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Abstract

In this thesis, a novel visco-inertial formulation of capillarity is proposed
that geometrically extends the Bosanquet equation to irregular geometries,
taking the effect of inertia and the dynamic contact angle into account.
The governing equation is an integro-differential equation that is solved
numerically and compared with computer simulations, experimental data,
and other cases available in the literature. The numerical examples in-
vestigated in this work show that contrary to flat channels and tubes,
inertial effects decay much slower in corrugated channels and tubes due
to the walls’ geometrical fluctuations. Most importantly, it will be shown
that the true solution for Jurin’s height in irregular capillaries is path-
dependent and highly sensitive to the initial conditions, and no single static-
equilibrium solution can necessarily be attributed to the eventual position
of the meniscus. Resulting from the non-linear dynamics, the multiple equi-
libria in the presence of gravity for irregular capillaries can only be analyzed
if the effect of inertia is considered, which has largely been neglected in the
literature thus far.
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Lay Summary

Capillarity is a ubiquitous phenomenon in nature with great applications in
medicine and engineering. Although a myriad of studies have investigated
capillarity for centuries, they usually come with the simplification of the
geometry or the physics involved. The literature was lacking in a study
considering the effect of inertia in irregular capillaries (other than wicking
in simple straight tubes or between parallel plates). In this regard, this
thesis aims at deriving a novel visco-inertial formulation for capillarity in
complicated geometries.
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This thesis entitled “capillarity in complicated geometries” presents the orig-
inal, unpublished, and independent work of the author, Mohammad Amin
Zakershobeiri (Amin Shobeiri) under the supervision of Dr. Mauricio Ponga
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chanical Engineering.

The theory developed in Chapter 3 and parts of the results presented in
Chapter 4 are under peer-review for academic publication at the time of
writing this manuscript.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Lay Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Latin Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Greek Letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Subscripts and Superscripts . . . . . . . . . . . . . . . . . . . . . xvii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Capillary Phenomena . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Young-Laplace Equation . . . . . . . . . . . . . . . . . . . . 2
1.3 Jurin’s Height . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Washburn’s Theory . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Bosanquet’s Theory . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Irregular Capillaries . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Numerical Simulation of Capillarity . . . . . . . . . . . . . . 9
1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Rectification of Tortuous Channels and Tubes . . . . . . . . 13

2.1.1 Centerline Determination . . . . . . . . . . . . . . . . 14
2.1.2 Voronoi Segmentation . . . . . . . . . . . . . . . . . . 14

2.2 Correction of the Hagen–Poiseuille Equation in Corrugated
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . 20
3.2 Expansion of the Terms . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Moving Boundary Term . . . . . . . . . . . . . . . . . 25
3.2.2 Flux Term . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Viscous Term . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Pressure Term . . . . . . . . . . . . . . . . . . . . . . 27
3.2.5 Gravity Term . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Governing ODE . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Verification with Computational Fluid Dynamics . . . . . . . 31

4.1.1 Grid Independence and Meshing Considerations . . . 32
4.1.2 Time Step Independence: . . . . . . . . . . . . . . . . 32
4.1.3 Domain Independence . . . . . . . . . . . . . . . . . . 32

4.2 Validation of the VOF . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Lower Reynolds Results . . . . . . . . . . . . . . . . . 35
4.3.2 Higher Reynolds Results . . . . . . . . . . . . . . . . 42
4.3.3 Effect of Gravity . . . . . . . . . . . . . . . . . . . . . 42
4.3.4 Tubular Geometries . . . . . . . . . . . . . . . . . . . 44

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Dominant Forces during Capillary Rise . . . . . . . . 47
4.4.2 Jurin’s Height . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 56

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Force Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B Differential Element Stretch Rate . . . . . . . . . . . . . . . 68

vii



C Dynamic Contact Angle . . . . . . . . . . . . . . . . . . . . . . 70

D Convergence Study . . . . . . . . . . . . . . . . . . . . . . . . . 72
D.1 Mesh Convergence . . . . . . . . . . . . . . . . . . . . . . . . 72
D.2 Domain Convergence . . . . . . . . . . . . . . . . . . . . . . 72

viii



List of Tables

1.1 Some frequently used non-dimensional numbers in the litera-
ture, Re, Oh, and Bond numbers in relevant capillarity prob-
lems together with the viscous (tv) and capillary (tc) time
scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 The geometrical and flow specifications of 6 cases studied and
verified against VOF simulation. . . . . . . . . . . . . . . . . 41

4.2 Water properties at 15◦C and 20◦C. . . . . . . . . . . . . . . 51

D.1 Mesh convergence study, four mesh configuration with or-
dered by the refinement increase tabulated with the height of
the meniscus at t = 0.5 s. . . . . . . . . . . . . . . . . . . . . 72

D.2 Domain convergence study, three domains with as same re-
finement as the obtained reliable mesh (M3) in descending
order indicated by the normalized distance to the centerline
of the capillary, tabulated with the height of the meniscus at
t = 0.5 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



List of Figures

1.1 The occurrences and applications of capillarity in nature ((a),
(b)), medicine (c), and engineering ((d), (e)). . . . . . . . . . 3

1.2 Geometric dependence of the meniscus configuration on the
wall angle (β) and (a) the width of a channel (h(s)) and (b)
the radius of the tube (r(s)) at the meniscus (s = L). . . . . 8

2.1 Schematic of the rectification process for tortuous periodic
(a) channels and (b) tubes. . . . . . . . . . . . . . . . . . . . 17

2.2 The comparison of the average and Voronoi centerlines in for
types of sinusoidal channels, (a) anti-symmetric (ψ = 0), (b)
shifted at ψ = π/3, (c) shifted at ψ = 2π/3. . . . . . . . . . . 18

2.3 The viscous correction factor (ξ) plotted against ζ = εRe in
a bilogarithmic scale, estimated by (1 + 0.085 ζ)−1 . . . . . . 19

3.1 A schematic of the problem, (a) a corrugated and tortuous
channel (2D) exposed to a liquid reservoir represented with
(a) the magnified meniscus configuration, (b) a generic vol-
ume element with the corresponding dimensions, and (c) act-
ing stresses and incoming and outgoing velocities. . . . . . . . 23

4.1 The outlook of the VOF simulations, (a) shows multiple snap-
shots of the capillary rise in a sample case (Figure 4.3(c)) over
time. (b) demonstrates the spatial discretization of the do-
main through structured meshing in the same symmetric geo-
metry, and (c) shows the structured mesh grid in a tortuous
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Comparing the VOF simulation results to the experimental
data published by Stange et al.. . . . . . . . . . . . . . . . . . 38

x



4.3 Wicking length (L(t)) and rate (L̇(L)) results in lower Reynolds
range (Re ∼ 30 − 40) for the extended Washburn, extended
Bosanquet (with γ(t) = 1), and extended Bosanquet + DCA
compared against VOF simulations in three sinusoidal capil-
laries, (a) case 1, anti-symmetric (ψ = 0), (c) case 2, shifted
at ψ = π/4, (e) case 3, symmetric (ψ = π). . . . . . . . . . . 39

4.4 Wicking length (L(t)) and rate (L̇(L)) results in higher Reynolds
range (Re ∼ 50 − 70) for the extended Washburn, extended
Bosanquet (with γ(t) = 1), and extended Bosanquet + DCA
compared against VOF simulations in three sinusoidal capil-
laries, (a) case 1, anti-symmetric (ψ = 0), (c) case 2, shifted
at ψ = π/4, (e) case 3, symmetric (ψ = π). . . . . . . . . . . 40

4.5 The effect of gravity on the capillary rise of water in a tortuous
and corrugated channel. Two cases with the same geometry
are represented with a downward (g = 9.81 m · s−2) and zero
gravity. The case with the downward gravity achieves equi-
librium at the Jurin’s height (LJ = 12.3 mm) after slight
gravitational oscillations. . . . . . . . . . . . . . . . . . . . . . 43

4.6 (a) Comparison between the extended Bosanquet equation
and extended Washburn equation and the results obtained
by Erickson et al. using interface-tracking solution on a pair
of symmetric converging-diverging and diverging-converging
stepped-tubes. Three special regions of interest (I, II, and III)
are magnified in (b) to clearly distinguish between different
sets of results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 The share of terms in the total magnitude over time, M(t),
plotted in a semi-logarithmic scale for the wicking of water
in a channel. (a) and (c) represent a flat channel, while (b)
and (d) show the share of terms for a sinusoidal symmetric
corrugated channel with the. The gravity is present in (a)
and (b) (g = 1 m·s−2), but not (c) and (d). . . . . . . . . . . 49

4.8 The multiple static equilibria plotted as a function of the
meniscus position (L) for a sinusoidal symmetric channel.
The stable (Jurin’s heights) and unstable equilibria are pre-
sented with up-pointing and down-pointing triangles, respec-
tively. The derivative of Pc − Pg at the equilibria signifies
stability once negative, and vice versa. . . . . . . . . . . . . . 50

xi



4.9 The effect of dynamic viscosity (η) on the Jurin’s height in
a sinusoidal symmetric channel. (a) shows the Jurin’s height
for few sample viscosities in two intervals of η > 0.00128
kg·m−1·s−1 and 0.00127 > η > 0.00032 kg·m−1·s−1. The bi-
furication occurs between 0.00128 > η > 0.00127 kg·m−1·s−1,
where the curves part at an unstable equilibrium height, L =
9.2 mm. (b) covers the interval of 0.00031 > η > 0 kg·m−1·s−1,
showing multiple Jurin’s height due to relative stronger effect
of inertia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 The capillary rise of water in a sinusoidal symmetric channel
at two different temperatures (15◦C and 20◦C). The small dif-
ference in water properties just by a 5◦C temperature causes
the meniscus to eventually come to rest in different stable
equilibria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 The effect of the initial condition (L0) on the the Jurin’s
height of water in a sinusoidal symmetric channel. . . . . . . 54

B.1 The schematic of the integral discretization as the summation
of finite elements. . . . . . . . . . . . . . . . . . . . . . . . . . 68

C.1 Several snapshots from the early stages of meniscus formation
in a silicone fluid (SF). . . . . . . . . . . . . . . . . . . . . . . 70

C.2 The evolution of the dynamic contact angle model γ(t) over
time in a semi-logarithmic plot. . . . . . . . . . . . . . . . . . 71

xii



xiii



Nomenclature

Latin Letters

Symbol Description SI Unit
a corrugation amplitude m
A cross-sectional area m2

A first inertial ODE coefficient kg.m−2

b breadth or 2D depth of a channel m
B second inertial ODE coefficient kg.m−3

Bo Bond number [–]
c centerline function m
C viscous ODE coefficient kg.s−1.m−2

D diameter m
D capillary term of the ODE Pa
De Dean number [–]
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Chapter 1

Introduction

1.1 Capillary Phenomena
The spontaneous wicking or imbibition of liquids into pores, ducts, or inter-
granular spaces owing to the surface tension action is regarded as capillary
flow [1]. It could happen upon the exposition of either a liquid-gas or an
immiscible liquid-liquid interface to a solid surface [2]. Capillarity is a ubiq-
uitous phenomenon with a wide range of occurrences and applications in
nature, medicine, common industries, and state-of-the-art technologies.

Sap ascent in xylem tubes [3] (Figure 1.1(a)), passive water collection by the
skin and leaves of desert fauna and flora [4–6], drinking strategies in hum-
mingbirds’ (Figure 1.1(b)), sunbirds’, and honeyeaters’ tongue [7–9], and
water retention and transport by sandgrouse [10] all constitute occurrences
of biocapillarity in nature. Moreover, some studies show that capillary force
might contribute to gecko’s adhesion mechanism [11, 12].

Capillarity-driven separation of blood plasma (Figure 1.1(c)) is a crucial ap-
plication in medicine [13–15]. The viscosity of bodily fluids is an important
indicator of a person’s health and thereby crucial to medical diagnosis. As
a result, capillary viscometers are extensively used to measure the viscosity
of blood and other bodily fluids via their wicking pace in a capillary [16, 17].

Capillary-inspired devices are growing more and more fashionable in many
engineering applications for their relative simplicity, low cost, and passive-
ness, especially in the field of microfluidics [9]. Paper towel and sponge
absorption mechanism (Figure 1.1(d) and (e)) [18, 19], absorbent fabrics
[20], spontaneous oil recovery in hydrocarbon reservoirs [21], soil sorptivity
[22–24], micro-decorated surfaces [12, 25], fluid management in outer space
[26, 27], catalysis [28], ink-jet printing [29], and self-lubrication [30] are only
few of many common or sophisticated industrial applications of capillarity.
Inverse capillary filling problem is also a method that is used to evaluate
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the inner profile of very thin ducts from the experimental data of meniscus1

progression within the capillary [31].

The motivation of this study was also initially fueled by bioproducts and
systems with complex physics with occurrences and applications in nature
and engineering. However, the existing literature on capillarity theories were
majorly on overly simplified geometries which cannot represent complicated
geometries observed in reality. In this regard, this work aims at improving
the capillary theories of complicated geometries to be used for providing
new insight into complex biophysics and industrial problems.

1.2 Young-Laplace Equation
The Young-Laplace equation, derived from the works of Pierre de Laplace2

and Thomas Young3 in 1805 [32, 33], relates the pressure difference on both
sides of an immiscible fluid-fluid interface (Pc) to the total curvature of the
surface (κ) and the surface tension in the interface (σ) as,

Pc = κσ. (1.1)

The total curvature of the surface is the sum of its principal curvatures.
Equation 1.1 can be written as Pc = σ/rcyl. for a cylindrical and Pc =
2σ/rsph. for a spherical surface; with rcyl. and rsph. representing the radius
of a cylindrical and a spherical surface, respectively. When introduced to a
duct, the formation of the meniscus results in a pressure drop which drives
a flow inside it; and the pressure difference Pc is often called capillary pres-
sure.

