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Abstract

Cancers from different tissue types can share a latent structure reflecting

commonly altered gene pathways. It is difficult to cluster cancer patients

based on this latent structure because the tissue of origin often dominates

the latent structure effect. We propose a Bayesian nonparametric model that

accounts for the tissue effect and clusters based on a latent structure using

a Dirichlet Process prior. More specifically, we use an infinite Gaussian mix-

ture model where the mean parameter is modelled as the linear combination

of tissue, gene, and latent cluster effects. The choice of the Dirichlet Pro-

cess prior allows us to side-step a model selection problem as the number

of latent clusters is unknown apriori. Our approach learns the tissue effect

by using tissue parameters in a supervised learning setting, while simultane-

ously learning the latent structure based on the residuals in an unsupervised

setting. These so-called residuals result from subtracting out the inferred

tissue and gene parameters from the observations and can be interpreted as

the cluster effect. A key component of the model is its ability to leverage con-

jugacy between the likelihood model and cluster parameters. The Gaussian

form of the model is not effect by our choice of mean parameter therefore

conjugacy is preserved. Indeed, the model has the intuitive interpretation of

clustering on the cluster effect signal that remains subtracting out the tissue

and gene effects. Conjugacy allows for the use of sophisticated Markov chain

Monte Carlo techniques used in Bayesian mixture models such as Split-Merge

samplers. We demonstrate our model by showing results on synthetic data,

semi-synthetic data generated using a publicly available dataset from the

Genome-Tissue Expression (GTEx) portal, and another publicly available

dataset from the International Cancer Genome Consortium (ICGC).
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Lay Summary

Cancers from different tissue types can share biological similarities that may

be hidden by the tissue of origin. For example, there may be an underlying

similarity between lung and liver cancers that are not obvious because the

data reflects the tissue types. We propose a Bayesian statistical model to

understand and learn these hidden relationships between different cancer

types. Our model first learns the tissue effect as it is the most obvious

then learns the hidden effect. Using our model we are able to group cancer

patients based on these hidden similarities and learn meaningful biological

information. We demonstrate our model by showing results on generated

data, semi-generated data, and a publicly available real-dataset from the

International Cancer Genome Consortium (ICGC).
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Chapter 1

Introduction

The past 20 years have seen an explosion in high throughput biological data.

Microarray and sequencing based technologies have created the opportunity

to study many complex biological systems in detail. One of the most suc-

cessful areas of application of these technologies has been in the study of

cancer biology. Early studies using microarrays to measure RNA expression

of tumour tissue provided numerous insights into the mechanisms of cancer

development and have allowed clinicians to develop prognostic tools for as-

sessing patient risk, and informing treatment strategies (Tinker et al., 2006).

More recently the development of high throughput sequencing assays has al-

lowed cancer researchers to study the transcriptional state of tumours in an

unbiased way (Wang et al., 2009; Desmedt et al., 2012). As these sequenc-

ing technologies have matured and costs have fallen, large scale sequencing

projects such as The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas

Research Network et al., 2013) and International Cancer Genome Consortium

(ICGC) (Zhang et al., 2019) have generated massive multi-modal datasets

from thousands of patients across a range of cancer types. These massive

“pan-cancer” datasets have the potential to allow cancer researchers to iden-

tify key drivers of cancer development and progression. Ultimately these

insights could lead to improved predictors of cancer risk and the develop-
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ment of better therapeutic agents.

The goal of this thesis is to develop a statistical method for performing

pan-cancer analysis of gene expression data. We hypothesize that by analyz-

ing the gene expression data from thousands of patients we will increase our

statistical power to detect groups of tumours which behave similarly. As we

discuss later, existing approaches based on clustering gene expression data are

not suitable to solve this problem. The core challenge for such a pan-cancer

clustering analysis is that tumours will predominantly cluster by the tissue

of origin. This can be seen by hierarchical clustering 3.2 where the coarsest

separation of tumours is driven by tissue of origin (Chen et al., 2018). As

result, classical clustering effectively degenerates into tissue specific analysis,

removing the potential to share statistical strength. To address this problem

we will develop a model which, informally, removes the tissue effect and clus-

ters the residual expression. A secondary problem we also address is that of

model selection i.e. how many clusters should be used. To achieve this we

develop a hierarchical Bayesian model based on a Dirichlet Process mixture

model. As exact inference for this model is intractable, we use Markov Chain

Monte Carlo (MCMC) methods to perform approximate posterior inference.

We benchmark our approach using several synthetic datasets. Finally, we

apply our method to perform a pilot analysis of 125 patients from the ICGC

project.

1.1 Domain background

In this section we briefly outline information relevant to the domain appli-

cation. Specifically, we outline basic biological concepts necessary to under-

stand the work and the details of the measurement technologies and analysis

strategies currently employed. A discussion of the statistical background is

presented in Chapter 2.
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1.1.1 Basic biology

We briefly review some core biological concepts for the reader. The most im-

portant biological concept to understand for this thesis is the central dogma

of biology. The central dogma is a model of information flow in biological

systems. In this model DNA is a stable and heritable molecule responsible

for encoding all of the information a cell needs to survive. The complete set

of DNA in a cell (genome) is copied when cells divide and identical copies are

passed on to descendants. The information DNA encodes are the instructions

for producing proteins. Proteins can be thought of as molecular machines

which perform biological functions critical to the survival of the cell. The set

and quantity of proteins produced by a cell dictate its behaviour or pheno-

type. Though a cell contains the instruction to produce a vast set of proteins,

only a subset is typically produced. By varying the selection of proteins pro-

duced, multicellular organisms such as humans can thus produce cells with

diverse functions which can then lead to the formation of complex organs.

To produce proteins, DNA must first be transcribed into RNA, an in-

termediary information molecule. RNA molecules are then read by special

proteins which translate the information and produce other proteins. Cells

can thus control the level of protein synthesis by controlling the level of RNA

synthesis. As an analogy the reader can imagine DNA as the central server

for the cell. RNA molecules act like USB sticks which can download specific

files which can then be uploaded to the machines responsible for building

proteins. Without RNA, only one protein synthesis machine could read the

required information to produce a protein. The core point to take away from

this analogy is that the levels of RNA expression provide a proxy measure-

ment for protein levels, which in turn inform on the state of the cell.

In this work we are interested in studying gene expression data from

cancerous tumours from humans. Cancer is a disease which occurs when

healthy cells acquire mutations in their genomes. The mutations lead to

aberrant behaviour such as uncontrolled growth and evasion of typical signals
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that cause damaged cells to die. As a cancer develops the population of

malignant (cancerous) cells acquire additional mutations which can allow for

more complex behaviours, such as the ability to avoid destruction by immune

cells. The genomic mutations change the composition of RNA and ultimately

proteins produced by cancer cells, which we will refer to as a gene expression

profile. We will use gene expression analysis to group tumours which we

hypothesize have similar behaviour.

1.1.2 Gene expression analysis

Gene expression data, that is measurement of RNA abundance from a tissue

sample, is a powerful approach to studying many biological processes. Gene

expression is commonly performed using microarrays or more recently high

throughput sequencing. There are many types of analyses and experimental

designs that can be used with gene expression data. In this work we focus on

unsupervised analysis of gene expression data from cancer patient tumours

to identify latent group structures. As discussed later we are specifically

interested in bulk expression analysis from tumour tissues.

The classic approach for discovering latent group structure in expression

datasets is to cluster the data using approaches such hierarchical clustering,

k-means or Gaussian mixture models. In the cancer context these latent

groups are usually referred to as subtypes. Identifying subtypes is impor-

tant because tumours which show similar gene expression profiles will likely

behave in a similar way. One of the best examples of this type of analysis

and its clinical utility comes from breast cancer. Using early gene expression

microarray technologies, researchers were able to identify subtypes of breast

cancer with different clinical characteristics and outcome (Sørlie et al., 2001;

Van’t Veer et al., 2002). Ultimately a panel of 50 genes was identified to

stratify breast cancer patients into different subtypes and developed into a

clinical assay (Parker et al., 2009). This stratification has been used to inform

the treatment strategies for breast cancer patients.
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Biologically grouping patients by gene expression reflects a hypothesis

that there are specific biological pathways, that is interacting sets of genes,

that are perturbed. Depending on the affected pathways cancer cells will

behave differently in terms of growth, migration potential and response to

treatment. Thus by clustering tumours with similar expression profiles we

can gain insight into the perturbed pathways and behavioural similarities.

A key challenge for performing clustering analysis to identify cancer sub-

types for patient stratification, is assembling a sufficiently large cohort to be

adequately powered to detect groups. For common cancers such as breast,

colorectal and prostate it is usually feasible due to the high number of patients

presenting each year. However, many other types of cancer occur less fre-

quently or are not routinely biopsied, thus assembling large cohorts becomes

challenging. We hypothesize that by leveraging large pan-cancer datasets

we can identify subtypes that span across different tissues of origin. This

hypothesis is based on the observation that genes in the same pathways are

frequently mutated across different cancer types, which suggests these can-

cers with these mutations could behave in a similar way. Identifying group

structure across cancer types also has the potential to generate hypotheses

about drug repurposing. For example, if a subtype spans multiple cancer

types and all of the cancers from one tissue of origin have a drug approved

for use, we could hypothesize the same drug may be useful for treating the

other tumours from different tissues assigned to that subtype.

1.1.3 Pan-cancer analysis

Pan-cancer analysis refers to any analysis which considers tumours from mul-

tiple tissues of origin i.e. breast, blood, liver etc. Pan-cancer analysis of DNA

or genomic sequencing data is now well established. Recent pan-cancer stud-

ies have identified recurrent mutations across cancers types, common muta-

tional patterns and modes of evolution. While mutational status provides

one way to define subtypes, it does not always reflect similarities in tumour
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behaviour. Gene expression profiles can be useful in these cases to get a more

accurate functional read out of tumour state. Pan-cancer analysis of RNA

expression data has received less attention however. This is largely due to

the challenge of cancer type heterogeneity and in particular the strong effect

that the tissue of origin has on the observed expression profile of a tumour.

This tissue effect, as we will refer to it, stems from two dominant factors.

The first factor leading to tissue effect is related to how gene expression

measurements are performed. Projects such as the TCGA and ICGC have

predominantly used so-called bulk expression assays. A bulk assay consists

of taking a piece of tumour tissue consisting of tens of thousands to millions

of cells, breaking the cells apart and releasing their RNA for subsequent

measurement. As a result, these assays measure mixture of expression profiles

from the constituent cells within the tumour tissue. Within this mixture

there will frequently be a significant proportion of cells specific to a given

tissue. There will also be additional cells from elsewhere in the body, in

particular immune cells. The composition and activity of these cells is highly

relevant for predicting tumour growth and response to treatment. This is

one reason bulk gene expression analysis may provide more refined patient

stratification than mutation based approaches.

The second factor which contributes to the tissue effect relates to how

cancer cells develop. Cancer cells develop from a healthy cell which has

acquired mutations which allow for abnormal growth and survival. While the

mutations tend to shift the expression profile of the malignant cells away from

the progenitor normal cell, a residual imprint of the progenitor expression

usually remains. Thus even if we could isolate individual cancer cells and

measure their expression, this residual expression would mask the pathways

which are perturbed leading to cancer.
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1.2 Related work

Patient stratification of cancer patients using gene expression profiles is a

well studied problem. A range of stratification schemes have been developed

in cancers such as breast, colorectal and prostate (Colombo et al., 2011;

Marisa et al., 2013; Lapointe et al., 2004). Several studies have also explored

incorporating additional features such a mutational status along with gene

expression to provide more refined subtypes (Curtis et al., 2012). Much of

the work to date using gene expression data has focused on a single tissue of

origin for reasons outlined in Section 1.1.3.

