52 (0.081) 
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Figure 57 shows the performance of the XGB classifier at predicting VerbalWM when trained on the 
combination of Ctrl and Bar across-tasks. We compare overall results by running post-hoc pairwise 
comparisons. The results of the comparisons show: Ctrl = Ctrl+Bar (EAF) = Ctrl+Bar = Ctrl+Bar (IAF) = 
Baseline. Ctrl+Bar performed lower than Ctrl (𝑝 = 0.2, 𝜂2 =  0.08). This strategy, however, performed 
significantly better within-task owing to the higher performance of the Bar dataset on its own in that 
setup. None of our strategies were able to provide better results than Ctrl across-tasks. 

 

c. Training on different combination strategies of Ctrl and Link and evaluating on Ctrl  

 

Figure 58: Results for VerbalWM XGB over different windows across-tasks when trained on the combination of 
Ctrl and Link 

 

 

Figure 59: Average performance over all windows across-tasks for VerbalWM XGB when trained on the 
combination of Ctrl and Link 

1 2  4    8  10 11 12 1 14

44.0

4 .0

48.0

 .0

 2.0

 4.0

  .0

 8.0

 .0

 2.0

 4.0

  .0

 8.0

 .0

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

1 2  4    8  10 11 12 1 14

0
1.0
2.0
 .0
4.0
 .0
 .0
 .0
8.0
 .0
1

Ctrl Ctrl  ink Ctrl  ink (   ) Ctrl  ink (I  ) Baseline

Task Task

 
ve
ra
ll 
 
cc
ur
ac
y 
( 
 
B
) hi
gh

  
cc

 o
w
  
cc

 verall  ow class High class
0

1.0

2.0

 .0

4.0

 .0

 .0

 .0

Ctrl  ink (I  ) Ctrl  ink (   ) Ctrl  ink Ctrl

M
ea
n 
 
cc
ur
ac
y 
 
ve
r 
 
in
do

w
s 
( 
  

 C
I)

Baseline



56 
 

 

Table 40: VerbalWM XGB across-tasks results 

Strategy Overall Mean (SD) Low Mean (SD) High Mean (SD) 
Baseline 0.53 (0.003) - - 
Ctrl 0.61 (0.067) 0.57 (0.093) 0.64 (0.053) 
Ctrl+Link 0.59 (0.034) 0.55 (0.057) 0.63 (0.051) 
Ctrl+Link (EAF) 0.57 (0.061) 0.55 (0.070) 0.59 (0.059) 
Ctrl+Link (IAF) 0.53 (0.044) 0.46 (0.057) 0.59 (0.048) 

 

Figure 59 shows the performance of the XGB classifier at predicting VerbalWM when trained on the 
combination of Ctrl and Link across-tasks. We compare overall results by running post-hoc pairwise 
comparisons. The results of the comparisons show: Ctrl = Ctrl+Link = Ctrl+Bar (EAF) > Baseline = Ctrl+Bar 
(IAF). Ctrl+Link had a similar performance to Ctrl (𝑝 = 0. , 𝜂2 =  0.00 ). This strategy, however, 
performed significantly better within-task owing to the higher performance of the Link dataset on its 
own in that setup. Similar to the combination of Bar and Ctrl, for the combination of Link and Ctrl, the 
EAF strategy was more successful than the IAF strategy, but they did not provide any improvement over 
Ctrl either.  

The peak performance of Ctrl at predicting VerbalWM across tasks was reached at window 10 with an 
accuracy of 0.70 (see Figure 54). None of our combined datasets could provide a higher or even similar 
performance. Therefore, we do not report their peak accuracies.  
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6. Discussion 

We evaluated the effectiveness of additional eye-tracking data, from two different adaptive user studies, 
in improving our accuracy for predicting three cognitive abilities (i.e., VisLit, ReadP, and Verbal WM), 
and two measures of task performance (i.e., Task Time and Task Accuracy). For this purpose, we trained 
the models proposed in [1] on the combined datasets and tested their performance on the control data, 
which represents users’ normal gaze patterns prior to adaptation.  ur results show that, overall, in the 
within-task predictions, training the models on the combined datasets significantly improved 
performance for all cognitive abilities and Task Time. Our evaluation of each of the adaptive datasets, 
when used alone, revealed that, in terms of VisLit, Link was more suitable to be combined than Bar. 
However, for ReadP and Task Time, Bar was more suitable. For Verbal WM, both adaptive datasets had 
similar performances and were both significantly better than Ctrl. This was a very interesting finding 
because training the model on either of the adaptive datasets, within-task, yielded a better performance 
than training it on the Ctrl dataset itself. It is possible that the interventions, provided in the adaptive 
studies, influenced users’ gaze in a way that made it easier for the model to pick up on gaze patterns 
differentiating low vs high Verbal WM. Naïve combination of each adaptive dataset with Ctrl resulted in 
a significant improvement for all measures except Task Accuracy. Specifically, for Verbal WM, we were 
able to achieve significantly higher performance than the baseline. This was very encouraging as our 
previous performance for Verbal WM, within-task, was way below the baseline. Our IAF strategy, 
intended for making the combination more consistent, improved performance even further for Ctrl+Bar 
in terms of VisLit, and for Ctrl+Link in terms of ReadP. This strategy was most effective for cases in 
which the data to be combined was severely different and not as predictive as Ctrl.  