1.3 Jurin’s Height
In early 18th century, Jurin4 described the final height of the capillary
rise in equilibrium in the presence of gravity (denoted with LJ) for a tube

1Meniscus is Greek for crescent, as the curved interface in a capillary is reminiscent of
a crescent Moon.

2Pierre-Simon Marquis de Laplace (1749-1827), the prolific French polymath.
3Thomas Young (1773-1829), British polymath, also known for Young’s modulus in

solid mechanics.
4James Jurin (1684-1750), British physicist and physician.
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(a) (b)

(c)

(d) (e)

Figure 1.1: The occurrences and applications of capillarity in nature ((a),
(b)), medicine (c), and engineering ((d), (e)). (a) shows a parallel array
of xylems in a block of wood (reprinted from [3] with permission from ©
Springer-Verlag Berlin Heidelberg 1983). (b) demonstrates the eating mech-
anism of the hummingbird’s tongue, a curvature-driven (capillary) liquid
collection mechanism in animals (reprinted from [8] by © Cambridge Uni-
versity Press 2012). (c) real-time snapshots from the wicking of the blood
(red) and a buffer liquid (transparent) into a paper channel, resulting in
the plasma separation at the end of the channel (reprinted from [13] with
permission from the © Royal Society of Chemistry 2015). (d) depicts the sev-
eral stages of imbibition in a sponge over time, also causing lateral swelling
(reprinted with permission from [18] © by the American Physical Society
2017), while (e) shows the micro-structure of a sponge, a typical porous
medium (reprinted from [19], licensed CC-BY 4.0).

3



[34, 35] without the knowledge of the Young-Laplace equation. However, it
can be obtained by balancing the capillary pressure in Equation 1.1 with
the hydrostatic pressure Pg = ρgLJ , where ρ is the mass density of the
wicking liquid, g is the gravitational acceleration, and LJ is the length of
capillary rise within the channel in static equilibrium. Jurin’s height for a
flat channel (2D) with the constant width of h may similarly be calculated
and is presented alongside a simple straight tube (3D, axisymmetric) with
a constant radius of r, respectively below,

LJ = 2σ cos(θ)
ρgh

(2D), (1.2a)

LJ = 2σ cos(θ)
ρgr

(3D), (1.2b)

where θ is the air-liquid interface contact angle with the capillary wall in
equilibrium.

1.4 Washburn’s Theory
Bell and Cameron observed that the height of capillary rise inside a tube is
proportional to the square root of the time L ∝

√
t [36]. Later, Lucas and

Washburn were the first to formulate the dynamics of the capillary rise as
a square-root relation L =

√
Dt by describing the diffusion coefficient (D)

as a function of liquid and capillary properties [37, 38]. Hence, this quasi-
steady5 solution is usually referred to as the Washburn’s law or the diffusive
capillary regime [39]. Although we acknowledge this theory as the collective
result of the works of Bell, Cameron, Lucas, and Washburn (also known as
BCLW imbibition in the literature to show the chronological contribution
order [18, 39]), it is to be called Washburn’s equation hereinafter in this
work. Washburn’s solution is presented for both parallel plates (2D) and a
tube (3D), respectively below,

5A quasi-steady or quasi-static formulation is any static analysis of a moving system
neglecting the effect of inertia due to small rate of change of properties as the system
evolves in time.
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L̇ = h2Pc

12ηL
= σh cos θ

6ηL
−→ L =

√
σh cos θ

3η
t (2D), (1.3a)

L̇ = r2 Pc

8ηL
= σr cos θ

4ηL
−→ L =

√
σr cos θ

2η
t (3D), (1.3b)

where η is the dynamic viscosity of the wicking liquid and t stands for time.
This solution does not include the inertia, and the initial velocity at t = 0
is infinite, and it fails to describe the initial stages of wicking adequately.
This simplification has caused problems in many applications, usually when
gravity is present [40]. Nevertheless, it works well for long slender capillar-
ies, networks of small pores, or densely-packed fine granular media, where
the effects of inertia are minimal. However, it has also been shown that it
is not an acceptable model for various fibrous materials due to the omission
of inertia [41].

1.5 Bosanquet’s Theory
Shortly after Washburn’s work, Bosanquet introduced an ODE to describe
the dynamics of the capillary rise, taking inertia into account for the first
time [42]. Bosanquet equation for both flat channels (2D) and tubes (3D)
are given below, respectively,

ρ (LL̈+ L̇2) + 12η
h2 LL̇+ ρgL = 2σ

h
cos(θ) (2D), (1.4a)

ρ (LL̈+ L̇2) + 8 η
r2 LL̇+ ρgL = 2σ

r
cos(θ) (3D), (1.4b)

with ρ being the mass density of the wicking liquid. The first term (ρ (LL̈+
L̇2)) constitutes the effect of inertia in the process of capillary rise and dis-
tinguishes Bosanquet’s equation from Washburn’s (Equation 1.3). Various
works have investigated different regimes during the capillary rise. Tradi-
tionally, alongside the ubiquitous Reynolds number (Re, the ratio of the
inertial to the viscous forces), two other non-dimensional numbers describe
the regime transition in capillary flows, Ohnesorge number (Oh, the ratio
of the viscous to the inertial and surface tension forces) and Bond number
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(Bo, the ratio of gravitational to surface tension forces). These thresholds of
regime transition are roughly demarcated by the capillary and viscous time
scales (tc and tv, respectively) in the literature [43, 44]. Table 1.1 defines
these values for both flat channels (2D) and tubes (3D, axisymmetric), re-
spectively.

Table 1.1: Some frequently used non-dimensional numbers (Reynolds (Re),
Ohnesorge (Oh), and Bond or Eötvös (Bo) numbers) in relevant capillarity
problems together with the viscous (tv) and capillary (tc) time scales. The
viscous time scale and Oh/Bo ratio are traditionally associated with regime
transition in capillary flows in the literature, represented for a flow between
parallel sheets (2D) [45] and in a simple tube (3D) [43] with the hydraulic
radii of h and r, respectively.

Geometry Re Oh Bo tc tv
Channel (2D) uh/ν η/

√
2ρσh ρgh2/σ

√
ρh3/σ h2/ν

Tubular (3D) 2ur/ν η/
√

2ρσr ρgr2/σ
√
ρr3/σ r2/ν

The dominant force during the capillary rise changes over time, from a purely
inertial or inviscid regime (Quéré’s linear law, L ∝ t [40]) to a visco-inertial
regime (Bosanquet’s solution), then when inertial effects become insignifi-
cant, to purely viscous (diffusive, Washburn’s law, L ∝

√
t), and –if gravity

is present– eventually to a visco-gravitational regime that leads to a stand
at Jurin’s height if Oh/Bo ≪ 1, meaning that viscous forces are not strong
enough to stop the meniscus upon reaching Jurin’s height [44, 46]. Although
some earlier studies [40, 43, 45] have also proposed an initial L ∝ t2 regime
prior to Quéré’s linear law to fulfill the velocity continuity at t = 0, Das et
al. later stated that this regime could essentially be any power law in the
form of L ∝ tn (where n > 1) and not necessarily n = 2 [47]. Fries et al.
described these regime transition times in terms of the viscous time scale
(tv) [46].

1.6 Irregular Capillaries
To this point, all the capillaries discussed were regular capillaries which
only constitute canonical geometries of either uniform circular or very long
rectangular (2D) cross-sections. Although these models are vastly used for
many applications, they fail to accurately describe many other. Irregular
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capillaries can be classified into two groups, the ones with varying circular
or rectangular cross-sections (where the width of a channel or the radius
of the tube is not constant) and capillaries with a constant but nontrivial
cross-section (e.g., elliptical tubes [48]).

A special kind of irregular capillary, also known as Taylor rising, is the wick-
ing of the liquid within the narrow wedge-shaped space between to angled
surfaces and has been found to follow a universal L ∝ t1/3 law for the tempo-
ral evolution of the wetting front along the corner [49–51]. Moreover, when
deformable capillaries are at play, the geometry undergoes time-dependent
irregularities due to the elastocapillary coalescence, a more complicated phe-
nomenon that occurs due to the interaction of the surface tension of the
interface with deformable walls. Elastocapillary coalescence of parallel flex-
ible sheets [52–54] and supple rods (such as strands of hair [55]) are typical
examples. An extensive review of elastocapillarity applications was pre-
sented by Bico et al. [56]. In this study, we only focus on the capillary flow
in channels or tubes with varying width or radius and rigid, stationary walls.

Although Washburn’s equation was developed for a simple geometry (orig-
inally a tube, later also derived for a channel with a 2D simplification
[39]), it can be extended to describe wicking in irregular capillaries with
axial variations (hereafter corrugation) through the geometrical extension
of Hagen-Poiseuille equation [39]. The Hagen-Poiseuille equation relates the
geometrical and physical properties of the flow with the viscous pressure
drop, as presented below for flows between parallel plates (2D) and in tubes
(3D),

Q = bh2

8η
∂P

∂s

∫ h/2

−h/2

[
1 − 4

(
z

h

)2
]

dz = bh3

12η
∂P

∂s
(2D), (1.5a)

Q = πr2

2η
∂P

∂s

∫ r

0
R

[
1 −

(
R

r

)2
]

dR = πr4

8η
∂P

∂s
(3D), (1.5b)

where Q =
∫∫

A u dA is the volumetric flow, h and b are the width and depth
(or breadth) of a channel and r is the radius of a tube, with η representing
the dynamic viscosity of the fluid. Knowing that Q = bh(L)L̇ in a 2D and
Q = πr2(L)L̇ in a tubular (3D) geometry, the viscous pressure drop can be
found in irregular ducts (i.e., varying cross section, h = h(s) and r = r(s))
by integrating ∂P

∂s from Equation 1.5 over the wicking length (0 < s < L)
for both geometries,
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(a) Channel (2D) (b) Tube (3D)

Figure 1.2: Geometric dependence of the meniscus configuration on the wall
angle (β) and (a) the width of a channel (h(s)) and (b) the radius of the tube
(r(s)) at the meniscus (s = L). θ is the contact angle of liquid-gas interface
with the solid wall (0 ≤ θ ≤ π/2), R = 1/κ is the radius of the meniscus
(κ being the curvature of the meniscus), h(s) is the width of the channel
normal to its centerline and r(s) is the radius of a tube to its axis, and s
is the arc length coordinate of the centerline of the channel. For small wall
angles, the approximation of β ≈ tan β may be applied but not necessarily
required.

Pv = −12ηh(L)L̇
∫ L

0

ds
h3(s)

(2D), (1.6a)

Pv = −8ηr2(L)L̇
∫ L

0

ds
r4(s)

(3D). (1.6b)

The irregular capillary channels and tubes investigated in the literature are
predominantly only corrugated and not tortuous [39, 57], However, a single
tortuous (but not corrugated) capillary tube is investigated in [58]. Tor-
tuosity (τ) is a global property of a curve (as opposed to curvature, which
is a local property) that can be attributed to the axis or the centerline of
capillary tubes or channels. It is defined as the ratio of the arc length of
a curve to its end-to-end distance (τ ≥ 1). Tortuosity and curvature are
related geometrical properties [59]. The effects of tortuosity on the diffusion
of the porous media have also been studied in [60–62]. A schematic view
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of irregular channels and tubes is shown in Figure 1.2. The analysis of ir-
regular capillaries requires accounting for the rotation of the tangent to the
walls (angle β = tan−1 1

2h
′(L) for a channel and β = tan−1 r′(L) for a tube,

as shown in Figure 1.2(a) and (b), respectively), which results in the fluc-
tuations of the meniscus curvature since the contact angle is now modified
to be θ+ β. Consequently, the capillary pressure (Equation 1.1) changes at
every point in the capillary in clear contrast to flat geometries where the
shape of the meniscus and capillary pressure is preserved through the rise;
except during the very first moment of interface contact and gravitational
oscillations. The rate of the rise for a symmetric, irregular channel (2D) or
tube (3D) is given as,

L̇ = 2σ cos (θ + β(L)) − ρgLh(L)
12ηh2(L)

∫ L
0

dx
h(x)3

(2D), (1.7a)

L̇ = 2σ cos (θ + β(L)) − ρgLr(L)
8ηr3(L)

∫ L
0

dx
r(x)4

(3D). (1.7b)

Equation 1.7 (hereinafter extended Washburn’s equation) has been used
to study many applications of symmetric geometries, such as converging-
diverging stepped-wall [63, 64], sinusoidal [57], conical (V-shaped) and power-
law diverging tubes [39]. An important conclusion is that periodic deviations
from a flat geometry that keep the average width or radius constant always
hinder the wicking [65]. However, if no such constraint is applied, optimal
profiles may be proposed to beat Washburn’s square-root law [66, 67]. Alike
Washburn equation (Equation 1.3), the extended Washburn equation given
in Equation 1.7 suffers from an asymptotic singularity at t = 0 where inertial
effects dominate the capillarity rise.

1.7 Numerical Simulation of Capillarity
Various numerical methodologies were employed in the literature to evaluate
the validity of the theories of capillary filling, especially in intricate capil-
larity geometries. Arbitrary Lagrangian-Eulerian (ALE) [68], volume of
fluid (VOF) [69], interface tracking [70], and free-surface lattice-Boltzmann
(FSLB) [71] are among the most prominent methods. However, due to the
rapid change of dominant forces from inertial to viscous to capillarity, these
methodologies’ spatial and temporal resolution has to be extremely refined.
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This small resolution, in turn, increases the computational cost of the sim-
ulations, which limits the extent of the applicability of numerical solutions
to specific geometries. Additionally, to properly describe the capillarity rise
and interfaces, the spatial resolution in the numerical methods has to be
discretized to levels much smaller than the capillarity high in equilibrium
(i.e., LJ). This issue makes the generation of adequate discretization for the
solutions of the equations laborious and time-consuming.