Pan-cancer analysis of gene expression remains under explored. Most

pan-cancer approaches focus on measurements which are not affected by

tissue of origin such as mutations (Sharma et al., 2019; Campbell et al.,

2020; Alexandrov et al., 2020) and immune cell composition (Chakravarthy

et al., 2018; Thorsson et al., 2018). One notable exception was (Chen et al.,

2018) which aimed to perform pan-cancer subtyping based on gene expression

and methylation data. The authors of that study first used standard k-

means clustering of the gene expression data from 32 tissue types to identify

subtypes. As expected this analysis identified that tissue of origin was the

dominant factor driving subtype assignment. The authors next attempted to

remove the tissue of origin effect by pre-processing the data and extracting

the mean expression value by tissue from each sample. This is conceptually

similar to the approach we have taken. However, our approach models the

tissue specific effect probabilistically allowing for uncertainty in this value

to be accounted for during clustering. Another difference is our approach

to selecting the number of clusters. The authors of (Chen et al., 2018) use

an ad-hoc criterion to identify the optimal number clusters using k-means.

By contrast we use the formalism of Dirichlet Process mixture models to

automatically infer the number of clusters as part of our statistical inference

procedure.

Feature allocation based approaches for analyzing gene expression data
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are also conceptually similar to our model. Feature allocations models can be

seen as a generalization of clustering models. To see the connection imagine

each data point has an associated binary vector of length K, where K is

the number of clusters or number of features respectively. In a clustering

model exactly one entry of this vector is one and the rest are zero, indicating

mutually exclusive group membership. For feature allocation models any

number of entries in this vector can be set to one, allowing for overlapping

group membership. One could imagine using a feature allocation approach to

capture tissue specific effects with a subset of features and using additional

features to capture non-tissue specific effects. Though we are not aware of

anyone having done this, feature allocations have been used to analyze gene

expression data from breast cancer (Xu et al., 2016). We believe that further

application in the pan-cancer context is an exciting avenue for future work.
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Chapter 2

Background

The aim of this chapter is to outline the mathematical notation for the re-

mainder of this thesis and provide the necessary background of Bayesian

Nonparametric models to understand the proposed model. Section 2.1 dis-

cusses a specific case of Bayesian mixture models. That is, the case in which

the cluster parameters θ can be integrated out. Section 2.2 discusses the

Dirichlet Process as a prior distribution on possible partitions of our ob-

servations and its properties. Followed by one possible construction of the

Dirichlet Process called the Chinese Restaurant Process. We conclude by

bringing together Bayesian mixture models and the Dirichlet Process to con-

struct the so-called Dirichlet Process mixture model in Section 2.3.

2.1 Bayesian mixture models

Suppose we have N observations denoted by x = {x1, x2, ..., xN}. A mixture

model assumes that the data is generated by a mixture of distributions. In

other words, a mixture model assumes that observations can be grouped

into subsets in which members from the same subset are generated by the

same constituent distribution. More precisely, the observation indices [N ] =

{1, 2, ..., N} are partitioned into subsets ck ⊆ [N ] called clusters where |ck|
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denotes the cardinality of cluster k. A partition of observations is a collection

of clusters and is referred to as a clustering denoted by c = {c1, c2, ..., cK :

ck ⊆ [N ]} where
⋃
ck∈c ck = [N ] and K denotes the total number of clusters.

Following the notation of Bouchard-Côté et al. (2017), we condition on a

clustering and we define the likelihood of the data as

L(x|c) =
K∏
k=1

L(xk) (2.1)

where L(xk) is the likelihood of observations assigned to cluster k and defined

by

L(xk) =

∫ (∏
i∈ck

L(xi|θ)
)
H(dθ) (2.2)

where L(xi|θ) is the likelihood of observation xi parameterized by θ. Notice

we focus on the case of Bayesian mixture models where the cluster parameters

θ can be integrated out. This should be intuitive as the likelihood of the data

is simply the product of the likelihoods from each cluster.

We can combine the likelihood L(x|c) and prior p(c) to obtain the follow-

ing posterior on the clustering

p(c|x) ∝ L(x|c)p(c). (2.3)

This prior distribution will be selected as the Dirichlet Process prior on the set

of possible clusterings of our observations. We discuss this prior distribution

in the following section.

2.2 Dirichlet Process

In the Bayesian paradigm unknown quantities are treated as random vari-

ables. Therefore, we treat the clustering c as a random variable and place
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a prior distribution p(c) on its domain. A common problem encountered in

mixture models is the number of components K is unknown. Consequently,

we also treat K as a random variable. We can do so by selecting a prior

distribution that places non-zero probability on clusterings of all possible

sizes. This includes cluster sizes in the range from one to N where one would

indicate all observations clustered together and N would indicate each ob-

servation clustered in their own cluster, called the singleton clusters. To this

end, the Dirichlet Process achieves these objectives as a prior distribution. It

is a prior distribution on the set of all possible clusterings of our observations

of any size.

We outline one possible construction of the Dirichlet Process called the

Chinese Restaurant Process. We begin with the Chinese Restaurant Pro-

cess for pedagogical purposes as it provides an intuitive analogy to construct

the Dirichlet Process. There does exist other constructions of the Dirich-

let process such as the the Stick-Breaking Process construction (Teh, 2010).

In fact, the stick breaking construction is advantageous as it can be simply

modified to construct other prior distributions such as the Pitman-Yor Pro-

cess (Orbanz, 2015). Therefore, we suggest constructing the Dirichlet process

through the lens of the Stick-Breaking Process if the reader is interested in

other prior distributions.

The Chinese Restaurant Process can be best explained through an anal-

ogy involving a chinese restaurant. In this analogy, observations and clusters

will be referred to by customers and tables, respectively. Consider N cus-

tomers (observations) sequentially entering a chinese restaurant. To begin

the stochastic process, the first customer sits at a table (cluster) by them-

selves. Followed by the second customer, that joins the table with the first

customer or sits at a new table by themselves. The nth customer enters the

restaurant and decides to join any existing tables with probability propor-

tional to their popularity or it’s own table with probability proportional to a

hyper-parameter α. Notice, if we stop this stochastic process at any iteration
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a random partition is defined for the number of customers currently seated

in the restaurant. That is, we have a random partition defined for n obser-

vations where n is the number of customers seated in the restaurant and the

cluster assignments are indicated by table assignments. We can write the

distribution of the table assignment for the nth observation as follows

zn ∼
K∑
k=1

|ck|
n− 1 + α

δk +
α

n− 1 + α
δK+1 (2.4)

where K denotes the current number of existing clusters, |ck| denotes the

number of observations assigned to table k, and δk is the point mass at cluster

k. The Chinese Restaurant Process induces a probability distribution on the

possible clusterings of N data points. More precisely, the probability of any

clustering c of N observations is given by

p(c) =
α|c|
∏K

k=1(|ck| − 1)!∏N
n=1(n− 1 + α)

.

This can be seen as a specific case of a prior distribution taking the following

form (Bouchard-Côté et al., 2017)

p(c) ∝ τ1(|c|)
K∏
k=1

τ2(|ck|) (2.5)

where τ1(|c|) = α|c| and τ2(|ck|) = (|ck| − 1)!. From this perspective, one

can see that prior distribution of this form depend on two main components:

the number and size of each cluster. The Pitman-Yor Process and Finite

Dirichlet distribution are both special cases of prior distribution that take

the form of Equation 2.5.

The Dirichlet Process has a several properties that make it useful as a

prior distribution. Namely, the Dirichlet Process exhibits a “rich get richer”

phenomenon, is exchangeable, and learns the number of clusters in a data
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informed manner. The “rich get richer” property implies that the larger a

cluster gets the more likely a new observation will join that cluster. This can

be seen in Equation 2.4 as the probability of joining an existing cluster is

directly proportional to the size of a cluster. Conversely, every customer has

the opportunity to create a new cluster as there is a non-zero probability of

creating a new cluster that is directly proportional to the hyper-parameter

α. That is, as we increase α the more clusters we will observe and vice-

versa. Intuitively, these two observations suggest that the structure imposed

by a Dirichlet Process is a few larger clusters with some smaller clusters

where some is related to the value of the hyper-parameter α. More precisely,

the expected number of clusters is O(α log(N)) (Teh, 2010). Despite the

sequential nature of the Chinese Restaurant Process the Dirichlet Process is

exchangeable. That is, the probability distribution for the Dirichlet Process

does not take into account the order of cluster assignments. This becomes

particularly useful when sampling the posterior. In a nutshell, we are able to

treat the cluster assignment being updated as the new observation given all

other cluster assignments as seen in Section 4.2. Perhaps the most appealing

feature of the Dirichlet Process prior is that the number of clusters is learned

from the data. That is, the number of clusters changes throughout inference

depending on signal in the data. In this way, the Dirichlet Process is able

to side-step a model selection problem through the use of a fully Bayesian

treatment of modelling.

2.3 Dirichlet Process mixture models

The Dirichlet Process is often used as a prior distribution on cluster con-

figuration in Bayesian mixture models for unsupervised learning problems

such as clustering. The ability of the Dirichlet Process to allow for a count-

ably infinite number of clusters manifests itself in a Bayesian mixture model

by allowing for a countably infinite number of component distributions. In
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this regard, the Dirichlet Process mixture model is referred to as an infinite

mixture model. The possibility of an infinite number of clusters allows a

Dirichlet Process mixture model to learn the number of clusters dynamically

from the data. That is, the number of clusters changes throughout posterior

inference depending on signal in the data. In this way, the Dirichlet Pro-

cess is able to side-step a model selection problem through the use of a fully

Bayesian treatment of modelling. In contrast, finite mixture models specify

the number of clusters and model selection is often performed to determine

the number of clusters.

14



Chapter 3

The Gene Expression Model

3.1 Problem statement

We consider the problem of performing pan-cancer gene expression subtyping.

As discussed in Section 1.1.3, cancer subtyping can be seen as a clustering

problem. By clustering gene expression data we can identify groups of tu-

mours with similar gene expression profiles. In Section 1.1.3 we argue that

while straightforward when considering tumours from a single tissue of ori-

gin, the problem becomes challenging in a pan-cancer setting with tumours

from multiple tissue types. The core issue is that the tissue of origin has a

dramatic effect on gene expression. Thus tumours from the same tissue tend

to cluster together regardless of the changes driving the cancer. While the

tissue effect is biologically important, it masks potentially more interesting

expression patterns related directly to the drivers of a cancer. Our hypothe-

sis is that if the tissue effect could be controlled for, then we could identify

subtle latent structures which can be used to group cancers from different

tissues. This grouping may better reflect the underlying biology of the tu-

mours and provide insights into the shared mechanisms driving the tumours

within a group. Ultimately such information could also be used to inform

treatment strategies which were not dependent on the tissue of origin.
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To formalize the problem let X denote the dataset where observations

(tumours) are rows and features (genes) are columns. Further suppose there

is a known obvious cluster structure (tissue effect) in X that dominates the

signal in the data. We will refer to this clustering as the primary cluster-

ing. We hypothesize that there exists a latent structure that is hidden or

masked by the primary clustering. We will refer to this latent clustering

as the secondary clustering. Once we control for the primary clustering a

meaningful secondary clustering will be revealed. This secondary structure

could contain interesting information regarding the data generating process

that is not initially available. Bulk RNA-sequencing data falls into this data

setting where the primary clustering is often the tissue of origin that masks

secondary clustering which is another biological phenomenon such as affected

gene pathways. We observe in figure 3.1 that Bulk RNA-sequencing data is

dominated by the tissue of origin. This can be seen on the left most side of

the data matrix as the tissue assignments are labelled with colours.