According to our results, the combined datasets were more beneficial in the within-task setup than they 
were across-tasks. One possible explanation for this is that in the across-tasks predictions, for each 
participant, in each window, we build the feature vector by considering the entirety of the current task 
as well as all its preceding tasks. As a result, the impact of interventions would be more pronounced in 
each data point and build up as we accumulate more tasks. In the within-task predictions, however, we 
aggregate over the seconds elapsed within the same task. Therefore, given the finer granularity of the 
aggregation and the fact that interventions were not triggered at the first second, the data points would 
remain more similar to the control allowing for a more effective combination. Table 41 report the 
performance of our best strategies. 

In addition to individually combining each adaptive dataset with control, we also tried combining all 
three datasets together and training our models on this larger dataset. However, doing so yielded no 
further improvement in performance. We suspect that the dominance of the adaptive data points over 
the control data, together with the increased disparity in the combination, prevented the model from 
properly learning the control gaze patterns.  

 

Table 41: Best performing strategies and their best windows including within-task and across-tasks 

Measure Strategy Best window Overall Acc Low Acc High Acc 
VisLit Ctrl+Link 12 sec 0.66 0.66 0.66 
ReadP Ctrl+Link (IAF) 26 sec 0.75 0.76 0.74 
VerbalWM Ctrl 10 tasks 0.70 0.75 0.66 
Task Time Ctrl+Bar 29 sec 0.73 0.70 0.77 
Task Accuracy Ctrl 26 sec 0.66 0.84 0.42 
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Table 41 shows the performance of our best strategies at their best window. For VisLit, ReadP, and Task 
Time, we were able to achieve higher accuracies as a result of our combinations. For VerbalWM, as well, 
we were able to achieve higher results and outperform the previously unbeaten baseline within-task with 
a peak accuracy of 0.64. Although this accuracy was achieved after 29 seconds into the first task, the 
highest accuracy for this cognitive ability remains 0.70 which is reached after 10 tasks in the across-tasks 
prediction setup. None of our strategies in neither prediction setup could improve performance for task 
accuracy. 
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7. Conclusion 

In this thesis, we extended a previous work on user modeling where eye-tracking was leveraged for 
predicting a user’s levels of cognitive abilities and performance while processing magazine style narrative 
visualizations (MSNV), a common type of multimodal document which combines text and visualization. 
In particular, we improved the accuracy of these predictions by combining with the original eye-tracking 
data, which had been collected in a non-adaptive user study (Control), additional eye-tracking data from 
two other studies which used adaptations (Bar and Link) and training the proposed models on this larger 
dataset. The adaptive studies used the same MSNV documents as the non-adaptive control. However, 
they also provided users with gaze-driven adaptive support (i.e., by highlighting relevant parts of the 
visualization in the Bar study, and providing links between those and their corresponding references in 
the Link study) to facilitate processing of the MSNVs. 

 ur primary purpose for predicting users’ cognitive abilities and performance is to regulate adaptation 
(i.e., by guiding what to adapt to, as well as when to adapt). Hence, we predict these measures based on 
users’ normal gaze behavior prior to adaptation (control condition). In the adaptive studies, adaptive 
interventions impacted users’ normal way of processing MSNVs. As a result, their gaze data, in the 
presence of adaptive support, did not represent their normal behavior. This inconsistency could prevent 
these data from being helpful. Nevertheless, not all aspects of their gaze processing were influenced by 
the interventions. We explored different combination strategies to mitigate the differences of adaptive 
gaze data from control so as to form a more consistent combination. Our results show that our IAF 
strategy, which imputed the affected eye-tracking features, in the adaptive datasets, with their control 
values, was able to maximize the gain and significantly improve performance for most of the measures 
especially in the within-task predictions. 

Given the benefits of additional eye-tracking data in improving our classification accuracy, for future 
work, we encourage collection of more eye-tracking data in the control condition to further improve our 
results. In addition to task performance and task time, we also encourage prediction of other transient 
user states such as distraction, confusion, cognitive load, etc. which can further optimize our 
personalization mechanisms. Other directions for future work include conducting similar experiments 
with longer MSNV documents, which are more common in practice, to study how users behave in these 
situations where distraction or zoning out are also likely scenarios, and investigating consecutive 
adaptations where users’ reaction to an adaptive intervention could be used as feedback to guide or rectify 
the subsequent one. 
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Appendices 

Appendix A: Reproducing control results within-task 

Red dashed lines show previous results from [1] computed using the Caret package in R. The blue solid 
lines show the same results reproduced using the scikit-learn package in Python. 

 

 

Figure 60: VisLit LR within-task results (Caret vs scikit-learn) 

 

 

Figure 61: ReadP LR within-task results (Caret vs scikit-learn) 
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Figure 62: VerbalWM LR within-task results (Caret vs scikit-learn) 

 

 

Figure 63: Task-Time RF within-task results (Caret vs scikit-learn) 
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Figure 64: Task-Accuracy RF within-task results (Caret vs scikit-learn) 
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Appendix B: Reproducing control results across-tasks 

 

 

Figure 65: VisLit RF across-tasks results (Caret vs scikit-learn) 

 

 

 

Figure 66: ReadP RF across-tasks results (Caret vs scikit-learn) 
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Figure 67: VerbalWM XGB across-tasks results (Caret vs scikit-learn) 
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