In that sense, developing governing equations to describe the different regimes
in capillarity rise in channels and tubes with arbitrary geometries can be ben-
eficial to understand and design engineering devices in many fields. However,
to the best of our knowledge, a visco-inertial model that describes wicking
in geometrically irregular capillaries with both tortuosity (curved center-
line or axis) and corrugation (width or radius variation) is not available in
the literature. Although Lei et al. proposed a solution for only corrugated
tubes that including inertia, their solution does not consider the force ex-
erted by the capillary wall in the force balance, thereby failing to satisfy the
Young-Laplace equation at the meniscus [72]. Their solution critically fails
to confirm with the existing literature when the inertial terms are omitted
(i.e., the extended Washburn equation, Equation 1.7), resulting from the
negligence of the force exerted by the wall in the force balance, thereby fail-
ing to satisfy the Young-Laplace equation at the meniscus [72].

1.8 Thesis Outline
This thesis intends to introduce a procedure to analyze irregular capillary
channels (2D) and tubes (3D) with both corrugation and tortuosity, con-
sidering the inertial, viscous, and gravity effects. To do so, we propose
a geometrical extension to Bosanquet’s equation in irregular channels and
tubes, accounting for the effects of the dynamic contact angle (DCA). We
shall discuss further why the inclusion of inertia in the analysis of irregular
capillaries and deriving a geometrical generalization of the Bosanquet equa-
tion is much more crucial compared to regular capillaries, and is the only
means of investigations into the complexities regarding non-linear dynamics
and multiple equilibria involved in capillarity in complicated geometries.

The remainder of this thesis is organized as follows,
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Chapter 2 defines the problem of irregular capillaries, expresses the as-
sumptions required to develop the theory of capillarity in complicated geo-
metries, demarcates the limits of theory, and proposes a correction to the
traditional Hagen–Poiseuille equation.

Chapter 3 is a detailed analysis of the problem. Implementing the Reynolds
transport theorem on a generic volume element which eventually culminates
in an integro-differential equation, governing the wikcing in irregular capil-
laries.

Chapter 4 presents the results from the derived ODE in Chapter 3 for
some typical cases and compares them against their numerical and exper-
imental counterparts from the literature and VOF simulations specifically
conducted for this purpose. The effects of gravity and inertia on regime
transition and Jurin’s height are enlarged upon.

Chapter 5 will go over the concluding remarks as well as possible future
work recommendations.

11



Chapter 2

Problem Statement

To obtain the governing equation on the position of the meniscus or the
wicking length (L) in a general geometry for an inertial observer, the Young-
Laplace equation (Equation 1.1) must be satisfied at all times at the meniscus
which is the principal governing law of capillary phenomena. However, to
be able to derive a formulation for capillarity through the laws of continuum
mechanics, a set of simplifications and demarcations deems crucial, which
are to be discussed in this chapter.

It is assumed that the meniscus always preserves its circular cross-section
except at the very early stages of the rise where it transitions from flat to
circular in a very short time scale. In this regard, the radius of a tubular
capillary (r) or the half-width of a channel (h/2) must be smaller than the
capillary length λc =

√
σ/ρg, which is the ultimate length scale for the sur-

face tension to sustain a curved meniscus. The meniscus is considered not
to undergo distortions, surface waves, or rupture (during bubble or droplet
formation) due to inertial effects [73]. Any possible effects of gravity on the
configuration of the meniscus in inclined or tortuous capillaries is neglected.
Such effects are especially discussed and investigated in [74].

The wicking liquid is incompressible (at constant density, i.e., ∂ρ
∂t = 0 and

∇ρ = 0, independently). It is assumed that the flow within the capillary
is laminar and fully developed. Laminarity of the capillary flow is a pretty
safe assumption and the maximum Re observed in our simulated cases never
exceeded ≈ 300, which is much below the transition Re threshold to the tur-
bulence, i.e., Re ≈ 1500 for a channel (2D) and Re ≈ 2000 for a tube (3D)
[75]. To achieve a fully-developed flow, the capillarity has to have enough
entrance length (immersed below the free surface of the reservoir, Figure
3.1). The effect of the entrance length and developing flow in capillarity was
theorized in [76] and later verified against experiments in [43].

Laminarity and fully-developed flow dictate a parabolic velocity distribu-
tion across the capillary. This assumption is valid as long as the tortuosity
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or corrugation of the capillary does not induce secondary flows and vortices.
Dean’s number (De) is traditionally used to assess the significance of sec-
ondary flows owing to the centripetal acceleration in tortuous ducts [77].
An adverse pressure gradient is generated owing to the curvatures in the
channel, which drives secondary (non-trivial) flows that are superimposed
on the primary (trivial) flow. Another issue rises in the initial stages of
capillary rise, when an inertial regime of fluid flow is dominant. The as-
sumption of the parabolic velocity distribution requires a non-inertial flow,
nonetheless, we have assumed the velocity profile is parabolic even in the
inertial regime. A more rigorous investigation of this assumption requires
an asymptotic analysis of the inertial terms.
Dean number is described as De = Re

√
κcen.Dh, where Dh = 4A/p is the

hydraulic diameter of the duct (with A and p being the cross-sectional area
and wet perimeter, respectively) and κcen. represents the curvature of the
duct’s either centerline (2D) or axis (3D).

For planar curves such as the centerline of a channel (c(x) in Figure 2.1(a)),
the curvature is calculated as κcen. = |c′′|/(1 + c′2)3/2, where c′(x) = dc

dx and
c′′(x) = d2c

dx2 . For a tube, the hydraulic diameter is simply its diameter, and
for rectangular duct Dh = 2hsb/(hs + b). Since in a nearly 2D geometry
h ≪ b, the hydraulic diameter is Dh ≈ 2h. Dean’s number is represented
for both geometries below,

De = Re
√

2hκcen. (2D), (2.1a)
De = Re

√
2 r κcen. (3D). (2.1b)

When Dean’s number is below 40, the flow can be assumed to be unidirec-
tional [78]. At De ≈ 64 the secondary flows begin to manifest in mushroom-
shaped patterns [78]. Therefore, our theory is also valid for De < 40 − 60.

2.1 Rectification of Tortuous Channels and Tubes
The analysis of the tortuous ducts requires taking the rotation of the meniscus
into account. We assume the rotation of the meniscus is around the cen-
terline of a channel (2D) or the axis of a tube (3D). A channel or tube is
symmetric with respect to its true centerline or axis, respectively. We adopt
an approach in which we straighten the centerline and turn the hitherto-
tortuous channel into a longer, non-tortuous channel. The new channel is
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to be analyzed like a symmetric, corrugated channel onward under the con-
ditions mentioned above.

We called this approach the centerline rectification which is schematically
described in Figure 2.1. Although the theory applies to both channels and
tubes, we explain the centerline determination and rectification process for
channels and assume that a tortuous tube’s axis and radius function is
known.

2.1.1 Centerline Determination

Centerline rectification causes the normal width (h) to be different from the
horizontal width (hx(x) = |hx

l − hx
r |) in tortuous channels, as shown in Fig-

ure 2.1 (top-left panel). To find the centerline along which the rectification is
to happen, one may assume under low tortuosity that the centerline may be
approximated with the average of the wall functions, i.e., c(x) = (hx

l +hx
r )/2

(dashed line in Figure 2.1). The normal or rectified width may then be
found through finding the wall function values at contact points with the
meniscus, which is rotated at the angle α = tan−1 c′(x) with respect to the
x-axis,

h = 1
2

√
c′2(x) + 4

[
hx

l (x− δ) − hx
r (x+ δ)

]
, (2.2)

where δ = c′(x)|hx
l − hx

r |/2.

2.1.2 Voronoi Segmentation

The centerline obtained through the average of the wall functions is not the
true centerline when the channel is not symmetric, i.e., the centerline itself
is tortuous. The discrepancy grows larger as the curvature of the centerline
increases. The true centerline is the one whose normal is intercepted by both
wall functions at the same distance, posing it at the center of the orthogonal
transect at each point.

To find the true centerline that satisfies this condition at all points, we
shall resort to the Voronoi segmentation scheme. This method, alongside
its other variant, the Delaunay triangulation, has been widely used in the
determination of the width of rivers, a crucial parameter in the analysis of
their morphological evolution [79].
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We have adopted the Voronoi segmentation scheme and filtering procedure
described by A. Golly and J. M. Turowski to determine the true centerline
[80]. The discrepancy between the true (Voronoi-obtained) and average cen-
terlines are depicted in Figure 2.2 for four sinusoidal channels at different
phase shifts. The only channel in which both centerlines exactly match is
the symmetric channel, where ψ = π (not shown).

After finding the true centerline, the normal width of the channel (h) at
any point on the arc-length coordinate (s) may be calculated as the wall-to-
wall length of the orthogonal transect at the point in question.

Now all relations applied on non-tortuous, corrugated channels can be re-
formulated in terms of the arc length coordinates (s) and the normal width
of the channel (h), obtained by either Equation 2.2 for relatively low tortu-
osities or Voronoi segmentation scheme for a more accurate analysis. How-
ever, aside from the tortuosity, the corrugation challenges the assumption
of the unidirectional flow either, and the extend of such effect must be in-
vestigated. Although the Hagen-Poieseuille equation may be extended to
corrugated geometries (Equation 1.5), the validity of this relation is to be
put to examination in the following section.

2.2 Correction of the Hagen–Poiseuille Equation
in Corrugated Channels

The geometrically extended Hagen–Poiseuille equation (Equation 1.5) is
only valid at low Reynolds numbers and for very small wall deviations where
the lubrication approximation holds, so that it can be assumed that the flow
is unidirectional [66]. Consequently, the theory fails to accurately evaluate
the pressure drop at either higher Reynolds numbers or considerable corru-
gations of a duct. It underestimates the viscous shearing stress on the walls
resulting from neglecting other components of the velocity field normal the
primary flow direction. Thus, correction to the viscous pressure drop (Equa-
tion 3.15) is required in such conditions.

To investigate the discrepancy between the Hagen–Poiseuille and 2D Navier–
Stokes (solved with CFD) flow rate predictions, we exposed over 600 sym-
metric sinusoidal channels with geometries of different widths (h0), ampli-
tudes (a), and wavelengths (λ) to a constant end-to-end average pressure
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gradient (∆P/L) and compared the induced volumetric flow rate predicted
by Hagen–Poiseuille (QH−P) with that of the CFD simulation (QCFD). It was
observed that always QCFD ≤ QH−P, i.e., QCFD/QH−P ≤ 1. This ratio was
very close to one for almost flat channels and relatively low Reynolds num-
bers and decreased as the channel became more corrugated, or the Reynolds
number increased.

Multiple correlations combining the Reynolds number and the key geometric
parameters in corrugation (i.e., h0, a, and λ) were tried to show the function-
ality. The only satisfactory correlation came out of a novel dimensionless
number for corrugated channels, ζ, similar to Dean number for tortuous
ducts, defined as,

ζ = εRe = Re
√
ah/λ, (2.3)

where ε =
√
ah/λ is the dimensionless corrugation number. We now de-

fined a viscous correction factor as the ratio of the CFD to Hagen-Poiseuille
predicted flow rates ξ = QCFD/QH−P which is plotted against ζ in Figure
2.3. A homographic trend line of (1 + 0.085 ζ)−1 may also be used to ap-
proximately evaluate the ξ. In this study, the viscous correction factor was
evaluated only for channels (2D), as the cases we investigated in this paper
were only channel (2D) geometries. However, a similar viscous correction
factor may also be obtained for tubes (3D).

To modify the theoretical flow rate in corrugated channels obtained by the
Hagen-Poiseuille equation, the viscous pressure drop (Equation 1.6a) needs
to be increased by a factor of 1/ξ so that the induced flow rate is inversely
decreased,

Pv = −1
ξ

12ηh(L)L̇
∫ L

0

ds
h3(s)

(2D). (2.4)
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(a) Channel (2D)

(b) Tubular (3D)

Figure 2.1: Schematic of the rectification process. In (a), above is the orig-
inal tortuous periodic channel, and below the rectified channel is presented
within a single wall wavelengt, while (b) shows a tube and its rectified coun-
terpart. hx

l (x) and hx
r (x) are the functions describing the left and right

walls of the original channel, respectively; and c(x) is the centerline func-
tion c(x) = (hx

l + hx
r )/2 and the horizontal (unrectified) width is defined as

hx(x) = |hx
l −hx

r |. The original wall wavelength is λx, while it is increased to
λ after rectification (λx ≤ λ). Lx is the height to which the liquid has risen,
while L denotes the wicking length (Lx ≤ L). α is the angle of meniscus
rotation (cosα(s) = êx · ês). For tortuous tubes, it is assumed that the axis
and the normal radius are prescribed.
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(a) ψ = 0

(b) ψ = π/3

(c) ψ = 2π/3

Figure 2.2: The comparison of the average (continuous blue) and Voronoi
(dashed red) centerlines in for types of sinusoidal channels, (a) anti-
symmetric (ψ = 0), (b) shifted at ψ = π/3, (c) shifted at ψ = 2π/3. Note
that the two centerlines coincide at ψ = π phase shift, i.e., a symmetric (non-
tortuous) channel. Other geometric parameters constitute hx

0 = 0.5 mm,
ax = 0.2 mm, and λx = 2 mm.
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Figure 2.3: The viscous correction factor (ξ, the ratio of the CFD-obtained
predicted volumetric flow rate to that of the Hagen–Poiseuille equation) is
plotted against the newly defined variable ζ = εRe in a bilogarithmic scale,
which may also be estimated by a homographic trend line of (1+0.085 ζ)−1.
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Chapter 3

Analysis

We would like to derive the governing equation on the wicking length (L(t))
in irregular channels (2D) and tubes (3D). Figure 3.1 shows the schematics
for an irregular channel with the most important geometrical features and
forces. The geometrical features of the channel are shown in Figure 3.1(a),
where the effect of the corrugation and tortuosity is shown in the undula-
tions of the channel’s walls. In order to perform the force balance, it is now
convenient to take an arbitrary infinitesimal element in the capillarity, as
shown in Figure 3.1(b).