If we perform classical clustering techniques such as hierarchical cluster-

ing, finite mixture modelling, or infinite mixture modelling we will observe

that these methods predict cluster assignments according to the primary

clustering. This can be seen in figure 3.2 as the cluster labels directly cor-

respond to tissue labels. This figure shows the cluster labels predicted us-

ing Scikit-learn’s implementation of the Dirichlet Process Gaussian mixture

model (Pedregosa et al., 2011). The implementation uses a variational ap-

proximation to the posterior of the mixture model (Blei and Jordan, 2006).

The same clustering was predicted when using Scikit-learn’s implementation

of the k-means algorithm and a finite Gaussian mixture model. We also

observe hierarchical clustering of the observations reveals a structure that

corresponds to the tissue of origin.

In this data setting, the goal is to control for the primary clustering

and unmask the secondary clustering. In other words, we want a model

that captures the primary and secondary cluster effects. We can use the
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Figure 3.1: Bulk RNA-sequencing data of breast, brain, liver, colorectal,
and lung cancer obtained from the ICGC portal where each cancer type has

25 samples.

inferred cluster parameters of both clusterings to better understand the data

generating process. We want the primary clustering to be known apriori

and added to the model as a supervised component. The inferred cluster

assignments of the secondary clustering can be used to determine meaningful

relationships between observations unrelated to the the primary clustering.

Ultimately, we will use a Dirichlet Process Gaussian mixture model to model

the gene expression matrix X.
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Figure 3.2: Bulk RNA-sequencing data of breast, brain, liver, colorectal,
and lung cancer obtained from the ICGC portal with tissue and cluster

labels. Cluster labels were predicted using Scipy’s Dirichlet Process
Gaussian mixture model.

3.2 Observation model

Section 3.5 discusses the normalization technique used for RNA-sequencing

data. Each entry of the gene expression matrix xnm is assumed to be dis-

tributed according to a Gaussian distribution with mean and variance pa-

rameters (µnm, σ
2
nm). The mean µnm will be a function of parameters that

span across samples and genes allowing information to be shared across both

dimensions. The variance parameter σ2
nm will solely be determined by the

cluster assignment of the sample. We will observe in Section 4.1, that this
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choice of variance parameter is required to obtain the convenient and neces-

sary property of conjugacy. That is, we are required to sacrifice some model

flexibility in the variance term for computational efficiency. We can write

this succinctly as follows:

xnm ∼ N (µnm, σ
2
nm)

where

zn = k

µnm = νm + φkm

σ2
nm = σ2

km

zn ∈ {1, 2, ..., K} denotes the cluster assignment for sample n, φkm ∈ R
denotes the cluster mean for gene m, and σ2

km ∈ R+ denotes the cluster

variance for gene m. The mean parameter µnm can be decomposed into

two main effects: a gene specific effect νm and cluster specific effect φkm.

This observation model is similar to a Bayesian mixture model introduced in

Section 2.1 with Gaussian component distributions and added parameters to

control for the gene effect. Next, we will control for more effects by simply

adding to the mean parameter µnm.

We introduce a supervised component to the observation model for the

tissue of origin and add tissue specific parameters to the mean parameter of

the Gaussian distributions. We control for the tissue effect similar in the same

way we controlled for the gene effect in the previous model. After controlling

for the these two effects we can investigate the cluster configuration. This

can be written succinctly as follows:

xnm ∼ N (µnm, σ
2
nm)
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where

zn = k

tn = l

µnm = νm + φkm + ψlm

σ2
nm = σ2

km

tn ∈ {1, 2, ..., L} denotes the tissue assignment for sample n and ψlm ∈ R
denotes the tissue specific effect of tissue l on gene m. This model is similar

to the previous observation model with the addition of tissue parameters ψlm

to the mean parameters µnm. The mean parameter can now be decomposed

into three effects: the gene effect, cluster effect, and tissue effect.

3.3 Prior distributions

We need to specify prior distributions for each parameter used in the ob-

servation model. Gaussian distributions will be used as prior distributions

on all tissue and gene parameters νm, ψlm. For reasons discussed in Section

4.4, a Gamma distribution will be used as a prior distribution on the hyper-

parameter α. The number of clusters in the secondary structure is unknown

apriori therefore we encounter a model selection problem. As discussed in

Section 2.3, the Dirichlet Process prior is able to side-step this model selec-

tion problem as it learns the number of clusters using the data. Therefore,

we will use a Dirichlet Process prior on the cluster assignments Z.

3.3.1 The Normal Inverse Chi-Squared distribution

A Normal Inverse Chi-Squared distribution will be used as a prior on the

cluster parameters (φkm, σ
2
km). The Normal Inverse Chi-Squared distribu-

tion is a special case of the Normal Inverse-Gamma distribution. This dis-
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tribution is conjugate to the the Gaussian distribution with unknown mean

and variance µ and σ2. Section 4.1.1 shows this prior allows us to leverage

the convenient property of conjugacy throughout posterior inference. It is

referred to as a compound distribution as the prior placed on µ is depen-

dant on σ2 which is also random. More specifically, the prior decomposes

as p(µ, σ2) = p(µ|σ2)p(σ2). The distribution takes four hyper-parameters

(µ0, κ0, ν0, σ
2
0) where µ0 and σ2

0 are the prior mean and variance and κ0 and

ν0 are levels of confidence for the prior parameters. If

σ2 ∼ Iχ2(ν0, σ
2
0)

µ|σ2 ∼ N (µ0,
σ2

κ0

)

then (µ, σ2) ∼ N Iχ2(µ0, κ0, ν0, σ
2
0) with probability density function

p(µ, σ2) = N Iχ2(µ, σ2)

= N (µ|µ0,
σ2

κ0

)× Iχ2(σ2|ν0, σ
2
0)

=
1

Z(µ0, κ0, ν0, σ2
0)

1

σ

1

(σ2)1+
ν0
2

e−
1

2σ2
(κ0(µ−µ0)2+ν0σ2

0)

where Z(µ0, κ0, ν0, σ
2
0) =

√
2π
κ0

Γ(ν0
2

)( 2
σ2
0ν0

)
ν0
2 .
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3.4 Graphical models

Given the specification of the observation model and prior distributions we

can now provide the full hierarchical model. The following generative process

is for the gene expression model that controls for the tissue effect. One can

obtain the gene expression model that only controls for the gene effect by

removing the tissue parameters and tissue assignments. Figure 3.3 illustrates

the corresponding probabilistic graphical models.

α ∼ Gamma(0.01, 100)

H ∼ N Iχ2(0, 1, 3, 0.1)

G|α,H ∼ DP (α,H)

(φkm, σ
2
km) ∼ G

ψlm ∼ N (0, 5)

νm ∼ N (0, 5)

xnm|zn = k, tn = l, (φkm, σ
2
km),νm, ψlm ∼ N (νm + ψlm + φkm, σ

2
km)

for l ∈ 1, 2, ..., L, m ∈ 1, 2, ...,M and n ∈ 1, 2, ..., N .

We place a vague prior distribution on α that is centred at 1 with a

variance of 100. The tissue and gene parameters have a Gaussian prior with

mean 0 and variance 5. These priors were selected so that it is difficult

for the tissue and gene parameters to fully explain an observation. The

hyper-parameters for the clusters parameters constrain them to be smaller

in magnitude relative to tissue and gene parameters. This is because we

expect the cluster effect to be dominated by the tissue effect as described in

Section 3.1.
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Figure 3.3: Probabilistic graphical models of proposed gene expression
model with and without tissue parameters.
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3.5 Preprocessing data

RNA-sequencing data is typically provided as discrete count values repre-

sented in the gene expression matrix G. The entries of Gnm denotes the

number of “reads” observed in sample n for gene m. In order to model

the observations with a Gaussian distribution we need to log-transform the

gene expression matrix (Soneson and Delorenzi, 2013). Sometimes RNA-

sequencing technologies output highly inflated gene expression counts for

specific samples. Therefore, we standardize across genes (or per sample) to

control for this potential inflation. Let x̄n and σ̂n denote the mean and sam-

ple standard deviation of the log gene expression for sample n. We perform

the log-normalization of the gene expression matrix as follows:

Xnm =
logGnm − x̄n

σ̂n
.

For the remainder of this thesis will use X to denote the log-normalized gene

expression matrix and, somewhat abusively, will refer to the log-normalized

gene expressions as simply the gene expression matrix.
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Chapter 4

Posterior Inference

Posterior inference was performed using Markov chain Monte Carlo (MCMC)

techniques for all sampled parameters. The state of our Markov chain in-

cluded parameters (ν,ψ,Z, α). The prior distribution for the cluster param-

eters (φ,σ2) was conjugate to the likelihood and consequently integrated out.

Therefore these parameters are excluded from the Markov chain. Section 4.1,

constructs the posterior distribution. Followed by Section 4.2, which dis-

cusses Gibbs and Split-Merge updates used for cluster assignments Z. Both

of these sampling techniques required analytical solutions for the predictive

likelihood of a given data point. Section 4.3 outlines the updates used for

gene and tissue parameters, ν and ψ. Each parameter uses a similar adap-

tive Metropolized-Gibbs sampling technique. Finally, the hyper-parameter

for the Dirichlet process α was updated using a Gibbs sampling technique

described in Section 4.4.

4.1 Constructing the posterior distribution

We construct the posterior distribution for the gene expression model param-

eters denoted by p(µ,Σ|X). We assume conditional independence between

samples and genes so that the likelihood term decomposes into a product of
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likelihood terms from each dimension of the data. For completeness, we show

the full posterior and its marginalized version that results after integrating

out the cluster parameters (φ,σ). Since we are collapsing out the cluster

parameters we will refer to this latter posterior as the collapsed posterior

denoted by p(ν,ψ,Z, α|X). Given the cluster assignments, we denote the

likelihood of cluster k as

L(xk|φk,σ2
k) =

∏
n|zn=k

L(xn|φk,σ2
k,ψtn ,ν) (4.1)

and the collapsed likelihood of cluster k as

L(xk) =

∫
L(xk|φk,σ2

k)p(φk,σ
2
k)dφkdσ

2
k (4.2)

where the prior distribution on each dimension of (φk,σ
2
k) is a Normal Inverse

Chi-Squared distribution. Equation 4.1 will be used in the derivation of the

full posterior and Equation 4.2 will be used in the derivation of the collapsed

posterior. We derive the full posterior distribution as follows:

p(µ,Σ|X) ∝ L(X|µ,Σ)p(µ,Σ)

=
∏
n

L(xn|µn,Σn)p(µ,Σ)

=
K∏
k=1

(
L(xk|φk,σ2

k)p(φk,σ
2
k)
)
p(ν)p(ψ)p(Z|α)p(α).
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We integrate out the cluster parameters (φ,σ2) from the full posterior to

derive the collapsed posterior.

p(ν,ψ,Z, α|X) =

∫
p(µ,Σ|X)dφdσ2

∝
K∏
k=1

∫
L(xk|φk,σ2

k)p(φk,σ
2
k)dφkdσ

2
k

× p(ν)p(ψ)p(Z|α)p(α)

=
K∏
k=1

L(xk)p(ν)p(ψ)p(Z|α)p(α).