It is interesting to see that in addition to the contact angle (θ) between
the solid-fluid interface that drives capillarity rise in regular channels and
tubes, an additional geometrical factor appears due to the corrugation and
tortuosity of the channel or tube as denoted by the tangent angle β (see
Figure 3.1(b)).

Next, we perform the balance of forces in the differential frustum-shaped
volume element, as shown in Figure 3.1(c). Since the pressure force exerted
by the capillary wall is not as trivial as in a simple capillary (in which the
force from the wall equates the viscous friction force, as undertaken by Xiao
et al. [81]), especially in tortuous capillaries, it is much reasonable to write
the Reynolds transport theorem for a volume element, integrated over the
cross-section, using an Eulerian analysis of the liquid.

3.1 Reynolds Transport Theorem
That mentioned, we need to write the conversation laws on a generic volume
element. The Eulerian analysis of the fluid dictates volumetric flux at the
inlet and outlet cross-sections of the element. To write the balance of forces
for such volume, Reynolds Transport Theorem must be implemented which
is essentially a representation of Leibniz rule integration of integration for a

20



deforming and moving control volume. We expand the left-hand side (the
resultant force along the centerline or axis). A more basic form of the force
balance is presented in Appendix A, which is then simplified to,

dFs = 2bτds − bh
∂P

∂s
ds − ρbhgsds (2D), (3.1a)

dFs = 2πrτds− πr2 ∂P

∂s
ds− ρgsπr

2ds (3D). (3.1b)

The first term in Equation 3.1 (2b τ ds) represents the contribution of the
viscous force made by the wall in the centerline direction. τ is the shearing
stress exerted in the wall due to the changing velocity profile of the fluid
in the centerline direction. This stress will be related to the velocity gradi-
ent via a Newtonian model in the sequel. The second and third terms on
the right-hand side of Equation 3.1, represent the force made by changes in
the pressure and due to the gravitational force, respectively. Remarkably,
gs = g cosα(s) is the projection of the acceleration gravity vector in the
direction of the centerline, and cosα(s) = êx · ês.

Having made the force balance in the infinitesimal element, we now compute
the rate of momentum change via the Reynolds transport theorem. Written
for an infinitesimal element in the capillarity located at an arbitrary point
(s) in which the fluid has a velocity in the inlet and outlet u(s) and u(s)+ ∂u

∂s ,
respectively (see Figure 3.1(b)), is

dFs = ρ
∂

∂t

[
u(s)dV

]
+ ρ

[ ∫
A+dA

u2(s+ ds)dA−
∫

A
u2(s)dA

]
. (3.2)

In order to deal with average velocities over the cross-sections rather than
the velocity fields, knowing that the velocity field follows a parabolic distri-
bution, a square-velocity average coefficient (ϕ) may be defined as,

ϕ = 1
b h(s) ū2(s)

×∫ h/2

−h/2

9
4
bū2(s)

[
1 − 8

(
ℓ

h

)2
+ 16

(
ℓ

h

)4
]

dℓ = 6
5
, (2D) (3.3a)

ϕ = 1
π r2(s) ū2(s)

×∫ r

0
8π ū2(s)

[
1 − 2

(
R

h

)2
+
(
R

h

)4
]
R dR = 4

3
. (3D) (3.3b)
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By applying the square-velocity average coefficient to Equation 3.2 we can
remove the integration and work with the average velocities (ū) from here
onwards,

dFs = ρ
∂

∂t
[u(s) dV ] + ρϕ [ū2(s+ ds)(A+ dA) − ū2(s)A]. (3.4)

To obtain the rate of the momentum change within the element, we consider
the most general case where differential elements can expand. This case is
usually unnecessary for most elements but required for the last element
adjacent to the meniscus (s = L). The momentum change in Equation 3.2
can be expanded as

ρ
∂

∂t
[u(s)dV ] = ρ

(
u̇(s)dV + u(s)dV̇

)
. (3.5)

Next, we relate the volume expansion rate of the elements ( ˙dV ) to the stretch
rate of the differential arc length element (ḋs) below, and will later explain
how this must be dealt with,

˙dV = ∂

∂t
b [h(s)ds + 1

2
h′(s)ds2]

≈ b h(s) ḋs (2D), (3.6a)

˙dV = ∂

∂t
π [r2(s)ds+ rr′(s)ds2]

≈ πr2(s) ḋs (3D). (3.6b)

Knowing that the velocity of the fluid at the meniscus equals the velocity of
the meniscus itself, i.e., ux(L, t) = cosα(L)L̇(t), we express the continuity
condition as,

Q(t) = bh(L) L̇(t) = b h(0)u(0) = bh(s)ū(s) (2D), (3.7a)
Q(t) = πr2(L )L̇(t) = πr2(0) ū(0) = πr2(s)u(s) (3D), (3.7b)

which states that the volumetric flow rate (Q(t)) remains constant at all
sections and only varies with time. Using Equation 3.6 and the continuity
condition (Equation 3.7) and plugging in into Equation 3.5, the right hand
side of Equation 3.4 can be simplified into,

dFs = ρ

[
Q̇ds+Qḋs

]
+ ρϕ

[
(u+ ∂u

∂s
ds)2(A+A′(ds) − u2A

]
, (3.8)
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Figure 3.1: A schematic of the problem, a corrugated and tortuous channel
(2D) is exposed to a liquid reservoir. (a) The meniscus moves across the
centerline of the channel. A streamline beginning at the capillary mouth
(point 2) and ending at the meniscus just behind the interface (point 3) is
analyzed. The gravity is downward g = −g êx and cosα(s) = êx · ês, σ is
the surface tension and θ is the liquid-solid contact angle. x and y are fixed
spatial coordinated in the vertical and horizontal directions, respectively,
while s and ℓ being tangent and normal to the centerline, respectively. (b)
A generic volume element dV along a differential portion of the centerline
(ds) is also magnified with the corresponding dimensions (β being the wall
angle with respect to the centerline and h(s) is the normal, rectified width
of the channel). Acting stresses (shearing τ and normal P , as pressure) and
surface-averaged incoming and outgoing velocities (u) are depicted in (c).
The free surface at the atmospheric pressure (Patm.) is represented with a
triple-underlined ∇ symbol. A tortuous tube (3D) amy also be investigated
similarly, but not shown in this figure.
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where Q̇ being,

Q̇ = b L̇
d
dt
h(L) + bh(L) L̈ = b h′(L) L̇2 + b h(L) L̈ (2D), (3.9a)

Q̇ = 2πr(L)L̇ d
dt
r(L) + πr2(L)L̈ = 2πr′(L)L̇2 + πr2(L)L̈ (3D). (3.9b)

With substituting Q̇ from Equation 3.9 in Equation 3.8, and equating to
Equation 3.1 we arrive at an expansion of the force balance the volume
element along the centerline. By dividing both sides of the equation by the
area of the section, i.e., A(s) = bh(s) for a channel (2D) or A(s) = πr2(s)
for a tube (3D), a pressure balance expression is obtained. We want to
emphasize the necessity of this step, especially in the analysis of tortuous
channels. The differential force balance (Equation 3.1) cannot be integrated
over a curved line such as the centerline of a tortuous channel in the hope
of obtaining a global force formulation, as the force is a vector entity and
changes direction. However, by normalizing the force over the cross-sectional
area, the obtained pressure expression may be integrated over a curve, as
it is a scalar entity. Now by integrating the expression along the wicking
length (0 < s < L), for a 2D geometry, the equation takes the form of,

ρ
[
h′(L)L̇2 + h(L)L̈

] ∫ L

0

ds
h(s)

+ ρh(L)L̇
∫ L

0

ḋs
h(s)

+ ρϕh2(L)L̇2
∫ L

0

h′(s)
r3(s)

ds︸ ︷︷ ︸
inertial terms

+

2ρϕ
∫ L

0
u
∂u

∂s
ds︸ ︷︷ ︸

flux term

−
∫ L

0

2τ(s)
h(s)

ds︸ ︷︷ ︸
viscosity term

+
∫ L

0

∂P

∂s
ds︸ ︷︷ ︸

pressure term

+ ρg

∫ L

0
cosα(s) ds︸ ︷︷ ︸

gravity term

= 0,

(3.10)

and for a tubular (3D) geometry,
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ρr(L)
[
2r′(L)L̇2 + r(L)L̈

] ∫ L

0

ds
r2(s)

+ ρr2(L)L̇
∫ L

0

ḋs
r2(s)

+ 2ρϕr4(L)L̇2
∫ L

0

r′(s)
r5(s)

ds︸ ︷︷ ︸
inertial terms

+

2ρϕ
∫ L

0
u
∂u

∂s
ds︸ ︷︷ ︸

flux term

−
∫ L

0

2τ(s)
r(s)

ds︸ ︷︷ ︸
viscosity term

+
∫ L

0

∂P

∂s
ds︸ ︷︷ ︸

pressure term

+ ρg

∫ L

0
cosα(s) ds︸ ︷︷ ︸

gravity term

= 0.

(3.11)

3.2 Expansion of the Terms
The inertial, flux, viscosity, and pressure terms still need to be expanded.
In the following sections, we expand and explain each term so that a final,
simplified governing equation is eventually obtained.

3.2.1 Moving Boundary Term

The differential arc-length element stretch rate (ḋs) is zero everywhere ex-
cept for s = L, where ḋs = L̇, hence the integrals containing this term as,

∫ L

0

ḋs
h(s)

= L̇

h(L)
(2D), (3.12a)∫ L

0

ḋs
r2(s)

= L̇

r2(L)
(3D). (3.12b)

This approach is similar to Leibniz integral rule ( ∂
∂t

∫ L
0 f(s) ds = L̇ f(L) =∫ L

0 f(s) ḋs) and is responsible for differentiation with respect to varying in-
tegration limits. Neglecting this term results in the loss of the necessary
nonlinear velocity term (L̇2) in flat channels or tubes (where h′(s) or r′(s)
are respectively zero). A more detailed explanation of this term is presented
in Appendix B.

The integrals containing h′(s) or r′(s) can be simplified using h′(s) ds = dh
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or r′(s) ds = dr, and be written as,∫ L

0

h′(s)
h3(s)

ds = 1
2

[ 1
h2(0)

− 1
h2(L)

]
(2D), (3.13a)∫ L

0

r′(s)
r5(s)

ds = 1
4

[ 1
r4(0)

− 1
r4(L)

]
(3D). (3.13b)

3.2.2 Flux Term

The flux term is also calculated through part-to-part integration and apply-
ing the continuity equation (Equation 3.7),

2ρ
∫ L

0
u
∂u

∂s
ds = ρL̇2

[
1 − h2(L)

h2(0)

]
(2D), (3.14a)

2ρ
∫ L

0
u
∂u

∂s
ds = ρL̇2

[
1 − r4(L)

r4(0)

]
(3D). (3.14b)

3.2.3 Viscous Term

To obtain the viscous term, we need to derive the shearing stress for a
laminar, Newtonian fluid. Since u is the average velocity over the cross sec-
tion, the parabolic velocity distribution field (u) can be written for a 2D
geometry as u(s, ℓ) = 3

2 u(s)[1 − 4(ℓ/h(s))2], where ℓ is the normal coordi-
nates to the arc length coordinate (s). Also, for a tubular (3D) geometry
u(s,R) = 2 u(s)[1 − (R/r(s))2], where R is the radial variable normal to
the arc length coordinate. Substituting the shearing stress on the walls ad-
justed by the viscous correction factor (ξ), i.e., τ = (η/ξ) ∂u

∂ℓ |ℓ=h/2 (2D)
and τ = (η/ξ) ∂u

∂R |R=r (3D) respectively in the viscous term of Equations
3.10 and 3.11, we obtain,

Pv =
∫ L

0

2τ(s)
h(s)

ds = −12
ξ
ηh(L) L̇

∫ L

0

d
h3(s)

(2D), (3.15a)

Pv =
∫ L

0

2τ(s)
r(s)

ds = −8
ξ
ηr2(L) L̇

∫ L

0

d
r4(s)

(3D), (3.15b)

which yields the same results as the generalized Hagen–Poiseuille equation
(Equation 1.6) when ξ = 1.
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3.2.4 Pressure Term

The pressure term is equal to the pressure difference of the base of the
capillary and the point just behind the meniscus, which are points 2 and
3 in Figure 3.1, respectively. Assuming a single streamline stretching from
point 1 to point 2, one may deduce from Bernoulli’s principle that an increase
in the velocity of the liquid induces a dynamic pressure drop at the mouth
of the capillary. However, this is not considered Bosanquet’s assumptions,
and including such a term will produce inconsistencies with the traditional
Bosanquet equation (Equation 1.4) where no geometric irregularity exists.
A similar approach to that of Fries and Dreyer’s [46] based on Levine et
al. solution for the pressure field at the entrance [76] may be adopted to
consider such effect. However, this is beyond the scope of this study, for
we aim at obtaining the geometrically extended version of the Bosanquet
equation.

∫ L

0

∂P

∂s
ds = [Patm. − Pc] − [Patm. − 0] = −Pc. (3.16a)

The capillary pressure (Pc = σκ) is dependent on the curvature of the
meniscus. For regular capillaries, the curvature is constant. However,
the curvature of the meniscus undergoes variations in irregular capillar-
ies as the tangent to the wall changes direction (see Figure 1.2). The wall
slope fluctuations change the curvature of the meniscus, leading to fluc-
tuations in the capillary pressure (Equation 1.1). The implementation of
the the dynamic contact angle is through an exponential saturation model
cos θdyn.(t) = γ(t) cos θ, where γ(t) = [1−exp (−σt/ηH)] as described in [81]
for flat geometries. H is treated as an ad hoc constant in this study. For
irregular capillaries, we discern that the exponential saturation term (γ(t))
of the DCA must be applied on the whole interface angle term (θ + β(L))
and not merely the interface angle with the solid wall (θ). This condition
is required as the interface must start from a flat state (zero capillary pres-
sure) at t = 0 s regardless of the slope of the wall at that point (L = 0) and
gradually transform into a meniscus. The capillary pressure for a corrugated
channel (2D) or tube (3D) is then formulated as,

Pc = γ(t) 2σ
h(L)

cos (θ + β(L)) (2D), (3.17a)

Pc = γ(t) 2σ
r(L)

cos (θ + β(L)) (3D), (3.17b)
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where β = tan−1 1
2h

′(L) for a channel (2D) geometry and β = tan−1 r′(L)
for a tubular (3D) geometry (cf. Figure 1.2(a) and Figure 1.2(b)). More
details on the simulation and modeling of the dynamic contact angle are
presented in Appendix C.

3.2.5 Gravity Term

The gravity term is identical for both geometries and is equal to the hydro-
static pressure (Pg),

ρg

∫ L

0
cosα(s) ds = ρgLx. (3.18)

The gravity term is path-independent and is only a function of displacement
in the gravity direction (Lx). Other body forces such as electromagnetism
may also be treated similarly. Since cosα(s) is only present in the gravity
term, one may draw the important conclusion that the wicking length (L)
will be independent of tortuosity or capillary inclination in the absence of
gravity.

3.3 Governing ODE
This approach transforms Equations 3.10 and 3.11 into the Young-Laplace
equation, which relates the pressure jump at the interface with the surface
tension and the curvature of the interface as follows,

Pc = Pi + Pv + Pg = σκ, (3.19)

where Pc, Pi, Pv, and Pg are the capillary, inertial, viscous, and gravity
(hydrostatic) pressure terms. To solve Equation 3.19 for the wicking length
(L), we would like to reorder the expanded equation with respect to L̈, L̇2,
L̇, the surface tension and the gravity as,

A(L) L̈(t) + B(L) L̇2(t) + C(L) L̇ + G(L) = D(L), (3.20)

where A(L) L̈(t) and B(L) L̇2(t) are the inertial terms, C(L) L̇ is the viscous
term, G(L) and D(L) represent the gravity and capillary (surface tension)
terms, respectively. Equation 3.20 is an integro-differential equation whose
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coefficients are given below for a channel (2D) geometry,



A2D(L) = ρh(L)
∫ L

0

ds
h(s)

,

B2D(L) = ρ

[
1 + h′(L)

∫ L

0

ds
h(s)

+ 3
5

(
1 − h2(L)

h2(0)

)]
,

C2D(L) = 12
ξ
ηh(L)

∫ L

0

ds
h3(s)

,

D2D(L) = γ(t) 2σ
h(L)

cos (θ + β(L)) ,

G2D(L) = ρg

∫ L

0
cosα(s) ds,

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21e)

and for a tubular (3D) geometry,

A3D(L) = ρr2(L)
∫ L

0

ds
r2(s)

,

B3D(L) = ρ

[
1 + 2r(L)r′(L)

∫ L

0

ds
r2(s)

+ 2
3

(
1 − r4(L)

r4(0)

)]
,

C3D(L) = 8
ξ
ηr2(L)

∫ L

0

ds
r4(s)

,

D3D(L) = γ(t) 2σ
r(L)

cos (θ + β(L)) ,

G3D(L) = ρg

∫ L

0
cosα(s) ds.

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.22e)

This non-linear integro-differential equation (Equation 3.20) would be noto-
riously difficult to solve analytically. However, it can be solved numerically
through linear interpolation of the non-linear integral functions given in
Equations 3.21 and 3.22, thereby converting the non-linear integro-differential
equation to a second-order non-linear ODE whose coefficients are known at
any L. The obtained non-linear is then solved via Runge–Kutta algorithm.

The full-term equation represents the extended Bosanquet equation for ir-
regular channels and tubes. Neglecting the inertial terms (A(L) L̈(t) and
B(L) L̇2(t)) yields the extended Washburn equation (Equation 1.7, but also
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considering the effect of tortuosity or inclination). The equation is also sim-
plified to an inclined symmetric capillary once α is constant (cosα(s) =
cosα), conforming with the flat inclined tube studied in [82]. While remov-
ing the viscous term (C(L) L̇), leaves out all the dynamic terms and expresses
the state of static equilibria when the gravity is present,

LJ,i = 2σ cos(θ + β(L))
ρgh(L)

(2D), (3.23a)

LJ,i = 2σ cos(θ + β(L))
ρgr(L)

(3D), (3.23b)

where LJ,i is any possible solution for Jurin’s height. We discuss later on
that the Jurin’s height (LJ = limt→∞ L(t)) is path-dependent, and the even-
tual state of static equilibrium can only be found through solving the full
dynamic system for given initial conditions. Thus, contrary to simple geo-
metries (Equation 1.2), no single static-equilibrium solution can necessarily
be presented for irregular capillaries regardless of the conditions mentioned
above. The numerical solution to the derived ODE is presented in the fol-
lowing section.
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Chapter 4

Results and Discussions

4.1 Verification with Computational Fluid
Dynamics

To evaluate the accuracy of our theoretical analysis, culminating in Equa-
tions 3.21 and 3.22, and to validate the numerical implementation of the
non-linear integro-differential equation (Equation 3.20), we recourse to other
numerical methods, cases from the literature, as well as experimental data.

To effectively simulate the capillary action within computational fluid dy-
namics simulations (CFD), both air and the wicking liquid are to be mod-
eled and solved together, i.e., a multi-phase fluid simulation, to satisfy the
Young-Laplace equation (Equation 1.1) on the free surface at the meniscus
and to maintain the free surface of the reservoir at the atmospheric pres-
sure (Patm.). We have used Ansys® Academic Research Fluent, Release 19.2
Volume of Fluid (VOF) software to solve the Navier-Stokes equations for
the multi-phase fluid simulations. As the VOF simulation are inherently
multiphase, the air must be essentially simulated, with the properties of
ρ = 1.225 kg.m−3 and η = 1.79 × 10−5 kg.m−1.s−1.

We used an explicit scheme for the VOF formulation in ANSYS fluent,
coupled with a Level Set Method (LSM) for enhanced interface modeling.
The body forces (such as gravity, if present in the problem) are included
explicitly. A volume fraction cut-off threshold of 10−6 is used to demarcate
the phases. The scaled resiudals must be monitored for the convergence
of each step. Using a coupled solver, the convergence criteria (10−3 in our
VOF simulations) must all be satisfied for each time step so that it is fully
completed and the iterations are terminated. These criteria include continu-
ity, x−velocity, y−velocity, volume fraction, and the level-set function. The
convergence of the continuity is usually the hardest to achieve. The scaled
residuals of the continuity equation normally start at 10−2 and end up 10−5

when the convergence criterion of 10−3 is met.
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Apart from the criteria stated above, in order to obtain reliable results from
numerical simulations, the following specific conditions were also followed:

4.1.1 Grid Independence and Meshing Considerations

a convergence criterion of 1% was used to determine the required general
grid resolution. The spacing of the first layer of the grid also satisfied the
y+ ≤ 1 condition to capture the boundary layer on the no-slip walls effec-
tively. y+ is a dimensionless value calculated as y+ = √

τwρ/η, where τw is
the shear stress of the wall.

Furthermore, the three crucial geometrical cell shape parameters of skew-
ness, aspect ratio, and squish were monitored so that the desirable accuracy
is achieved [83]. A typical case of mesh convergence study is given in Ap-
pendix D.1.

4.1.2 Time Step Independence:

since the VOF simulations are inherently transient (time-dependent), the
results must be independent of the temporal discretization. In this regard,
the CFL6 condition has been limited to 0.2, which is a safe threshold. For
most cases, a fixed time step size of ∆t = 5 × 10−6 s was deemed to be
sufficient for this purpose. However, we discerned that sometimes smaller
time steps were required due to meniscus perturbations, especially at narrow
bottlenecks.

4.1.3 Domain Independence

to demarcate a finite domain of solution which is computationally reason-
able, a number of artificial boundaries were required. These boundaries
that define the outer borders of the solution domain might bring numerical
artifacts to the solution. Hence, the boundaries were situated far enough
from the region of interest, i.e., inside the capillary, so that the rise of the
meniscus was not affected. We used a similar 1% convergence criterion as
the outer boundaries were moved further to assess the convergence of the
solution. Additionally, the liquid reservoir must be broad enough (∼ 10
times as broad as the capillary itself) so that the height of the free surface
does not considerably change owing to the wicking inside the capillary.

6Courant–Friedrichs–Lewy
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Moreover, by constraining a contact angle of θ = 90◦ on the outer surface
of capillary walls (also with slip condition), there is no need for delimiters
which are used in experimental and numerical studies to prevent meniscus
formation outside of the duct [43, 84]. A detailed explanation of a domain
convergence study is presented in Appendix D.2.

Figure 4.1(a) depicts several snapshots for a capillary rise within a symmet-
ric sinusoidal channel modeled with VOF simulations. It can be seen from
the figure that as time went by, the meniscus rose in the capillary. The red
domain represents the liquid, while the blue domain represents air. Figure
4.1(b) shows the mesh inside the channel where wicking occurs. The struc-
tured mesh seamlessly transitions to higher refinement on the no-slip walls
to satisfy the desired y+ condition. Moreover, due to meniscus progression
along the centerline, the mesh refinement must be higher than its perpendic-
ular direction to capture the moving interface more effectively. Figure 4.1(c)
shows the structured mesh within a tortuous channel and demonstrates the
rotation of the mapped grid with respect to the tortuous centerline. Outside
the capillary, a much bigger and irregular mesh was used for the air domain.

4.2 Validation of the VOF
Although the verification of the simulation is paramount, the results still
need to be validated against experimental data to show that the simulations
are, to some extent, the representation of reality. In this regard, we would
like to benefit from the oft-cited published results of capillary rise in cir-
cular tubes under microgravity by Stange et al. [43]. In their study, they
also investigated the effects of the dynamic pressure drop and the depth
of immersion (L∗), none of which are included in our theoretical analy-
sis but inherently included in the VOF simulations. In their investigation,
Stange et al. [43], used silicone fluid (SF) as the wicking liquid with a
surface tension of σ = 0.0169 N·m−1, contact angle θ = 32.5◦, viscosity
η = 0.818 × 10−3 kg/m.s, and density ρ = 818 kg/m3).

The comparison of the VOF results against those of Stange et al. is shown
in Figure 4.2. Two simulations were performed with tube diameters of d = 4
mm and d = 9 mm using a different depth of immersion of L∗ = 10 mm and
L∗ = 50 mm, respectively. The experimental data is shown with ◦ and △
markers. The homologous simulations results are shown with solid lines.
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We observed that the simulations results follow the experimental data closely
with a maximum discrepancy less than 4% in both cases for the meniscus’
height with time (L(t)). We also point out how the VOF simulations pre-
dict a zero slope at t = 0, which is in agreement with the trends of the
experimental data. The discrepancy is thought to be at least in part due
to a different dynamic contact angle theory used by Stange et al., where
21◦ ≤ θdyn. ≤ 44◦ [43]. To replicate the results, the equilibrium contact
angle was discerned to be the average of this value in our simulations. The
close agreement between the experiments and VOF simulations gave us con-
fidence in our numerical set up, which we will use to assess the accuracy of
the theory developed in Chapter 3.

The maximum discrepancy of the results of the height of the meniscus with
time (L(t)) for the experiments and our VOF simulations is less than 4%
in both cases. We may now deduce that the simulations are fairly accurate
and can be used as the verification criterion for the theory developed in the
previous section.

4.3 Results
To present the results, we investigate three 2D typical sinusoidal channels
(anti-symmetric, shifted, and symmetric) at a lower and higher Reynolds
ranges, totaling six cases. As the capillary rise is theoretically identical
for all similar channels and wicking liquids, the Reynolds number is only a
function of the geometry of the channel. In order to divide the cases into
two categories of low and high Reynolds numbers, we assumed two sets of
channels with the average distance between the walls of hx

0 = 0.3 mm and
hx

0 = 1.0 mm at three phase shifts of ψ = 0 (anti-symmetric), ψ = π/4, and
ψ = π (symmetric). A more detailed specification of the geometry for each
case and its corresponding non-dimensional numbers is presented in Table
4.1. The left and right wall functions of a generic sinusoidal channel (hx

l and
hx

r ) and its un-rectified width (hx) are defined below,
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hx
l (x) = hx

0 / 2 + ax sin (2π x

λx
), (4.1a)

hx
r (x) = −hx

0 / 2 + ax sin (2π x

λx
+ ψ), (4.1b)

hx (x) = hx
l (x) − hx

r (x). (4.1c)

To assess each case through non-dimensional numbers, as per literature,
the average of the maximum and minimum rectified widths of the channel
(h̄ = (hmax +hmin)/2) is designated as the characteristic length of a periodic
corrugated channel [85].