The collapsed posterior is the product of likelihoods from each cluster k and

the prior distribution of the remaining model parameters. Section 4.1.1 shows

that there is a closed form solution to Equation 4.2.

4.1.1 Conjugate analysis

Conjugacy is a convenient property between the likelihood function and prior

distribution that results in the prior and posterior distributions taking the

same form. This allows for closed form solutions of otherwise potentially

intractable integrals. The desired closed form solution is for the integral of the

Gaussian likelihood specified in Section 3.2 against the priors on the cluster

parameters. Recall, in Section 2 this setting of Bayesian mixture models

was discussed. Once we evaluate Equation 4.2 we effectively integrate out

the cluster parameters. Therefore the cluster parameters are excluded from

the Markov chain constructed when performing approximate inference using

Markov chain Monte Carlo techniques. Consequently, our inference algorithm

samples less parameters at each iterations through a process called collapsed

Gibbs sampling or Rao-Blackwellization (Das, 2014). We will observe in

Section 4.2 that this integral is required for two Markov chain Monte Carlo
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sampling procedures.

We will consider the one dimensional case then extend this to the multi-

dimensional case for the gene model. Let L(xn|µ, σ2) be a Gaussian likeli-

hood with parameters (µ, σ2) and p(µ, σ2) be a Normal Inverse Chi-Squared

prior distribution. The posterior distribution given a dataset x is as follows

(Murphy, 2007):

p(µ, σ2|x) ∼ N Iχ2(µn, κn, νn, σ
2
n)

where

µn =
κ0µ0 + nx̄

κn

κn = κ0 + n

νn = ν0 + n

σ2
n =

1

νn
(ν0σ

2
0 +

n∑
i=1

(xi − x̄) +
nκ0

κn
(x̄− µ0)2).

Using conjugacy, we obtain a closed form solution to Equation 4.2 as follows:

L(x) =

∫ (∏
n

L(xn|µ, σ2)

)
p(µ, σ2)dµdσ2

=

∫ (∏
n

N (xn|µ, σ2)

)
N Iχ2(µ, σ2)dµdσ2

=
Z(µn, κn, νn, σ

2
n)

Z(µ0, κ0, ν0, σ2
0)

where the normalization constant of the prior Z is given in Section 3.3.

We will now consider the multi-dimensional case encountered in the gene

expression model. xn is a vector of gene expression values for sample n. We

assume independence between samples and genes. Therefore, the integral in

Equation 4.2 turns into the product of M one-dimensional integrals. Closed
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form solutions to these one-dimensional integrals can be obtained by using

conjugacy.

L(xk) =

∫
L(xk|φk,σ2

k)p(φk,σ
2
k)dφkdσ

2
k

=
∏
m

∫
L(xkm|φkm, σ2

km)p(φkm, σ
2
km)dφkmdσ

2
km

=
∏
m

∫ ( ∏
n|zn=k

L(xnm|φkm, σ2
km)
)
p(φkm, σ

2
km)dφkmdσ

2
km

=
∏
m

Z(µkm, κkm, νkm, σ
2
km)

Z(µ0, κ0, ν0, σ2
0)

.

4.1.2 Clustering on residuals and shifted data

Conjugacy is not affected by our choice to model µ as a linear combination

of the gene, tissue, and cluster effects. However, it is necessary to constrain

the covariance matrix Σ to be diagonal and equivalent to cluster variance

σ2. This can be observed in the following,

L(xkm|φkm, σ2
km) =

∏
n|zn=k

1√
2πσ2

km

e
− 1

2σ2
km

(xnm−µkm)2

=
∏

n|zn=k

1√
2πσ2

km

e
− 1

2σ2
km

(xnm−(νm+ψtm+φkm))2

=
∏

n|zn=k

1√
2πσ2

km

e
− 1

2σ2
km

(x̃nm−φkm)2

.

This likelihood term is still Gaussian but with a shifted observation x̃nm.

The shifted observation x̃nm = xnm − νm − ψtm can be interpreted as the

residuals after controlling for tissue and gene effects. Therefore, the model

is clustering on observations after controlling for the tissue and gene effects.

However, if we decided to model the variance as a function of the cluster
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variance and another variance term, such as an observation specific variance,

then it would be impossible to decompose the variance term and retain the

Gaussian form of the likelihood. In chapter 5, the shifted observations are

often used to understand what the model is clustering on.

4.2 Gibbs and Split-Merge updates for clus-

ter assignments

Gibbs and Split-Merge samplers are used to update the cluster assignments

Z. We will observe both these samplers require an analytical solution to the

predictive likelihood of an observation. The Gibbs sampler sequentially up-

dates the cluster assignment for each observation in a random order. While

the Split-Merge sampler either splits an existing cluster or merges two ex-

isting clusters. Hence, the aptly chosen name Split-Merge. This has the

potential to update a large number of cluster assignments in a single iter-

ation. In this regard, the Gibbs sampler can be thought of making more

refined local moves in the sample space while the Split-Merge sampler makes

more global moves. On its own the Gibbs sampler can exhibit extremely slow

mixing behaviour and often gets stuck in local modes. Therefore, we want

to use the Split-Merge sampler as a tool to get unstuck from a local mode

the Gibbs sampler cannot traverse. This is exemplified in Section 5.1.6. In

practice, we alternate between the use of the two samplers by flipping a fair

coin where heads selects the Gibbs sampler and tails selects the Split-Merge

sampler. We alternate the samplers because it is computationally inefficient

and unnecessary in terms of Markov chain Monte Carlo mixing to use both

samplers at each iteration.
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4.2.1 Gibbs update

We use algorithm 3 of Neal (2000) to perform Gibbs updates of cluster as-

signments Z. This algorithm sequentially updates each cluster assignment

by sampling a new assignment according to probabilities proportional to an

observations predictive likelihoods. Intuitively, one can think of a predictive

likelihood as being a measure of compatibility between an observation and a

cluster. This is because the predictive likelihood is the expected likelihood

with respect to the posterior distribution of an existing cluster or, in the case

of a new cluster, the prior distribution. Note the posterior distribution of

an existing cluster is based on the prior distribution of cluster parameters.

Therefore, this sampling technique makes intuitive sense as a new cluster as-

signment will largely be governed by an observations compatibility with each

cluster. In the case where an observation is incompatible with the existing

clusters, the sampler allows for the possibility of a new cluster. Conjugacy

between the Gaussian likelihood and Normal Inverse Chi-Squared prior on

cluster parameters allows for an analytical solution to be available for each

of the predictive likelihoods. We are able to treat the current observation as

new and predict its cluster assignment conditioned on other cluster assign-

ments because the Dirichlet Process is an exchangeable stochastic process.

Suppose there are a total of K existing clusters. The probabilities of a new

cluster assignment for observation n denoted by zn is calculated as follows:

p(zn = k) = C
N−n,k

N − 1 + α

∫
N (xn|φ,σ2)N Iχ2

−n,k(φ,σ
2)dφdσ2 (4.3)

p(zn = K + 1) = C
α

N − 1 + α

∫
N (xn|φ,σ2)N Iχ2(φ,σ2)dφdσ2 (4.4)

where k ∈ {1, ..., K} denotes an existing cluster, N Iχ2
−n,k denotes the pos-

terior of (φk,σ
2
k) given observations assigned to cluster k excluding observa-

tion n, N Iχ2 denotes the prior on (φk,σ
2
k) and N−n,k denotes the number

of observations assigned to cluster k excluding observation n. Notice, the
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probability of cluster assignments are weighted by the cardinality of existing

clusters or the Dirichlet Process hyper-parameter α. This comes from the

derivation of the predictive distribution of a cluster assignment. Therefore,

this sampling technique will exhibit the “rich get richer” behaviour in the

Dirichlet Process prior. The procedure for performing Gibbs sampling on the

cluster assignments is summarized in Algorithm 1 found below.

Algorithm 1: Gibbs sampler to update cluster assignment of ob-

servations n

for k = 1 to K do
calculate p(zn = k) according to (3.1)

end

calculate p(zn = K + 1) according to (3.2)

sample zn ∼ Discrete(p)

This sampler needs to be performed sequentially on a random permuta-

tion of observation indices. Due to the sequential nature of this sampler, a

significant proportion of compute time is spent updating cluster assignments

via Gibbs sampling.

4.2.2 Sequential Monte Carlo and Particle Gibbs Split-

Merge

Before discussing Particle Gibbs Split-Merge (PGSM) (Bouchard-Côté et al.,

2017), it is necessary to discuss Sequential Monte Carlo (SMC) (Chopin and

Papaspiliopoulos, 2020) and Particle Markov Chain Monte Carlo (PMCMC)

(Moral et al., 2006). This is because the PGSM sampler is constructed using

both SMC and PMCMC. SMC is a Monte Carlo sampling technique that

sequentially targets the posterior distribution of interest using a sequence

of intermediate target distributions (Gu et al., 2015). In this setting, the
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posterior distribution of interest is often intractable therefore the sampler

must leverage simpler intermediate distributions in order to eventually draw

samples from the target. It does so by propagating a pre-specified number of

particles through a sequence of intermediate distributions. These particles

provide an approximation to each intermediate distribution where the final

distribution targets the posterior distribution of interest. PMCMC are a set

of methods that essentially wraps a Metropolis-Hastings sampler around a

SMC sampler and uses it as a proposal distribution. The SMC methodol-

ogy is present in the PGSM sampler as it uses a sequence of intermediate

distribution to sample the posterior of the cluster configuration and resam-

pling steps to remedy the problem of degeneracy. More precisely, the sampler

propagates particles that correspond to a split of one cluster or a merge of

two unique clusters by evaluating a sequence of intermediate target distri-

butions. The PMCMC methodology is present in the PGSM sampler as the

conditional path is used. This conditional path is used to ensure the sampler

is targeting the correct posterior distribution.

Figure 4.1 shows an illustration of particle construction in one iteration of

the PGSM sampler involving four observations whose indices are {3, 4, 5, 6}.
The algorithm begins by randomly selecting two observations called the an-

chors. In this example, the anchors are observations 3 and 5. Then, the

PGSM sampler only updates observations currently clustered with any of

the two anchors. The algorithm begins by initializing the first anchor 3 to

a singleton cluster. Followed by allocating the second anchor 5 to another

singleton cluster or existing cluster with observation 3. A merge decision is

made when the anchors are clustered together and a split decision is made

otherwise. If a merge decision is made, all subsequent observations are allo-

cated to the merge cluster. Otherwise, subsequent observations are allocated

sequentially to one of the two existing clusters. The allocations are based

upon the immediate target distributions at each iteration. The final step

provides a new sample of a cluster configuration for the subset of observa-
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Figure 4.1: Schematic of particle construction for a single iteration of the
PGSM sampler on a toy problem (Bouchard-Côté et al., 2017).

tions.

4.3 Metropolized Gibbs updates for gene and

tissue parameters

Gene and tissue parameters, ν and ψ, were updated using an adaptive

Metropolized-Gibbs sampling technique. That is, we perform a Metropolis-

Hastings update within a Gibbs step for each individual parameter νm and

ψtm. We assume independence between the dimensions of the gene and

tissue parameters therefore the sampling technique essentially reduces to a

Metropolis-Hastings update for each parameter. Consequently, a subset of

sufficient statistics and likelihood terms are needed to determine the accep-

tance probability of an update. This leads to a more computationally efficient
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sampler. More precisely, instead of re-calculating an N ×M likelihood val-

ues when proposing a new parameter value at most M likelihood values are

re-calculate. Sufficient statistics are discussed in Section 4.5. The proce-

dure to perform Metropolized-Gibbs sampling for ν and ψ is summarized by

Algorithm 2.