Moreover, since the problems are transient, the velocity of the wicking liquid
varies with time. One solution is to replace the wicking rate in the Reynolds
number with a capillary characteristic velocity vc =

√
2σ/ρh̄ [45]. However,

the Reynolds number obtained this way represents a very short initial stage
when the viscous forces are negligible, and the capillary and inertial forces
predominantly govern the wicking, thereby yielding high Reynolds numbers
(as high as ∼ 300). Although we learn that even at the maximum velocity,
the wicking is still below the turbulence threshold (∼ 1500 for flows between
parallel plates), it cannot be used in the assessment of the necessity and the
evaluation of the viscous correction coefficient, as the wicking rate consider-
ably drops after the viscous time scale (tv). For the sake of consistency, the
Reynolds number presented in Table 4.1 is calculated based on the temporal
average of the wicking rate (L̇) over the time span of tv < t < 2 tv to cover
a period of visco-inertial capillary regime [46].

4.3.1 Lower Reynolds Results

Let us now focus on the results obtained for the channels with low Reynolds
numbers (∼ 30 − 40 as detailed in Table 4.1). We notice that the three
channels investigated (Cases 1−3) in this regime had Dean’s number between
∼ 0 − 30, and no viscous correction factor was used. Figure 4.3 shows the
wicking length (L) vs. time and wicking rate (L̇) vs. position in the channel
for all three cases in Table 4.1. In Figure 4.3 results for VOF simulations
(continuous lines), extended Washburn (dashed lines), extended Bosanquet
(dotted lines), and extended Bosanquet with dynamic contact angle (DCA)
(dot-dashed lines) are shown.
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First, let us describe the results obtained with VOF for all simulations, as
they will be used to assess the accuracy of the other approaches. It is evi-
dent from the meniscus position vs. time and the rate of meniscus rise with
the position that the corrugations of the channels affected these quantities.
Remarkably, the rise of the meniscus showed oscillatory values that corre-
sponded with the geometrical fluctuations of the channels. See Table 4.1 for
more details on the specifications of each case. Moreover, it is noteworthy
to mention that although case 3 is purely corrugated, case 1 is not purely
tortuous. A sinusoidal anti-symmetric channel does not have an exactly
constant width, hence small fluctuations in its wicking rate (Figure 4.3(b)).

At the time t = 0 s, VOF simulations predicted a zero rise rate since inertial
effects were considered when the Navier-Stokes equations were solved. This
effect also manifested in the position of the meniscus vs. time, where the
slope of the plots (Figure 4.3 left panels) is zero when t = 0 s.

Next, we focus our attention on the results obtained for the Ex. Bosanquet
+ DCA model. This model was the one closest to the VOF simulations,
matching most of the characteristics of the solution. The Ex. Bosanquet +
DCA solution matches well the VOF solution at t = 0 s in meniscus rise, and
therefore, the meniscus position with time is accurately predicted (discrep-
ancies are always less than ∼ 2% for all cases). Next, the Ex. Bosanquet
solution followed although the discrepancies grew compared to VOF.

In particular, the use of a constant contact angle increases the rate of ris-
ing of the meniscus, overestimating it over the first 2 mm of the capillary
(see Figure 4.3 right panels). This effect was magnified at lower Reynold
numbers and the discrepancy between VOF and Ex. Bosanquet increased
as Re decreased. We finally discuss the results obtained with the for Ex.
Washburn for Cases 1 − 3. The solutions found with this approximation
were the ones with the largest errors, which could grow up to ∼ 30% on
the meniscus position vs. time. This error is due to the singularity of the
solution when t = 0 s since inertial effects are not considered. As discussed
above, this issue manifests in an infinite wicking rate (see Figure 4.3 right
panels), which tends to decrease with time. However, as can be seen in the
figures, the differences in the wicking rate can extend for several undulations
of the channels.
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(a) Capillary rise in a typical symmetric sinusoidal channel
simulated with VOF

(b) Mesh configuration
for a symmetric channel

(c) Mesh configuration
for a tortuous channel

Figure 4.1: The outlook of the VOF simulations, (a) shows multiple snap-
shots of the capillary rise in a sample case (Figure 4.3(c)) over time. Various
configurations of the meniscus may be observed at different stages and wall
angles. (b) demonstrates the spatial discretization of the domain through
structured meshing in the same symmetric geometry, and (c) shows the
structured mesh grid in a tortuous channel. The grid must rotate with the
tortuous centerline to conform to the meniscus orientation best. Mesh reso-
lution is relatively richer on the no-slip walls (internal surfaces of the chan-
nel) and at the bottlenecks to capture relatively higher field gradients.The
outer surface of the tube is slippery and is assigned a θ = 90◦ contact angle,
thereby exerting no capillary rise outside of the capillary.
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Figure 4.2: Comparing the VOF simulation results to the experimental data
published by Stange et al. [43] The two cases constitute two cylindrical
capillaries with different diameters (d) and depth of immersion (L∗), filled
with a silicone fluid (SF 1.00) as the wicking liquid (σ = 0.0169 N·m−1,
θ = 32.5◦, η = 0.818 × 10−3 kg·m−1·s−1, and ρ = 818 kg·m−3). (b) A
snapshot from the contours of SF 1.00 volume fraction. The outer surface of
the tube is slippery and is assigned a θ = 90◦ contact angle, thereby exerting
no capillary rise outside of the capillary.
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(a) L(t) – Case 1 (ψ = 0) (b) L̇(L) – Case 1 (ψ = 0)

(c) L(t) – Case 2 (ψ = π/4) (d) L̇(L) – Case 2 (ψ = π/4)

(e) L(t) – Case 3 (ψ = π) (f) L̇(L) – Case 3 (ψ = π)

Figure 4.3: Results of the wicking length variations with time (L(t), left
panels, (a),(c), and (e)) and the wicking rate with the meniscus position
(L̇(L), right panels, (b),(d), and (f)) in lower Reynolds range (Re ∼ 30−40)
for the extended Washburn (dashed blue lines), extended Bosanquet (with
γ(t) = 1, dotted red lines), and extended Bosanquet + DCA (Equation
3.21, dot-dashed black lines) compared against VOF simulations (continuous
orange lines) in three sinusoidal capillaries, (a) case 1, anti-symmetric (ψ =
0), (c) case 2, shifted at ψ = π/4, (e) case 3, symmetric (ψ = π).
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(a) Anti-symmetric(ψ = 0). (b) Shifted (ψ = π/4).

(c) Symmetric (ψ = π). (d) Anti-symmetric(ψ = 0).

(e) Shifted (ψ = π/4). (f) Symmetric (ψ = π).

Figure 4.4: Results of the wicking length variations with time (L(t), left
panels, (a),(c), and (e)) and the wicking rate with the meniscus position
(L̇(L), right panels, (b),(d), and (f)) in lower Reynolds range (Re ∼ 50−70)
for the extended Washburn (dashed blue lines), extended Bosanquet (with
γ(t) = 1, dotted red lines), and extended Bosanquet + DCA (Equation
3.21, dot-dashed black lines) compared against VOF simulations (continuous
orange lines) in three sinusoidal capillaries, (a) case 4, anti-symmetric (ψ =
0), (c) case 5, shifted at ψ = π/4, (e) case 6, symmetric (ψ = π).
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Table 4.1: The specifications of 6 cases studied and verified against VOF simulation is Figures 4.3 and 4.4.
The geometrical parameters (hx

0 , ax, λx, and ψ) are non-rectified and [–] denotes a non-dimensional parameter.
As Reynolds and Dean numbers are time-dependent, their temporal average in the interval of tv < t < 2 tv is
represented as Re and De. Please note that the reported Re is calculated after the application of the viscous
correction (ξ). However, the viscous correction itself is obtained based on Re when no correction is applied. H is
the ad hoc DCA constant.

hx
0 ax λx ψ Re De Oh ξ H

Case Results Type (mm) (mm) (mm) (rad) [–] [–] ×10−3[–] [–] (mm)
1 Figure 4.3(a) Anti-symmetric 0.30 0.20 2 0 37.8 29.0 5.04 1.00 200
2 Figure 4.3(c) Shifted 0.30 0.15 2 π/4 36.2 24.4 4.94 1.00 250
3 Figure 4.3(e) Symmetric 0.30 0.10 2 π 31.7 0 4.83 1.00 300
4 Figure 4.4(a) Anti-symmetric 1.00 0.30 6 0 69.5 42.9 2.70 0.98 900
5 Figure 4.4(c) Shifted 1.00 0.25 6 π/4 56.7 31.2 2.68 0.71 3000
6 Figure 4.4(e) Symmetric 1.00 0.15 6 π 52.0 0 2.65 0.65 1400
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4.3.2 Higher Reynolds Results

We now discuss the remaining Cases 4−6, which presented higher Reynolds
numbers (Re∼ 50 − 70). Here, it is worth mentioning that the Hagen–
Poiseuille correction has to be used, and the coefficients were described in
Table 4.1 along with other geometrical and non-dimensional numbers. Fig-
ure 4.4 shows wicking length vs. time and wicking rate vs. position results
for Cases 4 − 6.

Similar to the previous cases, the VOF solution and the Ex. Bosanquet
+ DCA model are in very close agreement with each other. The meniscus
length differences between these two techniques are less than 2%, as can be
seen in the left panels of Figure 4.4. When the wicking length behavior was
examined, we also found an excellent agreement for Cases 4 and 5, while for
Case 6, larger differences appeared. These differences diminished with the
undulation of the channel and were almost zero at t = 40 s. These differ-
ences are detailed discussed in Section 4.4. Nevertheless, these differences
in the wicking rate did not significantly affect the wicking length, which was
predicted within a 2% error compared to VOF. Both Ex. Bosanquet and
Ex. Washburn solutions have much larger discrepancies than VOF, which
were attributed to the same reasons as in Cases 1-3.

Overall, while all solutions capture fluctuations in the wicking rate and
wicking length due to the geometrical features of the channels, differences
exist due to the different approximations and considerations in the govern-
ing equations. At the early stages of the wicking, it has been shown that
inertial effects and the dynamic contact angle are more critical to predict
the wicking length vs. time accurately. Remarkably, the Ex. Bosanquet
+ DCA model captures all features of the VOF simulations while requiring
only modest computational power.

4.3.3 Effect of Gravity

Having analyzed the proposed solutions in capillaries with intricate geo-
metries, we now study the solution under the effect of gravitational forces.
To this end, we took the capillarity geometry used in Case 5 and detailed it
in Table 4.1. Figure 4.5 shows the results of the extended Bosanquet equa-
tion compared against VOF simulations in the wicking of water with a zero
and downward 9.81 m·s−2 gravitational acceleration in the same geometry
as in case 5 in Table 4.1.
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Figure 4.5: The effect of gravity on the capillary rise of water (with afore-
mentioned properties) in a tortuous and corrugated channel (case 5 in
Table 4.1, Figure 4.4b, schematically shown with a red, dashed center-
line). Two cases with the same geometry are represented with a downward
(g = 9.81 m · s−2) and zero gravity. The case with the downward gravity
achieves equilibrium at the Jurin’s height (LJ = 12.3 mm, where Pc = Pg)
after slight gravitational oscillations. The Ex. Bosanquet equation + DCA
(Equation 3.21) is shown in black dashed and dotted lines while the re-
sults of the VOF simulations are represented in solid, colored lines. Oh =
2.68 × 10−3, Bo = 0.139.
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The meniscus height progression, Lx, as a function of time is depicted in
Figure 4.5 for the two cases. The case with downward gravity (g = 9.81
m·s−2), plateaus at the Jurin’s height (LJ = 12.3 mm for both solutions)
after slight gravitational oscillations with an overshoot of Lx

max/LJ = 0.05.
The low ratio of Oh/Bo = 0.02 ≪ 1 describes the dominance of the viscous
forces and rapid damping of gravitational oscillations around Jurin’s height.
Oscillations can be seen for both VOF and extended Bosanquet solutions
when gravity went downward.

Gravity acts like a body force, i.e., the weight of the body of the wick-
ing liquid. However, it does not appear so in the obtained ODE (as opposed
to Lei et al. formulation [72]), for the pressure forces of the walls are a
function of the weight of the body of the liquid. We concluded that the
effect of gravity shows up as the hydrostatic pressure (Pg) in the governing
ODE (Equation 3.19). This effect also means that when the dynamic pres-
sure terms (viscous and inertial) are absent, the capillary and hydrostatic
pressure balance out, yielding the static equilibrium. Since the hydrostatic
pressure is a function of projection of the wicking length on the direction of
gravitational acceleration (Pg = ρgLx).

4.3.4 Tubular Geometries

Thus far, the 2D channel geometry formulations represented in Equation
3.21 are verified with our VOF simulations. Similarly, this is also necessary
to our 3D (tubular) formulation, delineated in Equation 3.22. In this regard,
we would like to compare the interface tracking results for water flowing in
a stepped-wall tube obtained by Erickson et al. [70] with our theoretical
solution for such an irregular tube. Figure 4.6(a) shows the capillary rise
of a diverging-converging and a converging-diverging stepped-wall tube and
compares the extended Erickson et al.’s interface tracking solutions against
extended Washburn and extended Bosanquet solutions (no dynamic contact
angle included). The points where the extended Washburn and Bosanquet
solutions cross each other are magnified in the Figure 4.6(b) I and II.