Algorithm 2: Metropolized-Gibbs Sampler for γm ∈ {ν,ψ}
Let θm be the proposal variance for γm

γ̂m ∼ N (γm, θm)

Calculate new sufficient statistics using γ̂m

α = min
{

1, p(µ̂,Σ|X)
p(µ,Σ|X)

q(γ|γ̂)
q(γ̂|γ)

}
u ∼ U [0, 1]

if u < α then
γm = γ̂m

end

Update θm according to algorithm 3

Each parameter in ν and ψ was assigned its own proposal variance pa-

rameter θm. We set the proposal target acceptance rate to be 0.44 and adapt

the log of the proposal variance every 50 MCMC iterations as follows:

log(θnewm ) = log(θm)±min
{

0.25,
1√
N

}
where we increase (± = +) the variance if the acceptance rate is too low and

decrease (± = −) the variance if the acceptance rate is too high. Initially,

this update mechanism changes the proposal variance by a factor of e±0.25

encouraging large jumps in the posterior during the burn-in phase. Notice,

however, eventually 1√
N

will be selected as the change in proposal ensuring

the proposal adaptation diminishes with the number of MCMC iterations.
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Algorithm 3: Update proposal variance θm for γm
Let N be the current number of MCMC iterations.

Let rm be the current acceptance rate for γm.

if rm < 0.44 then

log(θnewm ) = log(θm) + min
{

0.25, 1√
N

}
else

log(θnewm ) = log(θm)−min
{

0.25, 1√
N

}
end

θm = elog θnewm

4.4 Gibbs update for Dirichlet Process hyper-

parameter

The concentration parameter α of a Dirichlet Process can be thought of as a

tuning parameter for the number of clusters. This is reflected in the equation

for the expected number of clusters K given by E[K] = α logN . Indeed, the

expected number of clusters grows linearly with the concentration parameter.

This is also reflected in Equation 2.4 describing the Chinese Restaurant Pro-

cess where the probability of a new table assignment is directly proportional

to α. The concentration parameter can strongly effect the resulting posterior

inference on the number of clusters (West, 1992). Therefore, instead of treat-

ing this hyper-parameter as static, it is necessary to update this parameter

via sampling throughout inference. Allowing the number of clusters will be

more flexible allowing it to be informed by the data. We will use a Gibbs

sampler proposed by West (1992) to update the concentration parameter

α. This update mechanism assumes a mixture of gamma distributions as a

prior distribution on α, then uses an auxiliary variable trick to obtain the

two conditional distributions, p(α|x) and p(x|α), where x is the introduced

an auxiliary variable. The assumption of the mixture of Gammas allows

for nice form to be obtained for both conditional distributions. Using these
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two conditional distribution, we target the posterior of α in a Gibbs fashion

given the current number of clusters K. In practice, we simply assume a sin-

gle gamma prior distribution on α instead of a mixture. We will begin with

the joint distribution of α and y and derivate the conditional distribution of

each parameter. Following West (1992), we assume α ∼ Gamma(a, b).

p(α, y|K) ∝ p(α)αK−1(α + n)yα(1− y)n−1. (4.5)

To obtain the conditional distribution of α we plug in its prior distribution

and treat y as fixed

p(α|y,K) ∝ αa−1e−bααK−1(α + n)yα

∝ (α + n)αa+K−2e−α(b−α log(y))

∝ αa+K−1e−α(b−α log(y)) + nαa+K−2e−α(b−α log(y))

this can be viewed as a mixture of gamma distributions with the following

parameterization:

α|y,K ∼ πyGamma(a0, b0) + (1− πy)Gamma(a1, b0)

where

πy =
(a+K − 1)

n(b− log(y)) + (a+K − 1)

a0 = a+K

b0 = b− α(b− log(y))

a1 = a+K − 1.
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Following Equation 4.5, we will now obtain the conditional distribution of y

by treating α as fixed

p(y|α,K) ∝ yα(1− y)n−1. (4.6)

Therefore,

y|α,K ∼ Beta(α + 1, n). (4.7)

We can now using Gibbs sampling because we have the conditional distri-

butions of both α and y. More precisely, we will Gibbs sample by α and

y using Equations 4.6 and 5.1 then discard the samples of y and only store

the samples of α. Indeed, this is equivalent to marginalizing the auxiliary

variable y. The procedure to sample α is summarized in Algorithm 4.

Algorithm 4: Gibbs sampler for concentration parameter α

Let K be the current number of clusters.

Let n be the number of observations.

y ∼ Beta(α + 1, n)

Calculate πy using sampled auxiliary variable

β ∼ Uniform(0, 1)

if β ≤ πy then
α ∼ Gamma(a0, b0)

else
α ∼ Gamma(a1, b0)

end

4.5 Sufficient statistics

In this Section we discuss one possible method to reduce computational time

by storing sufficient statistics. In particular, we save computation time when
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sampling Z with the Gibbs sampler. We saw in Section 4.1, to calculate the

collapsed posterior we need to calculate the collapsed likelihood in Equation

4.2. In turn, in order to calculate the collapsed likelihood we need to cal-

culate the posterior parameters for each existing cluster. We can calculate

posterior parameters for each clustering using two sufficient statistics. More

precisely, we need the sum of data and sum of squared data for each cluster.

Returning to the Chinese Restaurant Process analogy in Section 1, this can

be thought of as maintaining the posterior parameters for each existing ta-

ble. One is able to calculate these sufficient statistics by iterating over the

observations assigned to each cluster. However, this can be a computation-

ally expensive operation to perform for each MCMC iteration. Instead, we

could update sufficient statistics based on new cluster assignments by adding

or subtracting an observations or the squared of an observation. Then the

posterior parameters can be updated accordingly. We are able to maintain

these sufficient statistics using two K by M matrices as there are two suffi-

cient statistics for every cluster and feature. Therefore, updating a sufficient

statistic would correspond to updating rows of both the sufficient statistic

matrices. We can rewrite the mean and variance of posterior parameter as

function of the sufficient statistics.
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φkm =
κ0µ0 +Nkx̄km

κNk

=
κ0µ0

κ0 +Nk

+
Nk

κ0 +Nk

∑
n|zn=k

xnm

σ2
km =

1

νNk
(ν0σ

2
0 +

∑
n|zn=k

(xnm − x̄km)2 +
Nkκ0

κNk
(x̄km − µ0)2)

=
1

νNk
ν0σ

2
0 +

1

νNk

( ∑
n|zn=k

x2
nm

)
− 1

νNk

1

Nk

( ∑
n|zn=k

xnm

)2

+
κ0

νNkκNkNk

( ∑
n|zn=k

xnm

)2

− κ0

νNkκNk
2µ0

( ∑
n|zn=k

xnm

)
− Nkκ0

νNkκNk
µ2

0.

Hence, if we maintain the sum of data and sum of squared data,
∑

n|zn=k

xnm

and
∑

n|zn=k

x2
nm, one can efficiently re-calculate the posterior parameters needed

to calculated the collapsed posterior. In our model these data points are the

shifted observations x̃nm introduced in Section 4.1.2. This is because we are

clustering on the residual signal in the data after controlling for the gene and

tissue parameters. Consequently, as we update the gene and tissue parame-

ters ν and ψ we also need to update the shifted observations and sufficient

statistics.

4.6 Posterior summary

Markov chain Monte Carlo sampling techniques return samples from an in-

tractable distribution of interest called the target distribution. The list of

samples from the sampling algorithms is often referred to as the chain of

samples. Using these samples we are able to obtain an approximation to

the target distribution using an empirical distribution and calculate values

of interest. In our case, the target distribution will be collapsed posterior
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distribution specified in Section 3.2 which we can only evaluate up to a nor-

malization constant. In other words, leveraging Markov chain Monte Carlo

techniques we go from dealing with an intractable posterior distribution to

a tractable approximation to the posterior distribution. As we increase the

number of samples we can approximate the target distribution arbitrarily

well. Recall, the collapsed posterior distribution is parameterized by four

main parameters: the gene, tissue, and alpha parameters and cluster as-

signments. Therefore, our Markov chain Monte Carlo sampling techniques

return chain of samples for each of these parameters. To perform posterior

inference we need to obtain point estimates of each of the model parameters

using the chain of Markov chain Monte Carlo samples. In Section 4.6.1, we

discuss how to obtain a point estimate of a cluster matrix given a sample of

cluster matrices. Followed by Section 4.6.2, which outlines the post process-

ing of the gene and tissue parameters. Finally, in Section 4.6.3 we show how

to re-instantiate the cluster parameters in order to obtain a point estimate

after integrating these parameters out of the Markov chain.

4.6.1 Model consensus

Our target distribution is the collapsed posterior distribution of our model

which includes a cluster matrix Z. Recall, each row of this cluster matrix

is a one-hot encoding of an observation indicating its cluster assignment.

Recall, the inference algorithms outlined in Section 4.2, update the cluster

assignments in a Gibbs or Split-Merge fashion. After each iteration of these

samplers one should think of the output as a sample of the posterior dis-

tribution of Z. Therefore, we obtain a list of Markov chain Monte Carlo

samples of the cluster matrix Z. It is non-trivial to obtain a point estimate

of a cluster matrix given a chain of cluster matrices obtained from Markov

chain Monte Carlo inference algorithms. One method to obtain a point esti-

mate is to construct a distance metric which can be naturally extended to a
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dendrogram and then maximize a pre-specified criterion. Let

Skij = 1{observation i and j are clustered together}

where k indicates the Markov chain Monte Carlo iteration and i and j indi-

cate observation indices. In other words, Sk is an N ×N matrix indicating

whether two observations were clustered together in the kth Markov Chain

Monte Carlo iteration. This matrix is often referred to as a similarity matrix.

We can construct a notion of distance between any two observation i and j

by defining

d(i, j) = 1− 1

Niter

Niter∑
k=1

Skij.

Given that S is a similarity matrix, the component-wise addition of two

similarity matrices has the interpretation of the number of times the two

observations have been clustered together in two Markov chain Monte Carlo

iterations. Hence, the interpretation of distance measure d(i, j) would be the

proportion of times the two samples i, j were not clustered throughout the

Markov chain. Indeed, this has the interpretation of a distance because as

two samples are clustered less together then distance metric d(i, j) increases

and if two observations are frequently clustered together the distance metric

decreases. Once a distance metric is obtained between any two observations

we can extend this to perform hierarchical clustering between observations.

Then, we can obtain a point estimate of cluster assignments using the result-

ing dendrogram to maximize a criteria called Maximum Posterior Expected

Adjusted Rand or MPEAR (Fritsch and Ickstadt, 2009).

4.6.2 Tissue, gene, and α parameters

We include the tissue, gene, and alpha parameters in one Section as the

same posterior inference method will be used. To obtain point estimates for
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each of these parameters we simple take the sample average from the Markov

chain Monte Carlo chain. More precisely, the point estimates for the follow

parameters are calculated as follows:

ψ̂tm =
1

Niter

Niter∑
k=1

ψktm

ν̂m =
1

Niter

Niter∑
k=1

νkm

α̂ =
1

Niter

Niter∑
k=1

αk.

4.6.3 Cluster parameters

To get a posterior point estimate of the cluster parameters, µ and σ2, the

maximum a posteriori was used from the conditional distribution of µ and σ2

conditioned on the sample average of ν and ψ and the MPEAR clustering

of Z. This was efficiently obtained using conjugate analysis of Gaussian

distributions.

p(µkm, σ
2
km|Z, ν, ψ,X) = p(µkm, σ

2
km|Z = k, νm, ψṁ, Xṁ)

= p(Xṁ|Z = k, νm, ψṁ, µkm, σ
2
km)p(µkm, σ

2
km)

= p(X̃ṁ|µkm, σ2
km)p(µkm, σ

2
km)

=
∏
zi=k

N (x̃im|µkm, σ2
km)N Iχ2(µkm, σ

2
km).

We have seen in Section 4.1.1 that this is also a Normal Inverse Chi-

Squared distribution with posterior parameters. Therefore, we will use the

Maximum A Priori estimate which correspond to the mean of the mean

parameter and mean of the variance parameter as follows:
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µ̂km = µkm

σ̂2
km =

ν0

ν0 − 2
σ2.
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Chapter 5

Applications

This chapter applies the Gene Expression model and approximate inference

techniques using two synthetic datasets and one real-world dataset. In Sec-

tion 5.1, we test model performance and inference implementation by simu-

lating multiple datasets from the generative process described in Section 3.2.

Section 5.2, discusses experiments using semi-synthetic data informed by an

open source dataset obtained from the Genome Tissue Expression portal

(GTEx). For both synthetic datasets, we compare results from approximate

inference to the known true parameters used in the synthetic data generation

process. We conclude by testing our model on another open source dataset

obtained from the International Cancer Genome Consortium (ICGC) in Sec-

tion 5.3.

5.1 Fully-synthetic experiment

In order to test model performance and inference algorithms we conduct ex-

periments using synthetic data. This synthetic data is forward simulated

from the generative process described in Section 3.4. We set the dimensions

of the synthetic data experiments to N = 100 samples and M = 200 genes.

These dimensions were selected to follow the structure of bulk RNA-seq data,
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specifically that each observation has many features or gene reads. We can

increase the number of samples N to obtain more secondary clusters gener-

ated from the Dirichlet Process to further examine cluster performance. We

can also increase the number of genes M to test the efficiency of our inference

procedures.

An instance of a generated dataset and its parameters used for forward

generation are given in Figures 5.1 and 5.3. Specifically, Figure 5.1 shows

the forward simulated gene expression matrix X where xnm denotes the gene

expression for sample n gene m. The colour bar on the right most side of the

gene expression matrix indicates the magnitude of a gene expression where

a lighter colour implies a more positive gene expression and a darker colour

implies a more negative gene expression. The Subfigures in Figure 5.3 are

the forward generated tissue, gene, and cluster parameters. Therefore, the

mean parameter shown in Figure 5.2a, should be understood as the element-

wise sum of the Subfigures a, c, and b. These Subfigures denote the effect

of each component of the model on a specific sample and gene. Subfigure a

represents the tissue effect on each element of the gene expression matrix.

For example, the tissue effect up-regulates sample 0 gene 0 significantly and

down-regulates sample 99 gene 0 significantly. In Subfigure b each sample

is effected in the same way by the gene effect matrix because each row is

equivalent. Specifically, gene 3 is highly up-regulated by the gene effect. In

Subfigure c, we observe cluster specific effects on the gene expression matrix.

For example, the cluster assignment for observation 20 up-regulates gene 101

and down-regulates gene 123.
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5.1.1 Forward generated data

For each of the simulated datasets we fix the data seed and sample parameters

according to the following distributions:

α ∼ Gamma(1.5, 1)

Z|α ∼ DP(α)

(φkm, σ
2
km) ∼ N Iχ2(0, 10, 10, 2)

νm ∼ N (0, 1)

ψ0m ∼ N (2, 0.5)

ψ1m ∼ N (−2, 0.5)

where m denotes the gene, k denotes the cluster, and ψ has two pseudo tissues

0 and 1. We will further discuss the tissue structure used in the subsequent

paragraph. We want the tissue effect to mask the secondary cluster effect

and the magnitude of the tissue parameters to be larger than the magnitude

of the cluster parameters. The Dirichlet process hyper-parameter is centred

around 1.5 with a small variance to encourage an interesting clustering given

N = 100 observations.

Given that the tissue assignments are known a priori, we need to impose

a specific structure on them throughout the forward simulated experiments.

The samples are divided up into two pseudo tissues: the first half of sam-

ples are assigned to tissue 0 and the second half of samples are assigned to

tissue 1. This tissue structure is represented as a matrix in Equation 5.1

where rows indicate samples and columns indicate tissue assignment. For

completeness, the other parameters used in forward simulation are shown

along side the tissue assignments with the cluster assignment matrix show in

Equation 5.2 having the same interpretation. To ensure that the tissue effect

is the dominant signal and that there is a large enough variance between

the primary and secondary clusters and the two pseudo tissues, we need to
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impose a further structure on the tissue parameters. We impose a structure

on the tissue parameters such that the tissue effects from both tissues are

significantly different and they are larger in magnitude relative to the latent

cluster effect.

ψ0m ∼ N (2, 0.5)

ψ1m ∼ N (−2, 0.5)

where tissue 0 tends to up-regulate all gene expressions and tissue 1 tends

to down-regulate all gene expressions. This brings us to the mathematical

formulation of the matrices given in Figure 5.3.

T ·ψ =



1 0

1 0
...

...

0 1

0 1


·

[
ψ00 ψ01 . . . ψ0M−1

ψ10 ψ11 . . . ψ1M−1

]
(5.1)

Z · φ =



1 0 0

1 0 0
...

...
...

0 1 0

0 1 0


·

[
φ00 φ01 . . . φ0M−1

φ10 φ11 . . . φ1M−1

]
(5.2)

ν =
[
ν0 ν1 . . . φM−1

]
(5.3)

µ = 1N×1 · ν + T · ψ +Z · φ. (5.4)

Tissue 0 is regulating gene m by a value of ψ0m and tissue 1 is regulating

gene m by ψ1m. Therefore, the dot product T · ψ has the interpretation of

being the overall tissue effect on each observation. Z ·φ and 1N×1 ·ν have the
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same interpretation. As alluded to before Equation 5.4 is the element-wise

summation.

Figure 5.1: Forward generated data from gene expression model used in
synthetic data experiments.

5.1.2 Simulation setup

Four datasets were generated using four different data seeds and four Markov

chain Monte Carlo (MCMC) samplers were restarted using four different

sampler seeds. Therefore, in total sixteen experiments were conducted using

synthetic data. The parameters were initialized at ν = 0, ψ = 0, α = 1,

and Z set to the singleton clusters. That is, each observation was initialized

in their own cluster. In practice, the singleton clusters are often used as an

initialization as this configuration is less likely to get stuck in a local mode.

Throughout the following presentation we will focus on one specific synthetic

experiment. Namely, the experiment conducted when setting data seed to 5

and sampler seed to 0. First, we will show model results when updating the
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(a) Mean parameters

(b) Variance parameters

Figure 5.2: Forward generated mean and variance parameters for gene
expression model used in synthetic data experiments.
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tissue parameters ψ, then we will show model results when ψ is not being

updated. Since the tissue parameters are initialized at ψ = 0, we will be

modelling the gene expression data with the model introduced in Section 3.2

not controlling for the tissue effect. In this scenario, we will say the tissue

parameters are turned off. Each Markov chain was run for 200 seconds of

burnin and 1000 seconds of inference.

5.1.3 Posterior inference with tissue parameters

We will first show the posterior inference on the mean and variance parame-

ters of the model µ and Σ. Followed by, posterior inference on the constituent

parameters ψ,ν, and φ that make up the mean parameter. Recall, the vari-

ance parameter of the model is solely comprised of a cluster specific variance

parameter. Figure 5.5 shows the posterior inference on the mean and vari-

ance µ and Σ where Subfigure a shows mean and Subfigure b shows the

variance. We observe from both these subfigures that inference on the mean

and variance parameters capture the structure of the forward generated data.

More precisely, when calculating the component-wise difference between the

forward generated parameters and inferred parameters we achieve a mean

squared error of 0.25 and 0.50 for the mean and variance, respectively.

Figure 5.5 shows the posterior inference on the tissue, gene, and cluster

parameters. More specifically, Subfigure a shows the inferred tissue parame-

ters, Subfigure b shows the inferred gene parameters, and Subfigures c and d

show the inferred mean and variance cluster parameters, respectively. Recall,

the synthetic data for this experiment was generated such that tissue 0 tends

to up-regulates gene expressions and tissue 1 tends to down-regulates gene

expressions. We observe in Subfigure a that the inferred tissue parameters

do capture this pattern. That is, the observations assigned to tissue 0, the

first half of observations, have tissue parameters that tend to up-regulate

gene expressions and the observations assigned to tissue 1, the latter half of

observations, have tissue parameters that tend to down-regulate gene expres-
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sions. Hence, the sharp contrast in parameter values at sample 50, the half

way point, in Subfigure a. Furthermore, we observe in Figure 5.6 that the

average of the tissue parameters in each tissue are centred around the mean

value that was used to generate them. The average of tissue 0 parameters

are centred around 2 and the average of sampled tissue 1 parameters are

centred around −2. This is also observed for the gene parameters in Figure

5.7 as the average of the sampled parameters are centred around 0. Recall,

this experiment focused on the tissue and cluster parameters therefore the

forward generated gene parameters were centred around 0.

We will now discuss posterior inference on cluster assignments for the

synthetic data experiments. Figure 5.8 shows the posterior clustering where

Subfigure a shows the V-measure as a function of MCMC iteration and Sub-

figure b shows the similarity matrix for observations. Recall, each element of

the similarity matrix can be interpreted as the proportion of MCMC itera-

tions the corresponding observations were clustered together. One measure-

ment to calculate the distance between two cluster configurations is called

the V-measure. The V-measure is a scalar value between 0 and 1 that mea-

sures the similarity between two configurations where 1 implies equivalence

and 0 implies a large difference. In other words, the closer the V-measure

tends towards 1 the more similar two cluster configurations are. We will

use the forward generated cluster configuration and current inferred cluster

configuration to calculate the V-measure for each MCMC iteration. This is

show in Subfigure a. We observe that posterior inference does capture the

correct cluster configuration simulated by the Dirichlet Process prior. More

precisely, after a burn-in period of 200 seconds the correct clustering is ob-

tained for the full duration of MCMC inference. In Subfigure b, the left most

side of the similarity matrix has tissue labels indicated by colour for each ob-

servation and the corresponding legend above. For example, observation 99,

the first row of the similarity matrix, is assigned to tissue 1. From this, we

observe that there are clusters forming with observations from each tissue
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type such as cluster 0, the largest cluster, as it is comprised of observations

from tissue 0 and tissue 1. Hence, we are not clustering by the primary clus-

ter but a latent secondary clustering. Later we will show the more efficient

Split-Merge sampler is required to obtain the correct cluster configuration.

We return to the forward generated gene expression data and show the

inferred posterior clustering of observations. Figure 5.9 shows the inferred

cluster configuration on plots of the simulated gene expressions data and

Figure 5.10 shows its shifted counterpart. Both plots also contain tissue and

cluster labels indicated by colour on the left most side of the data matrices.

For example, in Figure 5.9, the first row shows that observation 63 is assigned

to tissue 1 and cluster 2. We define the shifted gene expressions as the

gene expressions after subtracting the inferred tissue and gene parameters.