Figure 4.6(b) III shows where inertial (extended Bosanquet) and non-inertial
(extended Washburn) for both tubes meet at the same length (L = 86.1 mm)
but at different times. The inertial solution (extended Bosanquet) arrives at
this length sooner (50.3 s), followed by the Erickson et al.’s interface track-
ing solution (51.8 s), and then that of extended Washburn, excluding inertia
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(a) Comparison of the results with Erickson et al. (2002)

(b) Three magnified regions of interest

Figure 4.6: (a) Comparison between the extended Bosanquet equation and
extended Washburn equation (no inertia) and the results obtained by Er-
ickson et al. [70] using interface-tracking solution on a pair of symmetric
converging-diverging and diverging-converging stepped-tubes. Three spe-
cial regions of interest (I, II, and III) are magnified in (b) to clearly dis-
tinguish between different sets of results. The flow parameters are given
as rmax = 50 µm, rmin = 25 µm, σ = 0.03 N·m−1, θ = 30◦, η = 0.001
kg·m−1·s−1, and ρ = 1000 kg·m−3. The transition from one radius to an-
other smoothly occurs with a 0.5◦ taper angle. The stars (⋆) depict the
points where inertial (Ex. Bosanquet, Equation 3.22 with γ(t) = 1) and
non-inertial (Ex. Washburn, Eqaution 1.7b) solutions meet.
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(52.4 s).

This behavior could seem counterintuitive, as the inertia might mistakenly
be perceived as a hindering force. Although it is so at the beginning of the
rise, when the wicking fluid is yet to develop velocity, inertia also increases
the response time of the liquid when the viscous force grows stronger. This
effect can be observed in Figure 4.6(b) I and II, for a diverging-converging
and a converging-diverging stepped-wall tube, respectively. The sharper
curve in the extended Washburn solutions is compared to a much smoother
transition in the extended Bosanquet solution owing to the effect of iner-
tia, resulting in faster meniscus progression of the meniscus of the inertial
solution.

4.4 Discussion
We have presented the results and compared them against our VOF sim-
ulations and the literature. Although the solution to the proposed ODE
(Equation 3.20) is in good agreement with the simulations, a level of dis-
crepancy persists in most cases. These discrepancies are due to various
phenomena inherently included in the VOF simulations but neglected in
the theory, as our assumptions are similar to those of Bosanquet. These
include the dynamic pressure drop at the bottom of the capillary, the ef-
fect of the depth of immersion (L∗), and the undeveloped velocity profile at
the entrance. Other phenomena include the 2D or axisymmetric nature of
the velocity field of the wicking liquid in the corrugated channels or tubes,
which is simplified to a 1–D flow through the Hagen–Poiseuille equation in
the theory, the violation of the no-slip condition and parabolic velocity dis-
tribution close to the meniscus, the changes in the shape of the meniscus,
and the centripetal acceleration in tortuous ducts.

Nevertheless, the differences between the meniscus positions as a function
of time were in excellent agreement between the extended Bosanquet equa-
tion and VOF simulations. In the absence of gravity, the differences were
less than 2% for a wide range of channels with different geometries and ex-
hibiting different Reynolds and Dean’s numbers (see Table 4.1 for specific
details). When gravity was present, we observed that Jurin’s height was
in excellent agreement between VOF and extended Bosanquet, and the two
solutions presented oscillations in the meniscus height due to the interplay
between inertial effects and viscous forces.
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4.4.1 Dominant Forces during Capillary Rise

As discussed in the introduction, the dominant forces at play during the
wicking do not stay the same. Equation 3.20 is the governing equation of
the meniscus position (L(t)) consists of various terms, each representing the
effect of a particular force during the capillary rise, i.e., inertial, viscous,
capillary and gravity. It is now instructive to evaluate the evolution of these
forces during the meniscus rise as a function of time. To show the dominance
among the terms involved in the obtained ODE, we define a new function
called the total magnitude, M(t), summing up the absolute values of all the
acting terms,

M(t) = |A L̈(t) + B L̇2(t)|︸ ︷︷ ︸
inertia

+ |C(t) L̇|︸ ︷︷ ︸
viscous

+ |G(t)|︸ ︷︷ ︸
gravity

+ |D(t)|︸ ︷︷ ︸
capillary

. (4.2)

Figure 4.7 shows the share of each term in the total magnitude (M(t)) for
a flat and a sinusoidal symmetric corrugated channel with the same width
and wave amplitude of a = 50 µm and wavelength of λ = 5 mm, with and
without the effect of a gravitational force (g = 1 m · s−2). Regardless of the
geometry, at the onset of the capillary rise, the capillary and inertial terms
are balanced, constituting half of the total magnitude each. The share of the
viscous and gravity terms is negligible at this stage, for the wicking liquid
has not yet developed any considerable velocity or height. Beginning around
the capillary time scale (tc =

√
ρh3/σ ∼ 0.004 s), the share of the viscous

term, which is linearly-dependent on the velocity, starts to grow. Here, the
behavior starts to be different between flat and complex geometry channels.
For flat channels, in the absence of gravity, the share of the viscous term
increases as the effect of inertia fades out, and the system eventually arrives
at a dynamic equilibrium between the capillary and viscous forces around
the viscous time scale (tv = h2/ν ∼ 1 s), heralding a Washburn regime (see
Figure 4.7(c)). Next, suppose the gravity is present (see Figure 4.7(a)). In
that case, the share of the gravity term, being linearly-dependent on the
wicking height (Lx), constantly increases till arriving at the Jurin’s height
(LJ), where it finally comes to an equilibrium with the capillary term after
some possible oscillations, depending on the Oh/Bo ratio.

For the analyzed symmetric sinusoidal channel, when the viscous forces
start to increase (tc =

√
ρh̄3/σ ∼ 0.004 s), the geometrical undulations

of the channel induced large fluctuations of the inertial forces, which os-
cillated between 20-80% of the total magnitude M(t). These fluctuations
tended to vanish with time, especially under the effect of a gravitational

47



force (see Figure 4.7(b)). Even though the oscillations were significant, the
moving average of the inertial forces followed closely the decaying behavior
of the flat channel in the presence of gravity (cf. Figure 4.7(a) with Fig-
ure 4.7(b)). Both inertial and viscous forces vanished completely for the
symmetric sinusoidal channel after t = 1 s, where the capillarity force and
gravity force were balanced with each other.
In the absence of gravitational forces, we observe that in a long-term be-
havior, the share of the inertial term diminishes considerably differently in a
flat and corrugated channel (cf. Figure 4.7(c) with Figure 4.7(d)). To mea-
sure this difference, we solved the capillary rise in both channels for 1000 s
(much longer than shown in Figure 4.7), a very long time for the scale wick-
ing phenomena. The share of the inertial term approximately diminished
∝ t−1 for the flat channel, whereas this was much slower for a corrugated
channel. The moving average of the share of the inertial term declined at an
approximate rate of ∝ t−1/3. Although there was almost no effect of inertia
at t = 10 s in a flat channel, it was still present in a very slightly corrugated
channel even after t = 1000 s (≈ 2% of the total magnitude). This despair
behavior is attributed to the persistent change of the meniscus curvature
and resulting velocity fluctuations (producing the inertial acceleration term,
A L̈(t)) in a corrugated channel even in very long-term behavior. This sim-
ple example illustrates the importance of inertial effects in corrugated and
tortuous channels.

4.4.2 Jurin’s Height

One important aspect of irregular capillaries is that contrary to regular cap-
illaries, the Jurin’s height (LJ) is not unique, for the non-linear equation of
the capillary equilibrium may have multiple solutions. This non-uniqueness
especially happens for periodically corrugated capillaries, in which the cap-
illary pressure (Pc) undergoes periodic variations with the position of the
meniscus and might have multiple solutions when equated with the linear
distribution of the hydrostatic pressure, Pg = ρgLx. Figure 4.8 shows the
variations of Pc −Pg with the wicking length (L). When zero, the point is a
state of static equilibrium, however, depending on the sign of the derivative
of the function, the equilibrium could be either stable ( d

dL(Pc − Pg) < 0,
shown with up-pointing triangles) or unstable ( d

dL(Pc −Pg) > 0, shown with
down-pointing triangles). Based on Equation 3.19 when d

dL(Pc − Pg) < 0,
the derivative of the dynamic terms has to be negative either, which implies
a stable situation, and vice versa. This fact describes that Jurin’s height is
path-dependent in irregular capillaries, dependent on how the liquid arrives
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(a) A flat channel – with gravity

(b) A corrugated channel – with gravity

(c) A flat channel – no gravity

(d) A corrugated channel – no gravity

Figure 4.7: The share of terms in the total magnitude, M(t), plotted in
a semi-logarithmic scale for the wicking of water in a channel over time
(normalized by the viscous time scale tv). (a) and (c) represent a flat channel
with the width of 1 mm, while (b) and (d) show the share of terms for a
sinusoidal symmetric corrugated channel with the same width and wave
amplitude of a = 50 µm and wavelength of λ = 5 mm. The gravity is
present in (a) and (b) (g = 1 m·s−2), but not (c) and (d). The moving
average of the inertial terms in the corrugated channel is drawn in white,
dashed lines due to high-frequency oscillations.
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Figure 4.8: The multiple static equilibria (where Pc = Pg) plotted as a
function of the meniscus position (L) for a sinusoidal symmetric channel
shown at the bottom (hx

0 = 1 mm, ax
0 = 0.3 mm, λx = 1 mm, ψ = π).

The stable (Jurin’s heights) and unstable equilibria are presented with up-
pointing and down-pointing triangles, respectively. The derivative of Pc −Pg

at the equilibria shown with red dashed line signifies stability once negative,
and vice versa.
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at each equilibrium candidate point. Depending on the relative strength of
inertia (more accurately, the Oh/Bo ratio), the system might be forced out
of the first equilibrium candidate (the smallest for the Jurin’s height) and go
to the next one. The system might skip or even come back to several equi-
librium candidates during gravitational oscillations before coming to rest at
the eventual Jurin’s height.

Figure 4.9 depicts the effect of the dynamic viscosity (η) on the Jurin’s height
in a sinusoidal symmetric channel (Figure 4.9(c)) for a liquid with properties
same as water except for its viscosity, which is subject to change. For high
viscosities larger than the first bifurication viscosity (0.00128 > ηb > 0.00127
kg·m−1·s−1), the first static equilibrium (LJ,1 = 8.1 mm) is the confluence
of all solutions, while for the viscosity values lower than the first bifurca-
tion viscosity, the meniscus comes to rest at the second stable equilibrium
(LJ,2 = 11.0 mm, Figure 4.9(a)). The curves fork off at L = 9.2 mm, which
is an unstable equilibrium height, and even a small effect of inertia forces
the meniscus out of the equilibrium. It was also observed that by narrow-
ing the bifurcation viscosity band (0.00128 > ηb > 0.00127 kg·m−1·s−1) to
more decimals, the bifurcation will be postponed, and the meniscus stays
longer at the unstable equilibrium, however, eventually coming to rest to
one of either nearby stable equilibria. Figure 4.9(b) shows the viscosities
lower than η = 0.00031 kg·m−1·s−1, where the higher ratio of inertial to the
viscous forces causes the meniscus to find eventual equilibrium at all three
equilibria within the solution domain. The meniscus might leave and come
back to several equilibria before coming to rest at the Jurin’s height.

Table 4.2: Water properties at 15◦C and 20◦C [86]. As we were unable to find
a source distinguishing between the contact angle for this 5◦C temperature
difference, we assumed θ = π/6 for both cases. The geometry (hx

0 = 1 mm,
ax

0 = 0.27 mm, λx = 5 mm, ψ = π) and the gravitational acceleration
(g = 9.81 m · s−2) are the same for both cases.

T θ σ η ρ
◦C rad N·m−1 kg·m−1·s−1 kg·m−3

15 π/6 0.07348 0.001138 999.1
20 π/6 0.07273 0.001002 998.2

Figure 4.10 shows an interesting example where only a 5◦C temperature
difference causes the water (with properties given at 15◦C and 20◦C given
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(a)

(b)

Figure 4.9: The effect of dynamic viscosity (η) on the Jurin’s height in a
sinusoidal symmetric channel (hx

0 = 1 mm, ax
0 = 0.3 mm, λx = 1 mm,

ψ = π). Water has three static equilibria (LJ,1 = 8.1 mm, LJ,2 = 11.0 mm,
and LJ,3 = 13.0 mm) within the solution domain (0 < L < 15 mm) in
this geometry. Changing the viscosity of water, (a) shows the Jurin’s height
for few sample viscosities in two intervals of η > 0.00128 kg·m−1·s−1 (all
eventually coming to rest at LJ,1) and 0.00127 > η > 0.00032 kg·m−1·s−1

(all coming to rest at LJ,2). The bifurication occurs between 0.00128 >
η > 0.00127 kg·m−1·s−1, where the curves part at an unstable equilibrium
height, L = 9.2 mm. (b) covers the interval of 0.00031 > η > 0 kg·m−1·s−1,
showing multiple Jurin’s height due to relative stronger effect of inertia. All
viscosities are reported in kg·m−1·s−1 in the legends.
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Figure 4.10: The capillary rise of water in a sinusoidal symmetric channel
(hx

0 = 1 mm, ax
0 = 0.27 mm, λx = 5 mm, ψ = π) at two different tempera-

tures (15◦C and 20◦C, properties given in Table 4.2). Three static equilibria
(where Pc = Pg) exist in the solution interval, two of the being stable and
referred to as the Jurin’s height (LJ,1 = 8.9 mm, LJ,2 = 13.4 mm), and one
being unstable (L = 10.7 mm). The small difference in water properties
just by a 5◦C temperature causes the meniscus to eventually come to rest
in different stable equilibria.
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Figure 4.11: The effect of the initial condition (L0) on the the Jurin’s height
of water in a sinusoidal symmetric channel (hx

0 = 1 mm, ax
0 = 0.3 mm,

λx = 1 mm, ψ = π) which shows the main attractor is LJ = 11 mm while
other stable equilibria may also eventually become the Jurin’s height when
the initial condition is chosen close to them (L0 = 20 mm → LJ = 19.8mm).

in Table 4.2) to eventually arrive at different equilibria (∼ 50% difference in
height).