Intuitively, the shifted gene expression should reflect the effect of the latent

secondary clustering we aim to cluster on. More precisely, the shifted data

is defined as ynm = xnm − ψtnm − νm for all n,m. In Figure 5.10, we observe

the block structure in the shifted gene expression matrix that corresponds to

the cluster effects where the blocking occurs at observations 42, 63 and 47.

This block structure correspond to the colouring of cluster labels as we are

clustering on the gene expressions after controlling for the tissue and gene

effect. Hence, the purpose of juxtaposing these two plots is to show that

after controlling for the tissue and gene effects we cluster on the remaining

signal in the data. Figure 5.10 provides an insight into what signal the

model is using to cluster observations. This is also the reason why it is vital

for the model the capture the tissue and gene effect. Otherwise, the model

will cluster observations based on a combination of the remaining tissue and

gene effect, whereas the objective is to cluster observations based on the

secondary cluster effect. Using the tissue and cluster labels in Figure 5.10,

we observe that there is mixing between tissue types within inferred clusters.

For example, observations from tissue 0 and tissue 1 are present in multiple

inferred clusters such as cluster 0. This reenforces that we have unmasked
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the hidden or latent structure in the data after controlling for the other

covariates.

5.1.4 Identifiability problems

There seems to be some identifiability problems for the gene, tissue, and

cluster parameters. There are multiple combination of values of gene, tissue,

and cluster parameters that produce the same value for the mean parame-

ter. For example, suppose we are targeting a mean gene expression value of

µnm for sample n and gene m. There are many values of ψtm, νm, φkm that

satisfy µnm = ψtm + νm + φkm where Tn = t and Zn = k. The model cannot

differentiate between the correct values of ψtm, νm, φkm that originally gen-

erated the data as it only takes into account the sum of these parameters.

More concretely, we observe the forward generated gene and tissue parame-

ters both express gene 150 moderately in Figure 5.3. However, we observe

the inferred tissue and gene parameters both express gene 150 with large

magnitudes. The tissue parameters have a very large positive magnitude in-

dicating a high gene expression and the inferred gene parameters has a very

low negative magnitude indicating a low gene expressed. This can be seen

in the column 150 of both matrices in Subfigures a and b. In other words,

the drastic up-regulation of gene 150 resulting from the tissue parameters is

offset by the drastic down-regulation from the gene parameters, ultimately

allowing for a decent inference on the mean parameter µnm.

5.1.5 Posterior inference without tissue parameters

We will now use the same synthetic data to perform inference while setting

the tissue parameters ψ = 0. We do so by initializing the tissue parameters

to ψ = 0 and performing inference without the Metropolized-Gibbs steps to

updated the tissue parameters. This effectively does not allow the model to

learn the tissue effect in the data. Therefore, this reduces the model to the
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first model introduced in Section 3.2 as it only controls for the gene effect.

In this experiment, we will focus on plots that show different aspects of the

inferred cluster configurations after keep the tissue parameters static. This

is because we aim to show that if the primary clustering is not controlled,

then the model will naturally cluster on it. That is, we will observe a direct

correspondence between the tissue and cluster labels of the observations.

Indeed, we observe this in Figure 5.15. Furthermore, we observe the residual

signal in the data is is representative of the tissue effect in Figure 5.13. Hence,

the model is clustering on the tissue effect in the data. In other words, the

model now leaves the secondary clustering of interest masked by the primary

clustering.

5.1.6 Posterior inference without Split-Merge sampler

In the following experiment we return to sampling the tissue parameters ψ

and therefore use a model that controls for the tissue effect. We will now

show the necessity of the Split-Merge sampler introduced in Section 4.2.2

using the same synthetic data as the previous experiment. We will do so

by showing that the inferred clustering when using only the Gibbs sampler

outlined in Section 4.2.1 results in the incorrect inferred cluster configuration.

Gibbs samplers for cluster assignments often gets stuck in local modes as it is

difficult to split or merge clusters when updating a single cluster assignment

per iteration. For example, to perform a split of a cluster using only a Gibbs

sampler a single observation would have to create their own cluster, then

the other compatible observations would have to join it sequentially. This

sequence of events has a low probability and therefore would require many

iterations before arriving to the desired state. That is, the Gibbs sampler is

not efficient enough on its own to sample the posterior of cluster assignments.

Hence, we need a more sophisticated sampling techniques such as the Split-

Merge sampler. This is observed in Subfigure a as the cluster configuration

is stuck in a local mode for a number of iterations before it jumps to a better
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configuration. Notice the sampler never reaches the correct clustering as the

V-measure is not equal to 1.

5.2 Semi-synthetic experiment: genotype tis-

sue expression data

5.2.1 Semi-synthetic data and posterior inference

The Genotype-Tissue Expression (GTEx) project is an ongoing open source

project with the goal to help better understand tissue-specific gene expres-

sion and regulation (Lonsdale et al., 2013). One of the ways the projects

achieves this goal is by providing the public with tissue-specific gene expres-

sion data. In a nutshell, a biopsy is performed on healthy tissue and bulk

RNA-sequencing technology is used to obtain gene expression counts. The

tissue-specific gene expression data used was obtained in a similar manner

to the methods described in Section 1.

The goal is to generate a non-forward generate dataset in which to test

model inference. This is because our model will be naturally biased towards

forward simulated data and model results will be less representative of real

data cases. We generate a dataset using the tissue gene expressions obtain

from the GTEx portal. We select four tissues in which we designate two

tissues to be the dominant effect and two tissue to be the latent effect similar

to the scenario outline in 3.1. That is, the two dominant tissues will mask

the latent effect from the two latent tissues. Therefore, we would obtain a

generated dataset informed by real data which we know the dominant and

latent cluster assignments but not model parameters. Our goal is to cluster

by the two latent tissue effects. We select brain and ovary to be the dominant

tissue effect and lung and thyroid to be the latent effect.

We outline the process in which we generate semi-synthetic data. Using

the gene expression data obtain from the GTEx portal, we average the gene
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expressions across each sample per tissue to create four gene expression vec-

tors. For each tissue we take 50 samples and 500 genes. Then we take convex

combinations of the four vectors to new create four alternative vectors. More

precisely, we take a proportion p of each dominant vector add it to 1 − p

of each latent vector. Each vector will be used as a concentration param-

eter of length 500. These concentration parameters will be passed through

a Dirichlet distribution to sample a simplex corresponding to each param-

eter. This proportion p is left an a parameter. We then use this simplex

to sample a count vector using a multinomial distribution. We continually

sample from a multinomial distribution until we get a desired number of

pseudo gene expression values. Let χBrain, χColorectal, χLung and χBreast denote

the gene expression vectors created using the GTEx data. The concentration

parameters and sampling method are shown below:

α1 = pχBrain + (1− p)χColorectal

α2 = pχBrain + (1− p)χLung

α3 = pχBreast + (1− p)χColorectal

α4 = pχBreast + (1− p)χLung

p1 ∼ Dirichlet(α1)

p2 ∼ Dirichlet(α2)

p3 ∼ Dirichlet(α3)

p4 ∼ Dirichlet(α4)

Xi ∼ Multinomial(105, αZi).

This was used to test the the models ability to captures varying levels of

signal between the dominant and latent effects. We were able to recover a

maximum of 0.8 proportion indicating the model has success to recover a

latent when the dominant effect is large.

In Figure 5.17a we show an instance of the synthetic data generated using
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the tissue gene expression data obtained from the GTEx portal. The way

the semi-synthetic data was generated there is an obvious primary structure

where the first half of observations are clustered together and the latter half

of observations are clustered together. This primary structure is similar to

the fully synthetic data generated in the previous experiments. We observe

that there is a finer signal in the semi-synthetic data that is indicative of

the secondary clustering. More precisely, the observations with even indices

share a common structure and the observations with even indices share a

common structure. The goal is to cluster observations based on this sec-

ondary structure. Therefore, the following plots will primarily focus on the

posterior clustering of the observation.

5.2.2 Posterior inference without tissue parameters

We test the gene expression model without controlling for the tissue effect

with the generated semi-synthetic data. Figure 5.22, shows the inferred mean

parameters of the gene expression model. We observe the inferred gene ex-

pressions on the latter half of observations have the same value when the semi-

synthetic data shows different values for even and odd observation indices.

Subfigure b, shows the similarity matrix of observations on the semi-synthetic

data without sampling the tissue parameters. The similarity matrix shows

the model detected a difference between first half of samples since they are

clustered into two sub-clusters corresponding to even and odd indices. The

samples from the other tissue were clustered together as their tissue effect

is dominant in the data. Therefore, we have that the sample still clusters

by tissue with some smaller within-tissue clusters. Subfigure a shows the

V-measure after a burnin phase never reaches a value of 1 which implies the

model never obtains the true cluster configuration.
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5.2.3 Posterior inference without Split-Merge sampler

We perform an experiment using semi-synthetic data in which we only use

the Gibbs sampler to sample cluster assignments. Figure 5.25, shows the in-

ferred clustering on the semi-synthetic data. We observe the Gibbs sampler

is unable to sample the posterior distribution efficiently therefore the Split-

Merge sampler is required to perform inference. More specifically, Subfigure

b shows that the Gibbs sampler is able to split the primary clustering ac-

cording to the finer signal corresponding to the secondary clustering, however

the sampler is unable to merge the observations accordingly. Recall, the data

was generated such that that the only true parameter known are the clus-

ter assignments. Therefore we are able to calculate the V-measure between

the current inferred cluster configuration and the true cluster configuration.

Subfigure a shows the V-measure never reaches a value of 1 which implies

the model never obtains the true cluster configuration used to generate the

semi-synthetic data.

5.3 Real-world application: international can-

cer genome consortium data

5.3.1 ICGC data

We test our model on a real data set obtained from the International Cancer

Genome Consortium (ICGC) (Zhang et al., 2019). We selected to model Bulk

RNA-sequencing data from a cohort of cancer patients. Specifically, we focus

on a cohort with the following cancer types: Breast, Brain, Liver, Colorectal,

and Lung. Each tissue type is taken from one project so that potential batch

effects are accounted for within the tissue parameters. For example, breast

cancer data is from a project named BRCA-US and Lung cancer data is from

a project named LUAD-US on the ICGC portal. We run our experiment on

a dataset with N = 125 samples and M = 766 genes where each cancer
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type has 25 samples. We used a publicly available list of genes obtained

from NanoString Technologies (NanoString Technologies, 2015). This list of

genes is created based on their relationship with gene pathways, a potential

secondary clustering with hope to cluster on after controlling for the tissue

effect. Figure 5.26 shows the ICGC dataset we perform inference on. We

observe a staggered block structure every 25 rows. This is because the data

is organized to stack each of the 25 samples from each cancer type. For

example, the first two block correspond to breast and ovarian cancer where

rows 0 to 24 correspond to the former and rows 25 to 49 correspond to latter.

5.3.2 Posterior inference without tissue parameters

We first show the experiment performed using the model that does not con-

trol for the tissue effect in the data. The purpose of this is to ensure that

the model does capture the tissue effect and therefore cluster on it. In other

words, it is an ad-hoc sanity check to ensure the model captures the correct

clustering. We initialize the tissue parameters ψ = 0 and do not update them

using the Metropolized-Gibbs sampler. In Figure 5.27, we observe for the in-

ferred mean parameter captures the general structure of the data. Moreover,

in Subfigure a we observe that the cluster parameters do capture the tissue

effect from each cancer type. For example, gene 5 seems to be heavily down-

regulated by breast cancer and gene 95 is heavily up-regulated by colorectal

cancer. Subfigure 5.28b, shows the inferred gene expression parameters. We

observe that the trend of gene parameters values are tending from positive

to negative. This was expected as the genes are ordered in descending order

measured by the mean absolute deviation. In Figure 5.29, we observe that

the clustering is by tissue type with some mixing between Colorectal and

Liver cancer forming a small cluster. This was expected as the tissue effect

is not controlled for in this model. The mixing between Colorectal and Liver

cancer may be because both these cancers affect a particular gene pathway.

Clustering by tissue type is observed again in Figure 5.30 where there is
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a direct correspondence between the tissue label and cluster label with the

exception of the additional inferred cluster.

5.3.3 Posterior inference with tissue parameters

We now sample the tissue parameters ψ to control for the tissue effect in the

data. This is to allow the model to cluster on a potential secondary struc-

ture. More specifically, we want the tissue parameters to capture the tissue

effect that the previous model clustered on. Therefore, we conduct the same

experiment as in the previous Section but now sample the tissue parameters

ψ using Metropolized-Gibbs updates. We initialize the tissue parameters ψ

using the average gene expression of each tissue. Often a different initial-

ization for the tissue parameters would lead to our sampler getting stuck in

some cluster configuration that is similar to the tissue configuration. This

shows some evidence that the sampler for the tissue parameters may not be

efficient enough to get out of a poor initialization. This shows some evidence

that the Metropolized-Gibbs sampler used for the tissue parameters is not

efficient enough to traverse a poor initialization. An alternative sampling

techniques that uses gradient information such as Hamiltonian Monte Carlo

(HMC) may be a possible solution to remedy this problem. Figure 5.34 shows

the inference on the mean parameter. The mean seems to capture the general

structure of the data. We observe the tissue effect seems to be captured in

the tissue parameters in 5.33a. We also observe the gene specific effects are

captured with the gene parameters in 5.33b. Now that the tissue parameters

account for the dominant signal in the data the model is able to cluster on

a finer hidden structure. Indeed, we observe in Figure 5.35, the clustering is

not on the tissue type of the cancer as there is mixing of tissue types within

inferred clusters. Expert knowledge is required to interpret this clustering.

We also observe the in Figure 5.37, the signal from the tissue effect is no

longer present and seems to be captured by the tissue parameters in Figure

5.33a.
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(a) Tissue parameters: T · ψ. (b) Gene parameters: 1N×1 · ν.

(c) Cluster Mean Parameters: Z · φ. (d) Cluster Variance Parameters.

Figure 5.3: Forward generated parameters for gene expression model used
in synthetic data experiments.
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(a) Inferred mean parameters

(b) Inferred variance parameters

Figure 5.4: Posterior inference of mean and variance parameters for gene
expression model controlling for tissue effects using forward generated data.
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(a) Inferred tissue parameters. (b) Inferred gene parameters.

(c) Inferred mean cluster
parameters.

(d) Inferred variance cluster
parameters.

Figure 5.5: Posterior inference of tissue, gene, and cluster parameters for
gene expression model controlling for tissue effects using forward generated

data.

64



(a) Tissue 0 Parameters (b) Tissue 1 Parameters

Figure 5.6: Sample average of tissue parameters in gene expression model
controlling for tissue effects using forward generated data.

Figure 5.7: Sample average of gene parameters in gene expression model
controlling for tissue effects using forward generated data.
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(a) V-measure value of each MCMC
iteration.

(b) Similarity matrix.

Figure 5.8: V-measure and similarity matrix of MCMC trace for gene
expression model controlling for tissue effect using forward generated data.

Tissue labels are indicated on the left most axis of similarity matrix.
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Figure 5.9: Gene expression matrix with tissue and inferred cluster labels.
Inference was performed with gene expression model controlling for tissue

effect using forward generated data.
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Figure 5.10: Shifted gene expression matrix with tissue and inferred cluster
labels. Inference was performed with gene expression model controlling for

tissue effect using forward generated data.
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Figure 5.11: Posterior samples of Dirichlet Process hyper-parameter α from
synthetic data experiment.
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Figure 5.12: Gene expression matrix and shifted gene expression matrix
with tissue and inferred cluster labels. Inference was performed with gene
expression model not controlling for tissue effect using forward generated

data.
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Figure 5.13: Shifted gene expression matrix and shifted gene expression
matrix with tissue and inferred cluster labels. Inference was performed with

gene expression model not controlling for tissue effect using forward
generated data.

71



(a) V-measure value of each MCMC
iteration.

(b) Similarity matrix.

Figure 5.14: V-measure and similarity matrix of MCMC trace for gene
expression model controlling for tissue effect using forward generated data.

Posterior inference was performed without Split-Merge sampler. Tissue
labels are indicated on the left most axis of the similarity matrix.
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Figure 5.15: Gene expression matrix with tissue and inferred cluster labels.
Inference was performed on gene expression model controlling for tissue

effect using forward generated data without Split-Merge sampler.

73



Figure 5.16: Shifted gene expression matrix with tissue and inferred cluster
labels. Inference was performed on gene expression model controlling for
tissue effect using forward generated data without Split-Merge sampler.
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(a) Semi-synthetic data generated using
GTEx portal.

(b) Inferred mean parameter.

Figure 5.17: Semi-synthetic data and posterior inference of mean parameter
for gene expression model controlling for tissue effect using data generated

with GTEx portal.

75



(a) V-measure value of each MCMC
iteration.

(b) Similarity matrix.

Figure 5.18: V-measure and similarity matrix of MCMC trace for gene
expression model controlling for tissue effect using semi-synthetic data

generated from GTEx portal. Tissue labels are indicated on the left most
axis of the similarity matrix.
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Figure 5.19: Gene expression matrix with tissue and inferred cluster labels.
Inference was performed on gene expression model controlling for tissue

effect using semi-synthetic data generated with GTEx portal.
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Figure 5.20: Shifted gene expression matrix with tissue and inferred cluster
labels. Inference was performed on gene expression model controlling for

tissue effect using semi-synthetic data generated with GTEx portal.
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Figure 5.21: Posterior inference for mean parameter of gene expression
model not controlling for tissue effect using semi-synthetic data generated

from GTEx portal.
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(a) V-measure value of each MCMC
iteration.

(b) Similarity matrix.

Figure 5.22: V-measure and similarity matrix of MCMC trace for gene
expression model not controlling for tissue effect using semi-synthetic data
generated with GTEx portal. Tissue labels are indicated on the left most

axis of the similarity matrix.
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Figure 5.23: Gene expression matrix with tissue and inferred cluster labels.
Inference was performed on gene expression model not controlling for tissue

effect using semi-synthetic data generated with GTEx portal.
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Figure 5.24: Shifted gene expression matrix with tissue and inferred cluster
labels. Inference was performed on gene expression model not controlling
for tissue effect using semi-synthetic data generated with GTEx portal.
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(a) V-measure value of each MCMC
iteration.

(b) Similarity matrix.

Figure 5.25: V-measure and similarity matrix of MCMC trace for gene
expression model controlling for tissue effect using semi-synthetic data

generated with GTEx portal. Posterior inference was performed without
Split-Merge sampler. Tissue labels are indicated on the left most axis of the

similarity matrix.
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Figure 5.26: Bulk RNA-sequencing data from International Cancer Genome
Consortium (ICGC) portal of 125 samples from breast, brain, liver,
colorectal, and lung tissues and 766 genes selected from NanoString

Technologies pan-cancer pathway panel.
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Figure 5.27: Posterior inference for mean parameter of gene expression
model not controlling for tissue effect using ICGC data.
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(a) Inferred cluster parameter.

(b) Inferred gene parameter.

Figure 5.28: Posterior inference for cluster and gene parameter of gene
expression model not controlling for tissue effect using ICGC data.

86



Figure 5.29: Similarity matrix of MCMC trace for gene expression model
not controlling for tissue effect using ICGC data. Tissue labels are

indicated on the left most axis of the similarity matrix.
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Figure 5.30: Gene expression matrix with tissue and inferred cluster labels.
Inference was performed on gene expression model not controlling for tissue

effect using ICGC data.
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Figure 5.31: Shifted gene expression matrix with tissue and inferred cluster
labels. Inference was performed on gene expression model not controlling

for tissue effect using ICGC data.
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Figure 5.32: Posterior inference for mean parameter of gene expression
model controlling for tissue effect using ICGC data.
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(a) Inferred tissue parameter.

(b) Inferred gene parameter.

Figure 5.33: Posterior inference on tissue and gene parameters of the gene
expression model controlling for tissue effects using ICGC data.

91



Figure 5.34: Posterior inference on cluster parameters of the gene
expression model controlling for tissue effects using ICGC data.
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Figure 5.35: Similarity matrix of MCMC trace for gene expression model
controlling for tissue effect using ICGC datas. Tissue labels are indicated

on the left most axis of the similarity matrix.
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Figure 5.36: Gene expression matrix with tissue and inferred cluster labels.
Inference was performed on gene expression model controlling for tissue

effect using ICGC data.
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Figure 5.37: Shifted gene expression matrix with tissue and inferred cluster
labels. Inference was performed on gene expression model controlling for

tissue effect using ICGC data.
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Chapter 6

Conclusions and Future

Directions

We introduced a Bayesian nonparametric model that controls for the tissue

effect and clusters based on a latent structure using a Dirichlet Process prior.

This model learns the tissue effect by using tissue parameters in a supervised

learning setting, while simultaneously learning the latent structure based on

the resulting residuals in an unsupervised setting. We demonstrated our

model by showing results on synthetic data, semi-synthetic data generated

from the Genome-Tissue Expression portal (GTEx), and a publicly available

dataset from the International Cancer Genome Consortium (ICGC). Results

on synthetic data showed the model was able to capture the tissue and gene

effects and consequently cluster on the latent secondary structure. In all

experiments, the Split-Merge sampler was vital for inference as the Gibbs

sampler would often get stuck in a cluster configuration related to the obser-

vations tissue assignments. In the real-world application using ICGC data,

an informed initialization for the tissue parameters was important otherwise

inference would also get stuck in a cluster configuration related to the tissue

configuration.

Expert knowledge may be needed to interpret the inferred clustering on
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the ICGC experiments. That is, a biological analysis is needed to determine

if the inferred clustering is biologically meaningful. One possible method

to start could include investigating which genes each inferred cluster up-

regulate and down-regulate to determine if they fit the pattern of a specific

gene pathway.

As alluded to in Section 5.3.3, a more efficient sampler for the tissue

and gene parameters could help the model better control for these effects

in the data. We cluster on the residuals of the data after controlling for

the tissue and gene parameters therefore the inference on these parameters

is vital for clustering. One possible method would be to leverage gradient

inference through the use of Hamiltonian Monte Carlo introduced in Neal

(2012). This may be an easy implementation as we model the data, tissue

parameters, and gene parameter with Gaussian distributions.

One possible method to model bulk RNA-seq data is to use a Negative

Binomial distribution. This method would allow us to model the raw data

instead of the normalized data where we could include another parameter

to account for the scale of each observation. This would involved the use

of non-conjugate samplers for the cluster assignments. Non-conjugate Gibbs

samplers do exist, however there exists a gap in the scholarly knowledge to

non-conjugate split-merge samplers. One may be able to leverage SMC and

PMCMC methods to develop a non-conjugate split-merge sampler similar to

the PGSM sampler.
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