The solution is also highly sensitive to the initial conditions. In Figure
4.11, the initial position of the meniscus (L0) is subject to change, while
L̇0 = 0 for all cases. Having nine stable equilibria in total, most of the cases
are attracted by LJ,2 = 11 mm, thereby being referred to the main attractor
among the Jurin’s heights. Other Jurin’s heights may only be achieved when
the meniscus is initially located close enough to them. The last potential
Jurin’s height (LJ,9 = 31.52 mm) may only be achieved as long as L0 is cho-
sen very close to it. If L0 = 31.5 mm, the meniscus eventually comes to rest
at LJ,9 = 31.52 mm but even slightly deviated cases such as L0 = 30 mm
and L0 = 40 mm considerably fall down and eventually find equilibrium at
LJ,2 = 11 mm.

Owing to the non-linear dynamics, solving the transient behavior of capil-
larity is necessary and is the only way the ture static equilibrium can be de-
termined for an irregular capillary. Thus, in contrast to flat channels (Equa-
tion 1.2a) or simple tubes (Equation 1.2b), no single Jurin’s height solution
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can necessarily be presented for irregular capillaries. To guide the system
into the desired equilibrium, one may change the viscosity. Higher viscosi-
ties strongly damp the gravitational oscillations and force the meniscus to
come to rest at the first point of equilibrium, while low viscosities allow the
meniscus to explore higher equilibria. As mentioned before, the meniscus
might even fall again to lower equilibria and eventually come to rest at a
lower point of equilibrium.

The effects of capillary hysteresis (i.e., the wetting history of the walls) could
play a prominent role. However, this falls outside the scope of this work.
Nevertheless, it is deemed to be a potential candidate for future avenues to
explore.
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Chapter 5

Conclusions and Future
Work

We derived a governing ODE (Equation 3.20) for capillary flow in corrugated
and tortuous channels (Equation 3.21) and tubes (Equation 3.22) including
the effects of inertia, which was not rigorously investigated for geometrically
irregular capillaries thus far.

The governing equation was found using a rectification procedure based
on the Voronoi segmentation algorithm that converts tortuous channels or
tubes to their rectified, symmetric counterpart. In addition, a correction of
the extended Hagen–Poiseuille equation (Equation 1.5) was also introduced
to accurately predict the flow rate in high Reynolds number and highly
corrugated channels. It was found that, contrary to flat channels where
inertial effects decay ∝ t−1, corrugated channels showed a much slower de-
cay ∝ t−1/3. This behavior is due to the geometrical changes of the channel’s
profile, which produces changes in the contact angle and capillary pressure
as the meniscus rises. Overall, the inertial solution found with Equation
3.20 was in excellent agreement with VOF simulations, experimental data,
and other published works found in the literature.

The extended Hagen–Poiseuille equation (Equation 1.5) proved to fail to
accurately predict the flow rate in high Reynolds number and highly corru-
gated ducts, when the uni-directional flow assumption breaks down, thereby
necessitating a viscous correction factor to account for neglected viscous
tractions on the walls resulting from a 2D or 3D flows in high Reynold re-
sults (Figure 4.4). One may draw this important conclusion that the wicking
length (L) will be independent of tortuosity or inclination of the duct in the
absence of gravity, as cosα(s) only appears in the gravity term.

One of the major findings of this study is the role that inertia plays in deter-
mining Jurin’s height at which the meniscus eventually comes to rest, which
may not be understood, excluding the effect of inertia. Although being fully
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deterministic, it was shown that the problem could heavily be dependent
on the initial conditions and the dynamic parameters (such as viscosity, η),
which do not show up at the static equilibrium formula (Equation 3.23)
themselves. An exemplary case of wicking water in a sinusoidal corrugated
channel demonstrated that the change of water properties resulting from a
5◦C temperature change might entirely switch the eventual Jurin’s height
to another stable equilibrium.

In summary, the most important points include:

• Tortuous capillaries (those with a curved centerline) could be rectified
into their symmetric counterpart and then be analyzed similarly, as
long as the flow is unidirectional, i.e., in the absence of secondary flows.
The threshold of the emergence of secondary flows is determined by
Dean’s number (De).

• Contrary to flat capillaries, irregular capillaries may have multiple
static equilibria, either stable or unstable, and only through the inclu-
sion of inertia, higher equilibria may be achieved. Non-inertial formu-
lations necessarily force the meniscus to come to rest at the first static
equilibrium.

• The Jurin’s height is path-dependent and the dynamics of wicking pro-
cess must be solved to determine the eventual equilibrium height.

• The Jurin’s height could be very sensitive to the properties of the liq-
uid and the capillary duct, also the initial conditions and the wetting
history of the walls. Higher viscosities were shown to damp the gravi-
tational oscillations and enforce lower static equilibria owing to higher
energy dissipation.

• The effect of inertia stays longer at play in irregular geometries with
periodic wall angle variations compared to flat geometries.

The extended Bosanquet equation (Equation 3.20) obtained in this paper
could serve as a prospective tool to investigate various phenomena, and re-
view the findings of previous studies that may now reveal more interesting
aspects once the inertia is taken into account, e.g., the effect of the cor-
rugation amplitude, the tortuosity, various wall profiles, and the effective
diffusion of irregular capillaries.

Elastocapillarity is a prospective avenue to explore, as elastic capillary walls
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undergo geometric deformations that convert even regular capillaries to ir-
regular after the initiation of wicking. It may also shed light on the complex
nature of wicking dynamics in deformable and inflatable media, such as pa-
per towels and other bioproducts. However, the extended Bosanquet equa-
tion derived in this paper is not eligible to study elastocapillary problems,
as we neglected the temporal changes of the capillary walls. A new version
of this equation may be obtained considering time-dependent wall profiles
(h = h(x, t) or r = r(x, t)).

Future studies may also include studying wicking in rough, porous media
considering the effect of inertia, the implementation of the dynamic pressure
drop at the mouth of the capillary, which is not considered in this study, the
effects of hysteresis (or the wall’s wetting history), non-Newtonian inertial
capillary flows, tubular capillaries with their axes as space curves, such as
helical capillaries, and the experimental studies of multiple static equilibria
and the eventual Jurin’s height.
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Appendix A

Force Balance

The force balance projected along the centerline on a generic channel volume
element with a 2D depth of b shown in details in Figure 3.1(c) is represented
below, with a similar approach for a 3D, tubular geometry,

dFs = bPh′ds + 2bτds+ Pbh

− b (P + ∂P

∂s
ds)(h+ h′ds) − ρbhgsds (2D), (A.1a)

dFs = 2πPrr′ds + 2πrτds+ πPr2

− π (P + ∂P

∂s
ds)(r2 + 2rr′ds) − πρr2gsds (3D), (A.1b)

where gs = cosα(s) g is the projected gravitational acceleration along the
centerline. Also note that a factor of (cosβ)−1 which is multiplied by the
shearing stress (τ) due to the surface inclination is canceled out by a cosβ
due to projection along the centerline.
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Appendix B

Differential Element Stretch
Rate

The equations represented in the ODE which consist the ḋs term are investi-
gated in this section. Since the flux velocity in the Reynolds transport theo-
rem is written in absolute values, the differential arc-length element stretch
rate (ḋs) is assumed zero everywhere except for the advancing meniscus
frontier s = L, where ḋs = L̇. The integral can be expanded as the summa-
tion of n equally spaced infinitesimal elements (∆xi) shown in Figure B.1
where the integrand is evaluated at discrete points (f(xi)), as follows,∫ L

0
f(x) ḋx = lim

n→∞
Σn

i=1f(xi) ˙∆xi (B.1)

Figure B.1: The schematic of the integral discretization as the summation
of finite elements.

where the following relation is held for the elements and the advancing
integration limit L(t),

Σn
i=1∆xi = L, (B.2a)

Σn−1
i=1

˙∆xi︸︷︷︸
0

+ ˙∆xn = L̇. (B.2b)
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Knowing that xi = xi−1 + ∆xi and xn = L, considering the aforementioned
conditions, substituting the equation above in Equation B.1,

∫ L

0
f(x) ḋx = lim

n→∞

Σn−1
i=1 f(xi) ˙∆xi︸︷︷︸

0

+f( xn︸︷︷︸
L

) ˙∆xn︸ ︷︷ ︸
L̇

 = L̇f(L). (B.3)

This approach is similar to Leibniz integral rule ( ∂
∂t

∫ L
0 f(s) ds = L̇ f(L))

and is responsible for differentiation with respect to varying integration lim-
its. Neglecting this term results in the loss of the necessary nonlinear veloc-
ity term (L̇2) in flat channels or tubes (where h′(s) or r′(s) are respectively
zero).
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Appendix C

Dynamic Contact Angle

As the VOF solves the full Navier-Stokes equations for both phases and
satisfies the Young-Laplace equation (∆P = κσ) at the interface, the con-
tact angle dynamically changes to satisfy the balance of forces at play. The
dynamic evolution of the meniscus is graphically reproduced from the VOF
simulations in Figure C.1, depicting the early stages of meniscus formation
more clearly.

The flat interface is exposed to adhesive walls with θ = 30◦ at t = 0 (Figure
C.1(a)). The outer surface of the capillary was made slippery with θ = 90◦

so that no delimiter is required. Shortly after the contact, the interface
develops an angle with the wall (see Figure C.1(b)), inducing a curvature
in the interface, thereby creating a pressure difference due to the Young-
Laplace equation, which propagates towards the center of the tube (Figure
C.1(c)-(f)), eventually forming a consistent curve, which later develops into
a nearly circular curve when the meniscus starts to rise (Figure C.1(g)).

By way of contrast, in the extended Bosanquet equation (Equation 3.21
and 3.22), these complex effects are modeled with the DCA model, i.e.,

Figure C.1: Several snapshots from the early stages of meniscus formation in
a silicone fluid (SF). The VOF results are compared to in the same problem
as that of Stange et al. [43] in Figure 4.2 (case 2, shown with a continuous
blue line, corresponding to a 9 mm diameter capillary). The capillary flow
is simulated in a tube with d = 9 mm diameter using axial symmetry.
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Figure C.2: The evolution of the dynamic contact angle model γ(t) over
time in a semi-logarithmic plot, for parameters σ = 0.07 N.m−1, η =
10−3 kg.m−1.s−1, and H = 1 m.

γ(t) = [1 − exp (−σt/ηH)] as described in [81] for flat geometries. This
model basically assumes the meniscus has a constant curvature at all time,
implying a circular configuration which is not true in reality (Figure C.1(b)-
(f)). H is treated as an ad hoc constant in this study and is of length
dimension. Figure C.2 shows the temporal evolution of a typical exponential
saturation function of γ(t).
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Appendix D

Convergence Study

D.1 Mesh Convergence
To obtain a reliable mesh to avoid possible artifacts of the introduced spatial
discretization a mesh convergence study is required. The mesh must be
reined until the field of interest, i.e, the height of the meniscus L(t) meets
the convergence criterion which is chosen to be %1 in this study. Since the
height of the meniscus is time dependent, it must be evaluated at a specific
snapshot. To avoid long runs, t = 0.5 s has been designated to serve as this
criterion. Table D.1 gathers the data regarding the mesh convergence in a
typical capillary rise problem (Stange et al. [43]).

Table D.1: Mesh convergence study, four mesh configuration with ordered
by the refinement increase tabulated with the height of the meniscus at
t = 0.5 s in the case with L∗ = 10 mm and d = 4 mm, shown in Figure
4.2 with a continuous orange line. The threshold of 1% dictates that M3
has enough accuracy. The error has been calculated relative to the previous
stage, i.e., Err. = |Li − Li−1|/Li−1. The mesh study is conducted in the
domain D2 (see Table D.2).

Mesh Number of Elements L(mm) at t = 0.5 s Error (%)
M1 ≈ 12.8 × 103 45.31 —
M2 ≈ 20.1 × 103 42.88 5.36
M3 ≈ 25.6 × 103 42.54 0.79
M4 ≈ 32.6 × 103 42.42 0.28

D.2 Domain Convergence
Having found the reliable mesh refinement (M3, Table D.1), a same study
must be conducted for the distance of the introduced outer boundaries to
the region of interest (the capillary). Table D.2 shows the details of the
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domain convergence study for the same problem.

Table D.2: Domain convergence study, three domains with as same refine-
ment as the obtained reliable mesh (M3, see Table D.1) in descending order
indicated by the normalized distance to the centerline of the capillary (the
ratio of the distance to the diameter of the tube), tabulated with the height
of the meniscus at t = 0.5 s in the case with L∗ = 10 mm and d = 4 mm,
shown in Figure 4.2 with a continuous orange line. The threshold of 1%
dictates that D3 has enough accuracy.

Domain Normalized Distance L(mm) at t = 0.5 s Error (%)
D1 5 41.20 —
D2 10 42.54 3.25
D3 15 42.80 0.61

The time step must be chosen regarding each mesh configuration to satisfy
the independence from the temporal discretization and the scaled residuals
(which most preferably must fall to ≈ 10−5 when converged), however, the
time step length of 5 × 10−6 s is usually sufficient.

As long as the dimensions of the capillary is relatively the same (such as the
average width hx

0 and the ultimate wicking length), the same domain and
mesh configurations may be used, however, for very different problem, all
the steps must be taken the new conditions.
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